
/AICAO
on the Apple

Volume 2 INCLUDES a
DISKETTE

MICRO ontheApple

MICRO on the Apple 2

Ford Cavallari, Editor

L7mo©R@ Ink
Incorporated
P.O. Box 6502

Chelmsford, Massachusetts 01824

Notice
Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of MICRO INK, Inc.

Cover Design and Graphics by Kate Winter

Every effort has been made to supply complete and accurate information. However, MICRO
INK, Inc., assumes no responsibility for its use, nor for infringements of patents or other
rights of third parties which would result.

Copyright© 1981 by MICRO INK, Inc.
P.O. Box 6502 (34 Chelmsford Street)
Chelmsford, Massachusetts 01824

All rights reserved. With the exception noted below, no part of this book or the accompany
ing floppy disk may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the publisher.

To the extent that the contents of this book is replicated on the floppy disk enclosed with
the book, it may be stored for retrieval in an Apple Computer. The original retail purchaser
is permitted to make one (1) copy of the disk solely for his own back-up purposes.

MICRO on the Apple Series ISSN: 0275-3537
MICRO on the Apple Volume 2 ISBN: 0-938222-06-6
Printed in the United States of America
Printing 10 9 8 7 6 5 4 3 2 1
Floppy disk produced in the United States of America

To I.M.H.

Acknowledgements

The bulk of the credit for work done on this book goes out to exceptionally hard
working Special Projects Editor Marjorie Morse for her coordination of special pro
jects operation, for her editing expertise, for her production and paste-up talent,
and for her incredible patience with the MICRO-Lab operations. Since the com
pilation of this work also required extensive program generation and listing, I also
wish to thank Darryl Wright, data entry specialist and precision programmer, for
the hours of typing necessary to produce the diskette. Special thanks also go out to
the entire MICRO staff, especially those who had direct involvement with this
project. They are Emmalyn Bentley, the best typesetter in the hemisphere, and
Paula Kramer, production professional. Thanks also to the publisher of MICRO,
Robert Tripp, whose enthusiasm for MICRO made this project possible, to
associate publishers Richard Rettig, for providing much advice on the entire
MICRO on the Apple project, and Mary Grace Smith, for granting the spirit and
autonomy needed to finish up this project. Finally, I wish to thank Ski, for being
there again.

Contents
INTRODUCTION

1 MACHINE LANGUAGE AIDS

Breaker: An Apple II Debugging Aid 5
Rick Auricchio

Step and Trace for the Apple II Plus 16
Craig Peterson

TRACER: A Debugging Tool for the Apple II 22
R. Kovacs

Apple Integer BASIC Subroutine Pack and Load 28
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II 3 7

R.M. Mottola

2 I/O ENHANCEMENTS

Screen Write/File Routine 49
B.E. Baxter

Bi-Directional Scrolling 52
Roger Wagner

Apple II Integer BASIC Program List by Page 58
Dave Partyka

Paged Printer Output for the Apple 63
Gary Little

Hexadecimal Printer 67
LeRoy Moyer

3 RUNTIME UTILITIES

Common Variables on the Apple II 73
Robert F. Zant

PRINT USING for Applesoft 78
Gary A. Morris

Searching String Arrays 84
Gary B. Little

Applesoft and Matrices 89
Comelis Bongers

AMPER-SORT 97
Alan G. Hill

Apple II Trace List Utility 111
Alan G. Hill

1

3

47

71

4

5

6

GRAPHICS and GAMES

A Versatile Hi-Res Function Plotter 119
David P. Allen

Apple II Hi-Res Picture Compression 124
Bob Bishop

An Apple Flavored Lifesaver 137
Gregory L. Tibbetts

Applayer Music Interpreter 146
Richard F. Suitor

Improved Star Battle Sound tffects 156
William M. Shryock, fr.

Galacti-Cube 157
Bob Bishop

HARDWARE

The Color Gun for the Apple II 163
Neil D. Lipson

A Cassette Operating System for the Apple II 166
Robert A. Stein, fr.

BASIC and Machine Language Transfers
with the Micromodem II 172

George f. Dombrowski, fr.
A Digital Thermometer for the Apple II 177

Carl T. Kershner
KIM and SYM Format Cassette Tapes
on the Apple II 181

Steven M. Welch

REFERENCE

Intercepting DOS Errors from Integer BASIC 191
Andy Hertzfeld

Applesoft Floating Point Routines 194
R.M. Mottola

How to Use Hooks 200
Richard Williams

Brown and White and Colored All Over
Richard F. Suitor

LANGUAGE INDEX
AUTHOR INDEX
DISK INFORMATION

207

117

161

189

213
214
216

Introduction

MICRO magazine, the 6502/ 6809 Journal, has been offering software support to
Apple users for over four years . With this book, we rell.ffirm our commitment to
the Apple user, by presenting some of the most outstanding programs and articles
which have appeared in MICRO over these years.

While MICRO continues to be the monthly source for new and innovative
programs and articles, many of the older MICRO articles are still among the best
material available for the Apple. Out of the pool of superb material, we have
selected some of the best articles which we feel to be representative of MICRO,
and have blended them together into this anthology.

MICRO has always catered to the serious computer user. Most of the pages in
the magazine are filled with programs - programs which demonstrate some
useful technique or perform some non-trivial task. This tradition of serious com
puting goes on at MICRO, and is reflected in this, the second volume, of MICRO
on the tipple.

More thart just another Apple book, MICRO on the Apple 2 is an invaluable
aid to the serious programmer, and a tool for the casual programmer to get 11eriou11
with the Apple.

The MICRO on the Apple book series was conceived to distribute most effec
tively the wealth of Apple material available in MICRO. Each volume in the series
brings together articles and programs, and presents them in logically defined
chapters. All the material, even that which first appeared in early issues of
MICRO, has been updated, either by the original author or by the MICRO staff.
And all the programs related to these articles, whether Integer BASIC, Applesoft,
or machine language, have been ke_y_~-in, te.~~d, an __ c;olJected on a ready-to-use
diskette.

This volume of the MICRO on the Apple series concentrates on the
intermediate-to-advanced user, by pre1>enting a host of indispensable aids for pro·
gramming. The machine language utilities in the first chapter have been designed
to ease the burden of 6502 programming. Similarly, the runtime utilities will
facilitate advanced applications programming in Applesoft. The rei;t of the
material in the book, from the recreational programs to the reference articles, 1111
underscore the concept of good programming techniques.

2 Introduction

Subsequent volumes of MICRO on the Apple will contain more comprehen
sive reference materials, tutorials, utilities, and applications programs, much of
which will be original material not appearing in MICRO. MICRO magazine will
maintain its monthly coverage of the Apple and the 6502. MICRO on the Apple
will be the reference partner - the book you keep along with your reference
manuals, next to your Apple.

Once again, a 13-sector diskette has been included with the book. The deci
sion to include a 13-sector diskette was made because of the universal com
patibility of 3.2 format and the large number of systems still without DOS 3.3.
Throu~ the~~'?f Apple's !:-1UFFIN _pro_gram, this, disk can easily be converted
over to T.3 format - and the programs will still work! -----

We hope that the approach which we have taken - collecting outstanding ar
ticles into a book and the accompanying programs onto a disk - will encourage
the use of some of the routines you may have heard about but never had a chance
to type in. We further hope that these routines afford you a chance to experiment
with programming and explore some of the techniques and tricks explained in the
articles. Lastly, we hope that MICRO on the Apple 2 will give you the chance to
catch up on the MICRO articles you might have missed, and will encourage you to
check future issues of MICRO for the latest in sophisticated Apple material.

Ford Cavallari, Editor
October 1981

1
MACHINE LANGUAGE AIDS

Introduction

Breaker: An Apple II Debugging Aid
Rick Auricchio

Step and Trace for the Apple II Plus
Craig Peterson

TRACER: A Debugging Tool for the Apple II
R. Kovacs

Apple Integer BASIC Subroutine Pack and Load
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II

R.M. Mottola

4

5

16

22

28

37

INTRODUCTION
This chapter contains a group of utility programs designed to make machine
language programming less tedious and less time consuming. Many of these
utilities can work together, so the aspiring machine language programmer will be
equipped with a formidable toolkit, indeed, after reading this chapter. "Breaker:
An Apple II Debugging Aid, 11 by Richard Auricchio, facilitAtes the setting of break·
points within programs, an invaluable capability for debugging large routines.
"Step and Trace for the Apple II Plus," by Craig Peterson, gives the Autostart
Monitor ROM the stepping and tracing capabilities found only in the discontinued
Old Monitor ROM. ''Tracer; A Debugging Tool for the Apple II, 11 by R. Kovacs,
enhances the step/tra~e capabilities of either your monitor or the Peterson pro·
gram. These three routines form the debugging portion of the 'toolkit ,'

Richard Suitor's "Apple Integer BASIC Subroutine Pack and Load" provides
an easy method of binding machine language routines to Integer BASIC driver pro·
grams. This process can simplify program storage on either disk or tape. And,
finally, R.M. Mottola's "MEAN·l4: A Pseudo·Machine Floating Point Processor
for the Apple II'' provides a machine language alternAtive to Applesoft for floating
point operations.

Breaker: An Apple II
Debugging Aid

by Rick Auricchio

Machine language program development can often be
speeded up through the use of breakpoints. While the
Apple II does not have a breakpont capability built in,
this program can provide that feature. Multiple
breakpoints may be inserted into or deleted from any
machine language program, in any place and at any
time!

When debugging a.n Assembly language program, one of the easiest tools the
programmer can use is the Breakpoint. In its most basic form, the Breakpoint con
sists of a hardware feature which stops the CPU upon accessing a certain address:
a "deiuxe" version might even use the Read/Write and Sync (instruction fetch)
lines to allow stopping on a particular instruction, the loading of a byte, or the
storing of a byte in memory. Since software is often easier to create than hardware
(and cheaper for some of us!), a better method might be to implement the Break
point with software, making use of the BRK opcode of the 6502 CPU.

A Breakpoint, in practice is simply a BRK opcode inserted over an existing
program instruction. When the user program's execution hits the BRK, a trip to
the Monitor (via the IRQ vector $FFFE/FPFF) will occur. In the Apple, the
Monitor saves the user program's status and registers, then prints the registers and
returns control to the keyboard. The difficult part, however, comes when we wish
to resume execution. of the program: the BRK must be removed and the original
instruction replaced, and the registers must be restored prior to continuing execu
tion. If we merely replace the original opcode, however, the BRK will not be there
should the program run through that addre$$ again.

The answer to this problem is BREAKER: a software routine to manage Break
points. What the debugger does is quite simple: it manages the insertion and
removal of breakpoints, and it correctly resumes a user program after hitting a
breakpoint, The original instruction will be executed automatically when the
program is resumed!

6 Machine Language Aids

Is it Magic?

No, it's not magic, but a way of having the computer remember where the
breakpoints are! If the debugger knows where the breakpoints are, then it should
also know what the original instruction was. Armed with that information,
managing the breakpoints is easy. Here's how the debugger works.

During initialization, BREAKER is "hooked-in" to the APPLE monitor via
the Control-Y user command exit, and via the COUT user exit. The control-Y exit
is used to process debugger commands, and the COUT exit is used to " steal con
trol" from the Monitor when a BRK occurs .

Breakpoint information is kept in tables: the LOCTAB is a table of 2-byte
addresses-it contains the address at which a breakpoint has been placed. The
ADTAB is a table of 1-byte low-order address bytes: it is used to locate a Break
Table Entry (BTE). The BTE is 12 bytes long (only the first 9 are used, but 12 is a
reasonably round number) and it contains tI?-e following items:

* Original user-program instruction
* JMP back to user-program
* JMP back for relative branch targets

When adding a breakpoint, we must build the BTE correctly, and place the
user-program break address into the LOCTAB. There are eight (8) breakpoints
allowed, so that we have a 16-byte LOCTAB, 8-byte ADTAB, and 96 bytes of
BTE's.

As the breakpoint is added, the original instruction is copied to the first 3
bytes of the BTE, and it is "padded" with NOP instructions ($EA) in case it is a
1-or 2-byte instruction. A BRK opcode ($00) is placed into the user program in
place of the original instruction's opcode (other instruction bytes are not altered) .
The next 3 bytes of the BTE will contain a JMP instruction back to the next user
program instruction.

If the original instruction was a Relative Branch, one more thing must be
considered: if we remove the relative branch to the BTE, how will it branch cor
rectly? This problem is solved by installing another JMP instruction into the BTE
for a relative branch-back to the Target of the branch, which is computed by ad
ding the original PC of the branch, + 2, +offset. This Absolute address will be
placed into the JMP at bytes 7-9 of the BTE. The offset which was copied from the
original instruction will be changed to $04 so that it will now branch to that
second JMP instruction within the BTE; the JMP will get us to the intended target
of the original Relative Branch.

A call to the routine "INSDS2" in the Monitor returns the length and type of
instruction for the "add" function. The opcode is supplied in the AC, and
LENGTH&. FORMAT are set appropriately by the routine.

Auricchio Breaker 7

Removal of a breakpoint involves simply restoring the original opcode, and
clearing the LOCTAB to free this breakpoint's BTE.

Displaying of breakpoint prints the user-program address of a breakpoint,
followed by the address of the BTE associated with the breakpoint (the BTE
address is useful-its importance will be described later) .

When the breakpoint is executed, a BRK occurs and the Apple Monitor gets
control. The monitor will "beep" and print the user program's registers. During
printing of the registers, BREAKER will take control via the COUT exit.
(Remember, we get control on every character printed - but it's only important
when the registers are being printed. That's when we're at a breakpoint) . While it
has control, BREAKER will grab the user-program's PC and save it (we must sub
tract 2 because of the action of the BRK instruction) . If no breakpoint exists at this
PC (we scan LOCTAB), then the Monitor is continued. If a breakpoint does exist
here, then the BTE address is set as the ''continue PC'' . In other words, when we
continue the user program after the break, we will go to the BTE; the original
instruction will now be executed, and we will branch back to the rest of the user
program.

Using Breaker

The first thing to do is to load BREAKER into high memory. It must then be
initialized via entry at the start address. This sets up the exits from the Monitor.
After a Reset, you must re-initialize via "Ycl" (Ye is Control-Y) to set up the
COUT exit again. Upon entry at the start address, all breakpoints are cleared: after
'Ycl", they remain in effect.

To add a breakpoint, type: aaaaYcA . This will add a breakpoint at address
'aaaa' in the user program. A 'beep' indicates an error; you already have a break
point at that address. To remove a breakpoint, type: aaaaYcR. This will remove
the breakpoint at address 'aaaa' and restore the original opcode. A 'beep' means
that there was none there to start with.

Run your user-program via the Monitor's "G" command. Upon hitting a
breakpoint, you will get the registers printed, and control will go back to the
monitor as it does normally. At this point, all regular Monitor commands are
valid, including "YcA", "YcR", and "YcD" for BREAKER.

To continue execution type: YcG . This instructs BREAKER to resume execu
tion at the BTE (to execute the original instruction), then to transfer control back
to the user program. Do not resume via Monitor "G" command-it won't work
properly, since the monitor knows nothing of breakpoints. To display all break
points, type: YcD. This will give a display of up to 8 breakpoints, with the address
of the associated BTE for each one.

8 Machine [,,(mguage Aids

Cav~ats

Some care must be taken when using BREAKER to debug a program. First,
there is the case of BREAKER not being initialized when you run the user program.
This isn't a problem when you start, because you'll not be able to use the Ye com
mands. But if you should hit Reset during testing, you must re-activate via ''Y cl' 11

otherwise BREAKER won't get control on a breakpoint. If you try a YcG, unpre
dictable things will happen. If you know that you hit a breakpoint while
BREAKER was not active, you can recover. Simply do a "YcI", and then display
the breakpoints (YcO). Resume the user-program by issuing a Monitor "G" com
mand to the BTE for the breakpoint th1H was hit (since BREAKER wasn't around
when you hit the breakpoint, you have to manually resume execution at the BTE).
Now all is back to normal. You can tell if BREAKER is active by displaying loca
tions $38 and $39. If not active, they will contain $FO FD.

It's also important to note that any user program which makes use of either
the Control·Y or COUT exits can't be debugged with BREAKER. Once these exits
are changed, BREAKER won1t get control when it's supposed to .

Command

aaau Ye A

YCO

Ye I

aaaa Ye R

BREAKER Command Summary

Function

Add breakpoint at location aaaa. Won't allow you to add
one over an already existing breakpoint. Maximum of 8
breakpoints allowed.

Display all breakpoints.

Initialize after RESET key. Just sets up 'COOT' exit
again without resetting any breakpoints .

Remove breakpoint frnm location aaaa. Restores original
opcode.

OBOO
0800
0800
0800
oeoo
oeoo
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
oeoo
0800
0800
Moo
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
9300
9300
9300
9300 4C3695
9303
.9;303
9303
9303 00
9304 00
9305 00
9306 00
9307
9307
9307
9307 00
9308 EA
9309 EA
930A 4CCOOO
930D 4C
93CE
930E
930E
930E 26

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
~4
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

:**************'*********
,. *
:* BREAKER-DEBUGGER *
:* RICK AURICCHIO *
;* *
:* BREAKER * ,. .
:* CCPYRlGHT (C) i9el *
:* MICRO INK, INC, *
1* CHtLMSFCRD, MA 018~4 *
:* ALL RIGHTS RESERVED *
;* *
:*******************'****
:
;ROUTINES TC HANDLE UP TO
;8 BREAKPOINTS, FOR USE IN
;DEBUGGING OF USER COPE ...

:
1 *** APPLF.-2 MONITOR EQUATES
I
FORMAT EPi $2E
LENGTH EPZ $2F
AlL EPZ $3C
AlH EPZ $3D
A2L EPZ $3E
A2H EPZ $3F
A3L EPZ $40
A3H EPZ $41
I
CSWL EPZ $36
CSWH EPZ $37

INSDS2 EQU $F88E
PRNTYX EQU $F940
PRBYTi EQU $FDDA
COUT EQU $FDED
RESET EQU $FF65
MON EQU $P'F69

CHANGE 'LOWPAGE' TO LOCATE
; ELSEWHERE IN MEMCRy. IT IS

Auricchio Breaker

; NOW SET FOR A 4BK DOS SYSTEM.
I
~OWPAG EQU $9300

.
ORG LOWPAG
OBJ $800

INIT JMP lNlTX .
r *** DATA AREAS
:
FWl BYT $00
F'W2 BYT $00
PCL BYT $00
PCH BYT $0C .

r=>lNlTlALlZATlON ENTRY

'FINDPC' WORK BYTE (
'FlNDPC' WORK BYTE
'GO' PC LO
'GO' PC HI

; SKELETON BREAK-TABLi ENTRY
1
SKEL BYT $00

NOP
NOP

;SKELETON BTE

;NOPS F·OR PADDING
;JUMP BACK INLINE

9

JMP $00
BYT $4C ;JUMP CPCODE FOR BRANCHES

I LOW ADDRESS OF BTES KEPT IN ADTAB
I
ADTAB BYT BTEO ;LO ADDl<ESS

10 Machine Language Aids

930F 32
9310 3E
9311 4A
9312 56
9313 62
9314 6E
9315 7A
9316
9316
9316
9316
0826
9326
9326
9326
0832
t'83E
084A
0856
0862
086E
087A
0886
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386 A20F
9388 AD0493
938B DD1693
938E DOOS
9390. AD0393
9393 DD1593
9396 F006
9398 CA
9399 CA
939A lOEC
939C 18
939D 60
939E
939E 48
939F SA
93AO 4A
93Al AA
93A2 68
93A3 38
93A4 6C
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5
93A5

70
71
72
73
74
75
76
77
78
79
ao
81
82
83
84
as
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
J27
128
129
1 30
131
132
133
134
135
136
137
138
139

BYT BTU
BYT BTE2
BYT BTE3
BYT BTE4
BYT BT!:S
BYT BTE6
BYT BTE7

LCCTAB CCNTAINS ADDRESS OF USER-PROGRAM INSTRUCTION
WHERE WE PLACED THE BREAKPOINT IN THE FIRST PLAC~

I
LOCTAB DFS $10 ;SPACE FOR 16 PCH/L PAIRS .
1 BREAK-TABLE ENTRIES (BTE'S) .
BTEO
BTEl
BTE2
BTE3
BTE4
BTE5
BTE6
BTE7

DFS $0C
DFS $0C
DFS $0C
DFS $0C
DFS $0C
DFS $0C
DFS $0C
DFS $0C

END OF DATA AREAS
THE REST IS ROM-ABLE

;12 BYTES RESERVED

;ENOUGH FOR 8 BREAKPOINTS

•••
•

.

* NAME:
* PURPOSE:
* RETURNS:
•

FINDPC
CHECK IF PC IN FW1/FW2 MATCHES LOCTAB
CARRY SET IF YES; XREG•ADTAB INDEX 0-7
CARRY CLR IF NOT; XREGmGARBAGE

* VCLATILE:DFSTROYS AC
•

FINDPC LDX 1115
FPCOO LDA FW2

;BYTE-INDEX TC END OF TABLE
;GET FOR COMPARE

CMP LOCTAB,X
BNE FPC02
LDA FWl
CMP LOCTAB-1,X
BEQ FPC04

;A PCH MATCH?
;=>NO. TRY NEXT2-BYTE ENTRY
;GET PCL NOW
;A PCL MATCH?

FPC02 DEX
DEX

1=>YESI WE HAVW BREAKPOINT!
;BACK UP ONE
;AND ANOTHER

I

BPL FPCOO
c1.c
RTS

;•>DO ENTIRE TABLE SCAN
1•>DONE1 SCAN FAILED

FPC04 PHA
TXA
LSR
TAX
PLA
SEC

;HOLD AC
;HALVE VALUE IN X-REG
1 s INCE I'l'' S 2-BYTE INDE~

;SET 'SUCCESS'

**
* * NM;E: ERFAK
* PURPCSE: HANDLE ENTRY AT BRK ANC PRCCEES EJKPOINTS
* NO'TE: THIS RCU'I'INF GETS ENTEREC· vN *EVERY* 'COUT '
* CALL-- I'I' KKCWS JI.BOUT BRK BECJl.USE THE
* MbNITvR'SREGISTERS ARE SETUP TC PRINT USER REG
* CCNTEN'IE. AFTER PRCCEESING IS ['CNE, IT RFSTCRESTHE
' MONITCR' E REGS AND RETURNS

*
**

93A5
93A5 ECFB
93A7 DC27
93A9 C9AO
93AB D023
93AD A53C
93AF 38
93BO E902
93B2 8D0393
93B5 A53D
93B7 E900
93B9 8D0493
93BC 208693
93BF 900B
93Cl BDOE93
93C4 8D0593
93C7 A993
93C9 8D0693
93CC
93CC A9AO
93CE A2FB
93DO 4CFOFD
9303
9303
93D3
9303
9303
9303
9303
9303 AD0593
9306 853C
9308 AD0693
93DB 8530
93DD 4CB9FE
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO A2F'F
93E2 EB
93E3 BD0002
9JE6 C999
93!8 DOFB
93EA ES
93EB BD0002
93EE C9C7
93FO
93FO
93FO
93FO
93FO
931'0 FOEl
93F2 C9Cl
93F4 F018
93F6 C9C4
93F8 FOOB
93F·A C9D2
93FC FOOA
93FE C9C9
9400 F009
9402 4C65FF
9405
9405 4CA894

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

BREA.I<' CPX #$FB
BNE ERKXX

BRK02 CMP #$AO
BNE BRKXX
LDA AIL
SEC

Auricchio Breaker

;JS XREG SET FOR EXAMINE
;= >NO GET OU'I' NOW.
;IS AC SETUP CORRECTLY
;=>NOPE. FALSF ALARM!
;GET USER PCL
; AND BACK IT UP BY

11

SBC #$02
STA FWl

; 2 BYTES SINCE BRK BUMPED

.

LDA AlH
SBC #$00
STA FW2
JSR FINDPC
BCC BRK04
LOA ADTAB,X
STA PCL
LOA /LOWPAG
STA PCH

;GET PCH
;DO THE CARRY
; AND SAVE THAT TOO
;A BREAKER OF OURS HERE?
;=>NOPE. WE WON'T HANDLE
;YES, GET BTE ADDRESS THEN
; AND SET IT AS THE 'GO'
; PC FOR THE 'GO' COMMAND.
;(OUR PAGE FOR BTE'S)

BRK04 LDA #$AC
LDX #$FB

BRKXX JMP $FDFO

;SET AC BACK FCR MONITOR
;AND X-REG. TOO
;=>NO. RIGHT BACK TO COUT

1

*PROCESS THE 'GO' COMMAND .•.. *
* (RESUME USER EXECUTION) *
COMMAND FORMAT:(CTRL-Y G) *
•••••••••••••••••••••••••••••••••

CMDGO LDA PCL
STA AlL
LOA PCH
STA AlH
JMP $FEB9

;GET RESUME PCL
; AND SETUP TO SIMULATE
; AN 'XXXX G' COMMAND

;•>SAIL INTO MONITOR'S 'GO'

I

* WE GET CONTROL HERE ON THE *
* CNTL-Y USER EXIT FROM THE *
* MONITOR (ON KEY-INS). ALL *
* CCMMANDS ARE SCANNED HERE; *
* CONTROL WILL PASS TO 'J:·HE *
*APPROPRIATE ROUTINE,,,,, *

l<EYIN LOX #$FF
l<EYINO INX

;CHAR INDEX
1SET NEXT CHARACTER

LOA $200,X
CMP #$99
BN! KEYINO
INX
LOA $200,X
CMP #$C7

I GET CHARACTER FROM BUFFER
1CCNTROL-Y CHARACT!R?
1•>NO. l<EEP SCANNING
1BUMP OVER CTRL-Y
1GRAB COMMAND CHARACTER
1IS IT 'G' (GO)?

1 A BRANCH TABLE WOULD BE NEATER,
1 BUT I'! WOULD TAKE UP MCRE CODE

FCR THE FEW OPTIONS WE HAVE .••

BEQ CMDGO
CMP 11$Cl
BEQ CMDADD
CMP #$C4
BEC XXDISP
CMP #$D2
BEQ XXREMV
CMP #$C9
BEC XXINIT

BADCMD JMP RESET
;
XXDISP JMP CMDDSP

r•>YES.
1IS IT 'A' (ADD)?
;•>YES.
;IS IT 'D' (DISPLAY)?
;•>YES.
;IS IT 'R' (REMOVE)?
;=>YES.
;IS IT 'I' (INIT)?
;=>YES.
;NOTHING, IGNORE IT!

; F.XTENDED BRANCH

12 Machine Language Aids

9408 4C0895
940B 4C4F95
940E
940E
940E
940E
940E
940E
940E
940E
940E AOQO
9410 Bl3E
94l2 FOEE
9414
9414
9414
9414 A2CF
9416 BD1693
9419 D005
941B BD1593
941E F006
9420 CA
9421 CA
9422 10F2
9424 30CC
9426
9426 A53E
9428 9Dl593
942B 8DOB93
942E A53F
9430 9Dl693
9433 8COC93
9436 SA
9437 4A
9438 AA
9439 A993
943B 8541
9430 BDOE93
9440 8540
9442 A907
9444 B90793
9447 9140
9449 88
944A 10F8
944C CB
9440 Bl3E
944F 9140
9451 208Et8
9454 A900
9456 913E
9458 A52F
945A 38
945B
945B
945B
945B A004
945D 7140
945F 9140
9461 ce
9462 Bl40
9464 6900
9466 9140
9468 A52E
946A C99D
~46C F016
946E A52F
9470 FOCF
9472 6A •
9473 B006

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
2!4
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

XXREMV JMP CMDRMV
XXINIT JMP CMCINT

;EXTENDED BRANCH
;EXTENDED BRANCH

* PROCESS THE 'ADD ' COMMAND *
* ADD A BR£AKPOINT AT LOCATICN *
*SPECIFIED IN COMMANDD..... *
* CMND FORMA'f': (* AAAA CTRL-Y A)*

' CMDADD LDY #$00
LDA (A2L), Y
SEQ BADCMD

;CHECK OPCODE FIRST
;OP AT AAAA A BRK ALREADY?
;=>YES. ILLEGAL!

;SCAN LOCTAl3 FOR AN AVAILABLE BTE TC USE

LDX j/!15
ADDOO LDA LOCTAB,X

BNE; ADD02
LDA LOCTAS-1,X
BEQ ADC04

ADD02 DEX
DEX

1

BPL ADCOO
BM! BADCMD

ADD04 LOA A2L
STA LOCTAB-1,X
STA SKEL+4
LDA AW
STA LOCTAB,){
STA SKEL+5
TXA
LSR
'I'AX
LDA /LCWPAG
STA A3H
LDA ADTAB1X
STA A3L
LDA #$0'1

ADD06 LDA SKEL,Y
STA (•A3L), Y
DEY
BPL ADD06
INY
LtA (A2L) ,Y
STA (A3L) ,y
JSR INSDS:2
LDA UOO
STA (A2L), Y
LDA LENGTH
SEC

;BYTE INDEX TO LOCTAB ENC
;GET A BYTE
;=>IN USE
;GET HI HALF
:=>BOTH ZERO, USE IT!
;MOVE BACK TC
; NEXT LOCTAB ENTRY
; AND KEEP TRYING
:=>DONE? ALL FULL! REJECT

;GET AAAA VALTJE
; SAVE LO HALF
;STUFF LO ADDR INTC BTE
; GET AAAA VALUE
;SAVE HI HALF
;STUFF HI ADDRESS INTO BTE
;GRAB INDEX FOR LOCTAB
;MAKE ADTAB INDEX
7AND STUFF BACK INTO X-REG
tBTF'S HI ADDRESS VALUE
1HOLD IN WORK AREA
1GET STE LO ADDR FROMADTAB
7SAVE IN WORK AREA
;7-BYTE MOVE FOR SKFL BTE
1GET Sl<EL BYTE
;MOVE TO BTE
;SET NEXT
;•> MOVE ENTILE SKELETO»

1GET ORIGINAL OPCODE
1 INTO BTE,,,,,,
1INSDS2 (TO DISASSEMBLE)
;SET BRK OPCODE
1 OVER ORIGINAL CPCOCE
;GET INS'I'RUCTION LENGTH

SET UP JMP TC Nl!:X'I' INST. IN THE'. BTF

LDY #$04
AtC (A3L),Y
STA (A3L),Y
JNY
LDA (A3J.,), Y
ADC #$00
STA (A3L), Y
LDA F'ORMAT
CMP #$9D
BEQ ADDBRCH
LDA LENGTH
BEO CMDRET
ROR
BC.S. ADCl.EN 2

;AI:D TC PC FCR DESTHlATICN
; STUFF INTC BTE

1RUN UP THE CARRY
; RIGHT HERE.
;STUFF ADDRESS INTO JMP
;GET INSTRUCTION FORMAT
;IS FORMAT=BRANCH
;=>YES. MCRE TO DC
;LENGTH=l?
;=>YES, DONE
;LENGTH=2?
;=>YES

9475 A002
947.7 Bl3E
9479 9140
947B AOOl
947D Bl3E
947F 9140
9481 4C69F'F
9484
9484
9484
9484
9484 AOOl
9486 Bl3E
9488 18
9489 6902
948B 653E
948D 853E
948F A53F
9491 6900
9493 853F
9495 EA
9496 A904
9498 9140
949A A007
949C A53E
949E 9140
94AO CB
94Al A53F'
94A3 9140
94A5 BS
94A6 50D9
94A8
94A8
94A8
94A8
94A8
94A8
94A8 A20F
94AA BD1693
94AD DOOB
94AF BD1593
94B2 D006
94B4 CA
94B5 CA
94B6 lOF2
94BS 30C7
94BA
94BA l\9SD
94BC 20EDFD
94BF SA
94CO 4S
94Cl BC1693
94C4 BD1593
94C7 S43B
94C9 S53A
94CB AA
94CC 2040F9
94CF 68
9400 48
94Dl 4A
94L'2 AA
94D3 A9BC
94DS 20EDFD
94DS A993
94DA S53F
94DC 20DAFD
94DF BDOE93
94E2 853E
94E.4 20DAFD

27S
279
2SO
2Sl
2S2
283
2S4
285
2S6
287
288
2S9
290
291
292
293
294
29!1
296
297
29S
299
300
301
302
303
304
305
306
j07
308
309
310
3ll
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
33e
339
340
341
342
343
344
345
346

LDY 11$02
LDA (A2L),Y
STA (/13L), Y

ADDLEN LDY 001
LDA (A2L) , Y
STA (A3L),Y

CMDRET JMP MON
:

Auricchio Break et 13

1LENGTHk3, 3RD BYTE TC BTE
1GET INST 3Rt BYTE
:AND MOVE TO BTE
:LENGTH=2, 2ND BYTE TO BTE
;GET INST 2ND BYTE
: AND MOVE TO BTE
;DCNE, B/ICK TO MONITOR

; FOR BRANCHES, WE'VE GOTTA ADD A JMP FOR THE 'TRUE'
: CCNDITlCN (SINCE WE MOVED BRANCH OUT OF PRCGRl>Jol)
,
ADDBRC LDY 11$01

LDA (A2L), Y
CLC
ADC #$02
/IDC A2L
STA A2L
LDA A2H
ADC #$00
STA A2H
NOP
LDA #$04
STA (A3L), Y
LDY 11$0?
LDA A2L
STA (A3L), Y
INY
LDA A2H
STA (A3L),Y
CLV
ave CMDRET

;SET FOR 2ND BYTE
1GET DESTINATION CFf5ET
1 AND l.DO 2 BY'l'ES TO
7CONSTRUCT ABS ADORESS
;ADD TO S0BJECT-IN$T

;CAJIRY IT

;(PLACE HOLDER WASTE HERE)
;TRUE BRANCH TO +4
;PUT INTO NEW OFFSET

;GET JMP ADDRESS
;MOVE IT TO
1THE
l BTE FOR
: THE 'TRUE' BRANCH
;SNEAl<Y BRANCH
I TO EXIT •.•

* DISPLAY ALL ACTIVE BRKPGINTS *
* COMMAND FMT: (* CTRL-Y D) *
************************•******* .

CMDDSP LDX #115
D1SPOO LDA LOCTAB,X

BNE DISP04
LDA LOCTAB-1,X
BNE PISp04

DSPNXT DE){
DEX

.
BPL i)ISPOO
BM! CMDRET

DISP04 t,DA #$SD
JSR COUT
TXA
PHA
LDY LCCTAB,X
J,DA LOC'l'AB-1, X
STY $3Il
STA $3A
TAX
JSR PRNTYX
PLA
PHA
LSR
'l,'AX
LDA #$B<;:
JSR CCi.JT
LDA /LOWPAG
STA A2H
JSR PRBYTE
LDA ADTAB,X
STA A2L
JSR PRBYTE

iINDEX TO LOCTAB EN~
;GET A BYTE
;=>l:N USE
;TRY BOTH BYTES TO BE SURE
;=>DEFINITELY IN USE
I SET NEXT ENTRY
: IN LOCTAB
;=>MORE TC GO
;=>DONE: EXIT TO MONITCR

;OUTPUT A CARR!AGE
: RETURN
;GET INDEX
, SAVE IT
;GET SUBJECT-INST PCH
: AND ITS PCL
JSE'I UP PCH/PCL

;PRINT ~.X BYTES IN HEX
;RESTORE INDEX

1CONVERT TO ADTAB INDEX

'<' CHARACTER
PRINT IT
BTE HI ADDRESS
SET INDIRECT POINTER
PRINT BEX BYTE.
GET BTE LOW ADDRESS
SET INDIRECT POINTER
PRINT BTE FULL ADDRES~

14 Machine Language Aids

94E7 A9BE
94E9 20EDFD
94EC
94EC
94EC
94EC
94EC
94EC
94EC A9AO
94EE 20EDFD
94Fl AOOO
94F3 Bl3E
94F5 20DAFD
94F8 Bl3E
94FA 20€EF8
94FD 200495
9500 68
9501 AA
9502 lOBO
9504
9504
9504
9504
9504
9504
9504 48
9505 4CD9F8
9508
9508
9508
9508
9508
9508
9508
9508
9508 A53E
950A 8D0393
950D A53F
950F 8D0493
9512 208693
9515 B003
9517 4C65FF
951.A
951A BDOE93
9510 B540
951F BA
9520 OA
9521 AA
9522 A900
9524 AB
9525 9Dl693
952B 901793
952B A993
9520 B541
952F Bl40
9531 913E
9533 4C69FF
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
3B2
3B3
384
3B5
386
'387
.388
3B9
390
391
392
393
394
395
396
397
39B
399
400
401
402
403
404
405
406
407
40B
409
410
411
412
413
414
415

,

LDA #$BE
JSR COUT

;'>' CHARACTER
;PRINT IT

DISSASSEMBLE THE ORIGINAL INSTRUCTION.
PICK UP ORIGJNAL OPCODE FROM BTE,
ORIGINAL ADDRESDS FIELD FROM USER
PROGRAM LOCATION ••.•.•••

LI:A #$AC
JSR COUT
LDY 1$00
LDA (A2L), Y
JSR PRBYTE
LDA (A2L), Y
JSR INSDS2
JSR KLUGE
PLA
TAX
BPL DSPNXT

;PRINT ONE SPACE HERE

;INI:EX
;GET OPCODE FROM BTE
;PRINT OPCOI;E
;GET OPCODE FROM BTE
; AND GET FORMAT/LENGTH
;SNEAK INTO INSDSP @ F8D9

;RESTORE LOCTAB INDEX
;=>DISPLAY THE REST

KLUGE ENTRY INTO SUBROUTINE WHICH
FORCES JSR PRIOR TO A PHA INSTRUCTION.
WE HAVE TO JSR TO THIS JMPll

KLUGE PHA ;PUSH MNEMONIC INI:EX
;CONTINUE WITH INSTDSP JMP $F8D9

;****END CF KLUGE****

* REMOVE A BRKPOINT A.T LOC AAAA *
* COMMAND FMT: (AAAA CTL-Y RR) *

CMDRMV LI:A A2L
STA FWl
LDA A2H
STA FW2
JSR FINDPC
BCS REMOV2
JMP RESET

REMOV2 LDA ADTAB,X
STA A3L
TXA
ASL
TAX
LDA #$00
TAY
STA LOCTAB,X
STA LOCTAE+l,X
LDA /LCWPAG
STA A3H
LDA (A3L),Y
STA (A2L), Y
JMP MON

;GET ADDRESS LO
;HOLD IT FCR FINDPC
;GET AI:DRESS HI

;A BRKPOINT HERE??
;=>YES.
;=>NC, BELL FOR YOU!

;GET THE LOCTAB ENTRY
;HOLD IT
;NCW CREATE LOCTAB INDEX

;CLEAR OUT THF APPROPRIATE
; LOCTAB ENTRY FOR BKPT · ·

;HI AI:DRESS FCR BTE
;HOLD FCR ADDRESSING
;GET OPCOI:E OUT OF BTE
; AND PULL BACK TO ORIGINAL
;=>ALL DONE.

**
•
* INITIALIZATION CODE. ENTERED AT START
* ADDR TO INITIALIZE. IT CLEARS LOCTAB,
*SETS UP THE CTL-Y AND COUT EXITS ...
•
* AFTER EVERY RESET, MUST RESETUP WITH
* * CTL-Y I

*
**

Auricchio Breaker 15

9536 416 ;
9536 A94C 417 IN I TX LDA #$4C JMP CPCODE
9538 8DF803 418 STA $3F8 STUFF IN CTL-Y EXIT LOC
953B A993 419 LDA /KEYIN KEYIN: HI ADDRESS
953D 8DFA03 420 STA $3FA STUFF INTO JMP
9540 A9EO 421 LDA #KEYIN KEYIN: LO ADDRESS
9542 8DF903 422 STA $3F9 STUFF INTO JMP ADDRESS
9545 A900 423 LDA #$00
9547 A20F 424 LDX #115 ;INDEX INTO LOCTAB END
9549 9Dl693 425 IN I TOO STA LOCTAE,X ;CLEAR IT GUT
954C CA 426 DEX ;SG NO BREAKPCINTS
954D lOFA 427 BPL INITOO
954F 428
954F 429 ENTER HERE AFTER HITTING RESET, PLEASE!
954F 430 :
954F A9A5 431 CM DINT LDA #BREAK BREAK: LO ADDRESS
9551 8536 432 STA CSWL STUFF INTO 'CCUT' EXIT HCOK
9553 A993 433 LDA /BREAK BREAK: HI ADDRESS
9555 8537 434 S'I'A CSWH STUFF INTO 'COUT' EXIT HOCK
9557 4C69FF 435 JMP MON

436 END

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LCC. LABEL. LOC.

** ZERO PAGE VARIABLES:

FORMAT 002E LENGTH 002F AlL 003C AlH 003D A2L 003EA2H 003F
A3L 0040 A3H 0041 CSWL 0036 CSWH 0037

** ABSOLUTE VARABLES/LABELS

INSDS2 F88E PRNTYX F940
PRBYTE FDDA CCUT FDED RESET FF65 MON FF69 LOWPAG 9300 !NIT 9300
FWl 9303 FW2 9304 PCL 9305 PCH 9306 SKEL 9307ADTAB 1 930E
LCCTAB 9316 BTEO 9326 BTEl 9332 BTE2 933E BTE3 934A BTE4 9356
BTE5 9362 BTE6 936E BTE7 937A FINDPC 9386 FPCOO 9388 FPC02 9398
FPC04 939E BREAK 93A5 BRK02 93A9 BRK04 93CC BRKXX 931:0 CMI:GC 93D3
KEY IN 93EO KEY I NO 93E2 BADCMD 9402 XXCJSP 9405 XXREMV 9408 XXINIT 940B
CM DADD 940E Ar:DCO 9416 ACD02 9420 ADD04 9426 ADD06 9444 ADDLEN 947B
CMI:RET 9481 AD DB RC 9484 CMDDSP 94A8 DISPOO 94AA DSPNXT 94B4 DISP04 94BA
KLUGE 9504 CMDRMV 9508 REMOV2 951A INITX 9536 INITOO 9549 CMDINT 954F

SYMBOL TABLE STARTING A~DRESS:600C
SYMBOL TABLE LENGTH:0222

Step and Trace
for the Apple II Plus

by Craig Peterson

If you miss the Step/Trace of the original Apple II on
your new Apple II Plus, here is all you need to restore it.

,Apple Computer's Apple II Plus is a pretty good machine. It has improved editing
features over those of the standard Apple II and a better cursor control and stop list
feature. And it's really nice to fire up the machine and be right in BASIC or DOS,
or better yet, to be in the middle of a turn-key type program.

Furthermore, Applesoft BASIC is a standard feature, and I'm partial to it over
Integer BASIC. But all of these improvements didn't come for free. There's only so
much room in the ROM monitor, and certain of its features had to be sacrificed to
make room for the new additions. As a result, the machine language Step/Trac~
<:apabilities of the older Apple II ended up on the cutting room floor.

A lot of people will probably never miss Step/Trace. Unless you are into
assembly language programming, you probably don't need them. But if you do any
assembly language programming, Step/Trace can be invaluable. They allow you
to step through each machine language instruction, displaying all of the 6502
registers as you go along, so you can find any errors that might exist in the pro
gram, or even just see how the program works. Step does this one instruction at a
time, an<i Trace does it continuously, without stopping (unless a BRK instruction
is encountered). ·

Step·n-Trace Progra01

Well, fear not, Apple II Plus owners, Step-n-Trace is here. The Step-n-Trace
(S&T) program essentially just adds the step-and-trace functions to the existing
monitor of your Apple II Plus. The operation and use of the monitor is identical to
that of the original Apple tnonitor. Type a hex address followed by one or more
'S's, to take steps through a program from that address. To trace from that
address, type a hex address followed by a 'T' ,

An improved feature of S& T over the original Apple trace is that all you have
to do is press any key (for example, the space bar) to stop the trace. To continue
tracing, type a 'T', and trace will continue from where it stopped. Or you can type

Peterson Step-Trace 17

an 'S' to take only one step. The prompt character used for S&T is an inverse'*' so
you can distinguish it from the normal Apple monitor. S&.T also includes all of
the normal monitor commands in addition to step and trace. In fact, it actually
uses many parts of the existing monitor to do its work.

How to Use the Program

To use Step-n-Trace, first load it and then type 'CALL 768', or 'BRUN' it from
your disk. You will then have all of the monitor commands at your disposal1

including step and trace. To get out of the program, just press 'RESET' oh your
Apple II Plus, or use CTRL-C, or CTRL-B and you will end up in BASIC.

Since the program resides in hex address $300 to $3E9, it loads over some of
the DOS address pointers from $3DO to $3E9. Generally, this doesn't cause any
problems for me. However, this can be avoided by moving it to some other area of
memory; but the jump addresses in lines 69, 75, 83, 91, 120, 168, and 169 will
have to be revised accordingly. The assembler listing for S&T makes use of most
of the same labels as the Apple monitor to make it easier to relate what's happen
ing with the old monitor.

At this point, I should mention that the step-and-trace functions suffer from
the same problems as the original Apple monitor, in that under certain conditions,
the stack register will be displayed with an incorrect value. When this happens,
for example, after JSR or RTS, the display will be corrected after the next instruc
tion. Also, if the program manipulates the stack with the use of TXS instructions,
the actual operation will probably be incorrect. Lastly, with DOS in effect, when a
program is traced through the changing of an 1/0 hook (usually $36 or $37) the
program trace will lock up because the output will have a partially incorrect jump
indirect address, and your trace will fall off the edge of the earth. The frailties
mentioned above are not nearly as restrictive as they may seem. All in all, S& T is
a useful utility.

Exploring Applesoft with S&T

For those of you who have read this far, but don't really plan on doing any
assembly language programming, here is how Applesoft works. First load Step-n
Trace and then enter the following BASIC program:

10 CALL 768: PRINT "HELLO"
20 END

Next type 'RUN', and you will be rewarded with the sound of the bell and an
inverse'*' prompt character, telling you that you're in S&T. Next type 'FF58S'.
From now on, each 'S' you type will step you through the operations of Applesoft.
The first 'S' should display 'D823- 4C D2 D7 JMP $D7D2' on the screen, followed
by the contents of the registers. This is the running return to Applesoft. As you
'S'tep or 'T'race through the instructions, you will see the colon ($3A), the print
command token ($BAJ, the quotation ($22), the characters of the word 'HELLO'

18 Machine Language Aids

($48,45,4C,4C,4F) and more pass through the A (accumulator) register, as
Applesoft analyzes your program line.

With some study you'll begin to understand what Applesoft is doing. With
some effort, you can actually find where the subroutines are located for the 'SIN',
'SQR', or any other function you're interested in. All of this is accomplished with
the help of S&T.

So, if you're doing any assembly language work on an Apple II Plus, S& T can
be of great help. If you're just interested in seeing how things actually run inside
your Apple, Step-n-Trace can open a lot of interesting doors.

(Editor's Note: A slightly modified version of this program, Step-Trace. BOO, is also
included on disk. Step-Trace.BOO loads at $BOO and does not employ the key stop
feature found in Step-Trace {shown in listing]. As a result, Step-Trace. BOO may be
used with the TRACER program on Apple II Plus or Language Card systems. To ac
complish this, initialize Step-Trace.BOO and then TRACER.)

Peterson Step-Trace 19

0800 l ;************************
0800 2 ;* *
OSCO 3 ;* STEP-N-TRACE *
0800 4 ;* CRAIG PETERSON *
0800 5 ;* *
0800 6 ;* STEP-TRACE *
0800 7 ;* *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, Mii 01824 *
0800 11 ; * ALL RIGHTS RESERVED *
0800 12 :* *
0800 13 ;************************
0800 14
0800 15 ;A PROGRAM TO FURNISH THE APPLE II
0800 16 ;PLUS WITH THE STEP ANI: TRACE CAPA-
0800 17 ;BILITIES OF THE STANDARD APPLE II .
0800 18
0800 19 RTNL EPZ $2C ;RETURN ADDRESS LO
0800 20 RTNH EPZ $2D ;RETURN ADDRESS HI
0800 21 LGTH EPZ $2F ;LENGTH/DISPLACEMENT
0800 22 PRMP EPZ $33 ;PRCMPT CHARACTER
0800 23 YSAV EPZ $34 ; PLACE TO SAVE Y
oeoc 24 PCL EPZ $3A ;PROGRAM COUNTER LC
0800 25 PCH EPZ $3B ;PROGRAM COUNTER HI
0800 26 XOT EPZ $3C ;USER INSTRUCTION
0800 27 STAT EPZ $48 ; PROC S'I'ATUS REG
OSCO 28
0800 29 ' 0800 30 KBRI: EQU $COCO ;KEYBOARD REGISTER
0800 31 INSD EQU $F882 ;DISPLAY PRGRM CNTR
0800 32 DISA EQU $F8DO ;DISASEMBL INSTR
0800 33 ADJ2 EQU $F954 ;ADJUST PC-2
0800 34 ADJ3 EQU $F956 ;ADJUST PC-3
0800 35 REGD EQU $FAD7 ;DISPLAY USER REGS
0800 36 RGDS EQU $FADA ;DISP REGS-NO CR
0800 37 GETL EQU $FD67 ;GET INPUT LINE
0800 38 BLl EQU $FEOO ;BLANK ROUTINE
0800 39 Al PC EQU $FE75 ;COPY Al TO PC
080(1 40 BELL EQU $FF3A ;RING THE BELL
0800 41 RSTR EQU $FF3F ;RESTORE USER REGS
0800 42 SAVE EQU $FF4A ;SAVE USER REGS
OSCO 43 GETN EQU $FFA7 ;GET ITEM,NONHEX
0800 44 TSUB EQU $FFBE ;PUSH AND GOTO SUB
0800 45 TS Bl EQU $FFCS ;HANDLE THE MODE
0800 46 ZMOD EQU $FFC7 ;ZERO THE MODE
0800 47 CHRT EQU $FFCC ; CHARACTER TABLE
0800 48
0300 49 ORG $0300
0300 so OBJ $0800
0300 51
030(1 DB 52 STRT CLD ;SET HEX MODE
0301 203AFF 53 JSR BELL ;RING THAT CHIME
0304 A92A 54 CONT LDA ' * ;LOAD INVERSE *
0306 8533 55 STA PRMP ; AND STORE IN PRMP
0308 2067FD 56 JSR GETL ;REAL' A LINE
030B 20C7FF 57 JSR ZMOD ; SET MODE & Y=O
030E 20A7FF 58 NXTI JSR GETN ;GET ITEM,NCNHEX
0311 8434 59 S'IY YSAV ;CHAR lN A-REG
0313 C9EC 60 TRYS CMP t$EC ;IS IT STEP?
0315 FOOB 61 BEQ ENT2 ;IF•STEP,GO ENT2
0317 C9ED 62 TRYT CMP f$ED ;IS IT TRACE?
0319 DOOF 63 BNE TRCR ; IF< >TRACE, TRYCR
031B ADOOCO 64 LDA KBRD ;WAS KEY PRESSD?
031E 3024 65 BMI AGIN ;KEY ON,-->AGIN
0320 C634 66 1 DEC YSAV ;MAKES STEP RPT
0322 20C7FF 67 ENT2 JSR ZMOD ;ENTRY FOR STEP
0325 204903 68 JSR STPZ ;GO STEP OUT
0328 lOlA 69 BPL AGIN ;RTN TO INP LINE
C32A C9C6 70 TRCR CMP #$C6 ;IS IT A CR?
032C 0009 71 BNE MCMD ;IF<>CR,TRY MCMD
032E 20CSFF 72 JSR TS Bl
0331 2000FE 73 JSR BLl ;HANDLE CR AS BLNK
0334 4C0403 74 JMP CONT ;RETURN TO CONT

20 Machine Language Aids

0337 A017 75 MCMD LDY #$17 TRY MONITOR CMOS
0339 86 76 CHRS DEY SEARCH MON CHARS
033A 30C4 77 BMl STRT NOT FOUND, GO START
033C D9CCFF 78 CMP CHRT,Y CMP WITH TABLE
033F DOF8 79 BNE CHRS NOT FOUND, ->CHRS
0341 20BEFF 80 JSR TSUB FND, CALL SUB
03·44 A434 .81 AGIN LDY YSAV RESTORE Y
0346 4COE03 82 JMP NXTI GET NEXT COMMAND
0349 2075FE 83 STPZ JSR Al PC ADR TO PC
034C 20DOF8 84 STEP JSR DISA TAKE ONE STEP
034F 68 85 FLA ADJUST TC USER
0350 852C 86 STA RTNL STACK AND SAVE
0352 68 87 PLA RTN ADR
0353 8520 88 STA RTNH
0355 A208 89 LDX #$08
0357 BI:El03 90 XOIN LDA INMl, X :INIT XEO AREA
035A 953C 91 STA XQT,X
035C CA 92 DEX
0350 DOF8 93 BNE XOIN
035F Al3A 94 LOA (PCL,X) :JSF OPCCDE BYTE
0361 F02C 95 BEO X8RK :SPECIAL IF BREAK
0363 A42F 96 LDY LGTH :LENGTH FROM DASSY
0365 C920 97 CMP #$20
0367 F043 98 BEQ XJSR :HANDLE JSR,RTS,
0369 C960 99 CMP 11$60 : JMP,JMP(),
036B F02F 100 BEQ XRTS : & RTI SPECIAL
036D C94C 101 CMP f$4C
036F F046 102 SEQ XJMP
0371 C96C 103 CMP #$6C
0373 F043 104 BEC XJAT
0375 C940 105 CMP #$40
0377 FOlF 106 BEO XRTI
0379 291F 107 AND #$1F
0378 4914 108 EOR #$14
037D C904 109 CMP #$04 :COPY USR INSTR
037F F002 110 BEO X02 :TC XEQ AREA
0381 Bl3A 111 XOl LDA (PCL), Y
0383 993CCO 112 X02 STA XQT,Y
0386 88 113 DEY
,0387 lOF8 114 BPL XOl
0389 203FFF 115 JSR RSTR :RESTOR USR REGS
038C 4C3COO 116 JMP XQT :XEO USER OP
038F 2082F8 117 XBRK JSR INSD :PFINT USFR PC
0392 20DAFA 118 JSR RGDS :AND REGS
0395 4C0003 119 JMP STRT :THEN GO STRT
0398 18 120 XRTI CLC
0399 68 121 FLA :SIMULATF RTI
039A 8548 122 STA STAT
039C 68 123 XRTS FLA : RTS SIMULATION
0390 853A 124 STA PCL
039F 68 125 PLA
03AO 8538 126 PCN2 STA PCH
03A2 A52F 127 PCN3 Lt'A LGTH ;UPDAT PC BY LEN
03A4 2056F9 128 JSR ADJ3
03A7 8438 129 STY PCH
03A9 18 130 CLC
03AA 9014 131 BCC NEWP
03AC 18 132 XJSR CLC
03AD 2054F9 133 JSR ADJ2 :UPDATE PC AND
03BO AA 134 TAX ;PUSH ONTO STAK
0381 98 135 TYA ;FOR JSR
0382 48 136 PHA ;SIMULATION
03B3 BA 137 TXA
0384 48 138 PHA
0385 A002 139 LDY #$02
0387 18 140 XJMP CLC
0388 Bl3A 141 XJAT LDA (PCL) ,Y
03BA AA 142 TAX :LOAD PC FOR JMP
0388 88 143 DEY :& (JMP)
03BC Bl3A 144 LDA (PCL) ,Y :SIMULATION
038E 8638 145 STX PCH
03CO 853A 146 NEWP STA PCL
03C2 BOF3 147 BCS XJMP
03C4 A52D 148 RTNJ Lt'A RTNH
P3C6 48 149 PHA

Peterson Step-Trace 21

03C7 A52C 150 LDA RTNL
03C9 48 151 PHA
03CA 4CD7FA 152 JMP REGO DISPLAY USR REG
03CD 18 153 BRAN CLC BRANCH TAKEN,
03CE AOOl 154 LDY #$01 ADD LEN+2 TC PC
0300 Bl3A 155 LDA (PCL) , Y
0302 2056F9 156 JSR ADJ3
0305 853A 157 STA PCL
0307 98 158 TYA
0308 38 159 SEC
0309 BOC5 160 BCS PCN2
03DB 204AFF 161 NBRN JSR SAVE ;NORML RTRN AFTR
03DE 38 162 SEC ;EXQING USER OP
03DF BOCl 163 BCS PCN3 ;GO UPPATF PC
03El EA 164 INMl NOP
03E2 EA 165 INIT NOP
03E3 EA 166 NOP ;DUMMY FILL FOil
03E4 4CI:B03 167 JMP NBRN ;XEQ AREA
03E7 4CCD03 168 J.MP BRAN

169 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL . LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

RTNL 002C RTNH 0020 LGTH 002F PRMP 0033 YSAV 0034 PCL 003A
PCH 003B XQT 003C STAT 0048

** ABSCLliTE VARABLES/LABELS

KBRD cooo INSD F882 DISA F8DO
ADJ2 F954 ADJ3 F956 REGI: FAD7 RGDS FADA GETL FD67 BLl F!OO
AlPC FE75 BELL FF3A RSTR FF3F SAVE FF4A GETN FFA7 TSUB FFBE
TS Bl FFC5 ZMOD FFC7 CHRT FFCC STRT C300 CONT 0304 NXTI 030!
TRYS 0313 TRYT 0317 ENT2 0322 'IRCR 032A MCMD 0337 CHRS 0339
AGIN 0344 S'IPZ 0349 STEP 034C XQUI 0357 XQl 0381 X02 0383
XBRK 038F XRTI 0398 XRTS 039C PCN2 03AO PCN3 03A2 XJSR 03AC
XJMP 03B7 XJAT 03B8 NEWP 03CO RTNJ 03C4 BRAN 03CD NBRN 03DB
INMl 03El INIT 03E2

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH101D2

TRACER: A Debugging Tool
for the Apple II

by R. Kovacs

The Apple's Step/Trace routines are handy, but you will
find them even more useful when used in conjunction
with this Tracer program.

The Apple Il's monitor in ROM is crammed with many useful routines . These
include memory interrogation and modification, keyboard input, CRT display
output and cassette I/0. In addition, Apple has thoughtfully provided a number of
routines related to assembly language programming. A single-pass assembler and
disassembler are invaluable aids in writing and reviewing machine code. A
step/ trace feature allows you to control execution of your program during the soft
ware development phase.

The step routine executes a single instruction and displays its address, both
Hex and disassembled code, the values of the A,X,Y,P registers and the stack
pointer. You can modify any register and continue execution of either the next
instruction or any arbitrary one.

Unfortunately, all this information uses up the display rather quickly such
that at best only the 11 most recent steps are shown. It seemed to me that it would be
useful to display more program counter history at the expense of other information.

The Program

The Tracer program was designed to operate in conjunction with Apple's
step/trace routines to enhance their usefulness . It is basically a formatter which
controls the information output to the screen. This routine will display up to 160
of the most recent instructions executed. This is in addition to the usual details
(i.e. disassembled code and register displays) of the last instruction displayed.
Features include single step and trace with paging. You can either continue execu
tion or temporarily exit to modify registers or memory. Tracer also looks for the
break code (00) and waits for your action after announcing the break with a double
bell. The last instruction executed before the break was encountered will still be
displayed.

Kovacs Tracer 23

Caution: It should be recognized that Tracer's display lags by one instruction.
If the monitor is entered via reset, the current register values saved may be dif
ferent due to the next instruction having executed. Thus you should check your
values using the control-E monitor command.

A commented assembly listing is shown. The program is approximately 190
bytes long and is located starting at $300. It uses no additional page zero memory.

How it Works

Tracer controls what information is displayed on the screen by manipulating
the characters generated by the step/trace routines. Tracer looks for certain key
characters and sequences to determine when one instruction has been completed.

A slight complication arises out of the 2-line display format used by Apple.
The character stream normally output to the screen after completion of a single
step begins with a carriage return ($8D). It is then followed by a line of printout
whose first 4 characters are the Hex Address of the instruction just executed. This
line is terminated with another carriage return and the second line is output.

Tracer looks for the carriage return which marks the beginning of the first line
by diverting all characters to Tracer via the COUT hook. Subsequent characters
are stored in a buffer. The second line is recognized by a carriage return followed
by a space ($AO). The next carriage return is used to output the 4 character Hex
address from the buffer (plus a space) to the screen using the monitor COUT
routines ($FDFO) . These routines take care of wraparound and scrolling to display
up to 160 addresses in an 8 by 20 line format.

Since the buffer happens to be part of screen memory, then it too is displayed.
The buffer region is protected by moving the bottom of the scrolling window.

The control Y function is used to initialize Tracer via a jump at $3F8. It clears
the screen, sets the scrolling window and sets the COUT hook at $36 and $37 to
divert all characters normally displayed on the screen to Tracer.

Directions

Tracer is relatively simple to use:

1. Load Tracer starting at $300. (Don't forget the Control-Y jump at 3FB:
4C 00 03.)

2. Run the program via the monitor by typing: Ye XXXX T where Ye is a
Control-Y and XXXX is the address where debugging is to begin. The
screen will clear, Tracer will become hooked via COUT and tracing begins
as the specified address.

3. Tracer is initialized to single step and will halt after displaying the familiar
step/trace information at the bottom of the screen. Additional steps are

24 Machine Language Aids

executed by depressing the space bar. The addresses of previously executed
instructions will begin to accumulate in the upper part of the display.

4. One page of instructions can be executed by depressing the return key instead
of the space bar. Control can be retained immediately by hitting any key.

5. Of course hitting reset returns the user back to the monitor where registers
and memory can be manipulated if needed. Tracer can be reentered by
typing: Ye T .

Figure 1: This example illustrates Tracer's output format while looping through
Apple's WAIT routine at $FCA8. The normal step/trace output for the current in
struction is at the bottom of the screen and the previous 160 addresses of program
counter are listed above.

Oldest

t
160 Previously

Executed Addresses

Most
Recent

FCA9 FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
tCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAE
FCAF FCBi FCA9 FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAE
FCAF FCBl FCA9 FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAE FCAF FCBl
FCA9 FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAE FCAF FCBl FCA9 FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAE FCAF FCBl FCA9 FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAA- E9 01 SBC 1$01

A=05 X=OO Y=OO P=Jl 5=99

Normal Apple Step/Trace Display

OSCO
0800
OBOC
0800
0800
oeoo
0800
0800
0800
0800
0800
0800
0800
0800
C800
0800
0800
0800
0800
0800
0800
0800
oeco
0800
0800
0000
oeoc
0800
0800
0800
0800
0800
03F8
03F8
03FS
03F8 4C0003
03FB
C3F'B
03FB
03FB
03FB
o::oc
0300
0300
0300 2C3CFB
0303 2058FC
0306 A915
0308 8523
C30A A91C
030C 8536
030E A903
0310 8537
0312 A91F
0314 8524
C316 J\902
0318 8DBB03
031B 60
031C
031C
031C
031C SI:B703
031F 8CB803
0 3 22 2CBA03
0 325 301C
0327 C98D
0329 FOOC
032B ACB903
0 3 2E 995007
C331 CB

l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

;************************
;* *
;*
;*
;*

TRACER
R. KOVACS

*
*
*

;* COPYRIGHT (C) 1981 *
; * MICRO INK, INC . *
;* CHELMSFORD, ME 0 1824 *
;* /\I.L RIGHTS RFSERVEI:· *
:* *
:************************

Kovacs Tracer 25

;ENTER VIA CONTROL-Y FOLLOWED BY XXXXT
;WHERE XXXX IS THE ADDRESS TC BEGIN TRACING

' WNDBTM EPZ $23
PCL EPZ $3A

' WINDOW EQU $F'B3C
BELL EQU $FBDD
CLEAR EQU $FC58
CCUT EQU $FDFO
READ FQU $COCO
RESET EQU $C010

Bt,JFF EOU $0750
BUFFl ECU $07DO

'

i BOTTOM OF SCROLLING WINDOW
;PGM COUNTER

;SET NORMAL SCROLL WINDOW
;TOGGLE SPEAKER
;CLEAR SCREEN, HOME CURSOR
;OUTPUT CHAR TO SCREEN
;KEYBCARD STROBE
;RESET KEYBOARD

1LINF #22-COL #0
#23 #0

:**********************************
;SET UP CCNTROL-Y JUMP TC $3F8

CRG $03F8
OBJ $08F8

JMP TRINIT

:**********************************

;TRACER INITIALIZATION

1

CRG $0300
OBJ $0800

TRINIT JSR WINDOW
JSR CLEAR
LDA #$15
STA WNDBTM
LDA #TRACER
STA $36
LDA /TRACER
STA $37
LDA #$1F
STA $24
LDA #$02
STA PGCNT
RTS

;CLEAR ENTIRE SCREEN

;SET SCROLL WINDOW

;SET COUT HOOK
;TO TRACER

;INIT CH FOR EVEN PAGING

: !NIT PGCNT FOR
;SINGLE STEP

; **********************************

TRACER S'lA SA VEA
STY SAVEY
BIT CRFLG
BMI CR
CMP #$8['
BEC SETCR

STORE LDY BPTR
STA BUFF,Y
!NY

SAVE A & Y
REGIS'l'ERS
WAS LAST CHAR A CR?
YES
IS THIS CHAR A CR?
YES
LOAD BUFF POINTER
NC, SO STORE IT
INC POINTER

26 Machine Language Aids

0332 BCB903 70 STY BPTR & SAVE IT
033S DOCS 71 BNE DONE BRANCH ALWAYS
0337 AOBO 72 SETCR LDY #$80 SET CR FLAG
0339 8CBA03 73 STY CRFLG
033C ADB703 74 DONE LDA SJWEA ;RESTORE
033F ACB803 75 LDY SA VEY ;REGISTERS
0342 60 76 RTS ;RETURN TC MONITOR
0343 AOOO 77 CR LDY #$00 ;RESET CR FLAG
034S 8CBAC3 78 STY CRFLG
0348 C9AO 79 CMP #$AO ;IS NEXT CHAR A SPACE?
034A D007 80 BNE ADDR-2 ;NO
034C A080 81 LDY #$80 ;ADJ PTR TC ~EXT
034E 8CB903 82 STY BPTR ;LINE ON SCREEN
03Sl DOD8 83 ENE STORE ;BRANCH ALWAYS
C3S3 AOOO 84 LDY f$00 ;INIT BUFF POINTER
03SS B9S007 SS ADDR LDA BUFF,Y
03S8 20FCFD 86 JSR CCUT ;OUTPUT IT
03SB cs 87 INY
03SC C004 88 CPY #$04 ;FINISHED PRINTING 4 CHAR
03SE 90FS 89 BCC ACDR ;NO
0360 A9AO 90 LDA #$AO
0362 20FOFD 91 JSR COUT ;OUTPUT A SPACE
036S 9:;>
036S 93 ;CHECK FOR BREAK
036S 94
036S AOOO 9S LDY #$00
0367 Bl3A 96 LDA (PCL), Y ;GET OPCODE
0369 FOOC 97 BEQ KEYl ;PAUSE IF BREAK
036B 98
036B 99 ;LOCK FOR KEYBOARD INPUT
036B 100 :
036B CEBB03 101 KEY DEC PGCNT ;CHECK PAGING
036E FCOD 102 BEQ KEY2
0370 2COOCO 103 BIT READ ;ANY KEYBOARD INPUTS?
0373 3001:: 104 BMI KEY3 ;YES
037S 1020 lOS BPL TRACE
0377 20DDFB 106 KEYl JSR BELL ;SOUND BELL FOR BRK
C37A 20DI:FB 107 JSR BELL
037D ACAO 108 KEY2 LDY f$AO ;RESET PAGE COUNTER
037F 8CBB03 109 STY PGCNT ;AND PAUSE
0382 8Dl0CO 110 KEY3 STA RESET
038S 2COOCO 111 KEY4 BIT READ ;LCGP UNTIL ANOTHER
0388 lOFB 112 BPL KEY4 ;KEY IS HIT
038A 113
038A 114 ;TEST INPUT FOR TRACE, STEP OR QUIT
038A llS
038A ADOOCO 116 LDA READ ;LOAD CHARACTER
038D C98D 117 CMP #$8D : 'RETURN' TC CONTINUE TRACE
038F FC06 118 BEQ TRACE
0391 C9AO 119 CMP #$AO ;'SFACE' TO SINGLE STEP
0393 FOOS 120 BEQ STEP
039S DOE3 121 BNE KEY1+3 ;NO MATCH, TRY AGAIN
0397 8Dl0CO 122 TRACE STA RESET ;RESET KEYBOARD STROBE
039A EA 123 STEP NOP
039B 124 :
039B 12S ;FILL PROTECTED FIELJ:: WITH SPACES
039B 126
039B A9AO 127 LDA #$AO ;ASCII SPACE
039D A027 128 LDY #$27 ;40 CHAR/LINE
039F 99S007 129 FILL STA BUFF,Y
C3A2 99['007 130 STP.. BUFFl,Y
03AS 88 131 DEY
03A6 10F7 132 BPL FILL
03A8 133
03A8 ADB703 134 LDA SA VEA
03AB AOOO 13S LDY #$00 ;RESET BUFF POINTER
03AD 8CB903 136 STY BPTR
03BO C9BO 137 CMP #$BO :IS lST CHAR 0-9/A-F ?
03B2 9088 138 BCC DONE ;NO

Kovacs Tracer 27

03B4 4C2B03 139 JMP STORE ;YES, OUTPUT IT
03B7 140
03B7 141 ;
03B7 00 142 SA VEA HEX 00
03B8 00 143 SA VEY HEX 00
03B.9 00 144 BPTR HEX 00
03BA 00 145 CRFLG HEX 00
03BB 00 146 PGCNT HEX 00

147 END

***** END OF ASSEMBLY

•••••••••••••••••••••••••
* * * SYMBOL TABLE -- V 1.5 *
*

..

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

WNDBTM 0023 PCL 003A

** ABSOLUTE VARABLES/LABELS

WINDOW FB3C BELL FBDD CLEAR FC58 COUT FDFO
READ cooc RESET COlO BUFF 0750 BUFFl 07DO TRINI'I' 0300 TRACER 031C
STORE 032B SETCR 0337 DONE 033C CR 0343 ADDR 0355 KEY 036B
KEYl 0377 KEY2 037D KEY3 0382 KEY4 0385 TRACE 0397 STEP 039A
FILL 039F SA VEA 03B7 SA VEY 03B8 BPTR 03B9 CRFLG 03BA PGCNT 03BB

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:Ol02

Apple Integer BASIC Subroutine
Pack and Load

by Richard F. Suitor

Oftentimes Apple programmers find themselves writing
machine language subroutines which will be called
from an integer BASIC program. Storing these
subroutines in the same file as the BASIC driver
programs can get messy. This program enables you to
include a BASIC program and machine language
subroutines in one file which may be easily saved to
disk or tape.

The first issue of CONTACT, the Apple Newsletter, gave a suggestion for loading
assembly language routines with a BASIC program. Simply summarized, one
drops the pointer of the BASIC beginning below the assembly language portion,
adds a BASIC instruction that will restore the pointer and SA VEs. The procedure
is simple and effective but has two limitations. First, it is inconvenient if BASIC
and the routines are widely separated (and is very tricky if the routines start at
$800, just above the display portion of memory) . Second, a program so saved can
not be used with another HIMEM, and is thus inconvenient to share or to submit
to a software exchange.

The subroutine presented here avoids these difficulties at the expense of the
effort to implement it. It is completely position independent; it may be moved
from place to place in core with the monitor move command and used at the new
location without modification. It makes extensive use of SWEET 16, the 16-bit
interpreter supplied as part of the Apple Monitor ROM.

How to Use Pack and Load

To use the routine from Apple Integer BASIC, CALL MKUP, where MKUP is
128 (decimal) plus the first address of the routine. The prompt shown is 11 @ 11 •

Respond with the hex limits of the routine to be stored, as BBBB.EEEE (BBBB is
the beginning address, EEEE is the ending; the same format that the monitor
uses) . Several groups may be specifi.ed on one line separated by spaces or several
lines. Type S after the last group to complete the pack and return to BASIC. The
program can now be saved.

Suitor Pack and Load 29

To load, enter BASIC and LOAD. When complete, RUN. The first RUN will
move all routines back to their original location and return control to BASIC. It
will not RUN the program; subsequent RUNs will.

A LIST of the program after calling MKUP and before the first RUN will show
one BASIC statement {which initiates the restoration process) and gibberish. If
this is done, RESET followed by CTRL-C will return control to BASIC.

WARNING #1: The routine must be placed in memory where it will not over
write itself during the pack. The start of the routine must be above HIMEM (e.g.
in the high resolution display region) or $17 A + 4*N + W below the start of the
BASIC program, where N is the number of routines stored and W is the total
number of words in all of these routines. Also, those routines that are highest in
memory should be packed first to avoid overwriting during pack or restore. Other
wise it is not necessary to worry about overwriting during the restore process;
only $1A words just below the BASIC program are used.

WARNING #2: Do not attempt to edit the program after calling MKUP. If
editing is necessary, RUN once to unpack, then edit and call MKUP again.

How Pack and Load Works

The routine first packs the restore routine just below the BASIC program. It
then packs other routines as requested, with first address and number of bytes
(words). When Sis given, it packs itself with the information to restore LOMEM
and the beginning of the BASIC program. The first $46 words of the routine form a
BASIC statement which will initiate the restoration process when RUN is typed.

If a particular HIMEM is needed by the program (e.g. for high resolution pro
grams) it must be entered before LOADing. The LOMEM will be reset by the
restoration process to the value it had when MKUP was called.

Some convenient load and entry points are:

BASO (load)
hex
800
A90

104C
2050
3054
6000
9000

MKUP
hex
880
BIO

lOCC
20DO
30D4
6080
9080

entry
decimal

2176
2832
4300
8400

12500
24704

-28544

Program on disk BLOADS at
$9400. MKUP is at $9480,
-27520 decimal.

Editor's note: Due to a special request by the author, MICRO encourages the use
and distribution of this subroutine. However, please make sure proper credit is
placed on any copies: "This PACK and LOAD Subroutine was written by Richard F.
Suitor and first published in an early issue (#6) of MICRO, the 6502/6809 foumal."

Please note that all other programs contained in this book are protected by
copyright and may not be reproduced.

30 Machine Language Aids

Appendix to Subroutine Pack and Load

When the subroutine Pack and Load was first written, I had in mind a utility
that would allow the user to easily pack and unpack subroutines (we had only
cassette storage then) before running a program. After using it awhile, it became
clear to many people that, after a program was debugged, it would be nice if it un
packed and ran in one operation. Alan Hill, who has contributed many significant
programs for the Apple, was the first to point out to me that a JMP to $EFEC in
stead of $E003 would accomplish this. In the meantime, Apple switched to
pushing Applesoft instead of Integer BASIC, a reasonable enough decision, but ex
asperating to those who had invested a lot of effort in developing Integer BASIC
software. Apple still supplies the Integer BASIC in both ROM and language card
forms, but both of these cost money. A person on a limited budget who has pur
chased an Apple Plus can obtain software versions from either !AC-associated
clubs or from Apple Pugetsound Program Library Exchange (A.P.P.L.E.) (304 Main
Ave. S., Suite 300, Renton, WA 98055).

Unfortunately this was a development which I had not foreseen when I wrote
this routine. The routine returns to ROM addresses which I believed immutable;
now those with Apple Plus versions can obtain versions of Integer BASIC for
which programs packed with this routine will badly fail.

The enclosed routine will solve their problem and the problem of those pro
grammers who wish to change the return vector to automatically RUN or not. It is
a routine to change the address to which the UNPACK procedure returns upon
completion.

The desired address is entered into locations 0 and 1. For example, if you want
to use the address $EFEC, from the monitor you:

*O:EC EF

or from BASIC you:

POKE 0,236
POKE 1,239

To accomplish the change this routine, and the program to be changed, must
be in memory. The program must be LOADed, but not run. The routine is shown
at location 800 ($320), but will run correctly anywhere. BLOAO the routine, set
up locations 0 and 1, then CALL 800 to accomplish the change. You may save the
changed program.

The addresses which you may wish to use are:

Purpose

Back to BASIC
Unpack &. RUN

ROM Version

$E003
$EFEC

Disk Version

$0300
($9058)

Suitor Pack and Load 31

The last entry, to unpack and RUN from a disk version, means you put the
contents of $9058 into 0 and the contents of $9059 into 1. This method should be
used for the A.P.P.L.E. version of Integer. Please note that although the locations
$9058,9 are the same for any 48K disk-based system, the contents of the locations
may differ. Thus, a version of a program prepared in this way is least likely to be
able to be run on another system. The version that is most likely to be "universally"
usable is one using the address $300. This choice has the disadvantage that it will
not unpack and RUN, but it will fail only on a cassette system or on a disk system
that has had page 3 overwritten. For these systems, enter the monitor and type
3D0:4C 03 EO. (Note: this will enable a 3DOG to return to BASIC, but will not
restore a disconnected DOS.)

. However, using the routine given in this program, any "packed" program can
be loaded and altered to run on the user's system, and then saved.

Editor's Note: The Pack-Load routine requires that SWEET-16 be resident in
your Apple. Even after the modifications mentioned in this Appendix are made, if
SWEET-16 is not available, the unpacking and packing processes will fail. Thus, if
your version of Integer BASIC does not include SWEET-16 in the proper locations,
Subroutine Pack and Load will not work.

0320- 08 18 A5 CA 69 54 85 18
0328- A5 CB 69 01 85 19 AO 00
0330- 38 A5 4C F1 18 48 A5 40
0338- CS F1 18 AA 68 38 E9 03
0340- 85 18 BO 01 CA 86 19 A5
0348- 01 91 18 88 A5 00 91 18
0350- 60

32 Machine Language Aids

0800
0800
0800
0800
0800
0800
0800
0800
OSCO
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4C
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

:************************
:* *
;* PACK AND LOAD SUBRTN *
; *
;*
; *
; *
;*
; *

RICHARD F. SUITOR

PACK-LOAD

COPYRIGHT (C) 1981
MICRO INK, INC.

*
*
*
*
*
*

;* CHELMSFORD, MA 0 1824 *
ALL RIGHTS RESERVED * ;*

;* *
:************************

INTEGER BASIC ROUTINE TC PACK AND RELOAD
MACHINE LANGUAGE SUBROUTINES AND/OR TABLES

CALL BASO+l28(DEC) = MKUP TO PACK EXISTING
ROUTINES AT THE START OF BASIC

RUNNING THE PACKED PROGRAM WILL UNPACK THE
PACKED ROUTINES AND RETURN TO BASIC (>)

CHANGE THE LAST INSTRUCTION OF THE LISTING
TO 'JMP BRUN' TO UNPACK AND RUN IN ONE OPERATION.
NOTE: THIS STEP NOT NORMALLY TAKEN UNTIL
PROGRAM DEVELOPMENT IS COMPLETE!

PROGRAM WILL RUN ANYWHERE IN MEMORY

ACCL
BSOL
TABL
TBCL
HIMS
LMRT
BPRG
FRML
NBYT
BPR2
PTLL
XTAB
SKPL
MODE
YSAV
PRMP
LMML
HIML
LMWL
BBSL
JSRL
BSC2
BRUN
BUFF
SW16
GTNM
PBL2
COUT
BELL
GTLN

ORG $9400
OBJ $800

EPZ $00
EPZ $02
EPZ $04
EPZ $06
EPZ $08
EPZ $0A
EPZ $0C
EPZ $OE
EPZ $10
EPZ $12
EPZ $14
EPZ $16
EPZ $18
EPZ $31
EPZ $34
EPZ $33
EPZ $4A
EPZ $4C
EPZ $CC
EPZ $CA
EPZ $CE
EQU $E003
EQU $EFEC
EQU $0200
EQl:l $F689
EQU $FFA7
EQU $F94A
EQU $FDED
EQU $FF3A
EQU $FD67

;RO, ACCUMULATOR
;Rl
;R2
;R3
;R4
;RS
;R6
;R7
;RB
;R9
;RlO
;Rll
;Rl2, SW16 STACK PTR

;PROMPT
; INTEGER LOMEM
; INTEGER HIMEM
;INTEGER END CF VARIABLES
;BOTTOM OF PROGRAM
;CALL VECTOR
;BASIC
;RUN BASIC
; INPUT BUFFER
;SWEET16 ENTRY
;GET # FROM BUFF.
; PRIN'l' BLANKS
;OUTPUT CHAR.
;BEEP
; INPUT A LINE

BASIC STATEMENT TC START CODE REPLACEMENT
PROCESS ...

0 POKE 1,76: POKE 2,(PEEK(202)+70) MOD 256:
POKE 3,(PEEK(203) + (PEEK(202)+70)/256):
CALL 1

Suitor Pack and Load 33

9400 460000 75 !JASO HEX 460000
9403 64Bl01 76 HEX 64Bl01
9406 0065B7 77 l:lEX 0065B7
9409 4C0003 78 HEX 4C0003
940C 64B2 79 HEX 64B2
940E 020065 80 HEX 020065
9411 382E3f 81 HEX 38;;.>E3F
9414 ll2CA 82 l:lEX B2CA
9416 007212 83 HEX 00?212
9419 B74600 84 HEX B74600
941C 721F as HEX 721F
941E B:lOOOl 86 HEX B20001
9421 0364B3 87 HEX 0364B3
9424 0300 ea llEX 0300
9426 65382E 89 HEX 65382E
9429 3FB2CB 90 llEX 3FB2CB
942C 0072 91 HEX 0072
942E 1238:1E 92 HEX 123S2E
9431 3FB2CA 93 HEX 3FB2CA
9434 0072 94 HEX 0012
9436 DB746 95 HEX 12B746
9439 007215 96 HEX 007215
943C ll200 97 !JEX B200
943E 017203 98 HEX 017203
9441 4DB10l ll9 HEX 4DB101
11444 0001 100 HEX 0001
9446 101
9446 102 INITIALIZE POINTERS
9446 103
9446 DB 104 PTBK CLD
9447 A201 105 l:,DX #1
9449 BSCA 106 PT02 LDA BB~L,X ;Rl IS !!TAR'I· OF PACKED PROO.
944B 9502 107 STA llSOL,X
944D B54C 108 LDA HIML,X :R4 Hi END (HIMEM)
944F 9508 109 STA HIMS,X
9451 CA 110 DEX
9452 lOFS lll BPL PT02
9454 20!l9F6 112 JSR SW16
9457 105201 113 SE'!' RO,PTLP-llASO
945A -185701 114 SET R8,PTLP+S~BASO
945D Al 115 ADD Rl :BET R7 TC CUilRENT START OF
945E 37 116 STC R7 ; PACKED DATA (BBSL+PTLP-BASO)
945E' 67 117 LDD @R7
9460 35 118 STO RS PUT IN RS
9461 67 119 LDD @R7 ;POT ORIGINAL LENGTH OF' PROGRl'.M
9462 36 120 STO R6 ; IN R6
9463 24 121 LDR R4
9464 B6 122 SUB R6 ;CALCULATE START OF ORIGINAL
9465 36 123 STO R6 ; pROGRAM AND POT IN R6
9466 lAllOO 124 SET RA,S'1'16+1-PLP1
9469 BA 125 SUB RA rCURRENT LOCATION OF ENTRY
946A 3A 126 STO RA tTO RESTORE LOCP IN ltA
946B 67 127 LOO @R7 ;BASO LOCATION TC LEAVE ROUTINE
946C 33 12!;l STO R3
94f>D 00 129 RTN
946E A201 130 LDX u
9410 131
9470 132 I REETORE ORIGINAL LOMEM AND ST/\RT
9470 133 I OF ORIGINAL PR~GRAM •••
9470 134 I
9470 B50A 135 PT04 LDA LMRT,X
9472 954A 136 STA LMML.,X
9474 95CC 137 STA LMWL,X
9476 B50C 138 LOA B1'M,X
9478 95CA 139 STA BBsL1X
947A CA 140 DEX
947B lOF3 141 BPL PT04
947D 6Cl400 142 JMP (PTLL)
9480 143 JMP (RA) • PLPl
9480 144
9480 145 SECTION TO PERFORM PACI<
9480 146 I
9480 A20l 147 MJ(UP LDX u
9482 B54A 148 MJ<2l LOA LMML 1 X
9484 950A 149 STA LMRT,X 1R5•LOMEM

34 Machine Language Aids

9486 B5CA 150 LDA BBSL,X 1R9,R6•START
9488 9512 151 STA BPR2,X : OF PROGRAM
948A 950C 152 STA BPRG,X
948C B5CE 153 LDA JSRL,X 1R2•MKUP LOCATION
948E 9504 154 STA TABL,X
9490 B54C 155 LDA HIML,X 1R4•HIMEM
9492 9508 156 STA HIMS,X
9494 CA 157 DEX
9495 lOEB 158 BPL MK21
9497 159
9497 160 INIT AND PACK THE RESTORE LOOP AT PTLP
9497 161
9497 2089F6 162 JSR SW16
949A 24 163 LDR R4
949B B9 164 SUB R9
949C 39 165 STO R9 1LENGTH OF PROGRAM
949D 118000 166 SET Rl,MKUP-BASO
94AO 22 167 LDR R2
94Al Bl 168 SUB Rl
94A2 31 169 STO Rl :BASO LOCATION
94A3 105201 170 SET RO,PTLP-BASO
94A6 Al 171 ADD Rl
94A7 32 17:? STO R2 :PTLP LOCATION
94A8 181800 173 SET R8,STl6-PTLP
94AB A8 174 ADD REl
94AC 33 175 STO R3 :STl6 LOCATION
94AD El 176 INR R3 1END (STl6) + l
94AE lC5000 177 SET RC,$50 :SWl6 STACK
94Bl OC42 178 BSB MV52 1PACK RESTORE LOOP
9483 00 179 MK22 RTN
94B4 A9CO 180 MKOl LDA nco 1 '@'
94B6 181
94B6 182 GET LIMITS AND PACK PROGRAMS
94B6 183
94B6 8533 184 STA PRMP 1PRCMPT IS '@'
94B8 A900 185 LDA tO
94BA 8531 186 STA MODE
94BC 2067FD 187 JSR GTLN 1GET COMMAND
94BF 8616 188 STX XTAB 1END CF COMMAND
94Cl AOOO 189 LDY to
94C3 B90002 190 LDA BUFF,Y
94C6 C9D3 191 CMP t$D3 : ' S ' , STOP?
94C8 F068 192 BEO MKlO :YES
94CA 20A7FF 193 MK06 JSR GTNM 1START OF RANGE
94CD C9A7 194 CMP t$A7 1F(,) (SEE MON,)
94CF FOlO 195 BEO MK02
94Dl 98 196 MERR TYA :ERROR IF HERE
94D2 AA 197 TAX
94D3 204AF9 198 JSR PBL2 :ERROR INDICATOR
94D6 A9DE 199 LDA UDE :' ... '
94D8 20EDFD 200 JSR COUT
94DB 203AFF 201 JSR BELL
94DE 18 202 MK05 CLC
94DF 90D3 203 BCC MKOl
94El E63l 204 MK02 INC MODE
94E3 20A7FF 205 JSR GTNM :END OF RANGE
94E6 206
94E6 207 I Al & A3 NOW HAVE lST #, A2 SECOND
94E6 208 I SET UP MOVE TC JUST BELOW (BBSL)
94E6 209 I. AND LOWER BBSL
94E6 210
94E6 2089F6 211 JSR SWl6
94E9 OllE 212 BRA SM02
94EB l83COO 213 MV5l SET R8,$3C
94EE 68 214 LDD @RS
94EF 32 215 STO R2 :R2•Al
94FO 68 216 LDD @R8
94Fl 33 217 STC R3 :R3=A2
94F2 B2 218 SUB R2 :A2-Al
94F3 38 219 STO Re
94F4 E3 220 INR R3
94F5 83 221 MV52 POP @R3 :MOVE FROM (R3) DOWN TO (R2)
94F6 96 222 STP @R6 :TO (R6) AND DOWN
94F7 23 223 LOR R3
94F8 D2 224 CPR R2

Suitor Pack and Load 35

94F9 07FA 225 BNZ MV52
94FB 28 226 LDR RS ;LENGTH-1
94FC 33 227 STO R3
94FD 180800 228 SET RB,8
9500 88 229 POP @RS ;PREFACE PACKED ROUTINE
9501 96 230 STP @R6 ;BY LENGTH-1 AND BY
9502 88 231 POP @RS ;STARTING ADDRESS
9503 96 232 STP @R6
9504 88 233 POP @RS
9505 96 234 STP @R6
9506 88 235 POP @RS
9507 96 236 STP @R6
9508 OB 237 RSB
9509 OCEO 23S SM02 BSB MV51
950B 00 239 SM03 RTN
950C C9EC 240 MK09 CMP #$EC ;F(S) STOP?
950E Fon 241 BEC MKlO ;YES
9510 C9C6 242 CMP t$C6 ;F(CR) ENP CF LINE?
9512 FOAO 243 BEO MKOl ;YES, GET NEW COMM.
9514 C999 244 CMP t$99 ;F() ;BLANK?
9516 F003 245 BEQ MK12 ;YES
9518 DOB7 246 BNE MERR ;ERROR IF OTHER
951A ca 247' MKll INY
951B B90002 248 MK12 LOA BUFF,Y ;GET NEXT COMM. CH/IR
951E C416 249 CPY XTAB ; END OF LINE?
9520 B092 250 BCS MKOl ;YES, GET ANOTHER
9522 C9AO 251 CMP #$AO ;BLANK
9524 FOF4 252 BEQ "MKll
9526 C98D 253 CMP #$80 ;CR.
9528 F08A 254 BEO MKOl
952A C903 255 CMP #$03 r 'S'
952C F004 256 BEC MKlO
952E C631 257 DEC MODE
9530 F098 258 BEQ MK06 ;ALWAYS
9532 259
9532 260 PACK lST PART AND CLEAN UP
9532 261 :
9532 2089F6 262 MKlO JSR SW16
9535 21 263 LDR Rl
9536 32 264 STO R2 ;BASO LOCATION
9537 185201 265 SET R8,PTLP-BASO
953A AB 266 ADD RS
953B 37 267 STO R7 ;PTLP LOCATION
953C 25 26S LOR RS ;PACK:
953D 77 269 STD @R7 LOMEM
953E 29 270 LDR R9
953F 77 271 STD @R7 ; ORIGINAL LENGTH CF PROGRAM
9540 21 272 LDR Rl ; BJl.SO LOCA'l'ION
9541 77 273 STD @R7 ;ONTO END OF lST PART
9542 27 274 LDR R7 ;OF ROUTINE
9543 33 275 STO R3
9544 OCAF 276 BSB MV52 ;PACK BASO-PTLP PLUS ABOVE VARS.
9546 66 277 SM04 LDD @R6 ;STRIP PREFACE
9547 66 27S LDD @R6 ;LEAVING BASIC STATEMENT
954S 00 279 RTN
9549 ASOC 28.0 LOA BPRG
954B SSCA 2Sl STA BBSL ;R6 IS NEW START
954D A500 2S2 LDA BPRG+Ol ;OF PR CG RAM
954F 85CB 283 STA BBSL+Ol
9551 60 2S4 RTS
9552 285
9552 286 RESTORE LOOP --THIS LOOP DOES THE ACTUAL
9552 287 UNPACKING AND IS ALWAYS JUST IN FRONT CF
9552 288 THE ORIGINAL BASIC PROGRAM ...
9552 289
9552 20S9F6 290 PTLP JSR SW16
9555 61 291 PLPO LDD @Rl
9556 33 292 STO R3 ; DESTINATION
9557 61 293 LDD @Rl
9558 38 294 STO RS ;LENGTH
9559 00 295 RTN
955A 2089F6 296 PLPl JSR SW16
955D 41 297 MV60 LOR @Rl ;UNPACK
955E 53 298 STO @R3
955F FS 299 OCR RS

36 Machine Language Aids

9560 04FB 300 BIP MV60
9562 21 301 LDR Rl
9563 D6 302 CPR R6 ;AT END YET?
9564 05Ef' 303 BIM PLPO ;NOT YET
9566 00 304 PLP2 RTN
9567 4C03EO 305 JMP BSC2
956A 3C6 r OR JMP BRUN TO RUN AUTCMATICALLY
956A co 307 ST16 HEX OC

308 END

***** ENP OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. Loe. LABEL, LOC. LABEL. LCC.

** ZERO PAGE VARIABLES;

ACCL oooc BSOL 0002 TABL 0004 TBCL 0006 HIMS 0008 LMR'I' COCA
BPRG cooc FRML OOOE Nl3YT 0010 BPR2 0012 PTLL 0014 XTAB 0016
SKPL 0018 MODE 0031 YSAV 0034 PRMP 0033 LMML 004A HIML 004C
LMWL oocc BBSL OOCA JSRL OOCE

** ABSOLUTE VARABLES/LABELS

BSC2 E003 BRUN EFEC BUFF 0200
SW16 F689 GTNM FFA7 PBL2 F94A CCUT FDED BELL FF3A GTLN FD67
Bl\SO 9400 P'l'BK 9446 P'l'02 9449 PTC4 9470 MKUP 9480 MK21 9482
MK22 9483 MKOl 9484 MK06 94CA MERI< 9401 MKOS 94DE MK02 94El
MV51 94EB MV52 94F5 SM02 9509 SM03 950B MK09 950C MKll 951A
MK12 951B MKlO 9532 SM04 9546 PTLP 9552 PLPO 9555 PLpl 955A
MV60 955D PLP2 9566 ST16 956A

SYMBOL TABLE STARTING ADDRESS:6000
SYMllOL TABLE LENGTH10lDA

Mean 14: A Pseudo-Machine
Floating Point Processor
for the Apple II

by R.M. Mottola

Modelled after the Sweet 16, this program supports a
large variety of mathematical operations on five-byte
floating point values. This 'processor' can greatly
simplify and enhance your mathematical processing
power.

In the beginning of the life of the Apple II computer, an obstacle had to be over·
come in the writing of the firmware. As we know, the 6502 is an eight bit
microprocessor, but all too frequently routines require numeric operations involv
ing double precision integers. Repeating common operations every time the
routines are required could be done, but it is not very space efficient. For that mat
ter, performing the requisite register set-ups to use some general purpose
subroutines can also deplete available memory space, if the routines are called fre
quently. What was needed was an arithmetic processor that could handle two
byte integers. So, a pseudo-machine processor is a machine language program that
behaves like a processor.

This elegant solution is called the "Sweet 16 Pseudo-Machine Interpreter''
and is known and used by many Apple programmers. It lives from $F689 to F7FA
on the FO Integer BASIC ROM found in regular Apple II computers. From a soft
ware point of view, the interpreter is used very much like you would use a
microprocessor. Programming it requires the use of various instructions and
operands. Hand assembly is easy because the instruction set isn't long and the for
mat of the operators is very straightforward. A popular resident asembler, the Lisa
assembler by Randall Hyde, will even assemble Sweet 16 mnemonics.

The Mean 14 pseudo-machine floating point processor was modelled after the
Sweet 16. It too is programmed like a hardware processor. Instead of being de
signed to process two-byte integers, the Mean 14 can perform many mathematical
operations on five-byte floating point values , These values are formatted in the
standard Applesoft variable representation described in the Applesoft manual.

The Mean 14 processor was written to facilitate floating point machine
language programming on an Apple II Plus or a standard Apple II with Apple
soft ROM card. Since Apple does not provide any documentation for the floating

38 Machine Language Aids

point routines in Applesoft, it is pretty difficult for those wishing to write floating
point routines in assembly language. Even knowing the locations and entry
requirements of those routines is only partially helpful if either complex or
repetitive functions must be performed. Of course, you could always write your
more involved functions in Applesoft BASIC, but the Mean 14 will always per
form at least ten times as fast and probably much more. The reason for this is
simply that the Mean 14 has little of the interpreter overhead that Applesoft has.
Using the example of adding two values, if Applesoft is used, and the values are
represented as variables which have not been used before, Applesoft must allocate
space for them first. And if arrays have been dimensioned, they must be moved up
to make space for the new variables. If the variables or arrays happen to collide
with strings, then string "house-cleaning" must take place. In machine terms, all
this takes an awful lot of time. As an added kicker, even more time must be allowed
if you use constants instead of variables.

On the other hand, Mean 14 doesn't have to do all of this. Its interpreter
overhead is very small and since you, the programmer, supply the operand either
by specifying pointers or, in the Immediate Mode, by actually supplying the
floating point value, the floating point routines don't have to search for or convert
anything. Mean 14 spends its time processing numbers - not trying to find them
or converting ASCII strings into them.

What Mean 14 Does

Mean 14 is a very simple kind of interpreter. You give it a number and it looks
it up, in a table, where it picks up the address of the subroutine which performs
the specific function required. Most of those functions already exist in Applesoft.
Some require set-ups to make entry and exit easier. In all cases, the instruction set
has been designed to make straight-line machine language floating point
arithemetic a lot easier.

That last line indicates one of the possible shortcomings of the Mean 14 for
your particular floating point requirement. It can process data only in a straight
line. At present, it contains no conditionals in the instruction set. This apparent
problem isn't really all that bad when you actually use the Mean 14. For my own
applications, I've found that testing, branching, and loop operations can best be
handled outside of Mean 14, in 6502 assembly language. This is because, relative
to the amount of time it takes even the simplest floating point operation to
execute, all sorts of branching and testing-including entries and exits into and
out of Mean 14-can be accomplished very quickly. For this reason, conditionals
were left out of the Mean 14's instruction set. But that certainly doesn't mean
that you couldn't add them if your particular application required them.

Using Mean 14

Making use of the Mean 14 processor in your machine language programs is
easy. The only prerequisite, besides a working knowledge of assembly language, is
a fundamental knowledge of the format of Applesoft variables.

1. Note that Mean 14 and the Applesoft subroutines that it calls could leave any
and all registers in an undeterminable state. If you need certain registers in

Mottola MEAN-14 39

specific states, it's a good idea to write yourself both a Save and a Restore routine
and remember to JSR to the Save before entering Mean 14. You could even add
these routines to the Mean 14 entry and exits if you like.

2. Enter Mean 14 with a JSR to MEAN 14 ($8EOO in the source listing provided).
All code between this JSR and a Mean 14 ''RET'' will be interpeted by the Mean 14
processor. Remember that byte sequence is a function of the addressing mode. In
the Implied mode, any operator is followed by the next operator. In Immediate
mode, an operator is immediately followed by a five byte operand (constant) in
Applesoft floating point variable format . In the Absolute mode, the operator must
be followed by a two byte pointer to the first memory location containing a
floating point value. In the Indirect mode, the operator is followed by a pointer,
which points to a pointer, which points to a floating point value. Remember, all
pointers must be in standard 6502 low-byte, high-byte order.

3. Consider the following section of code:

2000 SUB1
2002
2004
2007
200A
200D
2010
2013
2014
2017
2018
201A
201C

STY YSAVE
STX XSAVE
JSR MEAN 14
DFB CO 00 03
DFB C4 05 03
DFB 45 81 00
DFB 00 00 00
DFB OC
DFB 81 40 03
DFB 11
LDX XSAVE
LDY YSAVE
ATS

; SAVE Y
; SAVE X
; ENTER MEAN 14
; *LDA $300
; *ADD $305

; *SUB lf1
; *ABS
; *STA ($340)
; *RET
; RESTORE X
; RESTORE Y

Both the X and Y registers were saved before entering Mean 14 in this exam·
ple. To make the code representation less confusing, it's a good idea to show the
Mean 14 mnemonic equivalents of the defined bytes in the comments field. I like
to designate them with an asterisk but any appropriate scheme should do.

4. If your machine language routines are to be called from BASIC and if values
obtained from Mean 14 operations will be used by BASIC, you might want to store
values directly into the memory locations allocated to Applesoft variables. This
will make the results of your machine language calculations directly available to
BASIC. Although there are subroutines in Applesoft to find a variable by its name,
they can take a lot of time to execute. An easier approach is to "know" where
your variables are by allocating them first, in your BASIC program. Thus, if the
first line of your program is:

10 A=O:B =O:C = O:D = 0

then you'll know that the first variable is A, the second is B, etc. The pointer at
locations $69,$69A tells you the beginning of the simple variable space, so you
should be all set.

5. Be careful to avoid floating point errors such as Overflow and Division by Zero,
as Applesoft routines tend to dump you into BASIC if an error occurs.

40 Machine Languag~ Aids

F«>rmat Of Mean 14 Operators

Mean 14 instructions are represented as single byte numeric values. Two
quantities are represented in this byte - instruction and addressing mode. Since
there was room to spare (there are only four addressing modes and twenty odd
instructions) a very simple scheme was devised to include both. There are also
many unused values so the instruction set could easily be expanded. An
instruction is represented with the two high order bits indicating the addressing
mode and the lower six bits indicating the operation

7 6
Addressing Mode

Mean 14 Addressing Modes

5 4 3 2 1 0
Instruction

The Mean 14 pseudo-machine processor instructions use four different
addressing modes. They are:

IMMEDIATE
ABSOLUTE
INDIRECT
IMPLIED

IMMEDIATE .- Just like any processor, the Mean 14 instructions that allow
immediate addressing use the value following an operator in memory for the
operand. Since we deal with floating point values, the five memory locations
following the operator must contain the floating point operand. This must be in
Applesoft variable format.

EX. Load FPAC1 with the vall,le "O"

40

OPERATOR

00 00 00 00 00

OPERAND

LDAHO

SYM60LIC
ABSOLUTE - The two bytes that follow the instruction (operator) in the
absolute mode must contain the address of the first byte of the desired buffer. The
value of the byte pointed at, and the values of pointer must be in low byte, high
byte format.

EX. Store FPAC1 in locations $1 F00-$1 F04

C1 00 1 F STA $1 F00·$1F04

OPERATOR OPERAND SYMBOLIC

INDIRECT - In this addressing mode, the two bytes that follow the operator
must contain the address of a two byte pointer which points to the first byte of the
buffer. This addressing mode is useful when loop processing a number of
variables. It allows the pointer to the variable to be changed and, since the pointer
is not a part of the Mean 14 object code, you needn't write self modifying code to
perform a loop. Again, both the operand and the pointer must be represented in
the low byte, high byte format.

Mottola MEAN-14 41

EX. Store FPAC1 in $2FF0-$2FF4

81 00 20 STA($2000)

Where $2000,$2001 point at $2FFO

IMPLIED - Certain instructions perform operations which do not involve
variables. These include register functions and exits from Mean 14.

LDA

S'fA

fAB

'tBA

ADD

SUB

EX. Transfer FPAC1 to FPAC2
02 TAB

EX. Exit Mean 14
11 RET

MEAN 14 INSTRUCTION SET

Load FPAC1 with memorY

IMMEDIATE !j;4(1
ABSOLUTE - $CO
INJ;JIRECT $:30

Store PPAC1 in memorY

ABSOLUTE $Cl
INDIRECT ,;; $81

Transfer FPAC1 to FPAC2

IMPLIED = $02

Tr~nsfer FPAC2 to FPAC1

IMPLIED

Add memory to FPAC1

lMMEtllATE:
ABSOLUTE
INDIRECT

= $44
$C4

"' $64

Subtract FPAC1 from memorY

lMME:DIATI:'. $45
ABSOLUTE $C5
INDIRECT $95

M --> FPACl

FPACl -•> M

FPAC1 --:> FPAC2

it'PAC2 _,..::> l='PAC1

M + FPAC1 --::> FPAC1

M ~ FPAC1 --:> FPACl

42 Machine Language Aids

MIJL

DIV

NOP

SQR

EXP

INT

ABS

SGN

LOG

Memory times FPACl

IMMEDIATE $4(:.
ABSOLUTE 11;C6
I ND I RECT 11;86

Memory di v ided by FPACl

IMMEDIATE $47
ABSOLUTE !K7
I ND I RECT 11;::0

No oPera ti on

IMPLIED 1!a)8

S~uare r oot of FPACl

IMPLIED = $(1•;1

FPAC2 raised to the Power
of mem ory

IMMEDIATE $4A
ABSOLUTE $CA
INDIRECT $8A

Iriteser value of FPACl

IMPLIED $OB

Absolute value of FPACl

IMPLIED = $0C

Value of the sisri of
FPACl

IMPLIED = $(10

Natural los of FPACl

IMPLIED = $OE

M * FPACl --> FPACl

M / FPACl --> FPACl

MPC + 1

JFPAC 1 -->· FPAC 1

FPAC2 A M --> FPACl

INT (FPACl) --> FPACl

ABS (FPACl l --> FPACl

SGN (FPACl) --> FPACl

LOG (FPACl l --> FPACl

CVA

CVB

RET

Convert two-bvte integer
in APPlesoft integer variable
format to its floating Point
e<1uival ent.

ABSOLUTE $CF
INDIRECT $8F

Convert two-bvte integer
in 6502 format to its floating
Point e<1uivalent.

ABSOLUTE $DO
I ND I RECT $';:>0

Exit MEAN 14

IMPLIED $11

Mottola MEAN-14 43

MY. --> FPAC1

ML,MH --> FPAC1

MPC --) PC

44 Machine Language Aids

0800 l ;********~··············· oeoo 2 ;* *
0800 3 ;* MEAN-14 FP PROCESSOR *
0800 4 •* F.M. MOTTCLA *
0800 5 ;. *
0800 6 ;* MEAN-14 *
0800 7 ;* *
0800 8 1* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0600 10 ;* CHELMSFORD, Ml\ 0 1824 *
0800 11 ,. ALL RIGHTS RESERVED *
0800 12 ;* *
0800 13 ; **·*********'l\''ft***** ******
0800 14
0800 15 ;*SOFTWARE ADDRESSES
OSCO 16 ;*
0800 17 TEMPL EPZ $1E
csoo 18 TEMPH EPZ $1F
0800 19 MPCL EPZ $4C
0800 20 MPCH EPZ $4D
080(1 21 FPACl EPZ $9D
oeoo 22 FPAC2 EPZ $A5
0800 23
0800 24
0800 25
0800 26 ;FIRMWARE ADI)RESSES
oeoo 27
osoo 28 I
0800 29 INT>FP EQU $E2F2
0800 30 FPSUB EQU $E7A7
0800 31 FPADD ECU $E7BE
0800 32 FPLOG ECU $E941
0800 33 FPMUL EQU $E97F
0800 34 FPDIVl EQU $EA1i6
oeco 35 FPLOAD EQU $EAF9
0800 36 FPS TR EQU $EB2B
0800 37 TR2>1 EQU $EB53
0800 38 TR1>2 EQU $EB63
0800 39 FPSGN EQU $EB90
oeoo 40 FPABS EQU $EBAF
0800 41 FPINT EQU $EC23
0800 42 FPS QR EQU $EE8D
0800 43 FPEXP EQU $EE94
0800 44
BEOO 45 ORG $BEOO
SEOO 46 OBJ $800
BEOO 47
BEOO 48 ;MEAN 14 PSEUDO-MACHINE
8EOO 49 ;FLOATING POINT PROCESSOR
8EOO 50
8EOO 68 51 MEAN14 PLA ;GET Ml4 CODE LOCATION
8E01 854C 52 STA MPCL ;FROM RETURN ADDRESS
8E03 68 53 PLA
8E04 854D 54 STA MPCH
8E06 205F8E 55 JSR PC INC
8E09 200F8E 56 Ml4A JSR Ml4B
BEOC 4C098E 57 JMP Ml4A
8EOF AOOO 58 Ml4B LDY #$0
BEU Bl4C 59 LDA (MPCL), Y ;GET ONE INSTRUCTION
8El3 AA 60 TAX
8El4 293F 61 AND *S3F ;GET CORRECT SUBROUTINE
8El6 OA 62 ASL ;ADDRESS FROM TABLE
8El7 AB 63 TAY
8El8 cs 64 INY
8El9 B9A08E 65 LDA SUBTBL,Y ;AND SHOVE IT
8ElC 48 66 PHA
8ElD 88 67 DEY
8ElE B9A08E 68 LDA SUBTBL,Y
8E21 48 69 PHA
8E22 205F8E 70 JSR PC INC ;INCREM. Ml4 P.C. COUNT
8E25 SA 71 TXA
8E26 29CO 72 AND uco GET ADDRESSING MODE
8E28 F034 73 BEQ Ml4G IMPLIED?
8E2A 1020 74 BPL Ml4D IMMEDIATE?
8E2C 2940 75 AND #$40

Mottola MEAN-14 45

8E2E D013 76 BNE Ml4C ABSOLUTE?
8E30 Bl4C 77 LDA (MPCL), Y INDIRECT
8E32 851E 78 STA TEMPL GET POINTFR TO ADDRESS
SE34 cs 79 INY OF OPERAND
8E35 Bl4C 80 LDA (MPCL). Y
8E37 851F 81 STA TEMPH
SE39 88 82 DEY
8E3A BllE 83 LDA (TEMPL),Y
8E3C 46 84 PHA
8E3D CB 85 INY
8E3E BllE 86 LDA (TEMPL), Y
8E40 4B 87 PHA
81!:41 9013 88 BCC Ml4E
BE43 Bl4C 89 Ml4C LDA (MPCL),Y ;GET ADDRESS OF
BE45 48 90 PHA ;OPERAND
8E46 CB 91 INY
8E47 Bl4C 92 LDA (MPCL) ,Y
8E49 48 93 PHA
8E4A 900A 94 BCC Ml4E
8E4C A54C 95 Ml4D LCA MPCL ;SAVE P.C. AS ADDRESS
BE4E 48 96 PHA :OF IMMEDIATE OPERAND
8E4F A54D 97 LDA MPCH
BESl 48 98 PHA
BE52 A905 99 LDA t$5 ;AND OFFSET P.C. S BYTES
8E54 9002 100 BCC Ml4F
8E56 A902 101 Ml4E LDA #$2 ;OFFSET P,C. 2 BYTES
8E58 20618E 102 Ml4F JSR PCADD
BE5B 68 103 PLA 1PULL OPERAND ADDRESS
SESC 104 ;AND TRANSFER
S!SC AS 105 TAY ;TC A AND Y REGS FOR SUBS
SESD 68 106 PLA
BESE 60 107 Ml4G RTS ;JMP VIA RTS
BESF 108
BESF A901 109 PC INC LDA #$1
8E61 HI 110 PC ADD CLC
8E62 654C 111 ADC MPCL
8E64 854C 112 STA MPCL
8E66 9003 113 BCC PCl
8E68 E64D 114 INC MPCH
8E6A 18 115 CLC
8E6B MOO 116 PCl LDY #$0
8E6D 60 117 RTS
8E6E 118 I
BE6E AA 119 STR TAX
8E6F 4C2BEB 120 JMP FPS TR
BE72 851E 121 CONVl STA TEMPL
8E74 841F 122 STY TEMPH
BE76 AOOO 123 LDY #$0
BE78 BllE 124 LDA (TEMPL), Y
BE7A 4B 125 PHA
BE7B CB 126 INY
BE7C BllE 127 ClA LDA (TEMPL), Y
8E7E AS 128 TAY
BE7F 68 129 PLA
SESO 20F2E2 130 JSR INT>FP
l,lE83 A5A2 131 LDA FPAC1+$5
BESS 1007 132 BPL NCCP
BE87 A9C4 133 LDA #VALUEl
BEB9 AOBE 134 LDY /VALUEl
BESB 20BEE7 135 JSR FPACD
BEBE 60 136 NOOP RTS
8EBF 851E 137 CONV2 STA TEMPL
BE9l 841F 138 STY TEMPH
8E93 AOOl 139 LDY #$l
BE95 BllE 140 LCA (TEMPL),Y
8E97 48 141 PHA
8E91l BB 142 DEY
BE99 FCEl 143 BEQ ClA
BE9B 6B 144 RETURN PLA ;PULL MEAN 14 RETURN
8E9C 68 145 PLA ;ADDREES FROM STACK
8E9D 6C4COO 146 ;TMP (MPCL)
BEAO 147
BEAO 148
8EAO 149 SUBRCUTINE ADDRESS 'I'ABLE
BEAO 150

46 Machine Language Aids

8EAO FBEA 151 SUBTBL ADR FPLOAD-$1
8EA2 6D8E 152 ADR STR-$1
8EA4 62EB 153 ADR TR1>2-$1
8EA6 52EB 154 ADR TR2>1-$1
SEAS BDE7 155 ADR FPADD-$1
8EAA A6E7 156 ADR FPSUB-$1
8EAC 7EE9 157 ADR FPMUL-$1
SEAE 65EA 158 ADR FPDIVl-$1
SEBO 8DSE 159 ADR NOOP-$1
8EB2 SCEE 160 ADR FPSQR-$1
8EB4 93EE 161 ADR FPEXP-$1
8EB6 22EC 162 ADR FPINT-$1
SEBS AEEB 163 ADR FPABS-$1
SEBA SF-EB 164 ADR FPSGN-$1
8EBC 40E9 165 ADR FPLCG-$1
8EBE 718E 166 ADR CONVl-$1
SECO BEBE 167 ADR CCNV2-$1
8EC2 9A8E 168 AI:R RETURN-$1
8EC4 169 ' 8EC4 170 ;FLOATING POINT CONSTANTS
8EC4 171
8EC4 910000 172 VALUEl HEX 9100000000 % 65536
8EC7 0000
8EC9 173
8EC9 174
8EC9 175
8EC9 176
8EC9 177 LENGTH EQU *-MEAN14

178 END

***** END OF ASSEMBLY

* *
* SYMBCL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. toe. LABEL. LOC.

** ZERO PAGE VARIABLES:

TEMPL OOlE TEMPH OOlF MPCL 004C MPCH 004t' FPACl 009D FPAC2 OOAS

** ABSOLUTE VARABLES/LABELS

INT>FP E2F2 FPSUB E7A7 FPADD E7BE FPLOG E941 FPMUL E97F FPDIVl EA66
FPLCAD EAF9 FPS TR EB2B TR2>1 EB53 TR1>2 EB63 FPSGN EB90 FPABS EBAF
FPINT EC23 FPSQR EEBD FPEXP EE94 MEAN14 8EOO Ml4A 8E09 Ml4B 8EOF
Ml4C 8E43 Ml4D 8E4C Ml4E 8E56 Ml4F 8E58 Ml4G 8ESE PC INC 8ESF
PCADD 8E61 PCl 8E6B STR 8E6E CONVl 8E72 CIA 8E7C NOCP BEBE
CONV2 8E8F RETURN 8E9B SUBTBL 8EAO VALUEl 8EC4 LENGTH OOC9

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OlSA

2
I/ O ENHANCEMENTS

Introduction

Screen Write/File Routine
B.E. Baxter

Bi-Directional Scrolling
Roger Wagner

Apple II Integer BASIC Program List by Page
Dave Partyka

Paged Printer Output for the Apple
Gary Little

Hexadecimal Printer
LeRoy Moyer

48

49

52

58

63

67

INTRODUCTION
ln order to communicate with your computer, an I/O device is a necessity. The
keyboard and video output are the standard I/O devices of the Apple, with a
printer being another commonly-found output device. Obviously, any
enhancements to the I/O capabilities will promote a better interface between pro
grammer and Apple. In this chapter, some enhancements are described which
should make working with your Apple a bit easier.

''Screen Write/File, 11 by Bruce Baxter, provides a method to directly save and
retrieve text screens to and from the disk. This technique can often save valuable
program memory space. "Bi-Directional Scrolling," by Roger Wagner, allows
scrolling through memory either backwards or forwards . Any portion of memory
may be scrolled through and viewed (in ASCII) with this routine. ''Apple II Integer
BASIC Program List by Page," by David Partyka, lets the user list through an In
teger BASIC program page-by-page on the Apple video screen.

The following two routines will be of special interest to printer owners. ''Paged
Printer Output for the Apple," by Gary Little, provides for printer output to be
divided into variable size pages. It also allows a pause for single sheet paper feed.
And "Hex Printer," by LeRoy Moyer, facilitates machine language disassembly
listings on you printer.

Screen Write/File Routine
by B.E. Baxter

Here is a useful and instructive routine which makes it
simple to edit the Apple screen and save the screen
image on disk.

The screen write/file routine is a simple 73-byte device to take control away from
the monitor and write directly to the screen. All of the escape editing capabilities
are supported so that it is very easy to enter and modify up to and including 21
lines of text. It is equally easy to save the screen image to disk after completion of
text entry.

How it Works

The source code is sttaightforward and makes liberal use of monitor routines.
Upon entry the cursor is homed and placed on line 1 (not zero). The block labeled
KEY continually polls the keyboard and outputs characters through COUT
(VIDOUT ($FBFD] could also be used if printer services are not wanted). The
limited editing facilities of the monitor are invoked by typing [escape) followed by
one of the command characters. Keyboard entry of CNTL Q is used to exit the
routihe and return to BASIC via $300. Automatic exit is also obtained at line 43.
Upon exit, the bell will sound and the BASIC prompt character will appear with
the file parameters displayed at the end of the lini;:. At this point the file must be
saved using the command, [BSAVE File name) A$0400, L$03CF [RETURN). The
parenthetical expressions must be typed by the user; that is, type BSA VE file
name, then trace over the remainder of the line with the right arrow to place it into
the keyboard buffer and at the end of the line press RETURN. Although I do not find
it necessary, a monitor MOVE to page 2 could be set up and inserted between lines
5 7 and 58 of the source listing. This would provide back-up in case BSA VE com
mand is messed up. The object code is assembled at $0350 and is $49 bytes long.

Command Summary

In summary, the usage commands are:

Entry to Routine

From BASIC
From Monitor

Call 848
$0350G

50 II O Enhancements

Exit to BASIC Mode

User
Automatic

(Control) Q
Line 43

Edit Screen (See Apple Ref. Materials)

(Escape)

Save Screen Image

@: Home cursor (Clear text)
A: Advance cursor
B: Backspace cursor
C: Move cursor down l line
D: Move cursor up 1 line
E: Clear from cursor to end of line
F: Clear from cursor to end of screen

[BSA VE file name]A$0400,L$03CF[CR] []=typed by user

Of course it doesn't make much sense to idly write to the screen without
some useful purpose. I use the routine to create instruction and documentation
files . These files are especially valuable for object code utilities by providing ready
access to usage and entry point information. Once the file has been created, it can
be handled just like any other file. BLOADing (file name) will immediately
display its contents on the screen without requiring any otherwise useful
memory. Instruction/print statements in BASIC programs can therefore be
eliminated to be replaced by deferred execution BLOAD disk commands for a very
efficient use of main memory.

0800 1 ;************************
0800 2 ;* *
0800 3 ;* SCREEN WRITER *
0800 4 ;* BRUCE BAXTER *
0800 5 ;* *
0800 6 ;* SCREEN-WRITE *
0800 7 ;* *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, MA 01824 *
0800 H ;* ALL RIGHTS RESERVED *
0800 12 ;* *
0800 13 ;************************
0800 14
0800 15
0350 16 ORG $350
0350 17 CBJ $800
0350 18
0350 19
03 50 20 ;

0350 21 CV EPZ $25
0350 22 POS EPZ $09
0350 23
0 350 24 COUT EQU $FDED
0350 25 HOME EQU $FC58
0350 26 TABV EQU $FB5B
0350 27 RDCHAR EQU $FD35

Baxter Screen· Write 51

0350 28 CROUT EQU $FDSE
0350 29 BELL EQU $FF3A
0350 30
03 50 2058FC 31 JSR HOME
0353 208EFD 32 JSR CROUT
0356 33
0356 2035FD 34 KEY JSR RDCHAR
0359 C991 35 CMP #$91
035B FOOC 36 BEQ QUIT
0350 A625 37 LOX CV
035F E016 38 CPX #$16
0361 F006 39 BEQ QUIT
0363 20EDFD 40 JSR COUT
0366 4C5603 41 JMP KEY
0369 42
0369 A916 43 QUIT LOA #$16
036B 8525 44 STA CV
036D 205BFB 45 JSR TABV
0370 203AFF 46 JSR BELL
0373 A9E4 47 LDA #$E4
0375 8509 48 STA POS
0377 A907 49 LOA #$07
0379 850A so STA POS+l
037B AOOO 51 LOY #$00
037D 52
0370 B98A03 53 OUT LOA DATA,Y
0380 9109 54 STA (POS) ,Y
0382 ca 55 INY
0383 COOF 56 CPY #$OF
0385 DOF6 57 BNE CUT
0387 200003 58 JSR $0300
038A AOClA4 59 DATA ASC " A$0400,L$03CF "
0380 BOB4BO
0390 BOACCC
0393 A4BOB3
0396 C3C6AO

60 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CV 0025 POS 0009

** ABSOLUTE VARl'.BLES /LABELS

COUT FDED HOME FC58 TABV FB5B RDCHAR FD35
CROUT FD8E BELL FF3A KEY 0356 QUIT 0369 OUT 0370 DATA 038A

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TA.BLE LENGTH:0072

Bi-Directional Scrolling
by Roger Wagner

Everyone knows that a teletype only moves the paper in
one direction - up. Likewise, the Apple display only
scrolls one way - up. Now you can have scrolling in
both directions with these routines.

By using the following machine language routines, it is possible to scroll either
text/ gr page in either direction.

The up-scroll routine is derived from Apple Computer's Reference Manual
with the difference being that a zero-page location is referred to in order to deter
mine which page to scroll. The down scroll routine makes similar use of the same
zero-page byte.

How to Use the Program

To use the routine a few entry conditions must be met:

1. Load the binary routine into the $300 page of memory starting at $300.

2. Set pointers 6,7 and 8,9. If you want to bring new information onto the
screen from RAM as you scroll, locations 6, 7 must point to the location in
memory where the data to be loaded onto the top line of the screen will
come from when you scroll the screen page down. Similarly 8,9 point to
the place in memory to get the data for the bottom line when you scroll up.

If you want to use this routine to directly view memory, the easiest
way to set the pointers 6, 7 and 8,9 is to set 8 and 9 to the address you want
to start viewing at. Put the low order byte in 8 and the high order in 9 then
scroll up 25 times. (The screen height plus 1.) Then set 6, 7 to the same
value as 8,9 were originally (i.e., the low and high byte bring the starting
address) . Last of all, scroll back down one line to bring the starting address
line into position as the first line of text visible at the top of the screen.

If you do not want new data brought onto the screen, then 6, 7 and 8,9
will have to point to a part of memory that contains 40 blank space
characters. One way to do this is to freeze one blank line on either page 1

Wagner Scrolling 53

or 2, and then set 6, 7 and 8, 9 to that location. These pointers must be reset
to that value each time the scroll is done. This is because normally the
scroll routine updates 6, 7 and 8,9 by the screen width so as to remain syn
chronized with the screen display. Another technique is to just clear the
top or bottom line to blanks each time a scroll is done.

3. Location 5 must hold a 4 for page 1 scrolling, and an 8 for page 2.

4. Now when you want the screen to scroll just 'CALL 768' to scroll up, and
'845' to scroll down.

Special Notes:

If you are going to use page 2 of text/gr in Integer BASIC, be sure to protect
the variables with a 'LOMEM': 3072. This may be done before running the pro
gram, or if you know how, put as an early line in the program.

To use page 2 in Applesoft is more difficult, but can be done. First, location
$3AB in the machine code must be changed from $05 to $1F. Also, you must
POKE 31 with a 4 or 8 as compared to the POKE 5 in Integer.

The real rub is that Applesoft programs normally begin in memory at $800
(hex) which conflicts with page 2 use. The way around this is to do a 'POKE 104,
12:POKE 3072, O' before loading your program. After loading do a 'CALL 54514'
(unnecessary with DOS 3.2). Unless you do a 'RESET', 'Control-B, other
Applesoft programs will continue to load in at this higher location. Unfortunately,
use of page 2 with the RAM version of Applesoft is to my knowledge impossible.
(Sorry)

If you wish to move the scrolling routine, the only location-dependent aspects
of the code are 5 'JSR's and 1 'JMP' within it. Since these operations always
reference absolute addresses they will have to be rewritten. Of course, if you have
a relocate utility, it is that much easier.

For further enlightenment, see the sample Integer BASIC program which
makes use of the scrolling routine. Have fun!

Location Dependent

$303: JSR $39E
319: JSR 39E
34A: JMP 39C
353: JSR 39E
369: JSR 39E
39E: JSR 3A6

If page 2 of text/gr is to be used, it must be protected by a 'LOMEM:3072' for
Integer BASIC, or a 'special load' (as described in article) when using Applesoft .

Note: $3AB must be changed from $05 to $1F for Applesoft.

54 IIO Enhancements

0800 l ;***************************
oeoo 2 ;* *
0800 3 ;* APPLE SCROLLING ROUTINE *
0800 4 ;* ROGER WAGNER *
0800 5 ;* *
0800 6 ;* SCROLL *
0800 7 ;* *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 lC' ;* CHELMSF'ORD, MA 01824 *
0800 11 ;* ALL RIGHTS RFSERVEC *
0800 12 ;* *
0800 13 :***************************
0800 14
0800 15 THIS WILL LET EITHER
0800 16 PAGE SCROLL IN EITHER
0800 17 DIRECTION. IT IS PIH-
0800 18 MARILY DESIGNED TO FEED
0800 19 NEW SCREEN DATA IN FROM
0800 20 A GIVEN RANGE OF RAM.
0800 21
0800 22
0800 23
0800 24 OBJ $800
0300 25 ORG $300
0300 '26
0300 '27 ;
0300 28 WNDLFT EPZ $20
0300 29 WNDWID EPZ $21
0300 30 WNDTOP EPZ $22
0300 31 WNDBTM EPZ $23
0300 32 CH EPZ $24
0300 33 CV EPZ $25
0300 34 BASL EPZ $28
0300 35 BASH EPZ $29
0300 36 BAS2L EPZ $2A
0300 37 BAS2H EPZ $2B
0300 38 PAGE EPZ $05
0300 39 ; * FOR APPLESOFT USE PAGE EQU $1F
0300 40 ;* PAGE MUST HCLD $04 FOR PG l,
0300 41 ;* $08 FOR PG 2
0300 42 SCRNTP EPZ $06
0300 43 ;* $06, $07 = LO/HI BYTES
0300 44 ;* OF START OF LINE JUST BEFORE
0300 45 ;* TOP L!NE
0300 46 SCRNBM EPZ $06
0300 47 ;* $08,$09 =LC/HI BYTES
0300 48 ;* OF START OF LINE JUST AFTER
0300 49 ;* BOTTOM LINE
0300 so ;*
0300 51 ;*
0300 A522 52 SCROLL LOA WNDTOP
0302 48 53 PHA
0303 209E03 54 JSR VTABZ
0306 A528 55 NXTLN LOA BASL
0308 852A 56 STA BAS2L
03CA A529 57 LDA BASH
030C 852B 58 STA BAS2H
030E A421 59 LOY WNDWID
0310 88 60 DEY
0311 68 61 PLA
0312 6901 62 ADC #$01
0314 C523 63 CMP WNDBTM
0316 BOOD 64 BCS LOB TM
0318 48 65 PHA
0319 209EC3 66 JSR VTABZ
031C Bl28 67 NXTCHR LOA (BASL), Y
031E 912A 68 STA (BAS2L), Y
0320 88 69 DEY

Wagner Scrolling 55

0321 10F9 70 BPL NXTCHR
0323 30El 71 BM! NXTLN
0325 AOOO 72 LDBTM LDY #00
0327 BlOa 73 LD2 LDA (SCRNBM) , Y
0329 912a 74 STA (BASL), Y
032B ca 75 INY
032C C421 76 CPY WNDWID
032E 90F7 77 BCC LD2
0330 la 7a CRRCT CLC
0331 A506 79 LDA SCRNTP
0333 6521 ao ADC WNDWID
0335 a506 a1 STA SCRNTP
0337 A507 a2 LDA SCRNTP+l
0339 6900 a3 ADC #00
033B a507 a4 STA SCRNTP+l
033D la a5 CLC
033E A50a 86 LDA SCRNBM
0340 6521 a7 ADC WNDWID
0342 a5oa aa STA SCRNBM
0344 A509 a9 LDA SCRNBM+l
0346 6900 90 ADC #00
034a a509 91 STA SCRNBM+l
034A 4C9C03 92 JMP VTAB
034D 93 ;*
034D 94 ;*
034D 3a 95 SCRLDN SEC
034E A523 96 LDA WNDBTM
0350 E901 97 SBC #$01
0352 4a 98 PHA
0353 209E03 99 JSR VTABZ
0356 A52a 100 NXTLN2 LDA BASL
035a a52A 101 STA BAS2L
035A A529 102 LDA BASH
035C a52B 103 STA BAS2H
035E A421 104 LDY WNDWID
0360 aa 105 DEY
0361 6a 106 PLA
0362 E900 107 SBC #$00
0364 C522 lOa CMP WNDTOP
0366 30CD 109 BM! LDTOP
036a 48 110 PHA
0369 209E03 111 JSR VTABZ
036C Bl2a 112 NXTCR2 LDA (BASL), Y
036E 912A 113 STA (BAS2L), Y
0370 aa 114 DEY
0371 10F9 115 BPL NXTCR2
0373 30El 116 BM! NXTLN2
0375 AOOO 117 LDTOP LDY #$00
0377 Bl06 11a LT2 LDA (SCRNTP) , Y
0379 9i2a 119 STA (BASL), Y
037B ca 120 !NY
037C C421 121 CPY WNDWID
037E 90F7 122 BCC LT2
03ao 3a 123 CRRT2 SEC
03al A506 124 LDA SCRNTP
03a3 E521 125 SBC WNDWID
03a5 a506 126 STA SCRNTP
03a7 A507 127 LDA SCRNTP+l
03a9 E900 128 SBC #00
03aB 8507 129 STA SCRNTP+l
03aD 38 130 SEC
038E A508 131 LDA SCRNBM
0390 E521 132 SBC WNDWID
0392 a508 133 STA SCRNBM
0394 A509 134 LDA SCRNBM+l
0396 E900 135 SBC #00
039a 8509 136 STA SCRNBM+l
039A 60 137 RTS

56 IIO Enhancements

039B GO 138 BRK
039C 139 ; *
039C 140 ;*
039C A525 141 VTAB LtA CV
039E 20A603 142 VTABZ JSR BASCLC
03Al 6520 143 ADC WNDLFT
03A3 8528 144 STA BASL
03A5 60 145 RTS
03A6 146 ;*
03A6 147 ;*
03A6 48 148 BASCLC PHA
03A7 4A 149 LSR
03A8 2900 150 AND #$00
03AA 0505 151 ORA PAGE
03AC 8529 152 STA BASH
03AE 68 153 PLA
03AF 2918 154 AND #$18
03Bl 9002 155 BCC BSCLC2
03B3 697F 156 ADC #$7F
0385 8528 157 BSCLC2 STA BASL
03B7 OA 158 ASL
03B8 OA 159 ASL
03B9 0528 160 ORA BASL
03BB 8528 161 STA BASL
03BD 60 162 END RTS

163 FND

***** END OF ASSEMBLY

* *
* SYMBOL TABLF -- V 1.5 *
* *

LABEL. LCC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

1!/NDLFT 0020 WN['WID 0021 WNDTOP 0022 WNDBTM 0023 CB
BASL 0028 BASH 0029 BAS2L 002A BAS2H 002B PAGE
SCRNBM 0008

0024 CV 0025
0005 SCRN'lP 0006

t* ABSOLUTE VARABLES/LABELS

SCROLL 0300
CRRCT 0330
CRRT2 0380

NX'l'LN 0306
SCRLDN 034D
VTAB 039C

NXTCHR 031C LDBTM 0325 LD2 0327
NXTLN2 0356 NXTCR2 036C LDTCP 0375 L'I'2
VTABZ 039E BASCLC 03A6 BSCLC2 03B5 END

SYMBOL TABLF STA.RTING 1'DDRESS: 6000
SYMBOL TABLE LENG'IH:OlC2

0377
03BD

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
8 REM
9 REM

10 REM
11 REM
12 REM
13 REM
14 REM
16 REM

* *
* APPLE SCROLLING RTNE *
* ROGER WAGNER *
* *
* SC ROLLER *
* * * COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

18 LOMEM:3072
20 REM OR SET LOMEM MANUALLY BEFORE RUNNING.
30 CALL -936: INPUT "PAGE 1 CR 2?", PAGE

Wagner

40 PRINT "INPUT ADDRESS (<32767) TO START AT:": INPUT A

Scrolling 57

50 REM TO SCROLL WITHOUT BRINGING IN NEW DATA ENTER 'O' FOR ADDRESS.
60 IF A#O THEN 100: TEXT : CALL -936: POKE 34,1:

REM FREEZE ONE BLANK LINE AT TOP OF SCREEN
70 VTAB 12: PRINT " (SAMPLE PG. 1 SCREEN DATA)"
75 POKE 5,PAGE*4: IF PAGE=2 THEN POKE -16299,0
80 POKE 6,0: POKE 7,4: POKE 8 , 0: POKE 9,4:

REM BRING NEW SCREEN DATA FROM THAT BLANK LINE

90 GOTC 150
100 LB=A MCD 256:HBgA/256
110 PCKE 5,PAGE*4: IF PAGE=2 THEN POKE -16299,0
120 POKE 8,LB: POKE 9,HB
130 FOR I=l TO 25: CALL 768: NEXT I
140 POKE 6,LB: POKE 7,HB
150 KEY= PEEK (-16384): POKE -16368,0
160 IF KEY=l49 THEN CALL 768: REM RT. ARROW KEY TC SCROLL UP
170 IF KEY=l36 THEN CALL 845: REM LFT . ARROW KEY TO SCROLL DOWN
180 IF KEY#l36 AND KEY#l49 OR A#O THEN 190: POKE 6,0: POKE 7,4: POKE 8,

0: POKE 9,4: REM RESET 6,7 & 8,9 TO POINT AT BLANK LINE
190 IF KEY#l77 THEN 200: POKE 5,4: POKE -16300,0: REM 'l' FOR PAGE 1
200 IF KEY#l78 THEN 210: POKE 5,8: POKE -16299,0: REM '2' FOR PAGE 2
210 IF KEY#216 THEN 150: POKE -16300,0: TEXT : CALL -868: PRINT "BYE":

END

Apple II Integer BASIC Program
List by Page

by Dave Partyka

Viewing long program listings on the Apple's small
video display has been a consistent source of
frustration to the programmer. The solution
implemented here allows the user to view listings
page-by-page.

If you own an Apple II, I'm sure you feel there could be a better way to list a pro
gram. Now you either list the whole program and watch it go by faster than you
can read it, or you list it by line numbers. When you list it by line numbers, you
may get two lines or you may get more lines than will fit on the screen.

Using the assembler program listed, and the Integer BASIC of the Apple II,
you can list your Integer BASIC programs one page (screen) at a time with a page
number at the bottom of each. Pressing just about any key (except B, P, or S) will
clear the screen and display the next page adding one to the page number. By
pressing keys you display your program a page at a time, not only two lines here,
or too many lines there.

The B, P, or S keys are special function keys. The key (for beginning) will
clear the screen and display your program from the first page. This comes in handy
when you're in the middle or near the end of the display and you want to see some
subroutines or anything else at the beginning. Just press the B key and you are at
the beginning, ready to start over.

The next key P for page) will clear the screen and start displaying your pro
gram, stopping at the page number you keyed in. For example, if you are at page 25
and you want to back up 2 pages, you press P0023. P will clear the screen and the
Apple will beep as you key in the four digits. Y.Qy bl!Y~ to e~four ~i,gits so_the
le1cliug zeros are necessary. After the last digit is pressed, your program will be
displayed from the beginning, stopping at page 23. This is faster than pressing the
B key and other ones until you get to page 23.

Partyka List by Page 59

The last key,@ (for Stop) gets you out of the list program and back to the Ap
ple II BASIC. This key is used when you find a place in your program where you
want to add or delete a line. If you don't press the S key and you try to do anything,
as soon as you press a key the next page will be displayed.

~ are two ways to activate this rogram. From monitor press CTRL-Y
then the R"P. · ey, or om B SIC type CALL 1016 then press the RETU.RN

ey. As long as you don't use the area from hex 300 to 3FF, this program will re
main in memory. Once the list program is activated, it is entered only when the
screen display reaches the bottom of the screen. If the end of your program ends
anywhere but the bottom of the screen, the Apple II will return to BASIC but the
list program will still be activated. To deactivate the list program, type CALL
1016, press the RETURN key, then press the S key for stop, or press the RETURN
key to skip to the bottom of the page and press the S key to stop.

If you ran a BASIC program and the list program is still activated, then the
results you get will depend on your program. Some programs won't be affected at
all. Others will stop if the listing reaches the bottom of the screen. Pressing a key
will start the program again. Other programs might be able to make use of this
assembler routine by stopping the display at the bottom of the screen.

Using this assembler program, you'll find it easier to de-bug your programs or
just follow the flow of any program.

60 IIO Enhancements

0800 l ;************************
0800 2 ;* *
0800 3 :* LIST BY PAGE *
0800 4 :* DA VI D PARTYKA *
0800 5 :* *
0800 6 :* PAGE LIST *
0800 7 :• *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 : * MICRO INK, INC. *
0800 10 : * CHELMSFORD, MA 01824 *
0800 11 : * ALL RIGHTS RESERVED *
0800 12 ;* *
0800 13 :************************
0800 14
0800 15
0800 16
0800 17 BASL EPZ $28 ;LEFT CHAR POS ON LINE
0800 18 BASH EPZ $29
0800 19 CSWL EPZ $36 ;MONITOF OUTPUT HOOK
0800 20 CSWH EPZ $37
0800 21
0800 22 KBD EQU $COOO ;KEYBOARD INPUT
0800 23 KBDSTB EQU $C010 ;KEYBOARD STROBE
0800 24 BASIC2 EQU $E003 ;BASIC WARM ENTRY
0800 25 LIST EQU $E04B ;BASIC LISTING ROUTINE
0800 26 BELL EQU $FBDD ;MONITOR BELL ROUTINE
0800 27 HOME EQU $FC58 ;MONITOR CLEARSCREEN
0800 28 CQUTl EQU $FDFO ;CHARACTER OUTPUT ROUTINE
0800 29 SAVE EQU $FF4A ;REGISTER SAVE ROUTINE
0800 30 RESTCR EQU $FF3F ;REGISTER RESTORE ROUTINE
0800 31
0300 32 ORG $0300
0300 33 OBJ $0800
0300 34
0300 35 .
0300 A922 36 !NIT LDA #MAIN ;LOAD BEGINNING
0302 8536 37 STA CSWL ;ADDRESS OF MAIN
0304 A903 38 LDA /MAIN ; PROGRAM IN USER
0306 8537 39 STA CSWH ;OUTPUT LOCATIONS.
0308 20E603 40 BEG JSR HLOD ; LOAD HIGH VALUES.
030B A900 41 ZPNC LDA HOO ;MOVE ZEROS TO
030D 8DF403 42 STA PGHI ;PAGE CCUNT
0310 8DF503 43 STA PGLO ;LOCATIONS.
0313 2058FC 44 JSR HOME ; CLEAR SCREEN.
0316 204BEO 45 JSR LIST ;START BASIC LIST.
03.19 46
0319 209603 47 JSR ADDl ;ADDl TO PAGE#.
031C 20E603 48 JSR HLOD ;LOAD PAGE HOLD WITH FF.
031F 4C03EO 49 JMP BASIC2 ;RETURN TO BASIC CONTROL.
0322 204AFF 50 MAIN JSR SAVE ;SAVE REGISTERS
0325 A528 51 LDA BASL ;CHECK SCREEN ADDRESS
0327 4529 52 EOR BASH ;FOR 07 DO THE
0329 C9D7 53 CMP #$D7 ;24TH LINE.
032B D051 54 BNE DISP ;IF NOT = BRANCH.
032D 209603 55 JSR ADDl ;ADD l TC PAGE #.
0330 56
0330 ADF603 57 LDA PH OLD CHECK PAGE HOLD,
0333 C9FF 58 CMP #$FF IF = FF THEN THE P
0335 F019 59 BEQ NP RES KEY WASN'T PRESSED.
0337 ADF403 60 LDA PGHI COMPARE PAGE #
033A CDF603 61 CMP PHOLJ) WITH PAGE HOLD,
033D D008 62 BNE CLR IF EQUAL
033F ADF503 63 LDA PGLC BRANCH TO THE
0342 CDF703 64 CMP PHCLD+l LOOP ROUTINE
0345 F006 65 BEQ LOO PR ELSE
0347 2058FC 66 CLR JSR HOME CLEAR SCREEN
034A 4C8103 67 JMP RR CONTINUE PRINTING.
034D 20E603 . 68 LOO PR JSR HLOD LOAD PAGE HOLD WITH FF.
0350 2COOCO 69 NP RES BIT KBD LOOP UNTIL A

Partyka List by Page 61

0353 lOFB 70 BPL NPRES ;KEY IS PRESSED.
0355 ADOOCO 71 LDA KBD ;WHEN KEY IS PRESSED
035B BDlOCO 72 STA KBDSTB ;CLEAR KEY STROBE
035B C9D3 73 CMP #$D3 ;AND COMPARE FOR S.
035D DOOB 74 BNE CMPB ;IF NOT = BRANCH.
035F A9FO 75 LDA #$FO ;IF E STORE
0361 B536 76 STA CSWL ;NORMAL ADDRESS
0363 77
0363 A9FD 7B LDA #$FD ;IN THE USER
0365 B537 79 STA CSWH ;OUTPUT LOCATIONS.
0367 4C03EO BO JMP BASIC2 ;RETURN TC BASIC CONTROL.
036A C9C2 Bl CMPB CMP #$C2 ;B KEY PRESSED?
036C F09A B2 BEQ BEG ;IF YES BRANCH.
036E C9DO B3 CMP #$DO ;P KEY PRESSED?
0370 DOOC B4 BNE DISP ; IF NC BRANCH.
0372 A200 B5 LDX #$00 ; IF YES THEN GET
0374 20CF03 B6 JSR GTPG ;2 DIGITS CF PAGE#
0377 EB B7 INX ;UP INDEX AND
0378 20D203 8B JSR GTPGl ;GET NEXT TWO DIGITS.
037B 4COB03 B9 JMP ZPNO ;JUMP TO ZERO PAGE #.
037E 2058FC 90 DISP JSR HCME ;CLEAR SCREEN.
0381 203FFF 91 RR JSR RESTOR ;RESTORE REGISTERS
0384 4CFOFD 92 JMP COUTl ;DISPLAY ROUTINE.
03B7 .A8 93 PRINT TAY ;SAVE ACCUM. AND
0388 290F 94 AND #$OF ;CONVERT LOW ORDER
038A 09BO 95 ORA #$BO ;BYTE TO DECIMAL AND
038C 9DF407 96 STA $7F4,X ;PRINT PAGE #.
038F' 9B 97 TYA ;GET ACCUM. AND
0390 6A 9B ROR ;ROTATE
0391 6A 99 ROR ;HIGH ORDER
0392 6A 100 RCR ;BYTE TO THE
0393 6A 101 ROR ;LOW ORDER
0394 CA 102 DEX ;BYTE AND
0395 60 103 RTS ;RETURN.
0396 F8 104 ADDl SED ;SET DECIMAL MODE.
0397 lB 105 CLC ;CLEAR CARRY FLAG.
039B ADF503 106 LDA PGLO ;ADD
039B 6901 107 ADC #$01 ;l
039D BDF503 108 STA PGLO ;TO
03AO AJ:'F403 109 LDA PGHI ;THE
03A3 6900 110 ADC #$00 ;PAGE
03A5 BDF403 111 STA PGHI ;NUMBER.
03A8 DB 112 CLD ;CLEAR DECIMAL MODE.
03A9 A203 113 LDX #$03 ;SET IND-X.
03AB ADF503 114 LDA PGLO ;GET PAGE # LOW.
03AE 208703 115 JSR PRINT ;PRINT lST DIGIT.
03Bl 208703 116 JSR PRINT ;PRINT 2ND DIGIT.
03B4 ADF403 117 LDA PGHI ;GET PAGE # HIGH.
03B7 20B703 118 JSR PRINT ;PRINT 3RD DIGIT.
03BA 208703 119 JSR PRINT ;PRINT 4TH DIGIT.
03BD 60 120 RTS ;RETURN.
03BE 2COOCO 121 KEY BIT KBD ;LOOP UNTIL A
03Cl lOFB 122 BPL KEY ;KEY IS PRESSED.
03C3 20DDFB 123 JSR BELL ;RING BELL
03C6 ADOOCO 124 LDA KBD ;GET KEY
03C9 8Dl0CO 125 STA KBDSTB ;CLEAR STROBE
03CC 290F 126 AND #$OF ;DROP HIGH ORDER
03CE 60 127 RTS ;HALF AND RETURN.
03CF 205BFC 128 GTPG JSR HOME ;CLEAR SCREEN.
03D2 129 ' 03D2 20BE03 130 GTF'GI JSR KEY ;GET PAGE #.
03D5 OA 131 ASL ;SHIFT LOW ORDER
03D6 OA 1~2 ASL ;HALF TO THE
03D7 OA 133 ASL HIGH ORDER
03DB QA 134 ASL HALF.
03D9 9DF603 135 STA PHOLD,X STORE IN PAGE HOLD.
03DC 20BE03 136 JSR KEY GET NEXT NUMBER.
03DF 5DF603 137 EOR PHOLD,X COMBINE WITH
03E2 9DF603 138 STA PHOLD,X PREVIOUS # AND STORE

62 1/0 Enhancements

03E5 60 139 RTS
03E6 140 ;
03E6 A9FF 141 HLOD LDA #$FF
03E8 8DF603 142 STA PH OLD
03EB 8DF703 143 STA PHOLD+l
03EE 60 144 RTS
03EF 145
03EF 000000 146 HEX 0000000000
03F2 0000
03F4 00 147 PGHI HEX 00
03F5 00 148 PGLO HEX 00
03F6 0000 149 PH OLD HEX 0000
03F8 150 ' 03F8 4CC003 151 CTRLY JMP INIT

152 END

***** END OF ASSEMBLY

• •
* SYMBOL TABLE -- V 1.5 *
• •

LABEL. LOC . LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

BASL 0028 BASH 0029 CSWL 0036

** ABSOLUTE VARABLES/LABELS

KBD cooo KBDSTB COlO
BASIC2 E.003 LIST EQ4B BELL FBDD
RES TOR FF3F INIT 0300 BEG 0308
LOO PR 034D NPRES 0350 CMPB 036A
ADD! 0396 KEY 03BE GTPG 03CF
PGLO 03F5 PH OLD 03F6 CTRLY 03F8

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH : 0 l lA

;IN PAGE HOLD, RETURN.

;PUT HIGH VALUES
; IN PAGE HOLD
;LOCATIONS THEN
;RETURN.

;PAGE # HIGH
;PAGE # LOW
;PAGE HOLD

CSWH 0037

HOME FC58 COUTl FDFC SAVE FF4A
ZPNO 030B MAIN 0322 CLR 0347
DISP 037E RR 0381 PRINT 0387
GTPGl 03D2 HLOD 03E6 PGHI 03F4

Paged Printer Output
for the Apple

by Gary Little

Improve the format of your printed output by adding a
page mode to your system.

If you have ever sent output to a printer you have probably become very annoyed
when the output continued from the very end of one page and then on to the next.
Wouldn't it be nice if the printer would automatically scroll to the top of a new
page when it got near the bottom of the previous one? PAGER does it for you; it
will count the number of line feeds that are sent by Apple to the printer. When
this total reaches 54, twelve blank lines are generated to automatically bring you
to the top of the next eleven-inch page. PAGER can be used from within a program
or from immediate-execution mode. It is extremely useful for LISTing long
programs page by page.

How to Use the Program

PAGER was written for use with a serial printer that is connected to the App,le
serial interface card. If PAGER is to be used in conjunction with a parallel printer
connected to the~ parallel interface card, two bytes of the routine must first
be changed. To make these changes, load PAGER, and then enter the following
two commands from BASIC:

POKE 785,2
POKE 812,2

The modified program should then be saved.

To change the number of lines that are printed before PAGER causes the paper
to scroll to the top of the next page, enter the command POKE 798,LP from
BASIC, where LP is the required number of lines per page.

To change page length, enter POKE 804,PL from BASIC, where PL is six times
the length of the page (in inches). For example, for an eleven inch page, PL= 66.
Note that PL must be greater than LP.

64 110 Enhancements

Output to the printer can be stopped after each page is printed by entering a
POKE 822, l command before activating PAGER. To proceed after a page has been
printed, simply press any key on the keyboard. This 'page pause' feature must be
used when you're feeding each piece of paper to the printer manually. To tum off
the 'page pause', enter a POKE 822,0 command.

Instructions for Use Within a Program

Use the following sequence to turn the printer on and off from within a BASIC
program:

5 D$=CHR$(4)
10 PRINT 0$;"PR#1"
20 LW = 132 : REM LINE WIDTH
30 PRINT CHR$(9);LW;"N" : PRINT CHR$(9); "K"
40 CALL 768 : REM TURN ON PAGER

(Generate Output)

50 PRINT 0$;"PR#O" : REM TURN PRINTER OFF

If DOS is not being used, change line 10 to PR#l and line 50 to PR#O and delete
line 5. If a serial printer is being used, delete lines 20 and 30.

Instructions for Use Outside a Program

If a serial printer is involved, PAGER can be activated by a CALL 768 from
BASIC. It can be deactivated by a PR#O. If a parallel printer is involved, PAGER
can be activated by performing the following four steps:

1. Enter PR#1
2. Enter CTRL-1 132N (132 or other line width).
3. Enter CTRL-1 K
4. Enter CALL 768

It can be deactivated by a PR#O.

Additional Notes:

1. Remember to set the DIP switches on the serial printer interface card for
the appropriate baud rate and line width before activating PAGER.

2. Remember to adjust the paper in the printer so that the first line printed
will be at the desired starting position before activating PAGER.

3. Make sure that a PRINTed line will not exceed the line width which has
been set for the printer. If it does, then the overflow will appear on the next line
and this line will not be taken into account by PAGER.

Little Page Printer 65

0800 l ·************************
0800 2 ;. *
0800 3 :* PAGED PRINTER *
0800 4 :* GARY LITTLE *
0800 5 :* *
0800 6 :* PAGE *
0800 7 :* *
0800 8 :* COPYRIGHT (cl 1981 *
0800 9 :* MICRO INK, INC. *
0800 10 :* CHELMSFORD, MA 01824 *
oaoo ll :* ALL RIGHTS RESERVED *
0800 12 1* *
0800 13 r************************
0800 14
0800 15
0800 16
0800 17
OSCO 18 :POSITION PAPER IN PRINTER
0800 19 :THEN CALL 768 FROM BASIC
0800 20 ;TO ACTIVATE THIS ROUTINE.
0800 21 ;TO DE-ACTIVATE, ENT PR#O.
oaoc 22

iPAGE PAUSE FEATURE: 0800 23
0800 24 . POKE 822, 0 TURN OFF
0800 25 POKE 822,1 TURN ON
0800 26 :LINES PRINTED PER PAGE:
oeoo 27 PCKE 798,LP
0800 28
0800 29 :PAGE LENGTH:
0800 30 POKE 804,PL
0800 31 .
0800 32 ;DESCRIPTION:
0800 33 THIS ROUTINE W!LL SEND 'PL-LP'
0800 34 : BLANK LINES TO THE PRINTER AFTER
0800 35 : 'LP' LINES HAVE BEEN SENT By THE
0800 36 : USER.
0800 37

;DEFAULTS: 0800 38
0800 39 LP=54
0800 40 PL=66 (11" PAPER)
0800 41 PAGE PAUSE OFF
0800 42
0800 43
0800 44
0800 45
0800 46 COUNT EPZ $06 :LINE COUNT STORAGE
0800 47 CSWL EPZ $36 :OUTPUT HOOK
0800 48 DOS EQU $3EA :DOS l/0 UPDATE HOOK
0800 49 KBD EQU $COCO :KEYBOARD
0800 50 STRB EQU $C010 ;KEYBOARD STROBE
0800 51 PRINT EQU $Cl00 ;PR#l SERIAL OUTPUT
0800 52
0800 53
0300 54 ORG $300
0300 55 OBJ $800
0300 56
0300 57
0300 A90F 58 LDA #START :SET OUTPUT HOCK
0302 8536 59 STA CSWL :TC START OF ROUTINE.
0304 A903 6C LDA /START
0306 8537 61 STA CSWL+l
0308 A900 62 LDA #$00 :ZERO THE LINE COUNTER .
030A 8506 63 STA COUNT
030C 4CEA03 64 JMP DOS :GIVE NEW HOOK TO nos.
030F 48 65 START PHA :ROUTINE STARTS HERE·
0310 2000Cl 66 JSR PRINT ;SEND CHARACTER TO PRINTER.
0313 68 67 PLA
0314 C98D 68 CMP #$8D :CARRIAGE RETURN?
0316 FOOl 69 BEQ LINE ;BRANCH IF IT IS.
0318 60 70 NEXT RTS
0319 E606 71 LINE INC COUNT : INCREMENT LINE COUNT.
031B A506 72 LDA COUNT
031D C936 73 CMP #$36 :LINE COUNT =54?
031F DOF7 74 BNE NEXT ;IF NOT, THEN RETURN.

66 110 Enhancements

0321 A506 75 BLANK LOA CCU NT
0 3 23 C942 76 CMP #$42
0325 FOOA 77 BEQ LOOP
0327 E606 78 INC COUNT
('329 A98A 79 LOA #$8A
032B 2000Cl 80 JSR PRINT
032E 38 81 SEC
032F BOFO 82 BCS BLANK
0331 J\900 83 LOOP Ll:'A #$00
0333 8506 84 STA COUNT
0335 A900 85 LOA #$00
0337 FOOS 86 BEQ DONE
0339 2COOCO 87 AGAIN BIT KBD
033C lOFB 88 BPL AGAIN
033E 2Cl0CO 89 BIT STRB
0341 60 90 DONE RTS

91 END

***** END OF ASSEMBLY

• •
* SYMBOL TABLE -- V 1.5 *
• •

LABEL. LOC . LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

COUNT 0006 CSWL 0036

** ABSOLUTE VARABLES/LABELS

DOS 03EA KBD cooo STRB COlO
START 030F NEXT 0318 LINE 0319
DONE 0341

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:007A

;PAGE LENGTH MET?

;INCREMENT THE COUNTER
;LOAD A LINE FEED
;AND SEND IT TC THE PRINTER

;ZERO THE COUNTER.

CHANGE TO LOA #$01 TO
GET 'PAGE PAUSE' •
WAIT FOR KEYPRESS
BEFORE CONTINUING.
CLEAR KEYBOARD STROBE.

PRINT ClOO
BLANK 0321 LOOP 0331 AGAIN 0339

Hexadecimal Printer
by LeRoy Moyer

This simple program permits you to specify the limits
within which you want the Apple II disassembler to
operate.

When using the disassembler in the Apple II to print out machine language code,
you normally type in the starting address and then a number of L's. There are two
problems with using this method to pi-int out a machine language program. The
first is that if the machine language program does not happen to be a multiple of
20 instructions, there is probably going to be a collection of unwanted garbage
printed at the bottom of the desired machine code. The second problem occurs
when the program being printed is fairly long. Do you type in SO to 51 L's to get all
of the desired code? The program presented here solves both of these problems by
decoding and outputing the disassembled machine language code that lies
between two hexadecimal addresses.

After loading the program, using it is very easy. First, tum on the printer with
a control P and then type 800G (return). The screen will clear and prompt you
with the header "STARTING ADDRESS". Enter the hexadecimal address of the
first instruction to be decoded and then hit return. A similar prompting question
will be asked for the ending address and after entering the ending address the pro
gram will start outputting the disassembled code beginning at the starting address
and continuing until the ending address.

The code presented here is transportable in that only two addresses (4 bytes)
need to be changed to relocate the program anywhere in memory. These locations
are the addresses for the data that prints out the program's two lines of text. Data
for this text is stored starting at lines $86B and $87D in the program listing and
this data is used in the lines at $806 and $828 respectively.

Several Apple monitor subroutines are used in this program and two of them
deserve some comment. The first is the GETNUM ($FFA7) subroutine that con
verts a number stored as ASCII characters in the input buffer ($200), indexed by
the Y register, into a two byte hexadecimal number. This routine converts ASCII
characters until it encounters a character that is a non-hexadecimal number. A
carriage return ($8D) is used in this program for the terminator. The resulting hex
adecimal address is stored at location A2L ($3E) and A2H ($3F) in the usual low
byte, high byte order for addresses required by the 6502.

68 110 Enhancements

The second routine that deserves some comment is the INSTDSP ($F8DO)
routine. This routine disassembles an instruction and outputs it to the screen.
The address that is used to direct the subroutine to the op-code to be disassembled
is stored in PCL ($3A) and PCH ($3B). After returning from INSTDSP, a number
that is one less than the length of the instruction is stored in location LENGTH
($2F). The address in the pointer ($3A, $3B) is not changed by INSTDSP and hence
the length of the instruction needs to be added to the pointer to get to the location
of the next op-code (lines 58 to 64 in the program listing).

If you don't want the initial lines of text printed out on your printer then in
sert a printer turn-on routine between lines 55 and 56 of the assembled program
listing. Hopefully this routine will be useful in making your machine language
print-outs look neater in the future.

0800 l ;************************
OSCO 2 ·* *
OBOC 3 ;. HEXIDECIMAL PRINTER •
0800 4 : * LEROY MOYER *
OSCO 5 : * *
0800 6 : * HEX PRINTER •
0800 7 :* *
0800 8 :* COPYRIGHT (C) 1981 •
0800 9 :* MICRO INK, INC, •
0800 10 ;* CHELMSFORD, MA 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0800 12 : * *
0800 13 ~·***********************

0800 14
0800 15 ;DECODE BETWEEN ADR
0800 16
0800 17 FINA EPZ $FE
0800 18 APA2 EPZ $3E
0800 19 LENG EPZ $2F
0800 20 APPC EPZ $3A
0800 21
OBOC 22 ORG $800
0800 23 OBJ $800
0800 24
oeoo 20!18FC 25 S't'.11.R JSR $FC58 ; CLEAR SCREEN
0803 A200 26 LDX #$00 ;OUTPUT FIRST HEADER LINE
080!5 BD6B08 27 DBA2 LDA TITl,X r "STARTING ADDRESS"
0808 FOOS 28 BEO DBAl
080A 0980 29 ORA #$80
080C 20EDFD 30 JSR $FDED
OBOF EB 31 lNX
0810 DOF3 3:i' BNE DBA2
0812 206FFD 33 DBAl JSR $FD6F ;KEYBOARD INPUT OF STARTING ADDRESS
0815 AOOO 34 LI:Y #$00
0817 20A7FF 35 JSR $FFA7 ;CHANGE TC HEXIDECIMAL ADDRESS
OBlA A53E 35 LDA APA2 ;MOVE HEXADECIMAL ADDRESS TO
081C 853A 37 STA APPC ; APPC ($3A)
081E A53F 38 LDA APA2+0l
0820 853B 39 STA APPC+Ol
0822 208EFD 40 JSR $FD8E ;PRINT LINE FEED
0825 A200 41 LDX #$00 ;PRINT SECOND HEADER LINE
0827 BD7D08 42 DBA4 LDA TIT2,X "ENDING ADDRESS"
082A FOOS 43 BEO DBA3
082C 0980 44 ORA #$80
082E 20EDFD 45 JSR $FDED
0831 EB 46 INX
0832 POF3 47 BNE DBA4
0834 206FFD 48 DBA3 JSR $FD6F ;KEYBOARD INPUT OF ENDING AI:DRESS

Moyer Hex Printer 69

0837 AOOO 49 LDY #$00
0839 20A7FF so JSR $FFA7 CHJ\NGE TO HEXADECIMAL ADDRESS
083C AS3E Sl LDA APA2 MCVE HEXADECIMAL ADDRESS TO
083E SSFE S2 STA FINA FINA ($FE) FINAL ADDRESS
0840 AS3F S3 LDA APA2+01
0842 8SFF S4 STA FINA+Ol
0844 208EFD SS JSR $FD8E ;PRINT LINE FEED
0847 20DOF8 S6 DBAS JSR $F8DO ;DISASSEMBLE ONE LINE
084A E62F S7 INC LENG ;INCREMENT BYTE FCR LENG~H
084C 18 S8 CLC
084D AS3A S9 LDA APPC ;ADDLENGTH OF INSTRUCTION TO
084F 6S2F 60 ADC LENG ;ADDRESS THAT IS PCINTER FOR
08Sl 8S3A 61 STA APPC ;OP CODE TO BE DISASSEMBLED
08S3 AS3B 62 LDA APPC+Ol
08SS 6900 63 ADC #$00
08S7 8S3B 64 STA APPC+Ol

38 6S SEC 08S9
08SA AS3A 66 LDA APPC ;SUBTRACT FINAL ADDRESS TO SEE IF
00sc ESFE 67 SBC FINA
08SE AS3B 68 LDA APPC+Ol
0860 ESFF 69 SBC FINA+Ol
0862 90E3 70 BCC DEAS
0864 208EFD 71 JSR $FD8E
0867 208EFD 72 JSR $FD8E
086A 60 73 RTS
08€8 D3D4Cl 74 Tl'I'l ASC "START!"
086E D2D4C9
0871 CEC7AO 75 ASC "NG ADC"
0874 ClC4C4
0877 D2C5D3 76 ASC 11 RESS H

087A D3AO
087C 00 77 HEX 00
087D OD 78 TIT2 HEX OD
087E CSCEC4 79 ASC "ENDING"
0881 C9CEC7
0884 AOC1C4 80 ASC " ADORE"
0887 C4D2CS
088A D3D3AO 81 ASC "SS II

088D 00 82 HEX 00
83 END

***** END CF ASSEMBLY

* *
* SYMBOL TABLE -- V l.S *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES1

; THE END HJ\S BEEN REACHED

;PRINT LINE FEED
;PRINT LINE FEED
;RETURN TO MONITOR
;DATA FOR FIRST HEADER LINE

1DATA FOR SECOND HEADER LINE

FINA OOFE APA2 003E LENG 002F APPC 003A

** ABSOLUTE VARABLES/LABELS

STAR
DBAl

0800 DBA2
0812 DBA4

oaos
0827 DBA3 0834 DEAS 084 7 TITl 086B TIT2 087D

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

3
RUNTIME UTILITIES

Introduction 72

Common Variables on the Apple II 73
Robert F. Zant

PRINT USING for Applesoft 78
Gary A. Morris

Searching String Arrays 84
Gary B. Little

Applesoft and Matrices 89
Cornelis Bongers

AMPER-SORT 97
Alan G. Hill

Apple II Trace List Utility 111
Alan G. Hill

INTRODUCTION
Runtime utilities are defined as the family of programs which assist in the execu
tion of other programs. Such a utility usually is linked to the host program at exe
cution time, and runs concurrently with it as a subroutine. In this chapter, several
runtime utilities for Applesoft and Integer BASIC programs are described which
will enhance the programming power of your Apple.

Robert Zant's "Common Variables on the Apple II" discusses how to set up a
common variable space shared between BASIC programs. Both Integer and Apple
soft versions are presented. Gary Morris' "PRINT USING for Applesoft" article
presents an implementation of the popular PRINT USING statement for Apple
soft. "Searching String Arrays," by Gary Little, presents a machine language array
searching routine which is an order of magnitude faster than the BASIC equivalent
would be.

The next two utilities make use of the ampersand feature in Applesoft and are
both powerful enhancements to the Applesoft language. '' Applesoft and
Matrices,'' by Cornelis Bongers, provides for full matrix operations using BASIC
arrays. "AMPER-SORT," by Alan Hill, implements automatic sorting of arrays,
whether numeric or string.

Finally, "Apple II Trace List Utility," by Alan Hill, presents a means of inter
actively tracing an Integer BASIC program while storing the trace information.

Common Variables
on the Apple II

by Robert F. Zant

Modular software designs rely on common variables to
pass data between interrelated programs. Two short
subroutines emulate the DOS CHAIN capability by
allowing use of common variables under Integer or
Applesoft BASIC, without a disk.

The solution of complex problems often leads to the writing of several interrelated
programs. Furthermore, the programs usually use several of the same variables -
called common variables. This is accomplished in most systems by not destroying
the common variables when a new program is loaded. Thus, the value of a variable
can be defined in one program and used in subsequent programs.

There is no true facility with the Apple II for using common variables. The
CHAIN command in DOS comes close to providing the capability, but it saves all
variables instead of just saving designated common variables. Also, it can only be
used with Integer BASIC programs run under DOS. No facility for common
variables is provided for non-disk systems or for Applesoft programs.

Creating a Common Variable Space

The following machine language routines can be used to pass all variables to
succeeding programs. Integer BASIC and Applesoft versions are provided. Both
versions are used as follows:

1. Load the machine language routine before the first BASIC program is
executed.

2. In each BASIC program except the last program, "CALL 774"
immediately before termination or before the DOS command to RUN the
next program.

3. In each BASIC program except the first program, "CALL 770" before ex
ecuting any statement that affects or uses variables. Do not reDIMension
variables in subsequent programs.

74 Runtime Utilities

Since all variables are saved whether they are needed or not, main storage is
used most efficiently if the same set of variable names is used in all programs.
This, of course, is required for the variables that are intended to be common for all
programs. Other main storage is reclaimed by the reuse of the names of "non
common" variables.

String variables will not always be saved correctly in Applesoft. If the string
value was read from disk, tape or keyboard, the value will be saved. If the string
value is defined in an assignment statement (e.g. A$ = "XXX"), the value will
not be available to subsequent programs.

The Programs

The routine for Integer BASIC is very simple. The variable table pointer is
simply saved and restored. The Applesoft version, however, is a little more
complex. The Applesoft version of the routine moves all non-string variables to
high RAM, just under the strings. Then, when called at the beginning of the next
program via "CALL 770", the routine moves the variables back down to the end
of the new program.

Zant Common Variables

0800 1 ************************
0800 2 * *
0800 3 * COMMON VARIABLES *
0800 4 ;* ROBERT ZANT *
0800 5 ;* *
0800 6 ;* COM-VAR-I *
0800 7 ;* •
0800 8 ;* COPYRIGHT (C) 1981 •
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFCRD, MA 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0800 12 :* *
0800 13 1************************
0000 14
0800 15
0800 16 ;FOR INTEGER BASIC
0800 17 ;
0800 18 CL EPZ $1A
0800 19 CH EPZ $AB
0800 20
0800 21
030:1 22 ORG $302
0302 23 OBJ $800
0302 24
0302 25
0302 4COF03 26 JMP RECALL ;ENTRY 770
0305 00 27 BRIC
0306 A5CC :18 LOA $CC ;ENTRY 774 - SAVE VARIABLES
0308 851A 29 STA CL ;SAVE END OF
030A A5CD 30 LDA $CD ;VARIABLE TABLE
030C 85AB 31 STA CH
030E 60 32 RTS ;BACK TO BASIC
030F A51A 33 RECALL LOA CL ;ENTRY 770 - RECALL VARIABLES
0311 85cc 34 STA $CC
0313 A5AB 35 LOA CH
0315 85CD 36 STA $CD
0317 60 37 RTS

38 END

•••••••••••••••••••••••••
* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC, LABEL. LOC.

** ZERO PAGE VARIABLES:

CL OOlA CH OOAB

** ABSOLUTE VARABLES/LABELS

RECALL 030F

SYMBCL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:002A

;RESET END OF
;VARIABLE TABLE

;BACK TO BASIC

0800 1 :************************
0800 2 :* *
0800 3 ;* COMMCN VARIABLES *
0800 4 ;* ROBERT ZANT •
0800 5 ;* •
0800 6 ;* COM-VAR-A •
0800 7 ;* •
0800 e ;* COPYRIGHT (C) 1981 •
0800 9 ;* MICRC INK, INC. •
0800 10 ;* CHELMSFOR[' I MA 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0800 12 ;* *
0800 13 :************************
OSCO 14
0800 15

75

76 Runtime Utilities

0800 16 ;
0800 17 ; FOR APPLESOFT II BASIC
0800 ie
OSCO 19
0800 20 DL EPZ $18
0800 21 DH EPZ $19
0800 22 CL EPZ $1A
0800 23 CH EPZ $1B
0800 24 EL EPZ $1C
0800 25 EH EPZ $1D
0800 26 AlL EPZ $3C
0800 27 AlH EPZ $3D
0800 28 A2L EPZ $3E
0800 29 A2H EPZ $3F
0800 30 A4L EPZ $42
0800 31 A4H EPZ $43
0800 32
0800 33
0302 34 ORG $302
0302 35 OBJ $800
0302 36
0302 37
0302 4C5603 38 JMP RECALL ;ENTRY 770
0305 00 39 BRK
0306 38 40 SEC ;ENTRY 774 - SAVE NUMERICS
0307 A56F 41 LDA $6F ;COMPUTE ADDRESSES FOR MOVE
0309 8518 42 STA DL ; SAVE START OF STRING ADDRESS
030B E56D 43 SBC $6D ;END OF NUMERICS
030D 851A 44 STA CL ;TEMPORARY STORAGE
030F A570 45 LDA $70
0311 8519 46 STA DH
0313 E56E 47 SBC $6E
0315 851B 48 STA CH ;TEMPORARY STORAGE
0317 18 49 CLC
0318 A51A 50 LDA CL
031A 6569 51 ADC $69 ;START OF NUMERICS
031C 851A 52 STA CL ;TEMP STORAGE
031E A51B 53 LDA CH
0320 656A 54 ADC $6A
0322 851B 55 STA CH
0324 A61A 56 LDX CL ;SUBTRACT ONE
0326 D002 57 BNE Al
0328 C61B 58 DEC CH ;START OF COMMON
032A CA 59 Al DEX
032B 861A 60 STX CL
0320 8642 61 STX A4L ;SET UP MOVE
032F A51B 62 LDA CH
0331 8543 63 STA A4H
0333 A569 64 LDA $69 ;START OF VARIABLES
0335 853C 65 STA AlL
0337 A56A 66 LDA $6A
0339 853D 67 STA AlH
033B A56D 68 LDA $60 ;END OF VARIABLES
033D 853E 69 STA A2L
033F A56E 70 LDA $6E
0341 853F 71 STA A2H
0343 AOOO 72 LCY #$00
0345 202CFE 73 JSR $FE2C USE MONITOR MOVE ROUTINE
0348 38 74 SEC COMPUTE DISPLACEMENT
0349 A56B 75 LCA $6B TO ARRAYS
034B E569 76 SBC $69
034D 851C 77 STA EL
034F A56C 78 LDA $6C
0351 E56A 79 SBC $6A
0353 851D 80 STA EH
0355 60 81 RTS BACK TO BASIC
0356 A51A 82 RECALL LDA CL ENTRY 770 - RECALL
0358 853C S'3 STA AlL SET UP MOVE
035A ASlB 84 LDA CH

C35C S530 85 STA AU!
035E A518 86 LOA DL
0360 856F 87 STA $6F
0362 853E 88 STA A2L
0364 AS19 89 LDA DH
('366 8570 90 STA $70
0368 853F 91 STA A2H
036A 11569 92 LOA $69
036C 8542 93 STA A4L
036Ji; A56A 94 LDA $6A
0370 8543 95 STA A4H
0372 AOOO 96 LOY t$00
03?4 20~CFE 97 JSR $FE2C
0377 18
03'18 A569
037A 651C
037C &56B
03?!: A56~
0380 6510
038~ EIS6C
oJe4 3e
0385 J\56F
0387 E51A
0389 8560
038B M70
0380 E51D
038F 8'56E
0391 18
0392 A560
0394 9569
0396 8560
0398 A56E
039A 656A
039C E!56Ji;
039E A56D
03A0 0002
03A2 C66E
03A4 C66P
03A6 60

9e CLC
99 LOA $69

100 1\DC EL
101 STA $6B
l02 LOA $6A
103 ADC EH
104 STA $6C
105 SEC
l06 LOA $6F
107 SBC CL
108 STA $60
109 LOA $70
110 SBC CH
lll STA $6E
112 CLC
113 LOA $60
114 ADC $69
l15 STA $60
lHi LOA $6E
117 ADC $6A
lHl STA $6E 11, LOA $60
120 BNE A2
Hl DEC $6E
J.24 P.2 DEC $60
12:) RTS

124 END

****~**********~*********

* * * SYMBCL TABLE -- V 1.5 *
* *
*******~********-*********

LABEL. LOC. LABEL. LCC, LABEL· LCC.

** ZERO PAGE VARIABL~S:

Zant Common Variables .,.,

;START OF STRINGS

rSTYART OF NUMERICS

;USE MCNITOR MOVE J\OUTINE
1COMPUTE START
;OF ARRAYS

;COMPUTE ENP OF Nl,IMERlC5

1'rEMP STORAGE

:TEMP VAL OE

:TEMP V/l.LUE
:SUBTRACT ONE

:END OF NUMER:{CS

:Bl\CK TC BASIC

DL
AlL

0018 DH
003C AlH

0019 CL
0030 A2L

OOlA CH OOlB EL
003E A2H 003F A4L

OOlC EH b!:llo
0042 MH OQ4~

** ABSOLUTE VARABLES/LABFLS

Al 032A RECALL 0356 A2 03A4

SYMBCL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOBA

PRINT USING for Applesoft
by Gary A. Morris

One of the minorf but annoying problems with BASIC is
the format of output. The program here permits user
defined formatting of the output for Applesoft, and can
be easily modified for other flavors of BASIC.

When I started using my Apple for business programming, my ~.hei_~el
was formatting output for reports. I started out using various BASIC subroutines
that barely performed the needed job and required a lot of overhead. Tired of using
MID$, LEFT$, RIGHT$, and STR$, I decided to write a general-purpose print for
matter using the USR function in Applesoft.

The routine is written entirely in assembly language, which is ideal for
handling this sort of problem. It is called from BASIC by assigning the string
variable ED$, the edit pattern showing how you want the output formatted.
During a print statement when you use the USR function, the argument is
evaluated and then printed in the format specified by the current value of ED$.

In the sample BASIC program (in figure 1) line 10 loads the machine language
program into RAM at $300-$3A9. Then line 20 puts a "JMP $0300" at $000A,
which is used by Applesoft to find the routine to be used. Lines 10 and 20 are only
needed once at the beginning of a program. Line 30 assigns an edit pattern to the
variable ED$. Line 40 is a sample print statement that uses the USR function. Line
50 assigns a value to X (that we want printed) rounded off to two decimal places,
and line 60 does this. If you wanted to round to three places, the 100 would be
changed to 1000 and the edit pattern would have to be changed to allow three
digits after the decimal point. Note that any valid expression could be within the
parentheses of the USR function.

The routine works by taking the number that Applesoft would normally print
out and filling up the edit pattern with those characters from right to left, skipping
over decimal points, commas and special characters.

The output of the routine may be used wherever a BASIC PRINT statement
can be used, such as printing to a disk file, to a printer, or just to the screen. It is
especially desirable for creating fixed-length records in files.

Morris PRINT USING 79

The edit pattern can be fairly complex, as in figure 1, or ' it can be simply
blanks. Using a blank pattern will cause the number to be right-justified within
the number of blanks in the edit pattern. If the number is too large to fit in the edit
pattern, the left-most digits will be truncated. Any special characters
($, ." + %:*) in the edit pattern will be skipped, and the digits will fill in over
blanks or numeric digits in the pattern.

The zeros are used in the edit pattern so that, if the number is small, there
will always be zeros between the decimal point and the right-most column. If the
number is too small to fill past the comma(s), then the extra commas will be
replaced with blanks. When using· an edit pattern with a decimal point, the argu
ment for the function must be a whole number, or two decimal points will result.
The edit pattern must be less than or equal to 16 characters in length. If it is
greater, it will be cut off at 16.

The machine language program was written so that it can be located
anywhere in addressable memory space. It is completely relocatable. That is, no
changes are needed to run it at another address. It requires 169 ($A9) bytes of
RAM. The program uses the same zero page locations that are assigned to
Applesoft so that there are no conflicts. It also uses 752-767 ($2F0-$2FF)as a buffer
to perform editing. This area is in the input buffer and is not used during printing
[except when printing DOS commands).

How It Works

Starting with the PRINT statement, the argument for the USR is evaluated
and placed in the floating point accumulator by the BASIC interpreter. Then a JSR
is made to $000A, where we have a JMP to the start of our subroutine.

At the beginning of the machine language subroutine, the Applesoft floating
point accumulator is converted [lines $300-$30B) into a character string, in the
format that Applesoft would normally print it out. This is done by the Applesoft
subroutines FPSTRl and FPSTR2 (my names) . These routines leave the resulting
string at the bottom of the page used for the stack ($100).

The routine then searches ($30C-$32C) the variable table to find ED$. When
found, its value is moved ($32D-$336) to the buffer area ($2F0-$2FF) .

After the program has all the necessary data, it starts to work. The length of
the unformatted number is found ($337-$340); and this number (an ASCII string
right now) is then moved [lines $341-$34D) into the buffer, one character at a
time, from right to left. The current character in the pattern is checked and, if it is
a special character, it is skipped. Minus signs are carried over any digits in the
pattern so that they will be on the left of the number. This process continues until
we run out of characters to put in the pattern [or the pattern fills up), at which
time any leftover commas are covered up (lines $37 A-$390) with blanks.

Finally the program is ready to print out the result. The lines at $391-$39D
print out all of the number, except the last digit (I' ll explain this in a moment),

~O Runtime Utilities

using the output routine in Applesoft. This output routine does all of the
n~eessary cheeking and conversion so that Applesoft's SPEED, INVERSE, and
FLASH functions will work. The routine also sets the most significant bit of all
outgoing ASCII characters.

The USR function must return a value to the BASIC program, which will be
printed out by the BASIC interpreter, because we are in a PRINT statement. The
last ~haracter of the buffer (which must be a digit) is taken and converted to an
integer in the Y register and passed to Applesoft's integer to floating conversion
routin,e ($39E-$3A8) . This routine converts the integer (passed in the A, Y
registers) into floating point in the floating point accumulator, which is just where
we need it to pass back to BASIC.

Har\lware Requirements

This program requires an Apple II Plus, an Apple II with an Applesoft card, or
an i\pple II with a la~age card. It will work in any memory size system. A disk
drive is not required.

If tbe appropriate changes are made to the JSRs and JMP in the machine
la~age roqtine, the program can be used with RAM Applesoft (which loads in at
$0800-2l\FF). After keying in the code, make the following modifications to the
eq\l~tl! table and it will n.in with RAM Applesoft instead:

FPSTRl "' $252B
FPSTR2 = $ lBDE
cout = $13sf
lNTFP $1AE13
FIND = $184C

10 REM PRINT USING DEMO
l~ REM
20 POKE 10,76; POKE 11,0: POKE 12,3
30 El)$ = "$ O.OO"
40 l?RlNT "SUB TOTAL ••• "; USR (3495)
5.0 x = 12345.67899
6C PRINT "NET TOT]\:(... ••• II i USR (INT (X *100 +. 5)}
10 END

Figure I

0800 1
0800 2
0800 3
0800 4
0800 s
0800 6
0800 7
0800 8
0800 9
0800 10
0800 11
0800 12
0800 13
0800 14
0800 15
0800 16
0800 17
Ot!OO 18
080C 19
0800 20
('8('0 21
0800 22
0800 23
0800 24
0800 25
0800 26
0800 27
oeoo 28
0800 29
0800 30
0800 31
0800 32
0800 33
0300 34
0300 35
0300 36
0300 37
0300 38
0300 39
0300 40
0300 41
0300 42
0300 43
0300 44
0300 45
0300 46
0300 47
03CO 48
0300 49
0300 so
0300 51
0300 S2
0300 53
0300 54
0300 SS
0 300 56
0300 57
0300 58
0300 A552 59
0302 48 60
0303 2034ED 61
0306 20E7E3 6i
0309 68 63
030A 8552 64
030C 65
030C 66
030C 67
030C A945 68
030E A2C4 69
0310 8581 70
0312 8682 71
0314 2053EO 72
0317 A004 73
0319 Bl9B 74

;************************
; * *
;* PRINT USING *
:* GREG MORRIS *
1* *
;* COPYRIGHT (C) 1981 *
;* MICRO INK, INC . *
;* CHELMSFORD, MA 01824 *
;* ALL RIGHTS RESERVED * ,. .
;************************

Morris PRINT USING

;THE USR FUNCTION REQUIRES A JMP TO
;TM' START OF THE ROUTINE. IF 'START'
;F.QlALS THE ADDRESS WHERE THE ROUTINE
;IS LOADEC THEN THE FOLLOWING WILL SET
;Vr THE JMP:

; 10 POKE 10,76
; 20 POKE ll,START-INT(START/256)*256
; 30 POKE 12,INT(START/ 256)

;VARIABLES:
AFLAG EPZ $52
NAME EPZ $81
PNTR EPZ $83
VARBLE EPZ $9B
LENGTH EPZ $DO

.

ORG $300
OBJ $800

BUFFER EQU $02FO
STRING EQU $0100

A CHARACTER STRING

;ROM APPLESOF'I' SUBROUTINE
FPSTRl EQU $ED34
FPSTR2 EQU $E3E7
COUT EQU $DBSC
IN1FP EQU $E2F2
FIND EQU $EOS3

;FLAG FOR APPLESOFT
;VARIABLE NAME
;PNTR TO EDIT PATTERN
;POINTER TO VARIABLE
;PAT'I'ERN LENGTH

;ORG AT $0300 (RELOCATABLE)

;EDIT BUFFER
;NUMBER PUT HERE AS

ADDRESSES:
;FLOATING TO STRING
;CONVERSION ROUTINES
;PRINT AN ASCII CHAR
;INT TO FP CONVERSION
;FIND A VARIABLE

;RAM APPLESOFT SUBROUTINE ADDRESSES:
;FPSTRl EQU $2528 ;FLOATING TC STRING
;FPSTR2 EQU $1BDE ;CONVERSION ROUTINES
;COUT EQU $135F ;PRINT AN ASCII CHAR
;INTFP EQU $1AEB ;I~T TO FP CONVERSION
;FIND EQU $184C ;FIND A VARIABLE

;FIRST
;TC AN
START

CONVERT FLOATING
ASCII STRING
LDA AFLAG
PHA
JSR FPSTRl
JSR FPSTR2
PLA
STJI. AFLAG

POINT ACCUM

; SA VE THE FLAG

;CONVERT FLOATING
; POINT TO STRING

;RESTCRE FLAG

;NOW FIND THE VARIABLE (ED$) THAT
;HAS THE EDIT PATTERN.
SEARCH LDA # 'E'

LDX #$C4
STA NAME
STX NAME+l
JSR FIND
LDY #4
LDA (VARBLE) , Y

;BASIC VARIABLE
;NAME IS ED$

;GET ADDR HI

81

82 Runtime Utilities

C31L oS&'i
031D 88
03lE Bl9B
0320 8583
0322 88
0323 Bl9B
0325 C910
0327 9002
0329 A910
032B 851:0
032D
0320 AS
032E 88
032F Bl83
0331 99F002
0334 88
0335 lOFS
0337
0337 AOOO
0339 B90001
033C F003
033E ca
033F DOFS
0341
0341
0341
0341
0341
0341
0341
0341
0341
0341
0341
0341 A6DO
0343 88
0344 B90001
0347 48
0348 68
0349 48
034A C92D
034C DOOE
034E. BDEF02
0351 C92D
0353 9016
0355 CA
0356 DOFO
0358 68
0359 18
035A 9035
035C BDEF02
035F C920
0361 FOOS
0363 C93A
0365 FOEE
0367 C930
0369 90EA
036B 68
036C 9DEF02
036F CA
0370 FOlF
0372 cooo
0374 DOCt
0376 ES
0377 18
0378 9010
037A BDEF02
037D C924
037F FOlO
0381 C92E
0383 BOOS
0385 A920
0387 9DEF02
038A CA
0388 F004

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
10:.i
J ('~
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

STA PNTR+l
DEY
LDA (VARBLE},Y
STA PNTR
DEY
LDA (VARBLE} , Y
CMP #16
BCC LENOK
LDA #16

LENOK STA LENGTH

:GET ADDR LO

:GET LENGTH

:MAXIMUM LENGTH
:ALLOWED IS 16111

:MOVE THE PATTERN TO THE BUFFER
TAY
DEY

LCOP2 LDA (PNTR},Y
STA BUFFER,Y
DEY
BPL LOOP2

:FIND THE STRING END
LDY #0

LOOP LDA STRING,Y
BEQ NEXT2
INY
BNE LOOP

:GET CHAR

;MOVE STRING TO THE BUFFER, FROM
;RIGHT TO LEFT, FILLING OVER NUM
;BERS BUT SKIPPING COMMA'S AND
;PERIODS. IF WE COME TO A MINUS
;SIGN, THEN KEEP GOING LEFT UNTIL
;THE PATTERN HAS A BLANK OR A COM
;MA, THEN KEEP GCING LEFT STORING
;BLANKS IN THE BUFFER UNTIL IT ENDS
;OR WE COME TC A DOLLAR SIGN.

NEXT2 LDX LENGTH
EDLOOP DEY

LDA STRING,Y
PHA

CHECK PLA
PHA
CMP #' -'
BNE DIGIT

MINUS LDA BUFFER-1,X
CMP t'-'
BCC DROPIT

SKIPIT DEX
BNE CHECK
PLA
CLC
BCC DONE

DIGIT LDA BUFFER-1,X
CMP #' '
BEQ DROPIT
CMP #':'
BEQ SKIPIT
CMP #'0'
BCC SKIPIT

DROPIT PLA
STA BUFFER-I. X
DEX
BEQ DONE
CPY ilO
BNE EDLOOP
INX
CLC
BCC NEXTl

BLANK LDA BUFFER-1,X
CMP #'$'
BEQ DONE
CMP ii'.'
BCS NEXTl
LDA #' '
STA BUFFER-1,X

NEXTl DEX
BEQ DONE

;FIELD WIDTH

;GET A CHARACTER
;SAVE IT

I IF A MINUS THEN

:GET IT BACK

:END OF STRING?

;BLANK FROM
;HERE TO $

Morris PRINT USING

0360 E4DO 150 CPX LENGTH
038F 90E9 151 BCC BLANK
0391 A201 152 DONE LOX u
0393 BDEF02 153 LOOP4 LOA BUFFER-1.X PRINT THE
0396 205CDB 154 JSR COUT OUTPUT BUFFER
0399 EB 155 INX EXCEPT LAST CHAR
039A E4DO 156 CPX LENGTH
039C 90F5 157 BCC LOOP4
039E 158 1TAKE THE LAST CHAR FROM THE BUF-
039E 159 1FER, CONVERT IT TO FLOATING AND
039E 160 1RETURN IT TO APPLESOFT
039E BDEFC2 161 LDA BUFFER-1,X
03Al 4930 16:1 EOR t'O'
03A3 A8 163 TAY
03A4 A900 164 LOA to
03A6 4CF2E2 165 JMP INTFP

166 END

***** END OF ASSEMBLY

•••••••••••••••••••••••••
• •
* SYMBOL TABLE -- V 1.5 *
• • •••••••••••••••••••••••••

LABEL. LOC. LABEL. LOC. LABEL . LOC.

** ZERO PAGE VARIABLES•

TO BE PRINTED.

1LO ORDER BYTE
:HI ORDER BYTE
7CONVERT & RETURN

AFLAG 0052 NAME 0081 PNTR 0083 VARBLE 009B LENGTH OODO

** ABSOLUTE VARABLES/LABELS

BUFFER 02FO
STRING 0100 FPSTRl ED34 FPSTR2 E3E7 CCUT DB5C INTFP E2F2
START 0300 SEARCH 030C LEN OK 032B LOOP2 032F LOOP 0339
EDLOOP 0343 CHECK 0348 MINUS 034E SKI PIT 0355 DIGIT 035C
BLANK 037A NEXTl 038A DONE 0391 LOOP4 0393

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOF2

FIND
NEXT2
DROP IT

83

E053
0341
036B

Searching String Arrays
by Gary B. Little

This machine language program makes searching a
large string array considerably faster and easier.

Have you ever wanted to search through a string array to see if it contains a par
ticular phrase? If you have, it's probable that you have written a rather short loop
routine in Applesoft to do this. However, if you have a few thousand comparisons
to make, the Applesoft version may take an undesirable length of time to grind out
the desired results.

A much faster search can be carried out on the Apple II by using a search
routine written in 6502 assembly language. Such a program is shown here.

The SEARCH Routine

To understand exactly how the program works it is necessary to analyze the
method by which the Apple stores variables in its memory. The details are found
on page 137 of the Applesoft II BASIC Programming Reference Manual. For a one
dimensional string array, the storage pattern is as follows:

NAME (2 bytes)
OFFSET pointer to next variable (2 bytes)
No. of dimensions (1 byte)
Size 1st dimension (2 bytes)
String$(0)-length (1 byte)

-address low (1 byte)
-address high (1 byte)

String$(N) (3 bytes)

N is the size of the 1st dimension. If the string array is the first array variable
defined in a program, the memory location of the first byte of the trio of bytes,
reserved for the Cth array variable, is given by PEEK(l07) + 256*PEEK(108) + 7
+ 3 * C (where 0 < = C < = N). This is because the pointer to the beginning of the
array space, and also to the beginning of the string array variable map, is found at
$6B,$6C (107, 108) and there are 7 + 3*C bytes before the three Cth array variable
bytes.

Little String Arrays 85

If the phrase to be searched for (the search variable) is the first simple variable
defined in a program, the memory location of the first byte of the three· bytes
reserved for the length and location of the string is given by PEEK(105) +
256*PEEK(106) + 2. This is because the pointer to the beginning of the simple
variable space, and also to the beginning of the simple variable map, is found at
$69,$6A (105,106) . There are two bytes before the three variable bytes.

To carry out the search, it is simply necessary to compare the string pointed
to by SV + 3,SV + 4 (where SV=PEEK(105) + 256*PEEK(l06)) with the string
pointed to by AV + 8 + 3*C,AV + 9 + 3*C (where AV =PEEK(107) +
256*PEEK(108) and C runs from 0 to NJ . This is precisely what is done in this
assembly language routine.

The time savings that can be realized by using the routine can be seen by run
ning the Applesoft demo program LISTed. For example, an assembly language
search of 2,000 string array variables takes only one second, whereas the same
search done in Applesoft takes 19 seconds!

Using the Search Routine

To use the search routine from within an Applesoft program, the following
procedure must be followed:

l. POKE the length of, and the two pointers to, the search phrase into locations
0,6,7, respectively. This is done in line #210 of the demo program.

2. POKE the number of the array variable from which the search is to proceed
('C') in locations 30,31 (low,high). This is done in line #220.

3. POKE the number of the array variable, at which the search is to end, ('N') in
locations 28,29 (low,high) . This is done in line #230.

4. POKE the location of the trio of bytes for the Cth array variable in locations 8, 9
(low,high). This is done in line #240.

5. CALL 768 to start the assembly language search routine. When control returns
to Applesoft the array number that has satisfied the search will be returned in
locations 30,31. If PEEK(30) + 256*PEEK(31) is greater than N, then the search
has failed . If not, then a match has been made with R$(C) where C = PEEK(30)
+ 256*PEEK(31) and R$ is the array that is being searched.

6. To continue the search to the end of the array, increment C and repeat the
above process.

The routine, as written, does not search for exact matches with the string ar
ray variables. If the leftmost part of a string array variable is the same as the search
phrase, a match is considered to have occurred.

A useful application of this search routine is to use it in conjunction with a
mailing list database program. In this way, the search time for an individual
record can be cut down dramatically.

86 Runtime Utilities

l
2
3
4
5
6
?
8
9
10
11
12
14
100
110
120
130
140

REM
REM
REM
REM

***********************•
* *
* STRING SEARCH ROUTINE*
* GARY LITTLE *

REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRC INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *

REM * *
REM ************************
REM
REM
S$ = "": REM MUST BE FIRST DEFINED SIMPLE VARIABLE
N = 2000: DIM R$(N): REM MUST BE FIRST DEFINED ARRAY VARIABLE

GOSUB 1000: REM LOAD SEARCH ROUTINE
DEF FN MD(X) = X - 256 * INT (X / 256)
TEXT: HOME: PRINT TAB(8);: INVERSE: PRINT "STRING ARRAY
SEARCH DEMO": NORMAL

150 PRINT : PRINT "RANDOM STRINGS:": PRINT
160 FOR I= 1 TO N:R$(I) = CHR$ (65 + 26 * RND (1)) + CHR$

(65 + 26 * RND (1)) : PRINT R$ (I);" "; : NEXT I: PRINT : PRINT
INPUT "ENTER SEARCH STRING: ";S$: PRINT

SV AV:C = 1
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

SV = PEEK (105) + 256 * PEEK (106)
AV= PEEK (107) + 256 * PEEK (108)

340
1000
1010

POKE O, PEEK (SV + 2): POKE 6, PEEK (SV + 3): POKE 7, PEEK(SV + 4)
POKE 30, FN MD(C): POKE 31, INT (C / 256)
POKE 28, FN MD(N): POKE 29, INT (N / 256)
POKE 8, FN MD(AV + 7 + 3 * C): POKE 9, INT ((AV+ 7 + 3 * C) / 256)
CALL 768

C • PEEK (30) + 256 * PEEK (31)
IF C > N THEN 300
PRINTS$;" MATCHES #";C;" (PHRASE: ";R$(C);")"

C = C + 1: IF C < • N THEN 190
PRINT PRINT "MACHINE LANGUAGE SEARCH COMPLETED"
PRINT INPUT "PRESS 'RETURN' FOR APPLESOFT SEARCH: ";A$: PRINT
FOR I 1 TO N
IFS$ LEFT$ (R$(I), LEN (S$)) THEN PRINTS$;" MATCHES #";I;"
(PH RASE : " ; R$ (I) ; ") "

NEXT I: PRINT: PRINT "APPLESOFT SEARCH COMPLETED": END
FOR I = 768 TO 849: READ X: POKE I,X: NEXT I: RETURN
DATA 32,74,255,160,0,177,8,133,1,200,177,8,133,26,200,177,8,133,
27.165,1,197,0,48,15,160,0,177,6,209

1020 DATA 26, 208, 7, 200, 196, O, 240, 16, 208, 243, 165, 30, 197, 28, 208, 11.165,
31.197,29,200,5,230,31,76,63,255,24,165,e

1030 DATA 105.3.144,2,230,9,133,8,24,165,30,105,1,144,2,230,31,133,
30, 5 6. 176. 177

Little String Arrays 87

oaoo l *************************
oaoo 2 * *
0800 3 *SEARCHING STRING ARRAYS*
oaoo 4 * GARY LITTLE *
oaoo 5 * *
oaoo 6 * STRING SEARCH *
oaoo 7 * *
oaoo a * COPYRIGHT(C) 19al *
OQOO 9 * MICRO INK, INC. *
oaoo 10 * CHELMSFORD, MA Ola24 *
oaoo 11 * ALL RIGHTS RESERVED *
oaoo 12 * *
oaoo 13 *************************
oaoo 14
oaoo 15
oaoo 16
oaoo 17
oaoo 1a LENS EPZ $C : LENGTH OF SEARCH PHRA.SE
oaoo 19 LENR EPZ $1 ;LENGTH CF STRING ARRAY VARIABLE
oaoo 20 SP EPZ $6 ;POINTER TO SEARCH PHRASE
oaoo 21 RP EPZ $a ;POINTER TO ARRAY VARIABLE TABLE
oaoo 22 RL EPZ $1A ;POINTER TO ARRAY VARIABLE
oaoo 23 NL EPZ $1C ;ENDING ARRAY NUMBER
oaoo 24 CL EPZ $1E ;STARTING ARRAY NUMBER AND COUNTER
oaoo 25 SAVE EQU $FF4A ;SAVE REGISTERS
oaoo 26 RS TORE EQU $FF3F ;RESTORE REGISTERS
oaoo 27
0300 2a ORG $300
0300 29 OBJ $aoo
0300 30
0300 204AFF 31 JSR SAVE ;SAVE REGISTERS
0303 AOOO 32 LOOP LDY #$00
0305 BlOa 33 LDA (RP) ,Y ;GET LENGTH OF VARIABLE
0307 a50l 34 STA LENR ;AND STORE
0309 ca 35 INY
030A BlOa 36 LDA (RP) ,Y ;GET POINTER (LO)
030C a51A 37 STA RL ;AND SAVE
o3oE ca 3a INY
030F BlOa 39 LDA (RP) ,Y ;GET POINTER (HI)
0311 a51B 40 STA RL+l ;AND SAVE
0313 A501 41 LDA LENR ;IF LENGTH OF SEARCH
0315 C500 42 CMP LENS ;PHRASE EXCEEDS LENGTH
0317 300F 43 BMI NOPE ;OF VARIABLE, SEARCH FAILS
0319 AOOO 44 LDY #$00
031B B106 45 AGAIN LDA (SP) ,Y ;COMPARE THE PHRASES
0310 DllA 46 CMP (RL). Y ;LETTER BY LETTER
031F 0007 47 BNE NOPE ;FAILS IF NOT EQUAL
0321 ca 4a INY
0322 C400 49 CPY LENS
0324 FOlO 50 BEQ RTSl ;SUCCESS!
0326 DOF3 51 BNE AGAIN
032a A51E 52 NOPE LDA CL ;COMPARE COUNTER
032A CSlC 53 CMP NL ;TO ENDING ARRAY NUMBER
032C DOOB 54 BNE LOO Pl
032E ASIF 55 LDA CL+l
0330 CSlD 56 CMP NL+l
0332 r:oos 57 BNE LOO Pl ;DONE IF EQUAL
0334 E61F sa INC CL+l
0336 4C3FFF 59 RTSl JMP RS TORE
0339 1a 60 LOO Pl CLC
-033A ASOa 61 LDA RP ;SET POINTER TO NEXT
033C 6903 62 ADC #$03 ;TRIO OF ARRAY BYTES
033E 9002 63 BCC Nl
0340 E609 64 INC RP+l
0342 asoa 65 Nl STA RP
0344 18 66 CLC
0345 ASlE 67 LOA CL ;INCREMENT COUNTER

88 Runtime Utilities

0347 6901 68 ADC #$01
0349 9002 69 BCC N2
034B E61F 70 INC CL+l
034D 851E 71 N2 STA CL
034F 38 72 SEC
0350 BOBl 73 BCS LOOP ;CHECK NEXT ARRAY VARIABLE

74 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

LENS 0000 LENR 0001 SP 0006 RP 0008 RL OOlA NL OOlC
CL OOlE

** ABSOLUTE VARABLES/LABELS

SAVE FF4A RS TORE FF3F LOOP 0303 AGAIN 031B NOPE 0328
RTSl 0336 LOOPl 0339 Nl 0342 N2 034D

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0092

Applesoft and Matrices
by Comelis Bongers

This machine language program performs the most
commonly used special matrix operations, as well as
most Applesoft operations. The program can be linked
to Applesoft by means of the & statement. Two
advantages of using this program rather than a BASIC
subroutine are a significant increase in execution
speed (on the average a factor 5) and greater
convenience. The required system configuration for the
program is a 48K Apple with Applesoft in ROM (or in
the Language Card).

For those who are not accustomed to working with matrices, a matrix is a block of
numbers. Several operations can be performed on a matrix or a pair of matrices.
For instance, adding two matrices A and B together, we obtain a matrix C, whose
elements consist of the sums of the corresponding elements of A and B. Thus if,

A-~_!~
and

4 7] 8 -6
0 1

then the sum of A and B is

U
3 7

c = 3 9
9 -2

1~ -2
2

It will be clear that A, B, and C can be represented by three 2-dimensional
arrays in BASIC. When A and B have to be added, the following BASIC routine
may be used:

100 FOR I= 1 TO N: FOR J = 1 TO M: C(l,J) =A(l,J) + B(l,J): NEXT J,I

90 Runtime Utilities

where N and M are both equal to 3 in our example. When using the machine
language program, this routine can be replaced by the statement:

100 &C=A+8

Note that by using the latter statement, the names of the matrices are irrele
vant. In the BASIC routine the names of the matrices always must be A, B, and C
to comply with the names of the BASIC arrays.

Applesoft Operations

Except for comparison, SCRN(, and CHR$, all the Applesoft operators and
functions that can be used on real variables or expressions are available for matrix
operations. There are, however, some restrictions on the syntax of the matrix
statement. First, no more than 3 matrices may be used in a matrix statement. Sec
ond, single-valued expressions (or variables) must be put between brackets.
Another restriction is that matrices used in an &. statement must have two dimen
sions. Each of these dimensions must be larger than 0 and smaller than 255.
Furthermore, each matrix appearing in an &. statement must have been dimen
sioned previously by means of a DIM statement. For the exact syntax of the
matrix statement we refer to the 'Instructions' section of the article. Some ex
amples are listed below.

Example 1:

10 DIM A(10,10}: 8=1
20 &A= (B): A= RN D(A): A= A *(10): A= I NT(A)

In this example, the array A is set equal to 1. Next, the RND function is per
formed on all elements of A, so that A now contains random numbers between 0
and 1. Then A is multiplied by 10, and the INT function is executed on each ele
ment of A. After the execution of line 20, A is thus filled with random numbers
between 0 and 9. Note that the statement A= (RND(l)) puts all elements of A
equal to the same random number.

Example 2:

10 DIM A(5,6), 8(5,6), C(5,6)
20 8=3
30 &A=(3): 8=(2): C=A*8: C=C (8)

The statement C =A* B multiplies the corresponding elements of A and B and
stores the result in the corresponding elements of C. After the execution of this
statement, all elements of C are therefore equal to 6. Note that for a successful ex
ecution of the statement, A, B, and C must have the same dimension (or order).
By means of the last statement, all elements of Care raised to the third power. If,
instead of the statement C = C A(B), the statement C =CAB is used, all elements
of C will become equal to the second power of 6, because now the matrix B instead
of the variable B is taken.

Bongers Matrices 91

Matrix Operations

Although the operations and functions used in the examples above can be
handy sometimes, they hardly justify the writing of a machine language program.
The real usefulness of the program is, therefore, not its ability to perform Apple
soft functions and operations, but rather to handle some specific matrix opera
tions as well. The following operations are implemented:

1. A= IDN(aexpr) where A must be a square matrix and 1 < = aexpr < = N if N
is the order of A. This statement puts A equal to a matrix consisting of zeros and
ones. If aexpr equals one, A becomes the identity matrix. For larger values of aexpr,
the columns of the identity matrix will be rotated aexpr - 1 positions to the left.
For instance, if A and B are square matrices of order 3, then A=IDN(l) and
B = IDN(2) return.

A~ [g ! ~
B ~ H

2. A= TRN(B) puts A equal to the transpose of B. If B is of order p by q, then A
must be of order q by p. Putting a matrix equal to its own transpose (i.e.
A= TRN(A)) is not allowed. For instance, if B equals,

then A=TRN(B) will return

A = [; ! ~]
3. A= B.C puts A equal to the matrix product of Band C. If Bis of order p by

q, then the first dimension of C must equal q. In case the second dimension of C
equals r (thus C is q by r), the matrix A has to be of the order p by r. Furthermore,
the matrix on the left of the '' = '' sign may not equal one of the matrices on the
right of the '' = . '' As an example, we can multiply the matrices A and B in the ex
ample above by means of the statement &C =A.B. This leads to

[35 14J
c = 14 20

4. A=MIN(B), A=MAX(B) or A=ABM(B) put A respectively equal to the
minima, the maxima, or the absolute maxima of the columns of B. The overall
maximum, minimum, or absolute maximum of Bis stored in A(0,1) . If Bis of
order p by q, then A must be of order q by 1.

92 Runtime Utilities

5. A= INV(B) puts A equal to the inverse of B and stores the determinant of B
in A(O,O) . A and B must be square and of the same order. The statement
D = INV(C), where C equals the matrix above, returns for instam;:e,

[.0396825397 - .0277777778]
D = - .0277777778 .0694444444

At the execution of the inverse statement, values stored in the 0th row of the
target matrix will be destroyed since this row is used to store some pointers. To
obtain the inverse of a matrix A, the statement A = INV(A) also may be used.
Finally, zeros on the main diagonal of the matrix to be inverted are allowed.

6. A=NEINV(B) gives the same result as A=INV(B) except that the program
continues if a division by zero occurs when Bis singular. When using NEINV, it is
recommended to check the determinant of B (in A(0,0)) after execution of the
statement. When B is singular, the determinant will be zero.

7. A= PNT (aexpr) displays the matrix A. For each element of A, aexpr posi
tions are reserved, and a carriage return is generated after each row. If aexpr equals
zero, the elements of A are separated by a blank.

An Application

An interesting application of matrix algebra is the linear model. The linear
model can be used to analyze the influence of a number of variables, called the in
dependent variables, on another variable, called the dependent variable. The
model has the form,

y = b0 + b 1 x1 + b2 x2 + .. bm xm + u ,

where y denotes the dependent variable, and x1, x2, etc. , denote the independent
variables.

The last term, u, represents the influence of factors that were not included in
the model. Usually this term is called the residual. As an example, suppose that
we want to establish the relationship between the annual regional sales of a par
ticular product (y), the number of times advertised (x1) and the number of people
living in the region (x2) . The available data are given in the table below.

Obs. y X1 X2
No. Sales Advert. Popul.

1 118 8 583
2 138 9 692
3 104 5 1082
4 65 1 836
5 46 1 628
6 61 2 244
7 48 1 632
8 66 2 172
9 78 5 319

10 69 2 383

Bongers Matrices 93

In matrix algebra the model can be written as,

Y = X.B + U,

where B (the unknown coefficients) is of order 3 by 1 and Y (the sales), and U (the
residuals) are of order 10 by 1. The matrix Xis of order 10 by 3. The elements of
the first column of X are equal to one (to account for b0) whereas the second and
third columns correspond to the columns under the heading X1, and X2 in the
table. To fit the equation to the data, the least squares principle is used, which
means that the coefficients are chosen such that the sum of the squares of the
elements of U is minimized. This leads to the following solution for B,

B = (X' .X)- 1x· .Y

where X denotes the transpose of X. A BASIC program to compute the least
squares solution is presented in listing 1, with the results of the example. The
least squares equation shows that the sales increase by 9.5 for each additional
advertisement (other things being equal) whereas an increase of 100 in the popula
tion of the region increases the sales by 1.6 (other things being equal) .

The application given in this section was kept simple purposely. The linear
model, for instance, can easily be extended with a tremendous amount of
statistics which may (or may not) simplify the analysis of the data. Also the ap
plication presented gives only a narrow view on the wide field of problems in
which matrix algebra may be useful. Examples include computations with
Markov-type problems and the location of the maximum (or minimum) of a func
tion of several variables by means of the Newton method.

The Machine Language Program

The program is about $700 bytes long and starts at $8900. The end is at $8FF2,
which means that the area $9000-$9600 is free for other routines. (Editor's Note:
This program is not listed, but is saved on the disk in object form as MATRICES.)

It can be connected to an Applesoft program by means of the command :
BRUN matrices or, if you don't have a disk, by the monitor command: 8900 G. In
the latter case you must enter Applesoft via the warm start (i.e., Control-C) . The
BRUN or 8900 G command executes the initialization routine at the start of the
program that sets HIMEM to the appropriate value and installs the & vector. In
case the & vector is destroyed during execution of a program, the matrix program
can be reconnected by the command CALL 35072.

The program extensively uses zero page locations to increase execution speed.
However, as a consequence, the ON ERR flag will be temporarily cleared during
the execution of an & line since the matrix routines use the storage space of the
ON ERR pointers. After the execution of the & line, the ON ERR flag and pointers
are restored to their original values. Apart from zero page locations, the control Y
and the & vector are used, which implies that values stored at $3F5 - $3FA will be
destroyed.

94 Runtime Utilities

In Case of an Error

If the interpreter returns an error message during the execution of an &. line,
there is either a bug in your statement or a bug in my program. In the first case, the
error is probably caused by the violation of one of the following conditions:

1. Only matrices containing reals are allowed in the &. line.

2. Matrices used in an&. statement must have 2 dimensions.

3. Each dimension of a matrix must be larger than 0 and smaller than 255.

4. The orders of the matrices should satisfy the conditions in the "instructions"
section of this article.

5. Each matrix appearing in an&. statement must have been dimensioned earlier
in the program by a DIM statement.

6. ON ERR doesn't work during the execution of an&. line.

Although the other case (i.e. a bug in my program) seems at this time highly
improbable to me since the program was heavily tested for several months, I am
well aware that there are some kinds of bugs that can, as it seems, only be
discovered by other people. Therefore, if you find one, I would appreciate it very
much if you let me know.

Finally, a utility package which contains, among others, the matrix program,
will be released soon. This utility package resides in the second 4K bank of the
Language Card, and it will use only $300 bytes of 'normal' RAM.

Instructions

This section contains the matrix expressions that can be executed by means
of the &. line. The syntax of the line is:

& matrix expression: matrix expression: etc.

The following operators and functions may be used:

operator :=+,-, *,/, . /\ , AND.OR

function : = SGN, INT, ABS, USR, FRE, PDL, POS, SOR, RND, LOG, EXP,
COS, SIN, TAN, ATN, PEEK

Unless stated otherwise, matrices appearing in an &. statement must have the
same order, and matrix names on the left of the " = 11 sign can be chosen equal to
matrix names on the right of the '' = ; ' . The matrix expressions that are allowed
follow.

I. Applesoft Operations and Functions with:

1.1 1 matrix and 1 expression
A = (aexpr)

Example:
A= (-112), B=(Z%)

1.2 2 matrices
A=B
A= -B
A= NOT B
A = function(B)

Example:
A= SIN(B)

1.3 2 matrices and 1 expression
A = B operator (aexpr)

Example:
A = Bl\ (COS(- 3))

1.4 3 matrices
A = B operator C

Example:
A= B/C

II. Specific Matrix Operations

Bongers Matrices 95

2.1 A = IDN(aexpr) - Identity: A must be square and I< = aexpr < = order of
A.

2.2 A = TRN(B) -Transpose: if Bis of order p by q, thenA must be of order q by
p. A= TRN(A) is not allowed.

2.3 A = B.C - Multiplication: if Bis of order p by q and C of order q by r, then A
must be of order p by r. A=A.C or A=C.A is not allowed.

2.4 A = MIN(B), A = MAX(B), A = ABM(B) - Minimum, maximum or ab
solute maximum: if B is of order p by q then A must be of order q by 1. After
execution A(O, l) contains the overall minimum, maximum or absolute max
imum of B.

2.5 A = INV(B) - Inverse: A and B must be square and of the same order. After
execution, A(O,O) contains the determinant of B.

96 Runtime Utilities

2.6 A "' NEINV(B) - Inverse: same as INV, except that singularity of B doesn't
stop the program.

2. 7 A "' PNT(aexpr) - Print: if aexpr"' 0 the elements are separated by a blank,
else aexpr positions are reserved for each element.

l REM ************************
REM * * 2

3
4
5
6
7
8
9
10
11
12
13

REM * MATRICES & APPLESOFT *
REM * BY C. BONGERS *
REM * *
REM * MATRIX DEMO *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *

REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM ************************

14 REM
15 REM THE LINEAR MODEL
16 REM
18 HOME
20 INPUT "NUMBER OF CBSERVATIONS? ";N
30 INPUT "NUMBER OF INDEPENDENT VARIABLES? ";M:Ml = M + 1
40 IF Ml > = N THEN PRINT : PRINT "TOO FEW OBSERVATIONS": STOP
50 DIM X(N,Ml),XA(Ml,N),Y(N,l),B(Ml,l),E(N,1),EA(l,N),S(Ml,Ml)
60 DIM Vl(l,1),V2(1,l),H(Ml,l),J(l,N)
70 PRINT : PRINT "INPUT THE ELEMENTS OF THEY-VECTOR": PRINT
80 FOR I = 1 TO N
90 PRINT "ELEMENT ";I;"?";: INPUT "";Y(I,l):X(I,l) = 1
100 NEXT I
110 FOR J = 2 TC Ml
120 PRINT : PRINT "INPUT THE ELEMENTS OF THE X";J - l;"-VECTOR": PRINT
130 FOR I = 1 TC N
140 PRINT "ELEMENT ";I;" ? ",. INPUT "" ;X(I, J)
150 NEXT I,J
160 REM CALCULATE RESULTS
170 & XA = TRN(X):S = XA.X:S = NEINV(S):H = XA.Y:B = S.H
180 IF S(0,0) = 0 THEN PRINT "THE S-MATRIX IS SINGULAR": STOP
190 PRINT : PRINT "THE LEAST SQUARES EQUATION EQUALS ": PRINT
200 PRINT "Y = ";B(l,l);
210 FCR J = 2 TO Ml: IF B(J,l) > = 0 THEN PRINT"+";
220 PRINT B(J,l);"*X";J - l;
230 NEXT : PRINT : PRINT
240 & E = X.B:EA = TRN(E):E = Y - E
250 PRINT"** THE TABLE OF RESIDUALS**": PRINT
260 PRINT "NO"; TAB(4);"0BSERVEDY"; TAB(16);"ESTIMATEDY";

TAB(29):" RESIDUAL"
270 FOR I = 1 TO N
280 PRINT I; TAB(4);Y(I,l); TAB(16);EA(l,I); TAB(29);E(I,1)
290 NEXT I: PRINT
300 & EA= TRN(E):Vl = EA.E
310 PRINT "STANDARD DEV. RESIDUALS:"; SQR (Vl(l.l) / (N - Ml))
320 & J = (l):V2 = J.Y:V2 = V2 I (N):E y - (V2(1,l)):EA = TRN(E):

V2 = EA.E
330 R ~ (V2(1,l) - Vl(l,1)) / V2(1,l).: IF R < 0 THEN R = 0
340 PRINT "RA2";: HTAB (24): PRINT':"; SQR (R)
350 END

AMPER-SORT
by Alan G. Hill

Here's a fast machine language sort utility for the
Apple II that handles integer, floating point, and
character records. Because it is callable from BASIC,
this sort routine is a worthwhile addition to any
software library.

A sort utility is usually one of the first programs needed for records management
application programs. If the utility is written in BASIC and runs under an inter
preter, one quickly discovers that the sort is painfully slow on a micro. The sort
program presented here, written in machine language for the Apple II with
Applesoft ROM, will certainly remedy that problem. While no speed records will
be set, it will run circles around BASIC, sorting 900 integer, 700 floating point, or
300 30-character records in about 60 seconds.

The &.. Connection

Speed is not the only beauty of AMPER-SORT. As its name implies, the
BASIC-to-machine language interface utilizes the powerful, but not-widely
known, feature of Applesoft-the Ampersand. What is the Ampersand and why is
it so useful? Consider the following example of how a BASIC program passes sort
parameters to AMPER-SORT.

100 &SRH(AB$,O, 10,7, 1O,A,1,5,D)

This statement, when embedded in a BASIC program or entered as an immediate
command, will command AMPER-SORT to sort AB$(0) through AB$(10) in
ascending order based on the 7th to 10th characters and in descending order for the
1st through 5th characters. Of course, POKEs could be used to pass parameters
from other 6502 BASICs, but there's something more professionally pleasing
about the Ampersand interface.

There is no user documentation from Apple on the Ampersand feature. I first
read of the feature in the October 1978 issue of CALL APPLE. When the Applesoft
interpreter encounters an ampersand (&) character at the beginning of a BASIC
statement, it does a JSR $3FS. If the user has placed a JMP instruction there, a link
is made to the user's machine language routine. Apple has thoughtfully provided
some ampersand handling routines described in the November and December

98 Runtime Utilities

issues of CALL APPLE. The routines enable your machine language routine to ex
amine and convert the characters or expressions following the ampersand. Here
are the routines used in AMPER-SORT.

CHRGET ($00B1)

This routine will return, in the accumulator, the next character in the
statement.

The first character is in the accumulator when the JSR $3F5 occurs. The zero
flag is set if the character is an end-of-line token (00) or statement terminator
($3A). The carry flag is set if the character is non-numeric, and cleared if it is
numeric. The character pointer at $B8 and $B9 is advanced automatically so that
the next JSR $Bl will return the next character. A JSR $B7 will return a character
without advancing the pointer.

FRMNUM ($DD67)

This routine evaluates an expression of variables and constants in the amper
sand statement from the current pointer to the next comma. The result is placed
in the floating point accumulator.

GETADR ($E752)

This routine will convert the floating point accumulator to a two-byte integer
and place it in $50 and $51 . FRMNUM and GET ADR are used by AMPER-SORT to
retrieve the sort parameters and convert each to an integer.

GETBYT ($E6FB)

This routine will retrieve the next expression and return it as a one-byte in
teger in the X-register.

It is the user's responsibility to leave the $B8 and $B9 pointer at the
terminator.

Exploration of Parameters

Parameters are passed to AMPER-SORT in the following form:

100 &SRT#(AB$,B,E,7,10,A,1,5,D)

where:

AB$ Is the variable name of the string array to be sorted. The general form is XX$
for string arrays, XX% for integer arrays, and XX for floating point arrays.

B is a variable, constant or expression containing the value of the subscript ele
ment where the sort is to begin; e.g. AB$(B).

Hill AMPER-SORT 99

E is a variable or constant or expression containing the value of the subscript
element where the sort is to end; e.g., AB$(E) . Band E are useful when the
AB$ array is partially filled or has been sectioned into logically separate
blocks that need to be sorted independently.

7 is a variable, constant or expression specifying the beginning position of the
major sort field.

10 is a variable, constant or expression specifying the ending position of the ma
jor sort field.

A is a character specifying that the major sort field is to be sorted in ascending
order.

1 is a variable, constant or expression specifying the beginning position of the
first minor sort field.

5 is a variable, constant or expression specifying the ending position of the
first minor sort field.

D is a character specifying that the first minor sort field is to be sorted in
descending order.

Using AMPER-SORT

The &.SRT command will sort character, integer or floating point arrays and
can be used in either the immediate or deferred execution mode similar to other
Applesoft BASIC commands. Of course, the named array must have been
previously dimensioned and initialized in either case.

A. Character Arrays

1. Equal or unequal element lengths
2. Some or all elements
3 . Ascending or descending order
4. A major sort field and up to 4 minor sort fields

Examples:

10 DIM NA$(500)

100 &SRH(NA$,0,500, 1,5,A)
200 &SRH(NA$,0,500, 1,5,A,6, 1O,D,11 , 11,A)
299 F% =O:L= 10
300 &SRT=(NA$,F%,L,10,15,D)

Line 100 sorts on positions 1 through 5 in ascending order for all 501 elements of
NA$(500).

100 Runtime Utilities

Line 200 is the same as Line 100 except that minor sort fields are specified.
The sort sequence on positions 1-5 is in ascending order, positions 6-10 are in
descending order, and position 11 is ascending order.

Line 299 and 300 sort on positions 10-15 in descending order for NA$(0)
through NA$(10).

B. Integer and Floating Point Arrays
l. Some or all elements
2. Ascending order only. (Step through the array backwards if needed in

descending order.)
Examples:

10 DIM AB%(100),FP(100)

100 &SRT#(AB % ,0, 100)
299 8=50: E= 100
300 &SRT#(AB% ,S,E)
399 X=49
400 &SRT#(FP,O,X)

Line 100 sorts all 101 elements of AB%(100) in ascending order. Lines 299
and 300 sort from AB%(50) through AB%(100), while lines 399 and 400 sort from
FP(O) through FP(49) .

Limited editing has been included in the parameter processing code.
Therefore, you must be careful to observe such rules as:

1. 0 :SB< E :5 maximum number of AB$ elements.

2. AB$ must be a scalar array; e.g., AB$(10), not AB$(20,40).

3. The sort array name must be less than 16 characters, only the first two
count, and they must be unique.

4. The maximum number of sort fields is 5.

5. The beginning sort field position must not be greater than the ending sort
field position.

Options:

l. Constants, variables, or expressions may be used for subscript bounds and
sort positions.

2. The &SRT command may be used in immediate or deferred execution
mode.

Some editing checks are made. You will notice this when you get a "?SYN
TAX ERROR IN LINE XXX" error message. You will also get a "VARIABLE XXX
NOT FOUND'' message if the routine cannot find the AB$ variable name in
variable space.

The AMPER-SORT program is listed in its entirety. A BASIC demo program is
also shown.

10
20
30
40
45
50
55
60
70
80
90
100
llO
1000
1050
1060
1070
1080
1090
llOO
1110
1120
1130
1140
1150
1160
1170
ll80
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
3000
3010
3020
3030
3040
3050
3060
3070
3080

REM ************************
REM
REM * AM PER-SORT

*
*

REM * ALLEN HILL *
REM *
REM * AMPERSORT DEMO *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *

REM * *
REM ************************

GOTO 10000
REM CHARACTER SORT

CH$= "ABCDWXYZ":L LEN (CH$) - 1
N% = 8

DIM AB$(N%)
FOR I = 0 TO N%

C$ = MID$ (CH$, INT RND (1) * L) + 1,1)
B$ = MID$ (CH$, INT RND (1) * L) + 1,1)

FOR J = l TO 3
C$ = C$ + C$:B$ = B$ + B$

NEXT J
AB$(I) = B$ + C$

NEXT I
GOSUB 1240
REM SORT HALF ASCENDING
REM SORT HALF DESCENDING
& SRT#(AB$,O,N%,l,8,A,9,16,D)
GOSUB 1260
GOTO 11000
REM PRINT ROUTINE
PRINT " BEFORE"
GOTO 1270
PRINT" AFTER": PRINT "ASCEND DESCEND"
FOR I = 0 TO N%
PRINT AB$(I): NEXT I: RETURN
REM INTEGER SORT

N% = 8
DIM IN'; (N%)
FOR I ,. 0 TO N%

IN%(I) = 7500 - INT (RND (1) * 15000)
NEXT I
GOSUB 2120
REM SORT
& SRT#(IN%,O,N%)
GOSUB 2130
GOTO llOOO
REM PRINT ROUTINE
HTAB 10: PRINT "BEFORE": GOTO 2140
HTAB 10: PRINT "AFTER"
FOR I = 0 TO N%
PRINT IN%(I): NEXT I: RETURN
REM FLOATING POINT

T% = 8
DIM FP(T%)
FOR I = 0 TO 8

FP(I) = 1000 * RND (1) * SIN (I * 7.16)
NEXT I
GOSUB 3120
REM SORT

3090
3100
3ll0
3120
3130
3140
3150
9999
10000
10010
10020
10030

& SRT#(FP,O,T%)
GOSUB 3130
GOTO 11000
REM PRINT ROUTINE
HTAB 10: PRINT "BEFORE": GOTO 3140
HTAB 10: PRINT "AFTER"
FOR I = 0 TO T%
PRINT FP(I): NEXT I: RETURN
REM

REM ** &SORT DEMO **
REM SAVE ROOM FOR
REM SORT ROUTINE
HIMEM: 20992: REM $5200

Hill AMP ER-SORT 101

102

10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
11000
11010
11020
11030

0800
0800
OBOC
0800
0800
0800
0600
0800
0800
0800
0800
0800
0800
OSCO
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
oabo
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
5200
5200
5200
5200
5200
5200

Runtime Utilities

D$ = CHR$ (4)
PRINT D$;"BLOAD AMPERSORT,A$5200"
REM SET UP ' &' HOOK
REM AT $3F5 : JMP $5200
POKE 1013,76: POKE 1014,0: POKE 1015,82
HOME : CLEAR
VTAB 8: HTAB 15: PRINT "SORT DEMO"
PRINT : HTAB 15: PRINT "SELECTIONS"
PUNT : HTAB 10: PRINT "1 INTEGER SORT"
HTAB 10: PRINT "2 FLOATING POINT SORT"
HTAB 10: PRINT "3 CHARACTER SORT"
HTAB 10: PRINT "4 EXIT"
VTAB 17: INPUT "SELECTION ";SE%
IF SE% < 0 OR SE% > 4 THEN 10090
ON SE% GOTO 2000,3000,1050,10190
END
PRINT "HIT ANY KEY TO RETURN TO MENU"
WAIT - 16384,128
POKE - 16368,0
GOTO 10090

l
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

;************************
;* •
;*
; *
;*

AMPER-SORT
BY ALAN HILL

AM PER SORT

*
*
*
*
*

; *
;*
; * COPYRIGHT (C) 1981 *
;* MICRC INK, INC. *
;* CHFLMSFCRD, MA 01824 *
;* ALL RIGHTS RESERVED *
;* *
;************************

NAPT
NMSl
ASII
CSII
ASI2
CSI2
III!
NNNN
FSTR
FLEN
CISP
JJJJ
LENI
LENJ
TYPE
ZZ50
ZZ6B
CHRG
GETB
SNER
FRNM
GETA
MPLY
COUT

EPZ $DO
EPZ $D4
EPZ $D6
EPZ $DB
EPZ $DA
EPZ $DC
EPZ $DE
EPZ $EO
EPZ $E2
EPZ $E7
EPZ $EC
EPZ $ED
EPZ $EF
EPZ $FO
EPZ $Fl
EPZ $50
EPZ $6B
EPZ $Bl
EQU $E6FB
EQU $DEC9
EQU $DD67
EQU $E752
EQU $558A
EQU $FDED

ORG $5200
OBJ $0800

PROCESS '&'

APPLESOF'T EVALUATION ROUTINE 'GETBYi
OUTPUTS "SYNTAX ERROR"
APPLESCFT EXPRESSION EVALUATOR ROUTJ
APPLESOFT FP->INT ROUTINE 'GETADR'
RELOCATED OLD MON. MULTIPLY ROUTINE
APPLESOFT OUTPUT ROUTINE

Hill AMP ER-SORT 103

5200 4S
' 5200 4S 49 SORT PHA :ENTER WITH FIRST CHAR

5201 20E654 50 JSR SVZP :SAVE A WORK AREA IN ZERO PAGE
5204 6S 51 PLA
5205 A200 52 LDX 11$00
5207 DD2C55 53 SROl CMP SRTS,X :EDIT FOR 'SRTt('
520A D046 54 BNE ERRX :SIGNAL ' SYNTAX ERROR'
520C 208100 55 JSR CHRG :GET NEXT CHARACTER
520F ES 56 INX
5210 E005 57 CPX #$05
5212 DOF3 5S BNE SROl
5214 A200 59 LDX #$00 :OK SO FAR
5216 F003 60 BEQ VNAM
5218 208100 61 SR04 JSR CHRG :GET ANOTHER CHARACTER
5218 C92C 62 VNAM CMP ' :LOOP TO GET ARRAY NAME
521D FOOA 63 8EQ SROS
521F 9D7255 64 STA NAME,X :SAVE NAME
5222 ES 65 INX
5223 EOlO 66 CPX #$10 :16 CHARACTERS IS LONG
5225 DOFl 67 8NE SR04 :ENOUGH FOR A NAME
5227 F029 6S 8EQ ERRX :SIGNAL ERROR
5229 CA 69 SR05 DEX
522A 8D7255 70 LDA NAME,X :WHAT TYPE
522D C924 71 CMP '$
522F F024 72 8EQ CHAR :CHARACTER
5231 C925 73 CMP '%
5233 D015 74 8NE FPOO ;FLOATING POINT
5235 75
5235 76 INTEGER SOR~'

5235 77
5235 A201 7S INTE LDX #$01 ;INTEGER
5237 A9SO 79 INTl LDA #$SO
5239 1D7255 so ORA NAME,X ;NEG. ASCII
523C 9D7255 Sl STA NAME,X
523F CA S2 CEX
5240 lOF5 S3 8PL INTl
5242 A902 84 LDA #$02 ;INITIALIZE DISPLACEMENT
5244 S5EC S5 STA DISP
5246 A901 S6 LDA #$01
524S D019 S7 BNE SR06
524A 88
524A S9
524A 90 ;FLOATING POINT ECRT
524A 91
524A 92
524A A905 93 FPOO LDA #$05
524C S5EC 94 STA DISP
524E A902 95 LDA #$02
5250 DOll 96 BNE SR06
5252 97
5252 9S
5252 4CA552 99 ERRX JMP ERRO
5255 100
5255 101
5255 102 :CHARACTER SORT
5255 103
5255 A9SO 104 CHAR LDA #$SO
5257 OD7355 105 ORA NAME+Ol :NEG. ASCII
525A SD7355 106 STA NAME+Ol
525D A903 107 LDA #$03
525F S5EC lOS STA DISP
5261 A900 109 LDA #$00
5263 110
5263 111 ** EET UP SORT LIMITS **
5263 112
5263 S5Fl 113 R06 STA TYPE ; O=CH, l=INT, 2=FP
5265 208100 114 JSR CHRG ;NOW GET SUBSCRIPTS
526S 2067DD 115 JSR FRNM ; AND PUT IN F.P. ACC.
526B 2052E7 116 JSR GETA :CONVERT TO INTEGER
526E A550 117 LDA ZZ50
5270 S5DE llS STA IIII :FIRST SUBSCRIPT
5272 A551 119 LDA ZZ50+01
5274 S5DF 120 STA IIII+Ol
5276 208100 121 JSR CHRG
5279 2067DD 122 JSR FRNM

104 Runtime Utilities

527C 2052E7 123 JSR GETA
527F A550 124 LDA ZZ50
5281 85D4 125 STA NMSl ;LAST SUBSCRIPT INTO N-1
5283 18 126 CLC
5284 6901 127 ADC #$01
5286 85EO 128 STA NNNN ;N
5288 A551 129 LDA ZZ50+01
528A 85D5 130 STA 1'"'MSl+Ol
528C 6900 131 ADC #$00
52€E 85El 132 STA NNNN+Ol
5290 A5Fl 133 LDA TYPE
52S2 D059 134 BNE TERM ;BRANCH NOT CHARACTER SCRT
5294 F015 135 BEQ SR16
5296 136
5296 137 **** ERROR ****
5296 138
5296 A200 139 ERR3 LDX #$00
529B BD3155 140 SRll LDA MSGl,X ;ARRAY VARIABLE NAME
529B 09BO 141 ORA #$80 ;NOT FCUND
529D 20EDFD 142 JSR COUT ;NOTIFY USER
52AO EB 143 INX
52Al E017 144 CPX #$17
52A3 DOF3 145 BNE SRll
52A5 200955 146 ERRO JSR RSZP ;RESTORE ZERO PAGE AND
52AB 4CC9DE 147 JMP SNER ;SIGNAL SYNTAX ERROR
52AB 14B ;
52AB 149 ; *** GET SORT FIELDS ***
52AB AOOO 150 SR16 LDY #$00
52AI: BCB955 151 STY SAVY
52BO 20Bl00 152 SR17 JSR CHRG ;GET NEXT CHARACTER
52B3 20F8E6 153 JSR GETB
52B6 CA 154 DEX
5287 AC8955 155 LDY SAVY
52BA 96E2 156 STX FSTR,Y ; START COL·UMN-1
52BC 20Bl00 157 JSR CHRG
52BF 20FBE6 158 JSR GETB
52C2 AC8955 159 LDY SAVY
52C5 96E7 160 STX FLEN,Y ;END COLUMN
52C7 208100 161 JSR CHRG
52CA 9009 162 BCC ERRO ;SHOULD BE 'A'OR'O'
52CC C944 163 CMP 'D
52CE F004 164 BEQ SR07 ; DESCENDING
52DO A9FF 165 LDA #$FF ;ASCENDING
52D2 3002 166 BMI SR09
52D4 A900 167 SR07 LDA #$00
52D6 99B255 16B SR09 STA UPDN,Y ;SAVE SEQUENCE
5209 CB 169 INY
52DA BCB955 170 STY SAVY
520D 20Bl00 171 JSR CHRG
52EO C929 l 7L CMP ')
52E2 F006 173 BEQ LAST
52E4 C92C 174 CMP '
52E6 FOCB 175 BEO SR17 ;LOOP FOR NEXT SORT FIELD PARMS
52E8 DOBB 176 BNE ERRO
52EA 8C8855 177 LAS'l STY PRSN ;NO. OF SORT FIELDS
52ED 208100 17B TERM JSR CHRG ;MUST BE TERMINATOR
52FO DCB3 179 BNE ERRO ;IT WASN'T
52F2 180
52F2 181 ;SEARCH SCRT ARRAY NAME
52F2 182
52F2 AOOO 183 MC20 LDY #$00
52F4 Bl6B 1B4 LDA (ZZ6B),Y
52F6 CD7255 185 CMP NAME .
52F9 DOOB 1B6 BNE MC22
52FB ce 187 !NY ;FOUND FIRST CHA.RACTER
52FC Bl6B lBB LDA (ZZ6B), Y
52FE CD7355 1B9 CMP NAME+Ol
5301 F02B 190 BEQ SETN ;FOUND BCTH
5303 lB 191 MC22 CLC ;KEEP LOOKING
5304 AC02 192 LDY #$02
5306 Bl6B 193 LDA (ZZ6B), Y
5308 656B 194 ADC ZZ6B
530A 48 195 PHA
530B CB 196 INY

Hill AMPER-SORT 105

530C Bl6B 197 LDA (ZZ6B),Y
530E 656C 198 ADC ZZ6B+Ol
5310 856C 199 STA ZZ6B+Ol
5312 68 200 PLA
5313 856B 201 STA ZZ6B
5315 C56D 202 CMP $6D
5317 A56C 203 LDA ZZ6J?+Ol
5319 E56E 204 SBC $6E
531B B003 205 BCS SR27 ;NO LUCK, OUT OF BOUNDS
531D 4CF252 206 JMP MC20
5320 207
5320 208 ****** NAME NOT FCUND *******
5 320 209
5320 A202 210 SR27 LCX #$02
5322 BD7255 211 SR28 LDA NAME,X
5 325 9D3B55 212 STA VARI+l,X ;PUT NAME IN BUFFER
5328 CA 213 DEX
5329 lOF7 214 BPL SR28
532B 4C9652 215 JMP ERR3 ;SEND A MFSSAGF
5 32F 216
532E 217 ***** INITIALIZE ARRAY POINTER ***
5 32E 218
532E 18 219 ETN CLC ;FOUND VARIABLE NAME OF
532F A56B 220 LDA ZZ6B ;ARRAY TO BE SORTED.
5331 6907 221 ADC #$C7 ;COMPUTE ADDRESS OF
5333 8552 222 STA $52 ;STRING LENGTH BYTE.
533 5 A56C 223 LDA ZZ6B+Ol
5337 6900 224 ADC #$00
5339 855 3 225 ETA $53
533B A5DE 226 LDA !III ;(6B,6C)+7+DISP*IIII
533D 8550 227 STA ZZ50
533F A5DF 228 LDA IIII+Ol
5341 8551 229 STA ZZ50+01
5343 A5EC 230 LDA DISP
5345 8554 231 S'l'A $54
5 347 A900 232 LDA #$00
5349 8555 233 STA $55
534B 208A55 234 JSR MPLY ;ROM MULTIPLY ROUTINE
534E A550 235 LDA ZZ50
5 350 85D6 236 STA ASII ;SAVE A.DDRESS FOR MUCH USE
5 352 A551 237 LDA ZZ50+01
5354 85D7 238 STA ASII+Ol
5 356 4C6653 239 JMP SR22
5 359 240
5 359 241 ;****** BEGIN SCRT *******
5 359 242
53 59 243 :** FCR I =II TO N-1 LOOP **
5359 244
5359 18 245 CON! CLC
535A A5D6 246 LDA AEII
535C 65EC 247 ADC DISP ;NEXT I ADDRESS
535E 85D6 248 STA ASII
5 360 A5D7 249 LDA ASII+Ol
5362 6900 250 ADC #$00
5364 8§D7 251 STA ASII+Ol
5366 AO Ol 252 SR22 LDY #$01
5368 BlD6 25 3 LDA (ASII),Y ;GET ADDRESS OF THE
536A 85D8 254 STA CEII ;CHARACTER STRING
536C ce 255 !NY
536D B1D6 256 LDA (Jl.SII), Y
536F 85D9 257 S'l'A CSI I+Ol
5371 18 258 CLC
537 2 A.5D6 259 LDA ASII ; ALSO NEED ADDRESS CF
5374 65EC 260 ADC DISP ;ADJACENT ELEMENT FCR
5376 85DA 261 STA ASI2 ;BUBBLE SORT COMPARISON
5378 A5D7 262 LDA ASII+Ol
537A 6900 26 3 ADC •#$00
537C 85DB 264 STA ASI2+01
537E 18 265 CLC
537F A5DE 266 LDA !III
5381 6901 267 ADC #$01
5383 85ED 268 STA JJJJ ;J=I+l
5385 A5DF 269 LDA IIII+Ol
5387 6900 270 ADC #$00
5389 85EE 271 STA JJJJ+Ol

106 Runtime Utilities

538B 4C9B53
538E
538E
538E
538E 18
538F A5DA
5391 65EC
5393 85DA
5395 A5DB
5397 6900
5399 85DB
539B AOOl
539D BlDA
539F 85DC
53Al ca
53A2 BlDA
53A4 85DD
53A6 A5Fl
53A8 F003
53AA 4C2F54
53AD
S3AD
53AD
53AD AOOO
53AF BlD6
53Bl F052
53B03 85EF
53B5 BlDA
53B7 F04C
53B9 85FO
53BB A200
53BD B4E2
53BF BD8255
53C2 300C
53C4 BIDS
53C6 DlDC
S3C8 B014
53CA 20Cl54
53CD 4C0554
53DO BIDS
53D2 DlDC
53D4 902F
53D6 F019
53D8 20Cl54
53DB 4C0554
53DE D025
53EO ca
53El C4EF
53E3 F006
53E5 C4FO
53E7 F016
53E9 900F
53EB C4FO
53ED 90E9
53EF FOOE
53Fl ca
53F2 C4EF
53F4 F009
53F6 C4FO
53F8 FODE
53FA 98
53FB D5E7
53FD DOCO
53FF ES
5400 EC8855
5403 DOBB
5405
5405
5405
5405 E6ED
5407 D002
5409 E6EE
540B A5ED
540D C5EO
540F A5EE

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

JMP SR24

;**** FOR J=I+l TO N LOOP ****

CONJ CLC
LDA ASI2
ADC DISP ;INCREMENT AB$(J) ADDRESS
STA ASI2
LDA ASI2+01
ADC #$00
STA ASI2+01

SR24 LDY #$01
LDA (ASI2),Y
STA CSI2 ;GET NEW STRING ADDRESS
INY
LDA (ASI2).Y
STA CSI2+01
LDA TYPE
BEQ CHST ;CHARACTER SORT
JMP NCHH

;*** CHARACTER SORT ***

CHST LDY #$00
LDA (ASII),Y
BEQ MC40
STA LEN!
LDA (ASI2).Y
BEQ MC40
STA LENJ
LDX #$00

SR29 LDY FSTR,X
MC33 LDA UPDN,X

BMI ASND
LDA (CSII),Y
CMP (CSI2),Y
BGE MC26
JSR SWAP
JMP MC40

ASND LDA (CSII),Y
CMP (CSI2),Y
BLT MC40
BEQ MC27

MC25 JSR SWAP
JMP MC40

MC26 BNE MC40
INY
CPY LENI
BEQ MC39
CPY LENJ
BEQ MC29
BLT MC28

MC39 CPY LENJ
BLT MC25
BEQ MC29

MC27 INY
CPY LENI
BEQ MC29
CPY LENJ
BEQ MC25

MC28 TYA
CMP FLEN,X
BNE MC33

MC29 INX
CPX PRSN
BNE SR29

;***** NEXT J ********
MC40

MC38

INC JJJJ
BNE MC38
INC JJJJ+Ol
LDA JJJJ
CMP NNNN
LDA JJJJ+Ol

; STRING LENGTH
;NULL STRING: SKIP
;SAVE LEN (AB$(I))

;SAVE LEN(AB$(J))

;STARTING SORT COLUMN
;SEQUENCE
;BRANCH ASCENDING
;CHARACTER BY CHARACTER
;COMPARISON FOR DESCENDING
;POSSIBLE SWAP
;DEFINITE SWAP
;NEXT RECORD
;ASCENDING

;NO SWAP: NEXT RECORD
;POSSIBLE SWAP
;SWAP
; NEXT RECORD
;NO SWAP
;LOOK AT REMAINING CHARACTER

;UP TO THE LIMITS OF UNTIL

;WE FIND A REASON TO SWAP

;SWAP
;NO SWAP

;END OF SORT FIELD?
;BRANCH NO

;YES, ANY MORE FIELDS?

;J=J+l

;J=N?

Hill AMP ER-SORT 107

5411 E5El 347 SBC NNNN+Ol
5413 9014 34S BCC JMPJ :BRANCH NO
5415 349
5415 350 *** NEXT I ****
5415 351
5415 E6DE 352 INC IIII
5417 D002 353 BNE MC41
5419 E6DF 354 INC IIII+Ol :I•I+l
541B A5DE 355 MC41 LDA IIII
541D C5D4 356 CMP NMSl :I=N-1?
541F A5DF 357 LDA IIII+Ol
5421 E5D5 35S SBC NMSl+Ol
5423 9007 359 BCC JMPI :BRANCH NO
5425 360
5425 361 :***** SORT DONE *******
5425 362
5425 200955 363 SDON JSR RSZP :RESTORE ZERO PAGE
542S 60 364 RTS
5429 4CSE53 365 JMPJ JMP CONJ
542C 4C5953 366 JMPI JMP CONI
542F lS 367 NCHH CLC :NOT A CHARACTER SORT SO
5430 6A 36S ROR :IT MUST BE INTEGER OR F, P.
5431 B003 369 BCS INTC :IT'S INTEGER
5433 4C6D54 370 JMP FPCC :IT'S FLOATING POINT
5436 371 :
5436 372 :***** INTEGER SORT ******
5436 373 :
5436 AOOl 374 INTC LDY #$01
543S BlD6 375 LDA (ASII), Y :ASCENDING ORDER ONLY
543A DlDA 376 CMP (ASI2},Y
543C SS 377 DEY :COMPARE INt(I) WITH IN%(J)
5430 BlD6 37S LDA (ASII},Y
543F FlDA 379 SBC (ASI2},Y
5441 9022 3SO BCC NCSP :POSSIBLE SWAP
5443 BlD6 3Sl LDA (ASII},Y
5445 51DA 382 EOR (ASI2),Y
5447 30BC 383 BMI MC40
5449 3S4
5449 385 :**** SWAP I WITH J *******
5449 386
5449 ca 387 SWIN INY
544A Bl DA 388 LDA (ASI2),Y
544C 4S 3S9 PHA
5440 88 390 DEY
544E Bl DA 391 LDA (ASI2},Y :SWAP IN%(I) WITH IN%(J)
5450 4S 392 PHA
5451 BlD6 393 LDA (ASII},Y
5453 91DA 394 STA (ASI2), Y
5455 cs 395 INY
5456 BlD6 396 LDA (ASII},Y
5458 91DA 397 STA (ASI2), Y
545A 88 398 DEY
545B 6S 399 PLA
545C 91D6 400 STA (ASII},Y
545E cs 401 INY
545F 6S 402 PLA
5460 91D6 403 STA (ASII) , Y
5462 400554 404 JMP MC40 ;NEXT RECORD
5465 B1D6 4C5 NCSP LI:A (ASII) ,Y
5467 51DP, 40E ECR (An2),Y
5469 30DE 407 BMI SWiti ;fWAP
5468 1098 40€ BPL MC4C'
546D 409
546D 41 (' **** FLOATING POINT SCRT ****
546D 411
546D AOOO 412 FPCC LDY #$00
546F B1D6 413 FPOl LI:A (ASII),Y
5471 Cl DA 414 CMP (ASI:t),Y
5473 900B 415 BCC MBSP
5475 F002 416 BEC FP02
5477 BOlD 417 BCS FPSP THIS BIT CF CONVOLUTED
5479 ca 418 FP02 INY LOGIC TELLS ME IF
547A coos 419 CPY #$05 FP(I) IS GREATER THAN,
547C DOFl 420 BNE FPOl EQUAL TC, OR LESS THAN
547E F03E 421 BEC JM40 FP(J).

108 Runtime Utilities

54BO AOOl 422 MBSP LCY #$01
54B2 BlD6 423 LCA (ASII), Y ;A TRUTH TABLE HELPS
54B4 31DA 424 AND (ASI2),Y
54B6 llDA 425 ORA (ASI2),Y
54BB 3020 426 BMI FP03
54BA BB 427 DEY
54BB Bl DA 42B LDA (ASI2),Y
54BD D02F 429 BNE JM40
54BF CB 430 INY
5490 BlC6 431 LCA (ASII), Y
5492 1016 432 BPL FP03
5494 302B 433 BMI JM40
5496 AOOl 434 FPSP LDY #$01
549B BlD6 435 LDA (ASII), Y
549A 31DA 436 AND (ASI2),Y
549C 11D6 437 ORA (ASII),Y
549E 301E 438 BMI JM40
54AO BB 439 DEY
54Al BlD6 440 LDA (ASII),Y
54A3 D005 441 BNE FP03
54A5 CB 442 INY
54A6 BlCA 443 LDA (ASI2),Y
54A8 1014 444 EPL JM40
54AA A004 445 FP03 LDY #$04
54AC ElD6 446 FP04 LDA (ASII), Y ;SAVE FP(I) IN STACK
54AE 4B 447 PHA
54AF BB 448 DEY
54EO lOFA 449 EPL FP04
5482 CB 450 FPOB INY
5483 El DA 451 LVA (ASI2),Y
54E5 91D6 452 STA (ASII), Y ; SWAP
5487 68 453 PLA
54EB 91DA 454 STA (ASI2),Y
54BA C004 455 CPY #$04
54EC DOF4 456 ENE FP08
54EE 4C0554 457 JM40 JMP MC40 ;NEXT RECORD
54Cl AOOO 45B SWAP LDY #$00
54C3 ElD6 459 LDA (ASII),Y
54C5 4B 460 PHA ;ROUTINE TO SWAP THE
54C6 cs 461 INY
54C7 A5D8 462 LDA CSII ;CHARACTER POINTERS FOR
54C9 91DA 463 STA (ASI2),Y
54CE ca 464 INY ;CHARACTER SORT.
54CC A5D9 465 LDA CSII+Ol
54CE 91DA 466 STA (ASI2),Y
54DO A5DD 467 LDA CSI2+01
54D2 91D6 468 STA (ASII),Y
54D4 B5D9 469 STA CSII+Ol
54D6 B8 470 DEY
54D7 A5DC 471 LDA CSI2
54D9 91D6 472 STA (ASII) ,Y
54DE e5D8 473 STA CSII
54CD BS 474 DEY
54DE ElDA 475 LDA (ASI2),Y
54EO 91D6 476 STA (ASII),Y
54E2 6B 477 PLA
54E3 91DA 478 STA (ASI2),Y
54E5 60 479 RTS
54E6 A200 4BO SVZP LDX #$00 ;SAVE SOME OF APPLESOFT'S
54EB E5DO 4Bl MC51 LDA NAPT,X ;ZERO PAGE. SORT ROUTINE
54EA 9D4B55 4B2 STA ZPSV,X ;NEEDS SOME ROOM TO WORK.
54ED EB 4B 3 INX
54EE E022 4B4 CPX 22
54FO DOF6 485 ENE MC51
54F2 A56E 4B6 LDA ZZ6B ;ALSO $6E.6C
54F4 BD7055 4B7 STA SV6E
54F7 A56C 48B LDA ZZ6E+Ol
54F9 BD7155 4B9 STJ>. SV6B+Ol
54FC A200 490 LCX #$00
54FE E550 491 MC55 LDA ZZ50,X ;ALSO $50.55
5500 9D6A55 492 STA svso,x
5503 EB 49 3 INX
5504 E006 494 CPX #$06
5506 DOF6 495 BNE MC55
5508 60 496 RTS

Hill AMPER-SORT 109

5509 A200 497 RSZP LDX #$00 ;RESTORE ZERO PAGE DATA
550B BD4855 498 MC61 LDA ZPSV,X
550E 95DO 499 STA NAPT,X
5510 EB 500 INX
5511 EC22 501 CPX 22
5513 DOF6 502 BNE MC61
5515 AD7055 503 LDA SV6B
5518 856B 504 STA ZZ6B
551A AD7155 505 LDA SV6B+Ol
551D 856C 506 STA ZZ6B+Ol
551F A200 507 LDX #$00
5521 BD6A55 508 MC65 LDA SV50,X
5524 9550 509 STA ZZ50,X
5526 EB 510 INX
5527 E006 511 CPX #$06
5529 DOF6 512 BNE MC65
552B 60 513 RTS
552C 514
552C 535254 515 SRTS ASC 'SRT#('
552F 2328
5531 SD 516 MSGl HEX SD
5532 564152 517 ASC 'VARIABLE'
5535 494142
5538 4C45
553A 202020 518 VARI HEX 2020202020
553D 2020
553F 4E4F54 519 ASC 'NCT FOUND'
5542 20464F
554,5 554E44
5548 000000 520 ZPSV HEX 0000000000000000
554B 000000
554E 0000
5550 000000 521 HEX 0000000000000000
5553 000000
5556 0000
5558 000000 522 HEX 0000000000000000
555B 000000
555E 00(10
5560 000000 523 HEX 0000000000000000
5563 000000
5!566 0000
5568 0000 524 HEX 0000
556A 000000 525 SV50 HEX 000000000000
556D 000000
5570 0000 526 SV6B HEX cooo
5572 000000 577 NAME HEX 0000000000000000
5575 000000
5578 0000
557A 000000 528 HEX 0000000000000000
557D 000000
5580 0000
5582 000000 529 UPDN HEX 0000000000
5585 0000
5587 00 530 INDS HEX 00
5588 00 531 PRSN HEX 00
5589 00 532 SAVY HEX co

533 END

***** END OF ASSEMBLY

110 Runtime Utilities

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL, LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

NAPT OODO NMSl OCD4 ASII 0006 CSII 0008 ASI2 OODA CSI2 OODC
IIII OODE NNNN OOEO FSTR OOE2 FLEN OOE7 DISP OOEC JJJJ OOED
LENI OOEF LENJ OOFO TYPE OOFl ZZ50 0050 ZZ6B 006B CHRG OOBl

** ABSOLUTE VARABLES/LABELS

GETB E6F8 SNER DEC9 FRNM DD67 GETA E752 MPLY 558A COUT FDED
SORT 5200 SROl 5207 SR04 5218 VNAM 521B SR05 5229 INTE 5235
INTl 5237 FPOO 524A ERRX 5252 CHAR 5255 SR06 5263 ERR3 5296
SRll 5298 ERRO 52A5 SR16 52AB SR17 52BO SR07 5204 SR09 5206
LAST 52EA TERM 52ED MC20 52F2 MC22 5303 SR27 5320 SR28 5322
SETN 532E CONI 5359 SR22 5366 CONJ 538E SR24 539B CHST 53AD
SR29 53BD MC33 53BF ASND 5300 MC25 5308 MC26 53DE MC39 53EB
MC27 53Fl MC28 53FA MC29 53FF MC40 5405 MC38 540B MC41 541B
SOON 5425 JMPJ 5429 JMPI 542C NCHH 542F INTC 5436 SWIN 5449
NOSP 5465 FPCC 5461) FPOl 546F FP02 5479 MBSP 5480 FPSP 5496
FP03 54AA FP04 54AC FP08 54B2 JM40 54BE SWAP 54Cl SVZP 54E6
MC51 54E8 MC55 54FE RSZP 5509 MC61 550B MC65 5521 SRTS 552C
MSGl 55 31 VARI 553A ZPSV 5548 SV50 556A SV6B 5570 NAME 5572
UPDN 5582 INDS 5587 PRSN 5588 SAVY 5589

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0332

Apple II
Trace List Utility

by Alan G. Hill

The Integer BASIC trace command provides useful
information for program debugging. But the format in
which this information is presented (a barrage of line
numbers) is not terribly pleasant or easy to use. This
utility enhances the trace command's capabilities by
providing a more legible output format and a capability
f(fr saving line numbers on longer tracings.

Did you ever use the TRACE function in Integer BASIC, only to give up in despair
after looking at a screen full of line numbers? Try it without a printer and you may
never use TRACE again! Here's the utility that will put TRACE back into your
debugging repertoire (for those of us who need a little help getting it right) .

The utility presented here will list each BASIC program source statement line
by line in the order executed. There's no need to refer back and forth between
TRACE line numbers and the source program listing. Two versions are presented:
Version 1 is a real-time utility; i.e. each statement is listed immediately prior to
execution so you can follow the program's logical sequence. You can slow the
execution rate down or even temporarily halt execution while you scan the
screen. Version 2 only saves the line numbers of the last 100 lines executed for
listing later. Version 2 could be useful in tracing a full-screen graphics program.

The Technique

The program utilizes the DOS COUT hook at $AA53, $AA54 to intercept and
suppress TRACE printing. All other printing continues normally with one excep
tion (see Warning #1). Before returning to the BASIC interpreter, the line number
is picked up and pushed into an array (TR) in the variables area above LOMEM. If
the number is the same as the previous line number, a zero line number is placed
in the stack with the line number of a FOR I = 1to1000: NEXT I delay loop, for
instance. When the number changes, it will be placed in the stack. The most re
cent 100 line numbers are saved. Tracing is performed under user control by the
normal TRACE/NOTRAC~ statements. In Version 2, the lines may then be listed
after the test program ends. The technique in Version 1 is similar with one
distinction. The trace intercept routine transfers control to the utility program to
list the line as soon as it is put in the stack.

112. Runtime Utilities

How the TRACE Intercept Routine Works

The output pointer in $AA53, $AA54 is initialized by the utility to the ad
dress ($300) of the Trace Intercept Routine. Each character is examined by TIR as
it comes through if the TRACE flag is up (bit 7 of $AO on). If off, TIR jumps back to
the normal print utility at $FDFO. If the character is a# ($A3), it is assumed that a
line number follows. Every line number in the stack is pushed down and the cur
rent line number is placed at the top. Location $DC,DD points to the BASIC line
about to be executed. The line number is in the second and third bytes. In Version
2, TIR returns to the interpreter. In the real-time version (Version 1), control is
next transferred to the utility program at line 30020. TIR expects that the address
of line 30010 has been saved in $15, 16 by the utility programs CALL 945 in line
30010. TIR first saves the contents of $DC,DD and then replaces it with the con
tents of $15, 16. It also saves the address of the current statement within the
BASIC line. That is, the contents of $EO,El are saved at $1B,1C. TIR can now
transfer control back to the interpreter's continue entry point by a JMP $E88A
which then executes line 30020 of the utility. The current line of the test program
is listed; the BASIC pointers are restored by the CALL 954 in line 30090; the
return address is popped; and control is returned to the test program through
$E881. Fait accompli.

As mentioned previously, the TR array is used to save the line numbers. The
array is set up the first time TIR is entered. Note that TR is intentionally not
DIMensioned in the utility. TIR must handle that task since a RUN of the test pro
gram will reset the variables area pointer ($CC,CD) back to LOMEM.

Programming the Routines

TIR starts at $300. It could be relocated if the absolute references in the POKE
and CALL statements are changed. Also note that the LIST statement in lines
30060 and 32040 will not be accepted by the Syntax checker. They must first be
coded as PRINT statements, located, and changed to LIST tokens ($74) using the
monitor. This is more easily done if these lines are coded and the tokens changed
before the remaining lines are entered. See example below for the case where
HIMEM is 32768:

NEW
30060 PRINT EXECLINE
32040 PRINT TR (I)
CALL - 151 (to enter Monitor)
*7FEC:74
*7FF9:74
(enter Control/C)
LIST
30060 LIST EXECLINE
32040 LIST TR (I)

Hill Trace-List 113

Using the Utility

1. After coding the assembler and BASIC utility programs, the test program is
then appended.

2. Create a line 0 that will be used to indicate that a line has successively
executed. For example, code:

0 REM ***ABOVE LINE REPEATED***

3. Run the utility of your choice:

RUN 30000 Version 1 (Real-time list)
or RUN 32000 Version 2 (Post-execution list)

4. Insert the TRACE/NOTRACE statements wherever desired in test pro
gram. Just enter the TRACE command directly if you want to trace the entire pro
gram. Also see Warning #1.

5. RUN the test program.

6. Display the results:

A. Real-time Version: The lines will be listed automatically as executed.
Note the FOR:NEXT loop in line 30090 can be adjusted to control the
execution rate. The upper limit could be PDL(O), thereby giving you
run-time control over the execution rate. Note also that execution can
be forced to pause by depressing paddle switch 0. Execution will
resume when the switch is released.

B. Post-execution Version: After stopping or ending the program, enter a
GOTO 32020 command. The first page of statements will be
displayed. Enter a "C" to display additional pages, a "T" to reset for
another test run, or an "E" to return to BASIC. Note that even if you
have traced with Version 1, you can still display the last 100 lines with
Version 2.

Sample Run

Test Program

0 REM *** REPEATED***
10 TRACE
30 GOSUB 100+RND(3) *10
40 FOR I = 1 TO 10: NEXT I
50 GOTO 30

100 PRINT "LINE 100":RETURN
110 PRINT "LINE 110":RETURN

114 Runtime Utilities

120 PRINT "LINE 120":POP
125 NO TRACE:END

> RUN 30000
>RUN

Trace Output

30 GOSUB100+RND(3)*10
110 PRINT "LINE 110":RETURN LINE 110
30 GOSUB 100 + RND(3)*10
40 FOR I= 1 TO 10:NEXT I

0 REM ***REPEATED ***
50 GOTO 30
30 GOSUB 100 + RND(3)*10

120 PRINT "LINE 120":POP LINE 120
125 NO TRACE:END
>

For a slow motion game of "BREAKOUT", trace it with the real-time version!

Hints and Warnings

It's usually a good idea to deactivate TIR after the test program has ended by
hitting Reset and Control-C and entering NOTRACE. Don't try to trace the test
program without first running the utility program at line 30000 or 32000.

To increase the debugging power of the real-time trace utility, make liberal
use of the push button to halt program execution. With practice and the proper
choice of the delay loop limit in line 30090, you can step through the program one
line at a time. Enter a Control-C while the push button is depressed and execution
will be STOPPED AT 30070. You can then use the direct BASIC commands to
PRINT and change the current value of the program's variables. Enter CON and
execution will resume. The game paddles must be installed for the program to
work correctly.

With additional logic in the utility program, you can create specialized
tracing such as stopping after a specified sequence of statements has been
detected. Return via a CALL 958 if you don't want TRACE turned back on.

Tracing understandably slows the execution rate of your program, but you
probably aren't concerned with speed at this point. However, the wise use of
TRACE/NOTRACE will help move things along. Also, when encountering a delay
loop such as FOR I= 1 to 3000: NEXT I, you may want to help it along by stopping
with a Control-Centering I=2999, and CONtinuing.

Warning HI: There must be no PRINT statement with a# character in the out
put. TIR assumes that a # is the beginning of a trace sequence. Either remove the #
or bracket the PRINT statement with a NOTRACE/TRACE pair.

Warning #2: There must be no variable names in the test program identical to
those in Version 1. The TR variable name must be unique in both versions.

Hill Trace-List 115

Warning #3: Line 0 in the test program should be a REMark statement as
described above to avoid confusion. Line 0 is listed when a line is successively
repeated.

Warning #4: Once TRACE has been enabled, the test program must not
dynamically reset the variables pointer ($CC,CD) with a CLR or POKE unless it
first disables TRACE and resets $13,14; e.g., 100 NOTRACE:CLR: POKE 19, 0:
POKE 20,0: TRACE is OK.

Extensions

The primary motivation for this program was to improve the TRACE function
in Integer BASIC. However, you can imagine other uses of a program that gains
control as each statement is executed-maybe the kernel of a multiprogramming
executive.

29970
29971
2997;2
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985

29986

29995
29998
30000

30004
30005
30006
30007
30010
30020
30030
30040
30050
30060
30070
30075
30080
30090
30100
31000
31001
31002
31005
31010

REM ************************
REM * *
REM *
REM *
REM *

TRACE LIST UTILITY *
BY ALAN G. HILL *

*
REM * TRACE LIST *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
~M * *
REM ************************
REM
REM
PRINT : PRINT "'RUN 31000' APPEND": PRINT "'RUN 30000' REAL-TIME LIST"
: PRINT "'RUN 32000' POST-EXEC SETUP"
PRINT "'GOTO 32020' POST-EXEC LIST": VTAB 20: INPUT "'RETURN' WHEN READY

TO APPEND",A$
GOTO 31000
REM 'RUN 30000' REAL-TIME
NOTRACE : POKE 54,768 MOD 256: PCKE 55,768/256: POKE 19,0: POKE 20,
0: POKE 787,76: POKE 788,211: POKE 789,3: POKE 790,234: CALL -22447

PRINT "ENABLE TRACE IN YOUR PROGRAM": PRINT "AND 'RUN' . "
REM TRACE VERl.O 11-28-78
REM .TRACE VERl.l 3-6-79
REM ADD DISK APPEND CAPABILITY
CALL 945: END
EXECLINE=TR(O): IF EXECLINEtO THEN 30050
IF RRRRR=l THEN 30070
RRRRR=l: GOTC 30060
RRRRRsO
LIST EXECLINE
IF PEEK (-16287)>127 THEN 30070
IF EXECLINE=O THEN 30090
FOR JJJJJ=l TO 150: NEXT JJJJJ
CALL 954: REM BACK TO TEST PGM
END
DIM A$(30)
VTAB 24
INPUT "APPEND " , A$
IF A$1"" THEN 31030
POKE C, PEEK (76): PCKE l, PEEK (77): POKE 76, PEEK (202): POKE 77,

PEEK (203): CALL -3873: POKE 76, PEEK (0): POKE 77, PEEK (1): END

116 Runtime Utilities

31030 POKE O, PEEK (76): POKE l, PEEK (77): POKE 76, PEEK (202): POKE 77,
PEEK (203): PRINT "LOAD ";A$;",V": POKE 76, PEEK (0): POKE 77, PEEK

(l)
31031 PRINT "'RUN 30000' REAL-TIME": PRINT "'RUN 32000' POST TIME": END
31999 REM 'RUN 32000' POST-EXEC
32000 POKE 54,768 MOD 256: POKE 55,768/256: POKE 19,0: POKE 20,0: POKE 787

,169 : POKE 788,127: POKE 789,133: POKE 790,5: CALL -22447
32010 PRINT "TRACE SET UP. ENABLE TRACE IN YOUR PGM" : END
32020 NOTRACE : POKE 54,240: Pj)KE 55,253: IF PEEK (20)t0 THEN 32030: PRINT

"TRACE NOT ON IN YOUR PGM": GOTO 32090
32030 CALL -936: FOR I=lOO TO l STEP -1: IF TR(I)=-1 THEN 32060
32040 LIST TR(I)
32050 IF PEEK (37)>18 THEN 32090
3 2060 NEXT I
32070 GOTO 32090
3 2080 CALL -936: IF I>l THEN 32060
32090 PRINT : PRINT "C/T/E. 7"
32100 KEY~ PEEK (-16384): IF KEY<l28 THEN 32100: POKE -16368,0: IF KEY•212

THEN 32000: IF KEYsl95 THEN 32080 : END

Editor's Note: The main listing was omitted from the text due to space limitations.
The machine language program appears on the disk as TRACE INTERRUPT.

4
GRAPHICS AND GAMES

Introduction

A Versatile Hi-Res Function Plotter
David P. Allen

Apple II Hi-Res Picture Compression
Bob Bishop

An Apple Flavored Lifesaver
Gregory L. Tibbetts

Applayer Music Interpreter
Richard F. Suitor

Improved Star Battle Sound Effects
William M. Shryock, fr.

Galacti-Cube
Bob Bishop

118

119

124

137

146

156

157

INTRODUCTION
No book on the Apple would be complete without a chapter exploring the recrea
tional capabilities of the machine. The two features of the Apple which have ex
hibited the most recreational potential are the graphics and sound generation.
This section includes programs which utilize both these capabilities, and addi
tionally includes a fun space maze game!

David Allen's "A Versatile Hi-Res Function Plotter" uses high-resolution
graphics to plot curves for any user-defined function. "Apple II Hi-Res Picture
Compression," by Bob Bishop, allows the user to compress any image on the
graphics screen by taking advantage of redundancy. The discussion of the pixel
technique used is very revealing. "An Apple Flavored Lifesaver," by Greg Tib
betts, is a version of the popular "Life" simulation which allows pattern storage
on disk.

"Applayer Music Interpreter," by Dick Suitor, implements a sophisticated
music generation system for the Apple using no additional hardware. Several sam
ple tunes are provided, as are the necessary instructions for generating music of
your own. William Shryock's "Improved Star Battle Sound Effects" is another
tonemaking routine. Though much shorter than the previous one, it has
nonetheless provided hours of amusement to many.

Finally, the space-maze game entry in this chapter is " Galacti-Cube" by Bob
Bishop. Written in Integer BASIC, the game challenges you to find the exit to the
'giant cube' floating through space!

A Versatile Hi-Res
Function Plotter

by David P. Allen

One of the obvious uses for Apple Hi-Res capability is
to plot various mathematical functions. The program
presented here is very general purpose and permits the
user to simply plot any expression as a function of
angle from 1 to 360 degrees. A modification is included
which will permit the program to be used on an Atari
as well.

A few years ago when scientific calculators first made their appearance, I was en
chanted by the ease with which calculations using transcendental functions could
be accomplished. This prompted me to dust off the old trigonometry book and
delve into some basics through which I had once passed somewhat painfully.
Maybe pain isn't the word. Probably boredom and drudgery would be better
words. Log and function tables are probably the only documents with less
magnetism than the Little Rock telephone book. I expect that many a budding
mathematics curiosity has atrophied over the dryness of log tables.

With the power and freedom of this nifty calculator at hand I suddenly found
myself unfettered by the yoke of boredom and I swiftly recovered much of my
early curiosity by travelling quickly through basic trigonometry. Gone were the
stumbling blocks of look-up tables and I was able to move down many diver
sionary "what if's" to see what really happens when certain values change in
mathematical formulae.

But as exciting as all this was, and because much of mathematics requires
visual images, I looked forward to a time when, with the help of a small computer,
I could generate graphs and figures as well as numbers to excite and satisfy my
curiosity.

And so it was that after acquiring an Apple II computer, one of my first exer
cises was to develop a program which would use Apple's excellent high-resolution
graphics to plot the path of a variety of mathematical expressions. This program is
the result and I have had much, much fun with it.

120 Graphics and Games

The program was developed on an Apple II with 48K of RAM and an Applesoft
ROM card. The entire program takes only slightly more than 3K of RAM, depend
ing on the complexity of the function being plotted.

Those who do not have the Applesoft ROM card may still use this program by
changing line 480 to read "HGR2" instead of "HGR" . Under these circumstances
the function plotted formula will not be printed at the bottom of the screen. All
other functions work as described.

The heart of the program is line 1010 which contains the function being ex
plored. A typical function is listed here. When run, the program first defines some
trigonometric and hyperbolic functions which are not directly available in
Applesoft BASIC. It then proceeds to plot the X and Y axes. As currently arranged,
the expression under investigation is plotted as a function of c)langing angle, from
1 to 360 degrees. By changing lines 670 and 900, other independent variables
could be introduced. The program is completely protected against off-scale plot
ting and automatically scales itself for the range of independent variables selected.

When the plot is completed the program dutifully presents a print-out of the
function and awaits your pleasure at the push of the return key. It then presents
you with a helpful list of all of the additional functions defined by the program in
addition to those resident in Applesoft BASIC. Line 1010 is listed and the cursor
invites your screen editing of this line for further variations.

A word of caution: any attempt to plot mathematical "no-no's" like square
roots or logs of negative values will earn you a quick error message. Do not
despair. Use of the ABS command will quickly get you back in business when
these values crop up!

This program has all kinds of tinkering possibilities. You might try surround
ing line 1010 with a FOR ... NEXT loop to introduce other variable changes and to
allow longer expressions than you can conveniently type into line 1010 all at
once. Just beware! This program is subtly laced with a curious narcotic which has
been known to keep the user awake all night! Have fun!

10
12
14
16
18
20
22
24
26
28
30
32
34
140
150
180
190
200
210
220
230
240
250
260
.270
280
290
300
310
320

330

340
350
360

370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

REM ************************
REM *
REM *
REM *
REM *
REM *
REM *

FUNCTION PLOTTER
DAVID P. ALLEN

FNPLOTTER

*
*
*
*
*
*

REM
REM
REM
REM
REM
REM

* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* * ************************

THIS PROGRAM PLOTS A
CURVE FOR ANY EXPRESSION
AS A FUNCTION CF INCREAS
ING ANGLE FROM 1 TC 360
DEGREES.
CHANGE LINE 1010 TC A
FUNCTION YOU WISH TC
PLOT.

REM *** DEFINE FUNCTIONS ***
REM

Allen Function Plotter

EXP (- X)): REM SECH(X)
EXP (- X)): REM CSCH (X)

121

DEF FN SCH(X) = 2 / (EXP (X) +
DEF FN CCH(X) • 2 / (EXP (X) -
DEF FN CTH(X) = EXP (- X) / EXP (X) - EXP (- X)) * 2 + 1:

REM COTH(X)
DEF FN SEC(X') = 1 I cos (X): DEF FN CSC(X) = 1 I SIN (X): DEF
FN CCT(X) = 1 / TAN (X)
DEF FN SNH(X) • (EXP (X) - EXP
DEF FN CCH(X) • (EXP (X) + EXP
DEF FN TAH(X) • EXP (- X) /

REMTANH(X)
REM
REM
REM ** PLOT GRAPH AXES **
REM
HOME
REM
REM MOVE CURSOR TC BOTTOM
REM LINE.
REM
VTAB 24
REM
HGR
HCOLOR= 7
HPLOT 0,80 TO 279,80
HPLCT 0,16 TC 0,143
FOR I • 0 TC 279 STEP 70

- X)) I 2: REM SINH(X)
- X)) / 2: REM CCSH(X)
EXP (X) + EXP (- X)) * 2 + 1:

HPLCT I,78 TO I,82: HPLOT 279,78 TO 279,82
NEXT I
FOR I ~ 16 TO 144 STEP 16
HPLCT O, I TC 4, I
NEXT I
REM
REM FLAGS FOR FIRST PLOT
REM AND SCALE.
REM

F = O:G = 0
REM
REM Rl AND R2 MAY BE SET
REM FOR OTHER LIMITS.
REM

Rl "" l:R2 ., 360
REM

122 Graphics and Games

690 REM
700 REM
710 REM
720 REM
730 REM
740 REM
750 REM

REM

** BEGIN PLOT **
CHANGE STEP FOR MORE
OR LESS RESOLUTION.
IF Rl>R2 THEN STEP
MUST BE NEGATIVE.

FOR I = Rl TC R2 STEP 5
REM
REM NEXT 3 STEPS ESTABLISH
REM HORIZONTAL SCALE.
REM
IF ABS (Rl) >
IF ABS (R2) >
IF G = 0 THEN S

ABS (R2) THEN R
ABS (Rl) THEN R

70 * 4 I R:G = l
X = I:Y = 0

REM
REM CONVERTS DEGREES TO
REM RADIANS.
REM

x = x * 3.14159 I 180
REM
REM PREVENTS CRASHING WHEN
REM X=O.
REM
IF X = 0 THEN X = .00001
REM
REM
REM NEXT LINE DESCRIBES
REM FUNCTION TO BE PLOTTED

REM
Yl =
y = y
y = y

REM
REM
REM

SIN (X) +
+ Yl
* 20

SCALES X

X = I * S
REM

COS (2 * X)

REM
REM

y =
RELATES PLOT TO X AXIS

- y + 80
REM
REM SUBROUTINE PREVENTS
REM OFF-SCALE CRASHING.
REM
GOSUB 1830
REM
REM PLOTS FIRST POINT.
REM
IF F 0 THEN HPLOT X,Y:F
HPLOT TO X,Y
NEXT I
PRINT : LIST 1010
REM
REM
REM
REM
REM

BLANKS OUT LINE #
AFTER LISTING
LINE 1010.

1

ABS (Rl)
ABS (R2)

760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
119"0
1200
1210
1220
1230
1240
1250
1260
1270
1260
1290
1300
1310
1320
1330
1340
1350
1360
1370

POKE 1616,160: POKE 1617,160: POKE 1618,160: POKE 1619,160
REM
REM
REM
REM
REM
POKE
REM
REM

WAITING FOR YOUR PLEASURE!
PUNCH 'RFTURN'
TO CONTINUE!

- 16368,0: WAIT - 16384,126

1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1·580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1010
1820
1830
1840
1850
1860
1870

TBROWS PREVIOUS KEYSTROKE
AwAY WITH

REM
REM
REM
REM
GET Z$
REM
REM
REM
REM
REM

'GET Z$' I

CLEAR SCREEN ANC
PRINT FUNCTIONS FOR
REMINDER.

TEXT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM
REM
REM
REM
REM

HOME
TAB (9) ; "SECANT = FN SEC (X) "
TAB(9);"COSEC = FN CSC(X)"
TAB(9); "COTAN = FN COTAN(X)"
TAB(9) ;"SINH FN SNH(X)"
TAB(9); "COSH FN COH(X)"
TAB(9);"TANH = FN TAH(X)"
TAB(9) ;"SECH = FN SCH(X)"
TAB(9);"CSCB = FN CCH(X)"
TAB(9); "COTH = FN CTH(X)"

NOW WE SET UP LINE
1010 FOR EDITING.
'PCKE 32, 2' MOVES
MARGIN SO CURSOR CAN

REM FIT IN FRONT.
REM
VTAB (12)

Allen

PRINT " CHANGE LINE 1010 AS DESIRED AND"
PRINT "RUN AGAIN I "
POKE 32,2
LIST 1010
REM
REM
REM
REM
REM

NOW WE RESTORE MARGIN
AND MOVE CURSOR IN
FRONT OF LINE #.

POKE 32,0
POKE 37,13: POKE 36,0
REl'i
END
REM
REM SCALE ANTI-CRASHING
REM SUBROUTINE.
REM
IF X < 0 THEN X = 0
IF X 279 THEN x = 279
IF Y 0 THEN Y • 0
IF Y > 159 THEN y 159
RETURN

Function Plotter 123

Apple II Hi-Res
Picture Compression

by Bob Bishop

Every Apple owner is aware of the wonderful pictures
that can be made with Hi-Res graphics. An interesting
technique is presented which allows greater efficiency
in encoding picture information. and produces
additional special effects.

Almost every Apple II owner has, by now, seen examples of how the Apple II can
display digitized photographs in its Hi-Res graphics mode. These images consist of
192 x 2SO arrays of dots all of the same intensity. By clustering these dots into
groups (such as in "dithering"), it is even possible to produce pictures having the
appearance of shades of gray. Several ''slide shows" of these kinds of pictures have
been created by both Bill Atkinson and myself and are available through various
sources, such as the Apple Software Bank. A typical "slide show" consists of
about 11 pictures on a standard 13-sector disk.

Each Hi-Res picture must reside in one of the two Hi-Res display areas before
it can be seen. The first area, $2000-$3FFF, is called the primary display buffer;
the second area, $4000-$SFFF, is called the secondary display buffer. It is obvious
that each of these display areas are SK bytes long. Consequently, Hi-Res pictures
are usually stored as SK blocks of data, exactly as they appear in a display buffer.
But do they have to be stored that way?

If you look closely at a Hi-Res picture, you can almost always detect small
regions that look very similar to other small regions elsewhere in the picture. For
example, Hi-Res displays usually contain regions of pure white or pure black. In:
the case of dithered pictures, the illusion of gray may be caused by micro-patterns
of dots that are similar to other gray patterns somewhere else. Clearly, Hi-Res pic
tures tend to contain a lot of redundancy. If there were some way of removing this
redundancy then it would be possible to store Hi-Res pictures in less than the
customary SK bytes of memory.

Suppose we were to divide the display into small rectangular clusters, each 7
bits wide, by S bits high. Then a picture would consist of 24 rows of these picture
elements ("pixels"), with 40 of them per row. (Note the resemblance to the Apple

Bishop Picture Compression 125

II's TEXT mode of 24 lines, 40 columns per line!) The total number of pixels that
would be needed to define a Hi-Res picture would then be 40 times 24, or 960.
However, not all 960 pixels would be unique if there were redundancy in this
picture.

To try out these ideas, I used Atkinson's LADY BE GOOD picture (from the
Apple Magic Lantern-Slide Show 2) shown in figure 1, and wrote a program to ex
tract all the different pixels. I found that only 662 of the 960 pixels were unique.
This meant that almost one third of the picture was redundant!

Figure 1: (Max errors/pixel = 0)

The next question that came to mind was: of the 662 unique pixels, how
'unique' were they? Was it possible that there might be two or more pixels that
were almost the same, except for maybe one or two dots that differed? If so, then it
could be possible to regard these as being identical 'for all practical purposes' since
the error in the resulting picture would hardly be noticed.

To examine this possibility, I modified my program to extract only those
pixels that differed by more than a specified MAX ERRORS/PIXEL. Table 1 shows
the result. If we allow, at most, 1 dot to be wrong in any one pixel, then we need
only 492 pixels to define the picture, which is only about half of the ori,ginal 960
pixels! As we allow more and more errors per pixel, the number of pixels required
to reconstruct the picture decreases accordingly, until we reach 28 errors/pixel. At
this point we are allowing half of the dots to be wrong. Since total black and total
white are always included in every pixel set (to prevent black or white areas from
becoming dotted), pictures with MAX ERRORS/PIXEL greater than or equal to 28
can always be composed of no more than two pixels, namely the black and white
pixels.

126 Graphics and Games

500 max errors number of
per pixel pixels

0 662
1 492
2 334
3 245
4 17S

400 5 135
6 100
7 75
s 53
9 44

10 34
11 29

300 12 24
13 lS
14 15
15 11
16 10
17 7
lS 7

200 19 6
20 5
22 4
24 4
26 4
2S 2

100

0 5 10 15 20

Table 1: Max Errors/Pixel

Suppose we now try to reconstruct the original picture from our extracted
pixel set. Clearly, the fewer pixels we have available for synthesizing, the poorer
the result will be. Figures 2 through 5 show the results of synthesizing LADY BE
GOOD with MAX ERRORS/PIXEL of 3, 7, 14, and 2S. The number of pixels used
in each case was 245, 75, 15, and 2, respectively. Notice that the difference in
quality between figures 1 and 2 is not all that objectionable. The advantage that
figure 2 has is that it can be stored in less than 3K bytes of memory! (245 pixels at
S bytes/pixel, plus 960 bytes to define which pixels go where.)

Thus it is clearly possible to store an SK Hi-Res picture in considerably less
than SK bytes, if you are willing to accept a little loss in the image quality. By
using this principle, I have produced a 11 Super Slide Show'' containing 33 pictures
on a single disk. (Copies may be obtained from Apple's Software Bank.)

Bishop Picture Compression 127

The Compression Program

Listings 1 and 2 show the compression routines (and some associated data
tables), and require an Apple II with at least 32K bytes of memory. The routines
consist of two basic parts-the "analysis" portion, and the 11 synthesis" portion.

The analysis routine ($0BOO) searches the primary Hi-Res display buffer
($2000-$3FFF) and compares each pixel there with the pixels in its own current
pixel table (which starts at $0600) looking for a "match". If it finds a pixel in the
table that matches to within the specified MAX ERRORS/PIXEL (location $10), it
calls a match and proceeds to the next pixel in the picture. If it fails to find a
match, it adds the pixel to its current pixel table and then proceeds.

The synthesis routine ($0B80) works in the other direction. It first compares
each pixel of the primary buffer with each pixel in the pixel table to find the best
match. It then places this pixel in the corresponding location in the secondary Hi
Res buffer, thus synthesizing the best approximation to the primary picture as it
can by using the pixels in its pixel table. (Since the analysis routine doesn't know
where its pixel table originated, it is possible to snythesize one picture from
another picture's pixels! The result is usually surprisingly good.) ·

The routines are very easy to use. Simply load the picture to be compressed
into $2000-$3FFF, set MAX ERRORS/PIXEL into $10, and then call the routine at
$0BOO. When the routine returns, locations $07 and $08 contain the number of
extracted pixels in the form: NUMBER = 1 + (contents of $07) + 40* (contents
of $08).

Figure 2: (Max errors/pixel = 3)

128 Graphics and Games

To synthesize the picture from the extracted pixels, simply call the routine at
$0B80. When the routine returns, the reconstructed picture will be in the secon
dary Hi-Res buffer ($4000-$SFFF).

If you have a 48K Apple and a disk, you can use the BASIC program shown in
listing 3. This program calls the compression routines (listings 1 and 2) in a more
user-oriented way so that they are even easier to use. The program displays a
menu of options that let you:

L - Load a picture from disk into the primary Hi-Res buffer.
1 - Display the picture currently in the primary Hi-Res buffer.
2 - Display the picture currently in the secondary Hi-Res buffer.
A - Analyze the primary picture (create the pixel table) .
S - Synthesize the primary picture using the current pixel table.
D - Issue disk commands.
X - Transfer the compressed picture to disk drive number 2.

None of the selections require you to hit RETURN; just hit the corresponding
character. When specifying "L11

1 the program will ask you for the name of the file
to be loaded. When specifying 11 A11

1 you will be asked for the maximum error per
pixel that you will allow. (This does require a RETURN.) The 11D 11 command will
give a colon (:) as the prompt character and will allow you to issue disk
commands. It will continue in this mode until you give it a null command (hit
RETURN) at which time it will return to the menu. The 1 1X'' command saves the
compressed picture (960 bytes) and its corresponding pixel table (up to 2K bytes)
onto a disk file. (I will leave it up to the interested reader to figure how to "un
compress" this data.)

..... :

\f~J

Figure 3: (Max errors/pixel = 7)

Bishop Picture Compression 129

Figure 4: (Max errors/pixel = 14)

Figure 5: (Max errors/pixel = 28)

While the methods here work pretty well, they may not represent the
optimum way of compressing Apple II picture data. For example, my choice of
7 x 8 dots/pixel was somewhat arbitrary. Is it posible to get better compression
ratios by choosing smaller (or larger) pixel sizes? Or, given a picture that was
reconstructed from a given set of n pixels, is it possible to find another set of n pix
els that gives a better result?

130 Graphics and Games

ocoo- 00 00 00 00 00 00 00 00
OCOB- 80 80 BO BO 80 80 80 80
OClO- 00 00 00 00 00 00 00 00
OClB- BO BO BO BO BO BO 80 BO
OC20- 00 00 00 00 00 00 00 oc
OC2B- BO BO BO eo BO BO BO BO
OC30- 00 00 00 00 00 00 00 00
OC3B- 80 BO 80 BO BO BO 80 80
OC40- 2B 2B 28 2B 2B 2B 28 28
OC4B- AB AB AB AB AB AB AB AB
ocso- 2B 2B 2B 2B 2B 2B 2B 2B
OCSB- AB AB AB AB AB AB AB AB
OC60- 2B 2B 2B 2B 28 28 2B 2B
OC6B- AB AB AB AB AB AB AB AB
OC70- 2B 2B 2B 28 28 2B 2B 2B
OC7B- AB AS AB AB AB AS AB AB
ocao- 50 50 50 50 50 50 50 50
OCBB- DO DO DO DO DO DO DO DO
OC90- 50 50 50 50 50 50 50 50
OC9B- DO DO DO DO DO DO DO DO
OCAO- 50 50 50 50 50 50 50 50
OCAB- DO DO DO DO DO DO DO DO
OCBO- 50 50 50 50 50 50 50 50
OCBB- DO DO DO DO DO DO DO DO

1000- 00 01
1008- Cl 02
1010- Cl C2
1018- 02 03
1020- 01 02
102B- 02 03
1030- 02 03
1038- 03 04
1040- 01 02
1048- 02 03
1050- 02 03
1058- 03 04
1060- 02 03
1068- 03 04
1070- 03 04
1078- 04 05

1 REM ************************
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
8 REM
9 REM

* *
* PICTURE COMPRESSION *
* BY ROBERT BISHOP *
* *
*
*
*

COMPRESS *
*

10 REM
11
12

COPYRIGHT (C) 19Bl *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *

ALL ~IGHTS RESERVED * REM *
REM * *

13 REM ************************
14 REM

ODOO- 20 24
ODOB- 20 24
ODlO- 21 25
ODlB- 21 25
OD20- 22 26
OD2B- 22 26
OD30- 23 27
OD3B- 23 27
OD40- 20 24
OD4B- 20 24
ODSO- 21 25
ODSB- 21 25
OD60- 22 26
OD6B- 22 26
OD70- 23 27
OD7B- 23 27
OD80- 20 24
ODBB- 20 24
OD90- 21 25
OD9B- 21 25
ODAO- 22 26
ODAB- 22 26
ODBO- 23 27
ODB8- :;>3 27

01 02 01 02 02 03
02 C3 02 C3 03 C4
02 03 02 03 03 04
03 04 03 04 04 05
02 03 02 03 03 04
03 04 03 04 04 05
03 04 03 04 04 05
04 05 04 05 05 06
02 03 02 03 03 04
03 04 03 04 04 05
03 04 03 04 04 05
04 05 04 05 05 06
03 04 03 04 04 05
04 05 04 05 05 06
04 05 04 05 05 06
05 06 05 06 06 07

15
20
30

DIM A$(40)
ANAL=ll*256:SYN=ANAL+l2B:PRESS=4096+2*256+B*l6
FLAG=O:XFLAG=O

50 PRINT "BLOAD PIXEL STUFF"
CALL -936: POKE -16300,0: POKE -16303,0
TAB 17: PRINT "MENU"
TAB 17: PRINT"-------": PRINT
PRINT PRINT " L - LOAD PICTURE FROM DISK"

2B
2B
29
29
2A
2A
2B
2B
2B
2B
29
29
2A
'}A

2B
2B
2B
28
29
29
2A
2A
2B
2B

100
llO
120
130
140
150
160
170

PRINT PRINT " A - ANALYZE PICTURE INTO PIXELS"
PRINT PRINT " S - SYNTHESIZE PICTURE FROM PIXELS"
PRINT PRINT " l - DISPLAY ORIGINAL PICTURE"
PRINT PRINT " 2 - DISPLAY SYNTHESIZED PICTURE"

2C 30 34 3B 3C
2C 30 34 3B 3C
2D 31 35 39 3D
2D 31 35 39 3D
2E 32 3~ 3A 3E
2E 32 36 3A 3E
2F 33 37 3B 3F
2F 33 37 3B 3F
2C 30 34 3B 3C
2C 30 34 3B 3C
2D 31 35 39 3D
2D 31 35 39 3D
2E 32 36 3A 3E
2E 32 36 3A 3E
2F 33 37 3B 3F
2F 33 37 3B 3F
2C 30 34 3B 3C
2C 30 34 38 3C
2D 31 35 39 3D
2D 31 35 39 3D
2E 32 36 3A 3E
2E 32 36 3A 3E
2F 33 37 3B 3F
2F 33 37 3B 3F

Bishop Picture Compression

180 PRINT : PRINT " D - ISSUE DISK COMMANDS"
190 PRINT : PRINT " X - SAVE COMPRESSED PICTURE TO DISK"
195 VTAB 20: PRINT "SELECTION: "
200 REM READ KEYBOARD
210 CHAR= PEEK (-16384)
220 IF CHAR<l28 THEN 210
230 POKE -16384+16,0
300 ID=O
310 IF CHAR= ASC("L") THEN ID=l
320 IF CHAR= ASC("A") THEN ID=2
330 IF CHAR= ASC("S") THEN ID=3
340 IF CHAR= ASC("l") THEN ID=4
350 IF CHAR= ASC("2") THEN ID=5
360 IF CHAR= ASC("D") THEN ID=6
370 IF CHAR= ASC("X") THEN ID=7
400 IF ID=O THEN 100
500 GOTO lOOO*ID

1000 VTAB 20: TAB 12: CALL -958: PRINT "LOAD PICTURE"
1005 POKE -16300,0: POKE -16303,0
1010 VTAB 22: INPUT "FILE NAME: ",A$
1015 IF A$="" THEN 100
1020 VTAB 22: PRINT "BLOAD ";A$;",A$2000,Dl"
1050 GOTO 100
2000 VTAB 20: TAB 12: CALL -958: PRINT "ANALYZE PICTURE"
2005 POKE -16300,0: POKE -16303,0
2010 VTAB 22: INPUT "MAX ERRORS/PIXEL:",MAXERR
2020 POKE 16,MAXERR: CALL ANAL
2025 FLAG•l:XFLAG=O:NUMBER=40* PEEK (8)+ PEEK (7)+1

131

2030 VTAB 22: PRINT "THERE ARE ";NUMBER;" PIXELS WITH MAX ERROR ";MAXERR
2035 POKE -16384+16,0
2040 IF PEEK (-16384)<128 THEN 2040
2050 GOTO 100
3000 VTAB 20: TAB 12: PRINT "SYNTHESIZE PICTURE"
3005 POKE -16300,0: POKE -16303,0: VTAB 22: CALL -958
3010 FOR K=l TO 500: NEXT K
3020 IF FLAG THEN 3050
3030 VTAB 22: PRINT "THERE ARE NO PIXELS DEFINED YETI"
3040 GOTO 3060
3050 CALL SYN
3055 XFLAG=l
3060 POKE -16384+16,0
3070 IF PEEK (-16384)<128 THEN 3070
3080 IF PEEK (-16384)= ASC("l") THEN 210
3085 IF PEEK (-16384)= ASC("2") THEN 210
3090 GOTO 100
4000 POKE -16304,0: POKE -16302,0: POKE -16300,0: POKE -16297,0
4050 GOTO 200
5000 POKE -16304,0: POKE -16302,0: PCKE -16299,0: POKE -16297,0
5050 GOTO 200
6000 VTAB 20: TAB 12: CALL -958: PRINT "DISK COMMAND"
6005 POKE -16300,0: POKE -16303,0
6010 VTAB 22: INPUT ":",A$
6015 IF A$="" THEN 100
6020 VTAB 22: TAB 2: PRINT "";A$
6030 PRINT : PRINT : PRINT
6040 GOTO 6010
7000 VTAB 20: TAB 12: CALL -958: PRINT "SAVE COMPRESSED PICTURE"
7005 POKE -16300,.0: POKE -16303, 0
7010 IF XFLAG THEN 7025
7015 VTAB 22: PRINT "NO PICTURE HAS BEEN SYNTHESIZED YETI"
7020 GOTO 7040
7025 IF NUMBER<=256 THEN 7060
7030 VTAB 22: PRINT "THERE ARE TOO MANY (";NUMBER ;") PIXELS"
7040 POKE -16384+16,0
7045 IF PEEK (-16384)<128 THEN 7045
7050 GOTO 100
7060 VTAB 22: INPUT "FILE NAME: ",A$
7065 IF A$="" THEN 100
7070 CALL PRESS
7080 VTAB 22: PRINT "BSAVE ";A$;",A$8000,L";960+2+8*NUMBER;",D2"
7090 GOTO 100

132 Graphics and Games

0800 1 ;************************
0800 2 ;* *
0800 3 ;* PICTURE COMPRESSICN *
0800 4 ;* ROBERT BISHOP *
0800 5 ;* •
0800 6 ;* PICT COMP •
0800 7 ;* *
0800 8 ;* CCPYRIGHT (C) 1981 *
0800 9 •* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, MA 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0800 12 ;* *
0800 I3 ;******** ****************
0800 I4
0800 IS
0800 I6
0800 I7 XAT EPZ $0000
0800 I8 YAT EPZ $000I
0800 I9 ZAT EPZ $0002
0800 20 XTO EPZ $0003
0800 21 YTO EPZ $0004
0800 22 ZTO EPZ $0005
0800 23 SCOR EPZ $0006
0800 24 XMAX EPZ $0007
0800 25 YMAX EPZ $0008
0800 26 XTMP EPZ $0009
0800 27 YTMP EPZ $000A
0800 28 BEST EPZ $000B
0800 29 AT EPZ $000C
0800 3(' TO EPZ $000E
0800 3I ERR EPZ $00IO
0800 32 XIN EPZ $0011
0800 33 YIN EPZ $00I2
0800 34 PROD EPZ $00I3
0800 35 HGRL EQU $0COO
0800 36 HGRH EQU $0DOO
0800 37 BITS EQU $IOOO
0800 38 BELL EQU $FF3A
0800 39
0800 40
OBOO 4I ORG $BOC
OBOO 42 OBJ $800
OBOO 43
OBOO 209311 44 BILD JSR INIT
OB03 A900 45 LDA #$00
OBOS 8500 46 STA XAT
OB07 850I 47 STA YAT
OB09 A90I 48 LDA #$0I
OBOB 8502 49 STA ZAT
OBOD A903 50 LDA #$03
OBOF 850S SI STA ZTO
OBll A900 52 BLUP LDA #$00
OBI3 8503 53 STA XTO
OBIS 8S04 S4 STA YTO
OB17 202311 55 LUPE JSR COMP
OBlA ASIO S6 LDA ERR
OBIC CS06 57 CMP SCOR
OBIE BOIF 58 BCS GOOD
OB20 A503 59 LDA XTO
OB22 C507 60 CMP XMAX
OB24 D006 6I BNE NEXT
OB26 A504 62 LDA YTO
OB28 C508 63 CMP YMAX
OB2A FOOS 64 BEQ OVER
OB2C 20FIOB 65 NEXT JSR NUTO
OB2F DOE6 66 BNE LUPE
OB3I 20FlOB 67 OVER JSR NUTO
OB34 2000II 68 JSR MOVE
OB37 A503 69 LDA XTO
OB39 8507 70 STA XMAX
OB3B A504 7I LDA YTO
OB3D 8508 72 STA YMAX
OB3F E600 73 GOOD INC XAT
OB41 A500 74 LDA XAT
OB43 C928 75 CMP #$28

Bishop Picture Compression 133

OB4S DOCA 76 BNE BLUP
OB47 A900 77 LDA #$00
OB49 8SOO 78 STA XAT
OB4B E60J 79 INC YAT
OB4D ASOl 80 LDA YAT
OB4F C918 81 CMP #$18
OBSl DOBE 82 BNE BLUP
OBS3 4C3AFF 83 JMP BELL
OBS6 84
OBS6 85 RECONSTRUCTION
OBS6 86
OB80 87 CRG $B80
OB80 0e OBJ $880
OB80 89
OB80 A900 90 RCCN LDA #$00
OB82 8D50CO 91 STA $COSO
OB8S 8D52CO 92 STA $COS2
OB88 8DS5CO 93 STA $COSS
OB8B 8DS7CO 94 STA $COS7
OB8E 8S03 9S STA XTO
OB90 8S04 96 STA YTO
OB92 A903 97 LDA #$03
OB94 8502 98 STA ZAT
OB96 A9FF 99 RLUP LDA #$FF
OB98 8SOB 100 STA BEST
OB9A A900 101 LDA #$00
OB9C 8SOO 102 STA XAT
OB9E 8S01 103 STA YAT
OBAO A901 104 LDA #$01
OBA2 850S lOS STA ZTC
OBA4 202311 106 LOOP JSR COMP
OBA7 AS06 107 LDA SCCR
OBA9 CSOB 108 CMP BEST
OBAB BOOA 109 BCS CONT
OBAD 850B 110 STA BEST
OBAF ASOO 111 LDA XAT
OBBl 8S09 112 STA XTMP
OBB3 ASOl 113 LDA YAT
OBBS 850A 114 STA YTMP
OB}37 ASOO llS CONT LDA XAT
OBB9 CS07 116 CMP XMAX
OBBB D006 117 BNE INC
OBBD ASOl 118 LDA YAT
OBBF CS08 119 CMP YMAX
OBCl FOlO 120 BEQ SEND
OBC3 E600 121 INC INC XAT
OBCS A500 122 LDA XAT
OBC7 C928 123 CMP #$28
OBC9 DOD9 124 BNE LOOP
OBCE A900 12S LDA #$00
OBCD 8SOO 126 STA XAT
OBCF E601 127 INC YAT
OBDl DODl 128 BNE LOOP
OBD3 AS09 129 SEND LDA XTMP
OBDS 8500 130 STA XAT
OBD7 A50A 131 LDA YTMP
OBD9 8501 132 STA YAT
OBDB A902 133 LDA #$02
OBDD 850S 134 STA ZTO
OBDF 200012 135 JSR STCR
OBE2 200011 136 JSR MOVE
OBES 20FlOE 1 37 JSR NUTO
OBE8 AS04 138 LDA YTO
OBEA C918 139 CMP #$18
OBEC DOA8 140 BNE RLUP
OBEE 4C3AFF 141 JMP BELL
OBFl E603 142 NUTO INC XTO
OBF3 AS03 143 LI;A XTO
OBFS C928 144 CMP #$28
OBF7 D006 145 BNE RET
OBF9 A900 146 LDA #$00
OBFB 8503 147 STA XTC
OBFD E604 148 INC YTO
OBFF 60 149 RET RTS
ocoo 150

134 Graphics and Games

ocoo 151 MOVE A PIXEL FROM XAT,YAT,ZAT
ocoo 152 TO XTO,YTO,ZTO
ocoo 153
1100 154 ORG $1100
1100 155 OBJ $EOO
1100 156
1100 BA 157 MOVE TXA
1101 4B 15B PHA
1102 9B 159 TYA
1103 4B 160 PHA
1104 205411 161 JSR PREP
1107 MOO 162 MLUP LVY XAT
1109 BlOC 163 LDA (AT) ,Y
llOB A403 164 LDY XTO
llOD 910E 165 STA (TC) ,Y
llOF A50D 166 LDA AT+l
1111 6904 167 ADC #$04
1113 B50D 16B STA AT+l
1115 A50F 169 LDA TO+l
1117 6904 170 ADC #$04
1119 850F 171 STA TO+l
lllB CA 172 DEX
lllC DOE9 173 BNE MLUP
lllE 6B 174 PLA
lllF AB 175 TAY
1120 6B 176 PLA
1121 AA 177 TAX
1122 60 178 RTS
1123 179
1123 180 COMPARE PIXEL AT XAT,YAT,ZAT
1123 181 TO XTO,YTO,ZTO
1123 182
1123 BA 183 COMP TXA
1124 48 184 PHA
1125 98 185 TYA
1126 4B 186 PHA
1127 205411 187 JSR PREP
112A A900 188 LDA #$00
112C 8506 189 STA SCOR
112E A400 190 CLUP LDY XAT
1130 BlOC 191 LDA (AT) ,Y
1132 A403 192 LDY XTO
1134 SlOE 193 EOR (TO), Y
1136 297F 194 AND #$7F
113B AB 195 TAY
1139 B90010 196 LDA BITS,Y
113C 6506 197 ADC SCOR
113E 8506 198 STA SCOR
1140 A50D 199 LDA AT+l
1142 6904 200 ADC #$04
1144 BSOD 201 STA AT+l
1146 A50F 202 LDA TO+l
1148 6904 203 ADC #$04
114A BSOF 204 STA TO+l
114C CA 205 DEX
114D DODF 206 BNE CLUP
114F 68 207 PLA
1150 AB 208 TAY
1151 68 209 PLA
1152 AA 210 TAX
1153 60 211 RTS
1154 212
1154 A502 213 PREP LDA ZAT
1156 6A 214 ROR
1157 6A 215 ROR
1158 6A 216 ROR
1159 GA 217 ROR
115A 29GO 218 AND #$60
llSC 850D 219 STA AT+l
USE AS05 270 LDA ZTC
llGO GA 221 ROR
llGl GA 222 ROR
11G2 GA 223 ROR
11G3 GA 224 ROR
1164 29GO 225 AND #$GO

Bishop Picture Compression 135

1166 8SOF 226 STA TO+l
1168 ASOl 227 LDA YAT
116A OA 228 ASL
116B OA 279 ASL
116C OA 230 ASL
116D AA 231 TAX
116E BDOOOC 232 LDA HGRL,X
1171 850C 233 STA AT
1173 BDOOOD 234 LDA HGRH,X
1176 291F 235 AND #$1F
1178 650D 236 ADC AT+l
117A 8500 237 STA AT+l
ll 7C A504 238 LDA YTO
ll 7E OA 239 ASL
117F CA 240 ASL
1180 OA 241 ASL
1181 AA 242 TAX
1182 BDOOOC 243 LDA HGRL,X
1185 850E 244 STA TO
1187 BDOOOD 245 LDA HGRH,X
118A 291F 246 AND #$1F
118C 6SOF 247 ADC TO+l
118E 850F 248 STA TO+l
1190 A208 249 LDX #$08
1192 60 250 RTS
1193 251
1193 20COOC 252 INIT JSR $0CCO
1196 A97F 253 LDA #$7F
1198 8D0160 254 STA $6001
119B 8D0164 255 STA $6401
119E 800168 256 STA $6801
llAl 8D016C 257 STA $6C01
11A4 8D0170 258 STA $7001
11A7 8D0174 259 STA $7401
llAA 8D0178 260 STA $7801
llAD 8D017C 261 STA $7C01
llBO A900 262 LDA #$00
11B2 8508 263 STA YMAX
11B4 A901 264 LDA #$01
11B6 8507 265 STA XMAX
11B8 60 266 RTS
11B9 267
1200 268 ORG $1200
1200 98 269 STCR TYA
1201 48 270 PHA
1202 A503 271 LDA XTO
1204 8511 272 STA XIN
1206 A504 273 LDA YTO
1208 8512 274 STA YIN
120A 202Cl2 275 JSR X40
1201) A513 276 LDA PRCD
120F 850E 277 STA TC
1211 18 278 CLC
1212 A514 279 LDA PROD+l
1214 6980 280 ADC #$80
1216 8SOF 281 STA TO+l
1218 A500 282 LDA XAT
121A 8511 283 STA XIN
121C A501 284 LDA YAT
121E 8512 285 STA YIN
1220 202Cl2 286 JSR X40
1223 A513 281 LDA PROD
1225 AOCO 288 LDY #$00
1227 910E 289 S'IA (TO) ,Y
1229 68 290 PLA
122A AB 291 TAY
122B 60 292 RTS
122C A512 293 X40 LDA YIN
122E 8513 294 STA PROI::
1230 A900 295 LDA #$00
1232 8514 296 STA PROD+l
1234 0613 297 ASL PRCD
1236 2614 298 ROL PROD+l
1238 0613 299 ASL PROD

136 Graphics and Games

123A 2614 300 ROL PROD+l
123C 0613 301 ASL PROD
123E 2614 302 ROL PROD+l
1240 A513 303 LDA PROD
1242 0613 304 ASL PROD
1244 2614 305 ROL PROD+!
1246 0613 306 ASL PROD
i24e 2614 307 ROL PROD+l
124A 6513 308 ADC PROD
124C 8513 309 STA PROD
124E A514 310 LDA PROD+l
1250 6900 311 ADC #$00
1252 8514 312 STA PROD+l
1254 A513 313 LDA PROD
1256 6511 314 ADC XIN
1258 8513 315 STA PROD
125A A514 316 LDA PROD+l
125C 6900 317 ADC #$00
125E 8514 318 STA PROD+l
1260 60 319 RTS

320 END

***** END OF ASSEMBLY

• •
* SYMBOL TABLE -- V 1.5 *
• •

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

XAT 0000 YAT 0001 ZAT 0002 XTO 0003 YTO 0004 ZTO 0005
SCOR 0006 XMAX 0007 YMAX 0008 XTMP 0009 YTMP OOOA BEST OOOB
AT oooc TO OCOE ERR 0010 XIN 0011 YIN 0012 PROD 0013

•• ABSOLUTE VARABLES/LABELS

HGRL ocoo HGRH ODOO BITS 1000 BELL FF3A BILD OBOO BLUP OBll
LUPE OB17 NEXT OB:?C OVER OB31 GOOD OB3F RCON OB80 RLUP OB96
LOOP OBA4 CONT OBB7 INC OBC3 SEND OBD3 NUTO OBFl RET OBFF
MOVE 1100 MLUP 1107 COMP 1123 CLUP 112E PREP 1154 INIT 1193
STOR 1200 X40 122C

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:Ol72

An Apple Flavored
Lifesaver

by Gregory L. Tibbetts

The game of LIFE is made a little easier with this
flexible storage program Which provides for translation,
rotation, and reversal of patterns.

John Conway's game of LIFE has one of the largest followings of any computer
simulation ever devised. My own interest dates back to my first "cellular ex
cursion" in 1972, on a Hewlett-Packard 2000c machine. Since then I've collected
half a dozen versions and have played with several more, all widely different in ex
ecution. One serious drawback nearly every version shares, however, is the sheer
drudgery of entering from 2 to 200 sets of coordinates each time a simulation is to
be run. I've seen several programs with systems to capture coordinates for a given
figure-some plain and some incredibly complex. All of these though, are
hampered by the fact that LIFE devotees rarely input the same pattern at exactly
the same location and orientation twice, and they usually like to combine figures
for interactive effects. One system attempting to circumvent these problems had
over 120 individual figures on paper tape, most duplicated up to 8 times for dif
ferent orientations, and all marked and cataloged. Now that's dedication!

Being basically lazy myself (after all, I bought a computer to save myself
work), I decided that I needed a few simple routines that would let me name and
save figures to disk, and then cail them back to the screen at virtually any loca
tion, at any reasonable orientation, and in combination with any other pattern on
file. My goal then, and the subject of this article, is simply to make LIFE a little
easier (pun intended).

The platform I chose to build my routine on is an excellent machine
code/Integer BASIC hybrid program written by Dick Suitor entitled ''Life for Your
Apple.'' It appeared in MICRO on the Apple, Volume I. Probably the best and
most versatile of all the versions I have seen, it has features like variable genera
tion speed, the ability to set random cells alive in a selected field, and the use of
contrasting color to show cell development.

My first task was to come up with a method of storing and retrieving the
figures. The obvious solution was to save the x,y coordinates in a sequential text
file. To make the figures completely relocatable however, I needed a way to make

138 Graphics and Games

the stored coordinates independent of the screen coordinates. The method I chose
was to select an arbitrary centerpoint for the figure, prior to input. Then as each
coordinate set was typed in, the x, y values of the center point would be subtracted
from the x, y values of the point being entered. The result is a set of codified x, y
values, positive and negative, which are relative only to the centerpoint, and
therefore totally independent of their current screen location. All that's required
to relocate the figure then, is to change the centerpoint when calling the figure
back from storage.

This method, in conjunction with Apple's system of screen coordinates, does
introduce an irregularity which will become important as we proceed. In normal
coordinate systems x values increase as we move to the right, and y values in
crease as we go up. With the Apple II, y values increase as we descend on the
screen. Further, all screen coordinates are positive, while the codified values may
be positive or negative, since they essentially make up a coordinate grid of their
own, with the x (horizontal) and y (vertical) axes intersecting at the chosen center
point. Unlike normal grids, therefore, y values will be negative above this x axis
and positive below it. It will be necessary to keep this in mind, as it is the codified
values we will be manipulating in the coming paragraphs when we determine how
to reorient the figures.

This second task-finding a way to bring the stored figure back to the screen
in a different attitude than originally entered-was somewhat more difficult than
simply making it relocatable. However, it quickly became clear that all possible
orientations could be achieved by reversing the figure, rotating it, or both.

Rotation is obtained by moving each point clockwise around the center some
distance (depending on the degree of rotation), while reversal takes the two
dimensional image and flips it over, as one would tum over a playing card.
Obviously reversal requires us to know which axis the figure is to be reversed
around.

Defining an algorithm to rotate and reverse the figures was an interesting
exercise, (actually three exercises and three algorithms). I'm sure that somewhere
in the field of coordinate mathematics there exists specific rules for such opera
tions. Being more a tinkerer than a scholar, however, I chose to discover those
rules by trial and error. Armed with graph paper and pencil, I defined a center, an x
and y axis, and began examining what happened to various sets of coordinates
when the points they described were reversed or rotated. The first thing I
discovered was that for any single set of coordinates, rotation or reversal involved
only two operations: either the unsigned magnitudes of the x and y values being
swapped, or the signs of one or both values being changed. One, or a combination
of these two alterations will produce all feasible orientations. I also learned that
rotations in other than 90° increments were not feasible for the purposes of the
LIFE game, but the proof of that is left as an exercise for the reader.

The reversal mechanism turned out to be the simplest. A little paper and pen
cil work showed that no matter which axis was used for reversal, any point
remained the same distance from each axis when reversed. The magnitudes of the

Tibbetts Lifesaver 139

x and y values then must remain the same. The signs, however, do not. A reversal
around the y axis, for example, sends points from the upper right quadrant
(+x, -y) to the upper left quadrant (-x -y), and from lower right (+x, + y) to
lower left (-x, + y). Obviously then, reversal on they axis changes the sign of the x
values only. By the same token, an x axis reversal changes the sign of they values
only. Translated into a sequence of program steps this mechanism is implemented
in program lines 1070-1110 and 350-400. I also resolved the further question of
whether multiple reversals were desirable, that is, two reversals around one axis,
or one around each. I determined they were not, but as a second exercise, for fun,
the reader may wish to prove why they were not.

Rotation was a little harder as the cases of 90°, 180°, and 270° rotation all had
to be allowed for. Easiest to discover was the 180° process. Just as in the reversal
case, a point rotated 180° still remains the same distance from each axis, and
therefore, the x and y magnitudes remain the same. Signs however, do not follow
the same pattern as during reversal. Since the points in the upper right quadrant
(+ x, - y) move to the lower left (- x, + y), lower right(+ x, + y) to upper left (- x, - y)
and vice versa, it becomes clear that both x and y values must change sign. A 180°
rotation therefore is accomplished by simply multiplying the two values by -1.
This is implemented in lines 1030-1060 and 320-340.

A 90° rotation is not so straight-forward. It is best seen by using the example
of a clock face with the x axis running through the 9 and 3, and they axis through
the 12 and 6. A 90° rotation of this clock face moves the point at numeral 1 to the
position of numeral 4 . For the first time, the magnitude of the x and y values have
changed. The distance of the point from the y axis in its original position has
become the distance from the x axis after rotation and vice versa. What happens in
a 90° rotation then, is that the magnitudes of x and y are simply exchanged. The
signs, unfortunately, do not follow such a clearcut pattern. Nevertheless, a pat
tern does exist. I found it by examining the four quadrants in sequence and noting
what happens to their associated x and y signs. Starting at the upper right (+x, -y)
and moving to the lower right produces (+ x, + y) . Another 90° rotation produces
(- x, + y), and the final rotation (- x, - y). Study here shows that the sign of x in
the original quadrant is the sign y will have in the new quadrant. Since the
magnitude of x becomes the magnitude of y also, we can simply give y the signed
value of x for every point to be rotated. You can also see that the sign of the new x
value is the opposite of the old y value. To get the new x value we must multiply
the old signed value of y by - l. These two steps complete the 90° algorithm and it
is implemented in lines 1030-1060 and 270-310. To keep the program as short as
possible, 270° rotations were made by using the 90° and 180° subroutines
together. This completes the screen output design.

Disk storage is achieved by saving the x and y arrays into a sequential text
file; each figure to a separate file . Though this is somewhat wasteful of disk space,
I set it up this way to avoid complex file management routines, and to allow for
easy renaming and catalog display. The final step was to insert tests in the plot
sequence to prevent range errors from crashing the program if a center point was
selected that would cause the figure to plot off the screen, and having to restart the
program from scratch. The original centerpoint is not stored with the codified
values, and consequently is not available for later examination.

140 Graphics and Games

The program as it appears in the listing, is set up to run on a 48K Apple II,
using Apple DOS to store and retrieve the patterns. The instructions for setting up
the program, however, are universal with respect to RAM size. I believe that the
program could also be converted to use a cassette-based DOS imitator as off-line
storage, but that is beyond the scope of this article. (Editor's Note: See Robert
Stein's "Cassette Operating System" article, in the Hardware section.) The
machine code runs resident at $800 (2048), and the program has been modified to
load both sections as a unit, and relocate the machine portion when run. (Editor's
Note: Both separate BASIC and Machine Language sections, as well as the combined
version, are saved on disk.)

The program is completely automated and self-prompting, therefore I have
only a few helpful hints.

First, patterns are best developed on, and input from graph paper numbered
along the top and side to match the screen. This gives a backup as well as a hard
copy visual image to check the screen output. Second, the centerpoint you select
to input the figure is not automatically set as a live cell. Consequently, it can
literally be any point on the screen. You must remember though, that all figures
are rotated and reversed around this relative center and, therefore, it should be
chosen with care. Third, with really large figures where the choice of center point
is critical to keep from plotting the figure off screen, it is helpful to include the
center coordinates in the figure name as a guide during recall. Last, due to the
finite field limits established by Mr. Suitor's program, known patterns may not
behave normally if they contact the edge. Gliders for example, turn to boxes as
they hit the edge, rather than continue to move off screen. This is no cause for
alarm; simply a fact of Life.

For fun, create a pattern file with the coordinates listed below. Name this
figure PULSAR SEED, and use an initial centerpoint of say 19,19. When you run it
the results may surprise you. In any case, have fun!

(x,y); (10,8); (9,9); (11,9); (9,10); (11,10); (9,11); (10,11); (11,11); (9,12);
(11,12); (9,13); (11,13); (10,14); (99,99) .

Tibbetts Lifesaver 141

0800 1 ;************************
0800 2 ; * *
0800 3 :* APPLE LIFESAVER *
0800 4 ;* GREGORY L. TIBBETTS *
0800 5 ;* •
0800 6 ;* LIFESAVER •
0800 7 ;* •
0800 8 :* COPYRIGHT {C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, MA 01824 *
0800 11 :* ALL RIGHTS RESERVED *
0800 12 :* *
0800 13 ~************************
0800 14
0800 15
0800 16
0800 A505 17 LBLI LDA $0005
0802 8503 18 STA $0003
0804 A504 19 LDA $0004
0806 8502 20 STA $0002
0808 18 21 CLC
0809 6980 22 ADC #$80
080B 8504 23 STA $0004
080D A505 24 LDA $0005
080F 6900 25 ADC t$00
0811 C908 26 CMP t$08
0813 DOOC 27 BNE L8LA
0815 A504 28 LDA $0004
0817 6927 29 ADC t$27
0819 C952 30 CMP t$52
0818 1008 31 BPL LBL8
081D 8504 32 STA $0004
081F A904 33 LDA #$0004
0821 8505 34 L8LA STA $0005
0823 18 35 CLC
0824 60 36 LBLR RTS
0825 38 37 LBLB SEC
0826 BOFC 38 BCS LBLR
0828 20CA08 39 JSR LBLS
0828 200008 40 LBLX JSR LBLI
082E 9001 41 BCC LBLC
0830 60 42 RTS
0831 A027 43 LBLC LDY t$27
0833 98 44 TYA
0834 AA 45 TAX
0835 A900 46 LBLH LDA t$OO
0837 994009 47 STA $0940,Y
083A 997009 48 STA $0970,Y
083D Bl02 49 LDA ($02). y
083F FOOF 50 BEQ LBLE
0841 lOOA 51 BPL LBLD
0843 FE4009 52 INC $0940,X
0846 FE7009 53 INC $0970,X
0849 2908 54 AND t$08
084B F003 55 BEQ LBLE
084I: FE4009 56 LBLD INC $0940,X
0850 Bl04 57 LBLE LDA ($04).Y
0852 FOOF 58 BEQ LBLG
0854 1003 59 BPL LBLF
0856 PE7009 60 INC $0970,X
il859 2908 61 LBLF AliD t $08
085B F006 62 BEQ LBLG
085D FE7009 63 INC $0970,X
0860 FE4009 64 INC $0940,X
0863 88 65 LBLG DEY
0864 CA 66 DEX
0865 lOCE 67 BPL LBLH
0867 A026 68 LDY t$26
0869 18 69 CLC
086A AD6709 70 LDA $0967
086D 6D6609 71 ADC $0966
0870 8506 72 STA $0006
0872 AD9709 73 LDA $0997
0875 6D9609 74 ADC $0996

142 Graphics and Games

0878 8507 75 STA $0007
087A 18 76 LBLW CLC
087B A506 77 LDA $0006
087D 793F09 78 ADC $093F,Y
0880 38 79 SEC
0881 F94209 80 SBC $0942,Y
0884 8506 81 STA $0006
0886 C903 82 CMP 1$03
0888 FOOE 83 BEQ LBLK
OSSA 9004 84 BCC LBLJ
oeec c9o4 85 CMP #$04
OSSE FOOE 86 BEQ LBLL
0890 Bl02 87 LBLJ LDA ($02). y
0892 FOOA 88 BEQ LBLL
0894 2985 89 AND #$85
0896 5004 90 BVC LBLM
0898 Bl02 91 LBLK LDA ($02),Y
089A 0930 92 ORA #$30
089C Bl02 93 LBLM LDA ($02). y
089E 18 94 LBLL CLC
089F A507 95 LDA $0007
08Al 796F09 96 ADC $096F,Y
08A4 38 97 SEC
08A5 F97209 98 SBC $0972,Y
OBAS 8507 99 STA $0007
OSAA C9C3 100 CMP t$03
OSAC FOOE 101 BEQ LBLP
OSAE 9004 102 BCC LBLN
OBBO C904 103 CMP #$04
08B2 FOOE 104 BEQ LBLT
08B4 Bl04 105 LBLN LDA ($04), y
08B6 FOOA 106 BEQ LBLT
OSBS 29F8 107 AND #$F8
OSBA 5004 108 BVC LBLV
OSBC Bl04 109 LBLP LDA ($04). y
OSBE 0903 110 ORA #$03
OSCO 9104 111 LBLV STA ($04). y
08C2 88 112 LBLT DEY
08C3 F002 113 BEQ LBLU
oec5 10B3 114 BPL LBLW
08C7 4C2B08 115 LBLU JMP LBLX
OSCA A904 116 LBLS LDA #$04
08CC 8505 117 STA $0005
08CE A900 118 LDA #$00
08DO 8504 119 STA $0004
08D2 8D6809 120 STA $0968
08D5 8D8809 121 STA $0988
08D8 60 122 RTS
08D9 20CA08 123 JSR LBLS
08DC 200008 124 LABD JSR LBLI
08DF 9001 125 BCC LBLY
08El 60 126 RTS
08E2 l\027 127 LBLY LDY #$27
08E4 Bl02 128 LBLO LDA ($02). y
08E6 FOOA 129 BEQ LBLZ
08E8 297F 130 AND i$7F
08EA C910 131 CMP t$10
08EC 3002 132 BMI LABA
08EE 0980 133 ORA #$80
08FO 9102 134 LABA STA ($02). y
08F2 Bl04 135 LBLZ LDA ($04). y
08F4 FOOA 136 BEQ LABB
08F6 29F7 137 AND #$F7
08F8 6A 138 ROR
08F9 9002 139 BCC LABC
08FB 0904 140 ORA #$04
08FD 2A 141 LABC ROL
08FE 9104 142 STA ($04). y
0900 88 143 LABB DEY
0901 FOD9 144 BEQ LABD
0903 lODF 145 BPL LBLO

146 END

Tibbetts Lifesaver

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC . LABEL. LOC .

** ZERO PAGE VARIABLES:

** ABSOLUTE VARABLES/LABELS

LBLI 0800 LBLA 0821 LBLR 0824
LBLH 0835 LBLD 084D LBLE 0850
LBLJ 0890 LBLK 0898 LBLM 089C
LBLV 08CO LBLT 08C2 LBLU 08C7
LBLO OBE4 LABA 08FO LBLZ 08F2

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOFA

1
2
3
4
5
6
7
8
9

REM ************************
REM * *
REM * APPLE LIFE-SAVER *
REM * GREGORY TIBBETTS *
REM * *
REM * LIFESAVER *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *

10
11
12
13
14

REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM ************************
REM

15 LOMEM:2500
16 DIM HEX$(30)
30 PRINT "BLOAD LIFE"
50 GOTO BOO

LBLB
LBLF
LBLL
LBLS
LABC

60 POKE -16302,0: COLOR=O: FOR K=40 TO 47
70 HLIN 0,39 AT K: NEXT K

0825 LBLX 082B
0859 LBLG 0863
089E LBLN 08B4
C8CA LABD OBDC
08FD LABB 0900

80 KX= PDL (0)-10: IF KX>240 THEN KX=KXl: IF KX<O THEN KX=O
90 Kl=KX*6:K2=KX*2:K3=500/(Kl+50)+1

100 FOR !=l TO K3
llO CALL GEN
120 FOR K=l TO K2: NEXT K
130 CALL MOP
140 FOR K=l TO SIZE: COLOR=ll
150 NEXT I
160 GOTO 80
170 FOR I•l TO SIZE: CCLOR=ll
180 X•XCTR+X(I):Y=YCTR+Y(I)
190 IF X<O OR X>39 OR Y<O OR Y>39 THEN 1210
200 PLOT X,Y: NEXT I
210 RETURN
220 FOR I=Il TO I2: FCR J=Jl TO J2
230 COLOR=ll: IF RND (L) THEN COLOR=O
240 PLOT I,J
250 NEXT J: NEXT I
260 GOTO 60
270 FOR I=l TO SIZE
280 X•Y(I):Y•X(J)
290 IF Y(I) THEN X=X*-1

LBLC
LBLW
LBLP
LBLY

143

0831
087A
08BC
08E2

144 Graphics and Games

300 X(I)=X:Y(I)sY
310 NEXT I: RETURN
320 FOR I=l TO SIZE
330 X(I)=X(I)*-l:Y(I)=Y(I)*-1
340 NEXT I: RETURN
350 FOR l•l TO SIZE
360 IF XAX THEN 380
370 X=X(I):Y•Y(I)*-1: GOTO 390
380 Y•Y(I):X•X(I)*-1
390 X(I)•X:Y(I)=Y: NEXT
400 RETURN
410 PRINT D$:"0PEN":A$
420 PRINT D$:"READ":A$
430 FOR I=l TO 255
440 INPUT X(I),Y(I)
450 IF X(I)=99 OR Y(I)=99 THEN 470
460 NEXT I
470 SIZEsI-1
480 PRINT D$:"CLOSE":A$
490 IF ROT THEN GOSUB 270
500 IF HALF THEN GOSUB 320
510 IF REV THEN GOSUB 350
520 GOSUB 170
530 HALF=O:ROT=O:REV=O:XAX=O:SIZE=O
540 RETURN
550 PRINT D$:"0PEN":A$
560 PRINT D$: "DELETE" :A$
570 PRINT D$; "OPEN": A$
580 PRINT D$: "WRITE" :A$
590 FOR I•l TO SIZE
600 PRINT X(I)
610 PRINT Y(I)
620 NEXT I
630 PRINT D$:"CLOSE":A$
640 RETURN
650 FOR l=l TO 255
660 INPUT X,Y
670 IF X=99 OR Y=99 THEN 720
680 IF X<O OR X>39 OR Y<O OR Y>39 THEN 700
690 X(I)•X-XCTR:Y(I)=Y-YCTR: GOTO 710
700 PRINT "INPUT X,Y",X,Y
710 NEXT I
720 X(I)•99:Y(I)•99
730 SIZE=I
740 RETJJRN
750 INPUT "INPUT X,Y",X,Y
760 IF X=99 OR Y=99 THEN 60
770 IF X<O OR X>39 OR Y<O OR Y>39 THEN 790
780 COLOR=ll: PLOT X,Y: GOTO 750
790 PRINT "OUT OF RANGEi": GOTO 750
800 TEXT
810 DIM X(255),Y(255),A$(50),B$(2),0$(1)
820 GEN=2088:MOP=2265:Kl•l:K2=l:D$•" ": REM D$=CNTRL D
830 CALL -936: VTAB 5: TAB 9: PRINT "CONWAY'S GAME OF LIFE": FOR I=l TO

700: NEXT I
840 GR
850 PRINT "DO YOU WISH TO: I.PLAY OR 2.CREATE"
860 INPUT "A NEW PATTERN FILE (1/2).",Cl
870 IF Cl=2 THEN 1140
880 INPUT "SPEED=PDL(O):SET DEFAULT (0-255)",KXl
390 PRINT "00 YOU WISH: I.RANDOM PATTERN 2.PATTERN"
900 INPUT "FROM DISK OR 3.STANDARD: (1/2/3)",Cl
910 IF Cl=3 THEN 990
920 IF Cl=2 THEN 1010
930 INPUT "X DIRECTION LIMITS ",Il,I2
940 IF 11<0 OR 12>39 OR Il>I2 THEN 930
950 INPUT "Y DIRECTION LIMITS ",Jl,J2
960 IF Jl<O OR J2>39 OR Jl>J2 THEN 950
970 INPUT "ONE IN 'N' CELLS WILL LIVE: ENTER N",L
980 GOTO 220
990 PRINT "ENTER YOUR PATTERN (X,Y):99,99 EXITS"

1000 GOTO 750
1010 INPUT "WHAT FIGURE NAME",A$
1020 INPUT "ENTER CENTER COORD'S (X,Y)",XCTR,YCTR

1030 INPUT "ENTER ROTATION (0/90/180/270)",ROT
1040 IF ROT=180 OR ROT=270 THEN HALF=l
1050 IF ROT=90 OR ROT=270 THEN ROT=l
1060 IF ROT<>l THEN ROT=O

Tibbetts

1070 INPUT "ENTER I.REVERSED OR 2.STANDARD (1/2)",REV
1080 IF REV>l THEN REV=O: IF NOT REV THEN 1110
1090 INPUT "REVERSE ON 1.X-AXIS OR 2.Y-AXIS (1/2)",XAX
1100 IF XAX>l THEN XAX=O
1110 GOSUB 410
1120 INPUT "ANOTHER FIGURE (Y/N)",B$: IF B$="N" THEN 60
1130 PRINT "CAUTION: FIGURES MAY OVERWRITE!": GOTO 1010
1140 INPUT "ENTER CENTER COORD'S (X,Y)",XCTR,YCTR
1150 PRINT "ENTER ALL LIVE CELLS (X,Y):99,99 EXITS"
1160 GOSUB 650
1170 INPUT "ENTER NAME FOR THIS FIGURE" ,A$
1180 GOSUB 550
1190 PRINT "TESTING": GOSUB 410
1200 GOTO 60
1210 PRINT "PLOT ABORTED/FIGURE WENT OFF SCREEN"
1220 PRINT "MOVE CENTERPOINT:X AND Y WHEN ABORTED"
1230 PRINT "WERE ";X;", ";Y: PCP : PCP
1240 IF I=l THEN 1020:IE=I-l: COLOR=O: FOR I=l TC IE
1250 PLOT X(I)+XCTR,Y(I)+YCTR: NEXT I: GOTO 1020

Lifesaver

1260 REM ADAPTATION BY GREG TIBBETTS OF RICHARD SUITOR'S PROGRAM IN
1265 REM "BEST OF MICRO" VOLUME II 1979
1270 REM LINES 0-50 PROGRAM SET-UP
1280 REM 60-160 SPEED AND GENERATION
1290 REM 170-210 GENERAL PLOT SUBR.
1300 REM 220-26C RANDOM PLOT SUBR.
1310 REM 270-340 ROTATION SUBR'S.
1320 REM 350-400 REVERSAL SUBR.
1330 REM 410-540 DISK READ SUBR.
1340 REM 550-640 DISK WRITE SUBR.
1345 REM 650-740 DISK INPUT SUBR.
1350 REM 750-790 STANDARD INPUT SUBR.
1360 REM 800-840 INITIALIZATION
1370 REM 850-920 MODE SELECTION
1380 REM 930-1200 USER INPUT/SELECT
1390 REM 1210-1250 PLOT ABORT SUBR.

10000 END

145

Applayer Music
Interpreter

by Richard F. Suitor

The Apple's built-in ability to generate sound is well
known. Yet oftentimes this powerful capability is under
utilized by Apple users, due to the difficulty involved in
programming meaningful tones. The Applayer music
interpreter eliminates most of these complications, and
provides a straightforward method to produce real
music on your Apple.

This music program is more than a tone-making routine, it is a music interpreter.
It enables you to generate a table of bytes that specify precisely the half-tone and
duration of a note with a simple coding. Its virtue over the simpler routines is
similar to that of any interpreter (such as Sweet 16, or, more tenuously, BASIC)
over an assembler or hand coding-it is easier to achieve your goal and easier to
decipher the coding six months later.

The immediate motivation for this interpreter was Martin Gardner's
Mathematical Games Column in the April 1978 Scientific American. Several
types of algorithmically generated music are discussed in that column; this pro
gram provides a means of experimenting with them as well as a convenient
method of generating familiar tunes.

The program is written in 6502 assembly language. It would be usable on a
system other than the Apple if a speaker was interfaced in a similar way. Access
ing a particular address (C030) changes the current through the Apple speaker
fi-om on to off or from off to on; it acts like a push button on/off switch (or, of
course, a flip-flop). Thus this program makes sound by accessing this address
periodically with an LOA C030. Any interface that could likewise be activated
with a similar (4 clock cycles) instruction could be easily used. A different inter
facing software procedure would change the timing and require more extensive
modification.

The tone is generated with a timing loop that counts for a certain number of
clock cycles, N (all of the cycles in a period including the toggling of the speaker
are counted). Every N cycles a 24 bit pattern is rotated and the speaker is toggled if
the high order bit is set. Four cycles are wasted (to keep time) if the bit is not set.

Suitor Applayer 147

There is a severe limit to the versatility of a waveshape made from on/ off transi
tions, but tones resembling a variety of (cheap) woodwinds and pipes are possible,
with fundamentals ranging from about 20 Hz to 8 KHz.

Applayer interprets bytes to produce different effects. There are two types of
bytes:

Note bytes - Bit 7 Not Set
Control bytes - Bit 7 Set to 1

A note byte enables you to choose a note from one of 16 half tones, and from
one to eight eighth notes in duration. The low order nibble is the half-tone; the
high order nibble is the duration (in eighth notes) minus one.

Bit 7654 3210
Note Byte 0 (Duration) (Half-Tone)

The control bytes enable you to change the tempo, the tonal range which the
16 half-tones cover, rests, the waveshape of the tone and to jump from one portion
of the table to another.

HEX
81

82

83

9N

AN

CN

FF

DECIMAL
129

130

131

144+N

160+ N< 32

192+ N<62

255

Control Byte Table

FUNCTION
The next three bytes are the new waveshape
pattern.
JMP-New table address follows. Low order byte
first, then page byte.
JSR-New table address follows. When finished,
continuing this table at byte after address byte.
N is the number of 16th notes to be silent at the tail
of a note. Controls rests and note definition.
Selects the tonal range. Half-tone HO is set to one of
32 half-tones giving a basic range of four octaves.
Controls the tempo. Length of a note is proportional
to N. Largest value gives a whole note lasting about
3.5 sec.
RETURN. Stop interpreting this table. Acts as return
for 83 JSR instruction or causes return from Ap
player.

To use Applayer with sheet music, you must first decide on the range of the
half tones. This must sometimes be changed in the middle of the song. For exam
ple, the music for "Turkey in the Straw", which appears later, was in the key of
C; for the first part of the song I used the following table:

NOTE C D E F G A B C D
TONE # 0 2 4 5 7 9 B C E

148 Graphics and Games

The tonal range was set with a control byte, BO. In the chorus, the range of the
melody shifts up; there the tonal range is set with a B7 and the table is

NOTE G A B C D E F G A
TONE # 0 2 4 S 7 9 A C E

(The actual key is determined by the waveshape pattern as well as the tonal range
control byte. For the pattern used, OS OS OS, the fundamental for the note written
as C would be about 346Hz, which is closer to F.)

Rests can be accomplished with a 9N control byte and a note byte. For exam
ple, 94 10 is a quarter rest, 98 30 is a half rest, etc. This control is normally set at
91 for notes distinctly separated, or to 90 for notes that should run together.

Let's try to construct a table that Applayer can use to play a tune. We can start
simply with "Twinkle, Twinkle Little Star." That tune has four lines; the first
and fourth are identical, as are the second and third. Our table will be constructed to:

1. Set up the tonal range, tone pattern and tempo that we want
2. JSR to a table for the first line
3. JSR to a table for the second line
4. Repeat #3
S. Repeat #2
6. Return
7. First line table and return
8. Second line table and return

Since Applayer is not symbolic, it will be easier to construct the tables in
reverse, so that we can know where to go in steps 2-6. The note table for the first
line can go at OBOO and looks like:

OBOO- 10 10 17 17 19 19 37 lS
OB08- lS 14 14 12 12 30 FF FF

The second line can follow at OB 10:

OBlO- 17 17 lS lS 14 14 32 FF

Now we can start on step 1. I'll suggest the following to start; you'll want to make
changes:

OB20- BO 81 OS OS OS EO 91

The above determines the tonal range, the tone waveshape, the tempo, and a six
teenth note rest out of every note to keep the notes distinct. To run them together,
use 90 instead of 91. Steps 2 - 6 can follow immediately:

OB20- 83
OB28- 00 OB 83 10 OB 83 10 OB
OB30- 83 00 OB FF

Suitor Applayer 149

That completes the table for "Twinkle, Twinkle." We now have to tell
Applayer where it is and tum it on. From BASIC we must set up some zero page
locations first and then JSR to Applayer: (Don't forget to set LOMEM before run
ning; 2900 will do for this table.)

100 POKE 19, 32
110 POKE 20, 11
120 POKE 1, 8
130 POKE 17, 8
140 POKE 16, 0
120 CALL 2346

(low order byte of the table address, 0820)
(high order byte of the table address, 0820)
(high order byte of 1st page of Applayer program)
(16 & 17 contain the tone table address)

Uump subroutine to 092A)

We can also make a short program in assembly language to set up the zero
page locations. See routine ZERO, location 09CO in the listing.

This initialization can be used most easily by reserving the AOO page, or much
of it, as a "Table of Contents" for the various note tables elsewhere in memory.
To do this with ''Twinkle, Twinkle'' we add the following table:

OA20- 82 20 OB

This jumps immediately to the table at OB20. With this convention, we can move
from table to table by changing only the byte at 9DO (2512 decimal).

We can use this initialization from BASIC, too, by changing the last instruc
tion to RTS:

100 POKE 2512,32 (low order table byte)
110 POKE 2538,96 (change inst. at 09EA to RTS)
120 CALL 2496 Uump subroutine to 9CO)

From the monitor: *9D0:20
*9COG

will do.

If you quickly tire of "Twinkle, Twinkle," you may wish to play with
"Turkey in the Straw." The table follows; its structure will be left as an exercise.

From the monitor: *9DO:O
*9COG

will play it.

150 Graphics and Games

(Editor's Note: An Integer BASIC driver routine for APPLA YER, called
APP LA YER MENU, is included on the disk. This driver program automatically
loads and executes the music interpreter, allowing playback of either of the two
example tunes discussed (these tunes are included in the APPLA YER binary file) .
Users without Integer BASIC in their systems may still load and execute
APPLA YER directly from the monitor, as described in the article.)

(Editor's~: Glitches in "Turkey in the Straw" were deliberately included. It is
left as an exercise to the reader to correct them!)

Note Table for "Turkey in the Straw"

OAOO: 83 90 OF 83 90 OF FF
OFOO: 90 1C 1A 92 38 90 18 1A
OF08: 18 13 10 11 91 13 13 33
OF10: 33 90 18 1A 92 3C 3C 90
OF18: 1C 1A 18 1A 91 1C 38 18
OF20: 38 90 1C 1A 92 38 90 18
OF28: 1A 18 13 91 10 11 13 53
OF30: 33 90 18 1A 91 3C 3F 90
OF38: 1F 1C 18 1A 1C 18 92 3A
OF40: 94 78 91 FF
OF50: 81 55 55 55 FF
OF58: 81 05 05 05 FF
OF60: 15 18 18 15 78 FF
OF68: 16 1A 1A 16 7A FF
OF70: 1D 1D 1D 1D 18 18 18 18
OF78: 35 15 15 33 90 11 13 91
OF80: 15 18 18 18 90 18 15 11
OF88: 13 91 15 15 13 13 71 FF
OF90: 83 58 OF D4 BO 83 50 OF
OF98: 87 83 60 OF 83 50 OF 83
OFAO: 60 OF 83 50 OF 83 68 OF
OFA8: 83 50 OF 83 68 OF 83 50
OFBO: OF 83 70 OF FF

Tone Table

0800: AO 03 68 03 38 03 08 03
0808: EO 02 88 02 90 02 68 02
0810: 48 02 28 02 08 02 i=8 01
0818: DO 01 84 01 9C 01 84 01
0820: 70 01 SC 01 48 01 34 01
0828: 24 01 14 01 04 01 F4 00
0830: E8 00 DA 00 CE 00 C2 00
0838: 88 00 AE 00 A4 00 9A 00
0840: 92 00 8A 00 82 00 7A 00
0848: 74 00 6D 00 67 00 61 00
0850: 5C 00 57 00 52 00 4D 00
0858: 49 00 45 00 41 00 3D 00

Suitor Applayer 151

0600 1 ************************
0800 2 * *
0800 3 * APPLAYER MUSIC *
0800 4 * INTERPRETER *
0800 5 * RICHARD F. SUITOR *
0800 6 * *
0800 7 * AP PLAYER *
0800 8 * *
0800 9 * COPYRIGHT (C) 1981 *
0800 10 * MICRO INK, INC. *
0800 11 * CHELMSFCRD, MA 01824 *
0800 12 * ALL RIGHTS RESERVED *
0800 13 * *
0800 14 ************************
0800 15
0800 16
0800 17
0800 18
0860 19 ORG $0860
0860 20 OBJ $0860
0860 21
0860 22 ' 0860 EA 23 TIME NOP
0861 EA 24 NOP
08~2 EA 25 NOP
0863 88 26 TIMEA DEY
0864 8545 27 STA $0045 ;ANY INNOCUOUS 3 CYCLE INSTRUCTION
0866 DOFB 28 BNE TIMEA ;BASIC 8 CYCLE LOOP
0868 FOOS 29 BEQ TIMEC
086A 88 30 TIMEB DEY
086B EA 31 NOP
086C EA 32 NOP
086D DOF4 33 BNE TIMEA
086F 2404 34 TIMEC BIT $0004 ;START CHECK OF BIT PATTERN
0871 38 35 SEC ;IN 2, 3, AND 4
0872 3002 36 BMI TIMED
0874 EA 37 NOP
0875 18 38 CLC
0876 2603 39 TIMED ROL $0003
0878 2602 40 ROL $0002
087A 2604 41 ROL $0004
087C 9003 42 BCC TIMEE
087E AD30CO 43 LDA $C030 ;TOGGLE SPEAKER
0881 C606 44 TI MEE DEC $0006 ;DURATION OF NOTE IN
0883 D005 45 BNE TIMEF ;NO. OF CYCLES IN LOCATIONS
0885 C607 46 DEC $0007 ;6 AND 7
0887 D005 47 BNE TIMEG
0889 60 48 RTS
088A EA 49 TIMEF NOP ;TIMING EQUALIZATION
088B EA 50 NOP
088C DOOO 51 BNE TIMEG
088E A405 52 TI MEG LDY $0005
0890 6COOOO 53 JMP ($0000)
0893 54
0893 55 ;SCALING ROUTINE FOR CYCLE DURATION
0893 56 ;CALCULATION LOC 6,7 = A REG *LOC
0893 57 ; so, 51
0893 58 ' 0893 8545 59 SCALE STA $0045
0895 A900 60 LDA #$00
0897 8506 61 STA $0006
0899 8507 62 STA $0007
089B A205 63 LDX #$05
089D 18 64 CLC
089E 6607 65 SC ALEX ROR $0007
08AO 6606 66 ROR $0006
08A2 4645 67 LSR $0045
08A4 900C 68 BCC SCALEA
08A6 A506 69 LDA $0006

152 Graphics and Games

OBAS 6550 70 ADC $0050
OBAA 8506 71 STA $0006
OBAC A507 72 LDA $0007
OBAE 6551 73 ADC $0051
OSBO 8507 74 STA $0007
08B2 CA 75 SC ALEA DEX
08B3 10E9 76 BPL SCA LEX
08B5 E607 77 INC $0007 SIMPLE LOGIC IN TIMING ROUT!~
08B7 60 78 RTS
OBBE 79 ORG $08BE
OBBE 80 ' OBBE 81 ;NOTE PLAYING ROUTINE Y REG
OBBE 82 ;HAS HALF-TONE INDEX
OBBE 83 ;
OBBE A512 84 NOTE LDA $001:.> ;NOTE LENGTH
OSCO 8552 85 STA $0052
08C2 A50F 86 LDA $000F ;NOTE TABLE OFFSET
08C4 8510 87 STA $0010
08C6 BllO 88 LDA ($0010),Y ;LOW ORDER BYTE OF
00ca 38 89 SEC ;MACHINE CYCLES PER PERIOD
08C9 8554 90 STA $0054
08CB E935 91 SBC 1$35 ;CYCLES USED UP TIMING OVERHEAD
08CD 8508 92 STA $0008
OBCF ca 93 INY
0800 BllO 94 LDA ($0010). y ;HIGH ORDER BYTE OF MACHINE
08D2 8555 95 STA $0055 ;CYCLES PER PERIOD
08D:4 E900 96 SBC #$00
08D6 8509 97 STA $0009
OBDB A900 98 LDA 1$00
OSDA 8550 99 STA $0050
OBDC 8551 100 STA $0051
OBDE 8553 101 STA $0053
OBEO AOlO 102 LDY #$10
08E2 202403 103 JSR $0324
08E5 104
08E5 105
08E5 106 THE ROUTINE AT $324 EMULATES THE OLD
08E5 107 MONITOR DIVIDE ROUTINE, WHICH DIVIDES
08E5 108 LOCS 54,55 BY 52,53 AND LEAVES THE
08E5 109 RESULT IN 50,51 FOR THE SCALING
OSE5 110 ROUTINE. THIS DIVIDE ROUTINE IS LISTED
08E5 111 IN THE REFERENCE MANUAL ON P.162 ($FB81)
08E5 112
08E5 A508 113 LDA $0008
08E7 48 114 PHA
08E8 4609 115 LSR $0009
OBEA 6A 116 ROR
OBEB 4609 117 LSR $0009
OBED 6A 118 ROR
OBEE 4609 119 LSR $0009
OBFO 6A 120 ROR
08Fl 8505 121 STA $0005 ;NC. OF 8 CYCLE LOOPS
08F3 68 122 PLA
08F4 2907 123 AND #$07 ;LEFT OVER CYCLES DETERMINE
08F6 AA 124 TAX ;ENTRY POINT
08F7 BDF809 125 LDA TTABLE,X ;TABLE OF ENTRY POINTS
Ol:!J;'A 1:!500 126 STA $0000 : FOR TIMING LOOP
OSFC A50E 127 LDA $000E ;NOTE DURATION, QUARTER,
OSFE 38 128 SEC ;HALF
OSFF E50D 129 SBC $000D ;REST PART OF NOTE
0901 FOOF 130 BEC NOTEB ;IF NOTHING TO DO
0903 209308 131 JSR SCALE ;SCALING ROUTINE
0906 A202 132 LDX #$02 :START PATTERN LOAD

0908 B50A 133 NOT EA LDA $0A,X
090A 9502 134 STA $02,X
090C CA 135 DEX
0900 10F9 136 BPL NOT EA
090F 206F08 137 JSR TIM EC ;TIMING ROUTINE

Suitor Applayer 153

0912 A50D 138 NOTEB LDA $000D REST PART OF NOTE
0914 FOOE 139 BEQ MAIN IF NOTHING TO DO
0916 209308 140 JSR SCALE SCALING ROUTINE
0919 A900 141 LI:A #$00
091B 8502 142 STA $0002 ;ZERO OUT PATTERN FOR
0910 8503 143 STA $0003 ;REST PART
091F 8504 144 STA $0004
0921 206F08 145 JSR TIMEC ;TIMING
0924 146 ORG $0924
0924 147
0924 148 ;MAIN PART OF INTERPRETER
0924 149 ;ENTRY AT "ENTRY"
0924 150
0924 E613 151 MAIN INC $0013 ;TABLE ADDRESS
0926 D002 152 BNE ENTRY
0928 E614 153 INC $0014
092A AOOO 154 ENTRY LOY #$00
092C Bll3 155 LOA ($0013).Y ; NEXT TABLE BYTE
092E 3012 156 BM! MAI NA ;TO CONTROL SECTION
0930 48 157 PHA
0931 290F 158 AND #$OF ;TONE
0933 OA 159 ASL
0934 AB 160 TAY
0935 68 161 PLA
093,6 2970 162 AND #$70 ;DURATION
0938 4A 163 LSR
0939 4A 164 LSR
093A 4A 165 LSR
093B 6902 166 ADC #$02 ;TOTAL DURATION IN 16THS
0930 850E 167 STA $000E
093F 4CBE08 168 JMP NOTE ;PLAY NOTE
0942 C9FD 169 MA INA CMP jl$FD ;CO + 30 IS LONGEST NOTE FOR
0944 9001 170 BCC MAINB ;SCALING REASONS
0946 60 171 RTS
0947 48 172 MAINB PHA
0948 OA 173 ASL
0949 1007 174 BPL MA INC
094B 68 175 PLA
094C 293F 176 AND #$3F ;NOTE LENGTH
094E 8512 177 STA $0012
0950 BOD2 178 BCS MAIN ;UNCONDITIONAL BRANCH
0952 OA 179 MAI NC ASL
0953 1008 180 BPL MA IND
0955 68 181 PLA
0956 291F 182 AND #$1F ;TONAL RANGE INDEX
0958 OA 183 ASL
0959 850F 184 STA $000F
095B 90C7 185 BCC MAIN ;UNCONDITIONAL BRANCH
0950 OA 186 MAI ND ASL
095E 1007 187 BPL MAINE
0960 68 188 PLA
0961 290F 189 AND #$OF ;REST FRACTION
0963 850D 190 STA $0000
0965 90BD 191 BCC MAIN ;UNCONDITIONAL BRANCH
0967 OA 192 MAINE ASL
0968 1003 193 BPL MAING
096A 68 194 MAI NF PLA
096B 90B7 195 BCC MAIN ;DUMMY, CONTROLS NOT INTERPRETED
0960 OA 196 MAI NG ASL
096E 30FA 197 BM! MAI NF
0970 OA 198 ASL
0971 102B 199 BPL MAIN!
0973 68 200 PLA
0974 AA 201 TAX ;JSR AND JMP SECTION
0975 4A 202 LSR
0976 900A 203 BCC MAINH
0978 A513 204 LOA $0013 ;JSR SECTION, PUSH RETURN TABLE
097A 6901 205 ADC #$01 ;ADDRESS ON TO STACK
097C 48 206 PHA

154 Graphics and Games

097D A514
097F 6900
09Bl 4B
09B2 CB
09B3 Bll3
09B5 4B
09B6 CB
09B7 Bl13
09B9 B514
09BB 6B
09BC B513
09BE BA
09BF 4A
0990 909B
0992 202A09
0995 6B
0996 B514
099B 6B
0999 B513
099B lB
099C 90B6
099E 6B
099F A003
09Al Bll3
09A3 990900
09A6 B8
09.A7 DOF8
09A9 A513
09AB 6903
09AD B513
09AF 9002
09Bl E614
09B3 4C2409
09CO
09CO
09CO
09CO
09CO DB
09Cl A900
09C3 8510
09C5 A90B
09C7 B511
09C9 8501
09CB A90A
09CD B514
09CF A920
09Dl B513
09D3 A90l
09D5 850D
09D7 A920
09D9 8512
09DB A920
09DD 850F
09DF A905
09El 850A
09E3 850B
09E5 850C
09E7 202A09
09EA 4C69FF
09F8
09F8
09FB
09FB
09FB 636A62
09FB 6D616C
09FE 606B

207
20B
209
210
211
212
213
214
215
216
217
21B
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
26B
269
270

271

LDA $0014
ADC #$00
PHA

MAINH INY
LDA ($0013),Y
PHA
INY
LDA ($0013),Y
STA $0014
PLA
STA $0013
TXA
LSR
BCC ENTRY
JSR ENTRY
PLA
STA $0014
PLA
STA $0013
CLC
BCC MAIN

MAIN! PLA
LDY #$03

MAINJ LDA ($0013),Y
STA $0009,Y
DEY
BNE MAINJ
LDA $0013
ADC #$03
STA $0013
BCC MAIN!<
INC $0014

MAIN!< JMP MAIN
ORG $09CO

'

;GET NEW ADDRESS

;AND STORE IT FROM BEGINNING
;OF SELECTION
;JMP
;JSR

;PULL ADDRESS AND STORE IT

;UNCONDITIONAL BRANCH

;GET NEW PATTERN AND
;STORE IT

;JUMP OVER PATTERN

;INITIALIZATION FOR ZERO PAGE

ZERO CLD
LDA #$00
STA $0010
LDA #$OB
STA $0011
STA $0001
LDA #$0A
STA $0014
LDA #$20
STA $0013
LDA #$01
STA $OOOD
LDA #$20
STA $0012
LDA #$20
STA $00CF
LDA #$05
STA $000A
STA $000B
STA $000C
JSR ENTRY
JMP $FF69
ORG $09F8

;JUST IN CASE

;NOTE 'I'ABLE PAGE

;NOTE TABLE BYTE

;REST 16THS

;NOTE LENGTH, CONTROLS TEMPO

;TONAL RANGE INDEX

;WAVE SHAPE PATTERN

;TO APPLAYER
;TO MONITOR, AFTER THE BEEP

;TABLE OF ENTRY POINTS FOR TIMING ROUTINE

' TTABLE HEX 636A626D616C606B

END

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERC PAGE VARIABLES:

** ABSOLUTE VARABLES/LABELS

TIME 0860 TIMEA 0863 TIMEB 086ATIMEC
TIMEF 00eA TIMEG 088E SCALE 0893 SCALEX
NCTEA 0908 NOT EB 0912 MAIN 0924 ENTRY
MA INC 0952 MA IND 095D MAINE 0967 MA INF
MAIN I 099E MAINJ 09Al MAINK 09B3 ZERO

SYMBOL TABLE STARTING ADDRESS:6COO
SYMBOL TABLE LENGTH:OOFA

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
8 REM
9 REM

* *
* APPLAYER MUSIC *
* INTERPRETER *
* *
* BY RICHARD SUITOR *
*
*
*

APPLAYER MENU
*
*
*

10 REM
11 REM
12 REM
13 REM
14 REM

* COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

15 REM ************************
16 REM
17 REM
18 PRINT "BLOAD APPLAYER"
19 LOMEM:4095
20 START=2496:LOBYTE=2512
30 IMAX=2

100 CALL -936
110 TAB 13
120 PRINT "APPLAYER MENU"
130 VTAB 4
140 PRINT "l TWINKLE, TWINKLE"
150 PRINT "2 TURKEY IN THE STRAW"
195 VTAB 19
200 INPUT "WHICH NUMBER",!
220 IF I<O OR !>IMAX THEN 100
230 IF I=O THEN END
240 IF I=l THEN J=32
250 ·IF !=2 THEN J=O
300 POKE LOBYTE,J
320 CALL START
350 GOTO 100

Suitor Applayer 155

086F TIMED 0876 TIMEE 0881
089E SCALEA 08B2 NOTE 08BE
092AMAINA 0942 MAINB 0947
096AMAING 096I:' MAINH 0982
09CO TTABLE 09F8

Improved Star Battle
Sound Effects

by William M. Shryock, fr.

A long, long time ago ... in a motion picture studio far,
far away ... there was a special effects team working on
a science fiction epic. And they asked ... "What would a
star-battle sound like?" ... and the Apple II answered

l REM *****************************
2 REM * STAR BATTLE SOUND EFFECTS *
3 REM BY *
4 REM WILLIAM SHRYOCK, JR. *
5 REM COPYRIGHT (C) 1981 *
6 REM * MICRO INK, INC. *
7 REM * ALL RIGHTS RESERVED *
8 REM *****************************

10 POKE 0,160: POKE 1,1: POKE 2,162: POKE 3,0: POKE 4,138: POKE 5,24: POKE
6,233: POKE 7,1: POKE 8,208: POKE 9,252: POKE 10,141

20 POKE 11,48: POKE 12,192: POKE 13,232: POKE 14,224: POKE 15,150: POKE
16,208: POKE 17,242: POKE 18,136: POKE 19,208: POKE 20,237: POKE 21
• 96 •

30 CALL -936: VTAB 12: TAB 9: PRINT "STAR BATTLE SOUND EFFECTS"
40 SHOTS= RND (15)+1
50 LENGTH= RND (11)*10+120
60 POKE l,SHOTS: POKE 15,LENGTH: CALL 0
70 FOR DELAY=l TO RND (1000): NEXT DELAY
80 GOTO 40

This version can be used in Lo-Res programs without having to reset HIMEM.
Also it can be loaded from BASIC.

Galacti-Cube
by Bob Bishop

You are the Captain of a starship exploring the outer
limits of our universe. You have discovered a gigantic
cube floating in space. Through the only opening you
have flown your ship inside, but now you can't find your
way back out!

GALACTI-CUBE is a simple maze game in three dimensions. You are in a
3 x 3 x 3 array of cubical compartments and must find your way out in no more
than 40 moves, or else you lose. Moves are made by hitting the keys N, S, E, W, U,
or D to move north, south, east, west, up or down, respectively. Although it
appears small, a 3 x 3 x 3 cubical maze actually has 27 rooms in it, which can
make the task of finding your way through deceptively non-trivial.

The program is written entirely in Apple II Integer BASIC and requires at least
8K bytes of memory. In fact, since the program uses no machine language,
graphics, or special sound effects, it could probably be converted over to other
CRT-type computers (such as the PET, TRS-80, etc.) without too much difficulty.

10
12
14
16
18

REM
REM
REM
REM
REM

• •
* CAL/ICT I -CUBE * • R.J. EI SHOP * • •

20 REM * COPYRIGHT (C) 1981 *
22 REM * MICRO INK, INC. *
24 REM * CHELMSF'ORD, MA 01824 *
26 REM * ALL RIGHTS RESERVED *
28 REM * *
29 REN ************************
3 0 DIM BCX(27) , QUE(27),NODE(6),BIT(6),A$(5)
40 GOSUB 9000
50 GCSUB 1000
60 V'IAB 23: TAB 5: PRINT "(HIT ANY KEY TO START THE GAME)";
70 GOSUB 4000: GOSUB 5000
90 LOC•l4:0LD•LOC:FUEL•4C

100 REM MAIN LOOP
110 GOSUB 2000
150 CALL -936: PIUNT : PRINT PRINT " COMMAND:"
160 PRINT : TAB 7: GOSUB 4000: CALL -936
165 IF A$•"" THEN 150
170 IF A$(1,l)#"F" THEN 250
180 CALL -936: PRINT : PRINT" YOU HAVE " ; FUEL

158 Graphics and Games

190 PRINT : PRINT " FUEL UNITS"
210 FOR K•l TO 1000: NEXT K: GOTO 150
250 Z•(OLD-l)/9+1
260 Y•(((OLD-1)/3) MCD 3)+1
270 X•((OLD-l) MOD 3)+1
300 IF A$•"E" THEN X•X+l
310 IF A$•"W" THEN X•X-l
320 IF A$•"N" TH.EN Y•Y+l
330 IF A$•"S" THEN Y•Y-1
340 IF A$•"U" THEN Z•Z+l
350 IF A$•"D" THEN Z•Z-1
360 LOC•X+3*(Y-1)+9*(Z-l)
370 IF LCC<>OLD THEN 390
380 PRINT"": GOTO 150
390 IF X<l CR X>3 OR Y<l OR Y>3 THEN 700
400 IF BCX(OLD)>•32 AND Z•O THEN 800
410 VAL•BCX(OLD) :. IF VAL>•32 THEN VAL•VAL-32
420 IF VAL>•l6 AND Z•4 THEN 800
430 IF Z<l OR Z>3 THEN 700
450 BITS•BOX(OLD)
460 WAY•BITS-2*(BITS/2):BITS•BITS/2
470 IF WAY•O AND A$•"E" THEN 700
480 WAY•BITS-2*(BITS/2):BITS•BITS/2
490 IF WAY•O AND A$="W" THEN 700
500 WAY•BITS-2*(BITS/2):BITS•BITS/2
505 IF WAYsO AND A$•"N" THEN 700
510 WAY•BITS-2*(BITS/2):BITS=BITS/2
515 IF WAY•O AND A$•"S" THEN 700
520 WAY•BITS-2*(BITS/2):BITS=BITS/2
525 IF WAYaO AND A$s"U" THEN 700
530 WAY•BITS-2*(BITS/2):BITS=BITS/2
535 IF WAY•O AND A$="D" THEN 700
540 WAY•BITS-2*(BITS/2):BITS•BITS/2
550 FUEL•FUEL-1: IF FUEL>O THEN 100
560 CALL -936: PRINT " YOU ARE"
565 PRINT
570 PRINT " OUT OF"
575 PRINT
580 PRINT" FUELi";
590 GOTO 830
700 CALL -936: PRINT " THAT DIREC-"
710 PRINT : PRINT " TICN HAS AN"
720 PRINT : PRINT " OBSTRUCTION" :
730 FCR K=l TO 1000: NEXT K: GOTO 150
800 CALL -936: PRINT "YOU FOUND THE"
810 PRINT : PRINT " EXIT IN ONLY"
820 PRINT : PRINT" ";41-FUEL;" MOVES!";
830 GOSUB 2700
840 FOR K=l TO 2500: NEXT K
850 CALL -936: END
900 END

1000 REM GENERATE THE MAZE
1010 FOR K=l TO 27
1020 BCX(K)=l28
1030 NEXT K
1040 BOX(l4)=0
1050 QUE(l)=l4:QBIG=l
1060 XQBIG=l
1100 FOR K=l TC QBIG
1110 IND=QUE(K)
1140 l<NT=O:ROAD=l:DEL=l
1150 FOR J=O TC 2
1160 SET=3*DEL
1170 FOR L=O TO l
1180 NDX=IND+DEL
1190 IF NDX<l THEN 1400
1200 IF (NDX-l)/EET<>(IND-1)/SET THEN 1400
1250 IF BOX(NDX)<l28 THEN 1400
1300 KNT=l<NT+l:NODE(KNT)=NDX:BIT(KNT)=ROAD

1400 DEL=-DEL:ROAD=ROAD+ROAD
1450 NEXT L
1460 DEL=SET
1470 NEXT J
1500 IF KNT=O THEN 1600
1510 NDX= RND (KNT)+l:XQBIG=XQBIG+l
1520 QUE(XQBIG)=NODE(NDX)
1530 BOX(IND)=BCX(IND)+BIT(NDX)
1540 TIB=2*BIT(NDX)

Bishop

1550 IF TIB=4 OR TIB=l6 OR TIB=64 THEN TIB=TIB/4
1590 BOX(NCDE(NDX))=BOX(NODE(NDX))+TIB-128
1600 NEXT K
1610 QBIG=XQBIG: IF QBIG<27 THEN 1100
1700 HOLE=2* RND (2)+6* RND (2)+18* RND (2)+1
1710 OPEN=l6: IF HOLE<l4 THEN CPEN=32
1720 BOX(HOLE)=BCX(HOLE)+OPEN
1800 RETURN
2000 REM UPDATE THE DISPLAY
2005 GOSUB 2700
2010 Z=(OLD-1)/9+1
2020 Y=(((OLD-1)/3) MOD 3)+1
2030 X=((OLD-1) MOD 3)+1
2040 VTAB 13-Y-Y
2050 TAB 8*Z+X+X-7
2060 PRINT "-"
2110 Z=(LOC-1)/9+1
2120-Y=(((LCC-l)/3) MOD 3)+1
2130 X=((LCC-1) MCD 3)+1
2140 VTAB 13-Y-Y
2150 TAB 8*Z+X+X-7
2170 POKE PEEK (36)+ PEEK (40)+256* PEEK (41),109
2200 BITS~BOX(LOC)
2210 VT=20:T=34:A$="EAST": GOSUB 2500
2220 VT=22:T=34:A$="WEST": GOSUB 2500
2230 VT=20:T=28:A$="NORTH": GOSUB 2500
2240 VT=22:T=28:A$="SOU'l'H": GCSUB 2500
2250 VT•20:T=24:A$="UP": GOSUB 2500
2260 VT=22:T=23:A$•"DOWN": GOSUB 2500
2300. GOSUB 2600
2400 OLD=LOC
2450 RETURN
2500 WAY=BITS-2*(BITS/2):BITS=BITS/2
2510 MCDE=l27: IF' WAY THEN MODE=255

Galacti-Cube

2520 POKE 50,MODE: VTAB VT: TAB T: PRINT A$: POKE 50,255
2550 RETURN
2600 VTAB 19: TAB 5
2610 POKE 32,2
2630 POKE 33 , 14
2660 POKE 34 , 17
2680 POKE 35,22
2690 RETURN
2700 POKE 32,0
2710 POKE 33,40
2720 POKE 34,0
27·30 POKE 35,24
2750 RETURN
4 000 REM ' GE'I'' FROM THE KEYBOARD
4010 POKE -16368,0
4020 CHAR= PEEK (-16384): IF CHAR<l28 THEN 4020
4030 POKE -16368,0:A$="?"
4080 IF CHAR=l41 THEN A$='"'
4090 IF CHAR=l96 THEN A$="D"
4100 IF' CHAR=l97 THEN A$="E"
4110 IF CHAR=l98 THEN A$="F"
4120 IF CHAR=206 THEN A$="N"
4130 IF CHAR=211 THEN A$="S"
4140 IF CHAR=213 THEN A$="U"
4150 IF CHAR=215 THEN A$="W"
4200 RETURN

159

160 Graphics and Games

5000 REM DRAW DISPLAY
5010 CALL -936: PRINT " YOUR LOCATION COMPASS"
5020 PRINT PRINT " (BOT) (MID) (TCP) REFERENCE"
5030 PRINT : TAB 34: PRINT "N"
5040 PRINT : TAB 34: PRINT "!"
5050 TAB 34: PRINT "I"
5060 TAB 29: PRINT "W <--*--> E"
5070 TAB 34: PRINT"!"
5080 TAB 34: PRINT "I"
5090 PRINT : TAB 34: PRINT "S"
5100 VTAB 6
5110 FOR K=l TO 3
5120 PRINT : PRINT "
5130 NEXT K
5140 VTAB 16: TAB 21: PRINT "OBSTRUCTION SENSORS"
5200 POKE 50,63
5210 VTAB 5: PRINT "
5220 FOR K=l TO 7
5230 PRINT"";: TAB 9: PRINT"";: TAB 17: PRINT ;: TAB 25:PRINT""

5240 NEXT K
5250 PRINT "
5300 VTAB 18: TAB 21: PRINT "
5310 FOR K=l TO 5
5320 TAB 21: PRINT" ";: TAB 39: PRINT
5330 NEXT K
5340 TAB 21: PRINT " ";
5400 VTAB 15: PRINT
5410 PRINT "
5420 FOR K=l TO 7
5430 PRINT " ";: TAB 18: PRINT " "
5440 NEXT K
5450 PRINT "
5500 POKE 50,255
5900 RETURN
9000 CALL -936: VTAB 10
9010 TAB 10: PRINT "*** GALACTI-CUBE ***"
9020 PRINT : TAB 19: PRINT "BY"
9030 PRINT : TAB 14: PRIN'I' "ROBERT BISHOP"
9040 FOR K=l TO 1500: NEXT K
9050 CALL -936
9110 PRINT " YOU ARE THE CAPTAIN OF A STAR-SHIP"
9120 PRINT "EXPLORING THE OUTER LIMITS OF OUR UNI-"
9130 PRINT "VERSE. YOU HAVE DISCOVERED A GIGANTIC"
9140 PRINT "CUBE FLOATING IN SPACE. THROUGH THE"
9150 PRINT "ONLY OPENING YOU HAVE FLOWN YOUR SHIP"
9160 PRINT "INSIDE, BUT NOW YOU CAN'T FIND YOUR WAY"
9170 PRINT "BACK OUT!"
9190 PRINT " FROM YOUR EXPLORATIONS YOU HAVE"
9200 PRINT "LEARNED THAT THE CUBE IS DIVICED INTO"
9210 PRINT "AN ARRAY CF 3X3X3 CUBICAL COMPARTMENTS"
9220 PRINT "AND YOU ARE CURRENTLY IN THE CENTER-"
9230 PRINT "MOST ONE."
9250 PRINT " YOUR SHIP IS EQUIPPED WITH A DIS-"
9260 PRINT "PLAY INDICATING . YOUR LOCATION. THE"
9270 PRINT "OBSTRUCTION SENSORS INDICATE WHICH DI-"
9280 PRINT "RECTIONS (FLASHING) ARE BLOCKED. YOU"
9310 PRINT "MOVE YOUR SHIP BY HITTING THE FIRST"
9320 PRINT "LETTER OF THE DIRECTION YOU WANT TO GO."
9j30 PRINT "YOUR FUEL SUPPLY (WHICH IS DISPLAYED BY"
9340 PRINT "HITTING THE LETTER, F) WILL ONLY LET"
9350 PRINT "YOU MAKE UP TO 40 MOVES. GOOD LUCK!"
9999 RETURN

5
HARDWARE

Introduction

The Color Gun for the Apple II
Neil D. Lipson

A Cassette Operating System for the Apple II
Robert A. Stein, Jr.

BASIC and Machine Language Transfers
with the Micromodem II

George J. Dombrowski, Jr.

A Digital Thermometer for the Apple II
Carl Kershner

KIM and SYM Format Cassette Tapes on the Apple II
Steven M. Welch

162

163

166

172

177

181

INTRODUCTION
On a rainy weekend day, when there is nothing to do around the house, what better
project could there possibly be than to interface some external hardware to your
Apple. The Apple computer is equipped with several easy-to-use input and output
ports. The articles in this section describe how to use them, and provide some in
teresting construction projects as well.

''The Color Gun for the Apple II, 11 by Neil Lipson, describes how to build and
interface a simple photocell array to the Apple. When used with the described soft
ware, this array can discern color. Robert Stein's "A Cassette Operating System
for the Apple II'' provides a means to file and store named programs on cassette
tape. "BASIC and Machine Language Transfers with the Micromodem II, 11 by
George Dombrowski, discusses techniques for program transfers using a popular
communications interface.

"A Digital Thermometer for the Apple II, 11 by Carl Kershner, discusses how
to interface a thermistor to the Apple so that the Apple can provide a temperature
display. Finally, "KIM and SYM Format Casssette Tapes on the Apple II," by
Steven Welch, provides a KIM-1 format tape dump capability for the Apple, using
a special routine which outputs to the cassette port.

The Color Gun
for the Apple II

by Neil D. Lipson

The Apple produces many colors-but what about
recognizing them? With some quite inexpensive
hardware, you can turn your Apple II into a color
detector-a device which will automatically determine
the colors of any object. So who says the Apple is color
blind?

Shortly after I developed my light pen for the Apple back in May, 1978, I began
thinking about other devices that could be hooked up to the paddle inputs. One
idea was making a "color gun" which when pointed at an object would tell you
the color. The idea is similar to that of the operation of a television transmitter.
Color is broken down into three main colors, which are red, blue, and yellow.
Therefore by having three inputs into the Apple, into paddle 0, paddle 11 and pad
dle 2, we could in effect have a device that would ''see'' the three color breakdown
ratios of any object. By further analyzing this ratio, we could see different shades
of color and with high quality color filters, we could make an extremely accurate
device which could even give the exact color temperature of the object. One of the
interesting aspects of this device that sets it apart from any other color
temperature meter, is that you can calibrate it by pointing it at a piece of white
paper to adjust for differences in the light source. Therefore, the color gun will
work in any type of artificial lighting within certain parameters. (You could not
use it under a red light for example.)

Building the Color Gun

To start off, buy three sensitive cadium sulfide photo cells (physically
between 1A to 'h. inch in diameter). If the cells are not equal in sensitivity, they
can be equalized easily in software. (This is illustrated in the listing.) Merely
point the gun at a white piece of paper (or at the light source itself if it's not too
bright) during the calibration procedure.

The construction of the gun is very simple. Mount the three cells in a triangle
about 2" for each side on a piece of wood or other material. Then place three
filters over the cells, with red on paddle 0 cell, blue on paddle 1 cell, and yellow on

164 Hardware

paddle 2 cell. The purer the filter, the better. Photographic filters are the best, and
will give the best results. However, red, blue or yellow clear plastic will work
satisfactorily in most situations. Note the use of the REM statements in the pro
gram. These are for slowing down the paddle readings just a hair in order to avoid
having the readings " overlap" . The wiring diagram is shown in figure 1.

Mount the entire setup in some type of barrel or cylinder about 4 inches long,
with the inside of the barrel painted white. Glue everything together and seal
against light leaks. Plug it into the game paddle after the wiring is complete and you
are ready to go. For the pin numbers of the paddles, consult your reference manual.

Red Blue Yellow

sv pdl'O' pdl'1' pdl'2'

Figure 1

The Color Gun Program

Enter the Applesoft program, and run it. The gun will only recognize 6 colors,
and when it isn't sure what the color is, it will give you two colors (one primary
color and one secondary). This should not happen if the colors are absolutely pure,
but most colors are not, so expect this situation often.

Notice the correction algorithm in statement 70 in the program to correct for
the blue cell. The cells that I used were somewhat more sensitive to blue than the
other colors (which is common of cadium sulfide) . This was noticed when the
color gun kept saying "orange" (the compliment of blue) . The correction
algorithm eliminates most of this problem. If the gun acts strangely, run it again
until it gets a good calibration. It sometimes takes more than one run to get it
working properly (usually because it is confused by a bright color nearby).

By fine tuning the software, and using more exact ratios, you can determine
many other colors. Given enough ratios to choose from, you can give the color
temperature of the object (with high quality cells and filters) . The typical
photographic filters you can use are the yellow (K2), the red (25 or 25A) and the
blue (47) . These may be varied if desired to meet the spectral response of the par
ticular cell you buy. You could even use different colors in the filters as long as
you adjust the software accordingly. Buy the smallest filter you can (it only has to
cover about ~ inch diameter), but make sure there is no light leak from the' sides
of the cells. If you follow these instructions the gun will work perfectly the first
time around. Have fun!

1
2
3
4
s
6
7
8
9
10
11

REM ************************
REM * *
REM * CCLOR GUN *
REM * NEIL LIPSON *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *

REM * *
REM ************************

14 REM

Lipson Color Gun 165

lS CALL - 936: VTAB 10: HTAB 10: PRINT "COLOR GUN BY NEILD. LIPSON":
FOR I =' 1 TO 20CO: NEXT I

17 REM YELLCW-2
18 REM BLUE -1
19 REM RED -C
20 REM
22 CALL - 936: PRINT PRINT PRINT PRINT
2S GCSUB 1000
30 CALL - 936: PRINT PRINT
32 A "' PDL (0)
3S REM
40 B "' PDL (l)
4S REM
SO C • PDL (2)
SS REM
60 A • A * Al
61 B • B * Bl
62 C • C * Cl
70 B - B I l.S
100 PRINT "RED CELL•" ;A
110 PRINT "BLUE CELL•" :B
llS PRINT "YELLOW CELL·"'" :C
116 PRINT : PRINT
117 PRINT "THE COLCR IS:": PRIN'I
118 PRINT "*********************"
121 IF C < B AND C < (A) THEN PRINT "YELLOW"
123 IF A < B AND A C THEN PRINT "RED"
124 IF A > B AND A C THEN PRINT "GREEN"
l2S IF B > A AND B > C THEN PRINT "CRANGE"
126 IF C < AC > B THEN PRINT "PURPLE"
129 IF B < C AND B < (A) THEN PRINT "BLUE"
130 PRINT "*********************"
131 FOR X • 1 TC 2300: NEXT X
140 GOTC 30
200 ENC
1000 CALL - 936: PRINT
1010 PRINT "POINT GUN AT A WHITE SHEET OF PAPER"
1020 FOR I = 1 TO lSOO: NEXT I
1030 Al = PDL (0)
103S REM
1040 Bl = PDL (1)
l04S REM
lCSC Cl = PDL (2)
lOSS PRINT "Al=":Al
1056 PRINT "Bl=";Bl
10S7 PRINT "Cl•":Cl
1060 Dl Al * Bl * Cl
1070 Al = Dl I Al
1080 Bl = Cl I Bl
l09C Cl = Dl I Cl
1100 PRINT "CORRECTION FA.CTOR FOR RED = ";Al
1110 PRINT "CORRECTION FACTOR FOR BLUE = ";Bl
1120 PRINT "CORRECTION FACTOR FCR YELLOW = ";Cl
112S FCR I = 1 TO 2000: NEXT I
1130 RETURN
10000 END

A Cassette Operating System
for the Apple II

by Robert A. Stein, fr.

Have you ever wished that, as great as the Apple II
computer system is, you were able to load programs by
name from a library cassette? Well, with this mini-sized
cassette operating system you can stack many
programs on one cassette and load the one you want
by typing in its name. Great for showing off your
system without juggling a dozen or so cassette tapes.

The Cassette Operating System [CASSOS] resides in memory at locations 02CO to
03FF, where it won't g~t clobbered by BASIC programs or initialization. Add the
optional cassette control circuit, or purchase one of the commercially available
ones (Candex Pacific, 693 Veterans BLVD, Redwood City, CA 94063), and you
never need envy the PET for its loading technique again.

Operation

First, load CASSOS into memory. To load a program using CASSOS, depress
CTRL-Y and RETURN. "PROG?" will be displayed, enter a 1-10 character pro
gram name. The cassette tape will be searched and the program loaded if found.
"XXXXXXXXXX LOADED" will be output, where XXXXXXXXXX is the program
now in memory. If the cassette control circuit (described later) is present the tape
will also be stopped. A line of question marks (?????????) is displayed if the request
program was not found. To write a program to the library cassette enter Y c (CTRL-Y),
"WRITE", and RETURN. Program will be saved under the name requested at
PROG?. ''XXXXXXXXXX OUT'' will be displayed at completion and the recorder
stopped. To end a cassette program file enter: Ye;, "EOF", RETURN; a special
record header will be written. Note that to conserve limited memory space the
EOF routine utilizes the program write subroutine so the "XXXXXXXXXX OUT"
message should be ignored.

The program is structured such that the last 63 locations of the input buffer
are used for display messages, so if more than 191 characters are entered at one
time the program will still function, but without messages. The listing as

Stein Cassette Operating 167

presented was for a 48K system with DOS; change location 0358 as follows for a
different configuration:

Without DOS

IF- BK
2F-12K
3F-16K
4F-20K

Program Design

5F-24K
7F-32K
8F-36K
BF~48K

With DOS

35-24K
55-32K
65-36K
95-48K

The method by which CASSOS functions is to write a program header block
consisting of header ID, program name, and start of the BASIC load. This is
followed by the program data itself, utilizing the Apple monitor routines.

A Cassette On/Off Circuit

The following diagram describes a simple circuit for stopping and starting a
cassette recorder which has a ''remote'' plug from the Apple II under program con
trol. The theory involves activating or deactivating the AN3 signal on the Apple
game connector. A store to location COSF turns the recorder on and location
COSE turns it off. The strobe triggers a transistor which in turn opens a relay and
closes the connection to the remote plug, starting the recorder. If your recorder re
quires an open connection to start tape movement wire the relay normally closed
instead of open. It is also possible to add a relay that would interrupt power to the
recorder for control if you have no remote capability on your recorder.

Parts List

All parts were purchased at a local electronics store
6VDC Relay (275-004)
NPN Transistor (2N3568 or equivalent)
1000 Ohm Resistor
250 Ohm Resistor
Mini-Plug

All connections were made to a DIP Header which was modified by soldering
a 16-pin IC to it so that the game paddles could be used without modification
when the cassette ON/Off circuit was in use. The common 6VDC relay was
modified to be triggered by the game connector signals by wiring a 2500 ohm
resistance (utilizing a series of resistors connected in series so that the sum is 2500
Ohms) in parallel with the relay coil. If your recorder's rewind controls are dis
abled by the remote jack, wire a switch to bypass the transistor between chasis
ground and the relay, which will allow the rewind to operate when depressed. If
all this is beyond your scope simply stop, then start the recorder manually.

168 Hardware

1 REM ************************
2 REM *
3 REM *
4 REM *
5 REM *
6 REM *
7 REM *

CASSETTE o. s.
BY ROBERT S'I'EIN

DIRECTORY

*
*
*
*
*
*

8 REM * CCPYRIGHT (C) 1981 *
9 REM * MICRO INK, INC. *

10 REM * CHELMSFORD, MA 01824 *
11 REM * ALL RIGHTS RESERVED *
12 REM * *
1 3 REM ************************
14 REM
15 REM
16 REM
2C N=l: CALL -936: VTAB (10): DIM X$(1)
25 INPUT "INSERT LIBRARY TAPE AND DEPRESS 'RETURN'",X$
30 POKE -16289,0: CALL -936 : GOSUB 300
40 PRIN'I' "FILE # PROGRAM NAME BYTES"
50 PRINT "---- -- ------------
60 CALL 840: CALL -259
70 IF PEEK (688)= ASC("E") THEN 210
BO IF PEEK (688)= ASC("S") THEN 200

100 REM LOAD PROGRAM INTO MEMORY BELOW THE DIRECTORY PROGRAM.
105 D= PEEK (856)-3
110 POKE 60, PEEK (700): POKE 61,(PEEK (701) - 3)
120 POKE 62,255: POKE €3,D: CALL -259
130 PRINT N,: POKE 789,2: POKE 788,177: CALL 785
140 M=(PEEK (700)/2)+ PEEK (701)*128
150 L=2*((PEEK (856)*128+128)-M):N=N+l
160 PRINT " "; L: GOTO 60
200 GCSUB 300: PRINT "NO EOF MARK"
210 POKE -16290,0: GOSUB 300
230 PRINT : PRINT "***END OF FILE***"
240 CALL -155
300 FOR I=l 'IO 30
305 L= PEEK (-16336)+ PEEK (-1€336): NEXT I
310 CALL -1059: RETURN

00oc 1 ;************************
0800 2 ;* *
0800 3 ; * CASSET'I·E c .s. *
0800 4 ;* BY RCBERT STEIN *
0800 5 ;* *
0800 6 ;* CASSOS *
0800 7 ;* *
0800 8 ;* COPYRIGHT (C) 1981 *
0600 9 ;* MIC RC INK, INC. *
0800 10 ;* CHELMSFORD, MA 01824 *
0800 11 ; * ALL RIGHTS RESERVED *
0800 12 ;* *
0800 13 ; ************************
0800 14
0800 15 .
0800 16 SLO EPZ $3C ;TAPE BUFFER START/ END
0800 17 SHI EPZ $31:
0800 18 ELO EPZ $3E
0800 19 EHI EPZ $3F
0800 20 OFFSET EPZ $50 ;OFFSET STORAGE
0800 21 SA VEY EPZ $60 ;SAVE Y-REG
0800 22 IN EPZ $60 ;INPUT PARAMETERS
0800 23 INLO EPZ $60
0800 24 INHJ EPZ $61
0800 25 PPL EPZ $CA ;INTEGER BASIC PROGRAM
0800 26 PPB EPZ $CB ; PC INTER
0800 27

Stein Cassette Operating 169

0800 28 FCHAR EQU $0201 ;lST CHARACTER IN BUFFER
0800 29 WBUF EQU $0200 ;WORK BUFFER
0800 30 nn EQU $02A3 ;PROG. NAME INPUT BUFFER
0800 31 ID EQU $02BO ;HEADER ID, I 51 OR 1 - 1

0800 32 NAME EQU $02Bl ; PROGRAM NAME
0800 33 PEND EQU $02BB ;END SENTIN/l.L (FF)
0800 34 PHL EQU $02BC ;BASIC TOP
0800 35 PHH EQU $02BD
0800 36

' 0800 37 CLRAN3 EQU $COSF ;CLEARS GAME I/O AN3
0800 38 SETAN3 EQU $COSE ;SETS GAME I/O AN3
0800 39 BASIC2 EQU $E003 ;INTEGER BASIC WARM START
0800 40 BELL EQU $FBDD ;MONITOR BEEP ROUTINE
0800 41 CR EQU $FC62 ;MONITOR CARRIAGE RETURN
0800 42 GETLN2 EQU $FD6C ;MONITOR INPUT ROUTINE
0800 43 CCUT EQU $FDEI: ;MONITOR OUTPUT ROUTINE
0800 44 WRITE EQU $FECD ;MONITOR TAPE WRITE
0800 45 REAI: EQU $FEFD ;MONITOR TAPE READ
0800 46
02CO 47 ORG $2CO
02CO 48 OBJ $800
02CO 49
02CO A9D3 50 PW RITE LDA #$D3 ;SET LABEL ID TO 's'
02C2 8DB002 51 STA ID
02C5 A9Bl 52 LDA #NAME ;OFFSET TO BUFFER
02C7 206703 53 JSR INI'I'
02CA A9FF 54 WEOF LDA #$FF ;LABEL SENTINAL
02CC 8DBB02 55 STA PEND
02CF ASCA 56 LDA PPL ; STORE TOP OF PROGRAMADDRESS
02Dl 8DBC02 57 STA PHL
02D4 ASCB 58 LDA PPH
02D6 8DBD02 59 STA PHH
02D9 20CDFE 60 JSR WRITE ;WRITE LABEL
02DC A4CA 61 LDY PPL
02DE ASCB 62 LDA PPH
02EO 206003 63 JSR SETS ;SET TOP WRITE/HIMEM BOTTOM
02E3 20CDFE 64 JSR WRITE ;WRITE PROGRAM
02E6 A9EB 65 LDA #OUT ;SET TO WRITTEN MESSAGE
02E8 207E03 66 JSR ECHO ;PRINT XXXXXXXXXX OUT
02EB 67
02EB 87AOCF 68 OUT HEX 87AOCFD5D4FF ;II OUT" MESSAGE
02EE D5D4FF
02Fl 87AOCC 69 LOADED HEX 87AOCCCFC1C4C5C4FE ;" LOADED" MESSAGE
02F4 CFC1C4
02F7 C5C4FF
02FA DOD2CF 70 PROG? HEX DOD2CFC7BFFF ;" PROG?" MESSAGE
02FD C7BFFF
0300 71 ;
0300 A202 72 TYPE3 LDX #$02 ;SET HI ADDRESS TO 02
0302 0007 73 BNE TYPE ;BRANCH TO MAIN ROUTINE
0304 8460 74 NLTYPE STY SA VEY
0306 2062FC 75 JSR CR OUTPUT CR/LF
0309 A460 76 LDY SA VEY RESTORE Y
030B 8El503 77 TYPE STX CONT+2 MODIFY LOAD INSTRUCTION
030E 8Cl403 78 STY CONT+l
0311 AOOO 79 LDY #$00 SET I-VALUE
0313 B9FA02 80 CONT LDA PROG?,Y GET CHARACTER
0-316 C9F.F 81 CMP #$FF DELIMETER?
o-31 8 F02D 82 BEQ TOONE YES- RETURN
031A 20EDFD 83 JSR COUT OUTPUT
0310 ca 84 INY INCREMENT INDEX
031E DOF3 85 BNE CONT CONTINUE (JMP)
0320 86
0320 48 87 INPUT PHA SAVE INPUT COUNT
0321 A902 88 LDA /INl SET HI INPUT ADDRESS
0323 8660 89 STX INLO STORE ADDRESS
0325 856 1 90 STA INHI (PHA & LDA TO CHG HI)
0327 A9AO 91 LDA #$AO SET PROMPT TO " "
0329 206CFD 92 JSR GETLN2 INPUT TO COMMON BUFFER

170 Hardware

032C 68 93 PLA RESTORE COUNT
0320 AA 94 TAX SET TO X
032E AOOO 95 LDY #$00 SET Y-INDEX
0330 B90002 96 MOVE LDA WBUF,Y LOAD FROM WCRJ< BUFFER
0333 C98D 97 CMP #$8D LAST INPUT?
0335 FOOS 98 BEQ CRl YES
0337 9160 99 STA (IN), y STORE IN USER AREA
0339 CB 100 INY ;INCREMENT POINTER
033A CA 101 DEX ;DECREMENT COUNTER
033B FOOA 102 BEQ TDC NE ;RETURN IF DONE
033D DOFl 103 BNE MOVE ;ELSE BRANCH TO LOOP
033F A9AO 104 CRl LDA #$AO
0341 9160 105 STA (IN)' y ;SPACE FILL
0343 CB 106 INY
0344 CA 107 DEX
0345 DOFB 108 BNE CRl ;LOOP TILL MAXIMUM
0347 60 109 TDONE RTS ;RETURN
03 48 110
0348 AOBO 111 SLBL LDY #ID ;SET ID LABEL ADDRESS
034A A200 112 LDX #$00 ;SET START FLAG
034C 205103 113 JSR SEC ;SET-UP TO SET END TOO
034F AOBD 114 LDY #PHH ;SET END OF LABEL
0351 A902 115 SEC LDA #$02
0353 D004 116 BNE SET ;BRANCH TO SET START
0355 AOFF 117 SHIM LDY #$FF ;SET HIMEM:
0357 A9 95 118 LDA #$95 ; (CHANGE FOR MORE MEMORY)
0359 953D 119 SET STA SHI,X ;SET START
035B 943C 120 STY SLO,X ; OR END
035D EB 121 INX ;BUMP END BY 2 FOR
035E EB 122 INX ;END PAIR
035F 60 123 RTS
0360 A200 124 SET'S LDX #$00
0362 205903 125 JSR SET ;SET BASIC TOP & BOTTOM
0365 DOEE 126 BNE SHIM
0367 127
0367 8550 128 INIT STA OFFSET ;STORE INBUF OFFSET
0369 A202 129 LDX /PROO'? ;SET " PROG?" ADDRESS
036B AOFA 130 LDY #PRCG?
036D 200403 131 JSR NL TYPE ;OUPUT WITH NL
0370 204803 132 JSR SLBL ;SET LABEL PARAMETERS
0373 A90A 133 LDA #$0A ;INPUT = 10 CP.ARACTERS
0375 A650 134 LDX OFFSET ;USER INPUT OFFSET
0377 202003 135 JSR INPUT ;INPUT PROGRAM NAME
Q37A 8D5FCO 136 STA CLRAN3 ;TURN ON CASSETTF
037D 60 137 RTS
037E 138
037E 48 139 ECHC PHA ;STORE OFFSET
037F 8D5ECO 140 STA SETAN3 ;TURN OFF CASSETTE
0382 A202 141 LDX /NAME ;SET TO OUTPUT LABEL NAME
0384 AOBl 142 LDY #NAME
0386 200403 143 JSR NLTYPE
0389 68 144 PLA ;GET MESSAGE
038A AB 145 TAY ;PUT IN Y FOR TYPE
038B 200003 146 JSR TYPE3 ;OUTPUT " OUT" OR "LOADED"
038E 4C03EO 147 JMP BASIC2
0391 148
0391 A9A3 149 PLOAD LDA #INl ;INPUT PROGRAM NAME
0393 206703 150 JSR INIT ; TO INl ($2A3)
0396 204803 151 TRYAGN JSR SLBL ;SET LABEL PARAMS.
0399 20FDFE 152 JSR READ ;READ LABEL
039C ADB002 153 LDA ID ;GET ID
039F C9D3 154 CMP #"S ..
03Al D029 155 BNE NFOUND ;EOF OR NOT ON TAPE
03A3 ACBC02 156 LDY PHL
03A6 ADBD02 157 LDA PHH
03A9 206003 158 JSR SETS ;READ PROGRAM PARAMETERS
03AC 20FDFE 159 JSR READ ; READ PROGRAM
03AF A200 160 LDX #$00 ;SET INDEX
03Bl BDB102 161 TEST LDA NAME,X ;COMPARE FOUND NAME

03B4 DDA302
03B7 DODD
03B9 EB
03BA EOOA
03BC DOF3
03BE ADBC02
03Cl 85CA
03C3 ADBD02
03C6 85CB
03C8 A9Fl
03CA DOB2
03CC 8D5ECO
03CF A220
03Dl A9BF
03D3 20EDFD
03D6 CA
03D7 DCFS
0309 20DDFB
03DC FOB3
03DE
03DE AD0102
03El C907
03E3 FOlO
03E5 C9C5
03E7 DOA8
03E9 8DB002
03EC 204803
03EF 8D5FCO
03F2
03F5
03F8
03F8
03FB
03FD
03FF

4CCA02
4CC002

4CDE03
0000
0000
00

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
168
189
190
191
192
193
194
195
196

197

CMP INl,X
BNE TRYAGN
INX
CPX #$0A
BNE TEST
LOA PHL
STA PPL
LOA PHH
STA PPH
LOA #LOADED
BNE

NFOUND STA
LDX

ECHO
SETAN3
#$20
#$BF
COUT

NC LDA

'

JSR
DEX
BNE
JSR
BEQ

NC
BELL
PLO AD

WHICH LDA FCHAR

SAVE

CTRLY
NM!
IRQ

CMP #"W"
BEQ SAVE
CMP #"E"
BNE PLOAD
STA ID
JER SLBL
STA CLRAN3
JMP WEOF
JMP PWRITE

JMP WHICH
HEX 0000
HEX 0000
HEX 00

END

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

Stein Cassette Operating

; WITH INPUT NAME

;CHECK ALL LOOKED AT

;SET TOP CF BASIC ADDRESS

;SET TO " LOADED"
;OUTPUT WITH VERIFY NAME
;TURN OFF CASSETTE

;PRINT ??????????

;LOOP
;SOUND TONE
;RETURN FOR NEW NAME

;FIRST CHAR OF FUNCTON (E,R,W)
; "WRITE"

; uEOF'u
;"READ"
;STORE E AS ID IN LABEL
;SET LABEL PARAMETERS
;TURN CN CASSETTE
;BRANCH TO WRITE EOF
;BRANCH TO WRITE PROGRAM

; CONTROL-Y TRANSFER TC CHECK FN
;NMI VECTOR
;IRQ VECTOR

171

SLO
IN

003C SHI
00€0 INLO

0030 ELO
0060 INHI

003E EHI
0061 PPL

003F OFFSET 0050 SAVEY0060
OOCA PPH OOCB

** ABSOLUTE VARABLES/LABELS

FCHAR 0201
WBUF
PHH
GETLN2
OUT
CONT
SEC
PLOAD
SAVE

0200
02BD
FD6C
C2EB
0313
0351
0391
03F5

INl
CLRAN3
CCUT
LOA CED
INPUT
SHIM
TRYAGN
CTRLY

02A3
C05F
FDED
02Fl
0320
0355
0396
03F8

ID 02BO
SETAN3 COSE
WRITE FECD
PROG? 02FA
MOVE 0330
SET 0359
TEST 03Bl
NMI 03FB

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OlE2

NAME
BA$IC2
READ
TYPE3
CRl
SETS
NFOUND
IRQ

02Bl PEND
E003 BELL
FEFD PWRITE
0300 NLTYPE
033F TOONE
0360 !NIT
03CC NC
03FD

02BB PHL 02BC
FBDD CR FC62
02CO WEOF 02CA
0304 TYPE 030B
034 7 SLBL 0348
0367 ECHO 037E
03Dl W'HICH 03DE

BASIC and Machine Language
Transfers with the
Micromodem II

by George J. Dombrowski, fr.

The D.C. Hayes Micromodem is one of the most
popular communications interfaces available for the
Apple. With such an interface, it becomes possible to
transfer programs between your Apple and remote
computers. Here are a couple of routines which
facilitate transfers of BASIC and machine language
programs between two Apples.

There is no doubt that the Micromodem II, produced by D .C. Hayes Associates for
the Apple II, is a very sophisticated telecommunications device. I purchased a
Micromodem several months ago and have been pleased with its performance ever
since. This device couples directly with Ma Bell and can be easily programmed to
automatically answer your phone or even to transmit short messages to other
machines.

One of the best features provided by D.C. Hayes Associates is the well
documented 85 page manual, complete with example programs. However, despite
the quality of this manual, there is a glaring omission. I originally purchased the
Micromodem II with the notion of easily transferring machine language and
BASIC programs to other Apple owners. Although the manual details a procedure
for adapting Apple Computer's Datamover program to the Micromodem firm
ware, easier more direct methods of sending BASIC programs to another computer
were not described. This article describes an immediate mode procedure for
transferring BASIC programs and also provides an Applesoft routine for sending
machine language programs or binary data to another Apple II.

Sending a BASIC program in immediate mode is a simple matter using the
Micromodem II. Once the phone connection has been established, the receiving
computer must be placed in remote mode by sending a CTRL R followed by PR #S
where S = modem slot#. When the BASIC prompt appears, remote control of the
Apple at the other end has been achieved. The receiving computer is now waiting
input. It will accept commands and input from its own keyboard, your keyboard
or those issued automatically by your computer during program execution. In

Dombrowski Micromodems 173

other words, the receiving computer will accept a LISTing of a program sent from
another computer and interpret each line as a command. Before LISTing the pro
gram, however, a few additonal steps must be taken to set up both computers for
the transfer.

Once remote control of the receiving machine has been established, the
appropriate BASIC must be initialized by typing either the INT or FP DOS com
mand. At this point output from the remote computer should be directed to the
video port by executing a PR#O. This is a precautionary step to prevent the
accidental transmission of messages generated by the receiving machine's com
mand interpreter. These messages could be received by the sending computer and
interfere with the program transfer. The operator of the sending computer will not
see the BASIC prompt return after this command. In order to LIST the program on
your computer, terminal mode must be exited by typing CTRL-A/CTRL-X. The
receiving Apple is left in remote mode waiting for input, while the sending com
puter is set up to LIST the program.

Although this procedure seems complicated, after using it a few times it is
easy to remember. For those of you who like to sit back and watch your machine
do the work, the following program will create an EXEC file for this purpose.

From now on the commands typed at the local keyboard will not be sent to
the remote machine. First, the firmware carriage-return-delay for out-going data
must be set by typing POKE 1912+S,18 followed by POKE 1528 + S,80. The pause
after each carriage return allows sufficient time for the receiving machine to inter
pret and execute each line before another is sent. Register 1528 + S normally con
tains decimal 3 in terminal mode, which corresponds to a delay of 30 msec.
Second, the program to be sent is loaded and the LIST formatting routine disabled
by typing POKE 33,30. Finally, a PR #2 is issued and after the cursor returns (0.8
sec), the LIST command given.

Apple is left in remote mode waiting for input, while the sending computer is
set up to LIST the program.

Run this program to create the EXEC file, and then LOAD the program you
want to send. Finally, EXEC BASIC PROGRAM TRANSFER. This EXEC file will
work with either BASIC. The user's machine will be placed in terminal mode
when the transfer is finished. PR #2 must then be issued to the remote computer
to receive its output.

Binary data or machine language programs can be transmitted in a similar
fashion by employing a modified version of the monitor hexadecimal dump
routine. Ordinarily upon hitting RETURN this routine displays a hexadecimal
address followed by a hyphen following the address. The substitution is necessary
because the monitor interpreter requires a colon to immediately follow the
address when binary data is input. The change was accomplished by relocating a
small portion of the F8 ROM chip ($FD92-$FDC5) to RAM memory at
$1000-$1033. Address $1000 was altered from $AO ("-") to $BA (":") . In addi
tion, the address for the JSR instruction at $1021-1023 was changed from $FD92 to

174 Hardware

$1000. This HEX dump routine has been incorporated into an Applesoft BASIC
program which takes care of the housekeeping chores described above for transfer
ring BASIC programs plus a few more.

Applesoft Binary Transfer with the Micromodem II

Although these methods require little software and are easy to implement,
they do have a disadvantage. The time required to send BASIC and machine
language programs using these techniques is greater (approximately 20% and
130%, respectively) than would be expected from the time calculated based upon
program length. This is because both Integer BASIC and Applesoft programs are
stored in memory with reserved words tokenized. Tokenized words such as
PRINT, POKE, or NEXT require only one byte of memory. Sending a byte at 300
baud takes about 1/30 second; however, with the LISTing procedure described
here, transmitting a reserved word such as PRINT requires approximately 5/30's
of a second.

Similarly, with machine language programs, for every 8 bytes of data transfer
red, a 4 digit hexadecimal address, colon, 8 pairs of hexadecimal data, and 8 spaces
must be sent. A total of 29 characters are sent for every 8 bytes of memory.

In spite of this disadvantage, these techniques are handy for sending medium
sized programs over short distances where time is not a costly factor.

NOTE: These programs were designed for the Micromodem to reside in slot 2. If
another slot is chosen, registers 1530 and 1914 in the page listings must be
changed to 1528 + S and 1912 + S, respectively where S = the Modem Slot
Number.

2
3
4
5
6
7

REM
REM
REM
REM
REM
REM
REM

* *
* MICROMODEM TRANSFERS *
* GEORGE DOMBROWSKI *
* *
* BINARY TRANSFER *
* •

8 REM * COPYRIGHT (C) 1981 *
9 REM * MICRO INK, INC. *
10 REM * CHELMSFORD, MA 01824 *
11 REM * ALL RIGHTS RESERVED *
12 REM * *
13 REM ************************
14 REM
15 REM
19 REM BINARY TRANSFER/MICROMCDEM II
20 D$ = CHR$ (4)
30 PRINT D$ "NOMON C, I.O"
40 GOSUB 420

Dombrowski Micromodems 175

50 INPUT "IS RECEIVING COMPUTER IN REMOTE MODE WITH EITHER BASIC INITIAL
IZED?";ANS$

60 PRINT
70 IF LEFT$ (ANS$,l) < > "Y" THEN PRINT "TRANSFER ADANDONED": END
80 POKE 1530,60: POKE 1914,18: REM 600 MSEC WAIT AFTER CARRIAGE RETURN.

AUTO LINE FEED IS ACIVATED AND THE WAIT FUNCTICN + LOCAL DISPLAY ENA
BLED.

90 PRINT "STARTING ADDRESS-": INPUT "(MUST END WITH 0 OR 8)";ST$
100 REM LINES 110/170 - HEXIDECIMAL TO DECIMAL CONVERSION.
110 Z$ = "0123456789ABCDEF"
120 FOR I = LEN (ST$) TO 1 STEP - 1
130 FOR J = 1 TO LEN (Z$)
140 IF MID$ (Z$,J,l) < > MID$ (ST$,I,l) THEN NEXT J
150 DEC = DEC + (J - 1) * (16 A X)
160 X = X + 1: NEXT I
170 HB = INT (DEC/ 256):LB =DEC - (HB * 256)
180 REM LINE 190 PLACES THE DECIMAL EQUIVALENTS OF THE HIGH & LOW BYTE

ADDRESS INTO THE PAGE 0 LOCATIONS USED BY THE MEMORY DUMP ROUTINE.
190 POKE 61,HB: POKE 60,LB
200 INPUT "NUMBER OF BYTES (DECIMAL) ";NB
210 PRINT : INVERSE : HTAB 6 : PRINT "HITTING ANY KEY ABORTS TRANSFER":

NORMAL
220 PRINT D$"IN #0"
230 PRINT D$"PR #2"
240 PRINT "CALL-151"
250 PRINT : REM SENDS CARRIAGE RETURN.
260 FOR I = 1 TC INT (NB / 8) + 1
270 IF PEEK (- 16384) > 127 THEN POKE - 16368,0: GOTO 300
280 CALL 4113: REM CALLS MACHINE LANGUAGE ROUTINE BELOW.
290 NEXT I
300 PRINT
310 PRINT "3DOG"
320 PRINT D$"PR tO"
330 PRINT
340 POKE 1530,3: REM NORMAL 30 MSEC WAIT
350 PRINT " *** ALL DONE ***"
360 PRINT : PRINT "THE SENDING COMPUTERIS NOW IN TERMINAL MODE & THE REC

EIVING COMPUTER HAS BEEN RETURNED WITH BASIC UP IN REMOTE MODE."
370 PRINT : INVERSE : HTAB 15: PRINT "HIT RETURN": NORMAL
380 PRINT D$"IN #2"
390 POKE 1914,138: REM INITIATE TEMINAL MODE/FULL-DUPLEX (USE 10 FOR

HALF-DUPLEX) .
400 END
410 REM LINES 420/450 LOAD RELOCATED MEMORY DUMP ROUTINE AT $1000.
420 FOR M s 4096 TO 4147: READ D: POKE M,D: NEXT M
430 RETURN
440 DATA 164,61,166,60,32,142,253,32,64,249,160,0,169,186,76,237,253,16

5,60,9,7,133,62,165,61,133,63,165,60,41,7,208,3,32 ,0,16
450 DATA 169,160,32,237,253,177,60,32,218,253,32,186,252,144,232,96
460 REM THE BASIC PRGM + DUMP ROUTINE OCCUPY $800-$1040. IF THE BINARY

DATA TO BE SENT RESIDES IN THIS RANGE, IT MUST FIRST BE RELOCATED W
ITH THE MONITOR MOVE COMMAND.

176 Hardware

l REM ************************
REM * *
REM * MICRCMODEM TRANSFERS *
REM * GEORGE DOMBROWSKI *
REM * *
REM * BASIC TRANSFER *
REM * *
REM * COPYRIGHT (C} 1981 *
REM * MICRO INK, INC. *

REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *

2
3
4
5
6
7
8
9
10
11
12
13 REM ************************
14 REM
15 REM
16 REM BASIC T.RANSFER/MICROMODEM II
20 REM FIRST RUN THIS PROGRAM AND THEN
30 REM ESTABLISH REMCTE CCNTRCL OF RECEIVING MACHINE
40 REM LEAVE TERMINAL MODE BY TYPING CTRL-A/CTRL-X
50 REM THEN TYPE <EXEC BASIC PROGRAM TRANSFER>
60 D$ = CHR$ (4)
70 PRINT D$"0PEN BASIC PROGRAM TRANSFER"
80 PRINT D$"WRITE BASIC PROGRAM TRANSFER"
90 PRINT "POKE 1530,80:REM FGR LONG FLOATING POINT PROGRAMS A GREATER DE

LAY MAY BE REQUIRED."
100 PRINT "POKE 1914,18"
110 PRINT "POKE 33,30"
120 PRINT "INtO"
130 PRINT "PR#2"
140 PRINT "LIST"
150 PRINT "PR#O"
160 PRINT "INt2"
170 PRINT "TEXT"
180 PRINT "POKE 1530,3"
190 PRINT "POKE 1914,138"
200 PRINT D$"CLOSE"
210 END

A Digital Thermometer
for the Apple II

by Carl f. Kershner

Can the Apple II tell the temperature? Thermistor
probes can be connected directly to the Apple II Game
1/0 Connector and their output signals processed via
a linearizing algorithm to produce a digital display in
both degrees Celsius and Fahrenheit. This article
explains how.

A thermistor temperature measuring probe can be directly connected to the Apple
II computer via its built-in Game 1/0 Connector. This is possible since ther
mistors are "thermal resistors" which exhibit large resistance changes in response
to a change in temperature. Paddle input ports, PDL(0,1,2,&3), on the Apple are
essentially eight bit AID converters for such variable resistance sources.

The Apple and the thermistor are quite suited for one another since the
inherent nonlinearity of the thermistor can be easily handled with a simple
algorithm in software. In addition, the small current drain during the sampling
cycle of the RC network on the Apple's 553 timer closely approaches the ideal
zero-power operating condition for a thermistor. Both the nonlinearity and the in
duced temperature due to the probing current have been particularly troublesome
characteristics which engineers have had to find ways of working around when
applying thermistors.

The program written in Applesoft consists of an input section, a data reduc
tion section and a display section. The input section calls for the selection of a
paddle input and two thermistor specifications used by most manufacturers: the
room temperature resistance designated as RO and a value representing the ratio
of the resistance at 25°C to that at 50°C designated as RA. The selected paddle
input is then read and scaled to represent the resistance value at the input port.
The corresponding temperature in both degrees Celsius and Fahrenheit are
calculated from the resistance via a temperature-resistance relationship:

where R1 and R2 are the resistances at the absolute temperature T 1 andT2 respec
tively, and (J is a constant for the particular thermistor material. The results are
rounded to the nearest integer and displayed in a three-digit format with the
blanking of leading zeros and a negative sign for temperatures below zero.

178 Hardware

A thermistor probe can be connected to the Apple II by merely attaching one
of its leads to the + 5 volt supply, pin 1, and the other to one of the POL ports, pins
6, 7, 10, or 11 on the Game 1/0 connector J 14. No other components or modifica
tions are required so long as a thermistor is chosen with a room temperature
resistance and ratio which suits the temperature range and sensitivity desired for
application. A 40,000 ohm thermistor with a ratio of 9 or 10 will provide at least
one degree Fahrenheit sensitivity and a working range suitable for an indoor ther
mometer application. The best way to choose a thermistor for your particular
application is to run the program using a game paddle as input, enter values for RO
and RA from a manufacturer's specification sheet, and observe the useful oper
ating range and sensitivity of the selected thermistor. This latter procedure
demonstrates the additional usefulness of the program as an engineering design
aid in selecting a thermistor for other applications.

Thermistors suitable for this application can be purchased for less than five
dollars from most supply houses or directly from a manufacturer. A Fenwal
GA44P2 glass probe type thermistor with a room temperature resistance of 40,000
ohms and a ratio of 9.53 is a good choice for an indoor thermometer application,
whereas a Fenwal GA42P2 with a room temperature resistance of 15,000 ohms
and a ratio of 9 .1 is a good compromise for indoor-outdoor use. It is best to house
the thermistor probe in a small metal tube to protect it from mechanical damage
and to provide thermal inertia to minimize effects of short-term temperature tran
sients. It is also advisable to calibrate the thermistor probes against a laboratory
type thermometer, if high accuracy is desired, because the manufacturing
tolerances on RO and RA values for the inexpensive probes described here are
generally no better than ± 10%.

Because thermistors can be used that have relatively high resistances,
transmission line and contact temperature effects can be neglected and the probes
can be situated far from the computer console. Thus the Apple II digital ther
mometer can perform many useful temperature monitoring tasks in and around
the house.

The Fenwal products mentioned in this article can be purchased from Fenwal
Electronics, 63 Fountain St., PO Box 585, Framingham, MA 01701.

10 REM ************************
15 REM * *
20 REM * DIGITAL THERMOMETER *
25 REM * CARL KERSHNER *
30 REM *
35 REM *
40 REM *

THERMOMETER *
*
*

45 REM * COPYRIGHT (C) 1981 *
50 REM * MICRO INK, INC. *
55 REM * CHELMSFORD, MA 01824 *
60 REM * ALL RIGHTS RESERVED *
65 REM * *
70 REM ************************
80. REM
90 REM

Kershner Digital Thermometer 179

100 REM DIGITAL THERMOMETER FOR THERMISTOR PROBE(DISPLAYS BOTH CELCIUS
&FAHRENHEIT)

110 PRINT "WHICH INPUT DO YOU WANT(O, 1, 2, 3)": INPUT NUMBER
120 PRINT "WHAT THERMISTOR CONSTANTS DO YOU WANT(RO,RATIO)": INPUT RO,RA

125 BETA = l.7636E3 * LOG (RA)
130 HOME : REM CLEAR SCREEN
140 REM PRINT TEMPERATURE SCALE CHARACTERS
150 GR : COLOR= 15
160 HLIN 26,27 AT 6: HLIN 26,27 AT 7: HLIN 26,27 AT 9: HLIN 26,27 AT 10:

VLIN 7,9 AT 25: VLIN 7,9 AT 28
170 HLIN 34,38 AT 9: HLIN 34,38 AT 10: HLIN 34,36 AT 14: HLIN 34,36 AT 1

5:. VLIN 9, 20 AT 33
180 HLIN 26,27 AT 23: HLIN 26,27 AT 24: HLIN 26,27 AT 26: HLIN 26,27 AT

27: VLIN 24,26 AT 25: VLIN 24,26 AT 28
190 VLIN 28,29 AT 38: VLIN 27,28 AT 37: VLIN 26,27 AT 36: VLIN 26,27 AT

35: VLIN 27,28 AT 34
200 VLIN 28,35 AT 33: VLIN 35,36 AT 34: VLIN 36,37 AT 35: VLIN 36,37 AT

36: VLIN 35,36 AT 37: VLIN 34,35 AT 38
210 T = 298: REM SET T(O) AT 298 DEGREES ABSOLUTE
220 RI• 589.94 * PDL (NUMBER): REM READ INPUT & SCALE TO OHMS
230 IF RI • 0 THEN RI • 1: REM PREVENT DIVISION BY ZERO
240 TC. INT (1 I (1 IT - LOG (RO I RI) I BETA) - 272.5): REM CALCUL

ATE TEMPERATURE IN DEGREES CELCIUS AND ROUND TO NEAREST INTEGER
245 IF ABS (TC) > 999 THEN GOTO 220: REM LIMIT OVERFLOWING DISPLAY
250 SIGN = 0
260 IF TC < 0 THEN SIGN = 15
270 COLOR= SIGN
280 HLIN 3,5 AT 29: HLIN 3,5 AT 30: REM DISPLAY NEGATIVE SIGN
29C TC = ABS (TC)
300 J = INT (TC/ lOO):I = J: REM SEPARATE HUNDRED'S DIGIT
310 IF J = 0 THEN J = 10: REM BLANK LEADING ZERO
320 X • l:Y = 26: GOSUB 1000: REM DISPLAY CELCIUS HUNDRED'S
330 J = INT ((TC - J * 100) / 10): REM SEPARATE TEN'S DIGIT
340 IF I = 0 AND J = 0 THEN J = 10: REM BLANK BOTH HUNDRED'S AND TEN'S

LEADING ZEROS IF J&I ARE BOTH ZERO
350 X = 9:Y = 26: GOSUB 1000: REM DISPLAY CELCIUS TEN'S DIGIT
360 J = TC - I * 100 - J * 10: RE~ SEPARATE ONE'S DIGIT
370 X = 17:Y = 26: GOSUB lOCO: REM DISPLAY CELCIUS ONE'S DIGIT
380 TF = INT (9 * (1 I (1 IT - LOG (RO I RI) I BETA) - 273) /5 + 32.5

): REM CALCULATE FAHRENHEIT & ROUND TO NEAREST INTEGER
390 SIGN = 0
400 IF TF < 0 THEN SIGN = 15
410 COLOR= SIGN
420 HLIN 3,5 AT 12: HLIN 3,5 AT 13: REM DISPLAY NEGATIVE SIGN
430 TF = ABS (TF)
440 J = INT (TF / lOC):I = J: REM SEPARATE HUNDRED'S DIGIT
450 IF J = 0 THEN J = 10: REM BLANK LEADING ZERO
460 X = l:Y = 9: GOSUB 1000: REM DISPLAY FAHRENHEIT HUNDRED'S DIGIT
470 J = INT ((TF - J * 100) / 10): REM SEPARATE TEN'S DIGIT
480 IF I = 0 AND J = 0 THEN J = 10: REM BLANK BOTH HUNDRED'S AND TEN'S

LEADING ZEROS
490 X • 9:Y = 9: GOSUB 1000: REM DISPLAY FAHRENHEIT TEN'S DIGIT
500 J • TF - I * 100 - J * 10: REM SEPARATE ONE'S DIGIT

180 Hardware

510 X = 17:Y = 9: GOSUB 1000: REM DISPLAY FAHRENHEIT ONE'S DIGIT
520 GOTO 220
1000 REM SEVEN SEGMENT ENCODER
1010 ON J GOTO 1110,1120,1130,1140,1150,1160,1170,1180,1190,1200
1100 A 15:B = 15:C = 15:D = 15:E = 15:F = 15:G = 0: GOTO 2000
1110 A = O:B = 15:C = 15:D = O:E = O:F = O:G = 0: GOTO 2000
1120 A 15:B = 15:C = O:D = 15:E = 15:F = O:G = 15: GOTO 2000
1130 A 15 : B c 15:C = 15:D = 15:E = O:F = O:G = 15: GOTO 2000
1140 A = O: B = 15:C 15:0 = O:E = Q:F = 15:G = 15: GOTO 2000
1150 A l5:B = O:C = 15:0 = 15:E O:F = 15:G = 15 : GOTO 2000
1160 A 15:B O:C = 15:D = 15:E = 15:F = 15:G = 15: GOTO 2000
1170 A 15:B 15:C 15:D O:E = O:F = O:G = 0: GOTO 2000
1180 A 15:B 15:C = 15:D = 15:E = 15:F = 15:G = 15: GOTO 2000
1190 A 15:B 15:C = 15:D = 15:E = O:F = 15:G = 15: GOTO 2000
1200 A O:B = O:C = O:D = O:E = O:F = O:G = O:J = 0: GOTO 2000
2000 REM SEVEN SEGMENT DISPLAY
2010 COLOR= A
2020 HLIN X + l,X + 4 AT Y
2030 HLIN X + l,X + 4 AT Y + l
2040 COLOR= G
2050 HLIN X + l,X + 4 AT Y + 5
2060 H~IN X + l,X + 4 AT Y + 6
2070 COLOR= 0
2080 HLIN X + l,X + 4 AT Y + 10
2090 HLIN X + l,X + 4 AT Y + 11
2100 COLOR= F
2110 VLIN Y + l,Y + 5 AT X
2120 COLOR= B
2130 VLIN Y + l,Y + 5 AT X + 5
2140 COLOR= E
2150 VLIN Y + 6,Y + 10 AT X
2160 COLOR= C
2170 VLIN Y + 6,Y + 10 AT X + 5
2180 RETURN

KIM and SYM Format
Cassette Tapes on the Apple II

by Steven M. Welch

Now you can swap programs and data between your
Apple and any AIM, SYM or KIM via cassette 110.

Many KIM and SYM owners have graduated to bigger and better 6502 systems as
their needs and financial situations changed. If you are one of these people, and
find that your KIM is sitting in the comer gathering dust because your Apple is so
much easier to work with, read on. With this program, you can use your Apple as a
"host computer" for assembly language program development and then "down
load" the finished program into your single board computer (SBC). Just like the
big boys! Not only will you make better use of your several hundred dollar invest
ment, but you will also have the bonus of a new set of computer jargon to bore
your friends. The value of developing assembly language programs in this fashion
cannot be fully appreciated until you use the Apple to develop a sizeable program
for the SYM or KIM. The many miseries of hand assembling magically disappear.
The constant verbal self-abuse which generally accompanies calculator keyboard
entry and debugging quickly becomes a fading memory. Have you ever forgotten
to initialize a loop counter only to realize it 300 bytes of hand assembly later?

The program listed here was produced to fill a need: to develop a large pro
gram on a SYM. I estimate that we have saved an absolute minimum of 2 man
months in the development of a 1500-byte program by using the Apple for entry,
debugging and assembling. Also, having a real assembler easily available to us, we
have written better code and have not needed the numerous patches and kludges
which inevitably crop up when one writes large programs in machine code. At the
University of Colorado at Boulder, where I am employed, we are developing a
microprocessor-controlled Charge Coupled Photo Diode (CCPD) spectrographic
detector for the Sommers-Bausch Observatory using a SYM-1 computer. Although
this is a very nice SBC, the basic version lacks certain features which are highly
desirable in a computer that will be used for program development; e.g., fast mass
storage, an assembler, text editor, ASCII keyboard, and display device. It seemed
to us that the controlling program was going to take a great deal of time to devise
without these several conveniences.

The "big boys" get around the lack of these features by purchasing (usually
for $10-20,000), a Microprocessor Development System. While our observatory

182 Hardware

didn't have the ten or twenty thousand dollars to throw away, we did have access
to an Apple II computer belonging to my boss, Dr. Bruce Bohannan. The Apple has
almost all of the features of the typical Microprocessor Development System ex
cept, perhaps, a means of communicating with the SBC in question. How can an
Apple talk to a SYM? Fortunately, both computers use the 6502. micro-processor
chip, so programs assembled for the Apple have little or no trouble running on the
SYM or KIM. Also, fortunately, all of these machines have a means of reading and
writing programs on audio cassettes. It goes without saying, of course, that the
tape formats of these machines are totally incompatible. We had to do some
translating; either convince the SYM to speak Apple, or convince the Apple to
speak SYM. Since it's easier to develop programs on the Apple (that's why I did all
this in the first place), I decided to teach my Apple to speak SYM.

It turns out that there is another good reason to teach the Apple SYMese. The
SYNERTEK people who make the SYM, have been so kind as to publish listings of
the SYM monitor in the back of their manual. This monitor listing has routines in
it which produce SYM or KIM cassette tapes. The result is that the program is very
easily modified to run on the Apple. No timers are used (the Apple has none), and
the serial data is sent out through a single bit of a 6522 output port. Although the
Apple doesn't have any 6522s, it does have several single bit outputs, and in par
ticular, it has a single bit output with the level adjusted to be used as a cassette
recorder interface. Even though this is not a 6522 output, under certain conditions
it can be thought of as one. The way that the Apple works, any time the address of
the cassette output port appears on the address bus, the cassette output flip-flop
changes state. On the other hand, in the SYM we send a particular bit pattern to an
address and these bits appear on the output latch.

Basically, what this means is that we can pretend that the Apple cassette is
the SYM cassette output if we write only to this output when we want to change
the level of the cassette port. With the Apple, it should be noted, there is no con
trol over the phase of the output signal, but all of the cassette-read routines in
question are not sensitive to phase. Fortunately, through good luck or the good
planning of the programmers at SYNERTEK, 90% of the cassette output code was
written in just this way. This feature makes the program a snap to adapt to the
Apple. Once I had picked out the proper pieces of the SYNERTEK code and figured
out what they had done, I had only to change a few lines to obtain the results
listed here. Since I did not write the program, I won't explain how it works, but I
have heavily commented the listing for those readers who are interested.

Using the Program

It is a good idea to make a SYNC tape first. The Apple output level is about ~
of the SYM's output level which may require changing the volume on playback
from the usual value. Also, the Apple does not have a high-frequency roll-off
capacitor which the SYM uses, and as a result, the tone controls may need adjust
ment. The SYNC tape enables you to set the controls properly on your tape
recorder (as outlined in the SYM manual, Appendix F). To make a SYNC tape,
load the SYMOUT program into your Apple, set the mode by setting the
parameter, MODE (location $11EO), to $80 for SYM format or to $00 for KIM for-

Welch KIM and SYM 183

mat and begin the program at SYNC: ($1000) . This is an endless loop, so record a
few minutes of the output before you hit RESET and use the resultant tape to set
the level and tone on the tape recorder when reading it into the SYM (see Appen
dix F in SYM manual) .

Once you have the proper level and tone settings, down-loading your program
is fairly easy. First, load the SYMOUT program. Then, load your executable pro
gram into RAM. Next, put in the parameters: Starting Address ($11DB-C), Ending
Address ($11DD-E), Tape l.D. Number ($11DF), and the MODE ($11EO) and start
the program at SYMOUT: ($1080). Record the program, play it into your SYM,
and there you have it!

Direct Computer to Computer Communication

A discovery by Dr. Bohannan: If your tape recorder has a monitor hookup,
through which you can listen to whatever is being recorded, you can hook up the
Apple directly to the SYM and reduce the error rate astronomically! On our SYM
we have about a 70% chance of a successful load of our 1500 byte program with
our tape recorder, a Sony. The level and tone control settings are extremely
critical as well. When the machines are hooked up directly through the monitor
jack of our tape recorder, we have success every time and the level and tone set
tings are unimportant. I've also found that several of my tape recorders work very
well this way and have the monitor feature through the earphone jack even though
it is not marked.

0800 1 i************************
0800 2 ·* *
0800 3 ;. SYM-KIM FORMAT *
0800 4 ;* CASSETTE OUTPUT *
0890 5 ;* S.WELCH *
0800 6 ;* *
0800 7 ;* SYM-KIM *
0800 8 ·* *
o!loo 9 ;. COPYRIGHT (C) 1981 *
0800 10 ; * MICRO INK, INC. *
0800 11 ;* CHELMSFORD, MA 01824 *
0800 12 .:* ALL RIGHTS RESERVED *
0800 13 ;* *
0800 14 :************************
0800 15
0800 16
0800 17 ;LARGELY COPIED FROM THE
0800 18 ;SYNERTEX MANUAL, AND RE-
0800 19 ;PRODUCED HERE WITH THE
0800 20 ;PERMISSION OF SYNERTEX
0800 21 ;SYSTEMS CORP.
0800 22
0800 23

TAPOUT EQU $C020 0800 24
0800 25
0800 26 ;USE APPLE .GAME PADDLE ANNUNCIATOR tO FOR TAPE RECORDER
0800 27 ;ON-OFF CONTROL. RECORDER ON IS LOW .
0800 28
0800 29 TAPEON EQU $C059 ;PUT 0 HERE TO TURN ON
0800 30 TAPEOF EQU $COSS ;PUT l HERE TO TURN OFF
0800 31 TMlSOO EPZ $47 ;PROB SHOULD BE TWEAKED
0800 32 TIME99 EPZ $1A ;FOR DELAY ROUTINE
0800 33 EQT EPZ $04
0800 34 SYN EPZ $16
0800 35 BUFADL EPZ $E7 ;ARBITRARY PLACE ON ZERO PAGE
0800 36 BUFAI:'H EPZ $E8
0800 37 CHAR EPZ $EA

184 Hardware

0800
0800
0800
0800
0800
1080
1080
1080
1080
1080 20BB11
1083 AOBO
1085 2CE011
1088 1000
108A
108A
lOBA A208
108C AOlS
l08E 209511
1091 88
1092 DOFA
1094 CA
1095 DOFS
1097
1097 A916
1099 200711
109C 88
1090 DOFB
109F
109F A92A
lOAl 200711
10A4
10A4 ADDFll
10A7 203Bll
lOAA
lOAA ADDBll
lOAD 203811
lOBO ADDCll
10B3 203811
10B6 2CE011
10B9 lOOC
lOBB
lOBB ADDDll
lOBE 203811
lOCl ADDEll
lOC4 203811
10C7
10C7
10C7 ASE7
10C9 CDDDll
lOCC 0029
lOCE ASE8
1000 CDDEll
1003 0022
lODS A92F
1007 200711
lODA
lODA ADElll
lODD 203Bll
lOEO ADE211
10E3 203Bll
10E6
10E6 A904
lOEB 203Bll
lOEB A904
lOED 203Bll
lOFO
lOPO 18
lOFl
lOFl A201
10P3 BESBCO
10F6 60
10F7
10F7 AOOO
10F9 BlE7
lOFB 203811

38
39
40
41
42
43
44
45
46
47
48
49
so
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Bl
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9.6
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112

;---PROGRAM STARTS HERE, LINE 390 OF SYM CODE LOC 8E87

BEGIN EOU $1080
ORG BEGIN
OBJ $880

;--INITIALIZE-
SYMOUT JSR START

LOY #$80
BIT MODE
BPL DUMPTl

;
;--WRITE 8 SECOND MARK-

LOX t$8
MARKBA LDY #$15
MARKBB JSR DELAY

DEY
BNE MARK8B
DEX
BNE MARK8A

;MUST START IN MIDDLE OF PAGE
;OUT OF WAY OF MOST SYM PROGRAMS

;ENTRY-PARAMETERS SET BEFORECALL
;INCASE WE TAKE KIM BRANCH
;TEST BIT 7 OF MODE (l•SYM,O•KIM)
;KIM-DO 128 SYNS

;8 TIMES ••.
;ONE SEC (21 DELAYSPER SEC)
;BENIGN PAUSE, SYM USES KIM CHAR

1--WRITE 256 SYNS FOR SYNC-
DUMPTl LOA fSYN

JSR OUTCTX
DEY
BNE DUMPTl

;--WRITE START CHARACTER-
LOA t '*'
JSR OUTCTX

; --WRITE ID--
LOA ID
JSR OUTBTX

:---WRITE STARTING ADDRESS--
LDA SAL
JSR OUTBCX
LOA SAR
JSR OUTBCX
BIT MODE :KIM OR HS?
BPL DUMPT2 -

:---WRITE ENDING ADDRESS--
LDA EAL
JSR OUTBCX
LOA EAR
JSR OUTBCX

;---START OF MEMORY DUMP---
;--FIRST CHECK IF THIS IS THE LAST BYTE OUT---
DUMPT2 LDA BUFADL ;LOAD ADDRESS OF CURRENT BYTE

CMP EAL
BNE DUMPT4 :COMPARE TO ENDING ADDRESS
LDA BUFADH
CMP EAR
BNE DUMPT4 ;BRANCH IF MORE TO OUTPUT
LDA #'/' ;YUP, LAST BYTE: WRITE '/'
JSR OUTCTX

;---WRITE CHECKSUM--
LDA CHKL
JSR OUTBTX
LDA CHKH
JSR OUTBTX

:---WRITE TWO EOT'S--
LDA #EOT
JSR OUTBTX
LDA #EOT
JSR OUTBTX

;---OK, NOW WE'RE
CLC

ALL DONE, SO CLEAN UP AND EXIT--
; INDICATE SUCCESS

;---SKIPPED LOTS OF
LDX #$01

STUFF, MOSTLY SYM SPECIFIC--
;SHUT OFF TAPE RECORDER

STX TAPEOF
RTS ; AND WE ' RE ALL DONE

;NEXT IS THE CODE WHICH OUTPUTS THENEXT MEM LOCATION
DUMPT4 LDY #$0 ;FIND THE NEXT BYTE

LDA (BUFADL), Y
JSR OUTBCX ;WRITE IT AND UPDATE CHCKSuM

lOFE E6E7
1100 DOCS
1102 E6E8
1104 4CC710
1107
1107
1107
1107
1107 2CE011
llOA 1047
llOC
llOC
llOC
llOC A209
llOE 8CE411
llll 85EA
lll3
lll3 ADE311
1116 46EA
1118 49E5
lllA 8D20CO
1110
1110 A047
lllF 88
1120 DOFD
1122 9011
1124 49E5
1126 8020CO
1129 A046
112B 88
112C DOFD
112E CA
ll2F DOES
1131 ACE411
1134 60 .
1135 EA
1136 90Fl
1138
1138 20AC11
ll3B 2CE011
113E oacc
1140
1140 AS
1141 4A
1142 4A
1143 4A
1144 4A
1145 204811
1148 290F
114A C90A
114C 18
1140 3002
114F 6907
1151 6930
1153
1153
1153
1153
1153 8EE311
1156 8CE411
1159 85EA
115B A9FF
1150 48
115E AOE411
1161 46EA
1163 A212
1165 B002
1167 A224
1169 A019
116B 49E5
1160 8020CO
1170 88
1171 DOFD
1173 CA
1174 DOF3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Welch KIM and SYM 185

;BUMP BUFFER ADDR

;CARRY

INC BUFADL
BNE DUMPT2
INC BUFADH
JMP DUMPT2 ;GO BACK AND SEE IF WE'RE DONE

;START OF VARIOUS CHARACTER OUT ROUTINES

OUTCTX BIT MODE ;HS OR KIM?
BPL OUTCHT ;KIM TAKES BRANCH

;OUTBTH - NO CLOCK A,X DESTROYED
;MUST RESIDE ON ONE PAGE - TIMING CRITICAL
;
OUTBTH LOX #$9 ;8 BITS+START BIT

STY TEMP2
STA CHAR

;CAN'T READ LEVEL ON APPLE, SO NEXT INSTRUCTION IS DUMMY
LOA TEMPl ;FOR TIMING

GETBIT LSR CHAR
EOR #TPBIT
STA TAPOUT ; INVERT LEVEL

;HERE STARTS FIRST 416 USEC PERIOD
LOY #TM1500

A416 DEY ;TIME FOR THIS LOOP IS 5Y-l

B416

BNE A416
BCC NOFLIP
EOR #TPBIT
STA TAPOUT
LOY tTM1500-l

B416B DEY
BNE B416B
DEX
BNE GETBIT
LOY TEMP2
RTS

NOFLIP NOP
BCC B416

;NOFLIP IF BIT 0
;BIT IS l - INVERT OUTPUT
;END OF FIRST 416 USEC PERIOD

;LENGTH OF LOOP IS SY-1

;GET NEX BIT (LAST IS OSTART BIT)
;(BY 9 BIT LSR)

;TIMING
;(ALWAYS)

;GO UPDATE CHECKSUM OUTBCX JSR CHKT
OUT.STX BIT MODE

BMl OUTBTH
;OUTBTC - OUTPUT
OUTBTC TAY

;HS
ONE KIM BYTE

LSR
LSR
LSR
LSR
JSR HEXOUT

HEXOUT AND t$0F
CMP #$0A
CLC
BMI HEXl
ADC 1$07

HEXl ADC t$30

;SAVE DATA BYTE

;SHIFT HI NIBBLE INTO PLACE
;AND OUTPUT HI NIBBLE FIRST
;CONVERT LO NIBBLE TO ASCII

;OUTCHT OUTPUTS AND ASCII CHAR IN KIM FORMAT
; (MUST RESIDE ON ONE PAGE, FOR TIMING)

OUTCHT STX
STY
STA
LOA

KIMBIT PHA
LOA
LSR
LOX
BCS
LOX

HF LOY
EOR
STA

HF Pl DEY

TEMPl
TEMP2
CHAR
t$FF

TEMP2
CHAR
t$12
HF
t$24
t$19
tTPBIT
TAPOUT

BNE HFPl
DEX
BNE HF

;SAVE X .I. Y

; USE FF W/SHIFTS TO COuNT BITS
;SAVE BIT COUNTER
;DUMMY FOR TIMING
;GET DATA BIT IN CARRY
; ASSUME ONE

;BIT IS ZERO

DUMMY, REALLY
INVERT OUTPUT BIT
PAUSE FOR 138 USEC

186 Hardware

1176 A218 188
1178 B002 189
ll7A A20C 190
ll7C A027 191
117E 49E5 192
1180 8D20CO 193
1183 88 194
1184 DOFD 195
1186 CA 196
1187 DOF3 197
1189 68 198
llBA OA 199
ll8B DODO 200
llBD AEE3ll 201
1190 ACE411 202
1193 98 203
II94 60 204
II95 205
1I95 206
1I95 207
II95 208
Il95 209
1195 210
Il95 8EE311 211
1198 8CE411 212
ll9B A200 213
119D AOlA 214
119F 88 215
llAO DOFD 216
11A2 CA 217
11A3 DOF8 218
llA5 AEE311 219
llA8 ACE411 220
llAB 60 221
llAC 222
llAC 223
11AC.A8 224
llAD 18 225
llAE 6DElll 226
llBl 8DElll 227
IIB4 9003 228
11B6 EEE2Il 229
IlB9 98 230
llBA 60 231
llBB 232
IIBB 20C7ll 233
llBE 20DOll 234
IlCl A900 235
11C3 8D59CO 236
11C6 60 237
11C7 A900 238
IlC9 8DE11I 239
llCC 8DE211 240
llCF 60 241
llDO 242
llDO 243
llDO 244
UDO 245
llDO ADDCll 246
llD3 85E8 247
llD5 ADDBll 248
llD8 85E7 249
llDA 60 250
llDB 251
llDB 252
llDB 253
llDB 254
llDB 255
llDB 256
llDB 00 257
lIDC 00 258
IIDD 00 259
IlDE 00 260
llDF 00 26I
llEO 00 262

LF

LF20

LFPl

LDX #$18
BCS LF20
LDX t$OC
LDY #$27
EOR tTPBIT
STA TAPOUT
DEY
BNE LFPl
DEX
BNE LF20
PLA
ASL
BNE
LDX
LDY
TYA
RTS

KIMBIT
TEMPI
TEMP2

;ASSUME BIT IS ONE

;BIT IS ZERO

;DUMMY
;INVERT OUTPUT
:PAUSE FOR 208 USEC

;RESTORE BIT CTR
:DECREMENT IT
;FF SHIFTED 8X-00

;RESTORE X,Y, DATA BYTE

;WE NEED A DELAY FUNCTION, BECAUSE THE SYM PROG
;USES THE KIM CHARGOUT ROUTINE WITH OUT PUT DISABLED
;TO DELAY (AND WE CAN'T)

;THIS ON!: SHOULD BE 1/21 SECOND, SINCE IT EMULATES
;THE KIM CHAR OUT ROUTINE, WHICH THE SYM PROGRAM USES
DELAY STX TEMPI ;PRESERVE X

STY TEMP2 :AND Y
LDX f$00 ;DO OUTER LOOP 256 TIMES

LOOPO LDY fTIME99 ;LOOP
LOOPl DEY

BNE LOOPI
DEX
BNE LOOPO
LDX TEMPI :RESTORE X
LDY TEMP2 ;AND Y
RTS

;
;CHKT ..• UPDATE CHECKSUM FROM BYTE IN ACC
CHKT TAY :SAVE ACC

CLC
ADC CHKL
STA CHKL
BCC CHl<TlO
INC CHKH

CHKTlO TYA
RTS

;START---LEAVING OUT SOME
START JSR ZERCK

JSR P2SCR
LDA #$00
STA TAPEON
RTS

ZERCK LDA t$00
STA CHl<L
STA CHl<H
RTS

;BUMP HI BYTE
;RESTORE ACC

UNECESSARY JUNK
;ZERO CHECKSUM
;THATS WHAT THEY NAMED IT
;TURN ON TAPE RECORDER

;ZERO CHECKSUM

;--P2SCR-- THIS MOVES THE STARTING ADDRESS
TO THE RUNNING BUFFER ADDRESS.

;THE WEIRD NAME IS DUE TO THE NAMES
;OF THE LOCATIONS WHICH WE ARE MOVING IN THE SYM BOOK
P2SCR LDA SAH ;STARTING ADD HI

STA BUFADH
LDA SAL ;STARTING ADD LO
STA BUFADL
RTS

;PAGE PARAMETERS, ETC.
;THESE NEXT SIX LOCATIONS SHOULD BE
;FILLED WITH THE CALLING PARAMETERS
;BEFORE CALLING THE SYMOUT ROUTINE

SAL HEX 00
SAH HEX 00
EAL HEX 00
EAH HEX 00
ID HEX 00
MODE HEX 00

STARTING ADDRESS, LO BYTE
STARTING ADDRESS, HI BYTE
ENDING ADDRESS+l, LO BYTE
ENDING ADDRESS+l, HI BYTE
TAPE ID NUMBER
SYM=$80, KIM=$00

Welch KIM and SYM 187

llEI 00 263 CHKL HEX 00 iVARIABLES
llE2 00 264 CHKH HEX 00
llE3 00 265 TEMPI HEX 00
llE4 00 266 TEMP2 HEX 00
llES 00 267 TPBIT HEX 00
llE6 268
11E6 269 ;--- SHORT ROUTINE TO MAKE SYNC TAPES
llE6 270 (APPLE PRODUCED TAPE WILL USUALLY NEED
llE6 271 DIFFERENT VOLUME AND TONE SETTINGS
11E6 272 THAN KIM OR SYM TAPES)
llE6 273
IOOO 274 ORG $IOOO
IOOO 275 OBJ $800
IOOO 276
IOOO 20BBll 277 SYNC JSR START
I003 A9I6 278 SYNMOR LDA tSYN
IOOS 200711 279 JSR OUTCTX
IOOS 4C03IO 280 JMP SYNMOR
IOOB 28I

282 END

LABEL.

* * * SYMBOL TABLE -- V I.5 *
* *

LOC. LABEL. LOC. LABEL. Loe.

** ZERO PAGE VARIABLES:

TMISOO 0047 TIME99 OOIA EOT 0004
CHAR OOEA

** ABSOLUTE VARABLES/LABELS

TAPOUT C020 TA PEON C059 TAPEOF COSS
MARKBA IOSC MARKSB IOSE DUMPTI I097
OUTBTH llOC GETBIT llI6 A4I6 IllF
OUTBCX 1138 OUTBTX Il3B OUTBTC 1140
KIMBIT llSD HF 1169 HFPI 1170
DELAY 1195 LOO PO 119D LOOP I 119F
ZERCK 11C7 P2SCR llDO SAL llDB
ID llDF MODE llEO CHKL llEI
TPBIT llES SYNC 1000 SYNMOR I003

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OIDA

SYN

BEGIN
DUMPT2
B4I6
HE XO UT
LF
CHKT
SAH
CHKH

MAKE A SYNC TAPE
LOAD SYNC CHARACTER
SEND IT
DO IT FOREVER

OOI6 BUFADL OOE7

IOSO SYMOUT IOSO
IOC7 DUMPT4 IOF7
1129 B4I6B ll2B
1148 HEXI llSI
1176 LF20 117C
llAC CHKTIO 11B9
llDC EAL llDD
11E2 TEMPI 11E3

BUFADH OOES

OUTCTX 1107
NOFLIP 1135
OUTCHT 1153
LFPI 1183
START llBB
EAH llDE
TEMP2 11E4

6
REFERENCE

Introduction

Intercepting DOS Errors from Integer BASIC
Andy Hertzfeld

Applesoft Floating Point Routines
R.M. Mottola

How to Use Hooks
Richard Williams

Brown and White and Colored All Over
Richard F. Suitor

190

191

194

200

207

INTRODUCTION
This chapter provides some assorted reference material which should be of great
interest to any serious Apple user who wants to know more about the firmware
and hardware features locked within the machine. Each of these articles explores a
different feature of the Apple.

''Intercepting DOS Errors from Integer BASIC,'' by Andy Hertzfeld, presents a
quick overview of the DOS error codes, where they are stored, and how to inter
cept them from within an Integer BASIC program. "Applesoft Floating Point
Routines," by R.M. Mottola, discusses the powerful floating point routines which
are locked inside the Applesoft firmware. Incidentally, these are the routines used
by the MEAN-14 system (see chapter 1). Richard Williams' "How to Use Hooks"
explains the use of vectors, or hooks by the monitor, and how to use them to inter
cept program control. Two example programs are provided. Finally, Dick Suitor's
"Brown and White and Colored All Over" discusses some of the theory behind
the Apple's color graphics, and provides an example program.

All these programs should further your understanding of your Apple and
what's in it. The article on hooks is especially recommended to the novice to aid
understanding of the routines in chapter 1.

Intercepting DOS Errors
from Integer BASIC

by Andy Hertzfeld

Implement true turnkey applications on the Apple with
this DOS error handling interface. Now Integer BASIC
programs can trap errors from DOS, diagnose problems,
and take remedial action with no intervention from the
·operator.

When a DOS error such as FILE NOT FOUND occurs during execution of a BASIC
program, execution is suspended and an error message is printed. Unfortunately,
this is often not what we want to happen. We would prefer the program to be
notified of the error and allowed to continue execution, dealing with the error in
any fashion it desires.

This is fairly easy to achieve under Applesoft because it includes an ONERR
error intercepting facility. It is much harder to intercept erors from Integer BASIC;
this article describes one method for doing so.

Unlike Integer BASIC, the DOS resides in normal RAM. This means it can be
patched to make it do almost anything we wish. It turns out that location 9DSA
(for 48K systems) holds the address of the BASIC error-handling routine that DOS
vectors to whenever an error arises. It usually contains E3E3, for Integer BASIC,
and D86S for ROM Applesoft. However, we can store our own address into 9DSA
(SOSA for 32K systems) and thereby gain control whenever a DOS error occurs.

The following 24-byte, relocatable routine will intercept errors from BASIC.
When a DOS error arises, it will store the error number at location 2; the line
number of the statement that caused the error in locations 3 and 4; and, finally, it
will transfer control to the BASIC statement whose line number is found in
locations 0 arid 1. Since the routine is relocatable, you can position it anywhere
you wish. Location 300 appears to be a pretty good place, unless you are keeping
your printer driver there.

To activate the error intercept facility, perform the following two POKEs
which store the address of the intercept routine in $9DSA:

POKE-25254,0: POKE-25253,3 (for 48K systems) or
POKE-23898,0: POKE-23899,3 (for 32K systems)

192 Reference

The error intercept routine itself can be POKEd into page 3 or BLOADed off
disk, whichever you prefer. If you locate it somewhere other than $300, make sure
to alter the above POKEs accordingly.

After the routine is loaded into memory, it is very easy to use. If LINE is the
line number of the statement where the error handling portion of your program
begins, you should "POKE 0, LINE mod 256" and "POKE 1, LINE/256" to inform
the interceptor where you want it to branch to. Your BASIC error-handling can
figure out which statement caused the error by PEEKing at locations 3 and 4.

PEEK(3) +256*PEEK(4) is the line number. It can determine which type of
DOS error occured by PEEKing at location $2. Table 1 gives the numbers for the
various different classes of error.

Unfortunately, there is still one minor problem. Even though you regain con
trol when a DOS error occurs, DOS still rings the bell and prints out any error
message. One simple POKE will inhibit DOS from doing this, but since the POKE
will suppress all DOS error messages, including immediate execution errors, it is
a little bit dangerous. Also, the POKE is different for different memory size systems
and for different versions of DOS.

48K with DOS V3.1:
48K with DOS V3.2/3.3:
32K with DOS V3.1:
32K with DOS V3.2/3.3:

POKE-22978,20
POKE-22820, 18
POKE 26174,20
POKE 26332, 18

Table 1 - Error Numbers and Messages

Number
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Message
Language Not Available
Range Error
Range Error
Write Protection Error
End of Data Error
File Not Found Error
Volume Mismatch Error
Disk I/ 0 Error
Disk Full Error
File Locked Error
Syntax Error
No Buffers Left Error
File Type Mismatch
Program Too Large Error
Not Direct Command

Note that these are error messages for DOS V3.2 or V3.3; the V3. l messages
are slightly different.

Hertzfeld Intercepting DOS 193

On all systems, you can restore error messages by POKEing 4 into the system
dependent address cited above.

The ability to capture DOS errors is very important, especially for tum-key
systems where it is a disaster if a program crashes for any reason at all. Perhaps
this little routine will allow more people to program in faster, more elegant
Integer BASIC rather than choosing the Applesoft language.

0800 1 ;***********************
0800 2 ;* *
0800 3 ;* INTERCEPTING *
0800 4 ;* DCS ERRORS *
0800 5 ;* BY ANDY HERTZF'ELD *
0800 6 ;* *
0800 7 ;* ERRCR *
0800 8 ;* *
0800 9 ;* COPYRIGHT (C) 1981 *
0800 10 ;* MICRO INK, INC. *
0800 11 ;* CHEMSFORD, MA 01824 *
0800 12 ;* ALL RIGHTS RESERVED *
0800 13 ;* *
0800 14 ;***********************
0800 15
0800 16
0800 17 ERlWM EPZ $02
0800 18 ERRLIN EPZ $03
oeoo 19 ONERR EPZ $00
0800 20
0800 21 PR EPZ $DC
0800 22 ACL EPZ $CE
0800 23 ACH EPZ $CF
0800 24
0800 25 GOTO EQU $E85E
0800 26
0300 27 ORG $300
0300 28 OBJ $800
0300 29 '' 0300 30
0300 8602 31 ERR CR STX ERNUM
0302 AOOl 32 LDY #01
0304 Bl DC 33 LDA (PR) ,Y
0306 8503 34 STA ERRLIN
0308 ca 35 INY
0309 Bl DC 36 LI:A (PR) ,Y
030B 8504 37 STA ERRLIN+l
030D A500 38 LDA ONE RR
030F 85CE 39 STA ACL
0311 A501 40 LDA ONERR+l
0313 85CF 41 STA ACH
0315 4C5EE8 42 JMP GOTO

43 END

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LCC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

ERNUM 0002 ERRLIN 0003 CNERR 0000 PR

** ABSOLUTE VARABLES/LABELS

GOTO E85E ERROR 0300

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0052

ERROR NUMBER
LINE OF ERROR
CONTROL TRANSFER LINE

;BASIC LINE POINTER
;BASIC ACCUMULATOR

;BASIC 'GOTO' ROUTINE

;SAVE ERROR NUMBER

;GET LOW BYTE OF ERRING
;LINE NUMBER AND SAVE

;DITTO FOR HIGH BYTE

GET LOW BYTE CF LINE NUMBER
OF ERROR HANDLING STATEMENT
DITTO FCR HIGH BYTE
SET THINGS UP FOR BASIC AND
LET THE FIRMWARE TAKE OVER

OODC ACL OOCE ACH OOCF

Applesoft Floating Point
Routines

by R.M. Mottola

Applesoft BASIC is a complete and easy-to-use
language-but sometimes it can be annoyingly slow.
To decrease execution time, many programmers code
some routines in machine language. Yet it seems
wasteful to re-code routines which already exist in the
Applesoft interpreter. The solution to the dilemma: Use
the floating point routines directly! Here is a discussion
of where floating point routines are located, what they
do, and an example of their direct use.

Part of a recent project required me to write a routine that would calculate various
statistical data reductions on a series of data points. The initial result, written in
Applesoft floating point BASIC, worked well enough but took a healthy amount of
time to execute. Upon doing some timing experiments, it became apparent that a
good deal of the time required to perform the task was eaten up by BASIC
overhead conversion of types, floating point "FOR-NEXT" loops, and general
interpereter related functions .

What I really wanted was to write all of the roµtine in machine language. To
do this, there were two options available. The first was to write some floating
point routines which maintained the Applesoft five byte variable format. This
proved to be impractical due to the amount of memory required for these routines.

The second and much more memory efficient solution was to locate the
floating point routines already in my machine in Applesoft. This proved to be
reasonably difficult for a number of reasons but after much head-scratching I've
managed to unearth the following routines. Before using them, its probably a good
idea to familiarize yourself with the format of both the Applesoft variables and the
Applesoft floating point accumulators .

The format of Applesoft variables is a standard five byte floating point
representation, with the highest order byte containing the exponent and the lower
four bytes containing a signed mantissa. (See page 137 of the Applesoft manual for
more on this.) The format of the Applesoft accumulators is a little different. You
will notice from various Applesoft zero page usage tables that seven bytes have

Mottola Applesoft 195

been allocated for each of the two floating point accumulators. The format of
these accumulators is as follows: The highest order byte contains the exponent.
The next four bytes contain the negative absolute value of the mantissa, as
represented in Applesoft variable format. The sixth byte contains the original
high-order byte of the mantissa if a value has just been converted from variable
format to accumulator format. In any case, this byte is used to represent the sign
of the mantissa. The seventh and last byte of the accumulator is a ''function'' byte
used in arithmetic operations. It is not initially assigned a value on conversion of a
value from variable format to accumulator format.

To use the following floating point routines is a reasonably straight-forward
process. For the sake of simplicity, you may find it easier to forget the
accumulator formatting of values, and load all values into the accumulator using
the ''FPLOAD'' subroutine listed. This routine performs the conversion while do
ing the load. You should also be careful to represent all values in normalized form.
If you plan to use only values that have been previously specified by Applesoft,
you will not have to do this as Applesoft normalizes all variables as they are
specified. To use your own values, you may find the accompanying utility pro
gram useful.

Another thing to be careful about is floating point errors (Division by zero,
Overflow). Since these floating point routines were not meant to be used outside
of Applesoft, the entry points to the error handling routines are in ROM. Unfor
tunately, the vectors to these routines are cast in stone (or Silicone, anyway) and
cannot be changed. There are two ways to deal with these errors:

1. Test your routines for "worst case" operation. If you can make sure that errors
will never occur, you've got it made.

2. Applesoft has the ability to vector errors to a specified BASIC line number with
the ONERR ... GOTO statement to direct errors to a specified line number. On this
line number, you can make a call to your own machine language error handling
routines.

The following routines constitute the major arithmetic routines available in
Applesoft. There are, of course, other functions buried in BASIC which have not
been identified here.

Name: FPLOAD
Address: $EAF9
Symbolic: M~ FPAC 1

Loads variable into primary floating point accumulator. Converts to FPAC format.
A and Y registers must point at variable in memory (ADL, ADH). Clears $AC.

Name: FPSTR
Address: $EB2B
Symbolic: FPACI~M

196 Reference

Stores value in primary floating point accumulator in memory. Converts from
FPAC format to Applesoft variable format. X and Y registers must point at first
byte in memory in which value is to be stored (ADL, ADH) . Clears $AC.

Name: TRI> 2
Address: $EB63
Symbolic: FPACl

Transfers the value contained in the primary floating point accumulator to the
secondary floating point accumulator. Clears $AC.

Name: FPDIV2
Address: $EA60
Symbolic: FPAC2/M....,.FPAC1

Divides the value contained in the secondary floating point accumulator by the
value pointed at by the A and Y registers (ADL, ADH) and stores the result in the
primary floating point accumulator.

Name: TR2>1
Address: $EB53
Symbolic: FPAC2....,.FPAC1

Transfers the value contained in the primary floating point accumulator to the
secondary floating point accumulator. Clears $AC.

Name: FPSQR
Address: $EE8D
Symbolic: FPACl...._ FPACl

Returns the positive square root of the value contained in the primary floating
point accumulator in the primary floating point accumulator.

Name: FPEXP
Address: $EE94
Symbolic: FPAC2 M....,.FPACl

Raises the value contained in the secondary floating point accumulator to the
value pointed at by the A and Y registers. The result is stored in the primary
floating point accumulator.

Name: FPINT
Address: $EC23
Symbolic: INT (FPACl~FPACl

Returns the integer value of the value contained in the primary floating point
accumulator to the primary floating point accumulator.

Name: FPABS
Address: $EBAF
Symbolic: ABS (FPACl)...-FPACl

Hertzfeld Intercepting DOS 197

Returns the absolute value of the value contained in the primary floating point
accumulator to the primary floating point accumulator.

Name: FPADD
Address: $E7BE
Symbolic: M+FPACl...-FPACl

Adds the value of the variable pointed to by the A and Y registers (AOL, ADH) to
the value contained in the primary floating point accumulator and stores the
result in the primary floating point accumulator.

Name: FPADD2
Address: $E7 AO
Symbolic: 0.5 + FPACl...-FPACl

Similar to previous routine, but adds the value (0.5) to the primary floating point
accumulator.

Name: FPMUL
Address: $E97F
Symbolic: M*FPACI...-FPACl

Multiplies the value pointed at by the A and Y registers (ADL, ADH) by the value
contained in the primary floating point accumulator and stores the result in the
primary floating point accumulator.

Name: FPSUB
Address: $E7 A7
Symbolic: M - FPACl~FPACl

Subtracts the value contained in the primary floating point accumulator from the
value pointed at by the A and Y registers (ADL, ADH) and stores the result in the
primary floating point accumulator.

Name: FPDIV
Address: $EA66
Symbolic: M I FPACl~ FPACl

Divides the value pointed to by the A and Y registers (ADL, ADH) by the value
contained in the primary floating point accumulator and stores the result in the
primary floating point accumulator.

Name: FPSGN
Address: $EB90
Symbolic: SGN (FPACl)~ FPACl

198 Ref ere nee

Returns the sign of the value contained in the primary floating point accumulator.
A negative value will return (-1). A positive value will return a (1). A value of
zero will return a (0).

Name: FPLOG
Address: $E941
Symbolic: LOG (FPACl)~FPACl

Returns the natural log of the value obtained in the primary floating point
accumulator to the primary floating point accumulator.

Name: COMP2
Address: $E89E
Symbolic: TWO'S COMPLEMENT OF FPACl~FPACl

Returns the Two's Complement of the value contained in the primary floating
point accumulator to the primary floating point accumulator.

Name: INT > FP
Address: $E2F2
Symbolic: (Y,A)~FPACl

Converts a two byte integer to its floating point equivalent (FPAC format) and
stores it in the primary floating point accumulator. The integer must be
represented with the high-order byte stored in the A register, and the low-order
byte stored in the Y register.

Name: FP > INT
Address: $ElOC
Symbolic: FPAC1~($AO, $Al)

Converts the floating point contained in the primary floating point accumulator
to a two byte integer, which is stored in the fourth and fifth bytes of the primary
floating point accumulator ($AO, $Al) . $AO contains the high-order byte and $Al
contains the low-order byte.

1 REM ************************
2 REM * *
3
4
5
6
7
8
9
10
11
12
13
14
80

REM * FLOATING POINT *
REM * RCUTINES *
REM * R.M. MOTTOLA *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MIC RC INK, INC. *
REM * CHELMSFORD, MA 01824 *

REM * ALL RIGHTS RESERVED *
REM * *
REM ************************
REM
REM

= O:D$ CHR$ (4)
FOR N = 768 TO 792
READ A: POKE N,A
NEXT

Hertzfeld

90 x
100
110
120
130 REM ESTABLISH CONVERSION ROUTINE AT $300

DATA
DATA
DATA
DATA

165,105,24,105,2
164,106,144,1,200
32,249,234,160,6
185,157,0,153,25

DATA 3,136,16,247,96

Intercepting DOS

140
150
160
170
18('
190
200
210

HOME : PRINT : PRIN'I' TAB(7) "FLCATING POINT CONVERSIONS"
PRINT : PRINT : PRINT "INSTRUCTIONS-"
PRINT : PRINT "ENTER VALUE YOU WISH CONVERTED TO FLOATING POINT

199

220
REPR ESENTATION. IF YOU WISH TO PRINT THE CONVERSIONS ON THE"

PRIN'I' "PRINTER, FCLLCW THE VALUE WITH A 'P'. TO RETURN TO BASIC,
HI T (RETURN) KEY."

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

VTAB 14: CALL - 868
INPUT "ENTER VALUE: " ; A$
IF A$ = "" THEN VTAB 23: END : REM ""=NULL$
IF RIGHT$ (A$,l) > < "P" THEN 300
PRINT D$; "PR# 1"
REM PRINTER IN SLOT #1
PRINT : PRINT

X = VAL (A$): CALL 768
VTAB 18: CALL - 958: PRINT "VALUE= "X
PRINT : PRINT "ACCUMULATOR: $" ;
FOR N = 793 TO 799

A = PEEK (N): GOSUB 450
NEXT : PRINT : PRINT
PRINT "VARIABLE: $";

B = PEEK (105) + PEEK (106) * 256 + 2
FOR N = B TO B + 4

A= PEEK (N): GOSUB 450
NEXT : PRINT
PRINT D$;"PR#O"
GOTO 230

REM DECIMAL TC HEX SUB
A A I 16:B = INT (A)
A = (A - B) * 16
B = B + 48: IF B > 57 THEN B

PRINT CHR$ (B);
A = A + 48: IF A > 57 THEN A

PRINT CHR$ (A)" ";
RETURN

B + 7

A + 7

How to Use
the Hooks

by Richard Williams

There are a lot of great things you can do with your
Apple, once you know how to use the available hooks.

The Apple II allows you easily to substitute your own input and output routines
for the standard routines . Figure 1 shows the basic flow of control when a
character is output by the Apple II. Figure 2 shows how the control path changes
when you substitute your own output routine for the standard monitor path. By
using what are known as "hooks," you can break the normal flow of control and
redirect it to your own routine.

An example of how this method can be used is shown in figure 3. Control
characters normally do not show on the screen. However, by inserting a routine to
change control characters into inverse video when printed, the characters will
show on the screen. This procedure is very useful for listing programs containing
control characters.

How It Works

Before doing the actual input or output, the system does an indirect jump, via
the zero page, to the actual input or output routine. By changing the jump address,
you can substitute your own routine for the standard zone. For input, at location
$FD18 in the monitor, there is a JMP (KSWL) instruction. KSWL (at $38) and
KSWH (at $39) contain the address of the input routine with the low byte specified
first . Similarly, at address $FDED, there is a JSR (CSWL) instruction which is the
jump to the output routine. CSWL, address $36, and CSWH, at $37, contain the
address of the output routine. This code can be seen on pages 166 and 167 of the
Apple II reference manual.

How to Insert an Input Routine

The normal input routine is KEYIN at address $FD1B. To replace it with your
routine, store its address in KSWL and KSWH. Your input routine needs to do the
following.

Williams Hooks 201

1. Upon entry to your routine, the accumulator will contain the character that
was replaced by the flashing prompt. You must restore this character on the screen
by doing a STA (BASL), Y where BASL = $28. Do this before altering the A or Y
registers .

2. Clear the keyboard strobe, if the character came from the keyboard.

3. Return the character, with the high bit set, in the accumulator.

4. The normal input routine increments the random number seed while it waits
for input. You should do this also .

If you wish to get your input from the keyboard, you can do all of these by do
ing a call to KEYIN (JSR $FD1B). You can then do whatever processing you want
on the character, which is in the accumulator, and then return with an RTS. If you
write your own routine to replace KEYIN, you should first carefully study KEYIN.

Outputting
Program

+ Monitor
Output
Handler

+ Monitor
Character

Output
Routine

Figure 1

How to Insert an Output Routine

Outputting
Program

+ Monitor
Output
Handler

+ User
Character

Output
Routine

Figure 2

Outputting

Pr Tam
Monitor
Output
Handler

+ User Routine
To Convert
Control To

lnversl Video

Monitor
Character

Output
Routine

Fi$ure3

The normal output routine is COUTl (address $FDFO) . To insert your
routine, store its address in CSWL and CSWH (addresses $36 and $37) with the
low byte first. The character to be output will be placed in the accumulator before
your routine is called. If you wish the character in the accumulator to be printed

202 Reference

on the screen after you are done, exit your routine by doing a JMP COUTl. A
routine to convert control characters to inverse video is an example of this
procedure.

How to Remove the Routines

The input and output routines can be removed from the hooks by typing IN#O
or PR#O respectively. Or, if done in a program, a JSR SETKBD (address $FE89)
simulates a IN#O, and a JSR SETVID (address $FE93) simulates a PR#O.

Special Notes for DOS Users

If you are using the disk operating system (DOS), you must follow some
special rules when attaching or removing your routines. DOS normally sits in
both the input and output hooks itself. Consequently, when you alter the hooks,
you must call a DOS routine which informs DOS that the hooks have been
changed. DOS will then reconnect itself to the hooks, but it will use your routines
instead of the standard I/O routines. The routine to do this is at $3EA.

Example

The sample program in figure 4 inserts or removes a routine from the input hook.

To connect your routine do a 300G from the monitor. To remove your routine
from the hook, do a 30CG.

300:
302:
304:
306:
308:
308:
30C:
30F:
312:

LDA
STA
LDA
STA
JSR
RTS
JSR
JSR
RTS

#low address of routine
$38 ;Store it in KSWL
#high address byte of routine
$39 ;Store it in KSWH
$3EA ;Reconnect DOS

$FE89;JSR SETKBD to simulate INHO
$3EA ;Reconnect DOS

Figure 4

A Sample Program Using the Input Hook

There are three characters that the Apple II can understand, but that cannot be
typed in from the standard keyboard. They are the backslash (I J, the left bracket
([J, and the underscore (_ J. One way to type in these characters is to make a
hardware mod#ication to the keyboard. Another way is to attach a routine to the
input hook that will convert unused control characters to these characters. The
firsi program converts the following characters:

Williams Hooks 203

Control K to a left bracket ([)

Control L to a backslash (I)

Control 0 to an underscore (_)

Here's how you use this program:

Type or BLOAD the program at $300. Note that this program is written for
DOS users. If you aren't using DOS, then replace the JMP $3EA with RTS
instructions.

To connect the routine, do a 303G from the moniter or a CALL 771 from
BASIC.

To disconnect the routine, do a 300G from the monitor or a CALL 768 from
BASIC.

The second sample program uses the output hook to convert control
characters into inverse video characters. All control characters except contol M,
which is the carriage return, are converted.

Summary of Important Addresses for Using the Hooks

Name Address Comment

COUT1 $FDFO Monitor character output routine.

CSWL $36 Low address byte of output routine.

CSWH $37 High address byte of output routine.

KEYIN $FD1B Monitor keyboard input routine.

KSWL $38 Low address byte of input routine.

KSWH $39 High address byte of input routine.

MVSW $3EA Routine to reconnect DOS

SETKBD $FE89 Simulates a IN#O

SETVID $FE93 Simulates a PR#O

204 Reference

0800 1
0800 2
0800 3
0800 4
0800 s
0800 6
0800 7
0800 8
0800 9
0800 10
0800 11
0800 12
0800 13
0800 14
0800 lS
0800 16
0800 17
0800 18
0800 19
0800 20
0800 21
0800 22
0800 23
0800 24
0800 2S
0800 26
0800 27
0800 28
0800 29
0800 30
0800 31
0800 32
0800 33
0800 34
0800 3S
0300 36
0300 37
0300 38
0300 39
0300 40
0300 4COF03 41
0303 42
0303 43
0303 44
0303 A916 4S
030S 8S38 46
0307 A903 47
0309 8S39 48
030B 20EA03 49
030E 60 so
030F Sl
030F S2
030F S3
030F 2089FE S4
0312 20EA03 SS
031S 60 S6
0316 S7
0316 S8
0316 S9
0316 201BFD 60
0319 C98B 61
031B D003 62
031D A9DB 63
031F 60 64
0320 C98C 6S
0322 D003 66
0324 A9DC 67
0326 60 68
0327 C9BF 69
0329 D002 70
032B A9DF 71
032D 60 72

73

: ************************
:* *
:* HOW TO USE HOOKS *
:* RICHARD WILLIAMS *
:* *
:* NEW KEYS *
:* *
:* COPYRIGHT (C) 1981 *
;* MICRO INK, INC. *
;* CHELMSFORD, MA 01824 *
;* ALL RIGHTS RESERVED *
; * *
:************************

BKSLSH EPZ 220 ASCII BACKLASH
CTRLK EPZ 139 ASCII CONTROL K
CTRLL EPZ 140 ASCII CONTROL L
CTR LO EPZ 143 ASCII CONTROL 0
KSWL EPZ $38 INPUT HOOK A.DDRESS
KSWH EPZ $39
RTBRKT EPZ 219 :ASCII RIGHT BRACKET
UNDSCR EPZ 223 ;ASCII UNDERSCORE

KEY IN EOU $FD1B ;MONITOR'S INPUT HANDLER
MVSW EOU $3EA ;ROUTINE TO RECONNECT DOS
SETKBD EOU $FE89 ; SIMULATES IN#O

: - -----NEXT OBJECT FILE NAME IS NEWKEYS . OBJO

ORG $300
OBJ $800

JMP UNHOOK ; JUMP TO DISCONNECT ROUTINE

;*** THIS PART ATTACHES OUR ROUTINE INTO THE INPUT HOOK

ATTACH LDA #KEYCHK
STA KSWL
LDA /KEYCHK
STA KSWH
JSR MVSW
RTS

;A=LOW BYTE OF ADDRESS

:GET HI BYTE

:GO TO IT

;*** THIS PART UNHOOKS THE ROUTINE

UNHOOK JSR SETKBD
JSR MVSW
RTS

.; *** THIS IS THE ROUTINE .
KEYCHK JSR KEY IN

C:MP tCTRLK
BNE NOTK
LDA tRTBRKT
RTS

NOTK CMP tCTRLL
BNE NOTL
LDA tBKSLSH
RTS

NOTL CMP #CTRLO
BNE CHKDNE
LDA tUNDSCR

CHKDNE RTS
END

; DO A INtO

:GET THE KEY
;CONTROL K?

; MAKE IT A BRACKET

;CONTROL L?

:MAKE IT A BACKLASH

:CONTROL O?

***********•*************
* *
* SYMBOL TABLE -- V 1 . 5 *
* *

LABEL • LOC. LABEL. LOC . LABEL. LOC.

** ZERO PAGE VARIABLES:

Williams Hooks

BKSLSH OODC CTRLK 008B CTRLL 008C CTRLO 008F KSWL
RTBRKT OODB UNDSCR OODF

0038 KSWH

** ABSOLUTE VARABLES/LABELS

KEYIN FDlB MVSW 03EA SETKBD FE89 ATTACH 0303
UNHOOK 030F KEYCHK 0316 NOTK 0320 NOTL 0327 CHKDNE 032D

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:009A

olloo 1 ;************************
0800 2 :* *
0800 3 ;* HOW TO USE HOOKS *
0800 4 :* RICHARD WlLLlAMS *
0800 5 :* *
0800 6 :* CONVU<T *
0800 7 r* *
0800 8 ·* tOPYIUGHT (C) 1981 *
0800 g ;. MICRO INK, INC. *
0800 10 ,. CHELSMFORD 1 MA 01824 *
0800 11 ,. ALL RIGHTS RESERVED *
0000 12 ,. *
0800 13 :*********•**************
oeoo 14
0800 15
0800 16 I
0800 17 CSWH EPZ $37
0800 18 CSWL EPZ $36
0800 19 CTRLM EPZ $8D
0800 20 MASK EPZ $3F
0800 21 NULL EPZ $80
0800 22 SPACE EPZ $M
0800 23
0800 24
0800 25
0800 26 COUTl EQU $FDFO
0800 27 MVSW EQU $3EA
0800 28 SETVID EQU $FE93
0800 29
0800 30
0300 31 ORG $300
0300 32 OBJ $800
0300 33
0300 34
0300 4COF03 35 JMP UNHOOK
0303 36

OUTPUT HOOK HIGH BYTE
OUTPl!'I' HOOK LOW ORDER BYTE
CONTROL M
MASK TO CONVERT TC INVERSE
NULL CHARACTER
SPACE CHARACTER

;CHARACTER OUTPUT ROUTINE
;RECONNECTS DOS
;PERFORMS PRtO

0303 37 ;*** ROUTINE TO CONNECT ROUTINE INTO HOOK
0303 38
0303 A916 39 LDA #CCNVRT ;GET LOW BYTE OF ADDRESS
0305 8536 40 STA CSWL
0307 A903 41 LDA /CCNVRT :GET HIGH BYTE
0309 8537 42 STA CSWH
030B 20EA03 43 JSR MVSW
030E 60 44 RTS
030F 45

205

206 Reference

C30F 46 :*** THIS UNHOOKS
030F 47
030F 2093FE 48 UNHOOK JSR SETVID
0312 20EA03 49 JSR MVSW
0315 60 so RTS
0316 51
0316 52 :*** THIS IS THE
0316 53
0316 C980 54 CONVRT CMP #NULL
0318 900A 55 BCC GOO UT
0 31A C9AO 56 CMP #SPACE
031C B006 57 BCS GOO UT
031E C98D 58 CMP fCTRLM
0320 F002 59 BEQ GOO UT
0322 293F 60 AND #MASK
0324 4CFOFD 61 GOO UT JMP COUTl

62 END

***** END OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

THE ROUTINE

;SIMULATE PR#O
;RECONNECT DOS

CONVERSION ROUTINE

; <NULL CHARACTER

;>=SPACE CHARACTER

;RETURN CHAR?

;CONVERT TO INVERSE

LABEL . LOC. LABEL . LOC. LABEL . LOC.

** ZERO PAGE VARIABLES :

CSWH 0037 CSWL 0036 CTRLM OOSD MASK 003F NULL 0080 SPACE OOAO

** ABSOLUTE VARABLES/LABELS

COUTl FDFC MVSW 03EA SETVID FE93 UNHOOK 030F CCNVRT 0316 GOOUT 0324

SYMBCL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

Brown and White
and Colored All Over

by Richard F. Suitor

The video graphics memory buffers are the backbone of
the Apple ll's impressive color capabilities. This article
discusses the Apple's color video output, emphasizing
color generation theory and covering relationships
between colors and screen memory locations. The
information explored in this article is then used to
generate several random color displays, which can be
used to further explore Apple graphics.

The Color of Your Apple

The colors on your screen come from your color TV and are controlled in part
by the video signal. Most of the signal carries the brightness information of the
picture-a black and white set uses this part of the signal to generate its picture.
Superimposed on this signal is the color carrier, a 3.58 MHz signal that carries the
color information. The larger this signal, the more colorful that region of the
picture. The hue (blue, green, orange, etc.) is determined by the phase of the color
signal. Reference timing signals at the beginning of each scan line synchronize a
"standard" color signal. The time during a 3.58 MHz period that the picture color
signal goes high compared to when the standard goes high determines the hue. A
color signal that goes high when the standard does, gives orange. One signal that
goes low at that time gives blue. Signals that are high while the standard goes from
high to low or from low to high give violet and green. (This, at least, was the in
tention. Studio difficulties, transmission paths and the viewer's antenna and set
affect these relations, so the viewer is usually given final say with a hue or tint
control.)

The time relation of the color signal to the standard signal is expressed as a
"phase angle". It is measured in angular measures such as degrees or radians and
can run from 0 to 360 degrees. This phase angle corresponds to position on a color
circle, with orange at the top and blue at the bottom, as shown in figure 1.

The perimeter of the circle represents different colors or hues. The radial
distance from the center represents amount of color, or saturation. The former is
usually adjusted by the tint control, the latter by the color control. A color that

208 Reference

ORANGE

RED

0001

GREEN NEUTRAL VIOLET

FOREST 0100 0010 DEEP
GREEN BLUE

MID BLUE
Figure 1 Color circle shows relations of color to color number bit position . . •

can be reproduced by a color TV can be related to a point in this circle. The angular
position is coded in the phase of the 3.58 MHz color carrier signal; the radial
distance from the center is given by the amplitude of the color carrier.

The numerical coding of the Apple colors can be appreciated using this circle
and binary representation of the color numbers. The low order bit corresponds to
red (#1) . The second bit corresponds to dark blue (#2), the third to dark green (#4)
and the high order bit to brown (dark yellow, #8). To find the color for any color
number, represent each 1 bit as a quarter-pie piece centered over its respective
color, as indicated in figure l . The brightness or lightness of the color corresponds
to the number of pie pieces and the color corresponds to the point where the whole
collection balances. Black, #0, has no bits set, no pie and no brightness. White,
#15, has four bits set, the whole pie, and is of maximum brightness and balances
in the center of the circle at neutral. Orange, #9 or 1001 in binary, has pie over the
top hemisphere and balances on a point between neutral and orange. The #5,
binary 0101, has two separate wedges, one over red and one over green. Since it is
symmetric, it balances at the center. It represents a neutral gray of intermediate
brightness as does #10. The #14 has pie over every sector except the red one. It is
bright and balances on a line toward forest green. It gives a bluish green light.

A diagram representing the relations of all the colors is given in figure 2. Each
of the one, two and three bit numbers form planes, each corresponding to a color
circle. You can think of these positions as points in space, with brightness increas
ing with vertical position and horizontal planes representing color circles of differ
ing brightness.

The colors of the Apple are thus coded by the bit patterns of the numbers
representing them. You can think of them as additive combinations of red, dark
blue, dark green and brown, where adding two colors is represented by ORing the
two numbers representing them. Subtractive combination can be represented by
ANDing the light colors, pink, yellow, light green and light blue. The more bits
set in a number, the brighter; the fewer, the darker. The bit patterns for 5 and 10
have no 3.58 MHz component and so generate a neutral tone. At a boundary

Suitor Brown and White

WHITE lllll

~~~--+-~~------
1011~ _ 1101 YELLOW 

0111 -- ----- • 
LIGHT BLUE 1110 

~· 
001· ----

VIOLET 

0001 
RED 

LIGHT GREEN 

1100 

/~EN 
0110 

LUE 

209 

-----------.-~----------------------- · • 0100 
0000 DARK GREEN 
BLACK 

Color space locations of the Apple II colors. 
Figure 2 Each horizontal plane forms a color circle of different brightness. 

between 5 and 10 however, this pattern is disturbed and two bits or spaces adjoin. 
Try the following program which has only grays displayed: 

10 GR 
20 FOR I = 0 TO 9 
30 COLOR =5 
40 HLIN 0,39 AT 2*1 
50 VLIN 20,39 AT 2*1 
60 VLIN 20,39 AT 2*1+21 
70 COLOR= 10 
80 HLIN 0,39 AT 2*1+1 
90 VLIN 20,39 AT 2*1+1 

100 VLIN20,39AT2*1+20 
110 NEXT I 
120 RETURN 

The top half of the display has HLINs alternating 5 and 10. The botton half 
has VLINs, alternating 5 and 10. What do you see? The bit pattern for a number is 
placed directly on the video signal, with the four bits occupying one color carrier 
period. When two bits adjoin at a 5, 10 boundary, a light band is formed. When two 
spaces adjoin, a dark band is formed. The slight tints are due to the boundaries 
having some color component. Changing the 5, 10 order reverses this tint. 



210 Reference 

Now is a good time to consider just how large a 3.58 MHz period is. The Apple 
text is generated with a 5 x 7 dot matrix, a common method of character genera
tion. These same dots correspond to individual bits in the high resolution display 
memory. One dot is one-half of a 3.58 MHz period and corresponds to a violet (#3) 
or green (#12) color signal. This is why the text is slightly colored on a color TV 
and the high resolution display has two colors (other than black and white), green 
and violet. (But you can make others, due to effects similar to those seen in the 
BASIC program above.) 

{Note: The Apple II now has orange (#9) and blue (#6) as high resolution colors as 
well as green and violet. A circuit change interprets bit 7 of each word in the high 
resolution display (this bit is not displayed) and shifts the displayed dots for the 
other bits by a 14 period or dot. This choice affects 7 consecutive bits or displayed 
dots. You cannot switch from orange to green with these seven. Thus in high 
resolution pictures, boundaries between orange and green, orange and violet, blue 
and green, or blue and violet can have a low resolution, "staircase" appearance. 

Also note that not every high resolution point can be plotted in a particular 
color. Only half, for instance, can be plotted in green. The other half can be plot
ted in violet. That is why a high resolution plot of a colored point or vertical line 
sometimes seems to produce nothing. Plotting twice at two consecutive horizon
tal points solves this problem.] 

The design of color TV has further implications for the display. The video 
black and white signal is limited to about 4 MHz, and many sets drop the display 
frequency response so that the color signal will not be obtrusive. A set so designed 
will not resolve the dots very well and .will produce blurry text. Some color sets 
have adjustments that make the set ignore the color signal. Since the color signal 
processing involves subtracting and adding portions of the signal, avoiding this 
can sometimes improve the text resolution. Also, reducing the contrast and the 
brightness somewhat can help with text material. 

The color TV design attempts to remove the color carrier from the picture 
(after duly providing the proper color), but you may be able to see the signal as 3 or 
4 fine vertical lines per color block. They should not be apparent at all in the 
white, black or the gray (except on a high resolution monitor). 

Tan is Between Brown and White 

This section presents a brief application of the concepts of the relationships in 
color space of the Apple colors. Many of you, I suspect, are regular readers of 
Martin Gardner's "Mathematical Games" column in Scientific American. I 
strongly recommend it. 

One column discussed the aesthetic properties of random variations of dif
ferent kinds. To summarize briefly, three kinds are: 



Suitor Brown and White 211 

WHITE Each separate element is chosen randomly and is independent of every 
other element. It is called "white" because a frequency spectrum of the 
result shows all frequencies occur equally, a qualitative description of 
white light. 

BROWN Each separate element is the previous element plus a randomly chosen 
deviation. It is called "brown" because Brownian motion is an 
example. 

l/F Its frequency spectrum is intermediate between "white" and "brown". 

The column presented arguments, attributed to Richard Voss, that .l/f varia
tions are prevalent and aesthetically more satisfying than "white" (not enough 
coherence) or ''brown'' (not enough variation). An algorithm was given for 
generating elements with l/f random variations. Briefly, each element is the sum 
of N terms (three, say). One term is chosen randomly for each element. The next 
is chosen randomly for every other element. The next is chosen randomly for 
every fourth element, and so forth. 

With the Apple, you can experiment with these concepts aurally (hence 
Applayer) and visually with the graphic displays. Color is a dimension that was 
not discussed much in the column. This section presents an attempt to apply 
these concepts to the Apple display. 

Most of us know what ''white" noise is like on the Apple display. An exercise 
that many try is to choose a random point, a random color, plot and repeat. For 
example: 

10 GR 
20 X=RND(40) 
30 Y = RND(40) 
40 COLOR= RND(16) 
50 PLOT X,Y 
60 GOTO 20 

Despite the garish display that results, this is a "white" type of random 
display. Except for all being within certain limits, the color of one square has no 
relationship to that of its neighbors and the plotting of one square tells nothing 
about which square is to be plotted next. 

To implement the concept of "l/ f", I used the following: 

l. X and Y are each the sum of three numbers, one chosen randomly from 
each plot, one every 20 plots and the third every 200. 

2. A table of color numbers was made (DIM(l6) in the program) so that color 
numbers near each other would correspond to colors that are near each other. The 
choice given in the program satisfies the following restrictions: 

a. Adjacent numbers are from adjacent planes in figure 2. 



211 Reference 

b. No angular change (in the color planes) is greater than 45 degrees between 
adiacent numbers. 

3. The color number is the same for 20 plots and then is changed by an 
amount chosen randomly from - 2 to + 2. This is a "brown" noise generation 
concept. However, most of the display normally has color patches that have been 
generated long before and hence are less correlated with those currently being 
plotted. I'll claim credit for good intentions and let someone else calculate the 
power spectrum. 

4. Each "plot" is actually eight symmetric plots about the various major 
axes. I can't even claim good intentions here; it has nothing to do with l/f and 
was put in for a kaleidoscope effect. Those who are offended and/ or curious can 
alter statement 100. They may wish then to make X and Y the sum of more than 
three terms, with the fourth and fifth chosen at even larger intervals. 

A paddle and push buttons are used to control the tempo and reset the display. 
If your paddle is not connected, substitute 0 for PDL(O). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 
REM 

************************ 
* * * BROWN,WHITE,COLOURED * 
* RICHARD SUITOR * 
* * 
* BROWN/WHITE * 
* * 
* * 
* COPYRIGHT (C) 1981 * 
* MICRO INK, INC. * * CHELMSFORD, MA 01824 * 
* ALL RIGHTS RESERVED * 
* * 
************************ 

20 DIM A(l6):A(l)=O:A(2)=2:A(3)=6:A(4)=7:A(5)=3:A(6)=l:A(7)=5:A(8)=11 
22 A(9)•9:A(l0)=8:A(ll)=lO:A(l2)=13:A(l3)•15:A(l4)•14:A(l5)=12:A(l6)=4 

40 GOTO 3000 
100 PLOT X,Y: PLOT 38-X,Y: PLOT X,38-Y: PLOT 38-X,38-Y: PLOT Y,X: PLOT 

38-Y,38-X: PLOT Y,38-X: PLOT 38-Y,X 
110 RETURN 
120 Z=l6 
125 L= RND (5)-2 
130 U• RND (9):V• RND (9) 
147 FOR B=l TO 10 
150 R•U+ RND (9):S•V+ RND (9) 
155 IF PEEK (-16286)>127 THEN GR 
160 K•K+L: IF K>l6 THEN K•K-Z 
165 IF K<O THEN K=K+Z 
170 COLOR .. A(K) 
180 O•( PDL (0)/2) A 2 
190 FOR I•-0 TO 0: IF PEEK (-16287)>127 THEN 200: NEXT I 
200 FOR I•l TC 20 
210 X•R+ RND (6):Y•S+ RND (6): GOSUB 100: NEXT I 
220 NEXT B 
230 GOTO 120 

1010 K•l:Ls5 
1020 Z•l6 
2000 GOTO 120 
3000 GR : CALL -936 
3010 PRINT "PADDLE 0 CONTROLS PATTERN SPEED" 
3020 PRINT "USE BUTTON 0 TO GO AT ONCE TO HI SPEED" 
3030 PRINT ''HOLD BUT'I·ON 1 TO CLEAR SCREEN" 
3040 GOTO 1010 
9000 END 



Language Index 
APPLESOFT BASIC 
SEARCH 
MATRIX DEMO 
AMPERSORT DEMO 
FNPLOTTER 
COLOR GUN 
BASIC TRANSFER 
BINARY TRANSFER 
THERMOMETER 
FLOATING POINT 

INTEGER BASIC 
SCROLLER 
TRACE LIST 
TRACE TEST 
COMPRESS 
LIFESAVER 
APPLA YER MENU 
BA TILE SOUNDS 
GALACTI-CUBE 
DIRECTORY 
BROWN /WHITE 

MACHINE LANGUAGE 
BREAKER 
STEP-TRACE 
TRACER 
PACK-LOAD 
MEAN-14 
SCREEN WRITE 
SCROLL 
PAGE 
PAGE LIST 
HEX PRINTER 
COM-VAR-I 
COM-VAR-A 
PRINT USING 
STRING SEARCH 
MATRICES 
AMPERSORT 
TRACE INTERRUPT 
PICT COMP 
LIFE 
APPLAYER 
CASS OS 
SYM-KIM 
ERROR 
NEWKEYS 
CONVERT 

Searching String Arrays, Little 84 
Applesoft and Matrices, Bongers 89 
AMPER-SORT, Hill 97 
Hi-Res Function Plotter, Allen 119 
Color Gun, Lipson 163 
Transfers with the Micromodem, Dombrowski 172 
Transfers with the Micromodem, Dombrowski 172 
Digital Thermometer, Kershner 177 
Floating Point Routines, Mottola 194 

Bi-Directional Scrolling, Wagner 
Trace List Utility, Hill 
Trace List Utility, Hill 
Hi-Res Picture Compression, Bishop 
Apple Flavored Lifesaver, Tibbetts 
Applayer Music Interpreter, Suitor 
Star Battle Sound Effects, Shryock 
Galacti-Cube, Bishop 
Cassette Operating System, Stein 
Brown and White and Colored, Suitor 

Breaker, Auricchio 
Step and Trace, Peterson 
Tracer, Kovacs 
Subroutine Pack and Load, Suitor 
MEAN-14, Mottola 
Screen Write/File, Baxter 
Bi-Directional Scrolling, Wagner 
Program List by Page, Partyka 
Paged Printer Output, Little 
Hexadecimal Printer, Moyer 
Common Variables, Zant 
Common Variables, Zant 
Print Using, Morris 
Searching String Arrays, Little 
Applesoft and Matrices, Bongers 
AMPER-SORT, Hill 
Trace List Utility, Hill 
Hi-Res Picture Compression, Bishop 
Apple Flavored Lifesaver, Tibbetts 
Applayer Music Interpreter, Suitor 
Cassette Operating System, Stein 
KIM and SYM Tapes, Welch 
Interpreting DOS Errors, Hertzfeld 
How to Use Hooks, Williams 
How to Use Hooks, Williams 

52 
111 
111 
124 
137 
146 
156 
157 
166 
207 

5 
16 
22 
28 
37 
49 
52 
58 
63 
67 
73 
73 
78 
84 
89 
97 

111 
124 
137 
146 
166 
177 
191 
200 
200 



Author Index 
(Biographies included) 

Allen, David P .................................................... 119 
Founding partner, chairman of the board, and executive producer of the Video 
Picture Company, Inc., Boston. Also senior engineer and consultant for RCA 
Corp. in designing educational television facilities. 

Auricchio, Richard .................. ............ .. ............... ... 5 
Software engineer for Apple Computer, Inc. 

Baxter, Bruce E ........ ........ ......... ............. . .. ............ 49 
Aerospace engineer; interested in compiler writing and Apple systems software. 

Bishop, Bob .................................................. 124, 157 
Senior member of the technical staff at Apple Computer, Inc., working on 
research and development. Bishop is author of Applevision. 

Bongers, Cornelis .................................................. 89 
Assistant professor of statistics at Erasmus University in Rotterdam, The 
Netherlands. 

Dombrowski, George ............ ... ............. ... ............... 172 
Research chemist; interested iri the application of computer technology to the 
science of chemistry. 

Hertzfeld, Andrew .... ....... .......... .. ... .. ......... .......... .. 191 
Employed at Apple Computer, Inc., sin,ce August 1979. 

Hill, Alan ..................................................... 97, 111 
Apple owner and enthusiast since early 1978. He enjoys writing utility pro
grams. 

Kershner, Carl .................................................... 177 
Works in Laser Photochemistry and Isotope Separation at Monsanto Research 
Corp. Kershner holds a Ph.D. in Chemistry. 

Kovacs, Robert. ................................................... 22 
Electro-optics engineer who views the computer as his most valuable 
problem-solving tool. He has used micros, m1ms, and mainfames for 
numerical simulation, parameter evaluation, control and automated text 
applications. 

Little, Gary ................ , .... . ............... ...... ......... 63, 84 
Articled law student and Apple hobbyist. Past president and current treasurer 
of Apples British Columbia Computer Society in Vancouver. 

Lipson, Neil ...................................................... 163 
Software Chairman of International Apple Core, President of Philadelphia 
Apple Club, and a partner in Progressive Software. 



Author Index 215 

Morris, Greg ......................... . ............................ 78 
Works for Abbott Coin Counter Co. designing microprocessor-based equip
ment used in banks for bulk money counting. 

Mottola, R.M ................. .. ... . ........................... 37, 194 
Member of the Systems Staff at Cyberg Corp., a manufacturer of medical 
instrumentation. 

Moyer, LeRoy ........ . ................................ . ........... 67 
Holds a Ph.D. in physics. Because of the usefulness of computers to physics, 
he has programmed a variety of machines since 1961. Moyer's major project 
on the Apple is a word processing application in Spanish. 

Partyka, David ................................ , ................... 58 
Works as a programmer on an IBM 3031 OS system for the May Department 
Stores, Co. 

Peterson, Craig .................................................... 16 
Numerical control engineer for his company which uses an Apple II. 

Shryock, William M., Jr. ........................................... 156 

Stein, Robert A., Jr ................................................. 166 
Systems engineer for NCR. 

Suitor, Richard F ........................................... 28, 146, 207 
Suitor grew up expecting to be a physicist, but his mind was warped by early 
exposure to the awesome collections of vacuum tubes and blinking lights that 
evolved into the micros of today. In 1978 he obtained an Apple. Final 
degeneration was immediate; having decided his case was chronic, he has 
joined Software Resources of Cambridge, Massachusetts. 

Tibbetts, Gregory L ....................................... ......... 137 
Manager of Technical Support Microsoft Consumer Products. 

Wagner, Roger .................................................... . 52 

Welch, Steven .................................................... 181 
Astronomer and electronic engineer working for NBI, a word processing firm 
in Boulder, CO. 

Williams, Richard .... . ............ .................... . ..... ..... . 200 
Graduated from U.C. Berkeley with a BSEE and went to work for Apple Com
puter. Learned assembly language programming on the CDC 6400, then moved 
to the 6502. 

Zant, Robert F ..................................................... 73 
Professor of information systems at North Texas State University. Zant has 17 
years experience in computing as a programmer, analyst, educator, and 
consultant. 



216 Disk Information 

DISK VOLUME 002 

*A 005 MICRO ON 'I'HE APPLE 2 
*B 004 BREAKER 
*B 002 STEP-'I'RACE 
*B 002 STEP-TRACE.800 *A 015 FNPLOTTER 
*B 002 TRACER *I 011 COMPRESS 
*B 003 PACK-LOAD *B 010 PICT COMP 
*B 002 MEAN-14 *B 034 LADY BE GOOD 
*B 002 SCREEN WRI'IE *I 016 LIFESAVER 
*I 007 SCROLLER *B 003 LIFE 
*B 002 SCROLL *I 004 APPLAYER MENU 
*B 005 PAGE LIST *B 010 APPLAYER 
*B 002 PAGE *I 004 BATTLE SOUN.ts 
*B 002 HEX PRINTER *I 022 GALAC'I'I-CUBE 
*B 002 COM-VAR-I *A 007 COLOR GUN 
*B 002 COM-VAR-A *B 003 CASSCS 
*B 002 PRINT USING *I 005 DIRECTORY 
*A 007 SEARCH *A 005 BASIC TRANSFER 
*B 002 STRING SEARCH *A 010 BINARY TRANSFER 
*A 008 MATRIX DEMO *A 014 THERMOMETER 
*B 008 MATRICES *B C03 SYM-KIM 
*A C09 AMPERSORT DEMO *B 002 ERROR 
*B 005 AMPERSORT *A 007 FLOATING POINT 
*I 009 TRACE LIST *B OC2 NEW KEYS 
*B 003 TRACE INTERRUPT *B 002 CONVERT 
*I 003 TRACE TEST *I 006 BROWN/WHITE 



MICRO/ APPLE 
Volume 2 
Recorded In 11 sector format ~ 

Copyright © 1981 by MICRO INK, INC. 
P.O. Box 6502 

Chelmsford, MA 01824 
All rights reserved 

Notice to Purchaser 

When this book is purchased, this pocket should contain 

A. One floppy disk entitled MICRO on the Apple, 
Volume 2. 

B. A warranty card pertaining to the disk. 

If either is missing, make sure you ask the seller for a copy. 

The publisher hereby grants the retail purchaser the right 
to make one copy of the disk for back-up purposes only. 
Any other copying of the disk violates the copyright laws 
and is expressly forbidden . 



,. 

MICRO on the Apple, Volume 2 
Edited by Ford Cavallari 

More Than 30 Programs on Diskette! 

MICRO INK, Inc., publisher of MICRO, The 650216809 foumal, now brings you 
MICRO on the Apple, Volume 2, the second in a series of books containing applica
tions for the Apple. 

This volume, produced for the intermediate-to-advanced-level user, provides you 
with reference material, advanced machine language routines, programming tech

. niques, graphics applications, and entertainmenL 

.... 

Chapter titles include Machine Language Aids, I/O Enhancements, Runtime 
Utilities; Graphics and Games, Hardware, and Reference. These articles have been 
updated by the MICRO staff, and authors when possible. The programs were tested 
and entered on the diskette, which comes with the book (13-sector DOS 3.2 format). 

About the Editor 
Ford Cavallari received a degree in mathematics from Dartmouth. While there, he 
made extensive use of the college's time-sharing and microcomputer facilit ies and 
helped convert several important BASIC academic programs to run on Apple II 
systems. His work with the Apple has ranged from large-scale computer architecture 
projects to tiny, recreational graphics programs. He is a founding member of the 
Computer Literacy Institute. As Apple Specialist on the staff of MICRO, The 
650216809 fournal, he serves as Editor of the MICRO on the Apple book series. 

$24.95 in U.S./Canada 
(Including floppy disk} 

ISSN 0275-3537 
ISBN 0-938222-06-6 

MICRO INK, Inc. 
P.O. Box 6502 

Chelmsford, Massachu.~etts 01824 



Warranty 
MICRO on the Apple 

Although we've worked to create as perfect a diskette as possi
ble, including hiring a reputable, reliable disk manufacturer to 
copy the diskettes, there is no guarantee that this diskette is 
error-free. 

To cover the few instances of defective diskettes, we are 
providing the following warranty (this card must be filled out 
and returned to MICRO INK, Inc., immediately after purchase): 

If within one month of purchase you find your diskette is 
defective, return the diskette to MICRO, along with $1.00 to 
cover shipping and handling charges. 

If after one month of purchase, but within no time limit, 
this diskette proves defective, return it to MICRO with $6.00 
to cover replacement cost, shipping and handling. 

Your date of purchase must be validated by your dealer; if 
purchased directly from MICRO, the valid date appears on this 
card. 

Defective diskettes must be returned to MICRO to enable 
our quality assurance personnel to test and check the diskette. 
We need to know what caused the defect to avoid similar prob
lems in the future. 

We recommend that you try LOADing or BLOADing each 
program on the diskette immediately after purchase to ensure 
that the diskette is not defective. 

Signature Date of purchase [Volume 2) 

Address (please print): 

Name 

Street 

City State/ Province/ Country Code 



Other Products from MICRO 
In addition to the MICRO on the Apple series, MICRO INK, Inc., pro
duces several other products, including MICRO magazine, a monthly 
journal which reports on new 6502/ 6809 microprocessor family appli
cations, systems, and developments . Other books published include 
the Best of MICRO series (anthologies of some of the best general
interest articles from MICRO), and What's Where in the Apple, (a 
detailed Atlas and memory map for the Apple II computer). 

Ask your dealer for MICRO, or subscribe by completing this form: 

Yearly Rates (U.S Dollars) 

United States 
Canada 
Europe 
Mexico, Central America 

Middle East, North Africa 
Central Africa 

South America, South Africa 
Far East, Australasia 

MICRO Books 
At Your Dealer 

Best of MICRO, Vol. 1 
Best of MICRO, Vol. 2 
Best of MICRO, Vol. 3 

What's Where in the Apple 

MICRO on the Apple 
(each volume) 

Note: Circle desired item. 

$ 6.00 
8.00 

10.00 

14.95 

24.00 

Surface Air Mail 

$24.00 
27.00 
27.00 

27.00 

27.00 

n/a 
n/a 

$42.00 

48.00 

72.00 

Ordered by Mail 
Surface Air Mail 

$ 8.00 
10.00 
12.00 

16.95 

(Not U.S./Canada) 

$12.00 
15.00 
18.00 

19.95 

Subscription rates are subject to change without notice. These prices 
are current as of January 1982. 

0 Check enclosed for $ _____ _ 
0 Bill VISA 
0 Bill MasterCard 

Signature 

Please print 

Name 

Street 

City 

Card Number 

State/Province/ Country 

Expires 

Code 



11111 I 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 60 CHELMSFORD, MA 01824 

POSTAGE Will BE PAID BY ADDRESSEE 

/AICAO™ 
P.O. Box 6502 
Chelmsford, MA 01824 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

• 



This is a gummect flap. M'oisten and fold down to sear automatic envelope. 

• All orders must be prepaid in 
U.S. dollars or charged to your 
Master Charge or Visa. 

• Make checks and international 
money orders payable to MICRO. 

VIS4 

Our toll free number is: 

1-800-227-1617 • Ext.564 

SUBSCRIBER ORDER FORM 
Yearly Subscription (ISSN 027-9002) Save 20% off single issue price. 

*United States 
Canada 
Europe 

Mexico, Central America, 
Mid East, No. & Central Africa 

So. America, Far East, 

U.S. DOLLARS 

SURFACE AIR MAIL 
$24.00 n/a United States 

27 .00 n/a Canada 
27 .00 $42.00 Europe 

27.00 
Mexico, Central America, 

48.00 Mid East, No. & Central Africa 
So. America, Far East, 

So. Africa, Australasia 27 .00 72.00 So. Africa, Australasia 

*SPECIAL OFFER - save even Circle desired item. 
more - 30% off single issue price - Total for Service Selected$ __ 
U.S. 2 yrs. $42.00. 

OKAY! I'm an intelligent MICROcomputer user: 
Send me a subscription to MICRO. 

Name: _________________ Occupation:------------------------
Address: ____________________________________________ _ 

City : ____________ State: ____________ Zip:-------------------

Country (if not U.S.) : M.C.# Visa#-----------------

Help MICRO bring you the kind of information you want by completing this short questionnaire. 

Microcomputers Owned/Planning to Buy: AIM APPLE ATARI KIM OSI PET SYM Other: ---------------

Peripherals Owned/Planning to Buy : Memory Disk Video Printer Other:---------------------

Microcomputer Usage: Educational Business Personal Control Games Other:--------------------

Languages Used: Assembler Basic Forth Pascal Other:-----------------------------
Your comments and/or suggestions on MICRO: ______________________________ _ 



YES/ I want to get the 
most out of my 650216809 MICRCkomputer 

... The journal for the intelligent 650216809 computerist! 
MICRO: the premier how-to magazine for 
the serious user of all 6502 based systems 
including the Apple, PET ICBM, OSI, 
Atari, AIM, SYM, KIM, and all 6809 
based systems including the TRS-80 Color 
Computer 

MICRO: the resource journal internation
ally respected by professionals in business, 
industry, and education 

MICRO: helps you go beyond games and 
"canned" programs to learn about the 
inner workings of your machine 

• Keeps you informed with up-to-the
minute data on new products and 
publications 
• Hardware catalog with organized, 

concise description 
• Software catalog in an easy to use 

format 
• New publications listed and 

annotated 
• Reviews and evaluations of 

significant products 

• In-depth hardware tutorials bring ex
pert advice into your home or office 

• Detailed discussions of programming 
languages deepen and broaden your 
programming ability 

• Complete program listings enable you 
to increase your machine's capabilities 

• Bibliography of 6502/6809 informa
tion helps you find pertinent articles 
in a timely manner 

• Special monthly features with in-depth 
treatment of one subject or system , 
increase your knowledge of the field 

• Balanced mix of machine-specific and 
general articles for your everyday use 
as well as long range reference needs 

• Informative advertising focused speci-
fically on 6502/6809 mach ines keeps 
you abreast of latest developments 

• Reader feedback puts you in touch 
with other micro-computerists 

• MICRO is the magazine you need to 
get the most from your own 6502/ 
6809 system 

Hardware 

1450 NEXT L 

1460 DEL-SET 

1470NEXT J 
1500 IF KNT --0 THEN 1600 

1510 NDX~ANO IKNT l +l .XOBIG XOBIG>l 
1520 auE:iXOBIG )~NODE INOXI 

1530 BOX(INOl-BQX(INOl+BIT (NDX I 
1540 Tl8·2"BtTINOXJ 

15$0 IF TIB- 4 OR TIB-16 OR T1B 64 THEN TIB - TIB '4 
1590 BOX!NODEINDX H - BOX(NODE INDXll•TIB-128 
1600 NEXT K 

1610 OBIG - XOBIGc IF OBIG-·_27 THEN 1100 

1700 HOLE-2° AND !21+6" AND (21• 18° AND 121+1 
1710 QPEN• 16 IF H0LE<14 THEN OPEN• 32 
1720 BOX<HOLE)- BOX<HOLEl•OPEN 

Programs 

Circuitry 



vlBW 
\fW 'pJOJSWl94:::> 

pg·oN 
l!WJ9d 

Ol\fd 
060isod ·s·n 

0lBl::f 'lln8 

vZ8l0 \fW 'pJOJSWl040 
Z099 xoa ·o·d 

w.omlV/ 

/AICRO 
helps 
you look 
inside ... 



MICRO/ APPLE 
Volume 2 
Recorded in 11 sector format ~ .~ ;o..:r) 

Copyright © 1981 by MICRO INK, INC. 
P.O. Box 6502 

Chelmsford, MA 01824 
All rights reserved 


	Micro on the Apple Volume 2
	Acknowledgements
	Contents
	Introduction
	Chapter 1: Machine Language Arts
	Introduction
	Breaker: An Apple II Debugging Aid - Rick Auricchio
	Step and Trace for the Apple II Plus - Craig Peterson
	TRACER: A Debugging Tool for the Apple II - R. Kovacs
	Apple Integer BASIC Subroutine Pack and Load - Richard F. Suitor
	Mean 14: A Pseudo-Machine Floating Point Processor for the Apple II - R. M. Mottola

	Chapter 2: I/O Enchancements
	Introduction
	Screen Write/File Routine - B. E. Baxter
	Bi-Directional Scrolling - Roger Wagner
	Apple II Integer BASIC Program List by Page - by Dave Partyka
	Paged Printer Output for the Apple - Gary Little
	Hexadecimal Printer - LeRoy Moyer

	Chapter 3: Runtime Utilities
	Introduction
	Common Variables on the Apple II - Robert F. Zant
	PRINT USING for Applesoft - Gary A. Morris
	Searching String Arrays - Gary B. Little
	Applesoft and Matrices - Cornelis Bongers
	AMPER-SORT - Alan G. Hill
	Apple II Trace List Utility - Alan G. Hill

	Chapter 4: Graphics and Games
	Introduction
	A Versatile Hi-Res Function Plotter
	Apple II Hi-Res Picture Compression - Bob Bishop
	An Apple Flavored Lifesaver - Gregory L. Tibbetts
	Applayer Music Interpreter - Richard F. Suitor
	Improved Star Battle Sound Effects - William M. Shryock, Jr.
	Galacti-Cube - Bob Bishop

	Chapter 5: Hardware
	Introduction
	The Color Gun for the Apple II - Neil D. Lipson
	A Cassette Operating System for the Apple II - Robert A. Stein, Jr.
	BASIC and Machine Language Transfers with the Micromodem II - George J. Dombrowski, Jr.
	A Digital Thermometer for the Apple II - Carl J. Kershner
	KIM and SYM Format Cassette Tapes on the Apple II - Steven M. Welch

	Chapter 6: Reference
	Introduction
	Intercepting DOS Errors from Integer BASIC - Andy Hertzfeld
	Applesoft Floating Point Routines - R. M. Mottola
	How to Use the Hooks - Richard Williams
	Brown and White and Colored All Over - Richard F. Suitor

	Language Index
	Author Index (Biographies included)
	Warranty
	Other Products from MICRO

