AICRO
on the Apple

Volume INCLUDES
DISKETTE

MICRO on the App].e

MICRO on the Apple 2

Ford Cavallari, Editor

INICRO INK

Incorporated
P.O. Box 6502
Chelmsford, Massachusetts 01824

Notice

Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of MICRO INK, Inc.

Cover Design and Graphics by Kate Winter

Every effort has been made to supply complete and accurate information. However, MICRO
INK, Inc., assumes no responsibility for its use, nor for infringements of patents or other
rights of third parties which would result.

Copyright© 1981 by MICRO INK, Inc.
P.O. Box 6502 (34 Chelmsford Street)
Chelmsford, Massachusetts 01824

All rights reserved. With the exception noted below, no part of this book or the accompany-
ing floppy disk may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the publisher.

To the extent that the contents of this book is replicated on the floppy disk enclosed with
the book, it may be stored for retrieval in an Apple Computer. The original retail purchaser
is permitted to make one (1) copy of the disk solely for his own back-up purposes.

MICRO on the Apple Series ISSN: 0275-3537

MICRO on the Apple Volume 2 ISBN: 0-938222-06-6
Printed in the United States of America
Printing 10 98 7 6 54 32 1

Floppy disk produced in the United States of America

To I.M.H.

Acknowledgements

The bulk of the credit for work done on this book goes out to exceptionally hard-
working Special Projects Editor Marjorie Morse for her coordination of special pro-
jects operation, for her editing expertise, for her production and paste-up talent,
and for her incredible patience with the MICRO-Lab operations. Since the com-
pilation of this work also required extensive program generation and listing, I also
wish to thank Darryl Wright, data entry specialist and precision programmer, for
the hours of typing necessary to produce the diskette. Special thanks also go out to
the entire MICRO staff, especially those who had direct involvement with this
project. They are Emmalyn Bentley, the best typesetter in the hemisphere, and
Paula Kramer, production professional. Thanks also to the publisher of MICRO,
Robert Tripp, whose enthusiasm for MICRO made this project possible, to
associate publishers Richard Rettig, for providing much advice on the entire
MICRO on the Apple project, and Mary Grace Smith, for granting the spirit and
autonomy needed to finish up this project. Finally, I wish to thank Ski, for being
there again.

Contents

INTRODUCTION 1

MACHINE LANGUAGE AIDS 3

Breaker: An Apple II Debugging Aid 5
Rick Auricchio

Step and Trace for the Apple II Plus 16
Craig Peterson

TRACER: A Debugging Tool for the Apple II 22
R. Kovacs

Apple Integer BASIC Subroutine Pack and Load 28
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II 37
R.M. Mottola

I/0O ENHANCEMENTS 47
Screen Write/File Routine 49
B.E. Baxter

Bi-Directional Scrolling 52
Roger Wagner

Apple II Integer BASIC Program List by Page 58
Dave Partyka

Paged Printer Output for the Apple 63
Gary Little

Hexadecimal Printer 67
LeRoy Moyer

RUNTIME UTILITIES 71
Common Variables on the Apple II 73
Robert F. Zant

PRINT USING for Applesoft 78
Gary A. Morris

Searching String Arrays 84
Gary B. Little

Applesoft and Matrices 89
Cornelis Bongers

AMPER-SORT 97
Alan G. Hill

Apple II Trace List Utility 111
Alan G. Hill

!

GRAPHICS and GAMES » 117

A Versatile Hi-Res Function Plotter 119
David P. Allen

Apple II Hi-Res Picture Compression 124
Bob Bishop

An Apple Flavored Lifesaver 137
Gregory L. Tibbetts

Applayer Music Interpreter 146
Richard F. Suitor

Improved Star Battle Sound Effects 156
William M. Shryock, Jr.

Galacti-Cube 157
Bob Bishop

HARDWARE 161

The Color Gun for the Apple II 163
Neil D. Lipson

A Cassette Operating System for the Apple II 166
Robert A. Stein, Jr.

BASIC and Machine Language Transfers
with the Micromodem II 172
George . Dombrowski, Jr.

A Digital Thermometer for the Apple II 177
Carl T. Kershner

KIM and SYM Format Cassette Tapes
on the Apple II 181
Steven M. Welch

REFERENCE 189
Intercepting DOS Errors from Integer BASIC 191
Andy Hertzfeld
Applesoft Floating Point Routines 194
R.M. Mottola

How to Use Hooks 200
Richard Williams

Brown and White and Colored All Over 207
Richard F. Suitor

LANGUAGE INDEX 213
AUTHOR INDEX 214
DISK INFORMATION 216

Introduction

MICRO magazine, the 6502/6809 Journal, has been offering software support to
Apple users for over four years. With this book, we reaffirm our commitment to
the Apple user, by presenting some of the most outstanding programs and articles
which have appeared in MICRO over these years.

While MICRO continues to be the monthly source for new and innovative
programs and articles, many of the older MICRO articles are still among the best
material available for the Apple. Out of the pool of superb material, we have
selected some of the best articles which we feel to be representative of MICRO,
and have blended them together into this anthology.

MICRO has always catered to the serious computer user. Most of the pages in
the magazine are filled with programs — programs which demonstrate some
useful technique or perform some non-trivial task. This tradition of serious com-
puting goes on at MICRO, and is reflected in this, the second volume, of MICRO
on the Apple.

More than just another Apple book, MICRO on the Apple 2 is an invaluable
aid to the serious programmer, and a tool for the casual programmer to get serious
with the Apple.

The MICRO on the Apple book series was conceived to distribute most effec-
tively the wealth of Apple material available in MICRO. Each volume in the series
brings together articles and programs, and presents them in logically defined
chapters. All the material, even that which first appeared in early issues of
MICRO, has been updated, either by the original author or by the MICRO staff,
And all the programs related to these articles, whether Integer BASIC, Applesoft,

diskette.

This volume of the MICRO on the Apple seties concenitrates on the
intermediate-to-advanced user, by presenting a host of indispensable aids for pro-
gramming, The machine language utilities in the first chapter have been designed
to ease the burden of 6502 programming. Similarly, the runtime utilities will
facilitate advanced applications programming in Applesoft. The rest of the
material in the book, from the recreational programs to the reference articles, all
underscote the eoncept of good programming techniques.

2 Introduction

Subsequent volumes of MICRO on the Apple will contain more comprehen-
sive reference materials, tutorials, utilities, and applications programs, much of
which will be original material not appearing in MICRO. MICRO magazine will
maintain its monthly coverage of the Apple and the 6502. MICRO on the Apple
will be the reference partner — the book you keep along with your reference
manuals, next to your Apple.

Once again, a 13-sector diskette has been included with the book. The deci-
sion to include a 13-sector diskette was made because of the universal com-
patibility of 3.2 format and the large number of systems still without DOS 3.3.
. Through the use of Apple’s MUFFIN program, this disk can easily be converted
over to 3.3 format — and the programs will still work!

We hope that the approach which we have taken — collecting outstanding ar-
ticles into a book and the accompanying programs onto a disk — will encourage
the use of some of the routines you may have heard about but never had a chance
to type in. We further hope that these routines afford you a chance to experiment
with programming and explore some of the techniques and tricks explained in the
articles. Lastly, we hope that MICRO on the Apple 2 will give you the chance to
catch up on the MICRO articles you might have missed, and will encourage you to
check future issues of MICRO for the latest in sophisticated Apple material.

Ford Cavallari, Editor
October 1981

1

MACHINE LANGUAGE AIDS

Introduction

Breaker: An Apple Il Debugging Aid
Rick Auricchio

Step and Trace for the Apple II Plus
Craig Peterson

TRACER: A Debugging Tool for the Apple II
R. Kovacs

Apple Integer BASIC Subroutine Pack and Load
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II
R.M. Mottola

16

22

28

37

INTRODUCTION

This chapter contains a group of utility programs designed to make machine
language programming less tedious and less time consuming. Many of these
utilities can work together, so the aspiring machine language programmer will be
equipped with a formidable toolkit, indeed, after reading this chapter. '‘Breaker:
An Apple IT Debugging Aid,'' by Richard Auricchio, facilitates the setting of break-
points within programs, an invaluable capability for debugging large routines.
""Step and Trace for the Apple II Plus,”’ by Craig Peterson, gives the Autostart
Monitor ROM the stepping and tracing capabilities found only in the discontinued
Old Monitor ROM. ‘'Tracer: A Debugging Tool for the Apple II,”” by R. Kovacs,
enhances the step/trace capabilities of either your monitor or the Peterson pro-
gram. These three routines form the debugging portion of the ‘toolkit,’

Richard Suitor’s ‘' Apple Integer BASIC Subroutine Pack and Load'’ provides
an easy method of binding machine language routines to Integer BASIC driver pro-
grams. This process can simplify program storage on either disk or tape. And,
finally, R.M. Mottaola's '"MEAN-14: A Pseudo-Machine Floating Point Processor
for the Apple II'’ provides a machine language alternative to Applesoft for floating
point operations.

Breaker: An Apple II
Debugging Aid

by Rick Auricchio

Machine language program development can often be
speeded up through the use of breakpoints. While the
Apple Il does not have a breakpont capability built in,
this program can provide that feature. Multiple
breakpoints may be inserted into or deleted from any
machine language program, in any place and at any
time!

When debugging an Assembly language program, one of the easiest tools the
programmer can use is the Breakpoint. In its most basic form, the Breakpoint con-
sists of a hardware feature which stops the CPU upon accessing a certain address:
a ''deluxe’’ version might éven use the Read/Write and Sync (instruction fetch)
lines to allow stopping on a particular instruction, the loading of a byte, or the
storing of a byte in memory. Since software is often easier to create than hardware
(and cheaper for some of us!), a better method might be to implement the Break-
point with software, making use of the BRK opcode of the 6502 CPU.

A Breakpoint, in practice is simply a BRK opcode inserted over an existing
program instruction. When the user program'’s execution hits the BRK, a trip to
the Monitor (via the IRQ vector $FFFE/FFFF) will occur. In the Apple, the
Monitor saves the user program’s status and registers, then prints the registers and
returns control to the keyboard. The difficult part, however, comes when we wish
to resume execution of the program: the BRK must be removed and the original
instruction replaced, and the registers must be restored prior to continuing execu-
tion. If we merely replace the original opcode, however, the BRK will not be there
should the program run through that address again.

The answer to this problem is BREAKER: a software routine to manhage Break-
points. What the debugger does is quite simple: it manages the insertion and
removal of bteakpoints, and it correctly resumies a user program after hitting a
breakpoint, The original instruction will be executed automatically when the
program is resumed!

6 Machine Language Aids

Is it Magic?

No, it's not magic, but a way of having the computer remember where the
breakpoints are! If the debugger knows where the breakpoints are, then it should
also know what the original instruction was. Armed with that information,
managing the breakpoints is easy. Here’'s how the debugger works.

During initialization, BREAKER is ‘‘hooked-in’’ to the APPLE monitor via
the Control-Y user command exit, and via the COUT user exit. The control-Y exit
is used to process debugger commands, and the COUT exit is used to ‘‘steal con-
trol’’ from the Monitor when a BRK occurs.

Breakpoint information is kept in tables: the LOCTAB is a table of 2-byte
addresses—it contains the address at which a breakpoint has been placed. The
ADTARB is a table of 1-byte low-order address bytes: it is used to locate a Break
Table Entry (BTE). The BTE is 12 bytes long (only the first 9 are used, but 12 is a
reasonably round number) and it contains the following items:

* Original user-program instruction
* JMP back to user-program
* JMP back for relative branch targets

When adding a breakpoint, we must build the BTE correctly, and place the
user-program break address into the LOCTAB. There are eight (8) breakpoints
allowed, so that we have a 16-byte LOCTAB, 8-byte ADTAB, and 96 bytes of
BTE's.

As the breakpoint is added, the original instruction is copied to the first 3
bytes of the BTE, and it is ‘‘padded’’ with NOP instructions ($EA) in case it is a
1-or 2-byte instruction. A BRK opcode ($00) is placed into the user program in
place of the original instruction’s opcode (other instruction bytes are not altered).
The next 3 bytes of the BTE will contain a JMP instruction back to the next user-
program instruction.

If the original instruction was a Relative Branch, one more thing must be
considered: if we remove the relative branch to the BTE, how will it branch cor-
rectly? This problem is solved by installing another JMP instruction into the BTE
for a relative branch—back to the Target of the branch, which is computed by ad-
ding the original PC of the branch, +2, + offset. This Absolute address will be
placed into the JMP at bytes 7-9 of the BTE. The offset which was copied from the
original instruction will be changed to $04 so that it will now branch to that
second JMP instruction within the BTE; the JMP will get us to the intended target
of the original Relative Branch.

A call to the routine ''INSDS2'’ in the Monitor returns the length and type of
instruction for the ‘‘add’’ function. The opcode is supplied in the AC, and
LENGTH & FORMAT are set appropriately by the routine.

Auricchio Breaker 7

Removal of a breakpoint involves simply restoring the original opcode, and
clearing the LOCTAB to free this breakpoint’s BTE.

Displaying of breakpoint prints the user-program address of a breakpoint,
followed by the address of the BTE associated with the breakpoint (the BTE
address is useful—its importance will be described later).

When the breakpoint is executed, a BRK occurs and the Apple Monitor gets
control. The monitor will ‘‘beep’’ and print the user program’s registers. During
printing of the registers, BREAKER will take control via the COUT exit.
(Remember, we get control on every character printed - but it’s only important
when the registers are being printed. That's when we're at a breakpoint). While it
has control, BREAKER will grab the user-program’s PC and save it (we must sub-
tract 2 because of the action of the BRK instruction). If no breakpoint exists at this
PC (we scan LOCTAB), then the Monitor is continued. If a breakpoint does exist
here, then the BTE address is set as the ‘‘continue PC'’. In other words, when we
continue the user program after the break, we will go to the BTE; the original
instruction will now be executed, and we will branch back to the rest of the user
program.

Using Breaker

The first thing to do is to load BREAKER into high memory. It must then be
initialized via entry at the start address. This sets up the exits from the Monitor.
After a Reset, you must re-initialize via 'YcI'’ (Yc is Control-Y) to set up the
COUT exit again. Upon entry at the start address, all breakpoints are cleared: after
‘YcI'’, they remain in effect.

To add a breakpoint, type: aaaaYcA . This will add a breakpoint at address
‘aaaa’ in the user program. A 'beep’ indicates an error; you already have a break-
point at that address. To remove a breakpoint, type: aaaaYcR. This will remove
the breakpoint at address ‘aaaa’ and restore the original opcode. A 'beep’ means
that there was none there to start with.

Run your user-program via the Monitor's ''G’’ command. Upon hitting a
breakpoint, you will get the registers printed, and control will go back to the
monitor as it does normally. At this point, all regular Monitor commands are
valid, including "'YcA'’, ‘“YcR'’, and '‘YcD'' for BREAKER.

To continue execution type: YcG . This instructs BREAKER to resume execu-
tion at the BTE (to execute the original instruction), then to transfer control back
to the user program. Do not resume via Monitor '‘G'’ command—it won't work
properly, since the monitor knows nothing of breakpoints. To display all break-
points, type: YcD. This will give a display of up to 8 breakpoints, with the address
of the associated BTE for each one.

8 Machine Language Aids

Caveats

Some care must be taken when using BREAKER to debug a program, First,
there is the case of BREAKER not being initialized when you run the user program.
This isn’t a problem when you start, because you'll not be able to use the Yc com-
mands. But if you should hit Reset during testing, you must re-activate via '‘YcI'’,
otherwise BREAKER won't get control on a breakpoint. If you try a YcG, unpre-
dictable things will happen. If you know that you hit a breakpoint while
BREAKER was not active, you can recover. Simply do a ''YcI', and then display
the breakpoints (YcD). Resume the user-program by issuing a Monitor ''G’’ com-
mand to the BTE for the breakpoint that was hit (since BREAKER wasn’t around
when you hit the breakpoint, you have to manually resume execution at the BTE).
Now all is back to normal. You can tell if BREAKER is active by displaying loca-
tions $38 and $39. If not active, they will contain $F0 FD.

It's also important to note that any uset programn which makes use of either
the Control-Y or COUT exits can’t be debugged with BREAKER. Once these exits
are changed, BREAKER won't get control when it’s supposed to.

BREAKER Command Summmary

Command Function

aaaa Yc A Add breakpoint at location aaaa. Won't allow you to add
one over an already existing breakpoint. Maximum of 8
breakpoints allowed.

YCD Display all breakpoints.

Ycl Initialize after RESET key. Just sets up ‘COUT’ exit
again without resetting any breakpoints,

aaaa Yc R Remove breakpoint from location aaaa. Restores original
opcode.

4C3695

(o]0}
EA
EA
4CC000
4C

26

WONRMUTH WA -

Auricchio Breaker 9

7***t******#**********t**

i BREAKER-DEBUGGER

;* CCPYRIGHT (C) 1981
i MICRC INK, INC.
;* CHELMSFCRL, MA 01824

RICK

BREAKER

AURICCHIO

* % % ¥ % ¥ % * ¥

;* ALL RIGHTS RESERVED *

%*

o e % v Y o % v ok v gk ok e de % v ok e e e ot vk e e e

;8 BREAKPCINTS, FCR USE IN

~ o ~e

DEBUGGING OF USER CODE...

; %%* APPLF-2 MCNITCR EQUATES

7

FORMAT EPZ
LENGTH EPZ
AlL EPZ
AlH EPZ
A2L EPZ
A2H EPZ
A3L EPZ
A3H EPZ
H
CSWL EPZ
CSWE EPZ
H
INSDS2 EQU
PRNTYX EQU
PRBYTE EQU
COUT EQU
RESET EQU
MON EQU
H
H
LOWPAG EQU
' ORG
OBJ
INIT JMP
; **% DATA
FW1 BYT
FW2 BYT
PCL BYT
PCH BYT
; SKELETON
SKEL BYT
NOP
NOP
JMP
BYT
H
H
ADTAE BYT BTEO

$2E
$2F
$3C
$3D
$3E
$3F
$40
$41

$36
$37

$F88E
$§F940
$FDDA
SFDED
$FF65
$FF69

CHANGE 'LCWPAGE' TO LOCATE
ELSEWHERE IN MEMCRY. IT IS
NOW SET FOR A 48K DOS SYSTEM.

$9300
LOWPAG
$800
INITX $=>INITIALIZATION ENTRY
AREAS
$00 ; 'FINDPC' WCRK BYTE {
$00 ; 'FINDPC' WORK BYTE 2
$00 : 'GO' PC LO
soc : 'GO' PC H1
BREAK-TABLE ENTRY
$00 ;SKELETON BTE

;NOPS FOR PALDING
$00 +JUMP BACK INLINE
$4cC ;JUMP CPCCDE FOR BRANCHES

LOW ADDRESS OF BTES KEPT IN ADTAB

;LO ADDRESS

10

930F
9310
9311
9312
9313
9314
9315
9316
9316
9316
9316
0826
9326
9326
9326
0832
C83E
084A
0856
0862
086E
087A
0886
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9388
938B
938E
9390.
9393
9396
9398
9399
939
939C
939D
939E
939E
939F
93A0
93a1
93A2
933
93a4
935
93A5
935
935
923A5
935
93A5
93a5
93Aa5
93A5
93a5
93Aa5
93Aa5

Machine Language Aids

32
3E
4A
56
62
6E
A

A20F
AD0493
DD1693
D0o08
AD0393
DD1593
F006
CA

CA
10EC
18

60

48
8A
4A
AR
€8
38
6C

70
n
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Sl
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

BYT
BYT
BYT
BYT
BYT
BYT
BYT

BTE1l
BTE2
BTE3
BTE4
BTES
BTE6
BTE7

LCCTAB CCNTAINE ADCRESS OF USER-PRCGRAM INSTRUCTICN

LOCTAB CFS

BTEO DFS

BTE1 DFS
BTE2 DFS
BTE3 DFS
BTE4 DFS
BTES DFS
BTE6 DFS
BTE7 DFS

*
* NAME:

*

® o e ~o ~o e S ~o ~o w0 o o ~e ~o

FINDPC LDX
FPCOO LDA
CMP
BNE
LDA
CMP
BEQ
FPCC2 DEX
DEX
BPL
CLC
RTS

FPCO4 PHA
TXA
LSR
TAX
PLA
SEC

*
* NAME:

* NOTE:
*

* PURPCEE:

$10

soc
soc
soc
s$oc
soc
s$oc
soc
s$oc

END OF DATA AREAS
THE REST IS ROM-ABLE

FINDPC

;SPACE FOR 16 PCH/L PAIRS

; WHERE WE PLACED THE BREAKPOINT IN THE FIRST PLACE

BREAK-TABLE ENTRIES (BTE'S)

;12 BYTES RESERVED

;ENOUGH FOR 8 BREAKPOINTS

dkkkkkhhhdhdkkhkkkkkkhkhdddddhkhkkhhhkhdddbhkk bk

PURPOSE: CHECK IF PC IN FW1/FW2 MATCHES LOCTAB
RETURNS: CARRY SET IF YES; XREG=ADTAB INDEX 0-7

CARRY CLR IF NCT; XREG=GARBAGE

*
*
* VCLATILE:DESTROYS AC
*
*

#115

FW2
LOCTAB, X
FPCO2

FWl
LOCTAB-1,X
FPCO4

FPCOO

EREAK

e e e de d ok e e % o ok d e % ok v v e e ke v v v e v e e e e v e v e e e e e v e e e ke e

;BYTE-INDEX TC END OF TABLE
;GET FOR COMPARE

;A PCH MATCH?

;=>NO. TRY NEXT2-BYTE ENTRY
;GET PCL NOW

;A PCL MATCH?

;=>YEE! WE HAVW BREAKPOINT!
;BACK UP ONE

;AND ANOTHER

:=>D0O ENTIRE TABLE SCAN
;=>DONE; SCAN FAILED

;HOLD AC
;HALVE VALUE IN X-REG
;SINCE IT'S 2-BYTE INDEX

:SET 'SUCCESS'

hkkkkhkkk Ak Ak khkhkhkhkhhkhkhrkkkhhhkhdkhkkhkkhkkk

HANCLE ENTRY AT BRK ANC PRCCEEE EJKPCINTS

TBIS RCUTINE GETS ENTERED CN *EVERY* 'COUT'
CALL-- IT KNCWS ABCUT BRK BECAUSE THE

* MCNITCR'E REGISTERS ARE SETUP TC PRINT USFR REG

* CCNTENTS. AFTER PRCCEESING IS DCNE, IT RESTCREETHE
* MONITCR'E REGS ANLC RETURNE

*

dkkkkkkdkhkhhdkkhhhkdhbhhkdkkhkhhkkkhkkhrhkkhdhkkdkdd

93a5
93a5
93A7
93A9
93AB
93AD
93AF
93B0
93B2
9385
93B7
93B9
93BC
93BF
93C1
93c4
93C7
93C9
93cC
93cC
93CE
93D0
93D3
93D3
93D3
93D3
93p3
93D3
93D3
93D3
93D6
93D8
93DB
930D
93E0
93E0
93E0
93E0
93E0
93E0
93E0
93E0
93E0
93E0
93E0
93E2
93E3
93E6
93E8
93EA
93EB
93EE
93F0
93F0
93F0
93F0
93F0
93F0
93F2
93F4
93F6
93F8
93FA
93FC
93FE
9400
9402
9405
9405

ECFB
pca7
C9A0
D023
A53C
38
E902
8D0393
A53D
E900
8D0493
208693
900B
BLOE93
8D0593
A993
8L0693

ASAQ
A2FB
4CFCFD

AD0593
853C
AL0693
853D
4CBOFE

A2FF

BD0002
C999
DOF8

BL0002
coc?

FOEl
CoCl
FOl8
CcoC4
FOOB
CoD2
FOOA
Cc9C9o
FO09
4C65FF

4CA894

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

BREAK CPX

Auricchio Breaker 11

#SFB ;IS XREG SET FCR EXAMINE
BNE ERKXX ;=>NO GET OUT NOW.
BRKO2 CMP #S$A0 ;IS AC SETUP CORRECTLY
BNE BRKXX ;=>NCPE. FALSF ALARMI
LDA AlL :GET USER PCL
SEC ; AND BACK IT UP BY
SBC #$02 ; 2 BYTES SINCE BRK BUMPED
STA FW1
LOA AlH ;GET PCH
SBC #$C0 ;DC THE CARRY
STA FW2 ; AND SAVE THAT TCO
JSR FINDEC ;A BREAKER OF OURS HERE?
BCC BRK(4 ;=>NOPE. WE WON'T HANLCLE
LDA ADTAB,X ;YES, GET BTE ADDRESS THEN
STA PCL ; AND SET IT AS THE 'GO'
LDA /LOWPAG ; PC FCR THE 'GO' COMMAND.
STA PCH ; (OUR PAGE FOR BTE'S)
BRKO4 LDA #S$AC ;SET AC BACK FCR MONITOR
LDX #S$FB ;AND X-REG. TOO
BRKXX JMP $FDFO ;=>NO. RIGHT BACK TO COUT
e o o % % o o v o ok o ok o o o ok ok o ok o e o ok ok U e ok ke ok e
* PROCESS THE 'GO' COMMAND.... *
* (RESUME USER EXECUTICN) *

!
i
¥
CMDGC LCA
8TA
LDA
8TA
JMP

~e e s e e s ~a ~e e

!

KEYIN LDX

KEYINO INX
LDA
CMP
BNE
INX
LDA
CMP

A BRANCH

e s e e ~e

BEQ
CMP
BEQ
CMP
BEC
CMP
BEQ
CMP
BEC
BADCMD JMP

H
XXDISP JMP

PCL
AlL
PCH
AlH
$FEB9

#SFF

$200,X
#599
KEYINO

$200,X
#sc7

* COMMAND FORMAT:(* CTRL-Y G) N
(222222 2222222222 2222222222 222221

;GET RESUME PCL
; AND SETUP TO SIMULATE
; AN 'XXXX G' COMMAND

;=>8AIL INTO MONITOR'E 'GO'

3 o o o oo o o o oo e o
* WE GET CONTROL HERE ON THE .
* CNTL-Y USER EXIT FROM THE .
% MONITOR (ON KEY-INS). &
* CCMMANDE AKRE SCANNEL HERE; ot
" "
" "
w "

ALL

CONTROL WILL PASS TO THE

APPROPRIATE ROUTINE.,....
9030 o o o oo o o o

sCHAR INDEX

1SET NEXT CHARACTER

;GET CHARACTER FROM BUFFER
7CCNTROL-Y CHARACTER?
;=>NO. KEEP SCANNING

sBUMP OVER CTRL-Y

sGRAB COMMAND CHARACTER
;I8 IT 'G' (GO)?

TABLE WOULD BE NEATER,

CMDGO
#5C1
CMDADD
#5C4
XXDISP
#$D2
XXREMV
#$C9
XXINIT
RESET

CMDDSP

BUT IT WOULD TAKE UP MCRE CCDE
FCR THE FEW CPTIONE WE HAVE...

;s=>YES.

;IS IT 'A' (ADD)?
;=>YES.

;I8 IT 'D' (DISPLAY)?
;=>YES.

;IS IT 'R' (REMOVE)?
1=>YES.

;IS IT 'I' (INIT)?
;=>YES.

;NOTHING, IGNORE IT!

;sEXTENDCED BRANCH

12

9408
940B
940E
940E
940E
940E
94CE
940E
940E
940E
940E
9410
9412
9414
9414
9414
9414
9416
9419
941B
941E
9420
9421
9422
9424
9426
9426
9428
942B
942E
9430
9433
9436
9437
9438
9439
943B
943D
9440
9442
9444
9447
9449
944A
944C
944D
944F
9451
9454
9456
9458
94EA
945B
945B
945B
945B
945D
945F
9461
9462
9464
9466
9468
946A
946C
946E
9470
9472
9473

Machine Language Aids

4C0895
4C4F95

A0QO
B13E
FOEE

A2CF
BD1693
D005
BD1593
F006
CA

CA
10F2
30CC

AS3E
9D1593
8DOB93
A53F
9D1693
8L0C93

AOC4
7140
9140
c8
B140
6900
9140
AS52E
Cco9D
FOl6
AS52F
FOCF
6A-
B0OO6

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

XXREMV JMP CMDRMV
XXINIT JMP CMLCINT

* CMND FORMAT:

MDADL LDY #$00
LDA (A2L),Y
BEC BADCMD

;EXTENDED BRANCH
;EXTENDED BRANCH

ekt ke ke ko ko ke k
b PROCEES THE 'ADD' CCMMAND *
* ADD A BREAKPOINT AT LOCATICN *
* SPECIFIED IN COMMANDL.. *

(* AAAA CTRL-Y A)*
de tk d de &k g %k %k ok ek ok Kk ke e ok kK de e ok ek ke ke ko ke

;CHECK OPCOLDE FIRST
;OP AT AAAA A BRK ALREADY?
;=>YES. ILLEGAL!

;SCAN LOCTAB FOR AN AVAILABLE BTE TC USE

LDX
LPA
BNE
LDA
BEQ
CEX
DEX
BPL
BMI

#115
LOCTAB, X
ADDO2
LOCTAB-1,X
ADLC04

ADDOO

ADDO2

ADLOO
BADCMD
H

ADDO4 LDA
STA
STA
LDA
ETA
ETA
TXA
LS8R
TAX
LDA
STA
LDA
8TA
LDA
LDA
ETA
DEY
BPL
INY
LCA
ETA
JER
LCA
STA
LDA
SEC

A2L
LOCTAB-1,X
SKEL+4

A2H
LOCTAB, X
SKEL+5

/LCWPAG
A3H
ADTAB, X
A3L
#$07
SKEL,Y
(A3L),Y

ACL06

ADD0O6

(A2L),Y
(A3L),Y
INSDE?2
#$00
(A2L),Y
LENGTH

SET UP JMP TC NEXT INST.

#s04
(A3L),Y
(A3L),Y

e ~o o

LDY
ALC
STA
INY
LDA
ADC
STA
LCA
CMP
BEQ
LDA
BEQ
ROR
BCS

(A3L),Y
#$0C
(A3L),Y
FORMAT
#$9D
ADDBRCH
LENGTH
CMCRET

ADLLEN2

;BYTE INDEX TC LOCTAB ENL
;GET A BYTE
;=>IN USE
;GET HI HALF
;=>BOTH ZERO,
sMCVE BACK TC
;+ NEXT LOCTAB ENTRY
; AND KEEP TRYING
:=>DONE? ALL FULLI

USE ITI

REJECT

;GET AAAA VALUE

1SAVE LO BALF

;STUFF LO ADDR INTC BTE
;CGET AAAA VALUE

1SAVE HI HBALF

;STUFF HI ADDRESS INTO BTE
;GRAB INDEX FCR LOCTAB
+MAKE ALTAB INDEX

;AND STUFF BACK INTO X-REG
sBTE'S HI ACDRESS VALUE
sHOLD IN WORK AREA

1GET BTE LO ADDR FRCM ADTAB
1SAVE IN WCRK AREA

3 7-BYTE MCVE FOR SKFL BTE
sGET SKEL BYTE

sMOVE TO BTE

sSET NEXT

7=> MOVE ENTILE SKELETON

;GET ORIGINAL OPCODE

7 INTC BTE.:sss

;INSDS2 (TO DISASSEMBLE)
1SET BRK OPCODE

7 OVER CRIGINAL CPCCLCE
;GET INSTRUCTION LENGTH

IN THE BTE

;ACD TC PC FCR DESTINATICN
;STUFF INTC BTE

tRUN UP THE CARRY

;3 RIGHT HERE

;STUFF ADDRESS INTO JMP
yGET INSTRUCTION FORMAT
3I1€ FCRMAT=BRANCH
;=>YES. MCRE TO CC
;LENGTH=17?

;=>YES. DONE
;LENGTH=2?
;=>YES

9475
9477
9479
947B
947D
947F
9481
9484
9484
9484
2484
9484
9486
9488
9489
948B
948D
948F
9491
9493
9495
9496
9498
9492
949C
949E
94A0
94A1
94A3
94A5
9426
948
94A8
9428
94A8
948
9428
94A8
94AR
94AD
94AF
94B2
94B4
94B5
94B6
94B8
94BA
94BA
94BC
94BF
94C0
94C1
94c4
94C7
94C9
94CB
94cC
94CF
9410
94D1
94p2
94D3
94D%
94p8
94DA
24DC
94DF
94E2
94E4

AQO2
B13E
9140
AQO1
B13E
9140
4C69FF

A001
B13E
18

6902
653E
853E
AS3F
€90C
853F
EA

A904
9140
AQQ7
AS3E
9140
c8

AS53F
8140

50D9

A20F
BD1693
DOOB
BD1593
D006
CA

CA
10F2
30C7

A98D
20EDFD
8A

48
BC1693
BD1593
843B
853A
AR
2040F9
68

48

4

AR
A9BC
20EDFD
A993
853F
20DAFD
BDOE93
853E
20DAFD

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
298
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
e
339
340
341
342
343
344
345
346

LDY
LDA
STA
ADDLEN LDY
LDA
STA
CMDRET JMP

7
7
7
ADDBRC LDY
LDA
CLC
ADC
ADC
STA
LDA
ADC
STA
NOP
LDA
STA
LDY
LDA
STA
INY
LCA
STA
CLV
BVC

o~ ~o ~o ~a ~o

CMDDSP LDX
DISPOO LDA
BNE
LDA
BNE
DSPNXT DEX
DEX
BPL
BMI

DISP0O4 LDA
JSR
TXA
PHA
LDY
Lca
8TY
STA
TAX
JSR
PLA
PHR
LSR
TAX
LDA
JSR
LCA
STA
JSR
Lba
STA2
JER

* COMMAND FMT:

#502
(A2L),Y
(A3L),Y
#§01
(A2L),Y
(A3L),Y
MON

#s01
(A2L),Y

#8502
A2L
A2L
A2H
#$00
A2H

#$04
(A3L),Y
#$07
A2L
(aA3L),Y

A2H
(A3L),Y

CMDRET

#115
LOCTAB, X
DISP0O4
LOCTAB-1,X
DISPO4

DISPOO
CMDRET

#$8D
COUT

LOCTAB, X
LOCTAB-1,X
$3B
$3A

PRNTYX

#$BC
ccut
/LOWPAG
A2H
PRBYTE
ADTAB, X
a2L
PRBYTE

Auricchio Breaker 13

yLENGTH=3, 3RD BYTE TC BTE
1GET INET 3RD BYTE

;AND MOVE TO BTE _
;LENGTH=2, 2ND BYTE TG BTE
;GET INST 2ND BYTE

;AND MOVE TO BTE

:DONE, BACK TO MONITOR

FOR BRANCHES, WE'VE GCTTA ADD A JMP FOR THE 'TRUE'
CCNDITICN (SINCE WE MOVED BRANCH OUT OF PRCGRAM)

;SET FOR 2NTC BYTE

jGET DESTINATICON CFFSET
;AND ADD 2 BYTES TC
1CONSTRUCT ABS ADDRESS
;ADD TO SUBJECT-INST

;CARRY IT

; (PLACE EOLDER WASTE HERE)
;TRUE BRANCH TO +4
;PUT INTC NEW OFFSET

;GET JMP ALLDRESS
;MOVE IT TC

;s THE

: BTE FOR

; THE 'TRUE' BRANCH
;SNEAKY BRANCH

t IC EXIT: ..

LI I T T T
* DISPLAY ALL ACTIVE BRKPCINTS *

(* CTRL-Y D) .
dkkdhkkkkk kR k kR Rk ke kdkddkdkddkkidi

$INDEX TO LCCTAE ENE

;GET A BYTE

;=>IN USE

;TRY BOTH BYTES TO BE SURE
;=>DEFINITELY IN USE

$SET NEXT ENTRY

; IN LOCTAB

;=>MORE TC GO

;=>DONE: EXIT TC MONITCR
;OUTPUT A CARRIAGE

; RETURN

;GET INDPEX

; SAVE IT

;GET SUBJECT-INST PCH

; AND ITS PCL

}SE1 UP PCH/PCL

;PRINT Y,X BYTES IN HEX
;RESTORE INDEX

jCONVERT TO ADTAB INDEX

;' <' CHARACTER

s PRINT IT

;BTE HI ADDRESS

;SET INDIRECT POINTER
tPRINT HEX BYTE

;GET BTE LOW ADDREES
$SET INDIRECT POINTER
;PRINT BTE FULL ADDRESS

14

94E7
94E9
94EC
94EC
94EC
94EC
94EC
S4EC
94EC
94EE
94F1
94F3
94F5
94F8
94FA
94FD
9500
9501
8502
9504
9504
9504
9504
9504
9504
9504
9505
9508
9508
9508
9508
9508
9508
9508
9508
9508
950A
950D
950F
9512
9515
9517
951A
951A
951D
951F
9520
9521
9522
9524
9525
9528
952B
952D
952F
9531
9533
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536

Machine Language Aids

ASBE
20EDFD

A9A0
2CECFD
AOOC
B13E
2CDAFD
B13E
208EF8
200495
€8

AA
10BC

48
4CDOF8

AS3E
8D0393
AS3F
8D0493
208693
B0OO3
4C65FF

BLOE93
8540
8A

oA

AA
A900
A8
9D1693
9D1793
A993
8541
B140
913E
4C69FF

347
348
349
350
351
352
353
354
355
356
357
3§88
35¢
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

LDA
JSR

LLA
JSR
LDY
LDA
JSR
LDA
JSR
JSR
PLA
TAX
BPL

B ne ~e we vo ve e

LUGE PHA
JMP

#SBE
couT

#sac
CouT
#$00
(A2L),Y
PRBYTE
(A2L),Y
INSDS2
KLUGE

DSPNXT

$F8D9

****END CF KLUGE****

;'>' CHARACTER
sPRINT IT

DISSASSEMBLE THE CRIGINAL INSTRUCTION.
PICK UP ORIGINAL OPCCDE FROM BTE,
ORIGINAL ALDDRESDS FIELD FROM USER
PROGRAM LOCATICN:s:ssess

;PRINT ONE SPACE HERE

; INDEX

;GET OPCODE FROM BTE
;PRINT OPCOLE

;GET OPCODE FROM BTE

; AND GET FORMAT/LENGTH
;SNEAK INTO INSDSP @ F8D9

;RESTCRE LOCTAB INDEX
;=>DISPLAY THE REST

KLUGE ENTRY INTC SUBROUTINE WHICH
FORCES JSR PRIOR TOC A PHA INSTRUCTION.
WE HAVE TC JSR TO THIS JMP!!

;PUSH MNEMONIC INLCEX
;CCNTINUE WITH INSTDSP

L T T T T
* REMOVE A BRKPOINT AT LCC AAAA *

(ARAA CTL-Y RR) *

hdekkdkkdhhhkkhhkkkhdhdkkdhhddkkkhhddd

MDRMV LCA
STA
LDA
STA
JSR
BCS
JMP

'

REMCV2 LDA
ETA
TXA
ASL
TAX
LCA
TAY
STA
STA
LDA
STA
LDA
STA
JMP

*

*

*

e Ne “e So e we S5 ~e ~o o ~o e

; * COMMAND FMT:
i
C

A2L
FWl
A2H
FW2
FINDPC
REMOV2
RESET

ADTAB, X
A3L

#sce

LOCTAB, X
LCCTAB+1,X
/LCWPAG
A3H
(A3L),Y
(A2L),Y
MON

* AFTER EVERY RESET,
*

* CTL-Y 1

;GET ADDRESS LO
;HOLD IT FCR FINDPC
;GET ALCDRESS HI

;A BRKPOINT HERE??
;=>YES.
;=>NC, BELL FCR YOU!

;GET THE LOCTAB ENTRY
sHOLD IT
sNCW CREATE LCCTAB INDEX

;CLEAR OUT THF APPROPRIATE
;LOCTAB ENTRY FCR BKPT..

;HI ADDRESS FCR BTE

;HOLLC FCR ADDRESSING

;GET OPCCLCE OUT CF BTE

; ANC PULL BACK TO CRIGINAL
;=>ALL DONE.

khkkkhkhhkkhhhhhhhhhkdhrkkhhhkkhrhkhhhkkdhdk

* INITIALIZATION CCODE. ENTERED AT START
* ADDR TO INITIALIZE.
* SETS UP THE CTL-Y AND CCUT EXITS...

IT CLFARS LOCTAB,

MUST RESETUP WITH

dhkkkkdhhkhkkhhkhkdkdhhhhdkhhhkdkhhhkdkhhkdhhhdkdkkhkkd

9536 416
9536 A94C 417 INITX ©LDA #$4C
9538 8DF803 418 STA $3Fe
953B A993 419 LCA /KEYIN
953D 8DFA03 420 STA $3FA
9540 A9EC 421 LDA #KEYIN
9542 8DF903 422 STA $3F9
9545 A900 423 LDA #$00
9547 A20F 424 LDX #!15
9549 9D1693 425 INITCO STA LOCTAB,X
954C CA 426 DEX
954D 10FA 427 BPL INITOC
954F 428 ;
954F 429 ; ENTER HERE AFTER HITTING
954F 430 ;
954F A9AS 431 CMDINT LDA #BREAK
9551 8536 432 STA CSWL
9553 A993 433 LDA /BREAK
9555 8537 434 STA CEWH
9557 4C69FF 435 JMP MON
436 END

*%%** END OF ASSEMBLY

Fehkkkdkhkhkhkhhkrkhhkhhkhhkhhkdhk
* *

* SYMBOL TABLE -- V 1.5 *
* *

hkkkkkhhkkhhhhkhhhhkkhhhkk

LABEL.

LOC.

% ZERO PAGE VARIABLES:

FORMAT
A3L

002E
0040

** ABSOLUTE

INSDS2
PREBYTE
FWl
LCCTAB
BTES
FPC04
KEYIN
CMDADD
CMLCRET
KLUGE

SYMBOL
SYMBOL

F88E
FDDA
9303
9316
9362
939E
93E0
94CE
9481
9504

TABLE
TABLE

LABEL. LCC. LABEL. LCC.
LENGTH OC2F AlL 003C AlH
A3H C041 CsWL C036 CSWH
VARABLES/LABELS

PRNTYX F940

CcuT FDED RESET FF65 MCON
FW2 9304 PCL 9305 PCH
BTEC 9326 BTEl 9332 BTE2
BTE6 936E BTE7 937A FINDPC
BREAK 93A5 BRKO2 93A9 BRKO04
KEYINC 93E2 BALCMD 9402 XXLISP
ALDCO 9416 ALDO2 9420 Arroe4

ADDBRC 9484
CMDRMV 9508

CMLCDSP 94A8 DISPOO
REMOV2 951A INITX

STARTING ALDRESS:600C
LENGTH:0222

Auricchio Breaker 15

;1JMP CPCODE

;STUFF IN CTL-Y EXIT LOC
;KEYIN: HI ADDREES
;STUFF INTO JMP

;KEYIN: LO ADLRESS
;STUFF INTO JMP ADDRESS

;INDEX INTC LOCTAB END
;CLEAR IT CUT
;SC NC BREAKPCINTS

RESET, PLEASE!

;BREAK: LC ADDRESS
;STUFF INTO 'CCUT' EXIT HCOK
;BREAK: HI ADLCRESS
;STUFF INTC 'CCUT' EXIT HCCK

003D A2L OO3EA2H O003F
0037

FF69 LOWPAG 9300 INIT 9300
9306 SKEL 9307 ADTAB| 93CE
933E BTE3 934A BTE4 9356
9386 FPCOO 9388 FPC02 9398
93CC BRKXX 93LOCMLGC 93D3

9405 XXREMV 9408 XXINIT 94CB
2426 ADDO6 9444 ADDLEN 947B
94AA DSPNXT 94B4 DISPC4 94BA
9536 INITOC 9549 CMDINT 954F

Step and Trace
for the Apple II Plus

by Craig Peterson

If you miss the Step/Trace of the original Apple Il on
your new Apple Il Plus, here is all you need to restore it.

Apple Computer’s Apple II Plus is a pretty good machine. It has improved editing
features over those of the standard Apple II and a better cursor control and stop list
feature. And it's really nice to fire up the machine and be right in BASIC or DOS,
or better yet, to be in the middle of a turn-key type program.

Furthermore, Applesoft BASIC is a standard feature, and I'm partial to it over
Integer BASIC. But all of these improvements didn’t come for free. There's only so
much room in the ROM monitor, and certain of its features had to be sacrificed to
make room for the new additions. As a result, the machine language Step/Trace
capabilities of the older Apple II ended up on the cutting room floor.

A lot of people will probably never miss Step/Trace. Unless you are into
assembly language programming, you probably don’t need them. But if you do any
assembly language programming, Step/Trace can be invaluable. They allow you
to step through each machine language instruction, displaying all of the 6502
registers as you go along, so you can find any errors that might exist in the pro-
gram, or even just see how the program works. Step does this one instruction at a
time, and Trace does it continuously, without stopping (unless a BRK instruction
is encountered).

Step-n-Trace Program

Well, fear not, Apple II Plus owners, Step-n-Trace is here. The Step-n-Trace
(S&T) program essentially just adds the step-and-trace functions to the existing
monitor of your Apple II Plus. The operation and use of the monitor is identical ta
that of the original Apple monitor. Type a hex address followed by one or more
‘S’s, to take steps through a program from that address. To trace from that
address, type a hex address followed by a 'T",

An improved feature of S&T over the original Apple trace is that all you have
to do is press any key (for example, the space bar) to stop the trace. To continue
tracing, type a 'T’, and trace will continue from where it stopped. Or you can type

Peterson Step-Trace 17

an 'S’ to take only one step, The prompt character used for S&T is an inverse '*’ so
you can distinguish it from the normal Apple monitor. S&T also includes all of
the normal monitor commands in addition to step and trace. In fact, it actually
uses many parts of the existing monitor to do its work.

How to Use the Program

To use Step-n-Trace, first load it and then type ‘CALL 768’, or 'BRUN' it from
your disk. You will then have all of the monitor commands at your disposal,
including step and trace. To get out of the program, just press ‘RESET’ on yout
Apple II Plus, or use CTRL-C, or CTRL-B and you will end up in BASIC.

Since the program resides in hex address $300 to $3E9, it loads over some of
the DOS address pointers from $3DO0 to $3E9. Generally, this doesn’t cause any
ptoblems for me. However, this can be avoided by moving it to some other area of
memoty; but the jump addresses in lines 69, 75, 83, 91, 120, 168, and 169 will
have to be revised accordingly. The assembler listing for S&T makes use of most
of the same labels as the Apple monitor to make it easier to relate what’s happen-
ing with the old monitor.

At this point, I should mention that the step-and-trace functions suffer from
the same problems as the original Apple monitor, in that under certain conditions,
the stack register will be displayed with an incorrect value. When this happens,
for example, after JSR or RTS, the display will be corrected after the next instruc-
tion. Also, if the program manipulates the stack with the use of TXS instructions,
the actual operation will probably be incorrect. Lastly, with DOS in effect, when a
program is traced through the changing of an I/0 hook (usually $36 or $37) the
program trace will lock up because the output will have a partially incorrect jump
indirect address, and your trace will fall off the edge of the earth. The frailties
mentioned above are not nearly as restrictive as they may seem. All in all, S&T is
a useful utility.

Exploring Applesoft with S&T

For those of you who have read this far, but don'’t really plan on doing any
assembly language programming, here is how Applesoft works. First load Step-n-
Trace and then enter the following BASIC program:

10 CALL 768: PRINT ““HELLO”
20 END

Next type ‘RUN’, and you will be rewarded with the sound of the bell and an
inverse ‘*' prompt character, telling you that you're in S&T. Next type ‘FF58S’.
From now on, each 'S’ you type will step you through the operations of Applesoft.
The first ‘S’ should display ‘D823- 4C D2 D7 JMP $D7D2’ on the screen, followed
by the contents of the registers. This is the running return to Applesoft. As you
‘S'tep or ‘T'race through the instructions, you will see the colon ($3A), the print
command token ($BA), the quotation ($22), the characters of the word '"HELLO’

18 Machine Language Aids

($48,45,4C,4C,4F) and more pass through the A (accumulator) register, as
Applesoft analyzes your program line.

With some study you'll begin to understand what Applesoft is doing. With
some effort, you can actually find where the subroutines are located for the ‘SIN’,
‘SQR’, or any other function you're interested in. All of this is accomplished with
the help of S&T.

So, if you're doing any assembly language work on an Apple II Plus, S&T can
be of great help. If you're just interested in seeing how things actually run inside
your Apple, Step-n-Trace can open a lot of interesting doors.

(Editor’s Note: A slightly modified version of this program, Step-Trace.800, is also
included on disk. Step-Trace.800 loads at $800 and does not employ the key stop
feature found in Step-Trace [shown in listing]. As a result, Step-Trace.800 may be
used with the TRACER program on Apple II Plus or Language Card systems. To ac-
complish this, initialize Step-Trace.800 and then TRACER.)

0800
0800
08CO
0800
0800
0800
0800
0800
ogoe
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800C
0800
0800
0800
080C
0800
0800
osce
0800
0800
o80¢C
0800
0800
0800
0800
0800
ogoc
0800
0800
0800
osoce
0800
0800
08C0
0800
0800
0800
0800
0800
0300
0300
0300
0300
0301
0304
0306
0308
030B
030E
0311
0313
0315
0317
0319
031B
031E
0320
0322
0325
0328
C32A
032C
032E
0331
0334

ot:]
203AFF
A92A
8533
2067FD
20C7FF
20A7FF
8434
C9EC
FOOB
C9EL
DOOF
ADOOCO
3024
C634
20C7FF
204903
101A
CoCé
D009
20CS5FF
2000FE
4C0403

WO FOUTD WN -

;iﬁi******ﬁ**i***********

;* *
i * STEP-N-TRACE bd
* CRAIG PETERSON bl
sk *
1 * STEP-TRACE w
¥ *
:* COPYRIGHT (C) 1981 *
g™ MICRO INK, INC. *
:* CHELMSFORD, MA 01824 *
;* BALL RIGHTS RESERVED *
% *

ekdkkhdkhhh ko kdhkokkkodkdkdhd

Peterson Step-Trace

;A PROGRAM TO FURNISH THE APPLE I1I
;PLUS WITH THE STEP ANLC TRACE CAPA-
sBILITIES OF THE STANDARD APPLE II.

;
RTNL

EPZ $2C
RTNH EPZ $2D
LGTH EPZ $2F
PRMP EPZ $33
YSAV EPZ $34
pPCL EPZ $3A
PCH EPZ $3B
XQT EPZ $3C
STAT EPZ $48
KBRC EQU '$C0O00
INSD EQU $F882
DISA EQU $F8DO
ADJ2 EQU $F954
ADJ3 EQU $F956
REGD EQU SFAD7
RGDS EQU $FADA
GETL EQU $FD67
BL1 EQU $FE00
A1PC EQU $FE75
BELL EQU $FF3A
RSTR EQU $FF3F
SAVE EQU $FF4A
GETN EQU SFFA7
TSUB EQU $FFBE
TSB1 EQU $FFC5
ZMOL EQU $FFC7
CHRT EQU $FFCC
ORG $030C
OBJ $0800
;
STRT CLD
JSR BELL
CONT LDA '*
STA PRMP
JSR GETL
JSR ZMOL
NXTI JSR GETN
STY YSAV
TRYS CMP #$EC
BEQ ENT2
TRYT CMP #$ED
BNE TRCR
LDA KBRD
BMI AGIN
» DEC YSAV
ENT2 JSR ZMOD
JSR STPZ
BPL AGIN
TRCR CMP #$C6
BNE MCMD
JSR TSB1
JSR BL1
JMP CONT

;s RETURN ALCDRESS LO
sRETURN ADDRESS HI

; LENGTH/DISPLACEMENT
; PRCMPT CHARACTER
;PLACE TO SAVE Y

; PROGRAM COUNTER LC
: PROGRAM COUNTER HI
;USER INSTRUCTION

; PROC STATUS REG

;KEYBCARD REGISTER
;DISPLAY PRGRM CNTR
;DISASEMBL INSTR
;ADJUST PC-2
;ADJUST PC-3
;DISPLAY USER REGS
;DISP REGS-NO CR
;GET INPUT LINE
;BLANK RCUTINE
;COPY Al TO PC
;RING THE BELL
;RESTORE USER REGS
;SAVE USER REGS
;GET ITEM,NONHEX
;PUSH AND GOTO SUB
;HANDLE THE MODE
;ZERO THE MODE

; CHARACTER TABLE

;SET HEX MODE
;RING THAT CHIME
;LOAD INVERSE *
; AND STORE IN PRMP
sREAD A LINE
;SET MCDE & Y=0
;GET ITEM, NCNHEX
;CHAR 1IN A-REG
;IS IT STEP?

; IF=STEP, GO ENT2
;IS IT TRACE?

;1 IF<>TRACE, TRYCR
:WAS KEY PRESSD?
;KEY ON,-->AGIN
;MAKES STEP RPT
;ENTRY FOR STEP
;GO STEP OUT
;RTN TO INP LINE
;IS IT A CR?
;IF<>CR, TRY MCMD

;HANPLE CR AS BLNK
;RETURN TC CONT

19

20 Machine Language Aids

0337 A017 75 MCMD LDY #S$17 ;TRY MONITCR CMDS
0339 88 76 CHRS DEY ;SEARCH MON CHARS
033a 30C4 77 BMI STRT ;NCT FOUND, GO START
033C D9CCFF 78 CMP CHRT,Y ;CMP WITH TABLE
O033F DOF8 79 BNE CHRS ;NOT FOUND, ->CHRS
0341 20BEFF 80 JSR TSUB :FND, CALL SUB
0344 A434 81 AGIN LDY YSAV sRESTORE Y

0346 4COEQ3 82 JMP NXTI ;GET NEXT COMMAND
0349 2075FE 83 STP2Z JSR A1PC sADR TO PC

034C 20DOF8 84 STEP JSR DISA ;TAKE ONE STEP
034F 68 85 PLA ;ADJUST TC USER
0350 852C 86 STA RTNL ;STACK AND SAVE
0352 68 87 PLA ;RTN ADR

0353 852D 88 STA RTNH

0355 A20e 89 LDX #$08

0357 BLCE103 90 XQIN LDA INM1,X ;INIT XEQ AREA
035A 953C 91 STA XQT,X

035C CcA 92 DEX

035D LOF8 93 BNE XQIN

O35F Al3A 94 LDA (PCL,X) ; JSR OPCCLCE BYTE
0361 FO02C 95 BEQ XBRK ;SPECIAL IF BREAK
0363 A42F 96 LCY LGTH ;LENGTH FROM DASSY
0365 €920 97 CMP #$20

0367 F043 98 BEQ XJSR ;HANDLE JSR, RTS,
0369 C960 99 CMP #$60 ;JMP, JMP(),

036B FO2F 100 BEQ XRTS ; & RTI SPECIAL
036D C94C 101 CMP #$4C

036F F046 102 BEQ XJMP

0371 C96C 103 CMP #S$6C

0373 F043 104 BEQ XJAT

0375 C940 105 CMP #$40

0377 FOlF 106 BEQ XRTI

0379 291F 107 AND #S$1F

037B 4914 108 ECR #$14

037D C904 109 CMP #$04 ;COPY USR INSTR
037F F002 110 BEQ XQ2 ;TC XEQ AREA

0381 Bl3A 111 XQ1 LDA (PCL),Y
0383 993CCO 112 XQ2 STA XQT,Y

0386 88 113 DEY

0387 10F8 114 BPL XQ1

0389 203FFF 115 JSR RSTR ;RESTOR USR REGS
038C 4C3C0C 116 JMP XQT ;XEQ USER OP
038F 2082F8 117 XBRK JSR INSD s PRINT USFR PC
0392 20DAFA 118 JSR RGDS ;AND REGS

0395 4C0003 119 JMP STRT :TBEN GO STRT
0398 18 120 XRTI CLC

0399 68 121 PLA ;SIMULATE RTI
039A 8548 122 STA STAT

039C 68 123 XRTS PLA ;RTS SIMULATION
039D 853A 124 STA PCL

039F 68 125 PLA

O3A0 853B 126 PCN2 STA PCH

03A2 AS2F 127 PCN3 LPA LGTH ;UPDAT PC BY LEN
03A4 2056F9 128 JSR ADJ3

03A7 843B 129 STY PCH

03A9 18 130 CLC

O03AA 9014 131 BCC NEWP

O03AC 18 132 XJSR CLC

O3ALC 2054F9 133 JSR ADJ2 ;UPDATE PC AND
03BO AA 134 TAX ;PUSH ONTO STAK
03Bl 98 135 TYA ;FOR JSR

03B2 48 136 PHA ; SIMULATICN
03B3 8A 137 TXA

03B4 48 138 PHA

03B5 A002 139 LDY #$02

03B7 18 140 XJMP CLC

O3B8 Bl3A 141 XJAT LLA (PCL),Y

O3BA AA 142 TAX ;LOAD PC FCR JMP
O3BB 88 143 DEY ;& (JMP)

03BC B13A 144 LDA (PCL),Y ;SIMULATION
O3BE 863B 145 STX PCH

03CO 853A 146 NEWP STA PCL

03C2 BOF3 147 BCS XJMP

03C4 A52D 148 RTNJ LDA RTNH
03Cé 48 149 PHA

Peterson Step-Trace 21

03C7 AS52C 150 LDA RTNL
03C9 48 151 PHA
03CA 4CD7FA 152 JMP REGD ;DISPLAY USR REG
o3cr 18 153 BRAN CLC ;BRANCH TAKEN,
03CE A001 154 LDY #$01 sADD LEN+2 TC PC
03D0 Bl3A 155 LDA (PCL),Y
03D2 2056F9 156 JSR ADJ3
03D5 853A 157 STA PCL
03D7 98 158 TYA
03D8 38 159 SEC
03D9 BOCS 160 BCS PCN2
O3DB 204AFF 161 NBRN JSR SAVE ;NORML RTRN AFTR
O3PE 38 162 SEC ;EXCING USER OP
O3DF BOC1 163 BCS PCN3 ;GC UPDPATE PC
C3El EA 164 INM1 NOP
O3E2 EA 165 INIT NCP
O3E3 EA 166 NOP ;DUMMY FILL FOR
03E4 4CCB0O3 167 JMP NBRN :XEQ AREA
O3E7 4CCLC3 168 JMP BRAN

169 END

#%%%% END OF ASSEMBLY

L2 222222222 222222222 22222
* *

* SYMBOL TABLE =-- V 1.5 *
* *

Ttk de ot ot de ot ok ok vk e o ok o ko o e e o e e

LABEL. LOC. LABEL. LOC. LABEL. LOC.
** ZERO PAGE VARIABLES:

RTNL 002C RTNH 002D LGTH 002F PRMP 0033 Y¥YSav 0034 PCL 0C3a
PCH CO3B XQT 003C STAT 0048

** ABSCLUTE VARABLES/LABELS

KBRD C000 1INSD F882 DISsA F8DO

ADJ2 F954 ADJ3 F956 REGD FAD7 RGDS FADA GETL FL67 BL1 FEOO
AlPC FE75 BELL FF3A RSTR FF3F SAVE FF4h GETN FFRA7 TSUB FFBE
TSB1 FFC5 ZMOD FFC7 CHRT FFCC STRT C300 CONT 0304 NXTI O030E
TRYS 0313 TRYT 0317 ENT2 0322 TRCR 032A MCMD 0337 CHRS 0339
AGIN 0344 STPZ 0349 STEP 034C XQIN 0357 XQl1 0381 XQ2 0383
XBRK 038F XRTI 0398 XRTS 039C PCN2 03A0 PCN3 03A2 XJSR 03AC
XJMP 03B7 XJAT 03B8 NEWP 03CC RTNJ 03C4 BRAN 03CD NBRN 03CB
INM1 03El INIT 03E2

SYMBOL TAEBLE STARTING ADCRESS:6000
SYMBOL TABLE LENGTH:01D2

TRACER: A Debugging Tool
for the Apple II

by R. Kovacs

The Apple’s Step/Trace routines are handy, but you will
find them even more useful when used in conjunction
with this Tracer program.

The Apple II's monitor in ROM is crammed with many useful routines. These
include memory interrogation and modification, keyboard input, CRT display
output and cassette I/O. In addition, Apple has thoughtfully provided a number of
routines related to assembly language programming. A single-pass assembler and
disassembler are invaluable aids in writing and reviewing machine code. A
step/trace feature allows you to control execution of your program during the soft-
ware development phase.

The step routine executes a single instruction and displays its address, both
Hex and disassembled code, the values of the A,X,Y,P registers and the stack
pointer. You can modify any register and continue execution of either the next
instruction or any arbitrary one.

Unfortunately, all this information uses up the display rather quickly such
that at best only the 11 most recent steps are shown. It seemed to me that it would be
useful to display more program counter history at the expense of other information.

The Program

The Tracer program was designed to operate in conjunction with Apple's
step/trace routines to enhance their usefulness. It is basically a formatter which
controls the information output to the screen. This routine will display up to 160
of the most recent instructions executed. This is in addition to the usual details
(i.e. disassembled code and register displays) of the last instruction displayed.
Features include single step and trace with paging. You can either continue execu-
tion or temporarily exit to modify registers or memory. Tracer also looks for the
break code (00) and waits for your action after announcing the break with a double
bell. The last instruction executed before the break was encountered will still be
displayed.

Kovacs Tracer 23

Caution: It should be recognized that Tracer’s display lags by one instruction.
If the monitor is entered via reset, the current register values saved may be dif-
ferent due to the next instruction having executed. Thus you should check your
values using the control-E monitor command.

A commented assembly listing is shown. The program is approximately 190
bytes long and is located starting at $300. It uses no additional page zero memory.

How it Works

Tracer controls what information is displayed on the screen by manipulating
the characters generated by the step/trace routines. Tracer looks for certain key
characters and sequences to determine when one instruction has been completed.

A slight complication arises out of the 2-line display format used by Apple.
The character stream normally output to the screen after completion of a single
step begins with a carriage return ($8D). It is then followed by a line of printout
whose first 4 characters are the Hex Address of the instruction just executed. This
line is terminated with another carriage return and the second line is output.

Tracer looks for the carriage return which marks the beginning of the first line
by diverting all characters to Tracer via the COUT hook. Subsequent characters
are stored in a buffer. The second line is recognized by a carriage return followed
by a space ($A0). The next carriage return is used to output the 4 character Hex
address from the buffer (plus a space) to the screen using the monitor COUT
routines ($FDFO). These routines take care of wraparound and scrolling to display
up to 160 addresses in an 8 by 20 line format.

Since the buffer happens to be part of screen memory, then it too is displayed.
The buffer region is protected by moving the bottom of the scrolling window.

The control Y function is used to initialize Tracer via a jump at $3F8. It clears
the screen, sets the scrolling window and sets the COUT hook at $36 and $37 to
divert all characters normally displayed on the screen to Tracer.

Directions
Tracer is relatively simple to use:

1. Load Tracer starting at $300. (Don't forget the Control-Y jump at 3FB:
4C 00 03.)

2. Run the program via the monitor by typing: Yc XXXX T where Yc is a
Control-Y and XXXX is the address where debugging is to begin. The
screen will clear, Tracer will become hooked via COUT and tracing begins
as the specified address.

3. Tracer is initialized to single step and will halt after displaying the familiar
step/trace information at the bottom of the screen. Additional steps are

24 Machine Language Aids

executed by depressing the space bar. The addresses of previously executed
instructions will begin to accumulate in the upper part of the display.

4. One page of instructions can be executed by depressing the return key instead
of the space bar. Control can be retained immediately by hitting any key.

5. Of course hitting reset returns the user back to the monitor where registers
and memory can be manipulated if needed. Tracer can be reentered by

typing: Yc T.

Figure 1: This example illustrates Tracer’s output format while looping through
Apple’s WAIT routine at $FCA8. The normal step/trace output for the current in-
struction is at the bottom of the screen and the previous 160 addresses of program

counter are listed above.

FCA9
Oldest FCAC
FCAC
FCAC
FCAF
FCAC
FCAC
FCAF

FCAC

160 Previously ggﬁg

Executed Addresses FCA9

FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAA-

Recent

Normal Apple Step/Trace Display

FCAA
FCAA
FCAA
FCAA
FCB1
FCAA
FCAA
FCB1
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA

FCAC
FCAC
FCAC
FCAC
FCA9
FCAC
FCAC
FCA9
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC

FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA

FCAE FCAF FCB1

FCAA
FCAA
FCAA
FCAA

FCAC
FCAC
FCAC
FCAC

E9 01

FCAA
FCAA
FCAE
FCAA

FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCA9
FCAC
FCAC
FCAF
FCAC

SBC
Most A=05 X=00 Y=00 P=31 S=99

FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAE
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCB1
FCAA

#$01

FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCAF
FCAC
FCAC
FCAC
FCAC
FCAC
FCAC
FCA9
FCAC

FCAA
FCAA
FCAA
FCAE
FCAA
FCAA
FCAE
FCAA
FCAA
FCAA
FCB1
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA
FCAA

0800
0800
0800
0800
0800
0€00
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
080C
0800
0800
0800
0800
0800
0800
03F8
03F8
03F8
03F8
03FB
C3FB
03FB
03FB
03FB
0300
0300
0300
0300
0303
0306
0308
C30A
030¢C
030E
0310
0312
0314
0316
0318
031E
031c
031C
031c
031C
031F
0322
0325
0327
0329
032B
032E
0331

4C0003

203CFB
2058FC
A915
8523
A91C
8536
A903
8537
A91F
8524
A902
8DBBO3
€60

ECB703
8CB803
2CBAO3
301C
C98D
FOOC
ACBSO03
995007
cs

WoONONULD WN -

o e v J d o ok I % o ok kI ok ok ke ko ke ke

TRACER
R. KCVACS

CHELMSFCRD, ME 01824

*

*

*

*

* CCPYRIGHT (C) 1981
*

*

* AIL RIGHTS RESERVED
*

*

*
*
*
*
*
MICRO INK, INC. *
*
*
*
*

¥ e % de 3 d e % % o 3k e % o o e o o ok

Kovacs Tracer 25

;ENTER VIA CONTROL-Y FOLLCWED BY XXXXT

sWHERE XXXX IS THE ADDRESS

i
WNDBTM EPZ

$23
PCL EPZ $23A
WINDOW EQU $FB3C
BELL EQU S$FBLL
CLEAR EQU $FC58
CccuT EQU $FLCFC
READ EQU $cocoe
RESET EQU $C010
BUFF EQU $075¢C
BUFF1 EQU $07D0

TC BEGIN TRACING

iBOTTOM OF SCROLLING WINDCW
;PGM CCUNTER

;SET NORMAL SCRCLL WINDCW
;TOGCLE SPEAKER

;CLEAR SCREEN, HCME CURSCR
;OUTPUT CHAR TO SCREEN
;KEYBCARD STROBE

;RESET KEYBOARD

;LINE #22-COL %0
; #23 #0

;**t*t*t*********************t****t
;EET UP CCNTROL-Y JUMP TC $3F8

ORG $03F8
OBJ $08F8

JMP TRINIT

TRACER INITIALIZATICN

~e ~o o o e

CRG
OBJ

$o3ce
soeoc
'

TRINIT JSR
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

WINDOW
CLEAR
#$15
WNDBTM
#TRACER
$36

/ TRACER
$37
#S1F
$24
#$02
PGCNT

% o v e % % ok v k% % ok 3k v % % ok dk % % ok dk vk vk ke ke ke ke ok ke ok

;CLEAR ENTIRE SCREEN
;SET SCROLL WINDOW

;SET COUT HOOK

;TC TRACER

;INIT CH FCR EVEN PAGING

;INIT PGCNT FCR
;SINGLE STEP

H
;******t***************************

TRACER STA
STY
BIT
BMI
CMP
BEC
LDY
STA
INY

SAVEA
SAVEY
CRFLG
CR
#$80
SETCR
BPTR
BUFF, Y

STORE

;SAVE A & Y
sREGISTERS

;WAE LAST CEAR A CR?
;YES

;IS THIS CHAR A CR?
;YES

; LOAC BUFF PCINTER
;NC, SO STORE IT

; INC POINTER

26 Machine Language Aids

0332 €8CB903 70 STY BPTIR ; & SAVE IT

0335 D0OO5 71 BNE DONE ;BRANCH ALWAYS

0337 A080 72 SETCR LDY #$8&C ;SET CR FLAG

0339 8CBAO3 73 STY CRFLG

033C ACB703 74 DONE LDA SAVEA ;s RESTCRE

033F ACB803 75 LDY SAVEY sREGISTERS

0342 60 76 RTS ;sRETURN TC MONITCR
0343 AOQCC 77 CR LDY #$00 ;RESET CR FLAG

0345 8CBAC3 78 STY CRFLG

0348 CO9A0 79 CMP #$A0 ;IS NEXT CHAR A SPACE?
C34A D007 80 BNE ADDR-2 ;NO

034C AC80 81 LDY #$80 ;sACJ PTR TC NEXT

C34E 8CB903 82 STY BPTR ;LINE ON SCREEN

0351 DCL8 83 BNE STORE ;BRANCH ALWAYS

€353 A00O 84 LCY #$00 ;INIT BUFF POINTER
0355 B95007 85 ADLCR LCA BUFF,Y

0358 20FCFD 86 JSR CCUT ;OUTPUT IT

035B C8 87 INY

035C CC04 88 CPY #$04 ;FINISHEDC PRINTING 4 CHAR
035E 90F5 e9 BCC ALDR ;NC

0360 ASAOQ 20 LDA #$A0

0362 20FOFD o1 JER COUT ;OUTPUT A SPACE

0365 22 ;

0365 93 ;CHECK FCR BREAK

0365 2 ;

0365 ACOO 95 LDY #$00

0367 B13A c6 LDA (PCL),Y ;GET OPCCDE

0369 FCCC 97 BEC KEY1 ;PAUSE IF BREAK

©36B 98

036B 9¢ ;LOCK FOR KEYBOARL INPUT

036B 100 ;

036B CEBBO3 101 KEY DEC PGCNT ;CHECK PAGING

036E FCCD 102 BEQ KEY2

0370 2cc0CO 103 BIT REALC sANY KEYBOARD INPUTS?
0373 30CD 104 BMI KEY3 ;YEE

0375 1020 105 BPL TRACE

0377 20DDFB 106 KEY1 JSR BELL ;SCUND BELL FOR BRK
C37A 20DCFB 107 JSR BELL

037D ACAQ 108 KEY2 LDY #$A0 ;RESET PAGE CCUNTER
037F 8CBB0O3 109 STY PGCNT ;AND PAUSF

0382 8D10CO 110 KEY3 STA RESET

0385 2CC0CO 111 KEY4 BIT READ ;LCGP UNTIL ANOTHER
0388 10FB 112 BPL KEY4 :KEY IS HIT

038A 113 ;

038A 114 ;TEST INPUT FOR TRACE, STEP OR QUIT

0382 115 ;

038A ADOOCO 116 LCA READ ;LOAD CHARACTER

038D C98D 117 CMP #$8D ;'"RETURN' TC CCNTINUE TRACE
038F FCO6 118 EEQ TRACE

0391 C9a0 119 CMP #S$AO ; 'SFACE' TO SINGLE STEP
0393 F005 120 BEQ STEP

0395 DOE3 121 BNE KEY1+3 :NO MATCH, TRY AGAIN
0397 8D10CO 122 TRACE STA RESET ;RESET KEYBOARD STROBE
039A EA 123 STEP NCP

039B 124 ;

03%B 125 sFILL PRCTECTED FIELL WITH SPACES

039B 126 ;

039B A9A0 127 LDA #$A0 ;ASCII SPACE

039D A027 128 LDY $§$27 140 CHAR/LINE

039F 995007 129 FILL STA BUFF,Y

03A2 990007 130 STA BUFF1,Y

03A5 88 131 DEY

03A6 10F7 132 BPL FILL

038 133 ;

03A8 ADB703 134 LDA SAVEA

03AB AQ0C 135 LDY #S$00 sRESET BUFF POINTER
O3AD 8CB903 136 STY BPTR

03BC C9BO 137 CMP #$BO ;IS 1ST CHAR 0-9/A-F ?

03B2 9088 138 BCC DONE ;NC

03B4
03B7
03B7
03B7
03B8
03B9
03BA
03BB

4C

00
00
00
00
00

2B03

139
140
141
142
143
144
145
146
147

H

SAVEA
SAVEY
BPTR

CRFLG
PGCNT

JMP STORE

HEX 00
HEX 00
HEX 00
HEX 00
HEX 00

END

**%%* ENC CF ASSEMBLY

LABEL

I2 22222 2222222222222 22 23

*

*

* SYMBOL TABLE -- V 1.5 *
* *

hkkkkkkhkhhkhkhkhkhkhkhhkdhk

LcC.

** ZERO PAGE VARIABLES:

WNDBTM 0023

*% ABSCLUTE

WINDOW FB3C

READ
STORE
KEY1
FILL

SYMBCL TABLE
SYMBCL TABLE

co0cC
032B
0377
039F

LABEL. LOC. LABEL.
PCL 003A
VARABLES/LABELS
BELL FBDD CLEAR
RESET CO0l10 BUFF
SETCR 0337 DONE
KEY2 037D KEY3
SAVEA 03B7 SAVEY

LocC.

FC58 couT
0750 BUFF1
033CCR

0382 KEY4
03B8 BPTR

STARTING ALCDRESS:6000
LENGTH:0102

Kovacs Tracer 27

:YES, CUTPUT IT

FDFO

07D0 TRINIT
C343 ADDR
0385 TRACE
03B9 CRFLG

030C TRACER (C31C
0355 KEY 036B
0397 STEP 039A
O3BA PGCNT C3BB

Apple Integer BASIC Subroutine
Pack and Load

by Richard F. Suitor

Oftentimes Apple programmers find themselves writing
machine language subroutines which will be called
from an integer BASIC program. Storing these
subroutines in the same file as the BASIC driver
programs can get messy. This program enables you to
include a BASIC program and machine language
subroutines in one file which may be easily saved to
disk or tape.

The first issue of CONTACT, the Apple Newsletter, gave a suggestion for loading
assembly language routines with a BASIC program. Simply summarized, one
drops the pointer of the BASIC beginning below the assembly language portion,
adds a BASIC instruction that will restore the pointer and SAVEs. The procedure
is simple and effective but has two limitations. First, it is inconvenient if BASIC
and the routines are widely separated (and is very tricky if the routines start at
$800, just above the display portion of memory). Second, a program so saved can-
not be used with another HIMEM, and is thus inconvenient to share or to submit
to a software exchange.

The subroutine presented here avoids these difficulties at the expense of the
effort to implement it. It is completely position independent; it may be moved
from place to place in core with the monitor move command and used at the new
location without modification. It makes extensive use of SWEET 16, the 16-bit
interpreter supplied as part of the Apple Monitor ROM.

How to Use Pack and Load

To use the routine from Apple Integer BASIC, CALL MKUP, where MKUP is
128 (decimal) plus the first address of the routine. The prompt shown is "‘@"’.
Respond with the hex limits of the routine to be stored, as BBBB.EEEE (BBBB is
the beginning address, EEEE is the ending; the same format that the monitor
uses). Several groups may be specified on one line separated by spaces or several
lines. Type S after the last group to complete the pack and return to BASIC. The
program can now be saved.

Suitor Pack and Load 29

To load, enter BASIC and LOAD. When complete, RUN. The first RUN will
move all routines back to their original location and return control to BASIC. It
will not RUN the program; subsequent RUNs will.

A LIST of the program after calling MKUP and before the first RUN will show
one BASIC statement (which initiates the restoration process) and gibberish. If
this is done, RESET followed by CTRL-C will return control to BASIC.

WARNING #1: The routine must be placed in memory where it will not over-
write itself during the pack. The start of the routine must be above HIMEM (e.g.
in the high resolution display region) or $17A + 4*N + W below the start of the
BASIC program, where N is the number of routines stored and W is the total
number of words in all of these routines. Also, those routines that are highest in
memory should be packed first to avoid overwriting during pack or restore. Other-
wise it is not necessary to worry about overwriting during the restore process;
only $1A words just below the BASIC program are used.

WARNING #2: Do not attempt to edit the program after calling MKUP. If
editing is necessary, RUN once to unpack, then edit and call MKUP again.

How Pack and Load Works

The routine first packs the restore routine just below the BASIC program. It
then packs other routines as requested, with first address and number of bytes
(words). When S is given, it packs itself with the information to restore LOMEM
and the beginning of the BASIC program. The first $46 words of the routine form a
BASIC statement which will initiate the restoration process when RUN is typed.

If a particular HIMEM is needed by the program (e.g. for high resolution pro-
grams) it must be entered before LOADing. The LOMEM will be reset by the
restoration process to the value it had when MKUP was called.

Some convenient load and entry points are:

BASO (load) MKUP entry

hex hex decimal

800 880 2176

A90 B10 2832 Program on disk BLOADS at
104C 10CC 4300 $9400. MKUP is at $9480,
2050 20D0 8400 - 27520 decimal.

3054 30D4 12500

6000 6080 24704

9000 9080 - 28544

Editor’s note: Due to a special request by the author, MICRO encourages the use
and distribution of this subroutine. However, please make sure proper credit is
placed on any copies: ‘“This PACK and LOAD Subroutine was written by Richard F.
Suitor and first published in an early issue (#6) of MICRO, the 6502/6809 Journal.”’

Please note that all other programs contained in this book are protected by
copyright and may not be reproduced.

30 Machine Language Aids

Appendix to Subroutine Pack and Load

When the subroutine Pack and Load was first written, I had in mind a utility
that would allow the user to easily pack and unpack subroutines (we had only
cassette storage then) before running a program. After using it awhile, it became
clear to many people that, after a program was debugged, it would be nice if it un-
packed and ran in one operation. Alan Hill, who has contributed many significant
programs for the Apple, was the first to point out to me that a JMP to $EFEC in-
stead of $E003 would accomplish this. In the meantime, Apple switched to
pushing Applesoft instead of Integer BASIC, a reasonable enough decision, but ex-
asperating to those who had invested a lot of effort in developing Integer BASIC
software. Apple still supplies the Integer BASIC in both ROM and language card
forms, but both of these cost money. A person on a limited budget who has pur-
chased an Apple Plus can obtain software versions from either IAC-associated
clubs or from Apple Pugetsound Program Library Exchange (A.P.P.L.E.) (304 Main
Ave. S., Suite 300, Renton, WA 98055).

Unfortunately this was a development which I had not foreseen when I wrote
this routine. The routine returns to ROM addresses which I believed immutable;
now those with Apple Plus versions can obtain versions of Integer BASIC for
which programs packed with this routine will badly fail.

The enclosed routine will solve their problem and the problem of those pro-
grammers who wish to change the return vector to automatically RUN or not. It is
a routine to change the address to which the UNPACK procedure returns upon
completion.

The desired address is entered into locations 0 and 1. For example, if you want
to use the address $EFEC, from the monitor you:

*0:EC EF
or from BASIC you:

POKE 0,236
POKE 1,239

To accomplish the change this routine, and the program to be changed, must
be in memory. The program must be LOADed, but not run. The routine is shown
at location 800 ($320), but will run correctly anywhere. BLOAD the routine, set
up locations 0 and 1, then CALL 800 to accomplish the change. You may save the
changed program.

The addresses which you may wish to use are:

Purpose ROM Version Disk Version

Back to BASIC $E003 $03D0
Unpack & RUN $EFEC ($9D58)

Suitor Pack and Load 31

The last entry, to unpack and RUN from a disk version, means you put the
contents of $9D58 into 0 and the contents of $9D59 into 1. This method should be
used for the A.P.P.L.E. version of Integer. Please note that although the locations
$9D58,9 are the same for any 48K disk-based system, the contents of the locations
may differ. Thus, a version of a program prepared in this way is least likely to be
able to be run on another system. The version that is most likely to be ‘‘universally’’
usable is one using the address $3DO0. This choice has the disadvantage that it will
not unpack and RUN, but it will fail only on a cassette system or on a disk system
that has had page 3 overwritten. For these systems, enter the monitor and type
3D0:4C 03 EO. (Note: this will enable a 3DOG to return to BASIC, but will not
restore a disconnected DOS.)

. However, using the routine given in this program, any '‘packed’’ program can
be loaded and altered to run on the user’s system, and then saved.

Editor’s Note: The Pack-Load routine requires that SWEET-16 be resident in
your Apple. Even after the modifications mentioned in this Appendix are made, if
SWEET-16 is not available, the unpacking and packing processes will fail. Thus, if
your version of Integer BASIC does not include SWEET-16 in the proper locations,
Subroutine Pack and Load will not work.

0320- D8 18 A5 CA 69 54 85 18
0328- A5 CB 69 01 85 19 AO 00
0330- 38 A5 4C F1 18 48 A5 4D
0338- C8 F1 18 AA 68 38 E9 03
0340- 85 18 BO 01 CA 86 19 A5
0348- 01 91 18 88 A5 00 91 18
0350- 60

32

08C0
0800
0800
0800
0800
0800
0800
0800
08CO
0800
0800
0800
©800
0800
osoc
0800
0800
ogoce
0800
0800
0800
08CO
08C0
0800
0800
0800
c8ocC
080C
os8oc
0800
0800
080C
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
940¢C
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400

Machine Language Aids

ONO D WN =

LNNNNOOONONOON OOV UININUIABL DAL BABLABWWWWWWWWWWRARNN NN NR N R b s
AONHFOVONNUNAWMNHO VO UIONBE WNHFOOVMUONBERWN HOWONOUIAWNHOWVDNONIE WNHOVDONAUTAWNHOW

;************************

;* PACK AND LOAL SUBRTN
;* RICHARL F. SUITCK

*
*
*
*
* PACK-LOAD *

*
:* COPYRIGHT (C) 1981 *
i+ MICRC INK, INC. *
:* CHELMSFORD, MA 01824 *
:* ALL RIGHTS RESERVED *

*

*

ekkhhhkhhkhhkkhkhhhkhhdkhdd

INTEGER BASIC ROUTINE TC

ROUTINES AT THE START OF

ORG $9400
OBJ $800

ACCL EPZ $00
BSOL EPZ $02
TABL EPZ $C4
TBCL EPZ $06
HIME EPZ $08
LMRT EPZ $O0A
BPRG EPZ $CC
FRML EPZ S$OE
NBYT EPZ $10
BPR2 EPZ §12
PTLL EPZ $14
XTAB EPZ $16
SKPL EPZ $18
MODE EPZ $31
YSAV EPZ $34
PRMP EPZ §33
LMML EPZ $4A
HIML EPZ $4C
LMWL EPZ $CC
BBSL EPZ $CA
JSRL EPZ $CE
BSC2 EQU $E003
BRUN FQU $EFEC
BUFF EQU $0200
SwW1é EQU $F689
GTNM EQU $FFA7
PBL2 EQU $F94A
CouT EQU S$FDED
BELL EQU $FF3A
GTLN EQU $FL67

BASIC STATEMENT TC START
PRCCESS. ..

CALL 1

PACK ANLD RELOAD

MACHINE LANGUAGE SUBROUTINES AND/OR TABLES

CALL BASO+128(DEC) = MKUP TO PACK EXISTING

BASIC

RUNNING THE PACKELC PROGRAM WILL UNPACK THE
PACKEL ROUTINES AND RETURN TO BASIC (>)

CHANGE THE LAST INSTRUCTION OF TBE LISTING

TO 'JMP BRUN' TO UNPACK AND RUN IN ONE OPERATION.
NOTE: THIS STEP NOT NORMALLY TAKEN UNTIL

PROGRAM DEVELOPMENT IS COMPLETE!

PRCGRAM WILL RUN ANYWHERE IN MEMORY

;RO, ACCUMULATOR
;R1

;R2

1R3

;R4

;R5

1R6

:R7

:R8

;RO

;R10

;R11

;R12, SW16 STACK PTR

;s PRCMPT

;s INTEGER LCMEM

; INTEGER HIMEM

s INTEGER END CF VARIABLEE
;BOTTOM OF PROGRAM
;CALL VECTOR
;BASIC

;RUN BASIC

: INPUT BUFFER
;SWEET16 ENTRY
;GET # FROM BUFF.
;s PRINT BLANKS
;OUTPUT CHAR.
;BEEP

;INPUT A LINE

CCDE REPLACEMENT

O PCKE 1,76: POKE 2, (PEEK(202)+70) MOD 256:
POKE 3, (PEEK(203) + (PEEK(202)+70)/256):

9400
9403
9406
9409
940¢
940E
9411
9414
9416
9419
941C
941E
9421
9424
9426
9429
942C
942E
9431
9434
9436
9439
943C
943E
9441
9444
9446
9446
9446
9446
9447
9449
944B
944D
944F
9451
9452
9454
9457
945A
945D
945E
945F
9460
9461
9462
9463
9464
9465
9466
9469
946A
946B
946C
946D
946E
9470
9470
9470
9470
9470
9472
9474
9476
9478
947A
9478
947D
9480
9480
9480
9480
9480
9482
9484

460000
64B101
0065B7
4C0003
64B2
020065
382E3F
B2CA
007212
B74600
721F
B20CO1
0364B3
0300
65382E
3FB2CB
0072
12382E
3FB2CA
0072
12B746
007215
B200
017203
4DB101
0001

Jol:]
A201
B5CA
9502
B54C
9508
CA
10F5
2089F6
105201

185701

Al
37
67
35
67
36
24
B6
36
1al100
BA
3A
67
33
00
A201

B50A
954A
95CC
B5SOC
95CA
CA
10F3
6C1400

A201
B54A
950A

125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149

BASO HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

TBK CLD

LDX
PTO2 LDA
STA
LDA
STA
DEX
BPL
JSR
SET
BET
ACD
STOC
LDD
8TO
LDD
STO
LDR
SUB
STC
SET
SUB
STC
LDD
STO
RTN
LEX

Tg~e e s

T04 LDA
8TA
STA
LDA
STA
DEX
BPL
JMP
t JMP (RA)

Suitor Pack and Load 33

460000
64B101
0065B7
4C0003
64B2
020065
382E3F
B2CA
007212
B74600
721F
B20001
0364B3
0300
65382E
3FB2CB
0072
12382F
3FB2CA
0072
12B746
007215
B200
017203
4DB101
0001

INITIALIZE PCINTERS

#1

BBSL, X sR1 IS ETART OF PACKED PROG.
BSOL, X

HIML, X ;R4 IS END (HIMEM)

HIMS, X

PTO02

SW16

RO, PTLP-BASO
R8, PTLP+5-BAS0O

Rl s8ET R7 TC CURRENT START OF

R7 ; PACKED DATA (BBSL+PTLP-BASO)
@R7

R5 ; PUT IN RS

@R7 ;PUT ORIGINAL LENGTH OF PROGRAM
R6 ; IN R6

R4

R6 ;CALCULATE START OF ORIGINAL

R6 ; PROGRAM AND PUT IN R6
RA,ST1641-PLP1

RA 7CURRENT LOCATICN OF ENTRY

RA $TC RESTORE LOCP IN RA

@R7 ;BASO LOCATION TC LEAVE ROUTINE
R3

#1

REETCRE CRIGINAL LOMEM AND START
OF ORIGINAL PROGRAM...

LMRT, X
LMML,, X
LMWL, X
BPRG, X
BBSL, X

PT04
(PTLL)
= PLPl

'
; SECTION TC PERFORM PACK

!

MKUP LDX
MK21 LDA
STA

#1
LMML, X
LMRT, X tR5=LOMEM

34

9486
9488
948A
948C
948E
9490
9492
9494
9495
9497
9497
9497
9497
949A
949B
949C
949D

94A0 2

94A1
94A2
94A3
94A6
94A7
94A8
94AB
94AC
94AD
94AE
94B1l
94B3
94B4
94B6
94B6
94B6
94B6
94B8
94BA
94BC
94BF
94Cl
94C3
94Cé
94ce
94CA
94cCp
94CF

94D8
94DB
94DE
94DF
94E1
94E3
94E6
94E6
94E6
94E6
94E6
94E6
94E9
94EB
94EE
94EF
94F0
94F1
94F2
94F3
94F4
94F5
94F6
94F7
94F8

Machine Language Aids

B5CA
9512
950C
BSCE
9504
B54C
9508
CA

10EB

2089F6

24

BS

39

118000
2

Bl

31

105201

Al

32

181800

A8

33

E3

1C5000

0C42

00

A9CO

8533
A900
8531
2067FD
8616
A000
B9C002
c9oD3
F068
20A7FF
C9A7
FOl0
98

204AF9
A9DE
20EDFD
203AFF
18
90D3
E631
20A7FF

2089F6
Ol11E
183C00
€8

32

68

33

B2

38

E3

83

96

23

L2

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
lee
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

215
216

218
219
220
221
222
223
224

!
¢ INIT

MK22
MKO1

LA
STA
STA
LDA
STA
LDA
STA
CEX
BPL

AND

JSR
LDR
SuB
8TO
SET

BBSL, X
BPR2,X
BPRG, X
JSRL, X
TABL, X
HIML, X
HIMS, X

MK21

1R9, RE=START
; OF PROGRAM

1R2=MKUP LOCATION

t+R4=HIMEM

PACK THE RESTORE LOOP AT PTLP

SW1é

R4

R9

R9
R1l,MKUP-BASO

LDR R2

SUB
STO
SET
ADD
STO
SET
ADD
STC
INR
SET
BSB
RTN
LDA

Rl

Rl

RO, PTLP-BASO
Rl

R2
R8,8T16-PTLP
R8

R3

R3

RC,$50

MV52

#$CO

:LENGTH OF PROGRAM

+BASO LOCATICN

;1 PTLP LOCATICN

18T16 LOCATICN
;END (ST16) + 1
:1SW16é STACK

1 PACK RESTORE LOOP

;'e’

!
¢ GET LIMITS AND PACK PROGRAMS

H

MKO6

MERR

MKO5

MKO2

~e o vo = =e

MV51

MV52

STA
LDA
STA
JSR
sTX
LDY
LDA
CMP
BEQ
JSR
CMP
BEQ
TYA
TAX
JSR
LDA
JSR
JSR
CLC
BCC
INC
JSR

JER
BRA
SET
LDD
STO
LDD
STC
SUB
STO
INR
PCP
STP
LDR
CPR

PRMP
#0
MODE
GTLN
XTAB
#0
BUFF, Y
#$D3
MK1C
GTNM
#$A7
MKO2

PBL2
#$DE
CouT
BELL

MKO1
MCDE
GTNM

Al & A3 NOW HAVE 1ST #,
SET UP MCVE TC JUST BELOW (BBSL)
AND LOWER BBSL

SW1é
SM02
R8, $3C
@Rr8
R2
@R8
R3
R2
RE
R3
@R3
@R6
R3
R2

s PRCMPT IS '@’

$GET COMMAND
:END CF COMMAND

;'S', STCP?
:YES

;START OF RANGE
;F(.) (SEE MON.)
;ERROR IF HERE

sERROR INDICATOR
R

;END OF RANGE

A2 SECOND

sR2=A1
sR3=A2
sA2-Al

;MOVE FROM (R3) DOWN TO (R2)
;TO (R6) AND DOWN

94F9
94FB
94FC
94FD
9500
9501
9502
9503
9504
9505
8506
9507
9508
9509
950B
950C
950E
9510
9512
9514
9516
9518
951A
951B
951E
9520
9522
9524
9526
9528
952a
952¢C
952E
9530
9532
9532
9532
9532
9535
9536
9537

2089F6
21
32
185201

9532 ae

953B
953C
953D
953E
953F
9540
9541
9542
9543
9544
9546
9547
9548
9549
954B
954D
954F
9551
9552
9552
9552
9552
9552
9552
9555
9556
9557
9558
9559
955a
955D
955E
955F

37
25
77
29
77
21

2089F6
61
33
61
38

00
2089F6
41
53
F8

225
226
227
228
229
230
231
232
233
234
238
236
237
238
239
240
241
242
243
244
245
246

247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

SMO02
SMO3
MKO09

MK11
MK12

PACK

e wo v

K10

SM04

i
PTLP
PLPO

PLP1
MV60

BN2Z
LDR
STO
SET
POP
STP
POP
STP
POP
STP
POP
STP
RSB
BSB
RTN
CMP
BEQ
CMP
BEQ
CMP
BEQ
BNE
INY
LDA
CPY
BCS
CMP
BEQ
CMP
BEQ
CMP
BEC
DEC
BEQ

18T

JSR
LDR

MV52
R8
R3
RE, 8
@Re
@Ré
@R8
@R6
@R8
€R6
@R8
@R6

MV51

#SEC
MK1C
#sCé
MKO1
#$99
MK12
MERR

BUFF, Y
XTAB
MKO1
#$A0
MK11
#$8D
MKO1
#$D3
MK10
MCDE
MKO6

PART

SW1é
Rl

STC R2

SET

R8, PTLP-BASO

ADD R8

STC
LPR
STD
LDR
STC
LDR
STD
LDR
STC
BSB
LDD
LDD
RTN
LDA
STA
LDA
STA
RTS

JSR
LDD
STOC
LDD
STO
RTN
JSR
LDR
STC
DCR

R7
R5
@R7
R9
@R7
R1
@R7
R7
R3
MV52
@R6
@R6

BPRG
BBSL
BPRG+01
BBSL+01

SWle
@€R1
R3
@R1
R8

SWleé
@Rl
@R3
R8

Suitor Pack and Load 35

; LENGTH-1

; PREFACE PACKED RCUTINE
;BY LENGTH-1 AND BY
;STARTING ADDRESS

;F(8) sTOP?

;YES

;F(CR) END CF LINE?
;YES, GET NEW COMM.
;F() ;BLANK?

;YES

;ERROR IF OTHER

sGET NEXT COMM. CHAR
sEND OF LINE?

;YES, GET ANCTHER

1 BLANK

;CR.

1's!

ALWAYS

AND CLEAN UP

1BASO LOCATION

;PTLP LCCATICN
; PACK:
; LOMEM

; ORIGINAL LENGTH CF PROGRAM
; BASO LOCATION

;ONTO END OF 1ST PART

;OF ROUTINE

;PACK BASO-PTLP PLUS ABOVE VARS.
;STRIP PREFACE
;LEAVING BASIC STATEMENT

;R6 IS NEW START
;OF PRCGRAM

RESTORE LOOP --THIS LOOP DOES THE ACTUAL
UNPACKING AND IS ALWAYS JUST IN FRONT CF
THE ORIGINAL BASIC PRCGRAM...

;DESTINATICN

;s LENGTH

;s UNPACK

36 Machine Language Aids

9560 O04FB 300 BIP MV60O
9562 21 301 LDR R1
9563 D6 302 CPR R6 ;AT END YET?
9564 OSEF 303 BIM PLPO ;NOT YET
9566 00 304 PLP2 RTN
9567 4CO3E0 305 JMP BSC2
956A 306 ; OR JMP BRUN TO RUN AUTCMATICALLY
956A 00 307 ST16é HEX 00

308 END

% END OF ASSEMBLY

Whkhkhkkkkhkkhhkdkhkdkhkdkkkkkdkkd
* *

* SYMBOL TABLE -- V 1.5 *
* *

khkkkhkkkkdkdkhhhhkkddkkkrhhdk

LABEL. LOC. LABEL, LOC. LABEL. LCC.

** ZERO PAGE VARIABLES:

ACCL ooec BsOL 0002 TABL 0004 TBCL 0C06 HIMS 0008 LMRT 00CA
BPRG C00C FRML O0OE NBYT 0C10 BPR2 0012 PTLL 0014 XTAB 0016
SKPL 0018 MODE 0031 YSAV 0034 PRMP 0033 LMML 004A HIML 004C
LMWL 00CC BEBSL 00CA JBRL OOCE

** ABSOLUTE VARABLES/LABELS

BSC2 EO003 BRUN EFEC BUFF 0200

SW16 F689 GTNM FFA7 PBL2 F94A cour FCED BELL FF3A CTLN FL67
BASO 9400 PTBK 9446 PTO2 9449 PTC4 9470 MKUP 9480 MK21 9482
MK22 94B3 MKO1 94B4 MKO€ 94CA MERR 94D1 MKOS5 94LE MKO2 94E1
MV51 94EB MV52 94F5 SMO2 9509 SMO3 950B MKO09 950C MK11 951A
MK12 951B MKI10 9532 €M04 9546 PTLP 9552 PLPO 9555 PLP1 955A
MVGC 9550 PLP2 95€6 ST16 956A

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:01DA

Mean 14: A Pseudo-Machine
Floating Point Processor
for the Apple II

by R.M. Mottola

Modelled after the Sweet 16, this program supports a
large variety of mathematical operations on five-byte
floating point values. This ‘processor’ can greatly
simplify and enhance your mathematical processing
power.

In the beginning of the life of the Apple II computer, an obstacle had to be over-
come in the writing of the firmware. As we know, the 6502 is an eight bit
microprocessor, but all too frequently routines require numeric operations involv-
ing double precision integers. Repeating common operations every time the
routines are required could be done, but it is not very space efficient. For that mat-
ter, performing the requisite register set-ups to use some general purpose
subroutines can also deplete available memory space, if the routines are called fre-
quently. What was needed was an arithmetic processor that could handle two-
byte integers. So, a pseudo-machine processor is a machine language program that
behaves like a processor.

This elegant solution is called the ‘‘Sweet 16 Pseudo-Machine Interpreter’’
and is known and used by many Apple programmers. It lives from $F689 to F7FA
on the FO Integer BASIC ROM found in regular Apple II computers. From a soft-
ware point of view, the interpreter is used very much like you would use a
microprocessor. Programming it requires the use of various instructions and
operands. Hand assembly is easy because the instruction set isn’t long and the for-
mat of the operators is very straightforward. A popular resident asembler, the Lisa
assembletr by Randall Hyde, will even assemble Sweet 16 mnemonics.

The Mean 14 pseudo-machine floating point processor was modelled after the
Sweet 16. It too is programmed like a hardware processor. Instead of being de-
signed to process two-byte integers, the Mean 14 can perform many mathematical
operations on five-byte floating point values, These values are formatted in the
standard Applesoft variable representation described in the Applesoft manual,

The Mean 14 processor was written to facilitate floating point machine
language programming on an Apple II Plus or a standard Apple II with Apple-
soft ROM card. Since Apple does not provide any documentation for the floating

38 Machine Language Aids

point routines in Applesoft, it is pretty difficult for those wishing to write floating
point routines in assembly language. Even knowing the locations and entry
requirements of those routines is only partially helpful if either complex or
repetitive functions must be performed. Of course, you could always write your
more involved functions in Applesoft BASIC, but the Mean 14 will always per-
form at least ten times as fast and probably much more. The reason for this is
simply that the Mean 14 has little of the interpreter overhead that Applesoft has.
Using the example of adding two values, if Applesoft is used, and the values are
represented as variables which have not been used before, Applesoft must allocate
space for them first. And if arrays have been dimensioned, they must be moved up
to make space for the new variables. If the variables or arrays happen to collide
with strings, then string ‘'house-cleaning’’ must take place. In machine terms, all
this takes an awful lot of time. As an added kicker, even more time must be allowed
if you use constants instead of variables.

On the other hand, Mean 14 doesn’t have to do all of this. Its interpreter
overhead is very small and since you, the programmer, supply the operand either
by specifying pointers or, in the Immediate Mode, by actually supplying the
floating point value, the floating point routines don't have to search for or convert
anything. Mean 14 spends its time processing numbers — not trying to find them
or converting ASCII strings into them.

What Mean 14 Does

Mean 14 is a very simple kind of interpreter. You give it a number and it looks
it up, in a table, where it picks up the address of the subroutine which performs
the specific function required. Most of those functions already exist in Applesoft.
Some require set-ups to make entry and exit easier. In all cases, the instruction set
has been designed to make straight-line machine language floating point
arithemetic a lot easier.

That last line indicates one of the possible shortcomings of the Mean 14 for
your particular floating point requirement. It can process data only in a straight
line. At present, it contains no conditionals in the instruction set. This apparent
problem isn’t really all that bad when you actually use the Mean 14. For my own
applications, I've found that testing, branching, and loop operations can best be
handled outside of Mean 14, in 6502 assembly language. This is because, relative
to the amount of time it takes even the simplest floating point operation to
execute, all sorts of branching and testing—including entries and exits into and
out of Mean 14—can be accomplished very quickly. For this reason, conditionals
were left out of the Mean 14's instruction set. But that certainly doesn’t mean
that you couldn’t add them if your particular application required them.

Using Mean 14
Making use of the Mean 14 processor in your machine language programs is
easy. The only prerequisite, besides a working knowledge of assembly language, is

a fundamental knowledge of the format of Applesoft variables.

1. Note that Mean 14 and the Applesoft subroutines that it calls could leave any
and all registers in an undeterminable state. If you need certain registers in

Mottola MEAN-14 39

specific states, it's a good idea to write yourself both a Save and a Restore routine
and remember to JSR to the Save before entering Mean 14. You could even add
these routines to the Mean 14 entry and exits if you like.

2. Enter Mean 14 with a JSR to MEAN 14 ($8EQ0 in the source listing provided).
All code between this JSR and a Mean 14 'RET’’ will be interpeted by the Mean 14
processor. Remember that byte sequence is a function of the addressing mode. In
the Implied mode, any operator is followed by the next operator. In Immediate
mode, an operator is immediately followed by a five byte operand (constant) in
Applesoft floating point variable format. In the Absolute mode, the operator must
be followed by a two byte pointer to the first memory location containing a
floating point value. In the Indirect mode, the operator is followed by a pointer,
which points to a pointer, which points to a floating point value. Remember, all
pointers must be in standard 6502 low-byte, high-byte order.

3. Consider the following section of code:

2000 SUBH1 STY YSAVE ; SAVE Y
2002 STX XSAVE ; SAVE X
2004 JSR MEAN 14 ; ENTER MEAN 14
2007 DFB CO0 00 03 ; *LDA $300
200A DFB C4 05 03 ; *ADD $305
200D DFB 45 81 00

2010 DFB 00 00 00 ; *SUB #1
2013 DFB 0C ; *ABS

2014 DFB 81 40 03 ; *STA ($340)
2017 DFB 11 ; *RET

2018 LDX XSAVE ; RESTORE X
201A LDY YSAVE ; RESTORE Y
201C RTS

Both the X and Y registers were saved before entering Mean 14 in this exam-
ple. To make the code representation less confusing, it’s a good idea to show the
Mean 14 mnemonic equivalents of the defined bytes in the comments field. I like
to designate them with an asterisk but any appropriate scheme should do.

4. If your machine language routines are to be called from BASIC and if values
obtained from Mean 14 operations will be used by BASIC, you might want to store
values directly into the memory locations allocated to Applesoft variables. This
will make the results of your machine language calculations directly available to
BASIC. Although there are subroutines in Applesoft to find a variable by its name,
they can take a lot of time to execute. An easier approach is to ‘‘know’’ where
your variables are by allocating them first, in your BASIC program. Thus, if the
first line of your program is:

10A=0:B=0:C=0:D=0

then you'll know that the first variable is A, the second is B, etc. The pointer at
locations $69,$69A tells you the beginning of the simple variable space, so you
should be all set.

5. Be careful to avoid floating point errors such as Overflow and Division by Zero,
as Applesoft routines tend to dump you into BASIC if an error occurs.

40 Machine Language Aids

Format Of Mean 14 Operators

Mean 14 instructions are represented as single byte numeric values. Twa
quantities are represented in this byte — instruction and addressing mode. Since
there was room to spare (there are only four addressing modes and twenty odd
instructions) a very simple scheme was devised to include both. There are also
many unused values so the instruction set could easily be expanded. An
instruction is represented with the two high order bits indicating the addressing
mode and the lower six bits indicating the operation

7 6 54 3 210
Addressing Mode Instruction

Mean 14 Addressing Modes

The Mean 14 pseudo-machine processor instructions use four different
addressing modes. They are:

IMMEDIATE
ABSOLUTE
INDIRECT
IMPLIED

IMMEDIATE - Just like any processor, the Mean 14 instructions that allow
immediate addressing use the value following an operator in memory for the
operand. Since we deal with floating point values, the five memory locations
following the operator must contain the floating point operand. This must be in
Applesoft variable format.

EX. Load FPAC1 with the value “0"
40 00 00 00 00 00 LDA#0

OPERATOR OPERAND SYMBOLIC

ABSOLUTE — The two bytes that follow the instruction (operator) in the
absolute mode must contain the address of the first byte of the desired buffer. The
value of the byte pointed at, and the values of pointer must be in low byte, high
byte format.

EX. Store FPAC1 in locations $1F00-$1FQ4
C1 00 1F STA $1F00-$1F04
OPERATOR OPERAND SYMBOLIC

INDIRECT — In this addressing mode, the two bytes that follow the operator
must contain the address of a two byte pointer which points to the first byte of the
buffer. This addressing mode is useful when loop processing a number of
variables. It allows the pointer to the variable to be changed and, since the pointer
is not a part of the Mean 14 object code, you needn’t write self modifying code to
perform a loop. Again, both the operand and the pointer must be represented in
the low byte, high byte format.

Mottola MEAN-14 41

EX. Store FPAC1 in $2FF0-$2FF4
81 00 20 STA($2000)
Where $2000,$2001 point at $2FF0

IMPLIED — Certain instructions perform operations which do not involve
variables. These include register functions and exits from Mean 14.

EX. Transfer FPAC1 to FPAC2

02 TAB
EX. Exit Mean 14
11 RET
MEAN 14 INSTRUCTION SET
LLDA Load FPACL with mamory M --3 FPAC1
IMMEDIATE = 440
ABSOLUTE = %0
INDIRECT = 420
3TA Store FPACL in memory FRAZL ==l M
ABSOLUTE = &C1
INDIRECT = #21
TAB Transfer FPACL Le FPACZ FPACL ~-2 FPACZ
IMFLIED = $02
TBA Transfer FPACZ Lo FPACL FPACZ —=> FPALC1

IMPLIED = %03

e 8 e s e 82

ADD Add memory Lo FPACL M + FPACL1 --Z FPAC1L
IMMEDIATE = 444
ABSOLUTE = %4
INDIRECT = %34

SUB Subtract FPAC1 from memory M « FPAC1 == FPAC]
IMMEDIATE = %45
ABSOLUTE = 45

INDIRECT $35

Machine Language Aids

MUL Memory Limes FPAC1 M # FPAZ1 --2 FPAC1
IMMEDIATE = %464
ABSOLUTE = 44
INDIRECT = $23é&

DIy Memory divided bv FPACI1 M / FPAC1 --2 FFAC1
IMMEDIATE = %47
ABSOLUTE = %C7
INDIRECT = $&7

NOP No oreration MPC + 1
IMFLIED = 402

SOR Square ool of FFPACL JFPACT --> FPAC1
IMPLIED = $09

EXP FPACZ raised to Lthe rower FPAZZ ~ M —-2 FPAC1

of memory

IMMEDIATE = %4A
ABSOLUTE = $CA
INDIRECT = %2A

INT Inteser walue of FPAC1 INT (FPAC1) —--I+ FPAC1
IMPLIED = $OR

ARS Absolute value of FPACL ABS (FPACZ1) --2 FPALC1
IMPLIED = SO0

SGN Value of the sisn of SGN (FPAC1) —-2 FPACIL
FPAC1
IMPLIED = $0D

LOG Natural los of FPAC1 LOG (FPAC1) —--> FPAC1
IMPLIED = $0E

Mottola MEAN-14

43

cvA Convert two-bvte inteser
in Aprlesoft inteser variable
formal Lo its floatlins roint
equivalent,

ABSOLUTE
INDIRECT

$CF
HSF

]

M4 --> FPAC1L

ZVB Convert two-bvte inteser
in 6502 format Lo ils floatins
Foint esuivalent.

ABSOLUTE
INDIRECT

$DO
E90

ML, MH ——-2 FPAC1

RET Exit MEAN 14

IMPLIED = $11

MFPZ —-2 PC

44

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
08¢0
080¢C
0800
0800
0800
ogoe
0800
0800
0800
0800
0800
ogoc
0800
0800
0800
0800
0800
080e
0800
080C
0800
0800
0800
0800
0800
0800
0800
0800
0800
8E00
8E00
8EQ0
8E00
8E00
8E00
8E00
8E0Q1
8E03
8E04
8E06
8E09
8EOC
8EOF
8E11
8E13
8E14
8E16
8E17
8E18
8E19
8E1C
8E1D
8E1E
8E21
8E22
8E25
8E26
8E28
8E2A
8E2C

Machine Language Aids

68
854C
68
854D
205F8E
200F8E
4CO98E
AQOOC
Bl4C
AR
293F
OA

A8

c8
B9AOSE
48

88
BY9AOSE
48
205F8E
8a
29cCC
F034
1020
2940

WCONO IS WK -

;i*****h**i******i*ﬁ*****

.k
H

;* MEAN-14 FP PROCESSOR
R.M.

¥

H
H
i
.
;
H
i
y
?

*
*
*
*
*
*
*
*

H

;1 *SOFTWARE ADDRESSES

TEMPL
TEMPH
MPCL
MPCH
FPAC1
FPAC2

!
INT>FP
FPSUB
FPALCD
FPLOG
FPMUL
FPDIV1
FPLOAD
FPSTR
TR2>1
TR1>2
FPSGN
FPABS
FPINT
FPSQR
FPEXP

i

{MEAN 14 PSEUDO-MACHINE

MOTTCLA

MEAN-14

EPZ
EPZ
EPZ
EPZ
EPZ
EPZ

EQU
EQU
EQU
ECU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
OBJ

CCPYRIGHT (C) 1981
MICRO INK,
CHELMSFCRD,
ALL RIGHTS RESERVED

kkkkkhkk bk hdkkkkkhdhkk

$1E
$1F
$4cC
$4D
$9D
$AS

FIRMWARE ADDRESSES

$E2F2
SE7A7
$E7BE
$E941
$EQ7F
$EA66
$EAF9
$EB2B
$EB53
$EB63
$EB90
$EBAF
$EC23
$EE8D
$EE94

$8E00
$800

INC.
MA 01824

* % % % % % % % ¥ * * %

;FLOATING PCINT PRCCESSOR

MEAN14

M14A

M14B

PLA
STA
PLA
STA
JSR
JSR
JMP
LDY
LDA
TAX
AND
ASL
TAY
INY
LDA
PHA
DEY
LDA
PHA
JSR
TXA
AND
BEQ
BPL
AND

MPCL

MPCH
PCINC
M14B
M14A

#$0
(MPCL) , Y

#$3F

SUBTBL, Y

SUBTBL, Y
PCINC

#$CO
Ml4G
M14D
#$40

;GET M14 CODE LCCATION
;FROM RETURN ADDRESS

;GET ONE INSTRUCTION
;GET CORRECT SUBROUTINE
;ADDRESS FRCM TABLE

;AND SHOVE IT

;INCREM. M14 P.C. COUNT

;GET ADDRESSING MODE
; IMPLIED?
;s IMMEDIATE?

8E2E
8E30
8E32
8E34
8E35
8E37
8E39
8E3A
8E3C
8E3D
8E3E
8E40
8E41
8E43
8E45
8E46
8E47
8E49
8E4A
8E4C
8E4E
8E4F
8ES51
8E52
8E54
8E56
8E58
8E5B
8E5C
8ESC
8ES5D
S8EBE
8E5F
8ESF
8E61
8E62
8E64
8E66
8E68
8E6A
8E6B
8E6D
8E6E
8EGE
8E6F
8E72
8E74
8E76
8E78
8E7A
8E7B
8E7C
8E7E
8E7F
BE80
8E83
8E85
8E87
8E89
8EBB
8EBE
8ESF
8E91
8E93
8E95
8E97
BE98
8E99
8E9B
8E9C
8E9D
8EAQ
BEAQ
8EAO
8EAQ

D013
Bl4C
851E
c8

Bl4cC
851F

A902
20618E

68

A8
68
60

A901
18
654C
854C
9003
E64D
18
A000
60

AA
4C2BEB
851E
841F
AO00
Bl1E
48

20BEE7
60
851E
841F
AQC1
Bl1E
48

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

BNE Ml14C
LDA (MPCL),Y
STA TEMPL
INY
LDA (MPCL),Y
STA TEMPH
DEY
LDA (TEMPL),Y
PHA
INY
LDA (TEMPL),Y
PHA
BCC MI14E
M14C LDA (MPCL),Y
PHA
INY
LDA (MPCL),Y
PHA
BCC M14E
M14D LCA MPCL
PHA
LDA MPCH
PHA
LDA #$5
BCC M14F
M14E LDA #$2
M14F JSR PCADD
PLA
;AND TRANSFER
TAY
PLA
M14G RTS

!

PCINC LDA #$1

PCADD CLC
ADC MPCL
STA MPCL
BCC PC1
INC MPCH
CLC

PC1 LDY #$0
RTS

STR TAX
JMP FPSTR
CONV1 §STA TEMPL
STY TEMPH
LDY #§0
LDA (TEMPL),Y
PHA
INY
Cla LDA (TEMPL),Y
TAY
PLA
JSR INT>FP
LDA FPAC1+$5
BPL NCCP
LDA #VALUE1
LDY /VALUE1l

JSR FPALD
NOOP RTS
CONV2 STA TEMPL
STY TEMPH
LDY #$1
LCA (TEMPL),Y
PHA
DEY
BEQ Cl1A
RETURN PLA
PLA
JMP (MPCL)

<o o ~o e

SUBRCUTINE ADDREES TABLE

Mottola MEAN-14

;ABSOLUTE?

; INDIRECT

;GET POINTER TO ALDDRESS
1CF OPERAND

;GET ADDRESS CF
; OCPERAND

$+SAVE P.C. AS ADDRESS
;OF IMMEDIATE OPERAND

;AND OFFSET P.C. 5 BYTES
;OFFSET P.C. 2 BYTES
yPULL OPERAND ADDRESS

;TC A AND Y REGS FOR SUBS

;JMP VIA RTS

;PULL MEAN 14 RETURN
;ADDREES FROM STACK

45

46 Machine Language Aids

8EAQO F8EA 151 SUBTBL ADR FPLOAD-$1

8EA2 6DBE 152 ADR STR-§1
8EA4 62EB 153 ADR TR1>2-§1
8EA6 52EB 154 ADR TR2>1-$1
8EA8 BDE7 155 ADR FPADD-$1
8EAA AG6E7 156 ADR FPSUB-$1
8EAC 7EE9 157 ADR FPMUL-§1
8EAE 65EA 158 ADR FPDIV1-$1
8EBO 8DEE 159 ADR NOOP-$1
8EB2 8CEE 160 ACR FPSQR-§1
8EB4 93EE 161 ADR FPEXP-$§1
8EB6 22EC 162 ADR FPINT-$1
8EB8 AEEB 163 ADR FPABS-§1
8EBA BFEB 164 ADR FPSGN-§1
8EBC 40E9 165 ADPR FPLCG-$1
8EBE 718E 166 ADR CONV1-§1
8ECC 8ES8E 167 ADR CONV2-§1
8EC2 9AS8E 168 ALCR RETURN-$1
8EC4 169 ;
8EC4 170 ;FLOATING POINT CONSTANTS
8EC4 171
8EC4 910000 172 ALUE1l HEX 9100000000 ; % 65536
8EC7 0000
8EC9 173
8EC9 174 ;
8EC9 175 .
8EC9 176
8EC9 177 LENGTH EQU *-MEAN14
178 END

% END OF ASSEMBLY

L T T T T 2
* *
* SYMBCL TABLE -- V 1.5 *
* *

Akkkhkkhkkkkhkkkkhhkhhhhkkk
LABEL. LOC. LABEL. I'OC. LABEL. LOC.
*% ZERO PAGE VARIABLES:

TEMPL OOlE TEMPH OOlF MPCL 004C MPCH 004C FPAC1 009D FPAC2 OCOCAS

** ABSOLUTE VARABLES/LABELS

INT>FP E2F2 FPSUB E7A7 FPACD E7BE FPLOG E941 FPMUL E97F FPDIV1l EA66
FPLCAD EAF9 FPSTR EB2B TR2>1 EB53 TR1>2 EB63 FPSGN EB90 FPABS EBAF
FPINT EC23 FPSQR EE8S8D FPEXP EE94 MEAN14 8EOO0 M14A 8E09 MI14B 8EOF
M14C 8E43 M14D 8E4C MI14E 8E56 MI14F B8E58 Ml4G B8ES5E PCINC B8ESF
PCADD 8E61 PCl 8E6B STR 8E6E CONV1 8E72 CIlA 8E7C NOCCP 8ESE
CONV2 B8EEF RETURN 8E9B SUBTBL 8EAC VALUEl 8EC4 LENGTH 00C9

SYMBOL TABLE STARTING ADDRESS:6000
SYMBCL TABLE LENGTH:015A

2

[/O ENHANCEMENTS

Introduction

Screen Write/File Routine
B.E. Baxter

Bi-Directional Scrolling
Roger Wagner

Apple IT Integer BASIC Program List by Page
Dave Partyka

Paged Printer Output for the Apple
Gary Little

Hexadecimal Printer
LeRoy Moyer

48

49

52

58

63

67

INTRODUCTION

In order to communicate with your computer, an I/0 device is a necessity. The
keyboard and video output are the standard I/O devices of the Apple, with a
printer being another commonly-found output device. Obviously, any
enhancements to the I/O capabilities will promote a better interface between pro-
grammer and Apple. In this chapter, some enhancements are described which
should make working with your Apple a bit easier.

"'Screen Write/File,”” by Bruce Baxter, provides a method to directly save and
retrieve text screens to and from the disk. This technique can often save valuable
program memory space. '‘Bi-Directional Scrolling,’”” by Roger Wagner, allows
scrolling through memory either backwards or forwards. Any portion of memory
may be scrolled through and viewed (in ASCII) with this routine. ‘'Apple II Integer
BASIC Program List by Page,’’ by David Partyka, lets the user list through an In-
teger BASIC program page-by-page on the Apple video screen.

The following two routines will be of special interest to printer owners. ‘'Paged
Printer Output for the Apple,”’ by Gary Little, provides for printer output to be
divided into variable size pages. It also allows a pause for single sheet paper feed.
And '"Hex Printer,”’ by LeRoy Moyer, facilitates machine language disassembly
listings on you printer.

Screen Write/File Routine

by B.E. Baxter

Here is a useful and instructive routine which makes it
simple to edit the Apple screen and save the screen
image on disk.

The screen write/file routine is a simple 73-byte device to take control away from
the monitor and write directly to the screen. All of the escape editing capabilities
are supported so that it is very easy to enter and modify up to and including 21
lines of text. It is equally easy to save the screen image to disk after completion of
text entry.

How it Works

The source code is straightforward and makes liberal use of monitor routines.
Upon entry the cursor is homed and placed on line 1 (not zero). The block labeled
KEY continually polls the keyboard and outputs characters through COUT
(VIDOUT [$FBFD] could also be used if printer services are not wanted). The
limited editing facilities of the monitor are invoked by typing (escape) followed by
one of the command characters. Keyboard entry of CNTL Q is used to exit the
routine and return to BASIC via $3D0. Automatic exit is also obtained at line 43.
Upon exit, the bell will sound and the BASIC prompt character will appear with
the file parameters displayed at the end of the line. At this point the file must be
saved using the command, (BSAVE File name) A$0400, L$03CF (RETURN). The
parenthetical expressions must be typed by the user; that is, type BSAVE file
name, then trace over the remainder of the line with the right arrow to place it into
the keyboard buffer and at the end of the line press RETURN. Although I do not find
it necessary, a monitor MOVE to page 2 could be set up and inserted between lines
57 and 58 of the source listing. This would provide back-up in case BSAVE com-
mand is messed up. The object code is assembled at $0350 and is $49 bytes long.

Command Summary
In summary, the usage commands are:
Entry to Routine

From BASIC Call 848
From Monitor $0350G

50 I/0 Enhancements

Exit to BASIC Mode

User (Control) Q
Automatic Line 43

Edit Screen (See Apple Ref. Materials)

(Escape) @: Home cursor (Clear text)
A: Advance cursor
B: Backspace cursor
C: Move cursor down 1 line
D: Move cursor up 1 line
E: Clear from cursor to end of line
F: Clear from cursor to end of screen

Save Screen Image
[BSAVE file name]A$0400,L$03CF[CR] [] =typed by user

Of course it doesn’t make much sense to idly write to the screen without
some useful purpose. I use the routine to create instruction and documentation
files. These files are especially valuable for object code utilities by providing ready
access to usage and entry point information. Once the file has been created, it can
be handled just like any other file. BLOADing (file name) will immediately
display its contents on the screen without requiring any otherwise useful
memory. Instruction/print statements in BASIC programs can therefore be
eliminated to be replaced by deferred execution BLOAD disk commands for a very
efficient use of main memory.

0800 y 3 ;*****t*********t******k*
0800 2 @ *
0800 3 SCREEN WRITER *
0800 4 ;* BRUCE BAXTER *
0800 5 ;% *
0800 6 ;* SCREEN-WRITE *
0800 7 3% *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFCRD, MA 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0goc 12 ;* *
0900 13 ‘.**i**************ti*****
0800 14

0800 15 ;

0350 16 ORG $350

0350 17 CBJ $800

0350 18 ;

0350 19 ;

0350 20 ;

0350 21 Cv EPZ $25

0350 22 POS EPZ $09

0350 23 ;

0350 24 COUT EQU S$FDEL

0350 25 HOME EQU $FCS58

0350 26 TABV EQU $FBSE

0350 27 RDCHAR EQU $FD35

Baxter Screen-Write 51

0350 28 CROUT EQU $FDEE
0350 29 BELL EQU $FF3A
0350 30 '
0350 2058FC 31 JSR HOME
0353 208EFD 32 JSR CROUT
0356 33

0356 2035FD 34 KEY JSR RDCHAR
0359 €991 35 CMP $$91
035B FOOC 36 BEQ QUIT
035D A625 37 LDX CV
035F E016 38 CPX #$16
0361 F006 39 BEQ QUIT
0363 20EDFD 40 JSR cCouT
0366 4C5603 41 JMP KEY
0369 42

0369 A916 43 QUIT LDA $$16
036B 8525 44 STA CV
036D 205BFB 45 JSR TABV
0370 203AFF 46 JSR BELL
0373 A9E4 47 LDA #SE4
0375 8509 48 STA POS
0377 A907 49 LDA $507
0379 850A 50 STA POS+1
037B A000 51 LDY #$00
037D 52 ;

037D B9BAO3 53 OUT LDA DATA,Y
0380 9109 54 STA (POS),Y
0382 8 55 INY

0383 COOF 56 CPY #$OF
0385 LCOFé 57 BNE CUT
0387 20D003 58 JSR $03DO

038A AO0C1A4 59 DATA ASC " A$C400,LS$O03CF "
038D BOB4BO
0390 BOACCC
0393 A4BOB3
0396 C3C6A0
60 END

% END OF ASSEMBLY

kkhhkhkkhhhkhhrkhkhkhhhdhdd
* *

* SYMBOL TABLE ~-- V 1.5 *
:***********************:
LABEL. LOC. LABEL. LOC. LABEL. LOC.
** ZERO PAGE VARIABLES:
cv 0025 POS 0009
** ABSOLUTE VARABLES/LABELS
COUT FDED HOME FC58 TABV FB5B RDCHAR FD35
CROUT FDS8E BELL FF3A KEY 0356 QUIT 0369 OUT 037D DATA (38A

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

Bi-Directional Scrolling

by Roger Wagner

Everyone knows that a teletype only moves the paper in
one direction — up. Likewise, the Apple display only
scrolls one way — up. Now you can have scrolling in
both directions with these routines.

By using the following machine language routines, it is possible to scroll either
text/gr page in either direction.

The up-scroll routine is derived from Apple Computer’'s Reference Manual
with the difference being that a zero-page location is referred to in order to deter-
mine which page to scroll. The down scroll routine makes similar use of the same
zero-page byte.

How to Use the Program
To use the routine a few entry conditions must be met:
1. Load the binary routine into the $300 page of memory starting at $300.

2. Set pointers 6,7 and 8,9. If you want to bring new information onto the
screen from RAM as you scroll, locations 6,7 must point to the location in
memory where the data to be loaded onto the top line of the screen will
come from when you scroll the screen page down. Similarly 8,9 point to
the place in memory to get the data for the bottom line when you scroll up.

If you want to use this routine to directly view memory, the easiest
way to set the pointers 6,7 and 8,9 is to set 8 and 9 to the address you want
to start viewing at. Put the low order byte in 8 and the high order in 9 then
scroll up 25 times. (The screen height plus 1.} Then set 6,7 to the same
value as 8,9 were originally (i.e., the low and high byte bring the starting
address). Last of all, scroll back down one line to bring the starting address
line into position as the first line of text visible at the top of the screen.

If you do not want new data brought onto the screen, then 6,7 and 8,9
will have to point to a part of memory that contains 40 blank space
characters. One way to do this is to freeze one blank line on either page 1

Wagner Scrolling 53

or 2, and then set 6,7 and 8,9 to that location. These pointers must be reset
to that value each time the scroll is done. This is because normally the
scroll routine updates 6,7 and 8,9 by the screen width so as to remain syn-
chronized with the screen display. Another technique is to just clear the
top or bottom line to blanks each time a scroll is done.

3. Location 5 must hold a 4 for page 1 scrolling, and an 8 for page 2.

4. Now when you want the screen to scroll just ‘CALL 768’ to scroll up, and
‘845’ to scroll down.

Special Notes:

If you are going to use page 2 of text/gr in Integer BASIC, be sure to protect
the variables with a '‘LOMEM’: 3072. This may be done before running the pro-
gram, or if you know how, put as an early line in the program.

To use page 2 in Applesoft is more difficult, but can be done. First, location
$3AB in the machine code must be changed from $05 to $1F. Also, you must
POKE 31 with a 4 or 8 as compared to the POKE 5 in Integer.

The real rub is that Applesoft programs normally begin in memory at $800
(hex) which conflicts with page 2 use. The way around this is to do a 'POKE 104,
12:POKE 3072, 0’ before loading your program. After loading do a ‘CALL 54514’
(unnecessary with DOS 3.2). Unless you do a ‘RESET’, ‘Control-B, other
Applesoft programs will continue to load in at this higher location. Unfortunately,
use of page 2 with the RAM version of Applesoft is to my knowledge impossible.

(Sorry....)

If you wish to move the scrolling routine, the only location-dependent aspects
of the code are 5 ‘JSR’s and 1 ‘JMP’ within it. Since these operations always
reference absolute addresses they will have to be rewritten. Of course, if you have
a relocate utility, it is that much easier.

For further enlightenment, see the sample Integer BASIC program which
makes use of the scrolling routine. Have fun!

Location Dependent

$303: JSR $39E
319: JSR 39E
34A: JMP 39C
353: JSR 39E
369: JSR 39E
39E: JSR 3A6

If page 2 of text/gr is to be used, it must be protected by a ‘'LOMEM:3072’ for
Integer BASIC, or a ‘special load’ (as described in article) when using Applesoft.

Note: $3AB must be changed from $05 to $1F for Applesoft.

54

0800
0€00
osoe
0800
080C
0800
0800
0800
080C
0800
c800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
osoc
0800
0800
0300
0300
0300
0300
0300
0300
0300
0300
0300
€300
0300
0300
0300
0300C
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
€300
0300
0300
0302
0303
0306
0308
03CA
030cC
O30E
0310
0311
0312
0314
0316
0318
0319
031C
031E
0320

I/0 Enhancements

A522
48
209E03
A528
852A
A529
852B
A421
88
€8
6901
C523
BOOD

209EC3
B128
912A
88

VWO NOUTAWN =

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

;***************************
*
.

* APPLE SCROLLING ROUTINE
= RCGER WAGNER

*

* SCRCOLL

*

* COPYRIGHT (C) 1981
* MICRO INK, INC.
*
*
*
*

CHELMSFORD, MA (1824
ALL RIGHTS RESERVEL

i
.
i
o
i
o
i
.
7
H
.
7
.
H
i
.
i

% % F ok * * H F ¥ ¥ * *

Kkkhkhkdkkdkdkkkkkkhkhkhkhkhhdkdkdk

; THIS WILL LET EITHER

; PAGE SCROLL IN EITHER

; DIRECTION. IT IS PRI-
; MARILY DESIGNED TO FEED
; NEW SCREEN DATA IN FROM
; A GIVEN RANGE OF RAM.

'
’

OBJ $800
ORG $300

.
i

'
WNDLFT EPZ $20
WNDWID EPZ $21
WNDTOP EPZ $22
WNDBTM EPZ $23
CH EPZ $24
cv EPZ $25
BASL EPZ $28
BASH EPZ $29
BAS2L EPZ $2A
BAS2H EPZ $2B
PAGE EPZ $05
;* FOR APPLESOFT USE PAGE EQU $1F
;* PAGE MUST HCLD $04 FOR PG 1,
;* $08 FOR PG 2
SCRNTP EPZ $06
;* $06, $07 = LO/HI BYTES
:* OF START OF LINE JUST BEFORE
;* TOP LINE
SCRNBM EPZ $08
;* $08,$09 = LC/HI BYTES
;* OF START OF LINE JUST AFTER
;* BCTTOM LINE
o %
"
SCROLL LDA WNDTCP
PHA
JSR VTABZ
NXTLN LDA BASL
STA BAS2L
LDA BASH
STA BAS2H
LDY WNDWID
DEY
PLA
ADC #$01
CMP WNDBTM
BCS LDBTM
PHA
JSR VTABZ
NXTCHR LDA (BASL),Y
STA (BAS2L),Y
DEY

0321
0323
0325
0327
0329
032B
032¢C
032E
0330
0331
0333
0335
0337
0339
033B
033D
033E
©340
0342
0344
0346
0348
034a
034D
034D
034D
034E
0350
0352
0353
0356
0358
035A
035C
035E
0360
0361
0362
0364
0366
0368
0369
036C
036E
0370
0371
0373
0375
0377
0379
037B
037C
037E
0380
0381
0383
0385
0387
0389
038B
038D
038E
0390
0392
0394
0396
0398
039A

10F9
30E1
A0CO
B108
9128
c8
C421
9CF7
18
A506
6521
8506
A507
€900
8507
18
A508
6521
8508
A509
6900
8509
4C9C03

38
A523
E901
48
209E03
A528
852A
A529
852B
A421
88
68
E900
C522
30CD
48
209EC3
B128
912A
88
10F9
30E1
A000
B106
9128
c8
C421
SO0F7
38
A506
E521
8506
A507
E900
8507
38
A508
E521
8508
A509
E9CC
8509
60

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
10<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>