
D I S K S , E D D , C O P Y
P R O T E C T I O N , A N D E M U L AT O R S

PA U L H A G S T R O M , K A N S A S F E S T 2 0 1 6

T H E P L A N , S U C H A S I T I S

• Disks are aging, bits are rotting. A surprising amount
of stuff is unpreserved.

• Entire programs, but also versions, intro music,
original title art. Many protected against copying.

• Hardware will also fail eventually. For preservation to
have happened, it needs to be in emulation, stored in
modern hard drives, backed up to the clown.

U N P R O T E C T E D 1 6 - S E C T O R D I S K S

• Unprotected (5.25") disks are organized in 35 tracks of
16 sectors of 256 bytes each. DOS 3.3, Pascal,
ProDOS, SOS. 140K (143360 bytes) of data, imaged
into .DSK format.

• In a .DSK, the sector is found by looking in the right
place. ((T x 16) + S) x 256 bytes in, you find 256 bytes of
data. On a disk, you go to the track, read until you find
an "I'm sector S" marker, then read encoded data and
checksum, decode 256 bytes.

C O N F L I C T I N G O R D E R S

• "I'm sector S" and encoding is predictable, not part of
the data but part of the container. DSK does not store
that. Only stores 256 decoded bytes per sector, only
location information for sectors is the position within the
DSK file.

• Turns out what the disk thinks is sector S is not actually
what DOS and ProDOS consider to be sector S. There's
a mapping, and DOS and ProDOS differ. So DSKs can
sometimes be ProDOS-ordered (PO) or DOS-ordered
(DO). Have to know which if you want to find a sector.

D O S 3 . 3 I S S O 1 9 8 0

• Not hard to preserve unprotected 16-sector disks.
COPYA will copy them. Every emulator can use DSK/PO/
DO images. Hardware modern storage emulation
(CFFA3000, Floppy Emu, SDFloppy II, ADTPro, ...) uses
them (by inserting the predictable structural elements
on their own).

• But change the container, and DSK won't work. Simple
changes like making "I'm sector S" be "J'n tfdups S"
and it all falls apart. Intentional protection, or even just
13-sector DOS 3.2.

P R E S E R V E T H E A C T U A L N I B B L E S

• Imaging a simple structural change can be accomplished
by reading the structural elements too. Don't fill in "I'm
sector S" for the image, just record it into the disk image.

• Data is encoded on the disk, not in bytes, but in partial
bytes (nibbles) that are combined upon reading.

• "Nibble copiers" make fewer assumptions about the
container structure and just record what the Disk II interface
card spits out when the disk is read.

• Most emulators can use this format too (.NIB).

W H Y A R E W E N O T N O W D O N E ?

• Copying nibbles is still not enough to get around most
intentional copy protection. For emulators, NIB files still make
some assumptions. One is: there are 35 tracks, 4 phases apart,
on which nibbles are stored. But there are at least 140 (35 x 4)
different track positions the head can be moved to. If a disk
has data on half- or quarter-tracks, .NIB does not store that.

• Can't just nibble copy all 140 quarter-tracks on real hardware,
because writing on track 5.25 messes up data on tracks 5.00
and 5.50 at least.

• People protecting disks knew this very well.

D 5 N I / V 2 D F O R M AT

• One slight advance over the 
NIB format is the more 
flexible D5NI (or, in Virtual II,  
.v2d) format. Used (possibly first) in Stop the Madness.

• D5NI accommodates half tracks, is a nibble based
format, and does not assume a constant track length.

• Definitely better than NIB for this, more likely to work
more of the time. I've booted a still-protected D5NI
image of Choplifter on Virtual II.

T H I S I S 2 0 1 6 . S T O P M E S S I N G A R O U N D .

• We are in a post-CSI world now. Stop messing around
with nibbles and bytes, we can just record the magnetic
flux on the disk.

• Kryoflux, DiscFerret, SuperCard Pro, all operate by
sampling a (slightly more modern 5.25 PC) drive fast
and recording the result. If there's magnetic
information, it is detected and stored.

• There. Done. Here's your many MBs of flux data. You're
welcome.

M Y K R Y O F L U X I M A G E D M Y D I S K S A N D
A L L I G O T W A S T H I S L O U S Y F L U X D ATA

• Having a flux image is not the same thing as having a
bootable disk. The hardware is years ahead of the
software by now, the software has not been moving very
quickly.

• You know what you can do with a flux image? Mostly,
you can analyze it, and make a DSK image from it. If it's
unprotected. And if the disk read was ok. And the disk
read is not always ok, sometimes the head is dirty, etc.

• How very far we've come.

M Y K R Y O F L U X I M A G E D M Y D I S K S A N D
A L L I G O T W A S T H I S L O U S Y F L U X D ATA

• (At the risk of spoiling the comic effect, MESS does
have some capacity to handle flux images. I do not
know if this works for the Apple II, or which flux image
types it supports. Does anyone here know?)

E S S E N T I A L D ATA  
D U P L I C AT I O N

• In 1986, Utilico Microware made a  
peripheral card as a companion to  
the 4th version of their Essential Data 
Duplicator (EDD) software. This card is a little bit like a
mid-1980s Kryoflux. Nowhere near the resolution, and it
runs in a 1MHz machine, but it read bits faster and in
more "raw" format than the Disk II card.

• In 2012 (I think), Brutal Deluxe released "I'm fEDD Up",
which uses this card and records data onto ProDOS
volumes in several formats including .EDD.

W H AT I S I N  
A N . E D D F I L E ?

• The .EDD file contains a  
stream of bits as read 
from the disk.

• The Disk II has no way of knowing when the disk has
spun around all the way (there is an "index hole" in the
disk, but there is no detector wired into the drive), so
I'm fEDD Up just reads the bits from a track for about
2.5 revolutions, then moves to the next track.

• Data looks like: 10110000000010100111101011110001

W H Y D O Y O U N E E D A N E D D + C A R D ?

• Why can't you just read the bits from the drive without
this extra peripheral card?

• The reason is that the Disk II card itself does some
processing on the bits before it even hands anything
over to the Apple II. The EDD+ card grabs the
"preprocessed" bits, and grabs them faster, allowing
for a more direct view of what's actually on the disk.

FA S T E R T H A N A S P E E D I N G B I T

• 1MHz is not many MHz. Like only half as many as 2MHz.

• Those bits are coming fast. The disk itself is rotating at 5
Hz and there are around 50000 bits flying by in that
time. So about 250k bits per second. Or about 4 clock
cycles on the 6502 per bit. Takes at least 6 to poll a data
address.

• Disk II card runs at 2MHz, so has 8 clock cycles to deal
with an incoming bit. The Logic State Sequencer
collects the bits and presents them to the Apple II.

L O G I C S TAT E S E Q U E N C E R

• The Logic State Sequencer does approximately this:

• Wait to see if we have a 1. Did we find one? Rotate it
into the accumulating data byte. Did we wait too
long without seeing a 1? Must be a zero then, rotate
0 into the accumulating data byte.

• There's a decision point: "It's been too long since the
last 1, so this must be a 0." Pulses should come in every
8 clocks, but can be detected if it's between 4-12. At 12,
LSS gives up and says no 1 is coming, this is a 0.

O N E S A N D Z E R O S

• The input to the LSS is just "something happened" or
"nothing happened (yet)".

• A something is a 1.

• Nothing, when there could've been a something, is a 0.

• This makes it very timing dependent. It's pretty easy to
lose your place in a string of zeros. (Given how long we've
been waiting, how many 1s could we have gotten but
didn't?)

D E S I G N D E C I S I O N S

• Data written to the disk is written in bytes that always
have the high bit set. This leaves only 7 bits for data, but
has benefits. It serves as a signal that the data is ready,
and allows a tight 6502 polling loop. (LDA C08C,X;  
BPL #$FB). It also allows for sync.

• LSS ignores any zeros it gets after the 8th data bit
(including the initial 1) is set, waiting for the next 1 (since
the next valid nibble is guaranteed to start with a 1). So
FFFF... written as 11111111001111111100... will quickly
"self-synchronize" within five of those FFs.

D O I N G M O R E W I T H O U T L S S

• The LSS ignores 0s between sync FFs (but they take time).
So 11111111001111111100 and 1111111111111111 both
look the same to 6502 code: one FF after another FF. The
LSS discards the difference before any 6502 code gets to
see it, but copy protection schemes can still depend on it.

• And a new byte shows up as quickly as every 32 cycles,
insufficient time to decide whether a byte has taken too
long to arrive. (LDA C08C,X; BPL #$FB takes 6-7.)

• The EDD+ card grabs the bits before the LSS gets them.

W E ' R E D O N E T H E N , R I G H T ?

• So, the EDD file grabbed by I'm fEDD Up from the
EDD+ card is a stream of bits, including any of these
sneaky 0s hiding between valid nibbles, and in
principle if we "play them back" (like, under
emulation) the protections that rely on them should
find them and work.

• Let's try it out.

O P E N E M U L AT O R

• I made a bunch of EDD files, but at a certain point
doubt crept in. I have these files. But did I successfully
image the disk? How can I know?

• I looked around for a while to find an emulator that
would emulate the LSS itself, not just read nibbles from
NIB images or bytes from DSK images and fake the
results. Eventually I landed on Open Emulator, which
reads a format called FDI (Floppy Disk Image) that has
as one of its options a bit stream like the one the EDD+
card produced.

D E F E D D

• So I wrote a little ruby script to take the I'm fEDD Up
files and implant them within an FDI container. Not a
difficult task, all that is needed is the addition of some
header material. I called it defedd because it was
undoing what I'm fEDD Up did, and I kind of liked that
it was also a 24-bit hex number. Unfortunately, it
doesn't have a very useful ASCII representation.

FA N TA S T I C .

• And it worked! I
now knew that my
EDD image of
Choplifter had
actually captured
the disk. Well
enough that its
own protection
didn't know it was
a copy.

E X C E P T

• Lots of things didn't work. For a couple of different
reasons. One of them is fairly easily described, that we
might remember from the Olden Days: track sync.

• The Disk II has no sensor for the index hole, no way to
know where it is rotationally on the disk. Some protections
relied on finding their place on one track then moving to
another track and reading things there. Relative angular
positions were crucial for this. Some bit copy programs
would try to keep tracks in sync in the same way, for this
reason. Once EDD file is created, sync information is lost.

T H E A N X I O U S M C 3 4 7 0

• The read amplifier (MC3470) on the Disk II  
analog board inside the drive is constantly gripped with anxiety
over maybe missing something.

• A 1 is a something. Getting a 1 makes MC3470 feel happy. Not
getting a 1 for a while can be called a 0. That's ok, MC3470 still
feels happy.

• As more time elapses since getting a 1, MC3470 starts worrying
that maybe there are supposed to be 1s but they're too quiet. So
it starts cranking up the gain, desperate to find some 1s. And it
will find them. Eventually. Even if by then it's just amplified
background noise rather than an actual 1 signal.

0 0 0

• The MC3470 becomes 
unreliable quickly. It can read  
two 0s in a row, but after that,  
1s can creep in.

• And this is I think the source  
of most of the trouble I have  
had working with EDD files.  
Those 2.5 track reads are not identical. Not identical in length
(1s can be fast, only 0s are basically constant time), not
identical in content. Finding the track is harder than it seems
like it should be.

N I B B L E S

• DOS 3.3 solves the unreliability and zero timing problem by
constraining the data it writes to never have more than two 0s
in a row. The hardware itself can only read 7 bits per chunk
(the 8th bit being a byte-start marker), and the in-principle-128
possible values are further constrained to those that have no
more than two 0s in a row and do have two 1s in a row. This
limits it to 64 possible values, so 6 bits of information per
nibble.

• D5 11010101 and AA 10101010 are also used but only for the
structural elements (not data). DOS 3.2 had only 32 available
because it was limited to nibbles with not even two 0s in a row.

B A C K T O D E F E D D

• Since the original EDD-to-FDI converter, designed mainly to
just verify that EDD images worked, I've continued to work on
the defedd program. Off and on.

• An older version of this (now in Python 3, and quicker) is on
github but it is a disaster, and soon I'll have a better version
there. Was hoping it would be there by now, but looks like not
quite. Wait for the new one though before trying to
understand or play with it, I'd say. Only the EDD-to-FDI option
works reliably in the one currently on github.

• But here's what I'm trying to do with it and where I'm at with it.

D E F E D D : F O R M AT C O N V E R S I O N

• First, more general format conversion. EDD to FDI works for Open
Emulator, but this is the only emulator that I'm aware of that uses
the FDI format. And OE only emulates up to the Apple II plus.
Converting EDD to DSK and NIB (where EDD wasn't really
necessary after all), and D5NI/V2D is one goal. Also can provide
some overall disk diagnostics/analysis.

• Another is to target MFI (MESS Floppy Image) format so that
these will work in MESS. Mainly because this is the only way to test
images of protected Apple /// disks. MESS has limited EDD
support already but it doesn't work very well because the problem
is a hard one. If it were easy, defedd would be done already.

D E F E D D : B I T R E PA I R

• There are 2.5 reads of a track in an EDD file, so if one
sample is bad, there are 1-2 other samples available. Also,
tracks are "wide", so usually a track's data can be found
(less reliably, but found) on the adjacent quarter-tracks. So
there might be up to 12 samples of a single region of
data, making it more likely possible to identify runs of
"actual zeros" and recording them in the image file.

• This would be good for copy protection schemes that rely
on the randomness, so long as the emulator also
implements the MC3470 behavior. Open Emulator does.

D E F E D D : S Y N C A P P R O X I M AT I O N

• The "data bleed" between tracks should also allow for adjacent
quarter tracks to by synced and possibly help make usable images
for disks that rely on track sync.

• There is no usable crosstalk that I've found between tracks.
Quarter-tracks can be synced together with their whole track, but
track 1.0 cannot be synced with track 2.0. (Except, it turns out, if
there's a spiral protection on the disk that links up the tracks more
closely together.)

• For tracks where there is no real sync data, could approximate a
spin based on observation of spin distance on tracks where there is
sync data, but it's so highly variable that it's unlikely to work often.

D E F E D D : A R T

• I've also been playing  
around a bit with adding 
visualizations of the 
data to help understanding  
the results of the analyses.

• I think this will be useful in seeing the structure, but also:
they look cool.

• (Initial inspiration/idea for this was Charles Mangin's
program doing this for DSK images at last year's KFest.)

E L S E W H E R E

• There has been some discussion/work, I think mostly by John
Brooks and Antoine Vignau, on enhancing I'm fEDD Up to:

• read more at once, possibly even a whole disk—this would
eliminate sync uncertainty, since the disk would continue
to spin through the entire read across multiple tracks.

• leverage the faster speed available on the Apple IIGS as
well as a direct-read mode in the IWM chip to detect
timing bits without the assistance of an EDD+ card.

I M A G E V E R I F I C AT I O N

• Worth noting that not all my EDD rips worked. Some had to
be done again. At one point, my MC3470 chip itself just failed
and I didn't notice immediately, but my EDD files were filled
with just 0s. There needs to be a way to check to see if a read
succeeded.

• Booting the disk in Open Emulator is a huge step in that
direction (and that was the original point), but all it can tell you
is if it did NOT work. If the disk boots, it's still not certain
whether some other part of the disk image is corrupt.
Analyzing the image can at least help with confidence that the
rip does not need to be re-done.

P R E S E R V I N G T H I N G S

• The holy grail in this area of preservation is to be able
to image a protected disk and run it, protected, in an
emulator. If it works and can be fast enough, we have a
better chance of archiving all those programs (and
versions) that are still out there unpreserved in the
twilight of their magnetic years. Allows archiving
without cracking, first of all, and also allows people of
the future to try their hand at cracking as well. And it
preserves the copy protection scheme itself as
software.

T H I N G S I F O R G O T T O I N C L U D E

