Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

PR TR Z
R AL v s 2 S

SR

DOCUMENT NAME
Pk SWITCH RATHE DARRLE

ﬁm%k&%mw;%&%ﬁmm’ i i i
T Ex Libris David T. Craig

R P T R R R S ais el

Source: David Craig ¢ Apple /// Document # 17 Page 0001 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

BANK SWITCH
RAZZLE-DAZILE Bia

Peeking and Poking

The Apple III

BY JOUN JEPPYON

Picture the Apple 11 programmer perusing an Apple I1! Ba-
sic Manual. Much nodding and smiling. So powertul, so easy
... 80 many new built-ins.

But wait. Something’'s missing. Where are they? Try the
~ontents. Not there. The index? Not in there either. How about

he list of reserved words? Here we go: pdl, perform, pop,
prefix$. Good grief! They've left out peek and poke!

Doubtless you're in shock. The Apple III's creators left out
peek and poke. They say you don't need them, that the Apple
III's operating system takes care of all that. SOS they call it
(pronounced ‘‘sauce’’), the sophisticated operating system.
Big Brother in binary.

The weird part is, they're right. You don't really need peek
and poke. The Apple II has a lot of little peeks and pokes that
in the Apple III are done directly with Basic statements or by
writing control codes to the device drivers. And the big pokes—
well, if you're going to insert an assembly language routine,
there’s a proper way to go about it. You're supposed to fire up
Pascal, use the assembler to encode your machine language
program, and call up the resulting code as an invokable
module from Basic. Is this really possible? Certainly. In fact
we're going to do it right here and now. And what assembly
language routine shall we write? Why peek and poke, of
course. Ha! We'll fix 'em.

What they say is: even If you had peek and poke, it wouldn't
do you much good. SOS is constantly moving things around in-
side. You never know where SOS is going to put something, so
how can you peek at {t? To a certain extent this objection is
valid. SOS loads program segments and places variables wher-
ever it finds room at the moment; only SOS knows where. And
while most variables remain at the same address once allo-
cated, some don’t even do that. If you make a series of assign-
ments to a Basic string:

)Xstr$="abc": Xstr§="cdef": Xsir$="ghijk"

~ach Xstr$ is stored in a new place. So how do you know where
» peek? the argument runs.

Peeking Toms. Of course, you may not want to peek just at
your own programs. Perhaps what you really want to do is to
look at the operating system. Sizable chunks of the operating
system do have reasonably predictable addresses that might
somehow be exploited. But that is just what those friendly folks

$10FC ©
BANK 4§ &

MINEOLA N.Y.

EX LIBRIS: David T. Craig
736 Edgewater
[# 1 Wichita, Kansas 47230 (US&)

at Apple want you not to do. They have provided a greal -
riety of “'legal’ ways to use the operating system, such as .. v
erful language packages, standard drivers that include very
fast graphics, and assembly language modules that may in-
clude some thirty-six different SOS calls. But they don't want
you messing around in the operating system directly. This
policy is not merely to protect trade secrets. While it's true that
SOS.Kernel, the central part of SOS, is considered proprie-
tary information, Apple Computer has few worries about that.
You won't soon unravel the complexity of SOS.Kernel unless
you're so bright that you're wasting a national treasurc by
spending brain time on the task.

There's a more important reason for keeping peek and |- <e
out of applications programs. The Apple III is not intended to be
a static, finished product. Rather, it is an evolving computer
system. Improvements are expected; indeed, they have
already begun. And these improvements will be made to your
existing machine by simply booting another disk that incor-
porates the changes. Apple wants your programs to run
properily on the advanced Apple IIIs of the future. And they
will, if you simply conform to the rules and stick to the tools
provided. If your program uses ‘‘carnal knowledge'' of th. op-
erating system and takes shortcuts by poking some ms. ‘&l
spot, well, that spot probably won't be there after the nex: up-
grade. And you'll be back to square one.

So why write peek and poke? It's not that we harbor an
overwhelming compulsion to pollute the system with *‘illegal”
programs. We'd just like to know what's going on in there.

Congratulations, It's a Chip. Like the Apple I, the Apple I
uses the 6502 microprocessor chip. But the 8502 cpu has only &
two-byte program counter. That is, it handles memory ad
dresses that are only two bytes, or sixteen bits, long. Now it's
an inescapable fact that there are just 64K (2A16 = 65,536 dif
ferent combinations of sixteen binary bits, so it would aj- 8l
that the 6502 limits a computer to 64K bytes of memory. 0%
does the Apple III handle four times that much? It turns out
there are two distinctly different ways to do this: bank switch:
ing and extended addressing. The Apple III uses both.

Think of the computer as a black box. Imagine that inside
the box there is a smaller box. We'll call it a “*switch box." I
side that switch box is the 8502. The function of the switch boX
is to shield the 8502 from the hard realities of life; to delude it
into thinking that it lives in a nice, simple 84K machine. !
other words, all the 8502 ever sees—all it knows about—is a 64

| Source: David Craig = Apple /// Document # 17

Page 0002 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

<0 ST 1982

SOFTTALY &

39

stre - h of memory. This keeps it very happy. What the 6502
doe :'t know is that the 64K bytes of memory it's using are a
bit ~lippery. They aren't the same bytes from one micro-
second to the next. The switch box watches the 6502 and when
1€ 6502 isn't looking swaps chunks of the real 128K (or 256K)
memory in and out of the active 64K that the 6502 is using. The
6502 just goes on about its business, oblivious to the changing
universe around it.

Fetch, 6502. Fetch! When the 6502 wants a bit of data, it per-
forms a memory fetch. What happens is that the desired ad-
dress, one of the 64K memory locations, appears on the six-
e -ddress lines of the 6502 chip. That is, each of the sixteen
ad(s pins on the chip is given either high voltage or low volt-
e o represent 0 or 1 in the corresponding address bit. Be-
tausc the chip has only sixteen such pins, the addressable
memory is only 64K bytes. To address more memory you'd
*eed extra pins. With seventeen address lines you could ac-
tess 128K, with eighteen lines you'd get 256K, and 80 on. In the
Apple III, the extra address lines are supplied by the switch
%x. The 6502 doesn't know it, but the memory chips actually
get a twenty-bit address that's sixteen bits from the cpu and
four bits from the switch box. The switch box (really some ex-
Ta rcuitry watching the 6502) gets those extra bits from one
9f’ memory registers—hexadecimal location SFFEF, the
Yoo register.,

Not all 64K bytes that the 6502 uses are swapped. Locations
0000 to $1IFFF and locations $A000 to SFFFF, a total of 32K
Oes, comprise the system bank and are always on line. The
’ther 32K, locations $2000 to $9FFF, constitute one of several
lifferent 32K user banks that can be switched in. The bank
*hosen is indicated by the value of register $FFEF. Thus, if
;FFEF contains 2, the 6502 will be dealing with 64K locations
Made up of:

$O000..S1FFF + $2000.S9FFF + $A000. SFFFF = 64K
Bonk § Bonk 2 Bank S

'Tho low nibble (bits 0,1,2,3) of SFFEF can contain sixteen dif-
‘rent numbers, 0 through 15, or hexadecimal, $0 through $F.
One of these numbers, $F, is reserved for a special purpose,
Ut each of the remaining fifteen numbers (30 through $E or 0
lhrOugh 14) represents a bank of 32K memory bytes that might

switched in. So this scheme can handle 15 x 32K (480K) plus
he 32K S-Bank, or 512K bytes of addressable memory. The

SCRANTON PENN.

present hardware maximum is 256K bytes, but the scheme has
room for more in the future.

Don’t Bank on It. Bank switching is great if you don't have
to do it very often. You can run along in one bank for a while,
then switch and run in another. But if you're running in one
bank and want to fetch some data from a table in another
bank, it's cumbersome. And slow. Several operations are re-
quired: you must store a new value in the bank register, fetch
the data, and then switch back again by restoring the original
contents of the bank register. All for one byte of data~ Further-
more, the program code that actually does the switching must
be located somewhere in the system bank (the part that's not
switched). If the program were running in the switched-in bank
at the moment it decided to change the bank register, it would
instantly dematerialize itself, a form of suicide reminiscent of
killing your own ancestor in a time warp. Suddenly, you never
were. The 6502, of course, goes blithely on and fetches the next
instruction from the corresponding spot of the newly switched-
in bank. The results are generally strange.

Fortunately it is possible in the Apple I1I to access any byte
of memory, in any bank, directly, and with a single operation.
This technique is called extended addressing and works with
any of the 6502 instruction codes that use the zero-page indi-
rect indexed addressing mode. For example, the instruction
LDA ($2B). Y tells the 6502 to load into the accumulator the
contents of that memory byte whose address is found by add-
ing the contents of the Y-register to the address stored in zero-
page locations $002B and $002C. That “indirectly" obtained ad-
dress is the one placed on the sixteen address lines of the 6502
chip.

Take Me to the $1600 Page, and Step on It! But, to access
more than 64K memory locations, you need more than sixteen
address lines. Once again, the switch box does the trick. When-
ever the switch box sees that the 6502 is performing one of
those indirect indexed instructions, it quickly adds in the extra
address bits. Ti, this case the extra bits are obtained from a
memory register called the Xbyte. Each zero-page location
($0000 to $00FF) has ‘‘associated'’ with it another memory lo-
cation at the corresponding spot in the $1600 page ($1600 to
$16FF). Thus, if an address is stored as the contents of loca-
tions $002B and $002C (a total of sixteen bits), the Xbyte (the
extra bits for the extended address) will be the contents of lo-
cation $162C. So when your program performs a zero-page in-
direct indexed instruction the addreas actuallv nasd fa turanty

| Source: David Craig = Apple /// Document # 17

Page 0003 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

40

@SOTFTALX

AUGUST 1983~

bits wide. And twenty bits is more than enough to get all the
memory in the computer.

To the more technically minded reader, a question imme-
diately arises. How is the value that is stored in the Xbyte
memory location actually delivered to the circuitry of the
switch box? Does the 6502 have to perform extra load and store
operations, or what? It sounds like it might be very slow, but it
isn’t. The mechanism is peculiar, even bizarre. In fact, you
should probably skip the next several paragraphs completely.
No? Well, the story starts back with the Apple II

The Apple II, like all respectable computers, transfers in-
formation to the video screen by direct memory ac-
cess(DMA). The screen display must be refreshed and rewrit-
ten about sixty times every second, and the information used
comes from a pattern of bytes stored in a specified stretch of
memory. In the Apple II, the text currently on screen occupies
memory locations $0400 to $07FF, a total of four pages, each
consisting of 256 bytes (1,024 bytes of memory). 80 a lot of
memory has to be accessed every second just so you can read
the screen. Collectively this region of memory is known as
Text Page 1. (We'll capitalize Text Page to distinguish it from
a page of memory, which is a sequence of 258 bytes whose ad-
dresses all have the same high-byte.) The Apple II video Text
Page is actually four pages of memory.

A Helptul Vulture. Information {8 not transferred to the
screen by the 8502 cpu chip. That would be very slow and would
tie up the cpu with a task unworthy of its time. Instead, there’s
additional circuitry in the video output section that watches the
cpu. Periodically the cpu gets busy churning away inside itself
and the address lines fall idle. The video DMA circuits then
seize the address lines and make a quick data fetch of their
own. Because DMA uses the address lines only when the cpu
doesn’t need them, the 8502 buzzes right along and doesn’t even
realize what's happened.

The Apple II also sets aside another 1,024 bytes of memory

as an alternate source of video information. This is Text Page
2, which occupies the adjacent region of memory, locations
$0800 to $OBFF. These two regions are identical, so any partic.
ular spot on the video screen is mapped from corresponding
memory locations in each of the two regions. The correspond.
ing spots will always be $0400 memory bytes apart. Thus,
$04A3 and $08A3 represent the same screen location as storeq
in the two Text Pages, respectively. Now it just so happens
that in the binary number system the Boolean statements $4 Xx.
OR $0C=$8 and $8 X-OR $0C =$4 are both true. (X-OR is the
Boolean operator exclusive OR.) This means that it's easy for’
the computer to move from a spot in one Text Page to the cor-
responding spot in the other. It's just the page number (the
high-byte of address) X-OR'd with $C. And just why this is rel-
evant to Apple III will emerge forthwith.

When it came time to design the Apple III, it was deemed
desirable to incorporate an Apple II emulation mode. So, at
least in emulation mode these two regions of memory con-
tinue to be used for video. Thus the Text Pages were kept
around. It was also deemed necessary that the Apple I11, in itg
native mode, have an eighty-column text screen instead of the
forty columns of the Apple II.

Double Vision. The change to eighty columns presented a
problem. Exactly twice as much data must be moved from
memory to screen with every video refresh. DMA must ac-
cess twice as many memory locations in the Apple III as it did
in the Apple II—and it really can’t take twice as long to do it.
What to do? Well, there are those two separate text screens.
Why not use them both simultaneously? So in the Apple III the
memory access path was made sixteen bits wide.

Every time a ‘‘fetch’" is sent out over the address lines, the
fetch returns not one, but two bytes of memory: the byte re-
quested and a corresponding byte from the memory location
with page number X-OR $C. For DMA, this is great. It re-
trieves both text pages simultaneously and they are inter-

Apple users. THE SOURCE
and TRANSEND. Together for

the first time
for only $89.

Buy our $89 Transend state-of-the-art data
communications software and membership in
THE SOURCE, AMERICA’S INFORMATION
UTILITYSM, is included. This combination
allows you to easily access one of the world’s
largest information services for up-to-the-
minute news and sports, stock prices, travel
services and much more.

An optional 260-page Source User's
Manual is available for $19.95. Your dealer has

complete details. Call 800-227-2400, ext. 912 (in Calif. 800-772-2666,
ext. 912) for the name of your local Transend dealer.

Offer expires Oct. 1, 1982.

Apple is a trademark of Apple Computer Inc

subsidiary of The Reader's Digest Association Inc.

K i/774

THE SOURCE and AMERICA'S INFORMATION UTILITY are service marks of Source Telecomputing Corp.,

The Ea:sformaﬁon People.

SSM Microcomputer Products Inc.
2190 Paragon Drive, San Jose, CA 95131

| Source: David Craig = Apple /// Document # 17

Page 0004 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

42 @3 OTTALX AUGUST 1983

woven on the screen; a byte from one, a byte from the other.
You end up with forty-column screens superimposed, with the
second display shifted one-half column sideways. And there’s
your eighty columns. Of course that extra byte is also re-
turned in an ordinary memory fetch by the 6502. But in that
case it is simply ignored.

At this point some absolute genius at Apple, whose name we
don't know, figured out that the extra byte returned by an or-
dinary memory fetch could be exploited. This extra byte could
provide the extra bits of information needed to extend the ad-
dress space of the 6502 beyond the 64K (sixteen-bit) limitation.
When the 6502 performs a zero-page indirect indexed opera-
tion, it must go out to memory to the designated spot on zero-
page and get the address it will use for the data fetch. Since the
address will be sixteen bits, or two, bytes long, it must go to
zero-page twice. First it gets the low-byte of the address, then
the high-byte. But the switch box has been watching the 8502
for signs of just this type of operation.

The Prodigal Byte Returns. When the high-byte of the ad-
dress is returned, the switch box grabs the extra byte that is re-
turned with the address but normally neglected. That is the
Xbyte. The information from the Xbyte is quickly placed on
the “‘extra’* address lines, and there’s the 6502 addressing a full
512K bytes of memory. So the Apple III gets extended address-
ing more or less for free, as a by-product of the DMA video ap-
paratus. Furthermore, it's very quick, adding a maximum of
one clock cycle to the five-clock-cycle memory operation. That
Apple engineer, whoever he is, really earned his pay the day he
thought that up.

**Aha,'’ you say, ‘‘hold on just a minute. That extra memo-
ry byte from the DMA business is supposed to come from the
location at page number X-OR $C. But when you go after the
address you are accessing zero-page, and $0 X-OR $C is not
$16. You said the Xbyte was located on page $16. What gives?'’
(Aren't you sorry you didn't skip all this? You were warned.)

Actually we have another little deception. Zero-page is not
really zero-page. It is actually page $1A, and $1A X-OR $Cis in-
deed $16. So the Xbyte is coming from the right place. What's
happening is that the poor innocent 6502 thinks it's getting zero-
page but it's really being fed something else. It's that switch
box again. Every time (really, every time!) the 6502 tries to
access any location on zero-page, the switch box yanks the
zero-page reference off the address lines and subatitutes an-
other ‘‘zero-page.’’ In this case it is the page whose number is
stored in location $FFDO, the zero-page register. So in the Ap-
ple III there are a bunch of zero-pages. Languages and user
programs are assigned zero-page $1A (locations $1A00 to
$1AFF), SOS uses zero-page $18, and interrupt-handling rou-
tines use the true zero-page $0000 to $00FF. It's actually possi-
ble to designate any page as the zero-page, but the Xbyte ex-
tended addressing mechanism works only for zero-pages in the
range $18 to $1F.

If you aren't already dazed, you will be overjoyed to learn
that the 8502 stack-page is also switched when the zero-page is
switched. Normally the 6502 considers the stack to reside per-
manently on page $01, that is, locations $0100 to $01FF. But
page $01 can also be thought of as zero-page ($00) X-OR $1. In
the Apple III, any instruction that uses the stack (PLA, PHA,
and so on) actually uses the current zero-page X-OR $1. So if
the zero-page is $1A, then the stack is on $1B. But in this case
the reassignment process can be independently disabled by
changing one of the bits in yet another special register,
($FFDF) the environment register. (Maybe next time.)

A Word from Mad Ave. To clear your mind, try contem-
plating one of the mysteries of the advertising world. The Ap-
ple III, as you may know, does not have the field completely to
itself. There's a tiny company in New York, with a little-known
three-letter name, that has recently moved into the ‘‘small”’
computer business. You've probably never heard of it. Any-
way, the machine they make has a sixteen-bit cpu. A veritable
revolution according to the ads. But its memory is only nine
bits wide—eight data bits and a parity bit. So every time that
machine performs a memory fetch it gets just eight bits of

data. Nevertheless, because of its cpu it calls itself a sixteen-bit
machine. The Apple III, on the other hand, returns sixteen bits
of data with each memory fetch. Does that make it a sixteen.
bit machine too? It's hard to say. Maybe it depends on who
writes the advertising copy.

Extended addressing is really much easier to use than it i3
to explain. The key to success is to fix firmly in your mind tt. .-
the 6502 must, at all times, have 84K bytes of memory to work
with. No more, no less. All the complicated swapping around
must conform to that principle. Most of the time the cpu sees
the upper and lower sections of system bank with one of the
user banks switched into the middle:

$0000..$1FFF + $2000.$9FFF + $A000..SFFFF = 64K
S-bank user bank S-bank

We'll call this ordinary addressing. Each user bank is 32K
bytes long, which is $8000 in hexadecimal. We can talk about a
particular byte in a particular bank by using a number in *; -
range $0000 to $7FFF (which is the size of the bank). Locatiun
bank 2/byte $43DE is a spot a little above the middle of bank 2.
Now the switch box is going to take this whole bank and place it
somewhere in the field of 64K bytes that the 6502 is looking at.
In “ordinary addressing'’ as we have just defined it, that bank
will start at what the 6502 is now calling $2000. So far as the 6502
is concerned, that location just discussed will be found at
$63DE ($43DE + $2000).

In the lower section of the system bank ($0000 to $1FFF),
one page will appear twice. If the 6502 looks at page $1A ($1A00
to $1AFF), it does indeed get page $1A. But if it looks at z-: -
page ($0000 to $00FF), it also gets page $1A, assuming, of
course, that the value of the zero-page register ($FFD0) is
$1A—as you will normally find it to be. And yes, the stack-page
is also, usually, *“‘duplicated,’ depending on that bit in the en-
vironment register ($FFDF).

Cpu, Meet a New Array. Extended addressing presents the
cpu with an entirely different 84K byte array. This occurs only
during the data fetch portion of a zero-page indirect indexed
operation. The 6502 has already got the address and is now go-
ing after the actual data. The Xbyte determines just which
chunks of memory are presented to the 8502. For extende« :i-
dressing, the Xbyte must read $8n where n can be any Luxa-
decimal digit. If the Xbyte reads $0n, you'll just get ordinary
addressing as defined above.

In extended addressing the cpu sees a pair of user banks,
banks n and n+1. For example, if the Xbyte is $80, then the 6502
is looking at:

$0000..$7FFF + $8000..$FFFF = 64K
bank O bonk 1

Alternatively, if the Xbyte is $81, then the 6502 sees:

$0000..$7FFF + $8000..$FFFF = 64K
bank 1 bank 2

Notice that a location in bank 1, say $13AB, can be found either
as $13AB of bank pair 1,2 (Xbyte = $81) or as $93AB of bank
pair 0,1 (Xbyte = $80). It's the same memory byte, but it can
have more than one address depending on where it is placed in
the 6502's field of vision.

Pascal and Basic each leave a chunk of zero-page for you to
use for extended addressing in your own assembly languag®
routines. In Pascal you are given $00E0 through $00EF, and in
Basic you get $00E8 through $00F7. These regions overl: ™. 50
if you are careful you can use the same assembly lanj,.ig¢
routine with both languages. Suppose you want to load the a¢
cumulator with the contents of byte $341D of bank 1. We'll usé
Xbyte = $81, which looks at bank pair 1,2. The zero-page 10¢8°
tion where we will store the address (pointer) is $00E8 a“c_l
$00E9. First, store the desired address pointer on zero-page:

LDA #$1D low byte at lower location
STA $0E8

LDA #$34 ;high byte at higher location
STA $OE9

| Source: David Craig = Apple /// Document # 17

Page 0005 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

46 @ OFTALK AUGUST 1982

Then store the Xbyte at the corresponding spot in the Xpage:

LDA #$81
STA $16E9

After setting the appropriate value in Y-register ($0 in this
case), we fetch the data with:

LDA @S$0E8,Y ;same os "LDA ($OES),Y"

Note the alternative Apple III indirect notation using @ and
omitting all parentheses. The assembler will also accept stan-
dard 6502 notation. By simply incrementing the Y register you
may step through a whole page of memory without changing
the zero-page pointers at all.

There is one problem. Remember that a reference to zero-
page always results in a swap for the current zero-page whose
number is stored in $FFDO. If you want to look at the lowest
page of bank 1, say, $0023/bank 1, you can't get there by ask-
ing for $0023 of bank pair 1,2 (Xbyte = $81). You will just be
given $1A23 from the system bank because you've made a
zero-page reference. Instead you must ask for location $8023 of
bank pair 0,1 (Xbyte = $80). It's the same place, but you have
avoided the zero-page reference problem.

Lower than Low. ‘*Ah,”" you say, ‘‘but what do you do about
the bottom page of bank 0? There is no bank number lower
than 0, so you can't perform the same trick.” That's a good
question, especially since bank 0 is where the Apple III puts its
graphics, and you may want to meddle with the graphics
screen from assembly language. Several areas of the screen
are in that lowest page of bank 0. In this case there is a special
technique, $8F addressing. Use extended addressing with
Xbyte = $8F. This produces a 64K block that looks like ordina-
ry addressing with bank 0 switched in. The desired page will
now be found as $2000 through $20FF.

$8F addressing has another handy feature. In all other
forms of addressing, the area $FFDO to $FFEF is very spe-
cial. These locations are not actually in RAM at all. They are
on the two VIAs (versatile interface adapters) that the Apple
III uses for all sorts of goodies including part of the ‘‘switch
box'' mechanism responsible for the fancy footwork. All the
special registers are in this area, and it is always on line. The
corresponding locations in RAM are normally not available,
but $8F addressing is all RAM, including the thirty-two bytes of
RAM ‘‘under”’ the VIAs. And what is squirreled away there?
Why, the system clock, of course. That's why the clock is pro-
tected when the Apple III is rebooted.

The environment register really deserves a separate article
of its own. Table 1 lists the function of its bits without discuss-
ing them.

Down to Business. The accompanying assembly language
program contains the function peek and the procedure poke. It
depends primarily on extended addressing but, regrettably,
uses less legal methods as well. After assembly, the resulting

Bit Valve Function

0 $F000..$FFFF = RAM
= ROM
ROM = ROM #2 (but it doesn’t exist)
ROM = ROM #1 (if switched in with bit 0)
alternate stack (= zp x-or $1)
normal stack (page $01)
$C000..$FFFF — read/write
— read only (write protected)
RESET KEY — disabled at keyboard
— enabled
Video — disabled
— enabled
$C000..$CFFF — RAM
—I1/0O space
Clock speed — 2 mhz.
— 1 mhz.
Table 1. The environment register, $FFDF.

IS
-0~ 0~ 0 -0 —-0—~0=—~0=—=0

code can either be linked to a Pascal program or invoked from
Basic as an invokable module. It works the same way in both
languages.

Peek is a function and returns an integer value, the con.
tents of the memory location at which you've peeked. The func.
tion requires two parameters. You must supply the address
(as viewed by the 6502) and the Xbyte. Both are passed as in.
tegers. In Pascal you declare peek an external function:

function peek (addr, xbyte : integer) : integer;
external;

You may then make an assignment statement to an integer
variable:

int 1= peek (addr, xbyte);
In Basic the process looks like this:

10 INVOKE “peek.poke.code”: REM the pathname of the codefile.
100 int = EXFN9%.peek(%addr,%xbyte)

Poke is similar, but since it doesn't return anything (ex-
cept, occasionally, disaster), it is a procedure. It has a third
parameter, the value to be poked. Value must also be an in-
teger.

In Pascal:

procedure poke (addr, xbyte, value : integer);
external;

then one can use:

valve 1= 128;
poke (addr, xbyte, valuve);

In Basic:

10 INVOKE “peek.poke.code”
100 valve = 128
110 PERFORM poke{9% addr,%xbyte, % value)

Don't forget that the variables are all decimal integers. You
may want to enter them and display them as hexadecimal
strings, but you will have to convert. Basic has handy built-ins:
HEXS$(integer) and TEN (hexstring). In Pascal you will have
to write your own.

The address can be any legal, ordinary integer. Value and
Xbyte must be integers in the range 0 to 266. If they are
greater, the integer MOD 256 is used. Only certain Xbyte
values have meaning; all the rest are treated as 0. Table 2 has
some useful Xbytes and some comments, There are a couple of
peculiarities that you should know about:

1. Nothing terrible happens if you give the Xbyte of a bank
pair that doean't exist (yet)—for example, ($8C = 140). Peek
will either return $FF, signifying nothing, or some value from
one of the existing banks—also of little use.

2. The artificilal Xbyte $FF (decimal 255) isn't actually
used as an Xbyte. It is merely a signal to the function to do all
sorts of illegal things to the environment register, zero-page reg:
ister, and interrupts in order to get at areas normally inac
cessible. With this **Xbyte" you get a block that looks like or
dinary (system) addressing but with ‘‘true'’’ zero-page and
“true” ($01) stack-page. Also, the area $C000 to SCFFF is “1/0
space,” and $F000 to $SFFFF is the read-only memory used in
the boot process.

e

Hex Decimal Result
$00 0 “ordinary” system bank. User bank at $2000..$9FFF
$80 128 bank pair 0,1

$82 130 bank pair 2,3 — bank 3 nonexistent in 128K machine

$86 134 bank pair 6,7 — bank 7 nonexistent in 256K machine
$8F 143 like system bank. Bank 0 to $2000..$9FFF. ALL RAM!
SFF 255 “artificial’” — gives a system type bank with

1. “true” zero-page and stack-page

2. $C000 to SCFFF = /O space

3. $FO00 to $FFFF = ROM

Table 2. Xbyte values.

| Source: David Craig = Apple /// Document # 17

Page 0006 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

47

SOFTALL @

UGUST 1982

Note: There are locations on $C100 page of I/O space that appress .equ 0€8 1zeropage “pseudo” register
will cause the computer to ‘“hang” just by reading them. It sanKSW .EQU OFFEF
really isn't dangerous, but you’ll have to reboot. ZEROPG EQU OFFDO
A Program by Any Other Name. Boot up Pascal, enter the ENVRMT .EQU OFFDF
editor, and type in the program. Capital letters are not re- -FUNC PEEK,2
quired. Neither are the comments, but it would be a shame if RETURN ngRD gecm
you left out all of them. You can save a lot of typing by just typ- XBYL‘IJ'E ‘WORD 0
ing in peek and duplicating it with the copy buffer. Then 89 pesuLT ‘WORD Pt
through and make the necessary changes to convert one of OW_XBT BYTE 0
them to poke. Save the program on disk. Use a path name of OLD_ZPG .BYTE 0
ten characters or less and permit the editor to add the suffix gny .BYTE 0
.JEXT to your path name (for example, peek.poke.text). BEGIN POP RETURN
Next, enter the assembler and assemble the program. The PLA +"dummy” bytes for function
assembler will want to add the suffix .code. Let it. Otherwise PLA
the resulting file will not be type named code file and will not :t:
invoke properly. Later you can change the name (for exam- .
ple, peek.poke.inv) and the type name won't be affected. g: i:gﬂEESS sparameters come off in reverse order
The output of the assembler is the invokable module. Move LDA ADDRESS+1601 jsave original x-byte value
it ¢ : your Basic disk and invoke it by its path name. You can STA OLD_ XBT
thea use either peek or poke at will in your program. Details of swhich bank is desired
the required Basic program syntax may be found starting on LDA XBYTE
page 160 of the Apple III Basic Manual. CMP HOFF sFF = ROM #1, CO-CF = | /O,
Pascal is even simpler. You just declare peek and poke as gi:': ::(E)CIAL 7 “true” 00 and 01 pages
external and use the linker to add them to your program. o SYSTEM /80-8F = extended addressing
CmpP #90 i else system bank (ordinary 6502)
PEEK.POKE.TEXT — Source Code BMI EXTEND
MACRO POP ;handle system bank
PLA SYSTEM LoY #0
STA %1 STY ADDRESS +1601 ;xbyte = 0 so get ordinary 6502
PLA LDA @ADDRESS,Y ; indirect indexed addressing
STA %1+1 STA RESULT
ENDM JMP DONE
MACRO PUSH shandle extended addressing to a
LDA %1+1 bankpair or $8F
PHA EXTEND STA ADDRESS+1601 ;place extend byte
LDA %) Loy #0
PHA LDA @ADDRESS,Y “extended” addressing to desired
LENDM STA RESULT ; bank pair

Bill Budge’s

Three animated claws
trap the balhif they are enabled
When three balls became
trapped, oll are released tor
excitmng multi-ball play

Three sets of targets
test your am and tinung
Hiv all of them to enable
the claws

Plus kickers,

Real

pinball flippers

make this a game of strateqgy
& skilled shot making

Animated shields
can shoot a lost ball back into play

Raster Blaster

for the Apple Il and the Apple II
Plus may be the first Apple il
game that i1s copied for the arcade
machines. It 15 so technically
sophisticated and fun to play that
IL1s sure to attract the big arcade
manufacturers But you can qgetit
right now tor your Apple!

Apple this aregistered trademark of Apple Cormpeter o

thumper-bumpers and
an animated spinner hetn to
provide unmatched realism

Dealer inquires invited:
BudgeCo, al
Piedmont, CA 9461
(415)658-814

VIDEO

PINBALL
FOR THE
APPLE Il

Requires a AHK Appee I

| Source: David Craig = Apple /// Document # 17

Page 0007 of 0008)

Apple //l Computer Info ¢ Bank Switch Razzle-Dazzle « SOFTALK August 1982

JMP

SPECIAL LDA
BEQ
CMP
BEQ

PHP
SEI

LDA
STA

LDA

STA
Loy
STY
LDA
STA
LDA
STA
PLP

JMP

TRUEPGS PHP

$1 LDA
32 STA

DONE LDA

RETURN
XBYTE
VALUE
OLD__XBT
OLD__ZPG
OLD_ENY
ENV .BYTE
BEGIN POP

POP
LDA
STA
LDA
STA
AND
STA

LDA
Cmp
BMI
cmpP
BMI

A LDA
CMP
BNE

LDA
CMmP
BEQ

DONE

ADDRESS+1
TRUEPGS

#1

TRUEPGS

ENVRMT
ENV

#73
ENVRMT

#0

ADDRESS +1601
@ADDRESS,Y
RESULT

ENV

ENVRMT

DONE

ADDRESS
ADDRESS +1
ZEROPG
OLD_ZPG

#0
ZEROPG

$1

0100,X

$2

0000,X
RESULT
OLD__ZPG
ZEROPG

OLD__XBT
ADDRESS +1601
RESULT

RETURN

POKE,3
BEGIN

oo o0oo0oo0o

RETURN

VALUE

XBYTE

ADDRESS
ADDRESS +1601
OLD_. XBT
ENVRMT
OLD__ENV
#OF7

ENVRMT

XBYTE
#80

$)

#90
EXTEND

ADDRESS +1
#OFF
$2

ADDRESS
#0D0
DONE

AUGUST 1982

€ 3OTITAIX

shandle artificial bank ‘FF’

strue $00, $01 desired?

ROM#1 —> FOOOO-FFFF,
CO000-CFFF— >1,/0

;save status, then disable interrupts

i(an “illegal” move)

;save environment

;#9 0111 0011 — new environment
r

Q9
i{an “llegal” move)

ssystem bank xbyte = 00

srestore ENVRMT

srestore status (including interrupts)

;desired address on true 00 or
01 page

;save status, then disable interrupts

s(an “illegal” move)

slood BEFORE leaving old z-page

;save old zpg

;changes zero-page to 0, stack to 1

i(an “illsgal” move)

;is high byte 00 or 01

;indexed addressing (x = addr)

;restore ZEROPG (and stack page)

srestore interrupts (status)
srestore Pascal’s xbyte

;parameters come off in reverse order

;save original x-byte value
jsave ENVRMT
sfor POKE, enable write CO00 to FFFF

;which bank is desired

;80-8F = extended addressing
+ else system bank (ordinary 6502)

disallow certain addresses
;POKE disallowed at (system bank):
; BANKSW = FFEF

; ENVRMT = FFDF

; ZEROPG = FFDO

; in this program — svicide certain
; in your program — suicide probable

$2

SYSTEM

EXTEND

SPECIAL

TRUEPGS

$1
$2

DONE

CmP
BEQ
CMP

BEQ

LDA
CMP
BEQ

LDY

LDA
STA
JMP

STA
LDY
LDA
STA

JMP

LDA
BEQ
CcmpP
BEQ

PHP
SE|

LDA
STA
LDA

STA
LDY
STY
LDA
STA
LDA
STA
PLP
IMP

PHP
SE|
LDX
Loy
LDA
STA
LDA
STA
LDA
CpPY
BEQ
STA
Jmp
STA
LDA
STA
PLP
LDA
STA
LDA
STA
PUSH
RTS
.END

#ODF
DONE ;if you really want to crash, just start
#OEF POKing into SOS
(RAM $8800 = FFFF)
DONE ; soon he will get very sick
;detect artificial bank ‘FF’
XBYTE
HOFF ;FF = ROM #1, CO-CF = | /O
SPECIAL 5 “true” 00 and 01 pages
;handle system bank
#0
ADDRESS+1601 ;xbyte = 0 so get ordinary 6502
VALUE indirect indexed addressing

@ADDRESS,Y
DONE

;handle extended addressing to o
bankpair or $8F

ADDRESS+1601 ;place extend byte
#0
VALUE
(@ADDRESS,Y ;"extended” addressing to desired
; bank pair
DONE
;handle artificial bank ‘FF’
ADDRESS +1
TRUEPGS ;true zp or $O1 desired?
#1
TRUEPGS
;ROM#Y —> FOOO-FFFF,CO00-CFFF
—>1/0
;save status, then disable interrus:
(an “illegal” move)
ENVRMT ;save environment
ENV
#73 #% 0111 0011 = new environment
reg
ENVRMT i(an “illegal” move)
#0
ADDRESS+1601 ;system bank xbyte = 00
VALUE
@ADDRESS,Y
ENV ;restors ENVRMT
ENVRMT
;restore status (including interry: .
DONE :
;desired address on true 00 or 01
page
;save stotus, then disable interrupts
i(an “illegal” move)
ADDRESS ;sload BEFORE leaving old z-poge
ADDRESS +1
ZEROPG ;save old zpg
OLD__2PG
#0 ;changes zero page to 0, stack to !
ZEROPG (an “illegal” move)
VALUE
#0 sis high byte 00 or 01
$1
0100,X sindexed addressing (x = addr)
$2
0000,X
OLD_-ZPG ;restore ZEROPG (and stack page)
ZEROPG
;restore interrupts (status)
OLD__XBT ;restore Pascal’s xbyte
ADDRESS +1601
OLD_ENV ;restore CO-CF read /write status
ENVRMT
RETURN 5 g Je, o U/ ,/¢ Dy e

(§05) $72

Sakers el A) (A 4330l a

12/¢

John Jeppson is an anesthesiologist who lives in Bakersfield
California. A Harvard and Boston Med School graduate, he ha’
done some aerobatic stunt piloting in his own Citaborea (SP¢

it backward). In 1981, he traded up from a T1-59 programm4

ble calculator to the Apple 111, where he now perfa

orms |

rolls, and hammerhead turns that baffle even the folks ot

Apple.

| Source: David Craig = Apple /// Document # 17

Page 0008 of 0008)

