for the Apple IIGs




TMIL BASIC
for ihe Apple lles

User Manual

Version 1.0, December 1987
COPYRIGHT © 1987 by TML Systems, Inc.
8837-B Goodbys Executive Drive
Jacksonville, Florida 32217
(904) 636-8592

All rights reserved
Printed in U.S.A.






TML BASIC™ LICENSE AGREEMENT

This manual and the software described in it were developed and copyrighted by
TML Systems, Inc. and are licensed to you on a non-exclusive, non-transferable basis.
Neither the manual nor the software may be copied in whole or in part except as
follows:

1. You may make backup copies of the software only for your personal use
providing the backup copies bear TML Systems' copyright notice.

2. You have the right to include the object code provided in the several libraries
included with TML BASIC in programs you develop using this software and you
also have the right to use, distribute and license such programs to third parties
without payment of any further license fees providing that you include the
following copyright notice (no less prominently than your own copyright notice)
in the software and its documentation:

"© 1987 TML Systems, Inc. Certain portions of this software are copyrighted by
TML Systems, Inc."

3. You may not, in any event, distribute any of the source files or the TML BASIC
application provided as part of this software.

4. You may use the software and its documentation at any number of locations or
on any machine so long as there is no possibility of it being used at more than
one location or on one machine at any one particular time.



CUSTOMER SUPPORT AND PRODUCT UPGRADE PLAN

Software Registration. Your registration of TML BASIC is ESSENTIAL for you to
receive the full benefits of TML Systems' customer services. TML BASIC is a very
large and sophisticated software package. From time to time, TML Systems will
improve its product making it even more powerful and useful to you. You can take
advantage of our ongoing development efforts if you have returned your
registration card to us. As a registered TML BASIC user, you will receive
announcements about major improvements for your software. These
announcements will provide you the cost of the upgrade and ordering procedures.
Only registered users will receive these upgrade notices and be eligible to purchase
the upgrade.

Technical Support. We at TML Systems would like you to take the greatest
advantage of your development tools as possible. If you have a technical problem we
will be glad to help. Gather ALL pertinent information to recreate the problem along
with your registration number, and call our Technical Support Department at (904)
636-0118 during our normal support hours. You may also write to:

TML Systems, Inc.

Technical Support Department
8837-B Goodbys Executive Drive
Jacksonville, Florida 32217

Remember, it is required that you include your registration number with all
correspondence and have it available when you call TML Systems. TML Systems
retains the right to deny Technical Assistance to any person unable to identify his
software by registration number.



Version Printing Date

1.0 First Printing December 1987

The information contained in this document is subject to change without notice.
TML Systems makes no warranty of any kind with regard to this written material.
TML Systems shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of
this manual.

This document is protected by all applicable copyright laws. All rights reserved. No
part of this document may be photocopied, translated to another language, or
reproduced in any manner without the prior written consent of TML Systems, Inc.

Your suggestions and input are extremely valuable in assisting us to continue
providing the most complete development tools possible. If you have any
comments or suggestions regarding either the TML BASIC development system
software or this documentation, please send comments to:

TML Systems, Inc.

Customer Support Department
8837-B Goodbys Executive Drive
Jacksonville, Florida 32217






to Laurrie and Donna






Table of Contents

Introduction

About this manual

Apple lIGS Technical Documentation from Apple
Where to go for more Information

Notational Conventions

System Requirements

Acknowledgements

Part| - TML BASIC User's Gulde
Chapter 1 Starting Out with TML BASIC

Backing up the Distribution Disk
Files on the Distribution Disk
Textbook versus Toolbox Programming
Setting Up

Single Disk Drive System

Two Disk Drive System

Hard Disk Drive System

A Note on RAM Disks
Compiled versus Interpreted Languages
Line Numbers in TML BASIC

Chapter 2 Using TML BASIC

Running TML BASIC

Examining the Integrated Environment
Opening a Program

Organizing the Editing Environment
Program Integrity

Exiting TML BASIC

Chapter 3 Compiling and Running a Program

Looking at Examples
Compiling Alternatives
Testing a Program's Source Code
Running a Program
Creating a Stand-Alone Application
Compiling Libraries
Detecting Errors
Editor Errors
Compiler Errors
Linker Errors
Runtime Errors
Just a Reminder...

NN

BLERREBVL8RNY N pRBN8S



Chapter 4 Advanced Program Editing

Creating a New Editing Window
Using the Clipboard

Editing Commands

Find and Change

Printing

The Preferences Dialog

ProDOS Commands in TML BASIC

Chapter 5 Your First Program

The First Program
The REM Statement
The LET Statement
The PRINT Statement
The GETS Statement
The INPUT Statement
Multiple Statements
Summary

Chapter 6 TML BASIC Menu Reference

The Apple Menu

The File Menu

The Edit Menu

The Search Menu

The Windows Menu

The Compile Menu

The ProDOS Menu
Command-Keys versus the Mouse

Part Il - TML BASIC Language Reference

Chapter 7 Language Elements

Source Code Structure
Programs
Libraries
TML BASIC Character Set
Reserved Words
Numbers in TML BASIC
Integers
Double Integers
Long Integers
Single-Precision Reals
Double-Precision Reals
Extended-Precision Reals
The Standard Apple Numeric Environment (SANE)
Strings in TML BASIC
Constants

—

BINNISERE & 283LFHRE & SB&RHER/D

CO8BBIIISBERIRRS B



Numeric Constants
String Constants
Variables
Reserved Variables
Arrays
Dimensioning Arrays
Dynamic Allocation
Evaluation of the DIM Statement
Subscripts
Structure Arrays
Expressions
Operators
Arithmetic Operators
Relational Operators
Logical Operators

SECBB88898RRRA8S8S

String Operators
Precedence 104
Chapter 8 Subroutines, Procedure, Functions and Libraries 107
Subroutines 107
Procedures 109
Defining Procedures 19
Local Variables 110
Using Procedures m
Functions 112
Defining Functions 12
Using Functions N3
Formal versus Actual Parameters 14
Program Flow 14
Recursion 115
A Lesson on Stacks 116
Libraries 17
Using a Library 118
Compiling Libraries 119
Predefined Libraries 120
Chapter 9 Files 121
ProDOS 16 Fundamentals 121
Filenames 121
Pathnames 12
Manipulating Files 124
CREATE Statement 124
DELETE Statement 125
RENAME Statement 125
LOCK and UNLOCK Statements 126
CATALOG Statement 126
VOLUMES Statement 126
Opening and Closing Files 127
OPEN Statement 127

CLOSE Statement 128



File Access Techniques
Sequential Access
Random Access

Accessing Text Files
INPUT# Statement
PRINT# Statement

Accessing BASIC Data Files
Structure of a BDF File
READ# Statement
WRITE# Statement

Accessing Binary Files
GET# Statement
PUT# Statement

Other File Operations
ON EOF# Statement
OFF EOF# Statement
EOF Reserved Variable
EOFMARK Function
FILE Function
FILTYP Function
TYP Function
REC Function

Summary

Chapter 10  Statements and Functions

Part lll - Toolbox Programming

Chapter 11  Programming the Toolbox

Review of the Apple IIGS Tools
The Six Basic Tool Sets
Desktop Interface Tools
Device Interface Tools
Operating Enviornment Tools
Specialized Tools

Where are the Tools?

The Toolbox Libraries
The Library Statement
Searching for a Library

The CALL Statement

The R.STACK Functions

Using EXFN instead of CALL

An Example

Chapter 12 Quickdraw Graphics
Drawing to the Screen (and Elsewhere)

Where QuickDraw Il Draws
The Coordinate Plane

Pixel Images and the Coordinate Plane

BE8E B BRoEBRRE



GrafPort, Port Rectangle, and Clipping
Global and Local Coordinate Systems
How QuickDraw Il Draws
The Drawing Pen
Basic Drawing Functions
What QuickDraw Il Draws
Points and Lines
Rectangles
Circles, Ovals, Arcs, and Wedges
Polygons
Regions
Pictures
...And Text too
Characters
Fonts
Drawing in Color
Color Tables and Palettes
Standard Color Palette (320 Mode)
Dithered Colors in 640 Mode

Chapter 13  Creating a Desktop Application

The Desktop Interface
Human Interface Guidelines
Desktop Elements
Event-driven Programming
The Main Event Loop
Event Handling
An Example Desktop Application
The DeskTools Library
Writing a Desktop Application
The StartupTools Procedure
The ShutdownTools Procedure
The SetUpMenus Procedure
The SetUpWindows Procedure
The SetUpEventsTables Procedure
The MainEventLoop Procedure
Summary

Part IV - Appendices

Appendix A  Error Messages

TML BASIC Editor Errors
TML BASIC Compiler Errors
Lexical Errors
Syntax Errors
Semantic Errors
Library Errors
TML BASIC Linker Errors
TML BASIC Runtime Errors

BYSVERRREREREEEE B BUBESEERRBEEBEEELER

geuessEs B



Appendix B Metastatements

$CheckStack
$CodeSegment
$DataSegment
$Debug
$EventTrapping
$KeyboardBreak
$OnError
$StackSize
$StringPoolSize

Appendix C Apple IIGS Toolbox Libraries

5 & $338848%88 B

Control Manager

Desk Manager 410
Dialog Manager 412
Event Manager 416
Font Manager 419
Integer Math 421
Line Edit 423
List Manager 425
Memory Manager 427
Menu Manager 430
Miscellaneous Tools 433
Note Synthesizer 436
Print Manager 438
QuickDraw 482
QuickDraw Auxiliary 457
Scheduler 458
Scrap Manager 459
Sound Manager 40
Standard File 462
Text Tools 465
Tool Locator 467
Window Manager 469
Appendix D Comparing TML BASIC with GS BASIC 475
Compiler / Interpreter Differences 475
Unsupported Statements and Functions 476
Statements Requiring Modification 477
Execution / Compilation Order of Programs 478
Extensions fo GS BASIC 479
IF Block Statement an
Libraries 480

TML BASIC Compiler Issues 480
The TML BASIC Editor and Large Programs 480
Segmentation 480
Expression Evaluation 481

Exporting GS BASIC Programs info TML BASIC 481



Appendix E
Appendix F

Index

The ASCII Character Set
ProDOS 16 Filetypes

g &






Inirecuciion

Welcome to TML BASIC for the Apple 1IGS. TML BASIC is a programming
language designed to meet the needs of the broadest range of programmers possible
for the Apple IIGS. TML BASIC is a modern, 16-bit, compiled implementation of the
BASIC (Beginner's All-purpose Symbolic Instruction Code) language and is
compatible with Apple Computer's GS BASIC, an interpreted implementation of
the BASIC language.

TML BASIC is an extended version of the BASIC programming language and
includes many new features and statements not found in more traditional
implementations. For example, TML BASIC provides control structures like the
DO...WHILE...UNTIL loop and block IF statements, the PRINT USING statement,
user defined, multiline functions and procedures with local variables, and a
mechanism for supporting separately compiled libraries of code.

Programmers familiar with AppleSoft BASIC will find TML BASIC an easier and
more powerful means of developing programs to run on the Apple IIGS. Using the
TML BASIC Translator (a separate product), AppleSoft BASIC programmers are
capable of converting their AppleSoft BASIC programs into TML BASIC programs
for increased performance and easier maintainability on the Apple IIGS.

TML BASIC is a complete programming environment which combines a compiler
with a fully integrated, mouse-based, multi-window editor. Remember, TML
BASIC is a compiled BASIC language. Results of a compiled language are faster and
more efficient programs capable of being created and tested in TML BASIC's
user-friendly environment.

TML BASIC has been designed specifically to take advantage of, and provide access
to, the new features and capabilities of the Apple IIGS. TML BASIC runs in a full
16-bit native mode under ProDOS 16. Complete access to every Apple IIGS Toolbox
routine, including Super HiRes graphics, Menus, Windows, etc., are provided with
BASIC procedures and functions. With TML BASIC, you will be able to develop
stand-alone ProDOS 16 applications capable of running independently of TML
BASIC and transferable to any Apple IIGS disk.

In addition to writing programs which take advantage of the Apple IIGS Toolbox,
TML BASIC allows you to write more traditional programs which use only the text
screen. We call these textbook programs. Textbook programs are the type of
programs you would enter directly from BASIC textbook examples and then
compile them. An understanding of the IIGS Toolbox is not necessary to write a
textbook program.

TML BASIC User's Guide 1 Infroduction



About this Manual

No specific knowledge of programming the Apple IIGS is necessary to use TML
BASIC, however we do assume you are familiar with the concept of programming
and perhaps have had some experience programming on another machine.

The TML BASIC manual is divided into four major parts. The first part of the
manual is a user's guide, and its chapters discuss how to actually operate TML
BASIC and write your first program. A complete TML BASIC language reference is
provided in the second part, and the third part provides documentation on how to
program using the Apple IIGS Toolbox. Finally, the fourth part is a collection of
appendices. This manual assumes you are familiar with the Apple IIGS Finder and
the machine itself.

The following paragraphs outline the information contained in each of the
manual's chapters. Use these descriptions to find the information you are looking
for.

Part I: TML BASIC User's Guide

TML Systems recommends you take the time to study Chapters 1 through 6 prior to
beginning your actual programming work. Chapters 1 - 4 and 6 explain in detail the
capabilities of the product itself, while Chapter 5 instructs you through your first
program. These chapters are certain to prove useful to the programmer who has
taken the time to master them. Each chapter reminds you to close all example
programs opened during the chapter's discussion and to exit TML BASIC, thus
assuring each chapter is treated as an independent learning session of TML BASIC's
integrated environment.

Chapter 1:  Starting out with TML BASIC shows you how to make a backup copy of
TML BASIC, discusses what files are on the TML BASIC distribution
disk, explains the differences between Textbook and Toolbox
programming and provides a comparison of compiled versus
interpreted languages.

Chapter2:  Using TML BASIC includes a quick tour of TML BASIC using two
example programs included on the TML BASIC distribution disk.
The chapter's discussion takes you from the first step of running TML
BASIC to performing window manipulation commands.

Chapter3: Compiling and Running a Program discusses TML BASIC's
compile features while showing you how easy it is to run a TML
BASIC program. Creating libraries as well as detecting and correcting
errors in your program's source code is also discussed.

TML BASIC User's Guide 2 Introduction



Chapter 4: Advanced Program Editing discusses some of the more powerful
features of TML BASIC's integrated editor, thus enabling you to use
TML BASIC more effectively in creating your own programs.

Chapter 5:  Your First Program explains the idea of textbook programming and
begins to introduce some of TML BASIC's language features by
instructing you through your first TML BASIC program.

Chapter 6:  TML BASIC Menu Reference provides a summary of TML BASIC's
menus and commands. This chapter should be used as a reference to
the features available within TML BASIC.

Part ll: TML BASIC Language Reference

The TML BASIC Language Reference is a complete reference for the TML BASIC
programming language. The first three chapters discuss various components of the
language, while Chapter 10 provides a thorough discussion of each statement and
function available in TML BASIC.

Chapter 7. Language Elements discusses the fundamental components which
make up a TML BASIC program. A discussion of constants, variables,
arrays and expressions is also included.

Chapter 8: Subroutines, Procedures, Functions and Libraries reviews the
language constructs available in TML BASIC which promote
modular programming for better organization of a program's code.

Chapter 9:  Files provides a review of the techniques and operations available in
TML BASIC for reading, writing and manipulating files.

Chapter 10: Statements and Functions is a comprehensive discussion of each
statement and built-in function implemented in TML BASIC. You
will find this chapter most useful during your programming efforts.

Part lll: Toolbox Programming

This portion of the manual is written for experienced programmers and introduces
the concept of programming the Apple 1IGS Toolbox. The Toolbox is the huge
collection of procedures and functions available with every Apple IIGS which
implements features like the Super Hi-Res graphics screen, Menus, Windows,
Dialogs, Sound, etc. Toolbox programming is not for everybody. Obviously more
complicated than textbook programming, Toolbox programming provides a whole
new spectrum of features you can add to your programs.

TML BASIC User's Guide 3 Intfroduction



Chapter 11:

Chapter 12:

Chapter 13:

Programming the Toolbox first reviews the contents of the Toolbox
and then introduces the language features available in TML BASIC
for accessing the Toolbox.

QuickDraw Graphics is the graphics engine for the Apple IIGS
which implements all of the drawing operations available for the
Super Hi-Res graphics screen. Because QuickDraw is the soul of the
Apple IIGs, this chapter provides a discussion and review of the
principles behind this powerful graphics engine.

Creating a Desktop Application discusses the techniques for
writing programs in TML BASIC which make use of the Desktop
metaphor. The desktop is considered the menu bar, a collection of
windows, dialogs, etc.

Part IV: Appendices

This part of the manual provides a wide collection of useful information for the
TML BASIC programmer. Included is a summary of the error messages generated
by both the TML BASIC compiler and editor. Also included is a complete list of
every Apple IIGs Toolbox routine accessible with TML BASIC.

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:
Appendix F:

Index

Error Messages provides a list of every error generated by the TML
BASIC editor, compiler, linker and runtime debugger. Along with
each error message is a discussion of what the error message means
and how it might have occurred.

Metastatements describes each of the TML BASIC compiler's
metastatements. Metastatements direct the compiler to behave in a
specific manner.

Apple lics Toolbox Libraries is a complete and exhaustive list of
every Toolbox procedure and function available with TML BASIC.

Comparing TML BASIC with GS BASIC is a summary of the
differences between the TML BASIC and GS BASIC languages.

The ASCII Character Set
ProDOS 16 Filetypes

TML BASIC User's Guide 4 Intfroduction



Apple lIGS Technical Documentation from Apple Computer, Inc.

While the Apple IIGS provides a new degree of friendliness to the user, the
programmer is confronted with the burden of developing software for a much more
sophisticated machine. Without the appropriate technical references, the task of
programming the Apple IIGS and its Toolbox will be nearly impossible. The
following paragraphs outline the technical documentation published by Apple
Computer for the Apple IIGS. Each of these texts is available directly from
Addison-Wesley or the Apple Programmer's and Developer's Association (APDA).

*  Technical Introduction to the Apple 1IGS is the first book in the suite of
technical manuals for the Apple IIGs. It describes all aspects of the Apple IIGS,
including its features, general design, and Toolbox.

*  Apple 1IGS Hardware Reference and Apple 1IGS Firmware Reference cover the
hardware details of the Apple IIGS. You will not necessarily need these texts in
order to develop applications for the Apple IIGS, however, reading them might
provide you with a better insight as to how the machine operates.

®  Programmer’s Introduction to the Apple I1IGS provides an excellent
introduction to the concepts and guidelines you will need to know in order to
develop quality applications which take specific advantage of the Apple IIGs.
While this text uses TML Pascal for examples, you will find the information
here useful for programming the Apple IIGS Toolbox with TML BASIC.

e Apple 1IGS Toolbox Reference: Volume 1 and Volume 2 is the complete and
authoritative reference for the Apple IIGS's built in set of routines which are
collectively known as the Toolbox. For example, the Toolbox contains the
software necessary to draw graphical objects on the screen (QuickDraw) and for
menus, windows, and sound. The Toolbox supports the Apple desktop user
interface and simplifies development of new and powerful applications.

If you intend to develop applications which take advantage of the Toolbox, you
will find these two volumes absolutely essential. It will be nearly impossible to
program the Toolbox effectively without this documentation.

*  Apple 1IGS ProDOS 16 Reference documents the operating system of the Apple
IIGs. The details of the System Loader and file manipulation operations are
covered in this text.

* Human Interface Guidelines: The Apple Desktop Interface. This book
documents Apple's standards for the desktop user interface to any program that
runs on an Apple IIGS or a Macintosh. If you are writing an application which
is to use the desktop user interface, you should study this manual to ensure
your application conforms to the standards set forth by Apple Computer.

TML BASIC User's Guide 5 Infroduction



*  Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE), a full implementation of the IEEE standard for
floating-point arithmetic.

In addition to these texts, Apple Computer publishes a series of Technical Notes for
the Apple IIGS on a periodic basis. These notes discuss often asked technical
questions and other mysteries about the Apple IIGS. The technical notes are
available on a subscription basis from the Apple Programmer's and Developer's
Association. Below is the address for the Apple Programmer's and Developer's
Association.

Apple Programmer's and Developer's Association
290 SW 43rd Street

Renton, WA 98055

(206) 251-6548

Please note that in order to purchase products from APDA you must first be a
member. There is a nominal annual fee required for membership into APDA.

Where to go for more Information

In addition to technical documentation from Apple Computer, you may find one or
more of the following texts useful in your programming efforts.

The following three books document the Apple IIGS Toolbox. While the books do
not use TML BASIC as examples, they still provide a wealth of useful information.
In particular, the Apple 1IGS Technical Reference by Michael Fischer provides

exhaustive coverage of the Toolbox, but in a much more readable fashion than
Apple Computer's Apple 1IGS Toolbox Reference volumes.

®  Apple 1IGS Technical Reference, Michael Fischer, Osborne/McGraw-Hill, 1987.

®  The Apple 1IGS Toolbox Revealed, Danny Goodman, Bantam Computer Books,
Prentice Hall Press, 1986.

*  Exploring the Apple 1IGS, Gary Little, Addison-Wesley, 1987.

TML BASIC User's Guide 6 Introduction



Notational Conventions

The following notational conventions are used in this manual. Understanding
these conventions will help make this manual more useful to you.

Notation_

Command

Source Code

Source Code and Important words

HELLOWORLD.BAS

TML BASIC User's Guide

Description

Bold typeface as shown in the left column
and appearing within the text of this
manual identifies commands you may
enter from the keyboard or by using the
mouse.

The typeface shown in the left column is
used to simulate the appearance of a
program's source code, or both input and
output, that would be printed on your
screen. This notation is used for program
listings as well as references made within
the text of this book to a particular source
code listing.

Certain words within the text of this
manual are italicized in order  to
emphasize their importance. Reference to
any portion of source code (i.e. variable
names) within the text of this manual also
appears in italics.

Words appearing in all upper case letters
represent program (file) names contained
either on the distribution disk or programs
(files) you create yourself. A filename with
the .BAS extension represents a program's
source code. A filename without the .BAS
extension represents a stand-alone
application found on disk.

7 Introduction



System Requirements

In order to use TML BASIC, you will need an Apple IIGS with at least one 3.5" 800K
floppy disk drive, and a memory expansion card with at least 256K bytes of
additional memory for a total of 512K RAM memory. For development of large
applications, TML BASIC can be used with a hard disk and up to 8 megabytes of
memory. TML BASIC supports the ImageWriter and any compatible serial printer
or any compatible parallel printer with an appropriate interface card.

Acknowledgements

TML BASIC™, TML BASIC Translator ™, TML Pascal™, TML Speech Toolkit™ and
TML Source Code Library™ are trademarks of TML Systems, Inc.

Apple®, Apple Computer, Inc.®, ImageWriter®, LaserWriter®, Mac®, MacWrite®
and ProDOS® are registered trademarks of Apple Computer, Inc.

Apple IIGs™, GS BASIC™, Finder™, Macintosh™ and SANE™ are trademarks of
Apple Computer, Inc.

TML BASIC User's Guide 8 Introduction



Part |

TML BASIC User's Guide






Chepier |
Starting Out with TML BASIC

Before you begin using TML BASIC, you should make a working copy of your
distribution disk and store the original in a safe place. This chapter explains how to
accomplish this task. It also describes the files on the TML BASIC distribution disk,
thus enabling you to see what files are provided and which of those files you will
need to use TML BASIC. A discussion of compiled versus interpreted languages is
provided, as well as the use of line numbers in TML BASIC.

Before proceeding any further, you should familiarize yourself with the Apple IIGS.
You should be knowledgeable in such tasks as booting your machine, using the
mouse, copying files, and selecting and running applications using the Apple IIGS
Finder. If you are unfamiliar with any of these operations, consult your Apple IIGS
Owner’s Manual and Apple IIGS System Disk User’s Guide for information.

Backing up the Distribution Disk

TML BASIC is distributed on one 3.5" 800K ProDOS 16 disk and includes the Apple
IIGs System Disk's files (version 3.1 or later). In the spirit of TML System's
philosophy - selling software without copy protection - the distribution disk is not
protected from being copied. Thus, you should make a backup copy of the
distribution disk and store the original in a safe place. This manual refers to the
backup copy of TML BASIC as the working copy. You should store the original TML
BASIC disk and use it in only in the event of your working copy being damaged.

Although TML BASIC may be copied, your license agreement specifically states you
may only do so for your own private use and only for the purpose of making a
backup copy. Any other copies are not allowed and are in violation of the United
States Copyright laws.

In order to make a backup copy, you will need an unused 3.5" disk and a disk
copying utility. Included with the Apple IIGS System files on the TML BASIC
distribution disk is the Apple IIGS Finder. The Finder includes the capability of
formatting an unused disk and copying the TML BASIC distribution disk's files onto
the newly formatted disk. Figure 1-1 illustrates the contents of the TML BASIC
distribution disk in an open window on the Apple IIGS desktop.

Refer to your Apple IIGS System Disk User’s Guide for information on how to use

the Finder, or your Apple 11GS Owner’s Guide for information about formatting and
copying to a disk.

TML BASIC User's Guide 1 Starting Out with TML BASIC



¢ File Edit View Special Color

B R R RN R ER

R ERREREE

9items 737K used 03K available

TMLBASIC TMLBASIC.0PTS LIBRARIES :

L

E=Y
=

LEXAMPLES PART3.EXAMPLES ~ MORE.EXAMPLES

PRODOS SYSTEM ICOKS

<&
<l

R EREEARSRIA AL AR RRERBAAAR R BEEER BB EERERRECE RS AS

2]
2

Figure 1-1
TML BASIC Distribution Disk

Files on the Distribution Disk

Table 1-1 lists the TML BASIC distribution disk's contents. The files shipped on the
distribution disk can be grouped into four categories: the TML BASIC compiler,
TML BASIC example programs, the Apple IIGS Toolbox libraries and the Apple IIGS
system files required to boot your machine and run TML BASIC or any applications
you might create.

Remember, not all the files included on the distribution disk are required to run
TML BASIC. In the following table, the files required to run TML BASIC are listed
in boldface, while the others are listed in normal typeface. The files listed below are
for the version 1.0 TML BASIC distribution disk. Subsequent releases of this
product may include different files.

Table 1-1
TML BASIC Distribution Disk Contents

/TML/ The name of the TML BASIC distribution disk.

TMLBASIC The TML BASIC compiler.

TML BASIC User's Guide 12 Starting Out with TML BASIC



TMLBASIC.OPTS

LIBRARIES/

PART1.EXAMPLES/

PART3.EXAMPLES/

MORE.EXAMPLES/

PRODOS

SYSTEM/

P16

START

LAUNCHER

FINDER

SYSTEM.SETUP/

TOOLS/

DESK.ACCS/

TML BASIC User's Guide

This file saves various options for using TML BASIC such
as tab width, printer port, etc.

This folder (subdirectory) contains all of the library interface
file for the Apple IIGS Toolbox. These files are described in
detail in Chapter 11 and Appendix C.

This folder (subdirectory) contains the source code to the
example BASIC programs used in Part I of the TML BASIC
User Manual.

This folder (subdirectory) contains the source code to the
example BASIC programs used in Part III of the TML BASIC
User Manual.

This folder (subdirectory) contains the source code to the
several additional example BASIC programs which
demonstrate many of the capabilities of TML BASIC.

The ProDOS file that is used to begin the booting process of
your Apple IIGs.

A folder (subdirectory) containing the ProDOS 16 and Apple
IIGs system files necessary to use the Apple IIGS. This folder
contains only a subset of the files found on the complete
Apple IIGS System Disk necessary for TML BASIC.

The ProDOS 16 operating system.

A program which determines whether or not to run the
Program Launcher or the Apple IIGS Finder.

The Apple IIGS Program Launcher.
The Apple IIGS Finder.

A folder which contains any necessary boot time
initialization files for the Apple IIGS.

A folder which contains all of the RAM based Apple IIGS
Toolbox toolsets.

A folder which contains classic and new desk accessories.

This folder contains only the TML Clock new desk
accessory.

13 Starting Out with TML BASIC



DRIVERS/ A folder which contains the various printer and modem
drivers.

FONTS/ A folder which contains Apple IIGS font files. These files
are used by the Font Manager. This folder is empty on the
TML BASIC disk.

ICONS/ A folder which contains icon definition files. These files
are used by the Finder to display applications and
documents with their icons.

Textbook versus Toolbox Programming

The introduction of this book mentioned two different types of programs capable of
being written in TML BASIC. The first type is referred to as a textbook program and
represents the kind of program typically found in most BASIC programming
textbooks — traditional programs that use the computer's text screen. The second
type of program makes use of the special features and capabilities of the Apple IIGS
Toolbox.

Chapter 5 of this manual discusses textbook programming techniques and requires
all of the boldface files and directories listed in Table 1-1 be present on your working
copy of the TML BASIC distribution disk. In addition, you will need the
AVERAGES.BAS example program found in the PART1.EXAMPLES folder.

Part III of this manual introduces the concept of programming the Apple IIGS
Toolbox and describes the contents of the IIGS Toolbox. In addition to the boldface
filenames appearing in Table 1-1, programs designed to use the IIGS Toolbox will
require the files found in the folder LIBRARIES. You may also wish to have the files
in the folder PART3.EXAMPLES.

Setting Up

The following three sections describe how you might set up a working environment
for using TML BASIC with a single 3.5" 800K disk drive system, a dual disk drive
system using either two 3.5" 800K or one 3.5" 800K and one 5.25" disk drives, or a
hard disk.

TML BASIC User's Guide 14 Starting Out with TML BASIC



NOTE

As noted earlier, TML BASIC is shipped with the contents of the Apple IIGS System
Disk version 3.1, or later, and includes the Apple IIGS Finder. The Finder requires a
minimum of 512K RAM. On startup, System 3.1 identifies the amount of memory
available. If 512K or greater memory is available, the Finder is displayed. If only
256K RAM is available, neither the Finder nor TML BASIC will run. This manual
assumes your system includes at least 512K RAM and one 3.5" disk drive.

Single Disk Drive System

Users with a single 3.5" 800K floppy disk will find that TML BASIC can be used
exactly as it is shipped on the distribution disk without having to sacrifice any
functionality or performance. You should create a working single disk system by
making a copy of the distribution disk as described in the section Backing up the
Distribution Disk in the beginning of this chapter.

The only restriction imposed by the single disk system is the size of the programs
you develop will be restricted to available disk space to store them. On your
working copy of TML BASIC, feel free to delete the various folders containing
example programs. The PART1.EXAMPLES folder includes the example programs used
in the first part of this manual which you should keep on your disk if you intend to
follow the discussions in the next four chapters.

You will still have access to all example programs you choose to delete by copying
them from the original distribution disk as needed. Never delete any of the files
from the original distribution disk.

Two Disk Drive System

If you have a second disk drive, either another 3.5" 800K disk drive or 5.25" disk
drive (formatted for ProDOS 16 of course), then you can take advantage of this extra
storage capacity for developing larger programs. You may find it easier to keep all of
the example programs, as well as any new programs you create, on a separate disk
and access them using your second disk drive. The LIBRARIES folder (see Table 1-1)
should be kept on the TML BASIC disk, thus allowing the folder's files to be shared
by all programs.

Hard Disk Drive System
While a hard disk is not required to use TML BASIC, you will enjoy the luxury of
faster disk access and an extensive amount of disk storage space available for

creating large programs. To use any ProDOS 16 formatted hard disk drive with TML
BASIC simply copy the necessary TML BASIC files onto your hard disk as outlined

TML BASIC User's Guide 15 Starting Out with TML BASIC



in Table 1-1. If your hard disk contains Apple IIGS System files prior to version 3.1,
TML BASIC will not work. In this case, you should copy the System files from the
distribution disk onto your hard disk.

A Note on RAM Disks

Traditionally, Apple II users have found the use of RAM disks advantageous, and
have done so without "stealing" available memory from an application, due to the
Apple II's restriction of permitting only 128K of memory or less to a single
application.

TML BASIC and the Apple IIGS are different however. TML BASIC is a memory
resident application, so there is no advantage in storing TML BASIC on a RAM disk.
Further, TML BASIC maintains in memory, an entire copy of the file(s) it is editing;
inlcuding library files, compiled code, etc., and uses the Apple IIGS Memory Manager
to keep track of available memory. Thus, any RAM space you might allocate for a
RAM disk would only decrease the amount of memory TML BASIC has available to
it for editing and compiling.

Compiled versus Interpreted Languages

TML BASIC is a compiled language. In this regard, as well as others, it differs from
interpreted languages such as Apple Computer's GS BASIC. A programming
language is characterized by its collection of statements, expressions and other
components generally known as the syntax, or structure, of the language. While
programs written in a computer language are generally understandable to the
human reader, they are totally incomprehensible to the computer, or in the case of
the Apple IIGS, the 65816 microprocessor.

Before a statement written in a computer language can be executed by the computer,
it must first be translated into code understood by the computer - machine language.
Machine language consists of long lists of binary numbers (0's and 1's) that are
understood by the computer as a series of off and on states representing operations
the computer is capable of performing. Of course, a long string of 0's and 1's is not
easily understood or readily comprehended by humans.

A major part of any computer language system is its means of translating programs
into machine language. In an interpreted language, the translation is done while
the program is being executed, sometimes denoted as "on the fly". If a statement in
the program is executed 100 times, the translation is also done 100 times.
Interpreted languages run slower than compiled languages because of the need for
translation to occur during the running of the program.

With a compiled language, however, the translation of programs into machine
language is handled prior to running the program. Thus, each line in the program

TML BASIC User's Guide 16 Starfing Out with TML BASIC



is translated only once - during the compilation process. In addition, the
compilation process discloses all of the syntax errors before the program is executed.
Of course, it can't find errors in the program's logic such as infinite loops. Compiled
programs run significantly faster than interpreted programs and they can also run
independently of any language processor. That is, compiled TML BASIC programs
can run by themselves under ProDOS 16 without TML BASIC on the disk.

Additionally, TML BASIC implements an integrated environment as a
memory-resident application that compiles programs with the same interactiveness
as an interpreter. This means that TML BASIC integrates its editor, compiler and the
running program into memory at the same time, thus eliminating the need to read
and write disk files which cause conventional compilers to be so much slower than
an interpreter in translating a BASIC program.

Line Numbers in TML BASIC

Historically, BASIC implementations have required the use of line numbers in
programs, however, TML BASIC does not require line numbers. In fact, TML
BASIC does not even allow the use of line numbers.

Interpretive BASIC language implementations require line numbers in their
program source codes so that the interpreter can locate statements and functions at
execution time that are not in sequential order. Line numbers are also used as a
fundamental component in an interpreter's editing process.

TML BASIC has no need for line numbers as it uses alphanumeric labels to locate
statements and functions in a program's source code. For example, rather than
entering GOTO 1000, in TML BASIC you would enter GOTO SetupProcess, where
SetupProcess is a alphanumeric label used to identify the SetupProcess routine. Use
of alphanumeric labels is illustrated in most of the example programs discussed in
Part III of this manual, as well as the example programs contained on the TML
BASIC distribution disk.

TML BASIC User's Guide 17 Starting Out with TML BASIC






Chepier 2
Using TML BASIC

In Chapter 1, you created a working copy of the TML BASIC distribution disk. Now
it's time to run TML BASIC and begin learning about some of the program's
capabilities. Before continuing, be certain you are using the working copy of TML
BASIC and you have stored the original TML BASIC distribution disk in a safe place.

In this chapter, you will learn about the steps necessary to invoke TML BASIC from
the Finder and how to perform file manipulation commands. Rather than creating
a new BASIC program to demonstrate these tasks, this chapter's discussion will use
example programs included within the PART1.EXAMPLES folder on your TML BASIC
working disk.

Running TML BASIC

Insert your working copy of TML BASIC into the 3.5" floppy disk drive and turn
(boot) the machine on. After the Apple IIGS completes its booting process you will
be presented with the Apple IIGS Finder's desktop. Figure 2-1 illustrates the
desktop's appearance after booting your Apple IIGs.

ok file Edit View Special Color
T N T T e T

B

THLBASIC ~ THLBASIC.OPTS  LIBRARIES
Y

L1EXAMPLES PART3.EXAMPLES MORE.EXAMPLES

PRODOS SYSTEM 1CONS

Figure 2-1
Apple IIGS Desktop

TML BASIC User's Guide 19 Using TML BASIC



The desktop will appear as shown in Figure 2-1 only if your working copy of TML
BASIC contains all of the files contained on the original TML BASIC distribution
disk, and if you booted your computer using that disk. The desktop's appearance
will differ if you are using some other hardware configuration (i.e. hard disk) or
arrangement of files on your working copy of TML BASIC.

Invoke TML BASIC by clicking the mouse once on the TML BASIC icon shown on
the desktop, pull-down the Finder's File menu and then select the Open command
(double-clicking the mouse over the TML BASIC icon accomplishes the same result
as selecting the Open command).

Opening the TML BASIC file results in a splash screen displaying the TML BASIC
logo. This splash screen tells you TML BASIC is loading into the Apple IIGS's
internal memory. Be patient, as the Apple IIGS requires a few moments before it
completes the loading process. Figure 2-2 illustrates TML BASIC's desktop (Main
Menu) after the program has been successfully loaded into memory.

Figure 2-2
TML BASIC's Main Menu

Examining the Integrated Environment

TML BASIC has been designed to take full advantage of the Apple 1IGS desktop
interface using the mouse, pull-down menus, windows, etc. This user-friendly
environment makes programming easy, as it integrates TML BASIC's editor and
compiler into the same working environment.

TML BASIC User's Guide 20 Using TML BASIC



The seven menus implemented in TML BASIC are designed to logically organize
the several commands available to you in TML BASIC. Using the mouse,
pull-down each menu to discover just how easy itis to use TML BASIC. Within
each menu, you will find the various TML BASIC commands. Most commands
found in the menus may be invoked by typing its corresponding command-key
equivalent rather than pulling down its menu and selecting the command with the
cursor. Command-key equivalents are displayed next to their command names in
each of the pull-down menus. Chapter 6 provides a review of each TML BASIC
menu, its corresponding commands and command-key equivalents.

Editing windows are the tools TML BASIC provides you for entering and modifying
program source code. TML BASIC allows you to have up to four different program
source codes open at one time. Each program is placed in a different editing window
and is independent of any other open windows. Only one editing window can be
active at a time. TML BASIC identifies the active window as the window which is
topmost. All commands issued by the user are performed on the source code
contained in the active window. Figure 2-3 illustrates the various components of a
typical TML BASIC editing window.

Close box Zoom box

' '

E[[==————-= A Window =—"——[]

gl <¢——— Title bar

<@———— \Vertical scroll bar

- Content >

|

<A

<4——— Grow box

Horizontal scroll bar

Figure 2-3
Editing Window Features

TML BASIC also implements dialog boxes as a means of communicating with the
user. The different dialog boxes used in TML BASIC will be discussed individually
as appropriate throughout the chapter discussions ahead. However, a brief mention
of what a dialog box is and how it works is discussed in the following paragraph.

TML BASIC User's Guide 21 Using TML BASIC



A dialog box is a window whose appearance is different than the editing windows
used in TML BASIC. Namely, it does not have a title across the top of the window,
nor does it have scroll bars and it can not be moved around on the screen. A dialog
box is used in TML BASIC to provide the user with requested information, or to ask
the user for required information before continuing. Dialog boxes usually inlcude
OK/Cancel buttons or Yes/No buttons. These buttons allow you to communicate
with TML BASIC to signify when you are finished with the dialog box.

Opening a Program

We will begin our tour of TML BASIC by opening a few example applications on the
TML BASIC disk. TML BASIC is capable of opening up to four separate editing
windows at one time, each independent of the other and containing a different
program. This feature provides you the flexibility of studying the source code of two
or more programs at the same time, or even copying code from one program to use
in another. Chapter 4 discusses the different techniques for copying source code
from one program to use in another.

We will start by opening the TML BASIC Open File Dialog Box, which lists the files
available on the TML BASIC disk. You can accomplish this by either dragging the
cursor down the File menu and then releasing the cursor on the Open command,
or by typing the Open command-key equivalent Regardless of the method
you use, the result on your screen should appear similar to Figure 2-4.

| e JITY Edit Search Windows Compile ProD0S

Openwhich file:
/Tnl/

3 Icons ] (_Disk )
[ Libraries

1 More Examples
£ Part1 Exanples (&\D
2 Part3.Examples ( Those )

[ System
( Concel )

Figure 24
Open File Dialog Box

TML BASIC User's Guide 2 Using TML BASIC



The Open File Dialog Box displays the files and folders contained on the TML BASIC
disk. Now, click the mouse on the PART1.EXAMPLES folder once and then on the
Open button. The files contained in the PART1.EXAMPLES folder now appear in the
Open File Dialog Box as illustrated in Figure 2-5. Find the HELLOWORLD.BAS file and
click the cursor over its name and then on the Open button to open the file.

Window

Il

Open which file:
&= /Tnl/Part1Examples/

[ Averoges.Bas ( Disk )
—

[ Dema.Bos

D3 Errors.Bas
Exomplelib.Bas @
Hellnworld.Bus
D) Libdemo Bas
( Concel )

Figure 2-5
PART1.EXAMPLES Folder

If your system is operating from either a hard disk or two disk drive system, click the
mouse on the Open File Dialog Box's Drive button until you find the
PART1.EXAMPLES folder containing the TML BASIC example programs.

Once you have selected the HELLOWORLD.BAS example program, its source code is
read from the disk and placed in a newly created editing window titled
HELLOWORLD.BAS. Now, open a second example program, DEMO.BAS from the
PART1.EXAMPLES folder, using the same technique described above.

Organizing the Editing Environment

Figure 2-6 illustrates both the HELLOWORLD.BAS and DEMO.BAS windows open and
overlapping each other. TML BASIC provides you the ability of arranging your
open windows at any location on the screen so that you can see the source code in
both windows. Organizing windows can be accomplished either by dragging each
window with the mouse or by invoking one of TML BASIC's window commands.

TML BASIC User's Guide 2 Using TML BASIC



e File Edit Search Windows Compile ProD0S
5 Hellowor1d.Bas i
(N o]
gm Tiessoges = “TNL BASIC 15 great! 7
PRI FOR Counter = LEN(Nessages) T0 2 STEP -1
PRIY BRINT LEFTS(Hessages, Counter-1);

PRLY  BRINT SPC(78-LEN Messaged);
A PRI FRINT RIGHTSCHESSHGES, LENCHessages -Counter-1)

q PRl
bRl NEXT Courter |

PRI} paINT
PELY FRINT “Fress any key to continue..."
PRIY Gers ey

Figure 2-6
Overlapping (Stacked) Windows

Click once on the HELLOWORLD.BAS window's title bar using the mouse, and drag
the window anywhere on the screen. You should notice when you first click the
mouse on the window it immediately makes HELLOWORLD.BAS the active window,
if the window is not already active, and places it in front of the DEMO.BAS window.
To change the size of an editing window you use the grow box. The grow box is the
small box in the bottom right corner of the editing window which has two small
rectangles in it. Now change the size of the window by clicking the mouse once in
the grow box of the HELLOWORLD.BAS window and dragging the mouse anywhere
on the screen.

Pulling down the Window menu displays TML BASIC's window commands. After
mastering the mouse techniques to change each open window's location, pull-down
the Window menu and select Stack Windows. The result should arrange the
windows similar to when they were originally opened as shown in Figure 2-6.

Now, select the Next Window command and notice how the editor places the
HELLOWORLD.BAS window behind the DEMO.BAS window and makes the DEMO.BAS
window the active window. Finally, selecting Tile Windows results in the two open
windows appearing in a tile format as shown in Figure 2-7. When two or more
windows are opened at one time, placing the windows in a tiled position allows you
to see each program's source code at the same time.

TML BASIC User's Guide 24 Using TML BASIC



¢ File Edit Search Windows Compile ProD0S

Helloworld.Bas
PRINT ™ Fello Horld" 1]
PRINT Hello Horld" A
PRINT * Hello Horld"
PRINT Hello World"
PRINT * Hella World"
PRINT ™ Hello Horld"
Hello Horld"

Demo.Bas

Tessaged = “THL BRSIC 1s greal]

FOR Counter = LENCHessage$) T0 2 STEP -1

PRINT LEFT$(Hessages, Counter-1);

PRINT SPCC78-LEN(Message$);

PRINT RIGHT$(NESSAGES, LENHessage$)-Counter-1)
NEXT Counter

Figure 2-7
Tiled Windows

Program Integrity

Thus far you have learned how to open editing windows (each containing program
source code) as well as the various techniques for reorganizing windows on TML
BASIC's desktop. TML BASIC makes opening and rearranging windows easy with
its three window commands. TML BASIC also provides you a safe means of
maintaining the integrity of your program's source code in the event an
unintentional change to the program's source code has been made.

The example programs opened in this chapter will be of use again later in this
manual's discussions. Therefore, it is important not to alter their original content.
Choosing the Revert command from the File menu directs TML BASIC to ignore
any changes inadvertently made to a program's source code since it was last saved.
When selecting this command, TML BASIC re-reads the last version of the
program's source code from disk and places it into the editing window, thus
ignoring all changes that have been made to the source code.

The Revert command should be used anytime an unintentional change has
occurred in a program's source code. Remember, every change made to the
program's source code since the last save will be lost as a result of issuing the Revert
command. TML BASIC will display a dialog box asking if you are certain about
discarding the changes made to the program prior to reverting your changes.

TML BASIC User's Guide o) Using TML BASIC



When you close an editing window or quit from TML BASIC, and you have not yet
saved the changes made to a program, TML BASIC will ask if you would like to save
the changes made. At this point you have one last chance to decide if you want to
lose or keep your editing changes, or cancel the Close command altogether.

Exiting TML BASIC

In this chapter, we opened two example programs contained on the working disk,
discussed rearranging windows in the editing environment and defined a means to
avoid having unintentional changes saved in a program's source code.

Before leaving this chapter, you should close all open windows, exit TML BASIC
and turn the computer off just as you would clean-up your desk before leaving for
the day.

To close the open windows, select one window at a time by clicking the mouse
anywhere on an open window and then choose Close from the File menu (clicking
a window's close box accomplishes the same result). If changes were made to either
program's source code, the Close File Dialog Box will appear asking if you would
like to save those changes. Be sure to click the No button, thus ensuring the
original program source code's integrity. After closing both files, select Quit from
the File menu to exit TML BASIC and return to the Finder's desktop.

TML BASIC User's Guide % Using TML BASIC



Cheplier 3

Compiling and Running a Program

In Chapter 2, several of TML BASIC's file and window commands were discussed.
In this chapter, we will explore the three different compile options available in TML
BASIC allowing you to compile and run programs. To do this, we will re-open the
same two examples discussed in Chapter 2.

Looking at Examples

Begin by booting your Apple IIGS with your TML BASIC disk and then run TML
BASIC by double-clicking on the TML BASIC icon.

The HELLOWORLD.BAS program used in Chapter 2 is a simple input/output (I/O)
program. The program is written to demonstrate how TML BASIC writes the line of
text "Hello World" as output to the screen and then recognizes the carriage return
key from the keyboard as input to the program. The DEMO.BAS example program
uses the same I/O capabilities as HELLOWORLD.BAS but tests various string functions
of TML BASIC.

Before we begin, let's re-open the HELLOWORLD.BAS and DEMO.BAS example
programs. Recall that to open these programs you select the Open command from
the File menu, then open the PART1.EXAMPLES folder and select the appropriate
filenames from the Open File Dialog Box.

After opening both programs, the TML BASIC editing environment will consist of
two open windows containing each program's source code. Figure 2-6, in Chapter 2,
illustrates what your screen should look like as a result of opening both programs.
You may wish to reorganize the two open windows so that both program source
codes are visible - issue the Tile Windows command from the Windows menu.

Compiling Alternatives

TML BASIC offers the programmer three different options for compiling programs.
The compile commands are found in the Compile menu. You can see each of the
commands by pressing and holding the mouse button down over the Compile
menu. Figure 3-1 shows the two open editing windows in a tiled position with the
Compile menu pulled down.

TML BASIC User's Manual 27 Compiling and Running a Program



e File Edit Search Windows JXITHCE ProD0S

Ma Nemory &k Run  GHJ
PRINT * Kello Horld" To Disk 1]
PRINT * Hello Horld"

BINT* Hello Morld® BIERURI &1
PRINT * Hello World"
PRINT * Kello Horld" Preferences...
PRINT * Hello Horld"
PRINT * Hello Norld"

i

=0 Demo.Bas

JessageS = “THL BRSIC is great!

FOR Counter = LEN(Hessage$) T0 2 STEP -1

PRINT LEFT$(Hessages, Counter-1);

PRINT $CC78-LEN(MessageS);

PRINT RIGHTS(NESSAGES, LENCHessage$)-Counter-1)
NEXT Counter

Figure 3-1
Compile Menu

The first command in this menu is likely to be the one you use most often. The To
Memory & Run command invokes TML BASIC to compile the source code in the
active editing window (the topmost window), and then, upon successful
completion, executes the program directly within the Apple IIGS's internal memory.

The To Disk command is used to invoke TML BASIC to compile a program and
create a stand-alone ProDOS 16 application file on disk. You will use this command
when you have a complete running program free of errors and you wish to execute
the program directly from the Finder.

Finally, the Check Syntax command allows you to quickly verify the syntax of a
TML BASIC program. This option does not run the selected program nor does it
create a disk file. This is the fastest compile option available in TML BASIC.

When a compile option is invoked by selecting any of the three compile commands,
TML BASIC displays the Compile Progress Dialog Box. This dialog is used to display
the compiler's progress during compilation. When the Compile Progress Dialog

Box's indicator bar reaches the right side of the display, the compile process has been
completed.

Testing a Program's Source Code

The Check Syntax command is the fastest of the three compilation techniques

TML BASIC User's Manual 2 Compiling and Running a Program



since it does not cause any code to be generated. Instead, this command instructs
TML BASIC to verify the active program was written using valid BASIC key words,
statements and functions. It cannot, however, check a program for correct logic. For
example, an infinite loop in a program's source code will go undetected by the
Check Syntax command.

Click the mouse once on the HELLOWORLD.BAS window making it the active
window. Pull-down the Compile menu and select the Check Syntax command.
The Compile Progress Dialog Box is immediately displayed indicating the
compiler's progress as it checks the syntax of the source code - Figure 3-2.

e file Edit Search Windows JPLaSICR ProD0S
Hellowor1d.Bas

PRINT * Hello World"

PRINT " Hello Horld" \
PRINT * Hello Horld"

PRINT * Hello Horld"

PRINT *
PRINT " Compiling: Helloworld.Bas
PRINT " B '-
<l Pressd -

'." to cancel.

Hessage = “THL BASIC is great!

FOR Counter = LENCHessage$) 10 2 STEP -1

PRINT LEFT$(Messages, Counter-1);

PRINT SPCC78-LEN(Nessage$);

PRINT RIGHTS(MESSAGES, LEN(Hessage$ -Counter-1)
NEXT Counter

Figure 3-2
Complle Progress Dialog Box

When the indicator bar inside the Compile Progress Dialog Box reaches the right
side of the display, the compile is complete. As you will see, TML BASIC takes only
a brief moment to compile the HELLOWORLD.BAS program. The reason for this, of
course, is that TML BASIC is a fast compiler. In addition, the program is quite small
and the Check Syntax command is the fastest of the TML BASIC's three compile
options.

A result of no errors found does not necessarily mean a program is completely free

of all possible errors. However, using the Check Syntax command will ensure the
program does not contain any syntax errors.

TML BASIC User's Manual x Compiling and Running a Program



It is important you use the Check Syntax command when you are uncertain
whether your program will run correctly. Since this command does not run the
program after compiling it, you can avoid situations where your program contains
logic errors which might cause the computer to crash.

If an error is detected in the source code of a program, TML BASIC will stop the
compilation process, return to the TML BASIC editor, highlight the exact location of
the discovered error and then display a descriptive error message. Errors are
discussed later in this chapter in the section "Detecting Program Errors".

Running a Program

Once you have determined your program does not contain any syntax errors by
issuing the Check Syntax command, the program can then be run. To do this,
select the To Memory & Run command from the Compile menu. Upon selecting
this command, TML BASIC again displays the Compile Progress Dialog Box. This
time the compiler generates code for the program. If the program does not contain
syntax errors the compiled program is immediately run.

To run a compiled program, the TML BASIC environment temporarily shuts down
by hiding its menus, windows, etc. and then transfers control to the compiled
program. The compiled program is now in complete control of the computer as it
executes. When the program has completed execution, the TML BASIC
environment restores its menus and windows allowing you to continue
programming.

Because it is possible the compiled program may contain logic errors causing the
machine to crash, TML BASIC provides a safety feature called Auto Save. If this
option is turned on, TML BASIC automatically saves any changes you have made to
the program's source code prior to compiling. This feature ensures you will not lose
your source code changes in the event of a catastrophic error during your program's
execution. The Auto Save option is discussed in more detail in Chapter 6 under the
"Preferences..." section.

To compile the HELLOWORLD.BAS program, first, be certain the program is in the
active window (topmost window). If it is not, make it the active window by clicking
the mouse once anywhere in its window. Now select the To Memory & Run
compile command. The HELLOWORLD.BAS program uses the text screen to display
the message "Hello World" at several locations on the screen. The program then
waits for the Return key to be pressed. After the Return key is pressed, program
execution terminates and control is returned to the TML BASIC environment with
the windows restored exactly as you left them.

TML BASIC User's Manual 0 Compiling and Running a Program



Creating a Stand-Alone Application

As seen above, the ompile to memory feature of TML BASIC is extremely fast and
interactive. However, there exist one small problem — you must launch TML
BASIC every time you want to run a TML BASIC program. Thus, the third
compilation technique available in TML BASIC — To Disk. This compile option
allows you to create stand-alone ProDOS 16 applications that can be run from the
Apple IIGS Finder by double-clicking on its icon just as you did the TML BASIC icon
to invoke TML BASIC. You can even copy the compiled application to another disk
and run it from there because TML BASIC is no longer required after the program is
compiled to disk.

Let's compile the HELLOWORLD.BAS program to disk. Make the open window
containing the HELLOWORLD.BAS program the active window (remember the
compile commands only work on the active window). Select the To Disk command
from the Compile menu to compile the HELLOWORLD.BAS program and create a
stand-alone application on disk. You will notice the compilation process takes
significantly longer to complete this time.

The reason for this additional amount of time results from the compiled program
being written to disk. The name of the resulting application file on disk is
HELLOWORLD, and it is located in the same folder as the HELLOWORLD.BAS source
code file.

IMPORTANT

Following are the three rules used by TML BASIC to determine a compiled
application's filename when issuing the To Disk compile command.

(1)  If the name of a source code file ends with the suffix .BAS then the
application file is assigned the same name as the source code file less the
.BAS suffix. The application file is placed in the same directory as the
source code file.

(2)  If the name of a source code file does not end with the suffix .BAS then
the name of the application file is the name of the source code file with
the letters "APP" added to the end of the name. If the source code
filename is greater than 12 characters, TML BASIC uses only the first 12
characters of the source filename. The application file is placed in the
same directory as the source code file.

TML BASIC User's Manual 31 Compiling and Running a Program



(3)  If the source code is in a new "Untitled" window, that is, there exist no
disk file containing the new program's source code, then the name of the
application file becomes UNTITLEDAPP. The application file is placed in
the folder currently open when the Open File Dialog Box is displayed.

Compiling Libraries

In addition to compiling programs, TML BASIC is capable of compiling libraries. A
library contains BASIC program statements, but is not capable of being run
(executed) like a program. Instead, a library is compiled separately from a program
and then used in one or more different BASIC programs. Libraries allow you to
split a program up into smaller, more manageable pieces of code. Chapters 7 and 8
describe libraries in greater detail.

A library looks much like a program except it begins with the statement DEF
LIBRARY and ends with the statement END LIBRARY. The file EXAMPLELIB.BAS in
the PART1.EXAMPLES folder is an example of a TML BASIC library. Additionally, the
file LIBDEMO.BAS within the PART1.EXAMPLES folder shows how the EXAMPLELIB.BAS
library's source code is used in a program. Using TML BASIC, you should open
these two files to see how the library mechanism is used in TML BASIC.

The EXAMPLELIB.BAS file is a library containing a procedure declaration that prints
the message "Hello World" just like the HELLOWORLD.BAS program. The
LIBDEMO.BAS file is a program which has only four lines of code. However, when
this program is run, it generates the same output as the HELLOWORLD.BAS program
because it calls the procedure in the EXAMPLELIB.BAS library.

Because a library is not capable of being run, the TML BASIC compiler acts
differently when selecting the various compiler commands in the Compile menu.
As mentioned above, when a library is compiled, it does not create a program that
can be run. However, TML BASIC does save the library's compiled code so that
other programs can use it. Thus, when selecting the To Memory & Run command,
TML BASIC compiles the library but then returns control to the editor instead of
transfering control to the compiled code as it would do for a program. Note that
TML BASIC does save the compiled code in memory so that it can later be used by a
program. To experiment, compile the EXAMPLELIB.BAS file by selecting the To
Memory & Run command. Then compile the LIBDEMO.BAS program using To
Memory & Run as well. Because the LIBDEMO.BAS file is a program, it is run
immediately after successfull compilation

Libraries can also be compiled using the To Disk command. When a library is

compiled to disk, it does not create a ProDOS 16 application, but rather, a TML
BASIC .LIB file. The .LIB file contains the library's compiled source code. When a

TML BASIC User's Manual R Compiling and Running a Program



program needs to use a library that has not been compiled to memory using the To
Memory & Run command, TML BASIC searches for the compiled code on disk in a
.LIB file. Try compiling the EXAMPLELIB.BAS file using the To Disk command and
then look on the disk using the Apple IIGS Finder for its .LIB file.

IMPORTANT

Following are the rules used by TML BASIC to determine a compiled library's
filename when issuing the To Disk compile command.

(1)  TML BASIC uses the name of the library as specified in the DEF
LIBRARY statement as the base name of the compiled library file. TML
BASIC then adds the suffix .LIB to the end of the library name to create
the complete filename. The library file is placed in the same directory as
the source code file.

The source code filename has no effect on the name of the compiled
library file. However, to avoid confusion, it is recommended that the
source code filename be the same as the library name with the .BAS
suffix.

(2)  If the library name is greater than 12 characters, TML BASIC uses only
the first 12 characters of the library name. The .LIB suffix is then added,
and the file is created in the same directory as the source code file.

The Check Syntax command behaves exactly the same for both programs and
libraries. That is, TML BASIC only verfies the library's source code contains legal
BASIC statements.

Detecting Errors

So far in this chapter we have discussed how to compile programs using TML
BASIC. However, our discussion has been limited to programs known to be correct,
that is, they do not contain any errors. In this section, we will discover how TML
BASIC deals with errors.

First, let's consider the components of the TML BASIC environment. TML BASIC
is an integrated development tool made up of three separate pieces — the editor, the
compiler and the linker. These different pieces work so closely together the user
really only perceives them as one in the same. However, knowing how these pieces

TML BASIC User's Manual 33 Compiling and Running a Program



work together will help you understand the error messages TML BASIC reports to
you.

The editor of course, is where you spend most of your time. It is responsible for the
editing windows and most of the commands available in each TML BASIC menu.
The compiler is invoked whenever you select any of the three compile commands.
The compiler is responsible for checking if syntax errors exist in your program and
then generating code for the program. Finally, the linker component of TML BASIC
is only invoked when you have chosen to compile a program to memory or to disk.
The linker is responsible for combining the compiled code with other pieces of code
your program needs (i.e. libraries). It is also responsible for allocating the internal
memory a program requires in order to run within the Apple IIGS's memory, and
for writing a compiled program to disk.

The editor only reports errors related to the editing environment. It will report an
error when you ask it to find a string in a program that does not exist, when there is
not enough memory to read another program into memory, and other operations
related to the editing environment. The compiler only reports errors related to
illegal BASIC source code. If you misspell a reserved word or forget to put a comma
where one was expected, the compiler reports an error. Finally, the linker reports
errors when an attempt to create a final program fails. This might happen if you
compile a program to disk and the disk is locked or there is not enough room to fit
the compiled program on disk.

When any component of the TML BASIC environment detects an error it first takes
whatever actions necessary to recover without causing any loss of data and then
displays the Error Dialog Box with a descriptive error message. In addition to the
error message, an icon on the left side of the dialog box is also displayed. This icon is
used to indicate which component of TML BASIC detected the error. The icon can
usually help you better understand the error message. In addition, if the error is
related to a particular part of your program's source code, the editor displays that
portion of source code in the editing window and highlights the exact location of the
error. Highlighting usually occurs for detected compiler errors.

Editor Errors

To study how error messages are reported in the TML BASIC environment, first,
close any open editing windows, and then open the file ERRORS.BAS from the
PART1.EXAMPLES folder. We have intentionally placed several errors in the source
code of this program so that you can see how the TML BASIC error reporting
mechanism works.

The first type of error we will explore is an editor error. To cause an editor error
select the Find What command from the Search menu (we will discuss this feature
in greater detail in Chapter 4, but for now just follow along). The Find Dialog Box
appears asking you to enter the text you wish to find. At this point, enter the string

TML BASIC User's Manual A Compiling and Running a Program



"XYZ" without the double quotes, and then click the mouse on the Find button.

The string "XYZ" does not appear in the file ERRORS.BAS, so the editor reports this in
the Error Dialog Box as seen below in Figure 3-3.

o Fil[dit Search LAILILEY Compile ProD0S

& "¥YZ* not found

Errors.Bos
REM This exanple contains syntax and runtine errors

| Nessage$ = “This is an exanple progran’
| PRINT LEFT$(Message$ 18) ‘This statenenl is nissing a coma

| i = 15000 A

jh = 20008

Yok =ikt R 'This statenent causes an Overflon Error
RINT "The sun of "5 ifs " and °j j& " is "} sunk

Figure 3-3
Error Dialog Box - Editor Error

Note the icon displayed in the left side of the Error Dialog Box. This icon indicates
at the error was detected by the editor. To make the Error Dialog Box go away,
simply click the mouse button or press any key on the keyboard. The editor detects
and reports several different types of errors. For a complete list of the errors
reported by the editor see Appendix A.

Compiler Errors

The ERRORS.BAS program also contains a syntax error in its source code - an illegal
statement. To find this error simply select the Check Syntax command from the
Compile menu. Figure 3-4 shows how the compiler reports syntax errors.

In this example, the message " ',' expected" is reported in the Error Dialog Box. This
time a different icon appears — a small green bug. This icon indicates the error was
detected by the compiler. In addition, the editor highlights the exact source code
location of the encountered error in black, thus enabling you to fix the problem.

TML BASIC User's Manual 35 Compiling and Running a Program



& File Edit Searchmtmpile ProD0S

% " " expected.

B 5 e R 0 R R R R 5 5 A e e - B
Errors.Bos
REM This exanple contains syntax and runtine errors

Heseaged = “This is an exaaple progran’
PRINT LEFT$(Messages [B) 'This stalenent is nissing a conng

4 if = 15000
3 j% = 20008
sunf = if + jR 'This statenent causes an Overflon Error
FRINT “The sun of *; i%; " ond " jA; " is °) sund

Figure 34
Error Dialog Box - Compiler Error

Again, click the mouse to make the Error Dialog Box go away and then enter the
comma symbol where the compiler expected it. After correcting the syntax error,
again select the Check Syntax command from the Compile menu. This time the
compiler does not report any errors.

Do not compile this program using the To Memory & Run command yet, since
there is another type of error we will discuss below.

Linker Errors

The final component of TML BASIC is the Linker. There exist only a few errors
which the Linker can detect. One of these errors arises when the Linker attempts to
write a program which has been compiled to disk, and an error occurs when writing
to the disk. This error can occur when the disk is full or it has been write protected.

If you would like to see how the linker reports an error message, remove the floppy
disk which contains the ERRORS.BAS source code file and write protect it. Then place
the disk back in the disk drive and select the To Disk command from the Compile
menu. After the Compiler successfully compiles the program it invokes the Linker
to the program and attempts to write the stand-alone application file to disk.
However, you have write protected the disk. Thus, the linker displays the error
message seen in Figure 3-5. The icon used by Linker errors is two small chain links.

TML BASIC User's Manual 3% Compiling and Running a Program



Errors.Bas
FEN This exomple contains syntax and runtine errors

Hessage$ = “This is an exanple progran”
PRINT LEFT$(HessageS, 18) "This statenent is nissing a conma

if = 15000
j# = 20000 Y

sud = ik + jR 'This statenent causes an Overflon Error
PRINT “The sun of *j i%; " and °j jA; " is " suaf

BETS Keys

Figure 3-5
Error Dialog Box - Linker Error

Runtime Errors

Actually, you might think of TML BASIC as having a fourth component — your
program. When your program runs, it too can generate errors. For example, the
program might attempt to add two numbers which cause an Overflow Error, or
provide a value out of range thus causing an Illegal Quantity Error. These errors are
called runtime errors. The built-in TML BASIC debugger is capable of detecting
runtime errors and reporting them back to the TML BASIC environment so that
you can modify your program accordingly.

The TML BASIC debugger is available for debugging your programs only if you
choose the To Memory & Run command from the Compile menu. In addition,
you must instruct TML BASIC to turn on the debugger and generate the special
debugging code needed to detect runtime errors by selecting the Debug option from
the Preferences Dialog. The Preferences Dialog is displayed by choosing the
Preferences... command from the Compile menu. The Preferences Dialog is
discussed in detail in Chapter 6.

When you turn on the debugger by choosing the Debug option from the Preferences
Dialog, the Compiler generates special code everywhere an error might potentially
occur. Please note while this feature provides a powerful mechanism for
developing programs, it does generate a significant amount making your programs
larger and slower. After you have a program working correctly, it is generally a good
idea to turn this option off.

TML BASIC User's Manual 37 Compiling and Running a Program



Finally, the program ERRORS.BAS also contains a runtime error. To see how this
feature works, make sure the the Debug option is turned on (it is on by default) in
the Preferences Dialog, then select the To Memory & Run command from the
Compile menu. If you successfully removed the syntax error in this program as
described in the "Compiler Errors" section of this chapter, the compiler and linker
should complete successfully. The TML BASIC environment then temporarily
shuts down by hiding its menus and windows and runs the compiled program.

Unfortunately, this program has a runtime error in the seventh line. In this line,
the value of sum% is set equal to the sum of the variables i% and j% (15,000 +
20,000). Because the variable sum% in an integer variable, the largest value it can
store is 32,767. Thus, the value 35,000 overflows the capacity of sum%. The TML
BASIC debugger detects this and aborts the execution of the running program.
Upon returning to the TML BASIC environment, the line in which the error was
detected is highlighted and the runtime error message "Overflow Error" is displayed
in the Error Dialog Box as seen in Figure 3-6. In this example, the bomb icon is
displayed to indicate the error is a runtime error.

The range and precision of numbers in TML BASIC is discussed in Chapter 7. In
addition, each TML BASIC statement and function described in Chapter 10 lists the
runtime errors that may possibly occur for each statement and function respectively.

v

;;5_ﬁ “"agé‘n}“”",w Compile ProD0S

a Overflow error. A

' Errors.Bas
3 REN This exanple contains syntax and runtine errors

Nessage$ = “This is an exanple progran”
| PRINT LEFT$(Message§, 18) ‘This statenent is missing a conna

| if = 15009
| i = 20009

| RIW "The sun of “j ify "ond °y jAy " is "y sund

| GETS Keys

Figure 3-6
Error Dialog Box - Runtime Error

TML BASIC User's Manual 38 Compiling and Running a Program



There are numerous errors that can occur when your program is running.
Appendix A outlines each of these, along with a brief description of how each error
might occur.

Just a Reminder...

In the course of editing, compiling, running programs and fixing errors, you may
forget the last error that was detected and reported in the Error Dialog Box. If this
happens, don't despair, it is possible to recall the Error Dialog Box to display the last
error encountered. To do this, simply select the Last Error command in the
Windows menu.

Finally, recall that all editor, compiler, linker and runtime errors are listed in
Appendix A of this manual. Along with each error is a description of the error and
usually some suggestions of how the error might have occurred and how to fix it.

As always, before leaving this chapter, be certain to close all open windows without

saving any changes to the files you might have made. To leave TML BASIC select
the Quit command from the File menu.

TML BASIC User's Manual X Compiling and Running a Program






Chepier 4
Advanced Program Editing

In Chapters 2 and 3, the principles of opening, closing, compiling and running
programs were discussed. In this chapter, several additional TML BASIC features
are introduced demonstrating TML BASIC's powerful editing commands.
Additionally, the techniques for printing a file is discussed, and finally, you will
learn about three ProDOS commands which may be issued from within TML
BASIC.

Creating a New Editing Window

e Ffile Edit Search Windows Compile ProD0S
. Helloworld.Bas

PRINT * Kello Horld® *
PRINT * Hello Horld"
PRINT * Hello Horld"

PRINT * Hello Horld"

PRINT * Kello Horld"
PRINT * Hello Horld"
PRINT * Hello Horld"

e
[ il

(]

Figure 4-1
Tiled Windows

Once again, boot your Apple IIGS using the working copy of TML BASIC and launch
TML BASIC. Set-up your editing environment by first opening the
HELLOWORLD.BAS example program and then selecting the New command from the
File menu. Complete the set-up process by selecting the Tile Windows command
from the Windows menu. Figure 4-1 illustrates the resulting screen's appearance
after setting up your working environment.

TML BASIC User's Guide 4] Advanced Program Editing



Rather than using an example program alone to describe each of the edit features
available to you in TML BASIC, we will create a new program using the empty
window you just created. The result will be a complete program written entirely by
borrowing source code from the HELLOWORLD.BAS example program.

Using the Clipboard

TML BASIC implements an editing feature called the clipboard. The clipboard is a
temporary storage area for text and is used to store words, lines or entire portions of
a program's source code. The fundamental idea of the clipboard allows you to
borrow text from an existing program's source code for use in a different location
within the same program or to use in an entirely different program.

TML BASIC allows you to place portions of text into the clipboard by using any one
of its editing commands - cut, copy, paste, clear and select all - found in the Edit
menu and discussed in the sections ahead. Prior to issuing any one of these four
commands, the range of text to be placed in the clipboard must first be selected.
Three methods are available to you when selecting text - dragging, shift-clicking and
double-clicking. One method may be more appropriate than the other two
depending upon the range of text to be selected.

Before discussing the three different means of selecting text, we will define the
current insertion point. The current insertion point is located where the cursor
appears after clicking the mouse once in the active window. Using the location of -
the current insertion point you can begin entering or deleting characters, or you can
use the location for marking the beginning of text to be selected.

Dragging is the easiest way to select text, and can be accomplished by moving the
cursor on the screen to the beginning of the text you wish to select, then click and
hold the mouse button down while dragging the cursor to the end of the text to be
selected. You will notice the range of selected text appears in black (inverted) type.
Dragging allows you to be extremely particular about the range of text you select.

Secondly, you can select a range of text by shift-clicking. To shift-click, move the
cursor to the beginning of the text you wish to select and click the mouse once.
Next, move the cursar to the end of the text you wish to select, then hold down the
Shift Key and click the mouse button once to select all of the text between the first
and second mouse clicks. This method is best used to select a large portion of a
program's source code for placement in the clipboard.

Thirdly, to select text by double-clicking, position the mouse over the text you would
like to select, and quickly press the mouse button twice. Double-clicking will select
the entire word which appears under the cursor. Double-clicking is most useful
when only a single word is to be placed in the clipboard.

TML BASIC User's Guide 42 Advanced Program Editing



Editing Commands

At the heart of TML BASIC is its ability to assist you in writing programs. Unlike
conventional editors, TML BASIC provides a full-screen editing environment
enabling you to both write programs more quickly and make necessary source code
changes with little difficulty.

With HELLOWORLD.BAS selected as the active window, issue the Select All command
from the Edit menu. Notice that the entire contents of the HELLOWORLD.BAS
window is inverted and placed in black type. Remember, inverted text represents
the range of selected text. Now, issue the Copy command from the Edit menu.
You will not see any changes on the screen, but rest assured the selected range of text
now exists in TML BASIC's clipboard and may be used to assist in creating a new
program.

Position the cursor anywhere in the "Untitled" window and click the mouse once,
resulting in the "Untitled” window becoming the active window. Now, move the
cursor to the first line in the "Untitled" window and click the mouse once to create
the current insertion point. Issuing the Paste command from the Edit menu at this
time results in the clipboard's present contents being pasted into the "Untitled"
editing window beginning at the current insertion point. Figure 4-2 illustrates the
result of performing this Select All/Copy/Paste command.

e File Edit Search Windows Compile ProDOS
Helloworld.Bas

PRINT * Hello World"
PRINT * Hello Horld"
PRINT * Hello Norld®
PRINT * Hello Horld"
PRINT Hellg Horld"
PRINT " Hello Horld"
PRINT *

Untitled,
PRINT * Hello Horld™ ®
PRINT * Hello World"

PRINT "Press any key to continue..."
BETS Key$

Figure 4-2
Pasting Source Code

TML BASIC User's Guide 43 Advanced Program Editing



Unlike the Copy command, the Cut command results in the selected range of text
being completely removed from its original location in a program's source code and
placed into the clipboard for use elsewhere by issuing the Paste command. If you
had issued the Cut command in place of the Copy command in the last example,
the HELLOWORLD.BAS editing window would appear empty with its entire contents
placed in TML BASIC's clipboard.

That brings to mind one last editing command - the Clear command. Issuing the
Clear command after selecting a program's entire range of text results in the active
window's contents being erased. The program's source code is not placed in the
clipboard and you would have to issue the File menu's Revert command in order
to restore the program's source code. The Clear command is useful when you do
wish to erase a selected range of text or an entire window's text and without
disturbing the clipboard's contents.

Obviously, TML BASIC's editing commands are not limited to selecting an entire
program's source code. Using any one of the three techniques discussed in the
previous section for selecting text (dragging, shift-clicking and double clicking)
enables you to cut, copy, paste and/or clear any range of text within a program.

Note that the clipboard can only hold one piece of information at a time, so
everytime you cut or copy from a window, any information previously in the
clipboard is replaced. Each time you paste from the clipboard, however, a duplicate
copy of the information remains in the clipboard.

Find and Change

After pasting the HELLOWORLD.BAS program's entire source code into the "Untitled"
window, the next step in our exercise is to change each occurrence of the character
string "Hello World" to "First Attempt" in the "Untitled" window. One way to do
this, of course, would be to move the cursor to the end of the each occurrence of the
string "Hello World", and then backspace over each "Hello World" string and
re-type "First Attempt". This could be an extremely cumbersome and time
consuming task, so let's investigate TML BASIC's ability of finding a string of text
and replacing it with another string of text.

The TML BASIC Search menu contains three commands for locating and changing
text in an active window. The first command is the What to Find... menu item.
Choosing this command displays the TML BASIC Find Dialog Box shown in Figure
4-3. The Find Dialog Box request two entries be made — Find What and Change To ,
and three buttons — Find, Cancel and Change All.

TML BASIC User's Guide 4 Advanced Program Editing



o File Edit JOTI0Y Vindows Compile ProD0S
Hol lowarld Ras

Find What: [HelloWorld |
Change To: [First Attenpt |

( rinde ) [ Concel ] [lChungeMl]

T RETTO ROTTY
= I

Untitled
PRINT " Hello Horld®
PRINT * Hello Norld"

PRINT "Press any key to continue,.,”
GETS Key$

Figure 4-3
Find Dialog Box

The Find What item is where the string to be searched for is specified. For our
example, you should enter the string "Hello World" here. If all you wanted to do
was find the next occurrence of this string then you would press the Find button in
the Find Dialog Box. The dialog would go away, and TML BASIC would search the
program contained in the active window, beginning at the current insertion point
for the next occurrence of "Hello World". However, in our example, you also need
to change the string "Hello World" to "First Attempt" once it is found. Thus, you
should enter the string "First Attempt" in the Change To text edit item, and then-
press the Find button.

After pressing the Find button, the string "Hello World" is found, and is
automatically selected by inverting the string in black. To change the string to "First
Attempt”, as you specified in the Find Dialog Box's Change To text edit item, simply
issue the Change then Find command from the Search menu. After changing the
string, TML BASIC proceeds to find the next occurrence of "Hello World". Once
every occurrence of the "Hello World" string has been changed using this method,
TML BASIC reports that the string cannot be found in an Error Dialog Box.

Also, you could save yourself the time of locating and changing each occurrence of
the "Hello World" string by pressing the Change All button in the Find Dialog Box.

One final change you should make is to save the program to disk under the new

name of FIRSTATTEMP.BAS. Selecting the Save As command from the File menu
results in the Save File Dialog Box displayed on your screen. The Save File Dialog

TML BASIC User's Guide 45 Advanced Program Editing



Box contains buttons allowing you to determine both the disk and folder you wish
to save the new program in, as well as the name it will be given for future use.

The disk and folder will already by identified as the TML BASIC disk and the
PART1.EXAMPLES folder respectively, so all you need to do is enter the name
FIRSTATTEMP.BAS at the Save document as: insertion point in the dialog.

The result of these changes, as well as the copy and paste commands performed, is a
new program, which for the most part does exactly what the HELLOWORLD.BAS

pregram does. Figure 44 illustrates the screen's appearance as a result of creating
the new FIRSTATTEMP.BAS program.

¢ File Edit Search Windows Compile ProD0S
Helloworld.Bas

PRINT * Kello World"
PRINT * Hello Horld"
PRINT * Hello Norld®
PRINT " Hello Horld"
PRINT Hello World"
PRINT * Hello Horld"
PRINT * Hello Norld"

———————=—listittempls =F——"——7F):
PRINT * First Atteapt” b
PRINT * First Rttenpt®
PRINT * First Atteapt®

PRINT "Press any key lo continue..."
GETS Key$

Figure 44
New File - FIRSTATTEMP.BAS

Printing

TML BASIC can print the contents of the active editing window using the Print
command from the File menu. When selecting this command, the text in the
topmost window is printed to the printer using the current printing options. TML
BASIC prints to either of the serial ports (slots 1 and 2) directly. Thus, TML BASIC
can print to any serial printer, such as the ImageWriter, or to any parallel printer
connected to an interface card in either slot 1 or 2. TML BASIC provides three

commands in the File menu for controlling the way a file is printed: Print Options,
Page Setup and Chooser.

TML BASIC User's Guide 46 Advanced Program Editing



The Print Options command is used to define the information printed on a page.
When selecting this command the Print Options Dialog Box is displayed as shown
in Figure 4-5.

[ of JTITY Edit Search Vindows Compile ProD0S
Helloworld.Bas

PRINT * Hello Horld"
PRINT * Hello Horld"
PRINT * Hello Norld"
PRINT * Hellorlianld

PRINT Rellf | —Print Options

PRINT * Hel e
PRINT * el | | E Print Title

<] Print Date/Time
Print Page Numbers

PRINT *
PRINT * @

PRINT " TIT ST ITeeempe

PRINT “Press any key to continue...”
GETS Keyd

<ok

Figure 4-5
Print Options Dialog Box

When TML BASIC prints a file to the printer, it optionally prints a header across the
top of every page. The header can include the name of the file (Print Title), the
current date and time (Print Date/Time), and page numbers (Print Page Numbers).
If an option is checked, TML BASIC prints the corresponding information in the
header. If none of the options are selected, a header is not printed.

The Page Setup menu command displays the Page Setup Dialog Box (Figure 4-6)
when selected. This dialog is used to configure the way TML BASIC prints a page.
There are two options: Continuous and Cut Sheet. If Continuous is selected, a
header is only printed on the first page, and no blank lines are printed at the end or
beginning of a piece of paper. This option maximizes the number of lines that can
be printed on a page. However, if the paper is misaligned, a line of text may print on
the perforation in the paper.

If the Cut Sheet option is used, a header is printed at the top of every page, and blank
lines are printed at the end and beginning of every page. When this option is
selected, the number of lines per page must be set. The default setting is for standard
81/2 by 11 inch paper.

TML BASIC User's Guide 47 Advanced Program Editing



Finally, the Page Setup Dialog Box allows you to enter a special character sequence
representing a Printer Command. The character sequence is sent to the printer
before printing every file. The Printer Command can be used to instruct a printer to
use a special built in font or font size, page size, etc. In order to send a control
character to the printer use the caret character (*) followed by the appropriate letter
that defines the control character. For example, #? sends an ASCII ?? (an escape
character). See Appendix E for these codes.

[ ot JEITY tdit Search Windows Compile Prod0S
Helloworld.Bas

PRINT ~ Fello horld" 47
PRINT " Hello Horld" ]
PRINT * Hel | gllonld:

PRINT * Helll  Printer Conmands:

PRINT * He ” I

PRINT * K

PRINT Il O continuous

<l (® Cut Sheet

Lines Per Page
PRINT *
PRINT *

PRINT *

PRINT "Press any key to continve...”
GETS Keys

Figure 4-6
Page Setup Dialog Box

The Chooser menu item allows you to specify to TML BASIC which of the two
serial ports (printer port or modem port) your printer is connected. If you have
changed the Apple IIGs Control Panel so that either slot 1 or slot 2 does not use the
built-in port, but rather a card in that slot, TML BASIC will obey this change so that
you can use a parallel printer with an appropriate card.

This menu command displays the Choose Printer Connection Dialog Box as shown
in Figure 4-7. The Printer icon indicates the built-in printer port or slot 1, and the
phone icon indicates the built-in modem port or slot 2. Click the mouse on the icon
which has the printer connected.

TML BASIC User's Guide 48 Advanced Program Editing



| o [OTY Edit Search Windows Compile ProD0S

Helloworld.Bas

PRINT * Hello Horld®

PRINT * Hello Horld" . :
PRINT * Hello Horldl | Choose Printer Connection:

PRINT * Hello Horl =
PRINT * Hello Wor o 5

. 9
PRINT % I—-I%'
ﬂ Ok IM Cancel )

PRINT * First Atlespt’
PRINT * First Atlenpt”

PRINT “Press any key to continue...”
OETS Keyd

Figure 4-7
Choose Printer Connection Dialog Box

In addition to selecting the printer port, you should also make sure the selected port
is properly configured for the type of printer you have. You can change the
configuration of the serial ports using the Apple IIGS Control Panel. If you are not
familiar with this operation see Appendix A of your Apple 1IGS Owner’s Guide.

All of your selections for printing configurations are saved to the TMLBASIC.OPTS file
so that you do not need to specify your selections every time you use TML BASIC.

After selecting the correct printer configuration, click the mouse once on the new
FIRSTATTEMP.BAS program, making it the active window if it is not already, and then
select the Print command from the File menu.

While TML BASIC is printing the contents of the active window a small Print
Dialog Box is displayed in the middle of the editing screen. Before issuing the Print

command, be certain your printer is on and selected. To cancel printing at any time,
press the mouse button or any key on the keyboard.

The Preferences Dialog

The Preferences command found in the Compile menu allows you to customize
the way you use TML BASIC.

TML BASIC User's Guide vi o) Advanced Program Editing



The Preferences Dialog contains valuable information allowing you to customize
TML BASIC's functionality to meet your particular programming needs. The
information contained in the dialog is extremely important and ranges from
allowing you to adjust TML BASIC's tab settings to freeing up memory space.
Chapter 6 includes a detailed description of each item found in the Preferences
Dialog Box and should be studied carefully before you begin programming.

ProDOS Commands in TML BASIC

TML BASIC provides access to three ProDOS commands without requiring you
leave the TML BASIC environment. To see these commands, pull-down the
ProDOS menu. You will see the Rename..., Delete... and Transfer... menu items.
Use of these three ProDOS commands while working within TML BASIC will save
you valuable programming time otherwise lost if you were required to leave TML
BASIC everytime you wished to issue one of the these commands.

Selecting any one of the three ProDOS commands results in a modified version of
the Get File Dialog Box displayed. The modified Get File Dialog Box's Open button
will be changed to an appropriate title matching the command being performed.

Select the Delete... command from the ProDOS menu. The Get File Dialog Box is
displayed as shown in Figure 4-8 allowing you to select a file to be deleted. Locate
the file FIRSTATTEMP.BAS you created earlier in this chapter and delete it.

& File Edit Search Windows Compile BZC1IH]
Helloworld.Bas

PRINT * Hello Horld"
PRINT * Hello Horld"

e
BRINT * I I Delete which file:

=

PRINT * <=3 /Tml/Partl.Examples/
;g}m . (3 Averages.Bas (_Disk )
| [ Demo.Bos

3 Errors.Baos

(, Delete )

L3

( Concel )

[ Examplelib.Bas

PRINT *
PRINT *
PRINT *

[ Libdemo.Bas

PRINT “Press any k
GETS Key$

Figure 4-8
Get File Dialog Box - Delete

TML BASIC User's Guide 8 Advanced Program Editing



Before TML BASIC erases the file from the disk it displays the Delete Confirmation
Dialog Box (Figure 4-9). This dialog gives you one last chance to prevent deleting
the wrong file. In this particular case we are certain the FIRSTATTEMP.BAS file should
be deleted, so you should click the mouse on the Yes button to proceed with deleting
the file from your TML BASIC working disk.

e File Edit Search Windows Compile JTEIIY
Helloworld.Bas

PRINT Rello Hord" {1

PRINT * Hello Horld®

PRINT * He

PRINT * He

PRINT *

gm} Are you sure you want to delete Firstattemp.Bos?)

<l Yes

PRINT *
PRINT "
PRINT *

PRINT "Press any ke
GETS Key$

Figure 4-9
Delete Confirmation Dialog Box

The second ProDOS command available to you in TML BASIC allows you to
rename a file from within TML BASIC. After selecting a file to be renamed, TML
BASIC displays a Rename Dialog Box allowing you to change the current name of
the selected file. In this respect, each of the three ProDOS commands are alike - you
are always provided a second opportunity to prevent the inadvertent consequences
of deleting, renaming or transferring control to the wrong file.

The third ProDOS command available in TML BASIC is the Transfer command.
The Transfer command is used to leave TML BASIC permanently and transfer
control to another ProDOS application (even one you might have created with TML
BASIC). After transferring control to the chosen application, you can only return to
TML BASIC by first quitting the newly selected application and then re-launching
TML BASIC from the IIGS Finder.

Chapter 6 includes a complete reference to all of TML BASIC's commands and
features and should be referred to for further information about each of the three

TML BASIC User's Guide 51 Advanced Program Editing



ProDOS commands available from within TML BASIC.

In this chapter we have explained some of the advanced editing commands
available to you while creating a new program similar to the HELLOWORLD.BAS
program used throughout Chapter's 2 through 4. You also learned about printing
program listings, and how to issue three powerful ProDOS commands without
leaving TML BASIC. Customizing the TML BASIC environment via the
Preferences Dialog Box was briefly discussed with a forward provided to Chapter 6.

As always, be certain to close all open editing windows used in this chapter and
leave TML BASIC by issuing the Quit command.

The next chapter introduces a few of the fundamental statements which are part of
the TML BASIC language. A thorough understanding of TML BASIC's working
environment, as discussed up to this point, will increase your performance at the
keyboard when following the discussion in Chapter 5.

Chapter 6 includes a brief description of every TML BASIC feature and should be
used as a reference in your programming efforts.

TML BASIC User's Guide 82 Advanced Program Editing



Chepier $

Your First Program

This chapter assumes you have familiarized yourself with TML BASIC's
programming environment. If you are not already familiar with how TML BASIC
works - in particular the techniques for editing, compiling and running a program -
you should take the time to read Chapter's 1 through 4 before proceeding.

TML BASIC can be used to create two different types of programs: Textbook
programs and Toolbox programs. Textbook programs represent "traditional" style
programs created using the Apple IIGS text screen. We use the term textbook
because these are the types of programs you are likely to find in most general BASIC
programming textbooks. Toolbox programs, on the other hand, are those which
make use of the Apple IIGS Toolbox. These programs operate within the Apple
IIGs's Super Hi-Res Graphics screen and are usually event-driven applications
which use the mouse. This chapter addresses only textbook programs. Part III of
this manual, "Toolbox Programming"”, documents the Toolbox and how to write
Toolbox programs.

Although TML BASIC provides a large number of predefined programming
statements and functions, you will find only a small number of these statements
and functions necessary to begin programming. For a complete reference to every
statement and function included in TML BASIC reference Chapter 10.

Statements introduced in this chapter:

REM
LET
PRINT
GET$
INPUT

The First Program

To begin this discussion of textbook programming, launch TML BASIC from your
working disk and open the file AVERAGES.BAS located in the PART1.EXAMPLES folder.
If you have not already made a working copy of TML BASIC, you should do so now
before proceeding in order to protect your distribution disk from possible damage.
Additionally, if you are not familiar with how to launch TML BASIC and open, edit,
compile and run programs, refer to Chapter's 1 through 4 of this manual.

TML BASIC User's Guide 8 Your First Program



After you have opened the AVERAGES.BAS program, the following source code
should appear in the editing window:

REM A program to compute the average of three numbers
LET Avg = (43 + 27 + 23) / 3

PRINT "The average of the three numbers is "; Avg
GETS$ Key$

Run the AVERAGES.BAS program by selecting the To Memory & Run command from
the Compile menu. The program is immediately compiled and then run by TML
BASIC. The output from this program should appear similar to the following line
of text on the text screen:

The average of the three numbers is 31

Press any key on your keyboard and the program completes its execution. The TML
BASIC environment reappears with the open window still containing the
AVERAGES.BAS program's source code. Now let's examine how this program
actually works.

The program consists of four lines of source code. Each line contains a statement.
Statements are the fundamental component of a TML BASIC program used to
instruct the computer what actions to perform. Each statement begins with a special
TML BASIC word called a reserved word. The reserved word indicates what kind of
statement is on the line. A list of all the TML BASIC reserved words can be found
in Chapter 7, Table 7-2.

If you are familiar with other implementations of the BASIC language you will
immediately notice there are no line numbers in a TML BASIC program. Line
numbers have traditionally been part of the BASIC language because the editors
used with these older implementations required them. In addition, line numbers
were used in some BASIC statements. TML BASIC, on the other hand, uses
alphanumeric labels instead of line numbers. Alphanumeric labels are discussed in
detail in Chapter 7.

The REM Statement

The first statement used in the AVERAGES.BAS program is the REMark statement.
The REM statement is used in a TML BASIC program to include notes about a
program's purpose, what it does, how it works or any other information you find
useful to describe the program. It is also good programming practice to include REM
statements in your programs in order to "document” their actions.

The REM statement does not instruct the computer to perform any specific action.
In fact, TML BASIC ignores the remainder of a line containing a REM statement.

TML BASIC User's Guide 4 Your First Program



The AVERAGES.BAS program includes one REM statement used to describe the
program's purpose.

TML BASIC offers an alternative to the REM statement called the comment. A
comment behaves exactly like the REM statement except that it consists only of the
single quote (') character followed by appropriate documentation. For example, the
AVERAGES.BAS program can be rewritten as:

'A program to compute the average of three numbers
LET Avg = (43 + 27 + 23) / 3

PRINT "The average of the three numbers is "; Avg
GETS$ Key$

The important difference between the REM statement and a comment is that a
comment is not a statement. If a program has a REM statement which appears on
the same line after another statement, a colon must be used to separate the two
statements (colons can be used to separate several statements on the same program
line). However, a comment does not require a preceding colon since it is not a
statement. Consider the following example:

LET Avg
LET Avg

= (43 + 27 + 23) / 3 :REM Compute the average

= (43 + 27 + 23) / 3 "Compute the average

The first programming line above illustrates two statements included on the same
line and separated by a colon. The second line, however, contains only one program
statement with a proceeding comment to document the line's purpose.

The LET Statement

The LET statement, also called the assignment statement, is used to assign a value to
a variable. Following the reserved word LET is a variable name followed by an
equal sign and then an expression. The variable on the left side of the equal sign is
given the value of the expression on the right side of the equal sign.

A variable is a named entity which stores a numeric or string value. The variable's
value can change during execution of a program by using the LET statement. The
variable name is any sequence of alphanumeric characters that begins with a letter
and does not spell any of the TML BASIC reserved words. A variable name may be
of any length and all characters are significant. If the variable stores a string value,
its name must end with the dollar sign character ($). For more information about
variables see the section "Variables" in Chapter 7. In the AVERAGES.BAS program,
Avg is a numeric variable and Key$ is a string variable.

An expression represents a value. An expression is made up of operands combined
with operators which produce a value when evaluated during execution. Operators

TML BASIC User's Guide & Your First Program



are special symbols representing a particular operation to be performed. For
example, the LET statement used in the AVERAGES.BAS program contains both the
addition operator (+) and the division operator (/). Operands are constants,
variables and function calls that operators work on. In the LET statement, the
constants 43, 27, 23 and 3 are operands. Again, more information about expressions
can be found in Chapter 7, in the section titled "Expressions".

The following example shows how the AVERAGES.BAS program can be rewritten to
use several LET statements and variables within an expression.

REM A program to compute the average of three numbers
LET Count = 3

LET Numberl = 43

LET Number2 = 27

LET Number3 = 23

LET Avg = (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is "; Avg
GET$ Key$

As previously mentioned, every TML BASIC program statement must begin with a
reserved word. The only exception to this rule is the LET statement. In the case of
the LET statement, the reserved word LET is optional and need not appear. Thus,
TML BASIC assumes any statement that begins with a variable is, in fact, a LET
statement.

The following example shows how the AVERAGES.BAS program can be rewritten
using the LET statement without the reserved word LET.

REM A program to compute the average of three numbers

Count = 3
Numberl = 43
Number2 = 27

Number3 = 23

Avg = (Numberl + Number2 + Number3) / COUNT

PRINT "The average of the three numbers is "; Avg
GET$ Key$

Enter these changes in the AVERAGES.BAS program and try running the program to
see for yourself how the LET statement operates.

The PRINT Statement

The PRINT statement displays text on the Apple IIGS text screen. The PRINT
statement is used to print the values of numeric and string expressions. The PRINT
statement may contain any number of expressions separated by either a comma or
semicolon. Each expression is called a print item. Actually, multiple expressions
can be separated by spaces, but it is good programming practice to use either a

TML BASIC User's Guide & Your First Program



comma or a semicolon to clearly show that more than one expression is included in
the PRINT statement.

The PRINT statement used in the AVERAGES.BAS program contains two print items
separated by a semicolon. The first item is the string constant

"The average of the three numbers is "
and the second item is the numeric variable Avg.

When a string expression appears in a PRINT statement, the exact characters in the
string are displayed to the text screen at the current text location (the location of the
cursor). When a numeric expression is printed, the binary representation of the
numeric value is first converted to a string and then displayed at the current text
location.

When using the semicolon as a separator between multiple expressions in a PRINT
statement, TML BASIC positions the cursor immediately following the last character
displayed. Thus, the next expression is displayed adjacent to the previous print
item. Using a comma as a separator causes TML BASIC to perform a tab operation
before the next print item is displayed. The tab width of the PRINT statement is 16
characters. The spaces between each tab are called a print zone. The following
diagram illustrates how the 80 columns of a text screen are divided into five print
zones.

1 17 33 49 65 80
NN Print Print Print Print Print
gf Zone Zone Zone Zone Zone
H 1 2 3 4 5
N

Zone Width is
16 characters

TML BASIC User's Guide 57 Your First Program



If the PRINT statement from the AVERAGES.BAS program is rewritten to use the
comma separator as shown below,

PRINT "The average of the three numbers is ", Avg

the output will be displayed as follows:

The average of the three numbers is 31
column 1 column 17 column 33 column 49

Because the position of the text cursor is at column 36 after printing the string
constant, the comma causes the cursor to tab to the next print zone beginning in
column 49.

After all print items within a PRINT statement have been displayed as output, the
text cursor is moved to the first column of the next line. If the cursor is on the last
line of the screen, the entire contents of the screen is scrolled up one line. Thus, a
PRINT statement containing no print items will display one blank line.

In some cases, a program may not want the PRINT statement to advance the text
location to the next line after it has displayed all of its print items. Whenever a
PRINT statement ends with a comma or a semicolon, the PRINT statement will not
advance to the next line. For example, the PRINT statement in the AVERAGES.BAS
program can be rewritten using two PRINT statements, and have the output
displayed on one line as before.

REM A program to compute the average of three numbers
LET Avg = (43 + 27 + 23) / 3

PRINT "The average of the three numbers is ";

PRINT Avg

GET$ Key$

The TML BASIC language has several other variations and functions which work in
conjunction with the PRINT statement. These include the PRINT USING
statement as well as SHOWDIGITS, SPC and TAB. These are advanced functions
described in detail in Chapter 10.

The GETS Statement

The GETS$ statement is used to assign a single character from the keyboard to a string
variable, without displaying it on the screen and without requiring the Return Key
be pressed.

TML BASIC User's Guide 88 Your First Program



Examining the AVERAGES.BAS program you will notice the GET$ statement is used
without the character read from the keyboard used anywhere else in the program.
The reason for the GET$ statement appearing in this program (as it does in the other
example programs found on disk) is to temporarily halt execution of the running
program before control is returned to the TML BASIC environment. If this
statement did not appear here, the output of the program would be displayed on the
screen and control would return to TML BASIC so fast you would not be able to see
the program's output.

Delete the GET$ statement from the AVERAGES.BAS program and then compile the
program to see how quickly the program returns control to TML BASIC after
completing execution.

Of course, you can use the GET$ statement throughout your program for the specific
purpose of receiving input from the user and then acting upon it. However, for the
purpose of this chapter's discussion, you need only realize the statement is used to
temporarily keep a program from returning control to TML BASIC so that you can
see the program's output.

The INPUT Statement

The AVERAGES.BAS is a fine first program, but it does have one rather serious flaw:
it only averages the three numbers 43, 27 and 23. After running this program a few
times it becomes obvious the average of these three numbers is 31. In this respect,
the program would be much more useful if it could average any three numbers as
input by the user.

The INPUT statement is TML BASIC's means of obtaining one or more numeric or
text values entered at the keyboard. When the INPUT statement is executed, TML
BASIC accepts a value entered from the keyboard and assigns it to the first variable
in the INPUT statement. Consider the following variation of the AVERAGES.BAS
program:

REM A program to compute the average of three numbers
Count = 3

INPUT Numberl

INPUT Number2

INPUT Number3

Avg = (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is "; Avg
GET$ Key$

When the INPUT statement is executed, a question mark (?) is displayed on the
screen indicating the program is waiting for input. Try entering this program and
compiling it with TML BASIC to see how the INPUT statement works.

TML BASIC User's Guide & Your First Program



The INPUT statement can now accept several values at a time by listing several
variables in the statement separated by commas. For example, the above program
could be rewritten with only one INPUT statement as follows:

REM A program to compute the average of three numbers
Count = 3

INPUT Numberl, Number2, Number3

Avg = (Numberl + Number2 + Number3) / COUNT

PRINT "The average of the three numbers is "; Avg
GET$ Key$

When more than one variable is listed in an INPUT statement, each of the values
entered at the keyboard must be separated by a comma or a Return key. If a Return
key is entered variables still exist which have not been given values, TML BASIC
displays two question marks (??) indicating more data is required by the INPUT
statement.

The INPUT statement may also contain a string which is displayed as the input
prompt instead of the normal question mark. The string must appear immediately
after the reserved word INPUT and must be a string constant and not a string
variable or expression. The following example shows how this variation of the
INPUT statement can be used in the AVERAGES.BAS program.

REM A program to compute the average of three numbers
Count = 3

INPUT "Enter three numbers: "; Numberl, Number2, Number3
Avg = (Numberl + Number2 + Number3) / COUNT

PRINT "The average of the three numbers is "; Avg

GET$ Key$

Of course, the INPUT statement can be used to input string variables as well as
numeric variables by simply listing a string variable as an argument to the INPUT
statement as follows:

INPUT "Enter three names: "; Namel$, Name2$, Name3$

Multiple Statements

TML BASIC programs consist of program lines where each line contains a program
statement. If you desire, it is actually possible to include several statements on a
source code line by separating the statements with a colon (:) character. The only
limit on the number of statements that may appear on a line is the restriction that
TML BASIC source code lines may not exceed 255 characters.

TML BASIC User's Guide & Your First Program



The following example illustrates how our modified version of the AVERAGES.BAS
program can be rewritten to include four LET statements on a single line. Note that
between each statement is a colon to separate the two adjacent statements.

REM A program to compute the average of three numbers
Count = 3: Numberl = 43: Number2 = 27: Number3 = 23
Avg = (Numberl + Number2 + Number3) / COUNT

PRINT "The average of the three numbers is "; Avg
GET$ Key$

While this technique reduces the number of lines in a program, it makes the
program harder to read. Unlike interpreted BASIC implementations, TML BASIC
imposes no overhead for using extra program lines. In fact, you can even include
blank lines in TML BASIC without creating errors.

Summary

This chapter introduced some of the most fundamental statements used by any TML
BASIC program. They are the REM, LET, PRINT, GET$ and INPUT statements.

Although the example program used in this chapter's discussion seems relatively
simple, you can probably imagine how complicated programs are capable of being
written with only these statements. Even so, your programming skills are certain to
increase rapidly, thus demanding more powerful statements to include in your
programs.

As mentioned in the onset of this chapter's discussion, Chapter 10 is a complete
guide to all of the statements and functions available to you in TML BASIC.
Reference Chapter 10 at any time while programming for guidance in using each
statement and function.

TML BASIC User's Guide 6l Your First Program






Cheplier ©
TML BASIC Menu Reference

This chapter provides a complete reference to the commands available and
contained in each of TML BASIC's seven menus. TML BASIC's seven menus are
the Apple, File, Edit, Search, Windows, Compile, and ProDOS menus. Recall that
most menu commands can be issued by entering command-key equivalents rather
than clicking the mouse on the menu and releasing it over the menu command. If
a menu command has a command-key equivalent, it is shown in the menu
command's heading below. A discussion of command-key equivalents is provided
at the end of this chapter.

The Apple Menu

The Apple menu is a standard menu for Apple IIGS desktop applications such as
TML BASIC, and is always the first menu in the menu bar. In TML BASIC, the
Apple menu has two parts: the About TML BASIC... command and the list of
installed new desk accessories (NDAs) available in TML BASIC. Because, the list of
desk accessories depends upon which desk accessories are installed on your
particular system disk, Figure 6-1 may not match your menu exactly.

About TML BASIC...

The About TML BASIC... menu item displays the About BASIC Dialog Box. The
dialog contains the TML BASIC logo, TML Systems' address and phone number.
More importantly, the version of TML BASIC you are using and TML Systems'
copyright notice also appears in the About BASIC Dialog Box.

Desk Accessories

The desk accessory menu items represent each of the NDAs installed on your
system disk. Recall that desk accessories must be properly installed on your bootable
system disk to be available. For a desk accessory to be properly installed, it must be
in the DESK.ACCS folder which is in the SYSTEM folder. Selecting a desk accessory
name from the Apple menu will cause that desk accessory's window to be opened
on the TML BASIC desktop.

TML BASIC User's Guide &3 TML BASIC Menu Reference



| B file Edit Search MWindows Compile ProD0S

4 HLCLotk

Figure 6-1
Apple Menu

The File Menu

The File menu contains the various file related commands (Figure 6-2) in TML
BASIC. The menu items are grouped into three basic categories: accessing disk
files, printing, and exiting TML BASIC. Following is a description of each menu
item contained in the File menu.

New

This item opens a new ("Untitled") window. The new window becomes the active
window ready for editing. If four windows have already been opened, the
maximum allowed by TML BASIC, then this item is disabled.

Open

The Open menu item displays the Open File Dialog Box (Figure 6-3) allowing you
to select a file for editing or compiling. This menu item is disabled if four windows
are already open.

Close

This menu item closes the active (topmost) editing window. If the source code
contained in the active window has had changes made to it since last opened, you
are prompted to save the changes you have made, and if the active window is
untitled, you are asked to name the file.

TML BASIC User's Guide &4 TML BASIC Menu Reference



Print Options...
Page Setup...
Chooser...

ap

Figure 6-2
File Menu

| o [T Edit Search Windows Compile PraD0S

Openwhich file:
/Tnl/

2 Icons (Disk )

g Libraries |
More.Examples

() Part1.Examples (AM
[ Part3.Exomples (e )

[ System
E ( Concel )

Figure 6-3
Open File Dialog Box

TML BASIC User's Guide &b TML BASIC Menu Reference



Save

The Save menu item saves the contents of the active window. If the window is
already associated with a disk file, the original file on disk is overwritten by the
contents of the current window. If the window is untitled, you are prompted with
the Put File Dialog Box to name the window.

Save As...

Selecting this menu item allows you to save the contents of the active editing
window to a new disk file. To do this, you are again prompted with the Put File
Dialog Box to name a file for this window. If the filename you choose already exists
in the specified subdirectory, you will be warned of this and asked if you wish to
replace the existing file.

Revert

This menu item will cause all of the editing changes you have made to be replaced
with the most recently saved version of the file. You will be asked to confirm this
choice before the operation is performed.

Print Options...

This menu item displays the Print Options Dialog Box (Figure 6-4).

m Edit Search Windows Compile ProD0S

Print Options
(@ Print Title
Print Date/Time
[=]Print Page Numbers

'!__(!L\) ("Concel )

Figure 6-4
Print Options Dialog Box

TML BASIC User's Guide & TML BASIC Menu Reference



When TML BASIC prints a file to the printer, it optionally prints a header across the
top of every page. The header can include the name of the file (Print Title), the
current date and time (Print Date/Time), and page numbers (Print Page Numbers).
If an option is checked, TML BASIC prints the corresponding information in the
header. If none of the options are selected, a header is not printed.

Page Setup...

This menu item displays the Page Setup Dialog Box (Figure 6-5).

Printer Commands:
[ |

O Continuous

® Cut Sheet

Lines Per Poge
N

Figure 6-5
Page Setup Dialog Box

The Page Setup Dialog Box is used to configure the way TML BASIC prints a page.
There are two options: Continuous and Cut Sheet. If Continuous is selected, a
header is only printed on the first page, and no blank lines are printed at the end or
beginning of a piece of paper. This option maximizes the number of lines that can
be printed on a page. However, if the paper is misaligned, a line of text may print on
the perforation in the paper.

If the Cut Sheet option is used, a header is printed at the top of every page, and blank
lines are printed at the end and beginning of every page. When this option is
selected, the number of lines per page must be set. The default setting is for standard
81/2by 11 inch paper.

Finally, the Page Setup Dialog Box allows you to enter a special character sequence

TML BASIC User's Guide 67 TML BASIC Menu Reference



which represent a Printer Command. The character sequence is sent to the printer
before printing every file. The Printer Command can be used to instruct a printer to
use a special built in font or font size, page size, etc. In order to send a control
character to the printer use the caret character (*) followed by the appropriate letter
that defines the control character. For example, A? sends an ASCII ?? (an escape
character). See Appendix E for these codes.

Chooser...

The Chooser menu item allows you to specify to TML BASIC which of the two
serial ports (printer port or modem port) your printer is connected. Your selection is
saved to the TMLBASIC.OPTS file so that you do not need to specify your selection
every time you use TML BASIC. If you have changed the Apple IIGS Control Panel
so that either Slot 1 or Slot 2 does not use the built-in port, but rather a card in that
slot, TML BASIC will obey this change so that you can use a parallel printer with an
appropriate card.

Print

The Print menu item causes the contents of the active window to be printed to the
printer through the currently selected serial port (slot). The text is printed using the
built-in font of the printer. TML BASIC does not use the Apple IIGS Print Manager
for printing.

If the Option key is held down when choosing this command, TML BASIC prints
the currently selected text in the active window rather than the entire contents.
This is especially useful when editing large files.

Quit

Selecting Quit closes all open windows, allowing you to verify whether changes
made to each window should be saved, and then exits back to the Apple IIGS Finder.

The Edit Menu

The Edit menu contains several useful editing commands. The menu is in the
standard Apple IIGS format thus allowing it to be used with desk accessories. See
Figure 6-6.

Undo

Undo does not support the TML BASIC editing windows and is therefore disabled.
However, Undo is enabled whenever a desk accessory window is the active window
so that it is available for the desk accessory.

TML BASIC User's Guide 68 TML BASIC Menu Reference



Figure 6-6
Edit Menu

Cut

This command cuts the currently selected text. The operation deletes the selected
text from the active window and saves it into the clipboard.

Copy

This command copies the currently selected text, but does not delete it from the
active window, and saves it into the clipboard.

Paste

The Paste menu item copies the contents of the TML BASIC clipboard into the
active window at the current insertion point. If text is currently selected then it is
deleted before the paste is perfomed.

Clear

The Cledar menu item deletes the currently selected text from the active window,
but does not save it into the clipboard.

TML BASIC User's Guide & TML BASIC Menu Reference



Select All

This command selects all text contained in the active window. It is a shortcut for
selecting all text by moving to the beginning of the text, clicking the mouse, and
then moving to the end of the text and shift-clicking.

The Search Menu

The Search menu contains a collection of commands which perform search and
replace operations (Figure 6-7). The Search menu also contains two different Goto
commands that move the insertion point to a specified location in your source code.

e File Edit JLTIELN Windows Compile ProD0S
Fean What ToFind..  ¢FfiTE i
Find Next

Change Then Find ¢H

Goto Selection

Figure 6-7
Search Menu

What to Find...

This menu item displays the TML BASIC Find Dialog Box allowing you to specify a
search string and an optional replacement string. When choosing this command, if
the active window has a range of text selected which resides on a single line, then
TML BASIC automatically makes this the default search string.

When selecting the Find button in this dialog, the search begins from the current
insertion point (not the beginning of the file). Selecting the Change All button
instructs TML BASIC to change every occurrence of the search string with the
replacement string beginning from the current insertion point to the end of the file.

TML BASIC User's Guide 0 TML BASIC Menu Reference



Find Next

This command searches forward in the active window, from the current insertion
point, for the next occurrence of the Find What string specified in the Find Dialog
Box. Upon locating the next occurrence, the active window scrolls to display the
string. If no occurrence of the string is found an error message is displayed.

Change then Find

The current selection in the active window is replaced with the Change To string
last specified in the Find Dialog Box. The command then searches forward in the
active window for the next occurrence of the Find What string. If an occurrence of
the string cannot be found then an error is reported.

Goto Line...

The Goto Line menu item allows you to move the insertion point to the beginning
of a specified line within the active window. Upon selecting this command the
Goto Line Dialog Box is displayed allowing you to specify a line number you wish to
be placed on. The default line number is "END" which signifies the last line of the
file.

Goto Selection

This command scrolls the active window so that the insertion point (or currently
selected text) is visible in the window.

The Windows Menu

The Windows menu provides three commands to arrange the open windows
within the TML BASIC desktop. Figure 6-8 shows the contents of this menu.

Stack Windows

The Stack Windows menu item allows you to neatly organize your editing
windows in a stack. The current editing window remains active while the others
are stacked behind it with their title bars showing. This command is useful when
you have moved the open windows and wish to rearrange them neatly.

Tile Windows

This menu item arranges the open windows so that none of the windows overlap.

Using this window configuration allows you to see each open window's source code
without moving from one window to another.

TML BASIC User's Guide 71 TML BASIC Menu Reference



ch RULTEUE Compile
S E{hStock Windows
Tile Windows

Lost Error  GE

Get Info.. &I

Figure 6-8
Windows Menu

Last Error

This command displays the TML BASIC Error Dialog Box, displaying the most
recently encountered error.

Next Window

The Next Window menu item places the active window in back of all other open
windows on the screen and brings the window directly behind the previously active
window to the front. This command provides an easy method of switching between
windows when it might not be possible to click on a window because it is completely
covered by another window.

Get Info...

The Get Info command displays a File Information Dialog Box. The dialog box
displays the following information about the active editing window: the full
pathname for the file associated with the editing window, its size in bytes and the
number of lines.

The Compile Menu

The Compile menu (Figure 6-9) contains the commands which invoke the TML
BASIC compiler. When invoking the compiler, the contents of the active editing

TML BASIC User's Guide 72 TML BASIC Menu Reference



window are compiled. Also included is the Preferences... command which allows
you to customize the way TML BASIC operates.

e File Edit Search Windows JXTITALE ProD0S

Mo Memory &k Run G
To Disk 40
Check Suntax &Y

Preferences

Figure 6-9
Compile Menu

To Memory & Run

This command invokes TML BASIC to compile the source code contained in the
active editing window. If the compilation completes successfully and the active
window contains a program which is an application (rather than a library), the state
of TML BASIC, including all open windows, is saved and control is transferred to
the compiled application. Upon quitting the compiled program, you are returned to
TML BASIC with all of your windows intact.

If the contents of the active window is a library rather than a program then there is
no program to run and, therefore, no transfer of control out of TML BASIC. Instead,
the compiled code for the unit is retained in memory so that other libraries and
programs which use the unit will have access to its code.

To Disk

The To Disk menu item invokes the TML BASIC compiler to compile the contents
of the active window to disk creating a stand-alone ProDOS application file.

If the source code contained in the active window is a program then TML BASIC
creates an S16 (filetype $B3) application load file in the same directory as the source

TML BASIC User's Guide 73 TML BASIC Menu Reference



code. On the other hand, if the source code is a library then the library's symbol
table and code are saved to a .LIB file in the same directory as the source code.

For detailed information regarding file naming conventions and other related
information, see Chapter 3.

Check Syntax

The Check Syntax command invokes the TML BASIC compiler only to verify that
the source code contained in the active window consists of legal BASIC statements.

Preferences...

Selecting the Preferences command displays the Preferences Dialog Box. The
Preferences Dialog Box is used to configure the TML BASIC editor and compiler to
your particular needs. The information presented in the dialog is grouped into
three major categories: Compiler, Editor, Memory. In addition, there are three
buttons: OK, Cancel and Compact Memory. The Preferences Dialog is displayed in
Figure 6-10 with its default settings. The next several paragraphs describe each
component of the dialog in detail.

Before discussing each component of the Preferences Dialog, an explanation of edit
text items and check boxes is in order. An edit text item is an item contained in the
Preferences Dialog which requires input to determine a components value, whereas
a check box acts as an on/off switch. These two mechanisms are the means by which
you modify each component of the Preferences Dialog Box.

Simply position the cursor over an edit text item, click once and begin typing to
enter the value for its component. Check boxes, on the other hand, are modified by
positioning the cursor over the check box and clicking the cursor once to toggle
between on and off states (a check representing "on").

TML BASIC User's Guide 74 TML BASIC Menu Reference



LI TR

ompile JCIIN

Compiler

Editor

K-byte Synbol Table
(8 | K-bute Stack

K-byte String Pool

Tab Width:

[CJhuto Save Text

Memory

[CJ0ebug

B 0n Error

< Event Trapping
Keyboard Break
[CJcheck Stack Overflow

Total System Memory: 1280K
Free Memory: BO2K
Largest Memory Block: 709K

Library Search Path:

L)

[#/LIBRARIES/

—

[Cuncel'] (CompoctHemoru]

K-byte Symbol Table

K-byte Stack

TML BASIC User's Guide

Figure 6-10
Preferences Dialog Box

This option allows you to specify the amount of memory
the TML BASIC compiler should allocate for a symbol table.
A symbol table is the data structure the compiler uses to
store the declarations of labels, variables, arrays, procedures
and functions. For most all programs, the default size of
12K bytes is sufficient. However, larger programs may
encounter the Compiler error Symbol Table Space
Exhausted (not to be confused with Out of Memory). If the
compiler of a program encounters this error, then you
should increase the value of this setting. 32K bytes is the
largest setting allowed. This setting can also be lowered if
you are running short of memory and are compiling small
programs. The smallest allowable value is 2K bytes.

TML BASIC programs require a data structure known as the
Runtime Stack. The runtime stack is used to implement
certain TML BASIC statements including PROC, GOSUB
and LOCAL. The default value of a 8K byte stack should be
sufficient for most TML BASIC programs. This value can
be changed from 1K to 32K bytes. See Chapter 8 for more
information about the Runtime Stack.

The Stack size may also be changed by using the $StackSize
metastatement. See Appendix B.

75 TML BASIC Menu Reference



K-byte String Pool

Debug

On Error

TML BASIC User's Guide

The String Pool is where TML BASIC stores all values of
string variables for a program. If you assign a string
constant to a string variable, that string constant is copied to
the string pool. If a program is running out of string space
this value should be increased. The maximum size for the
string pool is 64K bytes, the minimum is 1K bytes. For
more information about strings, string data and the string
pool see Chapter 7.

The String Pool size may also be changed by using the
$StringPoolSize metastatement. See Appendix B.

When the Debug option is turned on, the TML BASIC
compiler generates code to support the TML BASIC
debugger. The generated code checks for all runtime errors
such as Overflow Error, Illegal Quantity Error, etc. It also
generates a special data structure called the line number
table so that the TML BASIC debugger can determine in
what line of source code the runtime occurred. If this
option is turned off, then all runtime errors will go
undetected. The runtime errors are listed in Appendix A.

The Debug option makes programs larger and slower to
execute. The option should be turned off when a program
is known to be correct, and no longer requires the debug
code.

This option may also be turned off and on using the $Debug
metastatement. See Appendix B.

The On Error option is used to indicate to the TML BASIC
compiler that a program contains the ON ERR statement
along with the statements RESUME and/or RESUME
NEXT. These statements require that the line number table
be generated so that TML BASIC can determine on which
line to resume or resume next after an error has been
handled by an ON ERR statement list.

If your programs do not contain these statements then it is
best to turn this option off since it will decrease the size of
your applications.

This option may also be turned off and on using the
$OnError metastatement. See Appendix B.

76 TML BASIC Menu Reference



Event Trapping

Keyboard Break

Check Stack Overflow

TML BASIC User's Guide

This option must be turned on when a program contains
statements requiring event trapping. These statements are
the ON KBD and ON TIMER. When these statements are
used, TML BASIC must generate code between each
statement to check for the occurrence of a keyboard or timer
event. This option should only be turned on when a
program contains these statements since the code necessary
to check for these events makes a program larger and
slower to execute.

This option may also be turned off and on using the
$EventTrapping metastatement. See Appendix B.

The Keyboard Break option is used to implement the ON
BREAK statement. It is also required to allow a program to
be aborted by typing a control-C.

If this option is turned on, TML BASIC generates code
between each statement to check if the control-C character
has been typed. If this option is turned off, it is impossible
to abort the execution of a TML BASIC program. The only
way to do so is to reset the Apple IIGS. If you do not intend
to abort the execution of your programs and do not use the
ON BREAK statement then you should turn this option off
so that your programs will be smaller and faster.

This option may also be turned off and on using the
$KeyboardBreak metastatement. See Appendix B.

This option is used to instruct the TML BASIC compiler to
generate code for each procedure and function's entry code
to check to make sure that there is sufficient space in the
runtime stack to call the procedure and allocate its local
variables. If there is insufficient space, the runtime error
Stack Overflow occurs (If the Debug option is turned on
then the TML BASIC debugger is capable of showing you
what procedure or function caused the stack overflow).

Most programs never need more stack space than the
default 8K bytes, thus this option is turned off by default.
However, if your program is behaving very strangely, it
may be that its stack is growing too large and destroying
memory. Turning this option on will determine if your
program does indeed have this problem. If it does, you
should increase the allocated stack space for the program.

77 TML BASIC Menu Reference



Library Search Path

Tab Width

Auto Save Text

Total System Memory

Free Memory

Largest Memory Block

TML BASIC User's Guide

This option may also be turned off and on using the
$CheckStack metastatement. See Appendix B.

The pathname specified here is where the TML BASIC
compiler searches for library files which have been specified
in a LIBRARY statement. The default value for this option
is */LIBRARIES/ which specifies the LIBRARIES folder on the
boot disk. This is the folder which contains all of the TML
BASIC predefined libraries for accessing the Apple IIGS
Toolbox. Recall that TML BASIC first searches in the
current source code folder first for a library file and then the
path specified by this option.

This option is used by the Editor to determine how many
spaces wide a tab stop is. The default value for this option is
4 spaces. Any value between 2 and 10 is legal.

The Auto Save option allows you to specify whether or not
changes to any of the editing windows should be
automatically saved before TML BASIC transfers control to
a compiled to memory application. You should select this
option if your program is in the early stages of development
and might cause the Apple IIGS to crash when run. If this
option is on you will never lose any editing changes you
have made, but not explicitly saved, however, it does slow
down the compile cycle since it must write to the disk.

Obviously, this value can not be changed while TML BASIC
is running. The total system memory is displayed for
informational purposes only. The value represents, in
kilobytes, the amount of RAM memory installed in your
machine.

This number indicates how much memory is currently
available. This number is important because, it reflects
whether or not TML BASIC has enough memory to open a
new program file, compile a program to memory, etc.
Because TML BASIC retains various pieces of information
in memory, this number can sometimes be increased by
selecting the Compact Memory button described below.

This value indicates the largest block of memory available
for use by TML BASIC.

78 TML BASIC Menu Reference



OK Button

Cancel Button

Compact Memory

The ProDOS Menu

Clicking the mouse in this button (or pressing the Return
key) indicates that you want TML BASIC to accept all the
changes to the Preferences dialog you have made. After
choosing this button, the dialog disappears and TML BASIC
updates all options and settings.

Clicking the mouse in this button causes TML BASIC to
remove the dialog, and to ignore any changes made to the
options and settings and to leave them as they were before
the dialog was opened.

This button is used to release all memory associated with
programs and libraries that have been compiled to memory
or loaded to memory by a LIBRARY statement. Selecting
this button will usually adjust the Free Memory and Largest
Memory Block values. Clicking the mouse in this button
does not cause the dialog box to close.

The ProDOS menu provides access to three ProDOS16 commands (Figure 6-11).

& File Kdit §

TML BASIC User's Guide

ProD0S

{ Rename?.
q Delete...
{ Transfer...

Figure 6-11
ProDOS Menu

VA% TML BASIC Menu Reference



Rename...

The Rename command displays the Rename File Dialog Box allowing you to
choose the file you would like to rename. After selecting a file, you are prompted to
provide the new filename. The new filename must be a legal ProDOS16 filename
otherwise an error results.

Delete...

The Delete command displays the Delete File Dialog Box allowing you to choose a
file you would like to delete. After selecting a file, you are prompted to confirm that
in fact you would like to delete the file. If you confirm that the file should be
deleted, TML BASIC will permanently delete the file from the disk.

Trandfer...

The Transfer command displays the Transfer Dialog Box allowing you to choose an
application you would like to transfer control. Upon selecting an application, TML
BASIC asks you to save any changed files and then automatically quits and invokes
the specified application without returning to the Apple IIGS Finder. The only way
to return to TML BASIC is to launch it from the Finder again.

Command-Keys versus the Mouse

As discussed earlier in this manual, TML BASIC provides an alternative to
positioning the cursor over a menu, clicking the mouse button once and holding it
down as you drag and release the cursor over a menu item.

Many menu commands can be invoked by typing the menu's command-key
equivalent. Command-keys are quite useful for invoking a menu command when
your hand is on the keyboard, and not the mouse. However, a few menu
commands (generally the less used items) do not have command-keys.

Additionally, when the active window contains a desk accessory, no command keys
are available except for the Edit menu commands. The reason for this is that the
Apple IIGs Desk Manager automatically captures command keys for desk accessories
before TML BASIC even has a chance to see them. In this case, you will either have
to use the mouse to select menu commands or make a different editing window the
topmost window.

One final note. If you are using an upgraded Apple Ile as an Apple IIGS, and do not
have a new IIGS keyboard, the Apple key is the same as the Open-Apple key
immediately to the left of the space bar on the Apple Ile keyboard. The
Closed-Apple key to the right of the space bar is equivalent to the Apple IIGS Option
key.

TML BASIC User's Guide & TML BASIC Menu Reference



Part I

TML BASIC Language Reference






Chepier 7

Language Elements

This and the following three chapters represent a technical discussion of the TML
BASIC language. If you are a beginning programmer, and require a less technical
introduction to the TML BASIC language, you should read Part I of this manual
with emphasis on Chapter 5. For those programmers interested in programming
the Apple IIGS Toolbox with TML BASIC, Part III of the manual provides the
information you will need.

Source Code Structure

The fundamental component of every TML BASIC program is the statement. TML
BASIC programs consist of zero or more lines of statements. Of course, a program
with zero statements is not very useful. Each line of TML BASIC source code is of
the form:

[ label : 1 statement (:statement)} ['comment ]
or,
$metastatement

Before proceeding any further, the notation used in the above example to describe
TML BASIC statements and lines deserves some explanation. The notation consists
of four parts: BASIC reserved words or special characters, brackets ( [ 1), braces ( {} ),
and italicized words.

BASIC reserved words and special characters appear in normal type and in all capital
letters (see Tables 7-1 and 7-2). When these words or characters appear in our
notation, they must be used exactly as shown. The brackets are used to indicate that
all the symbols which appear between matching left and right brackets may
optionally appear in the statement or line being described. The braces are used to
indicate that all the symbols which appear between matching left and right braces
may appear zero or more times. That is, the symbols may not appear at all, one
time, two times, three times, etc. Finally, italicized words are used to denote a
sequence of one or more legal TML BASIC language elements that must obey certain
rules. When an italicized word appears, it is usually followed by a sentence or more
which describes what the word represents. An attempt is also made for the word
itself to communicate its meaning.

TML BASIC Language Reference 83 Language Elements



Now, lets examine the structure of a TML BASIC source code line as defined by our
notation.

A source code line may optionally begin with a label. A label is a sequence of one or
more alphanumeric characters that begins with a letter and does not spell any of the
TML BASIC reserved words. A label may also contain the period (.) character. If a
label is used, it must always be followed by a colon regardless if anything else
appears on the line. However, when a label is referenced in a statement (for
example, GOTO myLab) the colon should not appear.

The following are legal TML BASIC labels:

HandleError:
Labl83:
SCREENUPDATE:
Label.with.periods:

Case is insignificant in the spelling of a label. Thus, the following represent the
same TML BASIC label:

MYLAB:
MyLab:
mylab:

Note that TML BASIC statements do not begin with line numbers. In fact, line
numbers do not exist anywhere in a TML BASIC program.

Statements are the fundamental component of TML BASIC programs. There is an
extensive collection of statements available in TML BASIC (see Chapter 10). A line
may contain one, or several statements, each separated by a colon. The only
restriction on the number of statements that may appear on a single line is TML
BASIC's restriction that source code lines are limited to 255 characters. Of course, it
is generally good practice to limit the length of a line to the width of an editing
window. Programs also print better when the length of a line is kept at a reasonable
size. Unlike most BASIC interpreters, there is no penalty in size or speed of a
program for more lines. Additionally, because the TML BASIC debugger only
determines what line an error occurred in, the debugger is a more useful tool when
only one statement appears on a line.

Note that it is legal to have an empty statement. Thus, it is possible to have blank
lines in your program. Blank lines are good for organizing your program's code so
that different sections of the program are visually separated.

Finally, a comment may be added to the end of any line. A comment begins with
the single quote (') character followed by any descriptive text about the program.

TML BASIC Language Reference 84 Language Elements



The comment continues to the end of the line. Comments may be used in place of
REM statements unless the comment appears after a DATA statement. In this case,
TML BASIC interprets the single quote as part of a string in the DATA statement.
Unlike, the REM statement, a colon is not needed to separate the comment from a
preceeding statement. For example,

Interest = Principle * Rate ' Calculate the interest due
Interest = Principle * Rate : REM Calculate the interest due

MetaStatements are special commands to the TML BASIC compiler that direct it to
behave in certain ways. A line which contains a metacommand must begin with
the dollar character ($) followed by the name of the metacommand and any
parameters. Only one metacommand may appear on a line. TML BASIC provides
metacommands for most of the compiler options which appear in the Preferences
dialog box. A complete list of the TML BASIC metacommands and their use is
given in Appendix B.

Programs

The TML BASIC compiler recognizes two types of source code structures — Programs
and Libraries. A program is a collection of statements that perform some action.
When a program is compiled, TML BASIC creates a complete and stand-alone
application which can either be run immediately from within the TML BASIC
environment using the To Memory & Run compile option or can create a
ProDOS 16 application file using the To Disk compile option. A compiled ProDOS 16
application file can then be run from the GS Finder by double-clicking on its icon.

Libraries

Libraries, on the other hand, cannot be run. A library is considered a repository for
pieces of code. When TML BASIC compiles a library, it saves the compiled code so
that other programs and libraries can use its code just as if its source lines were
textually included in the program that uses it. When a library is compiled to disk,
its code is saved in a spedial file ending with the suffix .LIB. The source code for a
library is different from a program in that it must have a specific structure. That is,
it must begin with the statement DEF LIBRARY and end with the statement END
LIBRARY. For a complete discussion of libraries see Chapter 8.

See Chapter 3, "Creating a Stand-Alone Application”, for a discussion of the TML
BASIC file naming conventions for compiled programs and libraries.

TML BASIC Character Set

TML BASIC character set consists of alphabetic characters, numeric characters, and
several special characters. The alphabetic characters are uppercase letters (A-Z) and

TML BASIC Language Reference 85 Language Elements



the lowercase letters (a-z). The numeric characters are the digits 0-9. The following
table lists the special characters recognized by TML BASIC with a description of their

usage.
Table 7-1
TML BASIC Special Characters

Symbol  Description Function
! Exclamation point Structure array type character
" Double quote String constant delimiter
# Number sign Double-precision real type character
$ Dollar sign String type character, metastatement prefix
% Percent sign Integer type character
& Ampersand Long integer type character
' Single quote Comment delimiter
O Parentheses Parameter lists, array indexing,

expression precedence
* Asterick Multiplication operator
+ Plus sign Addition operator, string concatenation operator
, Comma Delimiter
- Minus sign Subtraction operator, negation operator
Period Used to form variable, array, procedure,
function and label names
/ Slash Division operator
: Colon Statement delimiter
; Semicolon Delimiter
< Less than Relational operator
= Equal sign Assignment operator, relational operator
> Greater than Relational operator
@ At symbol Double integer type character
A Caret Exponentiation operator
Underscore Alternate for the CALL statement

These are the only characters that may appear in a TML BASIC program. The only
exception is that comments and string constants may contain any character.

Reserved Words

TML BASIC reserves several words for special meaning, typically for a function or
statement name. Reserved words cannot be used for label, variable, array, or

TML BASIC Language Reference 8 Language Elements



procedure and function names. Attempting to use a reserved word as an identifier
will cause TML BASIC to signal a syntax error in your program. The following table
summarizes the reserved words in TML BASIC.

Table 7-2

TML BASIC Reserved Words
ABS AND ANU APPEND
AS ASC ASSIGN ATN
AUXID BDF BREAK BTN
CALL CAT CATALOG CHAIN
CHR CLEAR CLOSE COMPI
CONV COs CREATE DATA
DATE DEF DELETE DIM
DIV DO DYNAMIC ELSE
ELSEIF END EOF EOFMARK
ERASE ERR ERROR EVENTDEF
EXCEPTION EXEVENT EXFN EXP
EXP1 EXP2 FILE FILTYP
FIX FN FOR FRE
FREMEM GET GOSUB GOTO
GRAF HEX HOME HPOS
IF IMAGE INPUT INSTR
INT INVERSE JOYX JOYYy
KBD LEFT LEN LET
LIBRARY LOCAL LOCATE LOCK
LOG LOGB LOGI1 LOG2
MENUDEF MID MOD NEGATE
NEXT NORMAL NOT OFF
ON OPEN OR OUTPUT
PDL PDL9 PEEK PFX
PI POKE POP PREFIX
PRINT PROC PUT R.STACK
RANDOMIZE READ REC REM
REMDR RENAME REP RESTORE
RESUME RETURN RIGHT RND
ROUND RUN SCALB SCALE
SECONDS SET SGN SHOWDIGITS
SIN SPACE SPC SQR
SRC STEP STOP STR
SUB SWAP TAB TAN
TASKPOLL TASKREC TEN TEXT
TEXTPORT THEN TIME TIMER
TO TXT TYP UBOUND
UCASE UIR UNLOCK UNTIL
UPDATE USING VAL VAR
VARPTR VPOS WHILE WRITE

XOR

TML BASIC Language Reference 87 Language Elements



Numbers in TML BASIC

Numbers are one of the most important components of any program. They allow a
program to count, compute, calculate and otherwise do its job. Traditionally, BASIC
implementations have provided only a single type of number for programs to do its
job. Because of this, programs have had little concern for such matters as the speed,
precision and memory requirements of numbers — there was only one type of
number, and there was no choice to be made.

However, TML BASIC offers several "types" of numbers: integers, double integers,
long integers, single-precision real and double-precision real. Thus, programs that
require space efficiency or faster calculations can use the smaller, faster numbers,
while those that require a high degree of accuracy can use the slower, but more
precise numbers.

Integers

The smallest, fastest data type in TML BASIC is the integer type. An integer is a
number with no decimal point and is in the range -32,768 to 32,767. The reason for
this range of values is that integers are stored as 16-bit (two bytes) signed values.
One bit is used to indicate the sign of the number and 15 bits are used to represent
the magnitude: 215 is 32,768.

While integers are somewhat constrained in the range of values they can represent,
they make up for this with their speed. The Apple IIGS is most efficient when
handling integer numbers. Programs should use integers in FOR...NEXT loops, as
counters, etc. in order to produce the most efficient code possible.

Double Integers

Double integers behave just like normal integers with the exception that double
integers provide significantly more precision than integers. Double integer values
range from -2,147,483,648 to 2,147/483,647. Of course, to achieve this much precision,
twice as much storage is required than integers — four bytes. Whenever integers will
not suffice, try to use double integers next, since these numbers are the second fastest
and smallest in TML BASIC.

Long Integers

Again, long integers behave just like integers and double integers, except that they
provide an incredible range of values: -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807. Long integers require eight bytes of storage (64 bits). Long
integers provide the greatest range of values among the integer types, however, they
are the slowest integer type for performing computations.

Many types of financial programming can take advantage of this data type. In order

TML BASIC Language Reference 88 Language Elements



to avoid any round-off errors, calculations can be performed in pennies using long
integers, then scaled when output.

Single-Precision Reals

Single-precision reals are the smallest of the real numbers. A single-precision value
is a number that may contain a decimal point and an exponent in the approximate
range -3.4E38 to 3.4E38 with up to 7-8 significant digits. That means you can have a
number as small as 0.00000000000000000000000000000000000001 or as large as
100,000,000,000,000,000,000,000,000,000,000,000,000, but of course only 7 to 8 digits are
significant. Single-precision reals occupy 4 bytes of memory.

While the single-precision reals represent a very large range of numbers, it does
have a somewhat limited number of significant digits. When a large amount of
precision is necessary, the long integers or double-precision reals may be more
appropriate.

Double-Precision Reals

Double-precision reals are the largest of the real numbers in TML BASIC. They
require twice as much space as the single-precision reals (8 bytes), but they have a
much greater range and precision. A double-precision value is a number in the
approximate range -1.7E308 to 1.7E308 with up to 15-16 significant digits.

Double-precision real numbers should be able to handle any computational need in
your program. However, use it with care in large arrays, etc. because of the large
amount of storage it requires.

Extended-Precision Reals

There is actually one more type of number in TML BASIC called the
extended-precision real. Extended-precision is an internal number type that is used
by TML BASIC to perform all of its real number calculations. That is, whenever a
program performs an arithmetic, relational or logical operation (discussed later in
this chapter), TML BASIC internally uses extended-precision numbers. TML BASIC
will automatically convert single-precision and double-precision numbers to
extended-precision before performing an operation and then convert the
extended-precision result back to the appropriate type. This technique allows TML
BASIC to avoid round-off errors in its calculations, thus providing your program
with the most accurate result possible.

The extended-precision number requires 10 bytes (80 bits) of storage and can

represent values in the approximate range -1.1E4932 to 1.1E4932 with 19 to 20
significant digits.

TML BASIC Language Reference & Language Elements



Understanding the implications of TML BASIC's technique for performing real
number calculations is important to writing successful programs. While this
technique offers your programs greater accuracy for its calculations, there are some
side effects you should be aware of when writing programs. Since the extended
precision number provides a greater number of significant digits, some information
may be lost when converting the result of an expression to a single- or
double-precision number. Thus, you might be surprised with the following code's
output:

aDblReal$ = 1.0/3.0
IF aDblReal# = 1.0/3.0 THEN PRINT "Everything is working fine™
ELSE PRINT "Something strange is going on"

When this program is executed, the output is "Something strange is going on". The
reason for this is that the extended precision result of the operation 1.0/3.0 contains
significant digits beyond the storage capacity of the double-precision reals. Thus,
when the double-precision variable, aDblReal#, is assigned the result of this
calculation it is no longer exactly equal to the representation of this number in
extended-precision. When the test for equality is done, extended-precision is used,
and of course the values are not equal.

To solve this problem, a program should ensure the representation of both
operands of a relational operator are in the same precision. This can be done by
making sure both operands are simple variables of the same type, or by using one of
the CONV functions. For example, the following variation of the program produces
the expected result.

aDblReal# = 1.0/3.0
IF aDblReal# = CONV#(1.0/3.0) THEN PRINT "Everything is working fine"”
ELSE PRINT "Something strange is going on™

Because of the way TML BASIC uses extended-precision numbers, it may sometimes
be advantageous to perform a calculation in one large expression rather than several
smaller ones which store temporary results in a real type with less precision.

Note, that all TML BASIC built-in numeric functions which return a real number,
actually return an extended-precision result.

The Standard Apple Numeric Environment (SANE)

The Standard Apple Numeric Environment, also called SANE, is the floating point
engine used by TML BASIC for all of its real number operations and functions. The
SANE implementation is based upon the IEEE Standard 754 for Binary
Floating-Point Arithmetic and provides for an extensive collection of numeric
operations, not all of which are available in TML BASIC.

TML BASIC Language Reference Q0 Language Elements



SANE is a standard toolset in the ROM of every Apple IIGS. For more information
about SANE, see the Apple Numerics Manual.

Strings in TML BASIC

The string type is the only other type of data available in TML BASIC besides the
five number types. A string is a sequence of characters along with a count that
indicates how many characters are in the string. In TML BASIC, a string may
contain zero characters up to a maximum of 255 characters. If a string contains zero
characters, it is said to be a null-string.

In TML BASIC, all strings are stored in a special area of memory called the String
Pool. When a sequence of characters is assigned to a string variable, the characters
are copied to the string pool. These characters are called the string data. A string
variable requires only two bytes of memory which is an offset into the string pool to
where its string data is stored. The string data consists of a sequence of bytes
containing the characters in the string. There is also an additional byte of memory
which stores the number of characters in the string.

Strings are extremely powerful in TML BASIC. They can be converted to numbers
and back to strings again, and can be manipulated with a large assortment of
predefined string functions.

Constants

Constants are predefined values that do not change during the execution of a
program. There are two types of constants in TML BASIC: numeric and string.

Numeric Constants

Numeric constants are positive or negative numbers. There are three classes of
numeric constants in TML BASIC: integer, fixed-point and floating-point.

An integer constant contains only the digits 0-9 with an optional sign prefix (+ or -).
If the constant is in the range -32,768 to 32,767, the constant is treated as an integer.
Otherwise, the constant is treated as a double integer and must be in the range
-2,147,483,648 to 2,147,483,647. Integer constants outside of this range are errors.
Examples of integer constants:

1

2569
721039

TML BASIC Language Reference 91 Language Elements



A fixed-point constant contains the digits 0-9 with an optional sign prefix and a
decimal point. All fixed point constants are treated as extended precision reals.
Examples of fixed-point constants follow:

1.0
349
238540923423.482

Finally, a floating-point constant is represented in exponential form. A
floating-point constant consists of a fixed-point number called the mantissa
followed by the letter E or e and an optionally signed integer exponent. The
exponent is a power of ten, by which the mantissa is multiplied to obtain the value
of the floating-point number. All floating-point constants are treated as extended
precision reals. Examples of floating-point constants follow:

1.0e0
349.2001E-23
9.98765e+78

String Constants

String constants are simply a sequence of zero to 255 printable ASCII characters
enclosed by double quotes. For example:

"Apple IIgs™
"123.45"

It is not possible to create a string constant which contains the double quote
character since the double quote is used to delimit the string constant. Instead, the
CHRS function can be used to create a single character string which is the double
quote. For an example of how this is done see the CHR$ Function in Chapter 10.
When the two double quotes appear next to each other, no characters are in the
string constant. This is called a null-string.

TML BASIC provides one special exception to the above rule. The non-printable
null character whose ASCII value is zero (0) may be represented in a string constant
with the backslash character (\) followed by the zero character (0). For example:

"Hello\O"

This string constant consists of six characters: H, e, 1,1, o, and the null character.

This exception is provided for easier programming of the Apple IIGS Menu Manager
for creating programs which use menus. For more information on how to program
with the Menu Manager and the other Apple IIGS Toolbox libraries see Chapters 11
through 13.

TML BASIC Language Reference 92 Language Elements



Variables

A variable is a named entity which represents a numeric or string value. Unlike a
constant, the value of a variable can change during the execution of a program. The
name of a variable must begin with a letter followed by any number of letters and
digits that do not spell any of the TML BASIC reserved words. A variable name may
also contain the period (.) character. TML BASIC places no restriction on the length
of a name except that it must fit on a line (255 characters). The length of a name has
no effect on the size or execution speed of a program, so you should always use
descriptive and meaningful names for variables.

TML BASIC supports six different variable types. The last character of a variable
name determines its type. Table 7-3 lists the legal type characters for TML BASIC.
Note that if no type character appears after a variable name, it is treated as a
single-precision real.

Table 7-3
TML BASIC Type Characters

%  Integer 2 bytes
@  Double Integer 4 bytes
&  Long Integer 8 bytes
Single-precision real 4 bytes
#  Double-precision real 8 bytes
$ String 2 bytes for string variable

1 byte for each character in the string
1 byte to store the length of the string

Variables are created when they are first used in a program. When TML BASIC sees
a variable name in a statement, it first checks to see if a variable with the same name
has already been used in the source code above the current line. If it has, TML
BASIC knows where in memory to read or store the value of the variable. If not,
TML BASIC automatically enters the name into its symbol table and allocates
storage for the variable.

Note that X%, X@, X&, X, X# and X$ are different variable names.

TML BASIC initializes all numeric variables with the value zero and all string
variables with the null string.

TML BASIC Language Reference %3 Language Elements



Reserved Variables

TML BASIC provides a collection of reserved variables. A reserved variable is
special in the sense that in most cases, it does not have memory allocated for it in
the normal way. But instead is associated with a special feature of the Apple IIGS.
For example, the PI reserved variable contains the value of &, but that value is
actually obtained from SANE.

Programs can only read the value of most reserved variables. However, some
reserved variables may be given new values. These are called modifiable reserved
variables. The HPOS reserved variable is a good example of a modifiable reserved
variable. HPOS contains the value of the horizontal location of the text screen
cursor. When you read this variable, the text screen firmware is actually read to
obtain this value. Since this is a modifiable reserved variable, a new value may be
assigned to HPOS. In this case, the text screen firmware is instructed to change the
horizontal location of the cursor to the new value.

The name of a reserved variable is one of the TML BASIC reserved words. All of
the reserved variables are discussed in Chapter 10.

Arrays

An array is a collection of values of the same type referred to by the same variable
name. The individual values of an array are called elements. Array elements are
also variables, and can be used anywhere a simple variable can be used. As with
variables, the last character of the array name defines the type of the array elements.
The process of declaring the name, element type and setting the number of elements
in the array is known as dimensioning the array.

Array elements can be any of the simple variable types: integer, double integer, long
integer, single-precision real, double-precision real and string. In addition, TML
BASIC supports a special array type called the structure array. The structure array
element is a byte size integer value in the range 0 through 255. The type character
for a structure array is the exclamation point (!). Structure arrays are described in
more detail below.

Dimensioning Arrays

The DIM statement is used to declare the name, element type, number of
dimensions and size of each dimension of an array. For example:

DIM Sales%(11)

creates a one-dimensional array variable Sales%, consisting of 12 integer elements,
numbered 0 through 11. Note that because the first numbered element is 0, the

TML BASIC Language Reference X4 Language Elements



largest numbered element is one less than the number of elements in the array
dimension. The array variable Sales% is distinct from the simple integer variable
Sales%.

Arrays can have one or more dimensions, up to a maximum of eight. A
one-dimensional array such as Sales% is a simple list of values. A two-dimensional
array is a matrix of values with rows and columns of information.
Multi-dimensional arrays are also possible, but do not have a real world analog.

DIM arrayl(4) 'One-dimensional array
DIM array2(12,8) '"Two-dimensional array
DIM array3(39,3,5) 'Three-dimensional array

The maximum number of elements per dimension is 32,768. The maximum total
size of a single array is 64K bytes. You may have as many 64K byte arrays as available
memory permits. The following table reviews the memory requirements for each
element type and the total number of elements possible in a 64K array.

Table 74
TML BASIC Array Element Sizes

% Integer 2 bytes 32,768 elements per 64K
@ Double Integer 4 bytes 16,384 elements per 64K
& Long Integer 8 bytes 8,192 elements per 64K
Single-precision real 4 bytes 16,384 elements per 64K
# Double-precision real 8 bytes 8,192 elements per 64K
$ String 2 bytes 32,768 elements per 64K
! Structure 1byte 65,536 elements per 64K

When a TML BASIC program begins execution, all array elements are initialized to
zero except for string arrays which are initialized to the null string.

It is possible to reference an element of an array variable which has not been
declared with a DIM statement. If the reference appears on the left side of a LET
statement (assignment), TML BASIC automatically declares the array variable with
the same number of dimensions as are referenced. Each dimension contains 11
elements. TML BASIC declares the array so that storage exists for the value to be
assigned. For example, if the statement

Count@(2,3) = 55

TML BASIC Language Reference % Language Elements



is executed without having first DIMensioned the array variable Count@, therefore
TML BASIC automatically defines the array variable just as if the statement

DIM Count@(10,10)

had preceeded the assignment statement. This is called implicit DIMensioning.
Every element of the array Count@ is automatically given an initial value of zero
just as arrays normally declared with the DIM statement.

If an undeclared array is referenced anywhere besides the left side of a LET
statement, TML BASIC does not automatically declare the array. Instead, a dummy
zero value is returned (or null string). This is unlike most other BASIC
implementations which will also implicitly declare an array any time it is
referenced. Thus, if the statement

PRINT Count@ (4,2)

is executed before the array Count@ is dimensioned, a zero is displayed.

It is generally good practice to declare arrays used in a program with the DIM
statement rather than allowing TML BASIC to automatically declare them.

Dynamic Allocation

Arrays declared using the DIM statement or those implicitly declared by TML BASIC
are known as Static Dimensioned arrays. These arrays have a fixed size which is
determined by the number and size of elements in the array. TML BASIC allocates
the storage for these arrays before a program begins execution, and their size may
not change.

A static array must be declared with constant values for the sizes of its dimensions.
If an expression or variable is used to dimension a static array, TML BASIC gives the
error "Static arrays must have constant dimensions". For example, the following
are illegal declarations using the DIM statement.

DIM Sales% (numMonths%)
DIM Count@(eltsNeeded%+3)

Further, a static dimensioned array may not be declared more than once in a
program. If a program attempts to declare a static array more than once, TML BASIC
gives the error "Duplicate declaration of a static array". For example, the following
is not legal in TML BASIC:

DIM Sales%(10)
DIM Sales$%(20)

TML BASIC Language Reference % Language Elements



Static dimensioned arrays are very efficient in TML BASIC, however, some
programs require the ability to dimension an array dynamically at execution time.
This is done with the DIM DYNAMIC statement in TML BASIC. The DIM
DYNAMIC statement allows the program to use a variable or an expression as the
number of elements in an array. For example, a program might allow a user to
enter a variable number of sales figures into an array.

INPUT "How many sales figures? "; numSales$%
DIM DYNAMIC Sales% (numSales$%)
FOR i% = 1 to numSales$%

INPUT "Enter a sales figure: "; Sales%(i%)
NEXT i%

Of course, it is still possible to declare arrays with static dimension values. For
example, the following statement creates a dynamic array variable with 30 elements.

DIM DYNAMIC Sales%(29)

Unlike static dimensioned arrays, dynamic dimensioned arrays can be dimensioned
more than once in a program. This allows a program to change the size of an array
during its execution depending upon the needs of the program. To deallocate all of
the space used by a dynamic array, use the ERASE statement.

Static dimensioned arrays allow TML BASIC to generate code which is faster and
smaller than code for dynamic arrays. A program should only use dynamic arrays
when absolutely necessary.

Evaluation of the DIM Statement

The DIM statement works differently in TML BASIC than BASIC interpreters like
GS BASIC and AppleSoft BASIC. Unlike interpreters, the TML BASIC compiler
processes the DIM statement when a program is compiled and not when it is
executed. Thus, TML BASIC determines the number of dimensions and elements
of an array, and allocates memory for the array before the program is executed.

Because TML BASIC processes a program in its textual order, rather than its
execution order, you must be careful how you use the DIM statement. The
following example would execute without any error in GS BASIC, but TML BASIC
would give an error for the statement marked (b). The reason for this is that TML
BASIC will process the statement marked (a) before the statements below it. Since
this statement references the array variable anArr% which has not yet been declared,
TML BASIC implicitly declares the array with 11 elements. Thus, when the
statement marked by (b) is processed, TML BASIC gives the error "Duplicate
declaration of a static array".

TML BASIC Language Reference 97 Language Elements



GOTO doDIM 'Go dimension the array

doLET:
(a) LET anArr%(9) = 99 '"Assign the value 99 into the 9th element
GOTO Continue 'Continue execution
doDIM:
(b) DIM anArr%(29) 'DIMension the array with 30 elements
GOTO doLET 'Go assign a value
Continue: 'Continue program execution

Another example illustrating this difference between TML BASIC and BASIC
interpreters is shown below.

IF Flag% = 0 THEN DIM anArr%(10)
ELSE DIM anArr%(250)

Again, TML BASIC would give the error "Duplicate declaration of a static array”
since it ignores the fact that during execution, only one of the DIM statements is
executed.

Arrays declared using the DIM DYNAMIC statement, however, do not behave in
this manner. Since the DIM DYNAMIC statement is evaluated during program
execution, an array may be declared and re-declared as many times as required by the
program. For example:

IF Flag% = 0 THEN DIM DYNAMIC anArr%(10)
ELSE DIM DYNAMIC anArr%(250)

is legal in TML BASIC. However, it is not possible to re-declare an array using DIM
DYNAMIC after it has been declared with the DIM statement.

Subscripts

Individual elements of an array variable are selected using subscripts (integer
expressions within parentheses to the right of an array variable's name). For
example, Sales%(3) references the fourth element of the Sales% array variable. It is
not legal to use a subsrcipt value for an element of the array which does not exist.
For example, the statements

DIM Sales%(11)
Sales% (20) = 44

will cause a runtime error because the Sales% array does not have an element
whose subscript is 20.

TML BASIC Language Reference 9B Language Elements



When referencing an array, you must also provide a subscript for each dimension of
the array. If an array has three dimensions, you must provide three subscript values
when referencing the array. If you provide too few or too many subscripts, TML
BASIC gives the error "Array subscript error".

Structure Arrays

TML BASIC provides a special type of array called the structure array for
manipulating bytes of memory. The type character for a structure is the exclamation
point (!). Structures may only be declared with the DIM statement and are not
allowed as simple variables. The elements of a structure array are bytes of memory
which are treated as unsigned integers in the range 0 through 255.

Individual structure array elements may be referenced just like normal arrays. The
value of a structure element is automatically converted to an integer before it is
used in an expression. TML BASIC also provides the VAR and SET statements for
reading or writing successive bytes of a structure. See Chapter 10 for a discussion of
these statements.

Structures are typically used for representing data structures to be used with the
Apple IIGS Toolbox. See Chapter 13 and Appendix C for examples of how structures
are used with the Toolbox.

Expressions

An expression represents a value. An expression consists of a collection of operands
combined together by operators to produce a value when the expression is
evaluated. Operators are special symbols representing a particular operation to
perform. Operands are the constants, variables and function calls that operators
work on. In TML BASIC there are two types of expressions — string and numeric.

String expressions consist of string constants, string variables and string functions,
optionally combined with the string concatenation operator (+). String expressions
evaluate to a string; that is, a sequence of ASCII characters with a known fixed
length. Examples of string expressions include:

"TML BASIC"

str$

"Apple" + gs$

LEFTS (a$,5)

MID$ (UCASES (a$), 4, 6)

Numeric expressions consist of numeric constants, numeric variables and numeric
functions, optionally combined with the several numeric operators. Numeric
expressions may evaluate to any of the five TML BASIC numeric types (integer,
double integer, long integer, single-precision real, double-precision real) or to the

TML BASIC Language Reference x Language Elements



special internal SANE Extended-precision real type. Examples of numeric
expressions include:

123

123 + 4

myInt

COS (ang)

SQR((a”2) + (b*2))

Operators

Operators are special characters or reserved words that represent some arithmetic,
relational, logical or string operation to perform. TML BASIC provides an extensive
collection of operators that allow programs to perform just about any operation.

Operators must have compatible operands or else TML BASIC reports a Type
Mismatch error. That is, a numeric operator requires both of its operands be a
numeric value, while a string operator requires its operands be string values.

When an operator is used that has operands of different numeric types, TML BASIC
automatically converts the numeric value with less precision/range to a value of
the larger precision/range. For example, consider the following expression which
uses the addition operator to add the value of an integer variable to a double integer
variable:

myInt$ + myDblInt@

Before TML BASIC, performs the addition, it automatically converts the value of
myInt% to a double integer and then performs the addition.

There are four classes of operators: arithmetic, relational, logical and string. Each of
these classes of operators is discussed in the following sections.

Arithmetic Operators

The arithmetic operators provided in TML BASIC perform the traditional
mathematical operations for numeric values. Table 7-5 lists each of the arithmetic
operators along with their respective operation.

TML BASIC Language Reference 100 Language Elements



Table 7-5
TML BASIC Arithmetic Operators

+ Identity (unary operator)

- Negation (unary operator)
a Exponentiation

* Multiplication

/ Floating-point division
DIV Integer division

MOD Modulo (Integer only)
REMDR SANE remainder

+ Addition

= Subtraction

Note that TML BASIC provides two different division operators — integer and
floating-point. The DIV operator is provided for efficient integer division. The DIV
operator always converts its operands to integers and then performs the division to
produce an integral quotient with no remainder. To obtain the remainder of an
integer division, the MOD operator can be used. Like the DIV operator, its operands
are always converted to integers before the operation is performed.

In TML BASIC, the evaluation of an arithmetic operation may sometimes cause an
overflow error. An overflow error occurs when the result of an operation produces
a value which is outside the storage capacity of the numeric type being used. For
example, the code fragment

x%
x%

20000
x% + 25000

([l

overflows the storage capacity of the integer type (-32,768 to 32,767) since the result of
the addition operator in the second statement is 45,000. Of course, addition is not
the only arithmetic operator which can produce an overflow error. Consider the
code fragment:

- 20000
x% - 25000

x%
X%

In this example, the result of the subtraction is -45,000 which again is outside the
capacity of the integer type. In the two examples above, the error can be avoided by
using a numeric type with a larger storage capacity, such as double integers.

TML BASIC Language Reference 101 Language Elements



It is also possible to cause an error by performing division by zero. This can occur
when the second operand of the /, DIV and MOD operators is zero, and when the
exponentiation operator (") is used to raise zero to a negative power.

If a program is compiled with the Debug preference turned on (see Chapter 6 and
Appendix B), TML BASIC generates code so that both of these types of errors are
detected. The action taken when an overflow or division by zero error occurs
depends upon whether the program contains an ON ERR statement which has been
executed. If a program contains such a statement, control will transfer to the
statement list after the ON ERR statement to process the error. Otherwise, execution
of the program aborts and the appropriate runtime error message is reported.

If a program is compiled with the Debug preference turned off, an overflow or
division by zero error will go undetected.

Relational Operators

The relational operators in TML BASIC allow programs to compare two values.
The result of a comparison is a Boolean value which is either true or false. The
result of a comparison is typically used to make a decision regarding program flow
using the IF or DO..WHILE...UNTIL statements.

Since TML BASIC does not have a special boolean type, the values true and false are
expressed as integer values. Any non-zero value is considered true, while the value
zero is considered false. TML BASIC uses the non-zero value one (1) to represent
the value of true for the relational operators. Thus, the expression 3=3 is true and
has the value of 1, while 3=4 is false and has the value of 0. Strings are also
considered to have a boolean value. If the string contains one or more characters
then it is considered to have the boolean value true, and null strings (strings with
zero characters) are considered to have the value false.

Table 7-6
TML BASIC Relational Operators

= Equality

<> or >< Inequality

< Less than

> Greater than

<=or =< Less than or equal to
>=or=> Greater than or equal to
<=> Ordered (vs. unordered)

TML BASIC Language Reference 102 Language Elements



Note that when arithmetic and relational operators appear in the same expression,
the arithmetic operators are evaluated first. For example, the following expression
evaluates to true if A minus B is less than C plus D.

A-B<C+D

Logical Operators

The logical operators perform logical (Boolean) operations. Table 7-7 lists the logical

operators available in TML BASIC.

Table 7-7

TML BASIC Logical Operators

NOT
AND
OR
XOR

Logical complement
Conjunction

Disjunction (inclusive or)
Exclusive or

The following table illustrates the behavior of the logical operators. The variables x
and y may be any compatible type. See the section on relational operators for a
discussion of what values constitute true and false.

Table 7-8

Values Returned by the Logical Operators

X y NOT x xANDy xORy xXORYy
true true false true true false
true false false false true true
false true true false true true
false false true false false false
TML BASIC Language Reference 103 Language Elements



String Operators

There is only one operator in TML BASIC which returns a string value. This is the
concatenation operator which is represented by the plus symbol (+). This is the
same symbol used for addition when its operands have numeric values.
Concatenation is the process of combining two strings together to make one string.
For example, the following code fragment shows how to combine a volume name
with a filename to create a file's complete pathname.

volName$ = "/TML/"
fileName$ = "STRINGS.BAS"
pathName$ = volName$ + fileName$

Remember that TML BASIC strings are limited to 255 characters. If a program
attempts to create a string which is longer than 255 characters; TML BASIC will not
perform the concatenation, but generate the String Too Long error.

Strings may also be used with the relational operators. String comparisons are
performed by taking the corresponding characters from each string operand and
comparing their ASCII codes. If the ASCII codes are the same for all the characters
in both strings, the strings are considered equal. If the ASCII codes differ, the string
containing the lower ASCII code is considered less than the other. If the end of one
string is reached before the other then the shorter string is considered less than the
other if they have been equal up to that point. The ASCII codes are listed in
Appendix E. The following relational operations are ALL true:

WAW = npw

"All ( "a"
"aa" > "aB"
"a" <= "gaaa"

If a program must compare two strings without regard for the case of the alphabetic
letters, then the UCASES$ function should be used (see Chapter 10).

Precedence

In evaluating expressions which contain more than one operator, TML BASIC uses
a set of precedence rules in order to determine which operator to evaluate first, and
thus, which operands belong to which operators. TML BASIC defines three rules of
precedence.

1. In an expression with more than one operator, the operator with the
highest priority is evaluated first.

2. If an expression contains two or more operators of the same priority, then
they are evaluated in order, from left to right.

TML BASIC Language Reference 104 Language Elements



3. The use of parentheses always overrides the priority of an operator to force a
specific order of evaluation.

Table 7-9 lists each of the TML BASIC operators from highest to lowest priority.

Table 7-9
TML BASIC Operator Priority

+, -, NOT
A

*/

DIV

MOD, REMDR

+, -

=, &, B &, By, =, 06, B, =5, K
AND

OR, XOR

TML BASIC Language Reference 105 Language Elements






Chepier

Subroutines, Procedures, Functions and Libraries

Subroutines, procedures, functions and libraries provide the mechanisms in TML
BASIC to divide and organize a program's source code into a more organized and
more maintainable structure. They are often used to organize a collection of
statements that must be frequently executed throughout a program.

A subroutine is a labeled set of statements executed when a GOSUB statement
specifying the label is executed. A procedure is a named collection of code that
behaves much like a subroutine, except that it provides for additional advanced
programming features. A function is also a named collection of code like a
procedure; but when executed returns a value. The value can then be used in an
expression.

Procedures and functions in TML BASIC provide significant advantages over the
traditional technique of organizing programs using GOSUB/RETURN. Procedures
and functions offer the capability of parameters, local variables and recursion. If you
have never programmed with these type of language features, you should make an
effort to do so and discover their programming power.

Finally, a library is a special source code construct that groups together procedure
and function declarations so that they can be compiled separate from any program.
A library can be thought of as a repository for code which is used by one or more
programs.

The next several sections discuss the implementation of subroutines, procedures,
functions and libraries in TML BASIC and programming issues you should be aware
of when using these language features.

Subroutines

A subroutine represents the traditional technique for BASIC programmers to
organize a program into computational chunks. A subroutine begins with a label
followed by a group of statements ending with the RETURN statement. A
subroutine is executed by using the GOSUB statement.

A GOSUB statement indicates that execution should temporarily suspend at the
current statement and control should transfer to the statement indicated by the label
in the GOSUB statement. When the RETURN statement is encountered, the
subroutine terminates and control returns to the statement immediately after the
calling GOSUB. The following code fragment illustrates the use of a subroutine.

TML BASIC Language Reference 107 Subroutines, Procedures, Functions and Libraries



GOSUB CalculateGrade
PRINT Grade
END

CalculateGrade:
Total = 0
FOR i1 = 1 to NumGrades
Total = Total + Grades(i)
NEXT i
Grade = Total / NumGrades
RETURN

A subroutine may call other subroutines, which in turn may call yet other
subroutines. TML BASIC keeps track of where execution should resume when the
RETURN statement is encountered with a data structure called the Runtime Stack.
Each time a GOSUB statement is executed, TML BASIC pushes the program counter
for the statement immediately after the GOSUB onto the stack. Then, when a
RETURN statement is encountered, the program counter is removed from the stack
and made the current program counter — the place where execution continues.

In some special cases, a program may not want to return from a subroutine back to
the caller. This might happen when an error occurs, and a program decides it
should continue execution elsewhere. To do this, the program must first remove
the program counter value stored in the Runtime Stack by using the POP statement.
When the POP statement is executed it removes the program counter from the
runtime stack, and then continues execution with the next statement after the POP.

When using the RETURN and POP statements, your program must be certain that a
corresponding GOSUB has been executed so that a program counter value has been
placed on the Runtime Stack. If your program attempts to execute a RETURN or a
POP without a matching GOSUB, the runtime error "RETURN/POP without
matching GOSUB" occurs. If you compile a program with the Debug option turned
off then this error will go undetected, and the execution of your program will
certainly go astray.

A subroutine may also be called using the ON..GOSUB statement. The
ON...GOSUB statement works just like the normal GOSUB statement except that it
chooses among several subroutines to call depending upon the value of an
expression. For example, the following statement calls the IssuePayCheck,
IssueBonusCheck or IssueExpenseCheck subroutine depending upon the value of
the variable doCheck%.

ON doCheck$% GOSUB IssuePayCheck, IssueBonusCheck, IssueExpenseCheck

If the value of doCheck% is 1 then the first named subroutine is called -
IssuePayCheck, and if its value is 2 the second named subroutine is called, etc. If the
value of the expression is 0 or greater than the number of named subroutines, the

TML BASIC Language Reference 108 Subroutines, Procedures, Functions and Libraries



statement is skipped. As with the GOSUB statement, control returns to the
statement immediately after the ON...GOSUB when a RETURN is executed.

For more information about the TML BASIC Runtime Stack see the section "A
Lesson on Stacks" later in this chapter, and the discussion of the Preferences dialog
in Chapter 6. Also read about the $StackSize metastatement in Appendix B.

Procedures

Procedures are a group of statements that are surrounded by the DEF PROC and
END PROC statements. A procedure behaves much like a subroutine except the
PROC statement is used to call a procedure. When a procedure is called using the
PROC statement, execution temporarily suspends at the current statement and
control is transferred to the procedure. When the procedure returns, execution
continues with the first statement after the PROC statement.

Procedures however, provide for several additional language features: zero or more
parameters, local variables and local labels. These features allow you to write blocks
of code which are isolated from the rest of the program. The ability to hide the
names of parameters and local variables from the main program allows you to use
names that are also used in the main program, but which retain separate values and
do not affect those in the main program. Local label names can also be the same as
labels in the main program (or other procedures) since they are also hidden.

The use of local variables and labels allows for true modular design of your
programs. In fact, you can create procedures that work in several different programs
without considering the issue of duplicate variable names. TML BASIC provides a
powerful language feature for sharing procedures (and functions) between several
programs — the Library. Libraries allow you to group useful procedures and
functions together and then automatically provide them to several different
programs. Libraries are discussed later in this chapter.

Defining Procedures

A procedure definition begins with the DEF PROC statement and continues until a
matching END PROC statement. The DEF PROC statement is required to be the first
statement on a line. Using the notation defined in Chapter 7, the general syntax for
defining a procedure is as follows:

DEF PROC procedurename | ( parameter { , parameter } ) ]
LOCAL variable { , variable }

e statements

END PROC [ procedurename ]

TML BASIC Language Reference 109 Subroutines, Procedures, Functions and Libraries



The procedurename declares the name of the procedure. The name for the
procedure must follow the same rules for names as variables, and must not appear
in any other DEF PROC statements. Procedure names do not have a type character
at the end of their names. The following are example procedure names:

DEF PROC MyProc
DEF PROC Procl23
DEF PROC Do.It

Following procedurename is the optional formal parameter list. The formal
parameter list defines the names and types of variables which are passed to the
procedure when it is called. Parameters are separated by commas and they can be
any type of simple variable. Parameters receive their values when the procedure is
called, thus, they do not retain their values between calls to the procedure. If a
procedure must retain the values of variables between calls, it must use global
variables or arrays.

Each parameter becomes a local variable when a procedure is called and has an
initial value equal to the corresponding actual parameter given in the PROC
statement. Additional local variables may be defined using the LOCAL statement
described below. Procedures are limited to 16 parameters.

The statements between the DEF PROC and END PROC are called the body of the
procedure. When the procedure is called, execution begins with the first statement
after the DEF PROC and continues until the matching END PROC. Within the body
of the procedure it is illegal to define another procedure or function. It is also not
possible for a GOTO or a GOSUB statement to branch to a label outside of the body of
the procedure; however, other procedures and functions may be called. TML BASIC
also restricts the use of the DIM statement within the body of a procedure to
dynamic arrays (see Chapter 7).

Local Variables

Procedures (and functions) provide a mechanism for defining temporary variables
which are created when the procedure is called and destroyed when the procedure
completes and returns to the caller. These variables are called local variables.
Variables which are not local variables are called global variables because they exist
for all procedures, functions and the main program to use.

As mentioned above, parameters are equivalent to local variables except they have
initial values which correspond to the matching actual parameters. Additional local
variables are created with the LOCAL statement. Following is an example of the
LOCAL statement.

TML BASIC Language Reference 110 Subroutines, Procedures, Functions and Libraries



DEF PROC myProc
LOCAL anInt%, aDblInt@, aString$
LOCAL anotherString$

s statements

END PROC

A procedure may contain zero or more LOCAL statements and each LOCAL
statement may declare one or more variables. However, TML BASIC restricts the
use of the LOCAL statement. The LOCAL statements in a procedure must appear
after the DEF PROC, but before any other statement. The only exception is that the
REM statement may appear before a LOCAL statement.

When a procedure is called, storage for the local variables is created on the Runtime
Stack. Local numeric variables are initialized with the value zero and local string
variables are initialized with the null string. When the procedure returns control to
the calling statement, storage for the local variables is deallocated. Thus, local
variables do not retain their values between procedure calls. For example the
following procedure will always print an empty line regardless of how many times
it is called.

DEF PROC SillyProc (newMsg$)
LOCAL Msg$
PRINT Msg$
Msg$ = Msg$ + newMsg$
END PROC

When a value is assigned to a variable which is not declared as a local variable, it
assigns the value into the global variable with the given name. If the global variable
does not exist, TML BASIC automatically creates the global variable and then assigns
the value. It is possible to guarantee that an assignment statement references a local
variable using the FN form of the assignment statement.

FN anyVar = expression

By preceeding the assignment statement with the reserved word FN, TML BASIC
checks to guarantee that the variable anyVar is declared as a local variable, otherwise
it gives the error "Variable is not LOCAL".

Using Procedures
A procedure is called by using the PROC statement in a program. The PROC
statement specifies the name of the procedure to call followed by any required

parameters in parentheses. For example:

PROC PrintLine ("Totals",TotalDebits@,TotalCredits@)

TML BASIC Language Reference 111 Subroutines, Procedures, Functions and Libraries



In this example, the procedure PrintLine has three parameters — one string
parameter, followed by two double integer parameters. To call the procedure, TML
BASIC first creates the procedure's formal parameters and then assigns them with
the values of their matching actual parameters. Control is then passed to the
procedure PrintLine. When the procedure returns, execution continues with the
first statement after the PROC statement.

Functions

There are two types of functions in TML BASIC: single-expression (simple)
functions and multiline functions. Functions are used to group together one or
more statements that compute and return a value. Single-expression functions
contain only one expression for computing the value of the function. These are the
traditional style functions found in older BASIC implementations such as
AppleSoft BASIC. Multiline functions are constructed similar to procedures except
that the DEF FN and END FN statements are used to group the function's
statements. Both the single-expression and multiline functions can have formal
parameters. Additionally, multiline functions can have local variables.

Defining Functions

As mentioned above, TML BASIC supports two types of functions:
single-expression and multiline. A single-expression function is one whose code is
contained on a single line of source code. The general sytnax for a single-expression
function is as follows:

DEF FN functionname [%|@|&|#1$] [ ( parameter { , parameter } ) ] = expression

The functionname declares the name of the function. Following the function name
is an optional type character used to specify the type of the function's result value. If
no type character is given the function returns a single-precision real value. A
function may optionally have a sequence of parameters whose values are used to
compute the value of the function. TML BASIC limits a function to 16 parameters.

The expression specifies the computation to be performed when the function is
called. If the function returns a string value, the expression must evaluate to a
string. Likewise, if the function returns a numeric value, the expression must
evaluate to one of the numeric types. The following are examples of simple
single-expression functions which convert between degress Celcius and degrees
Fahrenheit.

DEF FN CtoF (degreesC)
DEF FN FtoC(degreesF)

1.8 * degreesC + 32
(degreesF - 32) * 0.555555

TML BASIC Language Reference 112 Subroutines, Procedures, Functions and Libraries



The second type of function supported in TML BASIC is the multiline function.
The general syntax for defining a multiline function is as follows:

DEF FN functionname [%|Q@|&|#|$] [ ( parameter { , parameter } ) 1]
LOCAL variable { , variable }

e statements

FN functionname [%|@|&|#|$] = expression

END FN [ functionname ]

The syntax for a multiline function is exactly the same as a procedure with two
exceptions. First, the function name is optionally followed by a type character which
specifies the type of the function's result value. Second, the statements in the body
of the function must contain at least one assignment statement which gives the
function its value.

The assignment statement which gives the function its value must begin with the
reserved word FN followed by the function's name and optional type character. As
with single-expression functions, the expression assigned to the function must be
compatible with the function type. The following is an example of a multiline
function which computes the factorial of a number.

DEF FN Factorial#(n$%)
LOCAL total#
IF n% < 0 THEN
FN Factorial# =1
ELSE
FOR i% = n% TO 2 STEP -1
total# = total# * i%
NEXT i$%
FN Factorial# = total#
END IF
END FN Factorial#

Using Functions

Functions return values. As such, functions are used within expressions to
compute values. A function is called by using the FN reserved word followed by a
function name. The function name is then followed by the appropriate number of
actual parameters enclosed in parentheses. For example:

tempF 100
tempC FN FtoC (tempF)
PRINT tempF, tempC

TML BASIC Language Reference 113 Subroutines, Procedures, Functions and Libraries



In this example, the function FtoC is called to convert degrees Fahrenheit to Celcius.
After the reserved word FN, the function name FtoC along with its parameter.

Formal versus Actual Parameters

Procedures and functions actually have two types of parameters: formal and actual.
The parameters that appear in a parameter list of a DEF PROC or DEF FN statement
are called formal parameters. Formal parameters are essentially local variables of
the defined procedure or function and are completely separate from the rest of a
program. To illustrate this, consider the following statements:

height% = 16
DEF FN Perimeter% (height%,width%) = 2 * height% + 2 * width%
PRINT height%, FN Perimeter%(8,4), height%

The variable height% in the first and third lines is unrelated to the formal
parameter height% in the function definition in the second line. When these
statements are executed, the value of height% in the third line is unaffected by the
function call.

The parameters of the function Perimeter% in the third line are actual parameters.
The values of the actual parameters are implicitly copied into the formal parameters
when the function is called. If the value of a formal parameter changes during
execution of the function, the value of the actual parameter remains unchanged.

Program Flow

The location of a procedure or function definition in the source of a program is not
important. The PROC or FN statements can be used to call a procedure or function
anywhere in the program even if the procedure or function is declared later in the
source code. Before TML BASIC compiles a program, it first scans the source file for
all DEF PROC and DEF FN statements and records their names and the number and
type of parameters. Thus, when a procedure or function is called using the PROC or
FN statements, TML BASIC knows if the procedure or function has been defined
and if the correct number of parameters have been given.

A program need not direct its flow of control around procedure and function
definitions. When executing statements in the main program and a DEF PROC or
DEF FN statement is encountered, the next statement executed is the first statement
which appears after the corresponding END PROC or END FN. The DEF
PROC...END PROC and DEF FN..END FEN act as large comments around its
enclosing statements. The only way to execute the statements of a procedure or
function is to call it using the PROC or FN statements respectively.

TML BASIC Language Reference 114 Subroutines, Procedures, Functions and Libraries



Consider the following code fragment:

PROC PrintMessage
DEF PROC PrintMessage
PRINT "Hello™

END PROC
PRINT "Goodbye"
END

The output of this code is

Hello
Goodbye

and not

Hello
Hello
Goodbye

The second "Hello" is not output because control passes completely around the
PrintMessage procedure and continues with the PRINT "Goodbye" statement.

Recursion

TML BASIC procedures and functions are recursive. By recursive we mean that a
procedure or function may,call itself, or it may call another procedure which in turn
calls the same procedure or function.

The following is an example of how to write a recursive multiline function which
computes a factorial.

DEF FN Factorial (n%)
IF n% > 1 THEN
FN Factorial = n% * Factorial(n%-1)
ELSE
FN Factorial = 1
END IF
END FN Factorial

As you can see, recursion is a powerful mechanism for expression algorithms. In
the case of the Factorial function, the factorial of a number is computed without any
loops or local variables.

Writing programs which use recursive procedures and functions can sometimes
require that you increase the size of the runtime stack. Since every time a procedure
or function is called, its parameters, local variables and return address is placed on
the runtime stack, it is possible to exhaust the available runtime stack space in a

TML BASIC Language Reference 115 Subroutines, Procedures, Functions and Libraries



program that uses recursion extensively. To increase the runtime stack size use the
$StackSize metastatement or change the K-byte Stacksize option in the Preferences
dialog. See the section "A Lesson on Stacks" below for more information.

While recursion is a very powerful programming technique, it can also be the
source of complicated program errors. The most common error when using
recursion is omitting a termination condition. By not providing a termination
condition for the recursion, a procedure or function will continue to call itself over
and over again, until finally memory has been exhausted and the machine crashes.
In the Factorial function above, the recursion terminates when the parameter n% is
less than or equal to 1.

A Lesson on Stacks

Before leaving this chapter, a discussion concerning the Runtime Stack used by TML
BASIC programs is in order. As mentioned in the previous sections of this chapter,
TML BASIC provides for user defined subroutines, procedures and functions.
Procedures and functions may have parameters and local variables and may also be
called recursively.

To support these language features, TML BASIC implements a data structure called
the Runtime Stack. This stack is used to save the program counter of the statement
immediately following the GOSUB, PROC and FN statements so that when these
routines return, the program knows where to resume execution. The stack is also
used to reserve storage for procedure and function parameters and local variables. If
a procedure or function is called recursively, then multiple copies of the parameters
and local variables exist in the Runtime Stack.

The runtime stack does not have an unlimited size. In fact, the default size
allocated for the runtime stack is 8K bytes. While this amount of storage is quite
sufficient for most all TML BASIC programes, it is possible that a program which is
highly recursive and declares many parameters and local variables could exceed this
size.

TML BASIC provides two ways to change the size of the runtime stack created for
programs. In the Preferences dialog you can change the edit-text item which appears
next to the message "K-byte Stack" as described in Chapter 6. After this change has
been made, all subsequent compiles will create a runtime stack of the new size. The
second technique, and the preferred technique for programs which need a larger
stack, is to use the TML BASIC $StackSize metastatement (see Appendix B). If a
program uses the $StackSize metastatement, it overrides the value specified in the
Preferences dialog, ensuring the required stack size is allocated.

TML BASIC Language Reference 116 Subroutines, Procedures, Functions and Libraries



The amount of memory that can be requested for the runtime stack is not
unlimited. The smallest size that can be requested for the runtime stack is 1K bytes,
and the largest is 32K bytes. This number is very large for a runtime stack, and no
program should ever need to request that size. The TML BASIC runtime stack is
allocated in Bank 0 of the Apple IIGS memory. The total available memory in this
bank is approximately 40K bytes, and since this memory is required for many other
uses as well, it is not wise to wastefully allocate more memory than is needed by
your program.

TML BASIC also provides a mechanism which allows you to determine if a
program is using more space for the runtime stack than has been allocated to it. If
you select the Check Stack Size option in the Preferences dialog then TML BASIC
will generate code which checks the available runtime stack space everytime a
procedure or function is called. In there is not sufficient space left in the runtime
stack to successfully make the call, the runtime error "Stack Overflow" occurs. To
determine the stack size required for a particular program, repeatedly increase the
"K-byte Stack Size" option in the Preferences dialog until the program executes
without causing the "Stack Overflow" error.

Libraries

A library is a special source code construct that groups together procedure and
function declarations so that they can be compiled separate from any program. TML
BASIC allows code which is compiled in a library to be used in other libraries and in
programs just as if the code were textually included in the source code file. A library
can be thought of as a repository for code.

Libraries provide two major benefits. First, libraries allow for easy code sharing
among different programs. A collection of commonly used procedures and
functions can be grouped together in a library and then provided to one or more
different programs. Second, libraries provide a more manageable way to create large
programs. Using libraries, it is possible to partition your program into smaller
pieces which can be developed and tested separately from the rest of the program.
Because libraries are compiled separately, they also keep you from having to
recompile an entire program when only changing a small part of the source code.

Libraries are also used by TML BASIC to define the interfaces to the Apple IIGS
Toolbox. Libraries and the Toolbox are described in detail in Chapter 11.

The source code for a library is almost exactly the same as a program, except for two
simple rules. First, the source code must begin with the DEF LIBRARY statement
and end with the END LIBRARY statement. The DEF LIBRARY statement must be
the first statement in the source code since it is the only means that TML BASIC
uses to distinguish between a program and a library. And second, the only legal

TML BASIC Language Reference 117 Subroutines, Procedures, Functions and Libraries



statements that may appear in the body of the library are REM, DIM, DEF PROC and
DEF FN. Any legal BASIC statement may appear within the body of a procedure or
multiline function declaration.

The following is an example of a simple library that implements a fixed size integer
stack.

DEF LIBRARY IntegerStack
REM This library implements a simple 100 element integer stack.
DIM theStack%(99) '"Declare the stack

DEF PROC ClearStack 'Make the stack empty
stackTop$ = -1
END PROC ClearStack

DEF PROC Push (aValue%) 'Push a new value onto the stack
IF stackTop% < 99 THEN
stackTop% = stackTop% + 1
theStack% (stackTop%) = aValue$
END IF
END PROC Push

DEF FN Pop% 'Remove the top element of the stack
IF stackTop% >= 0 THEN
FN Pop% = theStack% (stackTop%)
stackTop% = stackTop% - 1
END IF
END FN Pop%

END LIBRARY

This simple library implements two procedures, a function and declares two global
variables. Note that only the REM, DIM, DEF PROC and DEF FN statements are
used in the body of the library, but that assignment, IF statements or any other
statements are allowed in the body of a procedure or function in the library. No
other statements are allowed in the body of the library because a library can not be
run like a program. The only code that is executed in a library are procedures and
functions which are called by a program.

Using a Library

The code defined in a library can be used by other libraries or a program. The
LIBRARY statement is used to make the code from a library available in a program.
When the LIBRARY statement appears in a program, TML BASIC behaves as if all
of the code in the specified library were actually in the program at the point where
the LIBRARY statement occurs. Thus, a program can call the procedures and
functions defined in the library or use any of its global variables.

TML BASIC Language Reference 118 Subroutines, Procedures, Functions and Libraries



For example, the following program uses the IntegerStick library defined above.

LIBRARY "IntegerStack”

PROC ClearStack

DO
HOME
PRINT " Integer Stack Demo"
PRINT " (1) Push an integer"”
PRINT " (2) Pop an integer™
PRINT (3) Quit”

INPUT "Enter an option: "; option$%

IF option% = 1 THEN
INPUT "Enter the integer: "; newValue%
PROC Push (newValue%)
ELSEIF option% = 2 THEN
PRINT "The top stack element was: "; FN Pop%
END IF
UNTIL option% = 3
END

By simply including the LIBRARY statement at the beginning of the program, all of
the declarations in the IntegerStack library are available to the program. In addition,
the same library can be used by different programs without having to edit or
recompile the IntegerStack library.

You should use libraries to develop your own collections of useful procedures and
functions which can be shared among the types of programs you write.

Compiling Libraries

Because a library is not a program, it can not be run. Thus, the behavior of the TML
BASIC To Memory & Run and To Disk compile commands is different than
compiling programs. When you choose to compile a library to memory using the
To Memory & Run command, TML BASIC compiles its source code, and then
returns to the editor without executing the source code. The compiled source code
is retained in memory so that other programs can use the code without having to
recompile the library.

The To Disk command compiles the library's source code and then creates a .LIB file
which contains a permanent copy the compiled code for the library. Thus, when a
program specifies a particular library in the LIBRARY statement, and its compiled
code is not in memory, TML BASIC can read it directly from the disk without
having to recompile the library's source code over again.

For more information about compiling techniques, see Chapter 3.

TML BASIC Language Reference 119 Subroutines, Procedures, Functions and Libraries



Predefined Libraries

TML BASIC provides a collection of predefined libraries which define the interface
to the Apple IIGS Toolbox. Using these libraries, BASIC programs may call the
Toolbox to use graphics and sound, create menus and windows, etc. These libraries
are described in Appendix C and found in the LIBRARIES folder of the TML BASIC

distribution disk.

See Chapters 11 through 13 for information on how to use these libraries for
programming the Toolbox.

TML BASIC Language Reference 120 Subroutines, Procedures, Functions and Libraries



Chepplier 9

Files

This chapter discusses the language features and capabilities of TML BASIC for
manipulating disk files and devices. If you are unfamiliar with the concepts of files,
volumes, disks and ProDOS you should study the Apple IIGS Owner’s Guide for an
introduction to the ProDOS operating system.

ProDOS 16 Fundamentals

ProDOS 16 is the operating system for the Apple IIGS. As such, it is responsible for
implementing much of the interface between Apple IIGS hardware and applications.
It manages the creation and modification of files. It accesses the disk devices on
which files are stored and retrieved. It dispatches interrupt signals to interrupt
handlers. It also controls certain aspects of the Apple IIGS operating environment,
such as pathname prefixes and routines for quitting programs and starting new
ones.

Filenames

A disk file is an ordered collection of information is stored on a disk and has several
attributes, including a filename and a filetype. Because TML BASIC operates within
the ProDOS 16 operating system, the file naming conventions and operations in
TML BASIC must abide by the rules of ProDOS 16.

A filename for a disk file in TML BASIC can be any sequence of 15 or fewer letters
(A-Z and a-z), digits (0-9) or periods (.); where the first character in a filename must
be a letter. If a program attempts to use a filename longer than 15 characters, or a
name that contains an illegal character, an error will occur.

Peripheral devices such as the keyboard, screen and printer connected to the Apple
IIGS are also treated as files in TML BASIC. These are called character files rather
than disk files. The naming conventions for character files is the same as disk files,
except that the name begins with a period (.). For example, ".PRINTER" refers to the
the printer device connected to slot 1. TML BASIC predefines some character
filenames, and a program can define others using the ASSIGN statement. See
Chapter 10 for a discussion of the ASSIGN statement and the predefined character
filenames. By treating peripheral devices as files, TML BASIC provides a single
consistent method for performing input and output in a program.

The filetype attribute is a special integer value which indicates the contents of a file.
There are filetypes which indicate text files, ProDOS 16 directories, BASIC Data Files,
etc. Appendix F provides a list of the most common filetypes.

TML BASIC Language Reference 121 Files



To open a file for input and/or output, the OPEN statement is used. The OPEN
statement associates a character or disk file with a filenumber which is used by TML
BASIC file input and output statements. TML BASIC supports up to 32 open files in
a program, numbered from 0 to 31. File number 31 has a special purpose in TML
BASIC. It is used by the CATALOG statement to read a disk directory. If a program
has all 32 files opened and executes the CATALOG statement, an error will occur.
Currently, ProDOS 16 version 1.x only allows up to eight files to be opened at once,
however, when new versions of ProDOS 16 become available which support more
than 8 open files, TML BASIC will be able to open up to 32 files.

Pathnames

The ProDOS 16 filetypes include the special directory filetype. A directory file
contains the names and disk locations of other files on a disk. A directory file can
contain other directory files, thus creating a hierarchy for the file organization on a
disk. These nested directories are sometimes called subdirectories. Every volume
contains at least one directory called the root directory. The root directory file has
the same name as the volume. All other files and directories are contained in this
directory.

The following figure illustrates part of the directory organization of the TML BASIC
distribution disk.

TML

T

TMLBASIC SYSTEM PART1.EXAMPLES PART3.EXAMPLES

N\

DESK.ACCS TOOLS FONTS HELLOWORLD .BAS

| T

TMLCLOCK  TOOL014 TOOL01l5 TOOLO1l6

To access a file using ProDOS 16, more than just its filename is required. ProDOS 16
requires a pathname to fully specify a file. A pathname is merely a series of
filenames, each preceded by the slash (/) character. The first filename in a pathname
is the root directory's filename (volume name). Successive filenames indicate the
path, from the root directory to the file that ProDOS 16 must follow to find a
particular file. For example, the pathname for the the file TMLCLOCK in the above
diagram is as follows:

TML BASIC Language Reference 12 Files



/TML/ SYSTEM/DESK.ACCS/TMLCLOCK

The maximum length for a pathname is 64 characters.

A pathname which begins with the filename of the root directory (volume name) is
called a full pathname. Files can also be designated with a partial pathname. A
partial pathname is a portion of a pathname that does not begin with a root
directory name and does not begin with the slash character. The following are
partial pathnames for the file TMLCLOCK.

TMLCLOCK
DESK.ACCS/TMLCLOCK
SYSTEM/DESK.ACCS/TMLCLOCK

Whenever a partial pathname is used, ProDOS 16 automatically adds a prefix to the
partial pathname to create a full pathname. A prefix is a pathname that indicates a
directory. A prefix always begins with a slash and a root directory name followed by
zero or more directory names. The following are legal prefix pathnames from the
example above:

/TML/

/TML/SYSTEM/
/TML/SYSTEM/DESK.ACCS/
/TML/PART1.EXAMPLES/

The slashes at the end of these prefixes are optional, but are helpful reminders that
these are prefix pathnames and not full pathnames to the respective directory files.

ProDOS 16 stores eight prefixes numbered 0 through 7. Prefix number 0 is called the
default prefix. Whenever a partial pathname is given, ProDOS 16 automatically
joins prefix 0 to the front of the partial pathname to create a full pathname. A prefix
pathname can be a maximum of 64 characters long. Since partial pathnames can
also be up to 64 characters long, it is possible to create pathnames up to 128 characters
long. The TML BASIC modifiable reserved variable PREFIX$ contains the value of
the ProDOS 16 prefix 0. TML BASIC also provides the PREFIX statement and the
PFX$ function for manipulating prefixes.

Finally, it is possible to override the use of prefix 0 when using partial pathnames
and designate any prefix by preceding a partial pathname with a prefix number and a
slash character. For example:

1/DESK .ACCS/TMLCLOCK
6/HELLOWORLD .BAS

TML BASIC Language Reference 123 Files



Manipulating Files

TML BASIC provides several statements which provide direct access to the ProDOS
16 operating system for manipulating files. These statements allow programs to
create and delete files, rename files, lock and unlock files, catalog a directory, and
determine what volumes are available. Each of these statements is discussed in
detail in Chapter 10, however, a quick review of these operations is provided below.

CREATE Statement

The CREATE statement is used to create disk files. The CREATE statement can be
used to create directories, text files, BASIC data files, and any other valid ProDOS 16
filetype. The following is the syntax for the CREATE statement:

CREATE Pathname [,FILTYP= DIR|TXT|SRC|BDF |Filetype [,SubTypel]

The reserved word CREATE is followed by the pathname of the file to be created.
Optionally, a pathname may be followed by the filetype specification and subtype
specification. If the optional filetype specification does not appear in a CREATE
statement, a text file is created. The following table shows the predefined filetype
names, their alternate names and meaning.

Table 9-1

FILTYP= names
Filetype Alternate
Mnemonic Mnemonic Meaning
DIR CAT Subdirectory
TXT TEXT Text file
SRC Source file
BDF DATA BASIC Data File

Appendix F contains a list of the most often used ProDOS 16 filetypes.

If the FILTYP= argument appears in a CREATE statement, it may optionally be
followed by a file subtype specification. The subtype is an unsigned integer value in
the range 0 to 65,535. If the subtype is not specified, the default value of zero is used
except for the case of BASIC Data Files. If the specified file type is a subdirectory
(DIR) then the subtype is zero regardless of the value specified. The meaning of the
subtype varies depending upon the file type.

BASIC Data Files require the subtype value be in the range 3 through 32,767. The

TML BASIC Language Reference 124 Files



reason for this is that TML BASIC uses the subtype of a BASIC Data File as the file's
logical record size. The logical record size of a BASIC Data File must be known in
order to support random-access to the file's records. See the "Accessing BASIC Data
Files" section later in this chapter for more information about BASIC Data Files.

An attempt to create an already existing file using the CREATE statement causes the
"Duplicate File Error" to occur.

The following are three examples of the CREATE statement. The statements create
a directory, a text file and a BASIC Data file respectively.

CREATE "/TML/MY.EXAMPLES", FILTYP=DIR 'Create a new subdirectory
CREATE "GRADES" 'Create a text file

CREATE "MYROLODEX",FILTYP=BDF, 100 'Create BASIC Data File
' with record size (subtype) of 100

DELETE Statement

The DELETE statement is used to remove a disk file from a volume. A directory file
can only be deleted if all the files in the directory have been deleted. It is, of course,
impossible to delete the root directory. The following is the syntax of the DELETE
statement:

DELETE Pathname

Any number of errors may occur when using the DELETE statement if the file is
currently in use, locked, on a write protected disk, etc. See Appendix A for a
complete list of the possible runtime errors.

RENAME Statement

The RENAME statement is used to change the name of a volume, directory or any
other file. The syntax for the RENAME statement includes the old pathname
followed by a comma and then the new pathname.

RENAME OldPathname, NewPathname [,FILTYP= TXT|SRC|BDF |Filetype]

The OldPathname must be the name of an existing file, and the NewPathname may
be any legal ProDOS 16 path. Using RENAME it is possible to change the name of a
file and even move the file into a different directory; however, it is impossible to
move a file to another disk by merely changing its pathname. For example:

RENAME "HELLOWORLD.BAS", "HELLO.BAS" 'Change file name
RENAME "HELLO.BAS", "/TML/HELLO.BAS" 'Change file's directory

TML BASIC Language Reference 125 Files



If the optional FILTYP= argument is used, the filetype of the renamed file is changed
as well. It is possible to change only the filetype of a file using the FILTYP=
argument when the OldPathname and NewPathname are the same.

LOCK and UNLOCK Statements

The LOCK and UNLOCK statements are used to change a file's protection. The
syntax for these statements includes only the reserved word LOCK or UNLOCK
followed by the pathname of the file whose protection is to be changed.

LOCK Pathname
UNLOCK Pathname

The LOCK statement prohibits writing to, renaming or deleting the named file. Any
filetype, including directories can be locked except for the root directory. The
UNLOCK statement removes the protection placed upon a file by the LOCK
statement.

CATALOG Statement

The CATALOG statement is used to display a listing of the files contained in a
directory. The CAT statement is a short form of the CATALOG statement that only
displays a subset of the directory information. Optionally, following the reserved
word CATALOG can be the pathname of a directory.

CATALOG [ Pathname ]
CAT [ Pathname ]

If the pathname is a volume name, all the files in the volume's root directory are
displayed. Otherwise, the pathname should specify the name of a subdirectory file,
in which case all of its files are displayed. If the pathname is omitted, the pathname
in the ProDOS 16 prefix 0 is displayed.

The CATALOG statement displays the filename, filetype, size, modification date,
creation date and subtype for each file in a specified directory.

VOLUMES Statement

The VOLUMES statement is used to read the volume name for each ProDOS 16
device and display its name. The ProDOS 16 devices are numbered .D1 through .D9
inclusive. The display lists the device name, its volume name and the number of
free bytes of storage available on the volume.

TML BASIC Language Reference 126 Files



Opening and Closing Files

Before a program can read from or write to a file that has been created, it must be
opened. After a program is finished accessing a file it should be closed. As noted
before, TML BASIC allows up to 32 files to be open simultaneously, however, the
current versions of ProDOS 16 (version 1.x) only support eight open files. Only later
versions of the operating system will allow programs to take advantage of TML
BASIC's ability to open up to 32 files.

OPEN Statement

The OPEN statement is used to open files for access, and must precede any file I/O
routines accessing a given file. The following is the general syntax for the OPEN
statement:

OPEN Pathname, [ FILTYP= DIR|TXT|SRC|BDF |Filetype ]
[ FOR INPUT|OUTPUT |APPEND |UPDATE ] AS # Filenumber [, Recordsize ]

The minimum required arguments following the reserved word OPEN are the file's
pathname followed by a comma, the reserved word AS and a file reference number.
The file must have been previously created and must exist on a disk currently
mounted in a disk drive. If a partial pathname is used, it is joined with prefix 0 to
create the full pathname. The file reference number is used in all subsequent TML
BASIC I/O statements for accessing the file. The following are some examples of the
OPEN statement:

OPEN "HELLOWORLD.BAS", AS #10

OPEN "/TML/MYSTUFF/INVOICES"™, AS #20
OPEN " .PRINTER", AS #1

OPEN " .MODEM", AS #2

It is generally good programming practice to adopt a convention for the use of file
reference numbers. One good convention is to use the file reference numbers 1
through 7 for character device files where the file reference number corresponds to
its slot, and the numbers 10 through 31 for disk files.

The optional FOR clause in the OPEN statement is used to qualify the access mode
for the file. The supported access modes are INPUT, OUTPUT, APPEND and
UPDATE. If the FOR clause is not used, the file is opened for UPDATE. The FOR
INPUT clause specifies that the file is opened for read-only access, and cannot be
written to. For example:

OPEN myFile$, FOR INPUT AS #10

TML BASIC Language Reference 127 Files



The FOR OUTPUT clause specifies that the file is opened for write-only access, and
cannot be read from. For example:

OPEN myFile$, FOR OUTPUT AS #10

The FOR APPEND option is a variant of the FOR OUTPUT clause. It is used for
sequential access (discussed later) and allows the PRINT# and WRITE# statements
to append new information to the end of a file without disturbing any existing data
in the file. For example:

OPEN myFile$, FOR APPEND AS #10

Finally, the FOR UPDATE clause is used to open a file for read-write access as long as
the filetype supports such access. For example, you cannot read from a printer.

The optional FILTYP= clause of an OPEN statement is used to specify the type of a
file. The FILTYP= clause is primarily used to ensure that a file being opened is of the
expected filetype. If a program attempts to open a file using the FILTYP= clause and
the file's type does not match the specified filetype, the file is not opened and an
error is reported. Any of the predefined filetype names (see CREATE) can be used
with the FILTYP= clause or an unsigned integer value.

The FILTYP= clause is also used with the OPEN statement to open files which have
not been created. If the OPEN statement finds that the specified file does not exist,
and the FILTYP= clause is given, it will implicitly call the CREATE statement first
and then open the newly created file.

Finally, the optional RecordSize argument is used to specify the record size for
random access to the file using the INPUT# and GET# statements for non-Basic
Data Files. If the file being opened is an existing BASIC Data File, the record size
argument is ignored and the record size used is the size specified when the file was
created. For more information about random file access see the "Accessing Text
Files", "Accessing BASIC Data Files" and "Accessing Binary Files" sections below.

CLOSE Statement

The CLOSE statement is used to close a file previously opened with the OPEN
statement. After a file has been closed, no further access is possible. A program
should always close a file after it has finished accessing it. The following is the
syntax of the CLOSE statement:

CLOSE
CLOSE# FileNumber

The CLOSE statement alone closes all files which are currently open. In addition,
TML BASIC closes all open files when the RUN and END statements are executed

TML BASIC Language Reference 128 Files



and when a program terminates.

A variation of the CLOSE statement, the CLOSE# statement, can be used to close a
single file. With this statement a program specifies the file reference number of the
file to be closed. For example:

CLOSE #10

File Access Techniques

Each of the six file access statements discussed in the next three sections can be used
for both sequential and random file access. Sequential file access is like reading a
book; access begins at the beginning of the file and continues in order to the end of
the file. Random file access on the other hand allows a program to read or write to
arbitrary locations in the file.

The following paragraphs define the concepts of sequential and random file access as
they relate to TML BASIC. For specific information on the different TML BASIC
statements which access files, see the sections "Accessing Text Files", "Access BASIC
Data Files", and "Accessing Binary Files" later in this chapter.

Sequential Access

TML BASIC stores a current file position for every file opened with the OPEN
statement. When a file is first opened, the current file position is set to the
beginning of the file, unless the file was opened with the FOR APPEND option, in
which case the current file position is set to the end of the file. The current file
position is the location where each TML BASIC I/O statement reads from or writes
to a file.

Sequential access is the most common technique for file access. When a file is read
from or written to, the file is accessed at the current file position. After the file is
accessed, the current file position is updated to point to the very next data element
in the file so that the next file access begins where the previous access left off. If a
program is writing to the file and the current file position reaches the end of the file,
the size of the file is extended by the size of the data being written to the file. After
the data is written, the current file position is updated to point to the new end of
file.

Sequentially accessed files, opened using the FOR UPDATE (the default) access
mode, pose some interesting questions. Using this access mode the current file
position is initially set to the beginning of the file. After the program writes new
information to the file, where is the file's end of file, and what data does it actually
contain? Is the end of file at the end of the original contents of the file or the new
contents? Depending on the situation, the answer could be either the original or the

TML BASIC Language Reference 129 Files



new. If the original contents of the file have been fully overwritten, all of the
original information is lost and the end of file is at the end of the new contents. If
only a portion of the original information is overwritten then some of the original
information still exists in the file and the end of file is at the end of the original
contents of the file.

To avoid the problem of old file contents remaining in a file after it has been written
to using the FOR UPDATE access mode, a program should first delete the existing
file, and then re-create and open the file.

Random Access

In contrast to sequential access, random file access allows each of the TML BASIC
I/0O statements to specify a file record number as the new location of the file's
current file position before file access occurs. In order to specify a record number,
however, a file must first be organized into a collection of records. A record is a data
structure consisting of a fixed number of bytes. The first record in a file is numbered
zero, the second record is numbered one, etc. Each successive record lies adjacent to
the next, with no intervening storage. Thus, a file containing N records, each B
bytes large, contains records numbered in the range 0 through N-1, and a file size of
N*B bytes.

When a file is written to using random access to a record which does not yet exist in
the file, the file is extended to create the specified record.

BASIC Data Files are always organized into records because the record size must be
specified when the file is created using the CREATE statement. Once a BASIC Data
File is created, its record size can never be changed. Files of other types can be given
a different record size when the file is opened using the OPEN statement as
discussed above.

Remember, text files are organized as variable length lines of characters each ending
with the return character. Thus, it generally makes sense to access a text file
randomly if it is known that each line is exactly the same length and equal to the
record size. Text files which contain variable length lines and are accessed randomly
with the INPUT# statement will most certainly read partial lines.

Accessing Text Files

A text file is a special type of file which contains ASCII characters organized as lines.
A line is a sequence of up to 255 characters ending with the Return character (ASCII
13). A text file is created with the TML BASIC CREATE statement where the
FILTYP= argument is the value TXT.

TML BASIC provides two statements for accessing text (disk) files and character

TML BASIC Language Reference 130 Files



(device) files: INPUT# and PRINT#. These statements are only with text files. If a
program uses these statements for other filetypes, TML BASIC reports the error "File
Type Error".

'INPUT# Statement

The INPUT# statement reads a line of text from a file into an input buffer and then
processes the input text according to the list of input variables in its argument list. If
the INPUT# statement does not encounter a return character after reading 255
characters, it terminates reading the file, appends a return character to the input
buffer, and processes the characters as a single line.

The following is the syntax of the INPUT# statement:

INPUT# FileNumber [, RecordNumber ] |[; VariableName {, VariableName }]

The reserved word INPUT# is followed by the file reference number of an open file,
a semicolon, and then a list of variables separated by commas. The following is an
example of the INPUT# statement which reads a line into a string variable:

INPUT #10; aLine$

This form of the INPUT# statement performs sequential access, reading a line of text
beginning at the current file position. To perform random access using the INPUT#
statement, include a record number after the file reference number. Recall that the
file must be opened using the OPEN statement with the optional record size
argument specified in order to define the size of a record for the text file. Consider
the following statements:

OPEN "AFILE", AS #10, 15
INPUT #10,4; alLine$

The OPEN statement opens the file AFILE with the record size defined as 15 bytes.
The INPUT# statement then reads a line of text beginning at the fourth record in
the file. The file position for the fourth record is computed with the equation
(RecordNumber - 1) * RecordSize. Thus, the new current file position for the
INPUT# statement is calculated as:

(4-1)*15=45

Therefore, TML BASIC positions the file at the 45th byte of the file before reading
the line. Recall that both record numbers and bytes are counted from zero.

The INPUT# statement may contain both string and numeric variables. If a

numeric variable is used in an INPUT# statement, TML BASIC automatically
converts the string representation of a number into the appropriate numeric type

TML BASIC Language Reference 131 Files



(similar to the VAL statement). When a numeric variable is used in an INPUT#
statement and the input line does not contain a string which represents a legal
numeric value a "Type Mismatch Error" occurs. If there is not enough data in the
input line, the file is read again until all of the variables have been given values.

PRINT# Statement

The PRINT# statement writes a line of text to a file in the same way the PRINT
statement does to the screen. The following is the syntax for the PRINT# statement:

PRINT# FileNumber [, RecordNumber ] [; Expression {,|; Expression }]

The reserved word PRINT# is followed by the file reference number of an open file,
a semicolon, and then a list of expressions separated by commas or semicolons. The
following is an example of the PRINT# statement which writes several variables to
a file:

PRINT #10; anInt%, aReal, aStr$

PRINT# automatically performs any necessary numeric-to-string type conversions
before writing to the file. Numeric values are formatted using the same rules as the
PRINT statement. That is, SHOWDIGITS controls the format of numbers generated
by PRINT#. Using the comma as the separator between expressions performs a tab
to the next print zone before writing the expression, while the semicolon does not.
The SPC and TAB functions can be used as well.

This form of the PRINT# statement performs sequential access, writing a line of text
beginning at the current file position. To perform random access using the PRINT#
statement, include a record number after the file reference number. Recall that the
file must be opened using the OPEN statement with the optional record size
argument specified to define the size of a record in the text file. Consider the
following statements:

OPEN "AFILE", AS #10, 20
PRINT #10,6; aLine$

The OPEN statement opens the file AFILE with the record size defined as 20 bytes.
The PRINT# statement then writes a line of text beginning at the sixth record in the
file. The PRINT# statement begins at the beginning of the specified random record,
and writes the entire value of each expression in its argument list without regard for
record size or boundaries. This behavior is unlike that of the WRITE# statement
discussed in the next section.

TML BASIC Language Reference 132 Files



Accessing BASIC Data Files

A BASIC Data File is a special binary coded filetype which provides much faster file
access than text files. BASIC Data Files are also called BDF or DATA files. BDF files
are faster than standard text files because no text to binary translation is necessary
when reading or writing a file. BDF files store data using the same binary
representation as the values stored in memory.

TML BASIC provides two statements for accessing BDF files: READ# and WRITE#.
Stucture of a BDF File

BASIC Data files are stored in a special file structure format. Unlike other filetypes,
BDF files are always organized as fixed size records, regardless of whether or not the
file is accessed sequentially or randomly. The record size for a BDF file is specified
when the file is created and cannot be changed. If the record size is not specified in
the CREATE statement, a default size of 512 bytes is used. When a record size is
specified in an OPEN statement for a BDF file, the value is ignored and the record
size specified when the file was created is used. The record size for a BDF file is
stored as the file's ProDOS 16 filetype.

As mentioned above, the data values stored in a BDF file are in the same binary
format as the values stored in memory. To identify the type of a value, BDF files
also store a tag byte immediately preceding a value which uniquely defines the
data's type. Table 12-2 shows the values and meaning of each BDF tag byte. The
table also shows the number of bytes required to store a value of the given type in a
BDF file.

Table 9-2
BDF Tag Byte Values

Tag Byte Meaning Bytes in BDF file

End-of-file 1
not used

Integer 3
Double Integer 5
Long Integer 9
Single-precision Real 5
Double-precision Real 9
String 2

NG WN-=O

+ characters in string

TML BASIC Language Reference 133 Files



Each data value and its tag byte together are called a field. All of the bytes for a field
must fit entirely within a record; a field may not span a record boundary. If
insufficient space is left in a record to write a field, the field is written to the next
record. If the field does not fit within any record, an error occurs.

The following diagram illustrates how various data values might be written to a
BDF file containing four records whose record size is 10 bytes. The integer values in
the records are tag bytes followed by a description of the data value in brackets. The
bytes in each record shown in grey indicate unused storage in the file because the
next field in the file could not fit in the record.

byte 0 1 2 3 4 5
record 0 2 [intege; value] 2 [integei value]
record 1 3 i1 dofuble intefga valu} 1 2

record 2 7 i leném byte fand 4 cl:{aracter %tMg 1

record3 | 3 i [ doubleintegervalue ] 3 i [ doubleintegervalue ]

If a program attempted to write a string value to this hypothetical file whose size
was greater than 10 bytes, an error would occur since the value would not fit within
a single 10 byte record.

READ# Statement

The READ# statement reads information from a BDF file into one or more
variables. The following is the general syntax for the READ# statement:

READ# FileNumber [, RecordNumber ] [; VariableName {, VariableName }]
The reserved word READ# is followed by the file reference number of an open BDF
file, a semicolon, and then a list of variables separated by commas. The following is
an example of the READ# statement which reads three integers:

READ #10; anIntl%, anInt2%, anInt3%

TMI RASIC | anatinae Reference 134 Files



This form of the READ# statement performs a sequential access, reading one field
after the other from successive records in the file. If the values stored at the current
file position in the BDF file are not integer values (tag byte not equal to 2), the value
must be converted.

If a READ# statement contains a numeric variable, the value at the current file
position in the BDF file must also be a numeric value. If the file contains a string
value, the "Type Mismatch Error" occurs. If the file does contain a numeric value,
but its type does not match the variable in the READ# statement, the value is
converted using the same rules as the CONV functions. Thus, it is possible that the
conversion will lose precision or even cause an "Overflow Error". If the READ#
statement contains a string variable, the value at the current file position must be a
string value, otherwise a "Type Mismatch Error" occurs.

An optional form of the READ# statement permits random access to a BDF file. To
perform random access using the READ# statement, include a record number after
the file reference number. Consider the following statement:

READ #10,3; aStr$, aDblInt@

This READ# statement reads a string value beginning at the third record in the file,
and then a double integer value. Recall that both record numbers and bytes are
counted from zero.

WRITE# Statement

The WRITE# statement writes information to a BDF file. The following is the
syntax for the WRITE# statement:

WRITE# FileNumber [, RecordNumber ] [; Expression {,|; Expression }]

The reserved word WRITE# is followed by the file reference number of an open file,
a semicolon, and then a list of expressions separated by commas or semicolons. The
following is an example of the WRITE# statement which writes several variables to
a file:

WRITE #10; anInt%, aReal, aStr$

This form of the WRITE# statement performs sequential access, writing each
successive value at the current file position. Each expression in the WRITE#
argument list causes a field to be written to the BDF file. Recall that a field is a tag
byte followed by the binary representation of the value. If a record does not contain
enough room to hold all the fields being written to it, the extra fields are written to
the next record. If a field cannot fit in any record (it is larger than the record size), an
error occurs.

TML BASIC Language Reference 135 Files



An optional form of the WRITE# statement permits random access to a BDF file.
To perform random access using the WRITE# statement, include a record number
after the file reference number. Consider the following variation of the above
statement:

WRITE #10,6; anInt%, aReal, aStr$

Accessing Binary Files

A binary file is simply a file consisting of a sequence of bytes without any particular
organization or structure such as the BDF files or text files. When a binary file is
accessed, the specified number of bytes at the current file position are transferred
without any translation into a structure array. Any filetype can be opened and
accessed as a binary file, including BDF and text files. One important use of binary
files in TML BASIC is the reading and writing graphics files.

The TML BASIC GET# and PUT# statements implement access to binary files. By
default, these statements transfer a number of bytes equal to the record size of the
opened file being accessed. Thus, a file which is accessed using these statements
should specify the optional record size argument in the OPEN statement.

GET# Statement

The GET# statement reads a number of bytes from a binary file into a structure
array. The following is the syntax of the GET# statement:

GET# FileNumber [, [Length] [, RecordNumber]]; StructureVariableReference

The reserved word GET# is followed by the file reference number of an open binary
file, a semicolon, and then a structure array variable reference (includes a subscript).
The number of bytes transferred is equal to the record size of the file. The following
statements illustrate the use of the GET# statement:

DIM myData! (99)
OPEN "SomeFile", AS #10, 100
GET #10; myData! (0)

The DIM statement declares a structure array with 100 elements, thus occupying 100
bytes of storage. The OPEN statement opens a binary file whose record size is 100
bytes and sets the current file position to the first record of the file. Finally, the
GET# statement reads the first record (100 bytes) of the file into the structure array
beginning at index position 0. Note that the OPEN statement is solely responsible
for determining the number of bytes transferred by the GET# statement by defining
the record size.

TML BASIC Language Reference 136 Files



Using the optional Length argument in the GET# statement enables a program to
override the number of bytes transferred to some value other than the record size.
However, the override length value must be less than or equal to the record size.
For example, the following GET# statement only transfers 50 bytes from the file.

GET #10,50; myData! (0)

Each of the above forms of the GET# statement performs sequential access to the
binary file. The GET# statement can also be used for random access using the
optional RecordNumber argument. For example, the following statement reads the
second 100 byte record (record numbers begin at 0) from the binary file:

GET #10,,1; myData! (0)
And the following statement reads only 50 bytes from the second 100 byte record:

GET #10,50,1; myData! (0)
PUT# Statement

The PUT# statement writes a number of bytes from a structure array to a binary file.
The following is the syntax of the PUT# statement:

PUT# FileNumber [, [Length] [, RecordNumber]]; StructureVariableReference

The reserved word PUT# is followed by the file reference number of an open binary
file, a semicolon, and then a structure array variable reference (includes a subscript).
The number of bytes transferred is equal to the record size of the file. The following
statements illustrate the use of the PUT# statement:

DIM myData! (99)
FOR i% = 0 to 99
myData! (i%) = i%
NEXT i%
OPEN "SomeFile", AS #10, 100
PUT #10; myData! (0)

The DIM statement declares a structure array with 100 elements, thus occupying 100
bytes of storage. The structure array is initialized with the FOR loop. The OPEN
statement opens a binary file whose record size is 100 bytes and sets the current file
position to the first record of the file. Finally, the PUT# statement writes the
contents of the structure array to the first record (100 bytes) of the file. Note that the
OPEN statement is solely responsible for determining the number of bytes
transferred by the PUT# statement by defining the record size.

Using the optional Length argument in the PUT# statement, it is possible to
override the number of bytes transferred to some value other than the record size.

TML BASIC Language Reference 137 Files



However, the override length value must be less than or equal to the record size.
For example, the following PUT# statement only transfers 50 bytes to the file.

PUT #10,50; myData! (0)

Each of the above forms of the PUT# statement performs sequential access to the
binary file. The PUT# statement can also be used for random access using the
optional RecordNumber argument. For example, the following statement writes to
the second 100 byte record (record numbers begin at 0) from the binary file:

PUT #10,,1; myData! (0)

And the following statement writes only 50 bytes to the second 100 byte record:
PUT #10,50,1; myData! (0)

Other File Operations

In addition to the file operations discussed thus far, TML BASIC offers several other
statements and functions related to the manipulation of files. The most significant
are those statements which relate to detecting and handling an end of file condition.
These and other file handling statements and functions are discussed below.

ON EOF# Statement

The ON EOF# statement allows a program to specify what actions to take when a file
input statement such as INPUT# or READ# attempts to read past the end-of-file
(EOF) mark of a file. The ON EOF# statement has a single argument, a file reference
number, followed by a sequence of one or more statements. For example:

ON EOF #10 PRINT "End of file": CLOSE #10: END

When the normal execution of a program encounters an ON EOF# statement, it
records that the file associated with the given file reference number has an active
ON EOF# statement. The statements on the same line after the ON EOF# statement
are not executed.

When a file's end-of-file mark has been reached, there is no more data in the file for
an input statement to read, thus the input statement cannot return any value.
Without the ON EOF# statement, the program would abort execution, returning the
error "Out of Data Error". However, if an ON EOF# statement has been executed for
the file whose file reference number matches that in the ON EOF# statement,
control automatically transfers to the statements after the ON EOF# statement.

The following program shows how the ON EOF# statement can be used in a very
simple program.

TML BASIC Language Reference 138 Files



OPEN "Test", AS #10
ON EOF #10 CLOSE #10: END
ReadAgain: INPUT #10; aLine$
PRINT aline$
GOTO ReadAgain

The program opens a text file, executes the ON EOF# statement and then proceeds to
read one line at a time from the file and print it to the screen. When the end-of-file
is encountered, TML BASIC automatically transfers control to the statements after
the ON EOF# statement. In this example, the statements close the open file and
then terminates execution of the program.

OFF EOF# Statement

The OFF EOF# statement cancels the effect of the ON EOF# statement. After an OFF
EOF# statement has been executed for a file reference number, reading past that
file's end-of-file will cause TML BASIC to abort execution of the program and report
the error message "Out of Data Error".

EOF Reserved Variable

When TML BASIC encounters an end-of-file, it assigns its file reference number to
the reserved variable EOF. The EOF reserved variable can then be used in the code
which handles the end-of-file condition for one or more files to determine exactly
which file has reached its end-of-file mark. The following is a simple example of
using the EOF reserved variable:

ON EOF # 10 GOTO HandleEOF
ON EOF # 15 GOTO HandleEOF
ON EOF # 17 GOTO HandleEOF

HandleEOF: PRINT "End of file encountered for file #"; EOF
CLOSE #EOF

EOFMARK Function

The EOFMARK function is used to determine the exact location of the end-of-file
mark for an open file. The function has a single parameter which is a file reference
number of an open file. If the file is not open, an error results. The following
example shows how to use the EOFMARK function:

FileSize@ = EOFMARK (10)

EOFMARK can only be used with disk files. Character device files such as a printer
or modem cannot have an end-of-file mark.

TML BASIC Language Reference 1% Files



FILE Function

The FILE function is used to determine if a file exists as a disk file. The FILE
function has a string parameter which specifies the pathname of the file to test for
existence. If the file does exist, the FILE function returns a value of one (true),
otherwise it returns a value of zero (false). The following example demonstrates
how the FILE function might be used.

FileOk = 0
DO
INPUT "Enter a file to open: "; theFilename$
IF FILE (theFilename$)
THEN FileOk = 1
ELSE PRINT "Sorry, that file does not exist™”
UNTIL FileOk
OPEN theFilename$, AS #10

The FILE function can also have an optional second parameter which specifies a
filetype. If the second parameter is given, the FILE function not only checks for the
file's existence, but also that its filetype matches the filetype specifed in the second
parameter. The second parameter uses the FILTYP= reserved word as described

previously with the CREATE statement.

FILTYP Function

The FILTYP function is used to obtain the filetype of an open file. The function has
a single parameter which must be a file reference number for an open file. The
function returns a integer which is the file's type.

TYP Function

The TYP function is only used with BASIC Data Files. This function examines the
type of the next value to be read from an open BASIC Data File and returns an
integer which is the tag byte of the next value in the file. The function has a single
parameter which is the file reference number of an open file. Table 9-2 defines the
tag byte values.

REC Function

The REC function is used with random access files to obtain the current record
number of a file. The function has a single parameter which must be a file reference
number for an open file. The function returns a double integer which is the record
number corresponding to the file's current position. The following is a simple
example of the REC function:

CurrentRecordPos@ = REC(10)

TML BASIC Language Reference 140 Files



Summary

TML BASIC provides an extensive collection of statements and functions for
manipulating files. This chapter has provided an overview of file concepts as
related to ProDOS 16, the operating system of the Apple IIGS, as well as a review of
the individual TML BASIC statements, functions and reserved variables which
provide for file manipulation in TML BASIC programs. You should also reference
chapter 10 for more information regarding each of the statements and functions
discussed in this chapter.

TML BASIC Language Reference 141 Files






Cheppter 10

Statements and Functions

The TML BASIC language has nearly 200 statements, functions and reserved
variables. This chapter serves as a complete reference for each of these language
elements with each appearing on its own page.

Statements are the fundamental building block of TML BASIC programs. The
source code for a program consists of one or more statements, each appearing on a
separate line or on the same line separated by colons. For example:

LET Average = (Vall + Val2 + Vval3) / 3
CALL MoveTo (30,20)

Predefined functions perform a calculation and return a single value. Therefore,
functions are used in expressions. Most of the predefined functions have at least
one or more parameters, although some have no parameters. For example:

x = SIN(angle)
Message$ = RIGHTS (Message$,5)
Paddle% = PDL9

Finally, reserved variables are special predefined variables which control or return
special system values. Some reserved variables can be assigned values. These are
called modifiable reserved variables.

kheDate$ = DATES
HPOS = 17

For more information about these language elements, see Chapter 7.

The description of each statement, function and reserved variable includes a
definition of the syntax for using the language element, a discussion of what action
it performs along with a description of its arguments and/or parameters, restrictions
and error conditions. Also given is an example of how the language element might
be used in a program. Where appropriate, references to other language elements are
given to help you better understand its use, and in the case where TML BASIC
differs from GS BASIC, a discussion of those differences is provided.

TML BASIC Language Reference 143 Statements and Functions



The Syntax Notation

The syntax notation used in this chapter is the same notation described in Chapter 7.
The following is an example of the syntax notation used to define a procedure call.

PROC Procedurename [ ( Expression { , Expression } ) |

Words which appear in all capital letters denote TML BASIC reserved words and
must be used exactly as shown. In the example above, PROC is a reserved word
which must appear exactly as shown.

Brackets ([ ]) indicate that the elements between the matching left and right brackets
may optionally appear in the syntax. Braces ( {} ) indicate that the elements between
the matching left and right braces may appear zero or more times in the syntax. The
example above, indicates that a procedure's parameter list is optional since it
appears in brackets. If a parameter list appears, it may have one or more Expression
parameters separated by commas as indicated by the braces.

A vertical bar ( | ) is used to indicate an option. When two or more syntactic
elements are separated by a vertical bar, any one of the elements may appear in the
syntax, but only one. The vertical bar is not used in the example above.

Special symbols other than braces ( {} ), brackets ([ ]) and the vertical bar ( | ), have
special meaning to the syntax for the statement or function being defined, and must.
appear exactly as shown. For example, the parentheses and commas shown in the
example above must appear exactly as shown.

Italicized words indicate that the word is to be substituted with a specific TML BASIC
language construct. The italicized word is chosen to-help imply the language
construct it represents. For example, Procedurename is meant to imply that a legal
procedure name should appear in its place. Whenever an italicized word appears in
the syntax definition, the accompanying text defines the exact meaning of the word.
Throughout the syntax, four general italicized words are used: Expression,
NumericExpression, StringExpression and Pathname.

Expression means that any legal TML BASIC expression is to be used in its place.
Expressions are constants, variables, functions and operators which evaluate to any
type. Expressions are described in Chapter 7. Sometimes the word Expression is
qualified as either NumericExpression or StringExpression. In this case, the type of
the expression is required to be one of the numeric types or the string type
respectively.

The word Pathname means that a legal ProDOS 16 pathname must appear. This

word is used only in those statements and functions which implement ProDOS 16
operations. Pathnames are described in Chapter 9.

TML BASIC Language Reference 144 Statements and Functions



ABS Function

Syntax
ABS (NumericExpression)
Action
The ABS function returns the absolute value of the NumericExpression. The

NumericExpression may be any TML BASIC numeric type, and ABS returns a value
which is the same type as NumericExpression.

The absolute value of a numeric expression is its magnitude without regard to its
sign. For example, the absolute value of -12 is 12; and the absolute value of +12 is 12.
The absolute value of zero is zero.

Example

A = -438

PRINT ABS (438)
PRINT ABS(A)
PRINT ABS(-34.92)

OUTPUT:
438

438
34.92

TML BASIC Language Reference 145 Statements and Functions



ANU Function

Syntax
ANU (Rate, Periods)
Action

The annuity function, computes the annuity, ANU(Rate, Periods) that is equal to
the following calculation:

(1- (1+ Rate) ™ (-Periods )) / Rate

where Rate and Periods can be any numeric type. Rate indicates the interest rate and
Periods represents the number of time periods for which to compound the interest.

The calculation ANU(Rate, Periods) is more accurate than the straightforward
computation of the expression shown above using normal arithmetic and
exponentiation operations. The annuity function is directly applicable to the
computation of present value and future value of ordinary annuities.

An annuity is a series of equal payments made at regular intervals with interest
compounded at a certain rate. The number of payments is always one more than
the number of time periods. Present value can be calculated using the annuity
function alone but future value is calculated with the annuity function and also the
compound function.

See Also
COMPI

Example

PRINT ANU(0.08,180)

Amount = 10000 ' Initial investment amount

Rate = 0.08 ' Interest rate

Periods = 4 ' Number of time periods

PRINT "Present Value = "; Amount * ANU(Rate, Periods)

PRINT "Future Value = "; Amount * COMPI (Rate,Periods) * ANU (Rate,Periods)
OUTPUT:

1.25

Present Value = 33121.27
Future Value 45061.12

TML BASIC Language Reference 146 Statements and Functions



ASC Function

Syntax
ASC(StringExpression)

Action

The ASC function returns an integer value which is the ASCII (American Standard
Code for Information Interchange) character code for the first character of
StringExpression. If the value of StringExpression is a null string then the result is

-1.

To convert an integer which represents an ASCII character code into a string, use the
function CHR$, which creates a single character string from the given character

code.
See Also

CHR$
Appendix E

Example

S$ = "hello”

PRINT ASC (S$)

PRINT ASC ("TML BASIC")
PRINT ASC(""™)

OUTPUT:

104

84
=1

TML BASIC Language Reference 147

Statements and Functions



ASSIGN Statement

Syntax

ASSIGN DeviceName, SlotNumber [,AUTO]
Action

The ASSIGN statement associates a character device with a slot or port number.
DeviceName is a string expression beginning with a period, followed by a letter
(A-Z, a-z) followed by zero or more letters or digits, that indicates a filename (case is
not significant). The SlotNumber argument is an integer value in the range -1 to 7.
The optional AUTO argument indicates that TML BASIC should also send a
line-feed after each carriage-return sent to the device.

After a device name has been defined it can be used in the OPEN statement as a
character device filename. The device can then be accessed as a file using TML
BASIC's file I/O statements.

TML BASIC allows up to 12 device names to be defined (including the six
predefined names). The device names are stored in an internal device table. A
value of 1 through 7 defines the slot number of the character device. A value of
zero (0) defines a null device, and the value -1 deletes a device name from the
current device table.

TML BASIC predefines six character device names. These names can be deleted if
needed. The following table lists the six predefined device names.

DeviceName Slot Auto Line-feed Description
.CONSOLE 3 Off C3COUT1
.PRINTER 1 On
.MODEM 2 Off
.MEMBUFR - Off Pseudo device (255 byte buffer)
.NETPTRI1 7 On AppleTalk printer driver
.NULL 0 Off A bit bucket, read=CR
See Also
OPEN
Example
ASSIGN ".MYPLOTTER"™, 6 'Define the device .MYPLOTTER at slot 6

TMI RASIC | anatinne Reference 148 Statements and Functions



ATN Function

Syntax
ATN(NumericExpression)
Acfion

The ATN function returns, in radians, the trigonometric arctangent (inverse
tangent) of NumericExpression. In other words, ATN returns the angle whose
tangent is NumericExpression.

The value returned represents an angle in the range -n/2 to +1/2 radians.
See Also

COs
PI
SIN
TAN

Example

PI# = ATN(1.0) * 4 ' Calculate the value of PI using ATN
PRINT PI#

OUTPUT:

3.141593

TML BASIC Language Reference 149 Statements and Functions



AUXID@ Reserved Variable

Syntax
AUXID@

Action

The AUXID@ reserved variable is set each time an OPEN or FILE statement is
executed. It returns a double integer which is the subtype of the file specified in the
last executed OPEN or FILE statement.

See Also

OPEN
FILE

Example

Exists% = FILE("/TML/TMLBASIC")
PRINT Exists%, AUXID@

OUTPUT:

1 0

TML BASIC Language Reference 150 Statements and Functions



BREAK ON, BREAK OFF Statements

Syntax

BREAK ON
BREAK OFF

Action

During normal program execution, TML BASIC programs monitor the keyboard for
a Control-C keypress. If a Control-C is typed, program execution aborts and returns
control to TML BASIC (for Compile to Memory) or to the Apple IIGS Finder (for
Compile to Disk). TML BASIC only monitors the keyboard between statements.
Thus, it is not possible to abort using Control-C while an INPUT statement is
waiting for user input.

Control-C monitoring can be suppressed by the BREAK OFF statement and
re-enabled with the BREAK ON statement. If a Control-C is typed while BREAK
OFF is active, it is treated like any other character and program execution continues
normally. All programs begin with BREAK ON enabled.

Because TML BASIC must generate code between each statement in a program to
check for the Control-C keypress, programs are larger and slower than if the
Control-C is not checked. TML BASIC allows programs to turn off this code
generation entirely using the $KeyboardBreak metastatement or by turning off the
Keyboard Break option in the Preferences Dialog. If Control-C code generation
checking is turned off, programs will run faster and be smaller, however, it will be
impossible to abort execution of the program using Control-C regardless if BREAK
ON is active. '

See Also

ON BREAK
Chapter 6, Preferences Dialog
Appendix B

Example

.
BREAK OFF "Turn off Control-C checking while updating screen
GOSUB UpdateScreen

BREAK ON 'Restore Control-C checking

TML BASIC Language Reference 151 Statements and Functions



BTN Function

Syntax
BTN (But tonNumber)

Action

The BTN function returns the state of the three Apple IIGS sense inputs.
ButtonNumber must be an integer in the range 0 to 2. Any number outside this
range will produce an "Illegal Quantity Error".

BTN returns the integer values 0 or 1 reflecting the state of the input. Various
devices can control the state of these inputs including the buttons on paddles or
joysticks, and the Open-Apple and Option keys.

The following shows the legal values for ButtonNumber and the input it tests.
Command Input Address Explanation
BTN(0) $E0C061 returns 1 if Open-Apple key is down, 0 if up
BTN(1) $E0C062 returns 1 if option key is down, 0 if up
BTN(2) $E0C063

Example

IF BTN(0)=1 THEN PRINT "Open Apple Down" ELSE PRINT "Open Apple Up"
IF BTN(1)=1 THEN PRINT "Option Key Down" ELSE PRINT "Option Key Up"

TML BASIC Language Reference 152 Statements and Functions



CALL Statement

Syntax

CALL ToolboxName [ ( Expression {, Expression } ) ]
_ToolboxName [ ( Expression {, Expression} ) ]

Acfion

The CALL statement executes a named procedure or function in an Apple IIGS
toolset. The declarations for Toolbox procedures and functions are defined in the
several predefined libraries shipped with TML BASIC in the folder LIBRARIES. See
Appendix C for a complete list of the Toolbox libraries and the procedures and
functions declared in them.

Following the reserved word CALL is the name of the toolbox procedure. If the
procedure has parameters, they are given after the toolbox name enclosed in
parentheses. The rules for matching parameters are the same as for normal BASIC
procedures. If the Toolbox routine is a function then its return values are placed in
the CALL return stack See the description of the reserved variable R.STACK for a
description of the Call return stack.

In order to call a Toolbox procedure, the library containing the declaration of the
routine must appear in a LIBRARY statement, otherwise TML BASIC reports the
error "Toolbox procedure xxx is not defined", where xxx is the name of the
procedure.

TML BASIC allows the use of the underscore character (_) as a shorthand form of
the CALL reserved word. Any time a CALL statement is used, it can be substituted
with the underscore character. See the example below.

Chapter 11 provides a detailed discussion of the Apple IIGS Toolbox and how to
access it from TML BASIC.

See Also

CALL%
R.STACK
Chapter 11
Appendix C

Example

LIBRARY "QuickDraw" 'Load the QuickDraw library
CALL MoveTo (10,23) 'Call the MoveTo procedure in the QuickDraw library
_MoveTo (10, 23)

TML BASIC Language Reference 183 Statements and Functions



CALL% Statement

Syntax

CALL% FunctionNumber, ToolSetNumber, ResultSize
[ ( Expression {, Expression } ) ]

Action

The CALL% statement is a variation of the CALL statement for calling the Apple
IIGs Toolbox procedures and functions. The CALL% statement allows a program to
call a Toolbox procedure by specifying its FunctionNumber, ToolSetNumber and
function ResultSize; while the CALL statement calls a Toolbox procedure by its
nhame.

As described in Chapter 11, section "The Toolbox Libraries", the Apple IIGS Toolbox
is divided into a collection of individual toolsets, each assigned a unique Tool set
number. Furthermore, each procedure and function within a toolset is assigned a
unique function number. Together, these two numbers uniquely identify every
procedure and function in the Toolbox. It is these two numbers that are used in the
CALL% statement to call a Toolbox routine. Appendix C lists each of the procedures
and functions in the Toolbox with their tool set and function numbers.

If the procedure has parameters, they are given after the toolbox name enclosed in
parentheses. The rules for matching parameters are the same as for normal BASIC
procedures.

See Also

CALL
R.STACK
Chapter 11
Appendix C

Example

CALL% 58,4,0 (10,23) 'Call the MoveTo procedure in the QuickDraw library

LIBRARY "QuickDraw" "Load the QuickDraw library
CALL MoveTo (10,23) 'Equivalent to the CALL% statement

TML BASIC Language Reference 154 Statements and Functions



CATALOG Statement

Syntax

CATALOG [StringExpression]
CAT [StringExpression]

Action

CATALOG or CAT displays a listing of the disk contents of the current directory.
The CAT statement only displays a subset of the complete information displayed by
the CATALOG statement. The current directory is the ProDOS 16 prefix 0 which is
also the value of the reserved variable PREFIX$.

If the optional StringExpression argument appears, the contents of the directory
indicated by StringExpression is displayed. If the value of StringExpression does not
represent a valid ProDOS 16 pathname of a directory file, the error "Path Not
Found" occurs.

If OUTPUT# is set to anything other than 0, the directory listing will be sent to the
specified OUTPUTH# file and not to the screen.

See Also

OUTPUT#
PREFIX$
Chapter 9, Pathnames

Example

CATALOG "/TML/PART1.EXAMPLES"
CAT "/TML"™

TML BASIC Language Reference 1585 Statements and Functions



CHAIN Statement

Syntax
CHAIN PathName

Action

The CHAIN statement is used to launch another ProDOS 16 application from a TML
BASIC program. When the CHAINed application quits, control returns to the TML
BASIC program at the statement immediately after the CHAIN statement. When
control returns, all open files remain open and all variables remain in tact. The
PathName argument is a string expression which must represent a legal pathname
to a ProDOS 16 application.

Compiler/Interpreter Differences

TML BASIC can only chain to compiled ProDOS 16 applications, while GS BASIC
chains control to GS BASIC source code programs. Because GS BASIC chains to
source code, an optional line number or label may be specified as the location to
begin execution in the program. TML BASIC only transfers control to the beginning
of an application.

Example

CHAIN "PAYROLL"™

PART2$ = "/ACCOUNTING/TAXPROGRAM"
CHAIN PART2$

TML BASIC Language Reference 1586 Statements and Functions



CHRS Function

Syntax
CHRS (NumericExpression)

Action

The CHR$ function returns a one character string whose single character has the
ASCII code which is NumericExpression. The value of NumericExpression must be
in the range 0 to 255 inclusive. If the value is outside this range then the error
"[llegal Quantity Error" occurs. Real values passed will automatically be rounded to
the nearest integer.

The CHR$ function complements the ASC function, which returns the ASCII code
of the first character of a string.

See Also

ASC
Appendix E

Example

PRINT CHRS (65)
PRINT CHRS$ (34);"HELLO"; CHR$(34) ' CHR$(34) is double quote character

OUTPUT:

A
"HELLO"

TML BASIC Language Reference 157 Statements and Functions



CLEAR Statement

Syntax
CLEAR

Action

The CLEAR statement is used to set all numeric variables to zero, string variables to
null, and closes all open files. Note that if CLEAR is used inside a loop, the loop
counter is cleared causing an infinite loop.

The ERASE statement should be selectively free storage for arrays.

Compiler/Interpreter Differences

Unlike GS BASIC, TML BASIC does not support dynamically setting the stack and
data segments. Thus, the CLEAR statement in TML BASIC does not support any

arguments for specifying the new size of a data segment.

See Also

ERASE

Example
DIM StrArray$ (1)

"TML BASIC"
"IML Pascal”

StrArray$ (0)
StrArray$ (1)

o

PRINT "*"; StrArray$(0); "*";

CLEAR

PRINT "*"; StrArray$(0); "*»;

OUTPUT:

*TML, BASIC*TML Pascal¥*
* Kk

TML BASIC Language Reference

StrArray$ (1) ; "*"

StrArray$(1); "*"

158

Statements and Functions



CLOSE and CLOSE# Statements

Syntax
CLOSE [# FileNumber ]
Acfion

The CLOSE and CLOSE# statements are used to close files that were previously
opened with an OPEN statement. CLOSE# closes the file whose file reference
number is equal to FileNumber. The FileNumber parameter is an integer in the
range 0 to 31. If FileNumber is outside this range, or if no open files have the
specified file number, the "File Not Open Error" occurs.

Before ending program execution, all open files should be closed using the CLOSE#
or CLOSE statements. Any files closed during program execution must be reopened
before they can be accessed again.

CLOSE closes ALL files that are open when the statement is executed. In addition,
TML BASIC closes all open files when the RUN and END statements are executed
and when a program terminates. Unlike the RUN statement, the CHAIN statement
does not cause any files to be closed.

Example
CLOSE #4 '"Close file previously opened as file number 4.
CLOSE 'Close all open files

TML BASIC Language Reference 159 Statements and Functions



COMPI Function

Syntax
COMPI (Rate, Periods)
Action

The compound interest function, COMPI(Rate, Periods), computes the expression:

(1 + Rate) ™ Periods.

where Rate and Periods can be any numeric type. Rate indicates the interest rate and
Periods represents the number of periods for which interest in calculated.

When the rate is small, COMPI(Rate, Periods) gives a more accurate result for the
computation than does the straightforward computation of (1+Rate)”Periods by
addition and exponentiation. COMPI is directly applicable to computation of
present and future values.

See Also
ANU
Example
Rate = 0.08 '"Interest rate is 8%
Periods = 10 'Investing for 10 years compounding annually
Amount = 10000 'Principle to invest is $10,000

PRINT COMPI (Rate,Periods) * Amount
OUTPUT:

21589.25

TML BASIC Language Reference 160 Statements and Functions



CONYV Functions

Syntax
CONV [#|%]@|&|$] (AnyExpression)

Acfion

The CONV functions are a set of generalized conversion functions which convert
any numeric or string expression into a value of the specified type. The type
character used with the CONV function indicates the result type of the function.

If a numeric expression evaluates outside of the specified result type, an "Overflow
Error" occurs. If a string expression is converted to a numeric type, the string value
must represent a legal numeric string, otherwise, the value zero (0) is returned.
When AnyExpression is a string expression, the effect is the same as the VAL
function.

See Also

VAL
Chapter 7

Example

PRINT "My address is " + CONV$(12*4) + "™ Memory Lane™

myReal = 43.21

PRINT CONV% (myReal)

PRINT CONV% (60000) '"This statement causes an Overflow Error

OUTPUT:

My address is 48 Memory Lane
43

TML BASIC Language Reference 161 Statements and Functions



COS Function

Syntax
COS (NumericExpression)
Acfion

Returns the trigonometric cosine of NumericExpression. NumericExpression is an
angle expressed in radians. To convert radians to degrees, multiply by 180/%. To
convert degrees to radians, multiply by n/180.

See Also

ATN
PI
SIN
TAN

Example
PRINT "Cosine of 45 degrees = '; COS(45 * PI/180)
OUTPUT:

0.7071068

TML BASIC Language Reference 162 Statements and Functions



CREATE Statement

Syntax
CREATE PathName [,FILTYP= DIR|TXT|SRC|BDF|FileType [,SubType]l

Action

The CREATE statement is used to create a disk file. The created file may be a
subdirectory, text file, Basic Data File, or any other valid ProDOS 16 filetype.

The PathName argument is a string expression which must represent a legal
ProDOS 16 filename or pathname. If an invalid PathName is given then the "Bad
Path Error" occurs. If the CREATE statement attempts to create a file on a disk
which is write protected, the "Write Protect Error" occurs.

The FILTYP= argument may optionally appear after the PathName argument to
specify the filetype of the created file. FILTYP= may specify one of the four
predefined filetypes using the filetype's mneumonic name or an arbitrary filetype by
specifying an unsigned integer FileType value. If the FILTYP= argument does not
appear, then the CREATE statement creates a text file (TXT) by default. The table
below summarizes the predefined filetype names, their alternate names and
meaning.

Filetype Alternate

Mneumonic Mneumonic Meaning

DIR CAT Subdirectory

TXT TEXT Text file

SRC Source file (a text file)
BDF DATA Basic Data File

Appendix F contains a list of the most often used ProDOS 16 filetypes.

If the FILTYP= argument appears, then it may optionally be followed by a file
subtype specification. SubType is an unsigned integer value in the range 0 to 65,535.
If the subtype is not specified the default value of zero is used except for the case of
Basic Data Files. If the specified file type is a subdirectory (DIR) then the subtype is
zero regardless of the value specified. The meaning of the subtype varies depending
upon the file type (See Chapter 9).

Basic Data Files require that the subtype value be in the range 3 through 32,767. The
reason for this is that TML BASIC uses the subtype of a Basic Data File as the file's
logical record size. The logical record size of a Basic Data File must be known in
order to support random-access to the file's records. See Chapter 9 for a discussion

TML BASIC Language Reference 163 Statements and Functions



of files in TML BASIC.

An attempt to create an already-existing file using the CREATE statement cases the
"Duplicate File Error" to occur.

Example
CREATE "/TML/MY.EXAMPLES", FILTYP=DIR 'Create a new subdirectory
CREATE "GRADES" 'Create a text file

CREATE "MYROLODEX",FILTYP=BDF,100 'Create Basic Data File
' with record size (subtype) of 100

IllegalFileName$ = " () #$%~"
CREATE IllegalFileName$,FILTYP=0 "Causes Bad Path Error

TML BASIC Language Reference 164 Statements and Functions



DATA Statement

Syntax

DATA constant {, constant}

Action

The DATA statement declares constant values for the READ statement. A DATA
statement contains one or more constants separated by commas. A constant can be a
string constant or any floating-point or integer constant.

A program can have as many DATA statements as required, and they need not be
located on successive lines. During execution, READ statements access the DATA
constants from left to right and top to bottom in the order in which they appear in
the source code. A "Type Mismatch Error" occurs if a READ statement attempts to
read a string constant into a numeric variable.

The RESTORE statement is used to reread constants from the first DATA statement
in the program or any specified DATA statement. If a program attempts to READ
more data than exists in DATA statements, an "Out of Data" error occurs.

See Also

READ
RESTORE

Example
READ AS$,BS

RESTORE Names
READ C$,D$

PRINT A$%$,B$,C$,D$
END

Names: DATA "Apple", "Orange"
DATA "Pear”, "Grape"

OUTPUT:

Apple Orange Apple Orange

TML BASIC Language Reference 165 Statements and Functions



DATE Function

Syntax
DATE (NumericExpression)
Action

The DATE function reads the Apple IIGS clock to return the current date
information as an integer rather than a string as returned by the DATES$ function.
The value of NumericExpression must be in the range 0 through 4 inclusive,
otherwise the "Illegal Quantity Error" occurs.

The following table shows the values returned by the DATE function for each legal
parameter value.

Function Value returned

DATE@©)  Year - 1900

DATE(1)  Year

DATE(2)  Month, where 1=January, 2=February, ... 12=December
DATE@3)  Day of the month, 1 through 31

DATE(4)  Day of week, 1 through 7 where 1=Sunday

Actually, the Apple IIGS clock is only read when the parameter value is zero.
DATE(0) reads the Apple IIGS clock for all date information and then updates the
values which will be returned by the other DATE function calls. This feature
protects programs from classical "clock rollover" problem.

Example

ReadDate% = DATE (0) 'Read the Apple IIGS Date information
Year$ = DATE (1)

DayOfWeek% = DATE (4)

PRINT "The year is "; Year$%
IF (DayOfWeek% = 1) OR (DayOfWeek% = 7) THEN PRINT "This is the weekend!"

OUTPUT:

The year is 1987
This is the weekend!

TML BASIC Language Reference 166 Statements and Functions



DATES Function
DATES Statement

Syntax

DATES
DATES Year, Month, DayOfMonth

Action

DATES$ is both a function and a statement in TML BASIC. The DATE$ statement
has three arguments, while the DATES$ function has none.

The DATES$ function reads the Apple IIGS clock and returns the current date as a
string. The form of the string depends upon the date format chosen in the Apple
IIGS control panel. The date formats are MM/DD/YY, DD/MM/YY, YY/MM/DD,
where MM stands for the month, DD stands for the day and YY stands for the year.
See your Apple 1IGS Owner’s Guide for information on how to use the Control
Panel.

The DATES$ statement is used to change the date settings of the Apple IIGS clock.
The year is specified by the Year parameter, the month by the Month parameter and
the day of the month by the DayOfMonth parameter. The Year parameter is the year
minus 1900 and must be in the range 0 through 255 inclusive. For example, 87
indicates the year 1987. Month should be in the range 1 through 12 inclusive and
DayOfMonth should be in the range 1 through 31 inclusive.

Example

DATES 66,12,6 'Set Apple IIGS clock to December 6, 1966
PRINT DATES$; " was a memorable date."

OUTPUT:

12/ 6/66 was a memorable date.

TML BASIC Language Reference 167 Statements and Functions



DEF FN Statement

Syntax
DEF FN functionname [%|@|&|#|$] [ ( parameter {, parameter} ) ] = expression
DEF FN functionname (%|Q|&|#1$] [ ( parameter {, parameter} ) ]

LOCAL variable {, variable }

* statements

FN functionname [%|Q@|&|#|$] = expression

END FN [ functionname ]
Acfion

The DEF FN statement is used to define functions. Functions are used to group
together one or more statements that compute and return a value. Functions are
called using the reserved word FN.

There are two types of functions in TML BASIC: single-expression (simple)
functions and multiline functions. Simple-expression functions are contained on a
single line and have only one expression for computing the value of the function.
The type of the expression must be compatible with the function name. Multiline
functions may contain several statements bracketed by the DEF FN and END FN
statements. At least one of the statements must be an assignment statement to the
function variable.

The functionname in a function declaration declares the name of the function. The
name may not be any of the TML BASIC reserved words. Following the function
name is an optional type character used to specify the type of the function's result
value. If no type character is given the function returns a single-precision real
value. A function may optionally have a sequence of parameters whose values are
used to compute the value of the function. A parameter may be any numeric or
string type, but not an array.

The position of a function declaration in the source of a program has no effect on
program flow or when the function can be called. A function declaration behaves
like a large comment around all the statements in the function so that a program
does not have to direct program flow around the function declaration. In addition,
a function can be called anywhere in the program, even if the function is declared
later in the source code.

See Chapter 8 for a complete discussion of functions.

TML BASIC Language Reference 168 Statements and Functions



See Also

DEF PROC
LOCAL
Chapter 8

Example
DEF FN Circumf (X) = X*2*PI

DEF FN Factorial#(n%)
LOCAL total#
IF n% < 0 THEN
FN Factorial$ =1
ELSE
FOR i% = n% TO 2 STEP -1
total# = total# * i%
NEXT i%
END IF
END FN Factorial#

TML BASIC Language Reference

Statements and Functions



DEF LIBRARY Statement

Syntax

DEF LIBRARY LibraryName

* statements

END LIBRARY

Action

The DEF LIBRARY statement is used to create a library. A library is a special source
code construct that groups together procedure and function declarations so that they
can be compiled separately from any program. Libraries can then be used in other
programs just as if the source code in the library textually appeared in the program.
A library essentially behaves as a repository of code for other programs to use.

The source code for a library must begin with the DEF LIBRARY statement. It must
be the first non-empty, non-comment line in the source code. In addition, the
source code must end with the END LIBRARY statement. All of the statements
between the DEF LIBRARY and the END LIBRARY statements are part of the
library. Only five types of statements are allowed in a library: LIBRARY, REM, DIM,
DEF PROC and DEF FN. No other statements are allowed in the library (including
the DIM DYNAMIC statement). The reason for this is that the code in a library does
not create a program that can be executed. It only contains code that other programs
can call. Because a library is never executed, it does not make sense for it to contain
executable statements.

Of course, the statements within a procedure or function declaration (DEF PROC
and DEF FN) may be any legal TML BASIC statements. These statements are
executed whenever the procedure or function is called by a program that uses the
library.

To use a library in a program, the LIBRARY statement is used. When the LIBRARY
statement appears in a program (or even another library), TML BASIC makes all of
the declarations in the library available to the program just as if the source code in
the library appeared in the program itself.

See Chapter 8 for a complete discussion of libraries.

TML BASIC Language Reference 170 Statements and Functions



See Also

LIBRARY
Chapter 8
Chapter 11

Example
DEF LIBRARY IntegerStack
REM This library implements a simple 100 element integer stack.
DIM theStack%(99) 'Declare the stack

DEF PROC ClearStack 'Make the stack empty
stackTop% = -1
END PROC ClearStack

DEF PROC Push (aValue%) 'Push a new value onto the stack
IF stackTop% < 99 THEN
stackTop% = stackTop$% + 1
theStack% (stackTop%) = aValue%
END IF
END PROC Push

DEF FN Pop$% 'Remove the top element of the stack
IF stackTop% >= 0 THEN
FN Pop% = theStack%(stackTop$%)
stackTop% = stackTop$% - 1
END IF
END FN Pop$%

END LIBRARY

TML BASIC Language Reference 171 Statements and Functions



DEF PROC Statement

Syntax

DEF FN procedurename [ ( parameter {, parameter} ) ]
LOCAL variable {, variable }

* statements

END FN [ procedurename ]

Action

The DEF PROC statement is used to define procedures. A procedure is a construct
that allows a program to group together related statements. Procedures behave
much like subroutines (GOSUB) except they provide additional capabilities not
available with subroutines. Procedures are called using the PROC statement.

The procedurename in a procedure declaration declares the name of the procedure.
The name may not be any of the TML BASIC reserved words. A procedure may
optionally have a sequence of parameters whose values are used in the statements
within the procedure. A parameter may be any numeric or string type, but not an
array.

A procedure may contain the LOCAL statement to declare variables local to the
procedure. Procedures may also call themselves recursively.

The position of a procedure declaration in the source of a program has no effect on
program flow or when the function can be called. A procedure declaration behaves
like a large comment around all the statements in the procedure so that a program
does not have to direct program flow around the procedure declaration. In addition,
a procedure can be called anywhere in the program, even if the procedure is declared
later in the source code.

See Chapter 8 for a complete discussion of procedures.
See Also
DEF FN

LOCAL
Chapter 8

TML BASIC Language Reference 172 Statements and Functions



Example

REM Test parameter passing for a procedure

anInt% = 1
aDblInt@ = 44932
alongInt& = -482

aSglReal = 932.8
aDblReal# = 34.238e43
aString$ = "Hello"

PROC TestParams(anInt$%,aDblInt@,aLlongInt&,aSglReal, aDblReal#,aString$)
DEF PROC TestParams(I%,D@,L&,Sgl,Dbl#,Str$)
PRINT I%, D@, L&

PRINT Sgl, Dbl#, Str$
END PROC

TML BASIC Language Reference 173 Statements and Functions



DELETE Statement

Syntax
DELETE PathName

Action

The DELETE statement is used to remove a subdirectory or file from a disk.
PathName is a string expression that contains the filename or subdirectory to be
deleted. PathName must be a legal ProDOS 16 pathname, otherwise the "Bad Path
Error" occurs.

A subdirectory may be removed only if all files in that subdirectory have been
deleted. Even if all files in a root directory have been deleted, the root directory
itself cannot be deleted.

See Also

CREATE
Chapter 9

Example
DELETE "MYFILE"

SomeFile$ = "/TML/MY.EXAMPLES/XYZ.BAS"
DELETE SomeFile$

TML BASIC Language Reference 174 Statements and Functions



DIM Statement
DIM DYNAMIC Statement

Syntax

DIM ArrayName ( Subscript {, Subscript} )
{, ArrayName ( Subscript {, Subscript} ) }

DIM DYNAMIC ArrayName ( Subscript {, Subscript} )
{, ArrayName ( Subscript {, Subscript} ) }

Action

The DIM statement is used to declare one or more array variables and their size and
number of dimensions. An array is a collection of values of the same type referred
to by the same variable name. Each subscript in a DIM statement defines the
number of elements in that array dimension. The number of elements in a
dimension is one greater than the value given. This is because the array elements
are referenced from zero. For example, :

DIM Sales%(11)

defines a one-dimensional integer array variable Sales%, consisting of 12 elements
and numbered 0 through 11. TML BASIC sets each element of a numeric array to
zero, and each element of a string array to the null string when the array is created.

Arrays can have one or more dimensions, up to a maximum of eight. The
maximum number of elements per dimension is 32,768. The maximum total size
of a single array is 64K bytes.

If an array variable is used without a preceding DIM statement, TML BASIC
implicitly DIMensions the array. The array is declared with the same number of
dimensions as are referenced in the undeclared array, and each dimension is created
with 11 elements (numbered 0 through 10).

The DIM statement is used to create static sized array variables. Static arrays have a
fixed size that may not change during execution of a program. To create an array
that can change size during execution or one whose size cannot be determined at
compile time, use the DIM DYNAMIC statement.

See Chapter 7 for complete details about arrays in TML BASIC.

TML BASIC Language Reference 175 Statements and Functions



See also

UBOUND
Chapter 7

Example

DIM MyArray% (15,20,3), YourArray (5,2,9)
DIM QDString! (255)

DIM DYNAMIC Scores@ (n%)

TML BASIC Language Reference 176 Statements and Functions



DO...WHILE...UNTIL Statements

Syntax

DO

¢ Statements

[WHILE [Expression 1]

e Statements

UNTIL [Expression ]

WHILE [Expression ]

e Statements

UNTIL [Expression ]

Action

The DO...WHILE...UNTIL statements are used to create powerful looping constructs.
Using different combinations of the three reserved words, just about any control
structure can be created. UNTIL is used to create loops that repeat until an
expression evaluates to true. And the reserved word WHILE is used to create loops
that repeat while an expression remains true.

The expressions used with either the WHILE or the UNTIL statements may be any
valid TML BASIC expression. If the expression evaluates to a non-zero value, it is
considered as TRUE. If the expression evaluates to the value zero, or a null string, it
is considered as FALSE.

The first form of the DO...WHILE...UNTIL statement is the simple DO...UNTIL
construct. For example,

DO

s statements

UNTIL Val% = 10

In this case, the loop executes the statements between the DO and the UNTIL
statements wuntil the expression Val% = 10 becomes true. If the expression never
becomes true, the loop repeats indefinitely. This form of the loop may have a
WHILE statement added between the DO and the UNTIL statements. In this case,
the loop will terminate if the expression after the WHILE statement becomes false.

TML BASIC Language Reference 177 Statements and Functions



The second form of the DO...WHILE...UNTIL statements is the WHILE...UNTIL
statement. For example,

WHILE Val% = 10

s statements

UNTIL

In this example, the loop executes the statements between the WHILE and the
UNTIL statements while the expression Val% = 10 remains true. If the expression
never becomes true, the loop repeats indefinitely. This form of the loop may also
have an expression after the UNTIL, in which case, the loop must satisfy both
conditions in order to repeat. For example,

WHILE Val% = 10

e statements

UNTIL anotherVal <> 0

Although TML BASIC does not care about the format of source code, it is generally a
good idea to indent the source code statements a few spaces to better indicate the
statements contained in the loop.

TML BASIC Language Reference 178 Statements and Functions



END Statement

Syntax
END

Action

END terminates execution of a TML BASIC program. Before the END statement
terminates the program, it first closes all open files. TML BASIC automatically
inserts an END statement after the last statement in a program so that a program
does not "run off the bottom".

If a program was run from within the TML BASIC environment using the To
Memory & Run compile option, control returns back to TML BASIC after the END
statement is executed. If the program was launched from the Apple IIGS Finder,
control returns to the Finder after the END statement is executed.

There are other forms of the END statement. In particular, the END FN, END PROC
and END LIBRARY statements. See the statements DEF FN, DEF PROC and DEF
LIBRARY for more information about these variations of the END statement.

See Also

DEF FN

DEF PROC
DEF LIBRARY
STOP

Example

PRINT "This is a very short program”
END

OUTPUT:

This is a very short program

TML BASIC Language Reference 179 Statements and Functions



EOF Reserved Variable

Syntax
EOF
Action

The EOF reserved variable is assigned the file reference number of the file for which
the end of file has most recently been detected. If no file has yet encountered its end
of file then EOF contains the value zero.

See Also

ON EOF#
Chapter 9

Example

PRINT "End of file was most recently detected for file #"; EOF

TML BASIC Language Reference 180 Statements and Functions



EOFMARK Function

Syntax
EOFMARK (FileNumber)
Action

The EOFMARK function returns the current end-of-file mark for the file opened
with FileNumber as its file reference number. The end-of-file mark indicates the
current size of the file on disk. The value returned is a double integer.

See Also

OPEN
Chapter 9

Example

OPEN "MYFILE", AS #1
PRINT EOFMARK (1) '"Print the value of the End of file mark for MyFile

TML BASIC Language Reference 181 Statements and Functions



ERASE Statement

Syntax

ERASE ArrayVariable {, ArrayVariable }

Acfion

The ERASE statement deletes dynamic arrays and resets static arrays. Following the
reserved word ERASE are one or more array variable names separated by commas.
The array variable names must already be declared before appearing in the ERASE
statement, otherwise resulting in an error.

If the named array is a dynamic array, the memory allocated for the array is released
making it available for other program needs. If the named array is a static array, the
memory allocated to the array cannot be deallocated, however, every element in the
array is assigned the value zero or the null string depending upon the element type

of the array.

The CLEAR statement can be used to erase all arrays at once.

See Also

CLEAR
DIM

Example

PRINT FRE

DIM DYNAMIC BigArray(2000)
BigArray(943) = 123

PRINT FRE

ERASE BigArray

PRINT FRE
END

TML BASIC Language Reference

'Print available memory
'Allocate a large dynamic array

'Print available memory

'Print available memory

182 Statements and Functions



ERR Reserved Variable

Syntax
ERR
Action

When TML BASIC detects a runtime error in a program, it assigns the reserved
variable ERR to the number of the error which was detected. ERR is typically used
in the sequence of statements after the ON ERR statement. ERR returns an integer
value.

Appendix A defines all the runtime errors and their error numbers.
See Also

ON ERR
Appendix A

Example

ON ERR GOTO ErrHandler
i% = 20000

i% = i% + 25000

PRINT "i% = "; i$%

END

ErrHandler:
IF ERR = 1 THEN
i$ = 0
RESUME
ELSE
STOP
END IF

OUTPUT:

i% = 25000

TML BASIC Language Reference 183 Statements and Functions



ERROR Statement

Syntax
ERROR ErrorNumber
Acfion

ERROR is used for generating user-defined errors at execution time, which can be
trapped by the ON ERR statement. ErrorNumber is an integer constant in the range
1to 255. The reserved variable ERR is assigned the value of ErrorNumber.

TML BASIC reserves the error numbers 1 through 127, inclusive, for its own use.
Several of these error numbers are currently defined in Appendix A. Error numbers
128 through 255 are available for any user defined meaning.

See Also

ERR
ON ERR
Appendix A

Example

ERROR 1 'Equivalent to the TML BASIC Overflow Error
ERROR 128 'User defined error 128

TML BASIC Language Reference 184 Statements and Functions



EVENTDEF Statement

Syntax
EVENTDEF Index, Label

Action

The EVENTDEF statement is used to store subroutine labels in the Event Dispatch
Table. The event dispatch table is a special data structure defined for directing
program control to event-handling subroutines when an event occurs in a desktop
application. Events are detected by the TASKPOLL statement.

The event dispatch table has 64 entries numbered 0 through 63. The first 32 entries
(0 through 31) are reserved for use with the TASKPOLL statement. The entries
correspond directly to the event codes returned by the Window Manager
TaskMaster routine which are the events detected by the TASKPOLL statement.

The following table shows the meaning of the TASKPOLL event codes:

TASKPOLL Event Codes
Event Code Meaning Event Code Meaning
0 Null Event 16 In desk
1 Mouse down 17 In menu bar
2 Mouse up 18 In system windows
3 Key down 19 In content region
4 Undefined 20 In drag region
5 Auto key 21 In grow box
6 Update 22 In go away box
7 Undefined 23 In zoom box
8 Activate 24 In information bar
9 Switch 25 Undefined
10 Desk accessory 26 Undefined
11 Device driver 27 In window frame
12 Application #1 28 In special menu item (edit menu)
13 Application #2 29 Undefined
14 Application #3 30 Undefined
15 Application #4 31 Undefined

If a program implements a particular event type, a subroutine label should be
defined using the EVENTDEF statement for that event. When TASKPOLL detects
an event, the event code is used as an index into the event dispatch table to
determine the subroutine which handles the event. If a subroutine label is defined,
program control transfers to that subroutine. The subroutine should end with the

TML BASIC Language Reference 185 Statements and Functions



RETURN 0 statement. This special form of the RETURN statement is necessary to
support the special calling mechanism for event-handling subroutines.

Event number 17 in the event dispatch table is a special case. If no event handling
subroutine is defined for event 17 (In Menubar), TML BASIC assumes that the
program has defined menu handling routines using the MENUDEF statement.

The second 32 entries in the event dispatch table (numbered 32 through 63) are used
with the EXEVENT statement for obtaining the machine addresses of subroutines
for implementing definition procedures. See the EXEVENT statement for more
information regarding this use of the event dispatch table.

See Chapter 13 for a complete discussion on how to write event-driven, desktop
applications.

See Also

EXEVENT
MENUDEF
TASKPOLL
Chapter 13

Example

EVENTDEF 8,doActivate
EVENTDEF 22,doCloseBox

TML BASIC Language Reference 186 Statements and Functions



EXCEPTION Statements

Syntax

EXCEPTION ON Mask
EXCEPTION OFF
EXCEPTION 0

Action

TML BASIC implements floating-point arithmetic operations using the SANE
(Standard Apple Numeric Environment) mathematical routines and provides the
programmer with control over the exceptions generated by the tool set. There are
three modes available in handling these exceptions that can be selected by the
EXCEPTION statement.

The default mode is selected with EXCEPTION OFF. Selecting any other option for
the EXCEPTION statement should only be done if you have a complete
understanding of what SANE exceptions are and how they work. In the default
mode, TML BASIC returns the standard error messages for the important
mathematical calculation exceptions and ignores the unimportant exceptions.

EXCEPTION 0 (zero) is used to disable all SANE exceptions and will cause all
exceptions to be ignored and pass through as NaN's for expression results.

EXCEPTION ON is used to enable exception trapping in your program of a specific
type beyond the normal default settings. The SaneMask parameter must be a
number between 0 and 63 and is used as a mask to filter the SANE exceptions. The
SANE halt vector is always enabled, and all halts are received by TML BASIC. The
mask is used to determine if any specific exception will generate a BASIC error
message or be ignored.

See Also

ON EXCEPTION

TML BASIC Language Reference 187 Statements and Functions



EXEVENT@ Function

Syntax
EXEVENT@(EventCode)

Action

The EXEVENT®@ function returns the machine address for one of 32 external event
entry points in the Event Dispatch Table. As described with the EXEVENT
statement, the event dispatch table is a special data structure defined for directing
program control to event-handling subroutines when an event occurs in a desktop
application. The event dispatch table has 64 entries numbered 0 through 63. The
first 32 entries (0 through 31) are reserved for use with the TASKPOLL statement.
The remaining 32 entries are used with EXEVENT®@.

The implementation of several Toolbox features requires the ability to directly call
subroutines written in a TML BASIC program. The Toolbox defines these
subroutines, definition procedures. For example, when creating a window with the
NewWindow function, a program can specify a Content definition procedure for the
window. The content definition procedure is automatically called by the Toolbox
whenever the contents of the window need to be drawn or re-drawn.

When providing a definition procedure to the Toolbox, a machine address is
required. To obtain the address of a subroutine label, the label is first entered into an
element of the event dispatch table using the EVENTDEF statement. Then the
EXEVENT®@ function is used to obtain the address.

See Chapter 13 for a complete discussion on how to write event-driven, desktop
applications.

See Also

TASKPOLL
EVENTDEF

Example
EVENTDEF 63, DrawMyWindowContent

defproc@ = EXEVENTR (63)
SET (WindowParamBlock! (58) ,4) = defproc@

TML BASIC Language Reference 188 Statements and Functions



EXFN_ Function

Syntax

EXFN[%|@|&|#|$]_ToolName [( Expression {, Expression } ) 1

Acfion

The EXFN function executes a named procedure or function in an Apple IIGS toolset
and returns a value. The declarations for Toolbox procedures and functions are
defined in the several predefined libraries shipped with TML BASIC in the folder
LIBRARIES. See Appendix C for a complete list of the Toolbox libraries and the
procedures and functions declared in them.

Following the reserved word EXFN and the underscore character (_) is the name of
the toolbox procedure or function to execute. If the routine has parameters, they are
given after the toolbox name enclosed in parenthesis. The rules for matching
parameters are the same as for normal BASIC procedures. If the Toolbox routine is
a function, the EXFN function returns the result value. The result values are placed
in the CALL return stack. If the Toolbox routine is a procedure, the EXFN function
returns the Toolbox error code, indicating the success or failure of the operation.
See the description of the reserved variable R.STACK for a description of the Call
return stack.

In order to call a Toolbox procedure or function, the library containing the
declaration of the routine must appear in a LIBRARY statement, otherwise TML
BASIC reports the error "Toolbox procedure xxx is not defined", where xxx is the
name of the procedure.

Chapter 11 provides a detailed discussion of the Apple IIGS Toolbox and how to
access it from TML BASIC.

See Also

CALL
R.STACK
Chapter 11
Appendix C

Example

LIBRARY "Memory" 'Load the Memory Manager library
MyID% = EXFN_MMStartUp 'Start the memory manager
MyHndl@ = EXFN NewHandle (1024,MyID%,0,0) 'Allocate a 1K block of memory

TML BASIC Language Reference 189 Statements and Functions



EXP, EXP1 and EXP2 Functions

Syntax
EXP (x)
EXP1 (x)
EXP2 (x)
Action

The EXP function returns e to the x power, where x is a numeric expression and e is
the base for natural logarithms (approximately equal to 2.718282). To calculate the
exact value of e use EXP(1).

The EXP1 function accurately computes eX-1. If the value of x is small, then the
computation of EXP1 is more accurate than EXP(x)-1.

Finally, the EXP2 function returns 2 to the x power.
In all three functions, x is a numeric expression.

Example
FOR i% = 1 to 10

PRINT i%, EXP(i%), EXP1(i%), EXP2(i%)
NEXT i%

TML BASIC Language Reference 190 Statements and Functions



FILE Function

Syntax
FILE (PathName [, FILTYP=TXT|SRC|BDF|FileType ] )

Action
The FILE function is used to determine whether or not a file exists.

FILE is an integer function which returns the value one (1) if the file specified by the
PathName string expression exists, otherwise it returns zero (0). If the optional
FILTYP= parameter exists, the FILE function also checks that the file also has the
filetype specified by the FILTYP= parameter. If the file exists, but the filetype does
not match, then FILE returns zero (0).

If the file does exist then the AUXID@ reserved variable is updated to contain the
subtype of the specified file, and the FILTYP(0) function call returns the file type of
the specified file.

If an illegal ProDOS 16 pathname is specified in PathName then the "Bad Path
Error" occurs. For a thorough description of the FILTYP= parameter see the
CREATE statement.

See Also

AUXID@
CREATE
FILTYP
Chapter 9

Example
AFile$ = "AnyFile"

IF FILE (AFile$) THEN

OPEN AFile$, AS #1
ELSE

PRINT "The file ";AFile$;" does not exist and can not be open”
END IF

TML BASIC Language Reference 191 Statements and Functions



FILETYP Function

Syntax
FILTYP (FileNumber)
Action

The FILTYP function returns the file type of a file previously opened with
FileNumber as its file reference number. FileNumber is a numeric expression that
must be an integer from 0 to 31, otherwise an "Illegal Quantity Error" occurs. If
FileNumber is a legal file number, but no open files have the specified file number,
the "File Not Open" error occurs.

FILTYP(0) is a special case that returns the file type of the last FILE function call.
See Also

FILE
Chapter 9

Example

OPEN "SOMEFILE", AS #5
PRINT "The file type for file #5 is "; FILTYP (5)

TML BASIC Language Reference 192 Statements and Functions



FIX Function

Syntax
FIX(NumericExpression)
Action
The FIX function truncates the absolute value of NumericExpression and returns

the signed integer portion. Note that this is different than the INT function which
returns the next lower number for a negative NumericExpression.

FIX is equivalent to the expression: SGN(x) * (INT(ABS(x))
See Also
INT

Example

PRINT FIX(1.5), FIX(-1.5)
PRINT INT(1.5), INT(-1.5)

OUTPUT:
1 -1
il -2

TML BASIC Language Reference 193 Statements and Functions



FN = Statement

Syntax
FN VariableName = AnyExpression

Action

The FN assignment statement is a special case of the assignment statement which
can only be used within a multiline procedure or function. The purpose of the FN
assignment statement is to ensure that the destination of the assignment statement
is a local variable, a formal parameter or a function result variable, otherwise TML
BASIC will give the "Not Local" error.

The purpose for this variation of the assignment statement is to ensure that an
assignment statement within a multiline procedure or function does not reference a
global variable. Even more important is to ensure that a new global variable is not
created by an assignment. A side effect of this feature is that statements become
self-documenting with respect to whether a local or global variable reference is being
made.

See Also

DEF FN
DEF PROC
LOCAL
LET

Example

DEF FN Add% (Numl%, Num2%)
LOCAL Temp%
FN Temp$% = Numl$% + Num$
FN Add$% = Temp%

END FN Add$

TML BASIC Language Reference 194 Statements and Functions



FOR ... NEXT Statement

Syntax

FOR Counter = Start TO End [STEP Increment ]
statements
NEXT [Counter {,Counter } ]

Action

The FOR...NEXT statement is a looping construct. The statement groups one or
more statements and executes them repetitively, a specified number of times.
Counter must be a numeric variable (not a string variable or array element) which is
the loop control variable. Start, End and Increment must all be numeric expressions
whose values are compatible with the type of the variable Counter, otherwise a
"Type Mismatch Error" occurs.

When the FOR statement is first encountered, the value of Start is assigned to the
variable Counter, and the values of End and Increment are evaluated and stored in
a temporary location. If the optional STEP Increment does not appear, then a
default Increment of one (1) is used. Following this, the sequence of statements after
the FOR statement are executed until the NEXT statement is encountered. If the
NEXT statement does not specify a Counter variable then it matches to the most
recent FOR statement. If a Counter variable is given then it must match the
Counter variable in the most recent unmatched FOR statement (FOR...NEXT
statements may be nested).

The NEXT statement increments the Counter variable by the value of Increment
and then tests to see if the loop should be repeated. If the value of Increment is
positive then the NEXT statement checks to see if Counter is less than or equal to
End. If the value of Increment is negative then the NEXT statement checks to see if
Counter is greater than or equal to End. If this test passes, control loops back to the
first statement after the matching FOR statement. This process continues until the
test fails, execution then continues with the statement after the NEXT statement.

If a FOR statement does not have a matching NEXT statement then a "FOR Without

Matching NEXT" error occurs. And likewise, if a NEXT statement does not have a
matching FOR statement then a "NEXT Without Matching FOR" error occurs.

TML BASIC Language Reference 195 Statements and Functions



Example

FOR SKIP% = 0 TO 10 STEP 2 '"Print even numbers between 0 and 10
PRINT SKIP%
NEXT

FOR CountDown = 10 TO 1 STEP -1 'A simple countdown loop
PRINT CountDown ; " " ;

NEXT

PRINT "DONE!"

FOR Row$% = 1 TO 3 'Nested FOR...NEXT loops
FOR Column% =1 TO 4
PRINT " (" ; Row% ; "," ; Column% ; ™)" ;
NEXT Column%
PRINT
NEXT Row$

OUTPUT:

= oo s N O

0
10 987 654 32 1 DONE!
(1,1)(1,2) (1,3) (1, %)

(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)

TML BASIC Language Reference 196 Statements and Functions



FRE Reserved Variable

Syntax
FRE
Action

FRE is a reserved variable that returns the amount of free memory available in the
Apple IIGs.

Compiler/Interpreter Differences

In GS BASIC, the FRE reserved variable returns the amount of memory in the
program data segment. Since TML BASIC can use all available memory in the
Apple IIGs for data storage, the FRE reserved variable is redefined to return the
amount of free memory in the machine rather than a special data segment.

See the description of the §DSeg metastatement in Appendix B for a description of
data segmentation in TML BASIC.

See Also

FREMEM
Chapter 7

Example

'Show available memory
PRINT "Free memory in Apple IIGS: "; FRE

'Allocate a few large dynamic arrays
DIM DYNAMIC BigArrayl%(1000), BigArray2@ (400)

'Now print available memory...
PRINT "Free memory in Apple IIGS: "; FRE

TML BASIC Language Reference 197 Statements and Functions



FREMEM Function

Syntax
FREMEM (NumericExpression)

Acfion

The FREMEM function is used to return information about the use of memory in
the Apple IIGS. The NumericExpression parameter must be an integer value in the
range 0 through 9, otherwise an "Illegal Quantity Error" occurs. The information
returned by FREMEM depends upon the value of NumericExpression.

The meaning of FREMEM for each value of NumericExpression is defined as
follows:

0-6  Returns the total available free memory in the Apple IIGS. (Same as
FRE)

7 Returns the total available free memory in the Apple IIGS after
performing a Memory Manager CompactMem call.

8 Returns the size of the Memory Manager's largest free contiguous block
of memory.

9 Returns the total memory installed in the Apple IIGS.
Compiler/Interpreter Differences

In GS BASIC, the FREMEM function returns special values related to the way the GS
BASIC interpreter executes programs when the value of NumericExpression is in
the range 0 through 6. The values returned indicate such things as the size of the
program, the size of the data segment, the size of the library segment, and other data
structures not implemented by TML BASIC. Because TML BASIC is a compiler
which produces stand-alone programs, the various data structures implemented by
GS BASIC to execute a program are not required. In these cases, the value of
FREMEM is the same as FRE.

TML BASIC Language Reference 198 Statements and Functions



GET# Statement

Syntax
GET# FileNumber [, [Length] [,RecordNumber] ]1; StructureVariable

Action

The GET# statement reads a record from the binary file previously opened with
FileNumber as its file reference number and stores the data into the
StructureVariable. The StructureVariable may have an index expression. The
GET# statement can read data from a file of any file type.

The number of bytes read by the GET# statement is determined by the RecordSize
parameter specified in the OPEN statement. If the RecordSize was not specified in
the OPEN statement then the file's subtype is the record size. The number of bytes
read may be overridden by specifying the optional Length parameter in the GET#
statement. You should not attempt to read more data than the StructureVariable
can hold.

The GET# begins reading at the current position in the file. To begin at a random
record position, the optional RecordNumber parameter must be used.

See Chapter 9 for a complete discussion of Files in TML BASIC.
See Also

OPEN

PUT#

Chapter 9
Example

DIM myData! (11)
OPEN "SOMEFILE", FILTYP=0 AS #1, 4 'Open a binary file whose record size is 4

GET #1; myData! (0) 'Read first 4 bytes of file

GET #1,,3; myData! (4) 'Read 4 bytes starting at record 3
GET #1,12,5; myData! (0) 'Read 12 bytes starting at record 5
CLOSE #1

TML BASIC Language Reference 199 Statements and Functions



GET$ Statement

Syntax

GETS$ [# FileNumber [,RecordNumber]]; StringVariable
Action
The GET$ statement reads a single character into the StringVariable.

By default, GET$ reads the character from the keyboard, without displaying it to the
screen, and without waiting for the Return key to be pressed.

If the optional FileNumber appears, then the GET$ statement reads the character (a
single byte) from the file previously opened with FileNumber as its file reference
number. The RecordNumber option allows the character to be read from the
beginning of specified record.

Since files can contain values that are not defined as ASCII characters, it is the
responsibility of the program to ensure the file contains valid characters. For
example, reading a byte with a value of zero may cause unpredictable results later
when using the string.

GETS$ treats Control-C like any other character; it does not interrupt program
execution.

Example

PRINT "Press any key to continue.”;
GET$ AS

TML BASIC Language Reference 20 Statements and Functions



GOSUB Statement

Syntax
GOSUB Label
Action

The GOSUB statement causes execution to temporarily suspend and branch to the
statement indicated by Label. ~ When the subsequent sequence of statements
encounters a RETURN statement, execution branches back to the statement
immediately after the most recently executed GOSUB.

The group of statements indicated by the label and the RETURN statement are
collectively called a subroutine. Subroutines provide BASIC programmers an
effective means to organize their code into logically organized components. A
subroutine may call another subroutine, which in turn may call yet other
subroutines. TML BASIC automatically keeps track of where execution should
resume when the RETURN statement is executed.

See Also

ON...GOSUB

POP

RETURN

Chapter 7, Labels
Chapter 8, Subroutines

Example

GOSUB Subl

END

Subl: PRINT "In Subroutine 1"
GOSUB Sub2
PRINT "Leaving Subroutine 1"
RETURN

Sub2: PRINT "In Subroutine 2"
PRINT "Leaving Subroutine 2"
RETURN

OUTPUT:
In Subroutine 1
In Subroutine 2

Leaving Subroutine 2
Leaving Subroutine 1

TML BASIC Language Reference 21 Statements and Functions



GOTO Statement

Syntax
GOTO Label
Action

The GOTO statement causes execution to unconditionally branch to the statement
indicated by Label. It is normally considered better programming practice to use
TML BASIC's structured control statements such as the DO...WHILE...UNTIL,
IF...THEN and FOR...NEXT statements rather than the GOTO statement. GOTO
statements generally make programs difficult to read and debug.

See Also

ON..GOTO
Chapter 7, Labels

Example

GOTO CalculateAverage
GOTO TryAgain

TML BASIC Language Reference 202 Statements and Functions



GRAF INIT, GRAF OFF and GRAF ON Statements

Syntax

GRAF INIT O | 320 | 640
GRAF OFF
GRAF ON

Action

The GRAF statements are used to initialize, turn on and turn off the Apple IIGS
Super Hi-Res graphics screen.

The GRAF INIT statement must be called before GRAF ON or GRAF OFF, and
before any calls to the QuickDraw routines using CALL or CALL%. The GRAF INIT
statement allocates the memory needed for the QuickDraw graphics engine and
properly initializes it. If the value following GRAF INIT is 320 then the Super
Hi-Res screen is placed in 320 mode. If the value is 640 then the Super Hi-Res screen
is placed in 640 mode. If a value of 0 is specified then QuickDraw is shut down, the
Super Hi-Res screen is turned off and the text screen becomes active. Note that the
GRAF INIT statement does not initialize the QuickDraw Auxiliary tool set. If a
program uses any of these routines, it is responsible for loading and properly
initializing QuickDraw Auxiliary tool set.

The GRAF ON statement is used to make the Super Hi-Res screen the current
screen mode. GRAF INIT 320 or GRAF INIT 640 must have already been called.
This statement is the same as the QuickDraw _GrafOn procedure.

The GRAF OFF statement is used to temporarily turn off the Super Hi-Res screen
and make the text screen the current screen mode. Again, GRAF INIT 320 or GRAF
INIT 640 must have already been called. This statement is the same as the
QuickDraw _GrafOn procedure.

Example

GRAF INIT 640 'Initialize QuickDraw with the 640 Super Hi-Res screen
GRAF ON 'Turn on the Super Hi-Res graphics screen
_Clearscreen(-1) 'Make the screen white

_LineTo(60,45) '"Draw a line

GRAF OFF "Turn the Super Hi-Res graphics screen off

GRAF INIT O 'Shutdown QuickDraw

TML BASIC Language Reference 203 Statements and Functions



HEXS$ Function

Syntax
HEXS$ (NumericExpression)

Action

The HEX$ function returns an eight character string which is the hexidecimal (base
16) representation of NumericExpression. If the hexadecimal representation
requires fewer than 8 digits then leading zeros are inserted so that 8 characters are
always returned. NumericExpression must be in the range -2/32 to 2/32-1 or else an
"lllegal Quantity Error" occurs.

Example

PRINT HEX$ (32767)
PRINT HEX$ (10)

OUTPUT:

00007FFFF
000000002

TML BASIC Language Reference 04 Statements and Functions



HOME Statement

Syntax
HOME
Action

Clears the contents of the current text window and places the cursor in the upper left
corner of the text window. Note that HOME only clears the contents of the current
text window. By default the text window is the entire text screen, however, this can
be changed using the TEXTPORT statement.

See Also

HPOS and VPOS
TEXTPORT

Example

HOME

TML BASIC Language Reference p.03) Statements and Functions



HPOS and VPOS Modifiable Reserved Variables

Syntax

HPOS

HPOS = NumericExpression

VPOS
VPOS

NumericExpression

Action

HPOS and VPOS are modifiable reserved variables which contain the horizontal
and vertical positions, respectively, of the current text screen cursor position. In
addition, the variables may be assigned new values to change the current cursor
position.

Assigning a value greater than the height of the current text window causes the
cursor to move to the bottom line within the text window. Likewise, assigning a
value greater than the width of the current text window causes the cursor to move
to the right margin of the text window. In any case, the value of
NumericExpression must be within 0 to 255 inclusive or an "Illegal Quantity Error"
occurs. Note that the text window is normally the entire text screen, however, this
can be changed using the TEXTPORT statement.

See Also
TEXTPORT

Example

HPOS
VPOS

10
21

PRINT "The current cursor position is (™ ; HPOS ; "," ; VPOS ; ")"
OUTPUT:

The current cursor position is (10,21)

TML BASIC Language Reference 06 Statements and Functions



IF...THEN...ELSE Statement
IF...GOTO Statement

Syntax
IF Expression THEN StatementList [:ELSE StatementList ]
IF Expression GOTO Label

Action

The IF statement in TML BASIC forms a structure for deciding which statements in
a program to execute. An IF statement has a condition (any legal expression) which
may contain relational operators like < and > (less than and greater than), logical
operators like OR and AND, and arithmetic operators. If the condition is true (any
non-zero value), TML BASIC executes the statements following the THEN. If the
condition is false (a zero value), TML BASIC ignores the statements following the
THEN.

The simplest form of the IF statement is the single-line IF statement. For example:

IF RND (1) < 0.5 THEN PRINT "Heads, you win"

In this statement, the expression RND(1) < 0.5 is evaluated. If the expression is true,
the statements following the reserved word THEN are executed; otherwise control
passes to the statement after the IF statement.

TML BASIC provides several other variations of the IF statement. The
IF...THEN...ELSE statement is the simplest of these variations. The ELSE part of the
statement allows a program to specify statements to be executed only when the IF
condition is false. For example,

IF RND (1) < 0.5 THEN PRINT "Heads, you win" :ELSE PRINT "Tails, I win"
Notice that a colon must precede the reserved word ELSE.
TML BASIC allows this statement to be rewritten on two lines as follows:

IF RND (1) < 0.5 THEN PRINT "Heads, you win"
ELSE PRINT "Tails, I win"

In addition, the IF statement can be rewritten on three lines as follows:

IF RND (1) < 0.5
THEN PRINT "Heads, you win"
ELSE PRINT "Tails, I win"

TML BASIC Language Reference 207 Statements and Functions



In each of these last two formats, the THEN and ELSE statements must be on the
lines immediately following the IF statement, and the statements following the
reserved words THEN and ELSE must fit on one line.

The final variation of the IF statement is the IF...GOTO statement. When an IF
statement has only a THEN part, and the only statement following the reserved

word THEN is a GOTO statement, the IF...GOTO statement can be used. For
example,

IF RND(1l) < 0.5 GOTO PrintMsg
See Also

IF Block

TML BASIC Language Reference 208 Statements and Functions



IF Block Statement

Syntax
IF Expression THEN

e Statements

{ ELSEIF Expression THEN

» Statements
* }
[ ELSE

e Statements
« 1
END IF

Acfion

A much more powerful variation of the IF statement available in TML BASIC is the
IF Block statement. This variation of the IF statement allows programs to place the
statements normally appearing after the reserved word THEN on one or more lines
after the IF statement. An IF block is ended by the END IF statement. The following
example illustrates how the IF block statement can be used.

IF RND(1) < 0.5 THEN

PRINT "Heads, you win"
CountHeads = CountHeads + 1
END IF

If the expression RND(1) < 0.5 is true then all the statements between the IF and the
END IF are executed. If the expression is false, control passes to the statement after
the END IF statement.

The IF block statement can be used to create even more powerful control structures
using the ELSE statement. In the following example, when the expression RND(1) <
0.5 is false control passes to the statement after the ELSE statement. The ELSE
statement also marks the end of the THEN part as well.

IF RND(1) < 0.5 THEN
PRINT "Heads, you win"
CountHeads = CountHeads + 1
ELSE
PRINT "Tails, I win"
CountTails = CountTails + 1
END IF

TML BASIC Language Reference 10 Statements and Functions



Finally, the IF block statement can be used with the ELSEIF statement to create
sophisticated control structures. The ELSEIF statement allows the program to create
multi-part IF statements, each having a different condition to satisfy. The following
example illustrates how the tosses of a "three headed" coin might be recorded.

IF RND(1) < 0.3 THEN

PRINT "Head 1, you win"
CountHeadl = CountHeadl + 1
ELSEIF RND(1l) < 0.6 THEN
PRINT "Head 2, I win™
CountHead2 = CountHead2 + 1
ELSE
PRINT "Head 3, someone else wins"
CountHead3 = CountHead3 + 1
END IF

This variation of the IF statement allows complex branching be added to a program.
If the first condition contained in an IF block statement is not true, control is

immediately passed to the next ELSE or ELSEIF statement until either a true
condition is met or the ENDIF statement is encountered.

See Also

IF...THEN...ELSE

TML BASIC Language Reference 210 Statements and Functions



IMAGE Statement

Syntax
IMAGE Specification {, Specification }

Acfion

The IMAGE statement is used to control formatting of print items in the PRINT
USING and PRINT# USING statements. In the following paragraphs the statement
PRINT USING implies both PRINT USING and PRINT# USING.

The PRINT USING statements include a Using Specification which is used by TML
BASIC to control the formatting of print items in the statement. A Using
Specification contains one or more individual Specifications, each corresponding to
an individual print item. The Using Specification can be included directly in the
PRINT USING statement in the form of a string constant, string variable or as a
label reference to an IMAGE statement. Regardless of the way a Specification is
defined, the formatting of information is the same. For example, the following
forms of a Using Specification are equivalent:

PRINT USING "5C, ###.##"; Msg$, Number

PrintSpec$ = "5C, ###.##"
PRINT USING PrintSpec$; Msg$, Number

PRINT USING PrintImage; Msg$, Number
PrintImage: IMAGE 5C, ###.##

A Specification is a collection of special letters, numbers and/or symbols which
define a formatting code. Each individual specification must be separated by a
comma. However, note that the commas in the PRINT USING statement only
serve to separate the individual print items, they do not cause a tab action to the
next print zone as in the PRINT statement.

There are three different types of PRINT USING Specifications: string specification,
literal specification and numeric specification. A string specification controls the
formatting of string values in a PRINT USING statement. A literal specification
inserts either one or more spaces, one or more line returns or one or more specified
characters into the text displayed by the PRINT USING statement. Finally, a
numeric specification controls the formatting of numeric values in a PRINT USING
statement. The following paragraphs describe each of these different types of
specifications.

A String Specification defines the field format and width for a string value. Three
formats are available: left-aligned, centered, right-aligned. The codes for these

TML BASIC Language Reference 21 Statements and Functions



formats are as follows:

A Left-aligned
R Right-aligned
C Centered

The width of the string can be defined by either specifying the number of characters
in the field, or by preceding the specification character with an integer which is the
width value. For example, the following two specifications define a 6 character
centered string value:

cccecc
6C

The integer preceding the specification character is called a repeat factor, and only
affects the single character immediately following it. For example, the following
specifications also define a 6 character centered string value.

4CCC
CCc3C

A repeat factor must be in the range 1 through 255. If a string value exceeds the
string specification, its value is truncated.

A Literal Specification does not format any value contained in the PRINT USING
statement, but rather inserts one or more spaces, line returns or specified characters
into the printed text. There are three literal specification codes:

X Prints a space
/ Prints a line return
" " Encloses a literal string

Again, a repeat factor can be used with the codes. For example,

4X  Prints 4 spaces
2/ Prints 2 line returns
4"ab" Prints: abababab

Finally, a Numeric Specification formats numeric values in fixed-point, scientific or
engineering formats. There are three numeric specification codes which are used in
all three numeric formats. They are called the digit specification codes.

# Reserves one numeric digit position, suppresses leading zeros
Z Reserves one numeric digit position, prints leading zeros
& Reserves one position for a digit or a comma

TML BASIC Language Reference 212 Statements and Functions



Again, a repeat factor can be used with the specification characters.

The fixed-point numeric specification controls the formatting of fixed-point
numbers. Fixed-point numbers are any numbers displayed without exponents, both
integer and real. TML BASIC provides additional specification characters for
fixed-point numbers.

+ Reserves one character position for a number sign (+ or -)
- Reserves one character position for a minus sign if negative
$ Reserves one character position for a dollar sign

*# Prints asterisks instead of leading spaces

++  Reserves rightmost positions for a dollar sign (if any)

- Same as ++, except minus sign printed only if number is negative
$$ Reserves leftmost positions for a dollar sign (if any)

If the ** specification characters are used, they must be the first characters, and
should only be used with # and & since the Z specification character leaves no
unused digit positions. If the width of a numeric specification is insufficient for the
number of digits required to display a value, the width of the display is filled with
exclamation points (!).

To format numeric values in scientific notation, the E specification character is used
to define the width of the exponent. Scientific notation contains only one or zero
digits to the left of the decimal point, then the desired number of significant digits to
the right of the decimal point, followed by the number of digits for the exponent.
The width of the exponerit must be at least three or four character positions. The
following are legal scientific notation specifications:

# #####EEEE
#.5#4E

6#3E

+ ### ##HHHHH4E

Engineering notation specifications are defined using a variation of the scientific
notation specifications. In scientific notation specifications, only one or zero digit
positions are permitted to the left of the decimal point. Engineering specifications,
on the other hand, specify three digit positions. However, the number of digits
actually displayed varies so that the exponent value is always a multiple of 3. For
example, the following are legal engineering notation specifications because the
number of digit positions to the left of the decimal point is three.

3#.4#4E

### # ###EEEE
###.2#4E

TML BASIC Language Reference 213 Statements and Functions



Thus, only zero, one or three digit positions are permitted in a numeric specification
that includes an exponent. If the number of digits is zero or one, scientific notation
is used, if the number of digits is three, engineering notation is used.

If a Using Specification contains an illegal specification (ie. illegal code characters, or
improper use of legal characters), the runtime error "Illegal Using Specification"
occurs.

See Also
PRINT USING
PRINT# USING
Example
PRINT USING BigImage; "BASIC", "BASIC", "BASIC"
BigImage: "123456789", 9a, /, 9R, /, 9C "Literal and String specifications
PRINT USING "####, /"; 1,22,333,4444 'Fixed point specifications

PRINT USING "S####.##, /"; 23.4, 1293.32

PRINT USING "3#.4#4E"; 123456 '"Engineering specifications
PRINT USING "3#.44#4E"; 1234567

PRINT USING "32.4Z4E"™; 123456 'Engineering specifications
PRINT USING "3Z.4Z4E"; 1234567

OUTPUT:

123456789
BASIC
BASIC
BASIC

1

22
333
4444

$ 23.40
$1293.22

123.4560E+03
1.2345E+06

123.4560E+03
001.2345E+06

TML BASIC Language Reference 214 Statements and Functions



INPUT Statement

Syntax
INPUT [StringConstant ,|;] VariableName {, VariableName }
Action

The INPUT statement is used to obtain one or more numeric or text values entered
at the keyboard. When the INPUT statement is executed, TML BASIC accepts one or
more values entered from the keyboard and assigns them into the variables listed in
the INPUT statement. When more than one variable is listed in an INPUT
statement, each of the values entered at the keyboard must be separated by a comma
or a Return key.

When the INPUT statement is executed, a question mark (?) is displayed on the
screen indicating the program is waiting for input. If a Return key is entered and
variables still exist which have not been given values, TML BASIC displays two
question marks (??) indicating more data is required by the INPUT statement.

The INPUT statement may also contain a string which is displayed as the input
prompt instead of the normal question mark. The string must appear immediately
after the reserved word INPUT and must be a string constant and not a string
variable or expression.

The INPUT statement also works in the Super Hi-Res graphics screen. When the
INPUT statement is executed, it examines the current screen mode. If the screen is
in text mode (the default), text is input in the normal fashion. However, if the
screen is in graphics mode, text is input from the current GrafPort (window) using
QuickDraw graphics calls. Text is drawn beginning at the current location of the
QuickDraw pen. None of the TML BASIC screen position commands work in the
graphics screen. To move the pen, QuickDraw commands such as Move and
MoveTo must be used. For more information about QuickDraw see Chapter 12.

See Also

INPUT USING
PRINT

Example

REM A program to compute the average of three numbers
INPUT "Enter three numbers: "; Numberl, Number2, Number3
Avg = (Numberl + Number2 + Number3) / 3

PRINT "The average of the three numbers is "; Avg

GETS$ Key$

TML BASIC Language Reference 215 Statements and Functions



INPUT# Statement

Syntax
INPUT# FileNumber [, RecordNumber] [;VariableName {,VariableName }]
Action

The INPUT# statement reads a line of text from a file into an input buffer and then
processes the input text according to the list of input variables in its argument list. If
the INPUT# statement does not encounter a return character after reading 255
characters, it terminates reading the file, appends a return character to the input
buffer, and processes the characters as a single line.

FileNumber is a file reference number of an open text file. The list of comma
separated VariableNames may be both string and numeric variables. If a numeric
variable is used in an INPUT# statement, TML BASIC automatically converts the
string representation of a number into the appropriate numeric type (similar to the
VAL statement). When a numeric variable is used in an INPUT# statement and
the input line does not contain a string which represents a legal numeric value a
"Type Mismatch Error" occurs. If there is not enough data in the input line, the file
is read again until all of the variables have been given values.

If the optional Record Number argument does not appear, the INPUT# statement
reads sequentially beginning at the current file position. To perform random access
using the INPUT# statement, include a record number after the file reference
number. Recall that the file must be opened using the OPEN statement with the
optional record size argument specified in order to define the size of a record for the
text file.

See Also

PRINT
Chapter 9

Example

DEF PROC ReadFile (FileNam$)
LOCAL aLine$
OPEN FileNam$, AS #1
ON EOF #1 GOTO Finished
NextLine: INPUT #1; aLine$
PRINT aLine$
GOTO NextLine
Finished: CLOSE #1
END PROC

TML BASIC Language Reference 216 Statements and Functions



INSTR Function

Syntax

INSTR(Stringl, String2 [,NumericExpression])
Action

The INSTR function searches for the first occurrence of the substring designated by
the string expression String2 in the string Stringl and returns the starting position
of the substring. If the substring String2 does not exist in the string Stringl the
search fails and returns the value zero (0). Note that the search is case sensitive.

If the optional NumericExpression is present, it specifies the character position
within Stringl where the search should begin. If a NumericExpression is not
present the search begins at the first character of Stringl. If the value of
NumericExpression is less than 1 or greater than the length of the string then an
"Illegal Quantity Error" occurs.

Example

PRINT INSTR("TML BASIC is great", "basic")
PRINT INSTR("TML BASIC is great", "BASIC")
PRINT INSTR("TML BASIC is great™, "BASIC", 10)
OUTPUT:

0

5
0

TML BASIC Language Reference 217 Statements and Functions



INT Function

Syntax
INT (NumericExpression)
Action

Returns the largest whole number less than or equal to the value of
NumericExpression. The whole number returned is actually a real value and not
an integer. This function is often misunderstood for negative numbers, see
example.

See Also
FIX

Example

PRINT FIX(1.5), FIX(-1.5)
PRINT INT(1.5), INT(-1.5)

OUTPUT:
0] =1
1 -2

TML BASIC Language Reference 218 Statements and Functions



INVERSE Statement

Syntax
INVERSE
Action

The INVERSE statement is used to change the display of all subsequent characters
written to the text screen using "inverse video". If you are using a monochrome
display, INVERSE causes characters to be displayed as black on a white background.
If you are using a color display then the effect depends upon the settings of your
monitor. In this case, it is more appropriate to use the terms text background and
foreground color.

INVERSE does not affect any characters which are already displayed on the screen,
only the screen output after INVERSE is executed. INVERSE does not effect
characters written to files.

See Also
NORMAL

Example

NORMAL
PRINT "This is normal display"”
INVERSE
PRINT "This is inverse display"

TML BASIC Language Reference 219 Statements and Functions



JOYX Function
JOYY Reserved Variable

Syntax

JOYX(PaddleNumber)
JOYY

Action

The JOYX and JOYY functions are used to read the current value of the game
paddles.

JOYX reads two of the four game paddle inputs (if they are plugged in) specified by
PaddleNumber. PaddleNumber must be an integer in the range 0 to 2, otherwise an
"Illegal Quantity Error" occurs. JOYX reads the value of the indicated paddle,
returns the value, and also sets the JOYY reserved variable. The reserved variable
JOYY is set to the value of the paddle indicated by PaddleNumber + 1.

Example
HOME

Start: PRINT JOYX(1l), JOYY
GOTO Start

OUTPUT:

12 34 these are paddle values as paddle knobs are turned

12 55

12 34

12 55

12 34

12 55

12 34

12 55

12 34

12 55

12 34

12 55

TML BASIC Language Reference 220 Statements and Functions



KBD Reserved Variable

Syntax
KBD
Action

The KBD reserved variable contains an integer value which is the ASCII code of the
last key pressed from the keyboard. A table of the ASCII codes can be found in
Appendix E.

When using the KBD reserved variable in the ON..GOTO or ON..GOSUB
statement, it must be enclosed in parenthesis in order to create an expression syntax
and thus distinguish between these statements and the ON KBD statement. For
example, the following statement is treated as the ON KBD statement which turns
on event trapping for keypresses.

ON KBD GOTO HandleKeyPress

However, the following is the ON...GOTO statement which branches to the label
Dolt if the value of the reserved variable KBD is one (1).

ON (KBD) GOTO Dolt
See Also
ON KBD
Example
ON KBD GOTO ShowKey 'Activate keyboard event trapping

Wait: GOTO Wait 'Infinite loop to wait for keypresses

ShowKey: PRINT "The key = ";KBD

IF KBD = ASC(".") THEN END 'Quit when the period is pressed
ON KBD GOTO ShowKey 'Reactivate keyboard event trapping
RETURN

TML BASIC Language Reference 21 Statements and Functions



LEFT$ Function

Syntax
LEFTS$ (StringExpression, NumericExpression)

Action

The LEFT$ function returns the NumericExpression string of characters appearing
left-most in the string StringExpression.

StringExpression may be any string variable, string constant or string expression. If
NumericExpression is a real value, it is rounded to the nearest whole number. The
value of NumericExpression must be an integer in the range 1 through 255
inclusive or an "Illegal Quantity Error" occurs. To find the number of characters in
the string, use the LEN function.

See Also

LEN
MID$
RIGHT$

Example
PRINT LEFTS ("TML BASIC is great™, 9)
OUTPUT:

TML BASIC

TML BASIC Language Reference 22 Statements and Functions



LEN Function

Syntax
LEN(StringExpression)
Action

The LEN function returns an integer which is the number of characters in the
StringExpression.

Example

Name$ = "TML BASIC"
PRINT LEN(Name$)

OUTPUT:

9

TML BASIC Language Reference 223 Statements and Functions



LET Statement

Syntax

[LET] VariableName = AnyExpression

Acfion

The LET statement, also known as the assignment statement, assigns the value of
AnyExpression to the variable VariableName. VariableName may be any simple
variable or array element. Only one assignment per statement is allowed. Note that

the reserved word LET is optional.

If the type of the variable VariableName is a numeric type then AnyExpression may
be any numeric type. TML BASIC automatically converts the value of
NumericExpression to the type of the variable if the numeric types do not match.
Finally, if the value cannot be represented in this type then an "Overflow Error"
occurs. A "Type Mismatch Error" occurs if AnyExpression is a string expression.

If the variable is a string, then AnyExpression must also be a string, otherwise, a

"Type Mismatch Error" occurs.
See Also

FN =
Chapter 7, Arrays

Example
LET Valuel 30
LET Value2 23
LET Value3 8
LET Sum = Valuel + Value2 + Value3

OR

Valuel = 30
Value2 = 23
Value3 = 8

Sum = Valuel + Value2 + Value3

TML BASIC Language Reference 24

Statements and Functions



LIBRARY Statement

Syntax
LIBRARY [PathName ]

Action

The LIBRARY statement is used in a program to load a compiled library file to
memory and enter all of the procedure and function declarations of the library into
the program's symbol table just as if the declarations had been made in the source
code. There are two types of libraries in TML BASIC: user defined libraries created
with the DEF LIBRARY statement, and predefined libraries which provide access to
the Toolbox.

The LIBRARY statement can appear anywhere in a program. Before TML BASIC
compiles a program, it first scans the file for all occurrences of the LIBRARY
statement. As each LIBRARY statement is encountered, its declarations are entered
into the program's symbol table, making them available throughout the entire
program.

LIBRARY statements which name predefined Toolbox libraries serve a second
purpose. As described in Chapter 11, several of the Toolbox tool sets are not
available in ROM, but rather are implemented in disk files which must be loaded
into RAM. When a LIBRARY statement names a tool set which is not in ROM,
TML BASIC automatically generates code to load the disk file into RAM.

When a library name is specified in the LIBRARY statement, TML BASIC searches
for the library's compiled library file. The library file is not the source code for the
library, but its compiled declarations and code. As described in Chapter 3, the name
for a library file is the name of the library with the suffix ".LIB". For example, the
library filename for the toolbox library QuickDraw is QUICKDRAW.LIB.

TML BASIC searches in three locations to find a library file. First, it looks to see if
the library file is already in memory. Second, it searches in the same folder as the
source code file containing the LIBRARY statement. And finally, if the file is not
found there, it searches in the directory specified in the Library Search Path option of
the Preferences Dialog (see Chapter 6 for more information about the Preferences
Dialog). If the file is not found in any of these locations then TML BASIC reports an
error. However, it is possible to override TML BASIC by specifying the complete
pathname of the library file.

TML BASIC Language Reference 25 Statements and Functions



See Also

DEF LIBRARY
Chapter 8
Chapter 11

Example

LIBRARY "Memory"
LIBRARY "QuickDraw"
LIBRARY "/TML/LIBRARIES/QUICKDRAW"

TML BASIC Language Reference 26 Statements and Functions



LOCAL Statement

Syntax
LOCAL VariableName {, VariableName }

Action

The LOCAL statement is only allowed within a multiline procedure or function.
LOCAL is used to declare a simple variable as a temporary variable local only to the
procedure or function. Local arrays are not supported.

When a procedure or function is called, the storage for the local variables is
temporarily allocated and initialized to zero or the null string. When the procedure
or function exits, the storage is deallocated. Local variables do not retain their
values between calls. It is good programming practice to use the FN = variation of
the assignment statement within a procedure or function to ensure that only local
variable references are made. Using the FN = statement also promotes
self-documenting code.

See Also

DEF FN

DEF PROC

FN =

Chapter 8, Local Variables

Compiler/Interpreter Differences

GS BASIC allows the LOCAL statement to appear anywhere among the statements
of a multiline procedure or function. In fact, the LOCAL statement may even
appear after an IF statement so that a local variable is conditionally declared.

TML BASIC restricts the use of the LOCAL statement. The LOCAL statements in a
procedure or function must appear immediately after the DEF PROC or DEF FN
statements and before any other statements with the exception of the REM
statement.

Example

DEF PROC AverageThree(Vall,Val2,val3)
LOCAL Sum

LOCAL Average

FN Sum = Vall + Val2 + Val3

FN Average = Sum / 3

PRINT "The average is "; Average

END PROC AverageThree

TML BASIC Language Reference 227 Statements and Functions



LOCATE Statement

Syntax
LOCATE [Row] [, Column]
Action

The LOCATE statement is used to change the horizontal and vertical position of the
text screen cursor. This statement essentially duplicates the functionality of the
HPOS and VPOS reserved variables.

Both Row and Column must be numeric expressions. The Row argument changes
the vertical position of the cursor to the specified value and should be in the range 1
through 24 inclusive. The Column argument changes the horizontal position of
the cursor and should be in the range 1 through 80 inclusive. Both the Row and the
Column arguments are optional. If only one of the arguments appears, the other
component of the cursor position is unaffected. Of course, using the LOCATE
statement without either of the arguments is meaningless, but legal.

See Also

HPOS and VPOS
Example
LOCATE 5,2 : PRINT "Hello"” "Change vertical and horizontal cursor position
LOCATE ,10 : PRINT "Goodbye" 'Change only the horizontal cursor position
LOCATE 6 : PRINT "Good Day" 'Change only the vertical cursor position

TML BASIC Language Reference 228 Statements and Functions



LOCK AND UNLOCK Statement

Syntax

LOCK PathName
UNLOCK PathName

Action
The LOCK and UNLOCK statements are used to change a file's write protection.

The LOCK statement prohibits writing to, saving, or deleting the file named in
PathName. PathName is a string expression and must represent a legal ProDOS 16
pathname. A volume cannot be locked but subdirectories can. Any subsequent
attempt to change the contents of a locked file will result in the "File Locked" error.

UNLOCK removes the protection placed upon a file by the LOCK statement. An
unlocked file may be deleted, renamed, changed, or saved.

See Also
Chapter 9, Files

Example

LOCK myFile$
UNLOCK myFile$

LOCK "/TML/PART1.EXAMPLES/HELLOWORLD .BAS"

TML BASIC Language Reference 229 Statements and Functions



LOG, LOGB%, LOG1 and LOG2 Functions

Syntax
LOG (x)
LOGBS% (x)
LOG1 (x)
LOG2 (x)

Action

The LOG function returns natural logarithm of x. The natural logarithm is to the
base e.

The LOGB% function returns the binary exponent of the real value x as a signed
integer.

The LOGI function accurately computes the natural logarithm of x+1. If x is small,
then the computation of LOGI is more accurate than LOG(x+1).

Finally, the LOG2 function returns the base 2 logarithm of x.
In all four functions, x is a numeric expression.

Example

PRINT LOG (EXP (1))
PRINT LOGB%(100.0)
PRINT LOG1 (EXP (1))
PRINT LOG2(32)

OUTPUT:

.313262

(S IS N

TML BASIC Language Reference 230 Statements and Functions



MENUDEF Statement

Syntax
MENUDEF ItemNumber, Label {,Label}
Action

The MENUDEF statement is used to store subroutine labels in the Menu Item
Dispatch Table. The menu item dispatch table is a special data structure defined by
TML BASIC for directing program control to menu item handling subroutines. The
MENUDEF statement works in conjunction with the TASKPOLL and EVENTDEF
statements.

The menu item dispatch table has 128 entries numbered 0 through 127. As
discussed in Chapter 13, every menu contains one or more menu items. Each menu
item has associated with it a unique menu item identification number (menu item
id). The menu item ids for menus created by TML BASIC programs must be in the
range 250 through 377 inclusive. These menu item ids correspond directly to the
entries in the menu item dispatch table. The mapping of menu item ids to dispatch
table entries is performed by subtracting 256 from the menu item id value.

When the TASKPOLL statement is executed and detects the In Menu Bar event,
control is transferred to the menu item handling subroutine specified in the menu
item dispatch table. For this to occur, the Event Dispatch Table for the In Menu Bar
event must be zero (index 17), otherwise, control transfers to the event handling
subroutine specified there. If index 17 of the event dispatch table is empty,
TASKPOLL subtracts 250 from the menu item id of the selected menu item and
looks up the menu item handling subroutine in the Menu Dispatch Table. If a
subroutine has been defined, control transfers to the specified subroutine, otherwise
TASKPOLL continues normal execution.

Menu item handling subroutines end with the RETURN 0 statement rather than
the normal RETURN statement.

See Also

EVENTDEF
TASKPOLL

Example
MENUDEF 0, doNew

MENUDEF 1, doOpen
MENUDEF 2,doClose

TML BASIC Language Reference 231 Statements and Functions



MID$ Function

Syntax
MID$ (StringExpression, Start [,Length ] )
Action

The MID$ statement returns a string of Length characters from StringExpression,
beginning with the Start character.

Start and Length must be numeric expressions whose values are in the range 1
through 255, otherwise an "Illegal Quantity Error" occurs. If the Length parameter
does not appear, or if there are fewer characters to the right of the Start character
then MID$ returns all of the right-most characters. If Start is greater than the
number of characters in the string, MID$ returns a null string.

To determine the number of characters in a string use the LEN function.
See Also

LEFT$

LEN

RIGHT$

Example
INPUT "Binary number = "; Binary$ 'Input a binary number as a string

Decimalval@ = 0
FOR i% = 1 to LEN(Binary$)

Digit$ = MID$(Binary$,i%, 1) 'Get individual digit
DecimalVal@ = 2 * DecimalVal@ + VAL(Digit$)

NEXT i%

PRINT "Decimal number = "; DecimalValg@

OUTPUT:

Binary number = 101001
Decimal number = 41

TML BASIC Language Reference 232 Statements and Functions



NEGATE Function

Syntax
NEGATE (NumericExpression)

Action

The NEGATE function returns the negation of NumericExpression (ie.
- NumericExpression). This seemingly simple function is included in TML BASIC
because of the special infinity and NaN results possible using the Apple IIGS SANE
floating point engine.

See Also
Chapter 7

Example

someValue = 5.2394
PRINT NEGATE (someValue)

OUTPUT:

-5.2394

TML BASIC Language Reference 233 Statements and Functions



NORMAL Statement

Syntax
NORMAL

Action

The NORMAL statement is used to change the display of all subsequent characters
written to the text screen in "normal video" (as opposed to inverse video). If you
are using a monochrome display, NORMAL causes characters to be displayed as
white on a black background. If you are using a color display then the effect depends
upon the settings of your monitor. In this case, it is more appropriate to use the
terms text background and foreground color.

NORMAL does not affect any characters which are already displayed on the screen,
only the screen output after NORMAL is executed. NORMAL does not effect
characters written to files.

See Also
INVERSE

Example

NORMAL

PRINT "This is normal display"”
INVERSE

PRINT "This is inverse display”

TML BASIC Language Reference 234 Statements and Functions



ON BREAK and OFF BREAK Statements

Syntax
ON BREAK statementlist
OFF BREAK

Action

The ON BREAK statement is used in a program to control what action to take when
a Control-C character (the break character) is typed. The ON BREAK statement is a
special case of the ON ERR statement which is used to handle all other runtime
errors. The ON BREAK statement must be executed to activate the break handling
mechanism.

When a Control-C character is typed, and an ON BREAK statement has been
executed, control will temporarily suspend and transfer to the sequence of
statements following the ON BREAK. After the break has been handled, control
may resume at the previous point by executing the RESUME statement.

The OFF BREAK statement cancels the ON BREAK statement. If no ON BREAK
statement is active when a Control-C is typed, execution of the program terminates.

If the BREAK OFF statement has been executed, TML BASIC does not check for the
Control-C character. Thus, it is impossible to invoke the user break mechanism to
transfer control to the ON BREAK statement list or abort the program. BREAK ON
turns the checking for Control-C back on.

See Also

BREAK ON and BREAK OFF
ON ERR
RESUME

Compiler/Interpreter Differences

The ON BREAK statement requires a significant amount of code to be generated by
TML BASIC to implement this statement. Since most programs do not use the ON
BREAK statement, TML BASIC allows you to turn off the code generation needed to
support this statement. This is done by turning off the On Error option in the
Preferences Dialog or by using the $OnError metastatement. If the On Error code
generation is turned off and a program uses this statement, TML BASIC will give
the error:

"On Error option must be ON for this Statement".

TML BASIC Language Reference 235 Statements and Functions



Further, you must instruct TML BASIC to generate code to check for the Control-C
character. This is done by turning on the Keyboard Break option in the Preferences
Dialog or with the $KeyboardBreak metastatement. If you use the ON BREAK
statement (and $OnError is ON), but forget to turn on the Keyboard Break option,
TML BASIC will give the error:

"Keyboard Break must be ON for this Statement".

Example
ON BREAK GOTO HandleBreak

Wait:
PRINT "Wait for break"
GOTO Wait

HandleBreak:
PRINT "Break occurred”
GET$ A$
IF A$ = "." THEN END
RESUME

TML BASIC Language Reference 236 Statements and Functions



ON EOF# and OFF EOF# Statements

Syntax

ON EOF# FileNumber StatementList
OFF EOF# FileNumber

Action

The ON EOF# statement allows a program to control what action to perform when
an attempt is made to read a file past its end of file mark. If an ON EOF# statement
has been previously executed when a read past the end of file occurs, program
control unconditionally transfers to the sequence of statements after the ON EOF#
statement. FileNumber must be the file reference number of an open file.

The OFF EOF# statement cancels the end of file trapping that was activated with the
ON ERR# statement. If a program attempts to read past the end of file and no ON
EOF# statement is active the standard TML BASIC error mechanism is used. That
is, if an ON ERR statement is active, the sequence of statements associated with that
statement is executed, otherwise, execution aborts.

Unlike the ON BREAK, ON KBD and ON ERR and ON EXCEPTION statements,
program control unconditionally branches to the sequence of statements after the
ON EOF#. You cannot use the RETURN or RESUME statements when handling
the end of file error. The ON EOF# statement does not require the $OnError
metastatement be ON.

See Also

EOF
EOFMARK
Chapter 9, Files

Example
OPEN SomeFile$, AS #1
ON ERR #1 GOTO EofEncountered

NextLine:
INPUT #1; Line$
PRINT Line$
GOTO NextLine

EofEncountered:
PRINT "EOF encountered for file "; EOF
CLOSE #1
END

TML BASIC Language Reference 237 Statements and Functions



ON ERR and OFF ERR Statements

Syntax
ON ERR Statementlist
OFF ERR

Action

The ON ERR statement is used in a program to control what action to perform
when a runtime error occurs.

When a runtime error such as an "Overflow Error" or "lllegal Quantity Error"
occurs, and an ON ERR statement has been executed, control will temporarily
suspend and transfer to the sequence of statements following the ON ERR. After
the error has been handled, control may resume at the previous point by executing
the RESUME statement, or at the statement following the error by executing the
RESUME NEXT statement.

The reserved variable ERR may be used in the sequence of statements handling the
error in order to determine exactly what runtime error occurred and to respond
accordingly.

If a program contains more than one ON ERR statement the most recently executed
ON ERR statement is the one which receives control. A user break error (typing a
Control-C) is handled separately by the ON BREAK statement.

See Also

ON BREAK
RESUME

Compiler/Interpreter Differences

The ON ERR statement requires a significant amount of code be generated by TML
BASIC to implement this statement. Since many programs do not use the ON ERR
statement, TML BASIC allows you to turn off the code generation needed to support
this statement. This is done by turning off the On Error option in the Preferences
Dialog or by using the $OnError metastatement. If the On Error code generation is
turned off and a program uses this statement, TML BASIC will give the error:

"On Error option must be ON for this Statement".

TML BASIC Language Reference 238 Statements and Functions



Further, you should instruct TML BASIC to generate debugging code to check for
runtime errors such as "Overflow Error", "Illegal Quantity Error", etc. This is done
by turning on the Debug option in the Preferences Dialog or with the $Debug
metastatement.

Example
ON ERR GOTO HandleError

x% = 20000

x% = x% + 15000
PRINT "x%=";x%
END

HandleError:

IF ERR = 1 THEN 'An Overflow Error
x% =0
RESUME

ELSE
PRINT "RUNTIME ERROR="; ERR
END

END IF

OUTPUT:

x%$=15000

TML BASIC Language Reference 239 Statements and Functions



ON EXCEPTION and OFF EXCEPTION Statements

Syntax

ON EXCEPTION statementlist
OFF EXCEPTION

Action

The ON EXCEPTION statement is a separate version of the ON ERR statement for
errors that occur in floating-point mathematical computations. TML BASIC
implements floating-point operations using the built-in Standard Apple Numeric
Environment (SANE) floating-point engine. SANE defines several error conditions
which might occur while performing floating-point operations. They are

¢ Invalid operation (such as SQRT(-2))
¢ Overflow

* Underflow

¢ Divide by zero

® Unordered compare

¢ Inexact result

It is possible to define which of these errors are signaled to a TML BASIC program .
using the EXCEPTION ON statement.

The ON EXCEPTION statement is used in a program to control what action to take
when the EXCEPTION ON statement has defined that certain floating-point errors
should be signaled. The behavior of the ON EXCEPTION statement is exactly like
the ON ERR statement. See the description of this statement for more information.

TML BASIC Language Reference 240 Statements and Functions



ON KBD and OFF KBD Statements

Syntax
ON KBD StatementList
OFF KBD

Action

The ON KBD statement is used to cause program control to automatically execute a
sequence of statements whenever a keypress is detected at the keyboard.

After an ON KBD statement is executed, the program continues executing normally.
But, as soon as a key is pressed, execution branches to the sequence of statements
included in the ON KBD statement. Note that when the ON KBD statement is
encountered during normal program execution, the statements following the
reserved words ON KBD are not executed.

The branch to the ON KBD statement list is treated as a GOSUB to a subroutine.
Therefore, the sequence of statements should end with a RETURN statement to
continue normal program execution. The effect of executing the ON KBD statement
is disabled after a keypress occurs. To re-enable it, the ON KBD statement must be
executed again.

To disable the effect of ON KBD, execute the OFF KBD statement.

Note that when ON KBD is in effect, the program cannot be aborted using the
Control-C character. This is because, the keypress is treated like any other keyboard
character, and program control transfers to the sequence of statéments after the ON
KBD statement.

See Also
GOSUB
KBD
Example
ON KBD GOTO ShowKey '"Activate keyboard event trapping
Wait: GOTO Wait "Infinite loop to wait for keypresses
ShowKey: PRINT "The key = ";KBD
IF KBD = ASC(".") THEN END 'Quit when the period is pressed
ON KBD GOTO ShowKey 'Reactivate keykoard event trapping
RETURN

TML BASIC Language Reference 241 Statements and Functions



ON...GOSUB Statement

Syntax
ON NumericExpression GOSUB Label {,Label}

Action

The ON...GOSUB statement is used to cause program control to branch to a
subroutine based upon the value of a NumericExpression. After the reserved word
GOSUB is a list of one or more labels separated by commas. The labels must
designate subroutines which end with the RETURN statement.

The value of the NumericExpression determines which subroutine is executed. The
value of NumericExpression must be an integer in the range 0 to 255. If the value is
equal to one (1), control transfers to the subroutine designated by the first label, if the
value is equal to two (2), control transfers to the subroutine designated by the second
label, etc. If the value equals zero (0), or greater than the number of labels specified,
the statement is ignored, and execution continues with the next statement.

See Also

GOSUB

ON..GOTO

Chapter 7, Labels
Chapter 8, Subroutines

Example

PRINT "Database options...”

PRINT " 1) Sort”

PRINT " 2) Print"

PRINT " 3) Enter record"

PRINT " 4) Delete record”

PRINT " 5) Quit*

PRINT "Enter selection: ";

GETS$ Option$

Option$ = ASC (Option$) - ASC("1") + 1

ON Option% GOSUB doSort,doPrint,doEnter,doDelete,doQuit

TML BASIC Language Reference 242 Statements and Functions



ON...GOTO Statement

Syntax
ON NumericExpression GOTO Label {,Label}
Action

The ON...GOTO statement is used to cause program control to branch to a label
based upon the value of a NumericExpression. After the reserved word GOTO is a
list of one or more labels separated by commas.

The value of the NumericExpression determines to which label execution transfers.
The value of NumericExpression must be an integer in the range 0 to 255. If the
value is equal to one (1), control transfers to the statement designated by the first
label, if the value is equal to two (2), control transfers to the statement designated by
the second iabel, etc. If the value equals zero (0), or greater than the number of
labels specified, the statement is ignored, and execution continues with the next
statement.

See Also

GOTO

ON...GOSUB

Chapter 7, Labels
Example
PRINT "Database options..."
PRINT " 1) seorg®
PRINT " 2) Print®
PRINT " 3) Enter record"
PRINT " 4) Delete record”
PRINT " 5) Quit"

PRINT "Enter selection: ";

GETS$ Option$

Option% = ASC(Option$) - ASC("1") + 1

ON Option% GOTO doSort,doPrint,doEnter,doDelete,doQuit

TML BASIC Language Reference 243 Statements and Functions



ON TIMER and OFF TIMER Statements

Syntax
ON TIMER(Seconds) StatementList
OFF TIMER

Action

The ON TIMER enables event trapping using the 1-second interrupt capability of the
Apple IIGS clock. Seconds is an integer expression that sets a countdown interval of
the value of Seconds. Seconds must be in the range 2 to 86400.

When the interval counter reaches zero, the countdown is complete, and execution
branches (like a GOSUB) from the currently completed program statement, to the
ON TIMER StatementList. StatementList must end with a RETURN statement to
return control to the next sequential statement in the program.

The TIMER countdown is approximate only and does not guarantee a precise
amount of time. Some higher priority operations, such as disk I/O or AppleTalk
communications might even lock out the timer interrupt for more than a second.
The ON TIMER statement will have no effect unless the 1-second interrupt is
enabled by the TIMER ON statement.

OFF TIMER disables the most recently executed ON TIMER statement.

See Also

GOSUB
RETURN
TIMER ON

TML BASIC Language Reference 244 Statements and Functions



OPEN Statement

Syntax

OPEN Pathname, [ FILTYP= DIR|TXT|SRC|BDF |Filetype ]
[ FOR INPUT|OUTPUT |APPEND|UPDATE ] AS # Filenumber [, Recordsize ]

Acfion

The OPEN statement is used to open files for access, and must precede any file I/O
routines accessing a given file. The minimum required arguments following the
reserved word OPEN are the file's pathname followed by a comma, the reserved
word AS and a file reference number. The file must have been previously created
and must exist on a disk currently mounted in a disk drive. If a partial pathname is
used, it is joined with prefix 0 to create the full pathname. The file reference
number is used in all subsequent TML BASIC I/O statements for accessing the file.

The optional FOR clause in the OPEN statement is used to qualify the access mode
for the file. The supported access modes are INPUT, OUTPUT, APPEND and
UPDATE. If the FOR clause is not used, the file is opened for UPDATE. The FOR
INPUT clause specifies that the file is opened for read-only access, and cannot be
written to. For example:

OPEN myFile$, FOR INPUT AS #10

The FOR OUTPUT clause specifies that the file is opened for write-only access, and
cannot be read from. For example:

OPEN myFile$, FOR OUTPUT AS #10

The FOR APPEND option is a variant of the FOR OUTPUT clause. It is used for
sequential access (discussed later) to allow the PRINT# and WRITE# statements to
append new information to the end of a file without disturbing any existing data in
the file. For example:

OPEN myFile$, FOR APPEND AS #10

Finally, the FOR UPDATE clause is used to open a file for read-write access so long
as the filetype supports such access. For example, you can't read from a printer.

The optional FILTYP= clause of an OPEN statement is used to specify the type of file.
The FILTYP= clause is primarily used to ensure that a file being opened is of the
expected filetype. If a program attempts to open a file using the FILTYP= clause and
the file's type does not match the specified filetype, the file will not be opened and
an error message wil be reported. Any of the predefined filetype names (see
CREATE) can be used with the FILTYP= clause or an unsigned integer value.

TML BASIC Language Reference 245 Statements and Functions



The FILTYP= clause is also used with the OPEN statement to open files which have
not been created. If the OPEN statement finds that the specified file does not exist,
and the FILTYP= clause is given, it will implicitly call the CREATE statement first
and then open the file.

Finally, the optional Recordsize argument is used to specify the record size for a
random access to the file using the INPUT# and GET# statements for non-Basic
Data Files. If the file being opened is an existing BASIC Data File, the record size
argument is ignored and the record size used is the size specified when the file was
created.

See Also

CLOSE
Chapter 9

Example

OPEN "HELLOWORLD.BAS", AS #10

OPEN "/TML/MYSTUFF/INVOICES", FOR INPUT AS #20
OPEN aFile$, FOR UPDATE AS #20, 100

OPEN ".PRINTER", AS #1

OPEN ".MODEM", AS #2

TML BASIC Language Reference 246 Statements and Functions



OUTPUT# Statement

Syntax
OUTPUT #FileNumber

Action

The OUTPUT# statement is used to redirect output which is normally directed to
the Apple IIGS text screen to a file previously opened with FileNumber as its file
reference number. Recall that devices can be opened with a file reference number,
thus allowing output to be redirected to devices as well. The printer is an example
of a device.

The PRINT and CATALOG statements are the only statements affected by the
OUTPUT# statement. To restore output back to the text screen use the statement
OUTPUT #0. .

See Also

CATALOG
OPEN
PRINT

Example

OPEN SomeFile$, AS #1
OUTPUT #1

PRINT "The following are the files on my disk"
PRINT
CATALOG

OUTPUT #0

CLOSE #1
END

TML BASIC Language Reference 247 Statements and Functions



PDL Function
PDL9 Reserved Variable

Syntax

PDL (NumericExpression)
PDL9

Acfion

The PDL function reads the position of the game control paddle and returns its
position as an integer value in the range 0 to 255.

The PDL function actually reads the position of the paddle twice as fast as the
original Apple II routines and discards the least significant bit, thus eliminating the
uncertainty caused by the variable processor speed of the Apple IIGS. The reserved
variable PDL9 returns the 9-bit result calculated by the prior execution of the PDL
function.

NOTE: Reading any paddles in quick succession will tend to produce unstable
results because of the hardware coupling among all four paddles. Using the JOYX
function will eliminate this interaction when reading two paddles of both axes of a
joystick.

Example

ReadPaddles: PRINT PDL(0), PDL9
GOTO ReadPaddles

TML BASIC Language Reference 248 Statements and Functions



PEEK Function

Syntax
PEEK (NumericExpression)

Acfion

The PEEK function reads a byte from the memory address specified by
NumericExpression and returns an integer value in the range 0 to 255 inclusive.
The NumericExpression must be a positive integer less than 2724 and must
represent a legal Apple IIGS memory address.

The PEEK function should only be used in special circumstances in a program. You
should exercise great care when using PEEK not to read memory mapped 1/0O
devices and control registers, since merely reading those addresses can cause
unpredictable side effects, including system crash.

Programmers concerned about writing programs that will run on new versions of
the Apple IIGS product family should avoid the use of the PEEK function with
addresses that might not be compatible with future machines or system software.

See Also
POKE

Example

'Use hard coded address to read the Option key sense input
OptionKey% = PEEK(14729314) 'Hex address E0C062
PRINT OptionKey%

'Use variable address to read a byte of memory in a variable

myStr$ = "TML BASIC"

Address@ = VARPTRS (myStrs$)

PRINT CHR$ (PEEK (Address@+1l)) 'Display first letter of string in memory
OUTPUT:

127
T

TML BASIC Language Reference 29 Statements and Functions



PFX$ Function

Syntax
PFXS$ (Prefix)
Action

The PFX$ function returns a string which is the current value of the indicated
ProDOS 16 prefix. Prefix must be a numeric expression in the range 0 through 8
inclusive, otherwise an "Illegal Quantity Error" results. The prefix values 0 through
7 return the ProDOS 16 prefix by that number, the prefix value 8 returns the
pseudo-prefix equal to the boot volume name.

See Also

PREFIX
PREFIX$
Chapter 9 - Files

Example

'Print each of the ProDOS 16 prefixes
FOR i% = 0 to 8

PRINT PFX$ (i%)
NEXT i%

TML BASIC Language Reference 0 Statements and Functions



Pl Reserved Variable

Syntax
PI

Action

PI is a reserved variable whose value is w, accurate to 20 decimal digits. The value of
PI is stored as a SANE extended precision real value in order to provide the greatest
amount of accuracy possible in expressions. TML BASIC automatically converts PI
to any numeric type on assignment, with of course a loss of accuracy.

Example

Radians = Degrees * PI / 180 'Convert degrees to radians

TML BASIC Language Reference %1 Statements and Functions



POKE Statement

Syntax
POKE NumericExpression, Value
Action

The POKE statement writes a byte Value to the memory address specified by
NumericExpression. Value must be in the range 0 to 255 or an "lllegal Quantity
Error" occurs. The NumericExpression must be a positive integer less than 224 and
must represent a legal Apple IIGS address.

The POKE statement should only be used in special circumstances in a program.
You should exercise great care when using the POKE statement not to accidentally
write to memory mapped I/O devices, control registers or other addresses not
allocated to your program.

Programmers concerned about writing programs that will run on new versions of
the Apple IIGS product family should avoid the use of the POKE statement with
addresses that might not be compatible with future machines or system software.

See Also

PEEK

Example

anInt% = 0

PRINT anInt%

POKE VARPTR (anInt%),2 '"Assignment the HARD way!
POKE VARPTR (anInt%)+1,1

PRINT anInt%

OUTPUT:

0
258

TML BASIC Language Reference %2 Statements and Functions



POP Statement

Syntax
POP

Acfion

The POP statement is used to jump out one nested subroutine level by removing
the subroutine "return address" from the TML BASIC Runtime Stack. Thus, when
the next RETURN statement is executed, instead of branching back to the statement
after the most recently executed GOSUB statement, control branches to the
statement after the second most recently executed GOSUB statement.

If a POP is executed in a program without having executed a GOSUB statement the
"RETURN/POP without matching GOSUB" error occurs.

See Also

GOSUB
RETURN

Example

Print "Start Program”
GOSUB First

PRINT "End Program"
END

First:
PRINT "Enter subroutine First"
GOSUB Second
PRINT "Leave subroutine First"
RETURN

Second:
PRINT "Enter subroutine Second”
POP
PRINT "Exit subroutine Second”
RETURN

OUTPUT:

Start Program

Enter subroutine First
Enter subroutine Second
Exit subroutine Second
End Program

TML BASIC Language Reference 23 Statements and Functions



PREFIX Statement

Syntax

PREFIX DirectoryPath

PREFIX PrefixNum, DirectoryPath
Action

The PREFIX statement is used to set a ProDOS prefix. The first form of the
statement sets the ProDOS prefix 0 to the pathname specified by DirectoryPath. The
second form of the statement sets any prefix numbered 0 through 7 as specified by
the PrefixNum argument. If the pathname used in the PREFIX statement is illegal,
the "Bad Path Error" occurs.

Compiler/Interpreter Differences

GS BASIC provides variations of the PREFIX statement that display the current
values of prefixes. This is not supported in TML BASIC.

See Also
Chapter 9

Example

PREFIX "/TML/PART1.EXAMPLES"
PREFIX 4,"/TML/MYWORK/NDA"

TML BASIC Language Reference 4 Statements and Functions



PREFIX$ Modifiable Reserved Variable

Syntax
PREFIXS

Action

PREFIXS$ is a modifiable reserved variable whose value is the ProDOS 16 default
prefix. That is, prefix zero (0). If a new value is assigned to the reserved variable,
the ProDOS 16 prefix zero is changed to reflect the new pathname. If an illegal
ProDOS 16 pathname is assigned to PREFIX$, the "Bad Path Error" occurs.

See Also

PFX$
PREFIX
Chapter 9 - Files

Example
PRINT "The current default prefix = "; PREFIX$

INPUT "Enter a new default prefix: "; NewPrefix$
PREFIX$ = NewPrefix$

TML BASIC Language Reference 25 Statements and Functions



PRINT Statement

Syntax
PRINT { [, ;] [AnyExpression ] } [,];:]

Action

The PRINT statement displays text on the Apple IIGS text screen. The PRINT
statement is used to print the values of numeric and string expressions. The PRINT
statement may contain any number of expressions separated by either a comma or
semicolon. Each expression is called a print item. Actually, multiple expressions
can be separated by spaces, but it is good programming practice to use either a
comma or a semicolon so it is clearly understood that more than one expression is
included within the PRINT statement.

When a string expression appears in a PRINT statement, the exact characters in the
string are displayed to the text screen at the current text location (the location of the
cursor). When a numeric expression is printed, the binary representation of the
numeric value is first converted to a string and then displayed at the current text
location. The conversion is controlled by the SHOWDIGITS reserved variable. If
the numeric expression contains an integer value, it is displayed as an integer unless
SHOWDIGITS is too small, in which case the number is displayed in scientific
notation.

When using the semicolon as a separator between multiple expressions in a PRINT
statement, TML BASIC positions the cursor immediately following the last character
displayed. Thus, the next expression is displayed adjacent to the previous print
item. Using a comma as a separator causes TML BASIC to perform a tab operation
before the next print item is displayed. The tab width of the PRINT statement is 16
characters. The spaces between each tab is called a print zone. The diagram on the
next page illustrates how the 80 columns of a text screen are divided into five print
zones.

After all print items in a PRINT statement have been displayed, the text cursor is
moved to the first column of the next line. If the cursor is on the last line of the
screen, the entire contents of the screen is scrolled up one line. Thus, a PRINT
statement containing zero will display a blank line.

In some cases, a program may not want the PRINT statement to advance the text
location to the next line after it has displayed all of its print items. Whenever a
PRINT statement ends with a comma or a semicolon, the PRINT statement will not
advance to the next line.

TML BASIC Language Reference 26 Statements and Functions



1 17 49
= Print Print Print Print Print
ET Zone Zone Zone Zone Zone
2 1 2 3 4 5

Zone Width is
16 characters

The PRINT statement also works in the Super Hi-Res graphics screen. When the
PRINT statement is executed, it examines the current screen mode. If the screen is
in text mode (the default), text is displayed in the normal fashion. However, if the
screen is in graphics mode, text is displayed to the current GrafPort (window) using
QuickDraw graphics routines. The text is drawn beginning at the current location of
the QuickDraw pen. None of the TML BASIC screen position commands work in
the graphics screen. To move the pen, QuickDraw commands such as Move and
MoveTo must be used. For more information about QuickDraw see Chapter 12.

See Also

PRINT USING
PRINT#
SHOWDIGITS
SPC

TAB

Example

PRINT "The average of three numbers is ";

FOR i% = 1 TO 5
PRINT SPACES (i%); i%
NEXT i%

PRINT tbll,tbl2,tbl3

TML BASIC Language Reference

27

(43 + 27 + 23) / 3

Statements and Functions




PRINT USING Statement

Syntax
PRINT USING UsingSpecification [; Expression {, Expression } ] [;]

Action

The PRINT USING statement is an advanced form of the PRINT statement. The
PRINT USING statement contains the special UsingSpecification which controls the
format of the individual print items displayed to the text screen.

The UsingSpecification may be a string variable, string constant or a label which
contains an IMAGE statement. In each case, the the information is expressed in the
same way. See the descrition of the IMAGE statement for a complete list of the
formatting specifications available.

In the PRINT USING statement, the print items (Expressions) are separated by
commas. The commas do not cause a tab action to the next print zone as they do in
the PRINT statement since formatting is controlled by the UsingSpecification. The
trailing semicolon can still be used, however, preventing the PRINT statement from
advancing to the next line.

See Also

PRINT
IMAGE

TML BASIC Language Reference 28 Statements and Functions



PRINT# Statement

Syntax

PRINT# FileNumber [, RecordNumber ] [; Expression {,|; Expression }] [;]

Action

The PRINT# statement writes a line of text to a file in the same way that the PRINT
statement does to the screen. The reserved word PRINT# is followed by the file
reference number of an open file to write to, a semicolon, and a list of expressions
separated by commas or semicolons.

PRINT# automatically performs any necessary numeric to string type conversions
before writing to the file. Numeric values are formatted using the same rules as the
PRINT statement. That is, SHOWDIGITS controls the format of numbers generated
by PRINT#. Using the comma as the separator between expressions causes the tab
action to the next print zone, while the semicolon does not. The SPC and TAB
functions can be used as well.

An optional form of the PRINT# statement permits random access to a text file. To
perform random access using the PRINT# statement, include a record number after
the file reference number. Recall that the file must be opened using the OPEN
statement with the optional record size argument specified to define the size of a
record in the text file. Consider the following statements:

See Also

PRINT USING
PRINT
SHOWDIGITS
SPC

TAB

Chapter 9

Example
PRINT #10; anInt$%, aReal, aStr$ 'Sequentially write several values to a file

OPEN "AFILE", AS #10, 20 'Open a file for random access
PRINT #10,6; aLine$ 'Write a line of text at random record 6

TML BASIC Language Reference %0 Statements and Functions



PRINT# USING Statement

Syntax

PRINT# FileNumber [, RecordNumber ] USING UsingSpecification
[; Expression {,|; Expression }] [;]

Action

The PRINT# USING statement is an advanced form of the PRINT# statement. The
PRINT# USING statement contains the special UsingSpecification which controls
the format of the individual print items written to a text file.

The UsingSpecification may be a string variable, string constant or a label which
contains an IMAGE statement. In each case, the the information is expressed in the
same way. See the descrition of the IMAGE statement for a complete list of the
formatting specifications available.

In the PRINT# USING statement, the print items (Expressions) are separated by
commas. The commas do not cause a tab action to the next print zone as they do in
the PRINT# statement since formatting is controlled by the UsingSpecification. The
trailing semicolon can still be used, however, preventing the PRINT# statement
from advancing to the next line.

TML BASIC Language Reference X0 Statements and Functions



PUT# Statement

Syntax

PUT# FileNumber [, [Length] [,RecordNumber]];StructureVariable

Action

The PUT# statement writes a number of bytes from a structure array to a binary file.
The reserved word PUT# is followed by the file reference number of an open binary
file to write to, a semicolon, and a structure array variable reference (includes a
subscript). The number of bytes transferred is equal to the record size of the file.

Using the optional Length argument in the PUT# statement, it is possible to
override the number of bytes transferred to some value other than the record size.
The PUT# statement can also be used for random assess using the optional
RecordNumber argument.

See Also

OPEN
GET#
Chapter 9, Files

Example

DIM myData! (11)

'Open a binary file whose record size is 4
OPEN "SOMEFILE", FILTYP=0 FOR OUTPUT AS #1, 4

PUT #1; myData! (0) '"Write 4 bytes to first record in file
PUT #1,,3; myData! (4) 'Write 4 bytes starting at record 3
PUT #1,2,5; myData! (0) 'Write 2 bytes starting at record 5
CLOSE #1

TML BASIC Language Reference 21 Statements and Functions



R.STACK Functions

Syntax

R.STACKS (NumericExpression)
R.STACKR (NumericExpression)
R.STACK& (NumericExpression)

Action

The R.STACK functions return data from the CALL return stack. The CALL return
stack is a 32 byte (16 words) buffer used by the CALL, CALL% and EXFIN_ statements
for storing the values returned by an Apple IIGS Toolbox routine.

Because each toolbox routine returns a variable amount of information in different
data types, the CALL return stack can be accessed for integer, double integer and long
integer values. The NumericExpression parameter is a word offset into the stack.
The number of bytes read from the stack beginning at that point depends upon
which R.STACK function is called. R.STACK% returns an integer value reading 2
bytes of data from the stack; the R.STACK®@ function returns a double integer
reading 4 bytes of data from the stack; and finally, R.STACKé& returns a long integer
reading 8 bytes of data from the stack. Thus, RSTACK% may be indexed in the
range 0 to 16, RSTACK®@ in the range 0 to 15, and R.STACK& in the range 0 to 13.

R.STACK%(0) returns the error code returned by the toolbox routine. If the value is
zero, then no error occurred. If the value is non-zero, an error occurred during the
execution of the toolbox routine, and your program should take appropriate action.

R.STACK%(1) is the first word of data returned on the CALL stack.
See Also

CALL
CALL%
EXFN_
Chapter 11

Example
CALL NewHandle (1024, myMemoryID%,0,0)

IF R.STACK%(0) = 0 THEN

myHandle@ = R.STACK@ (1)
ELSE

PRINT "Unable to allocate memory handle, error: ";R.STACK% (0)
END IF

TML BASIC Language Reference %2 Statements and Functions



RANDOMIZE Statement

Syntax
RANDOMIZE NumericExpression
Action

Reseeds the random number generator with the value of NumericExpression as the
new seed. NumericExpression must be in the range 1 to 2*31-2. Good values to use
as a seed are values from the TIME function or the SECONDS@ reserved variable
after the TIMER ON statement has been executed.

See Also

SECONDS@
TIME
TIMER ON

Example
RANDOMIZE 8849391

RANDOMIZE SECONDS@
RANDOMIZE TIME (2)*60+TIME (3)

TML BASIC Language Reference 23 Statements and Functions



READ Statement

Syntax
READ VariableName {,VariableName}
Action

The READ statement assigns into one or more variables, values obtained from a
program's DATA statements. The values are read beginning at the current DATA
list pointer. The DATA list pointer initially points to the first constant in the first
DATA statement of the program. The list pointer advances as values are read. It
can also be changed to point to any DATA statement using the RESTORE statement.

If a READ statement attempts to assign a string data element to a numeric variable, a
"Type Mismatch Error" occurs.

See Also

DATA
RESTORE

Example
READ A$,BS

RESTORE Names
READ C$,D$

PRINT A$,B$,C$,D$
END

Names: DATA Apple, Orange
DATA Pear, Grape

OUTPUT:

Apple Orange Apple Orange

TML BASIC Language Reference 04 Statements and Functions



READ# Statement

Syntax
READ# FileNumber [, RecordNumber ] [; VariableName {, VariableName }]

Action

The READ# statement reads information from a BASIC Data File (BDF) into one or
more variables. The reserved word READ# is followed by the file reference number
of an open BDF file to read from, a semicolon, and a list of variables separated by
commas.

If a READ# statement contains a numeric variable, the value at the current file
position in the BDF file must also be a numeric value. If the file contains a string
value, the "Type Mismatch Error" occurs. If the file does contain a numeric value,
but its type does not match the variable in the READ# statement, the value is
converted using the same rules as the CONV functions. Thus, it is possible the
conversion will lose precision or even cause an "Overflow Error”. If the READ#
statement contains a string variable, the value at the current file position must be a
string value, otherwise a "Type Mismatch Error" occurs.

An optional form of the READ# statement permits random access to a BDF file. To
perform random access using the READ# statement include a record number after
the file reference number.

See Also

WRITE#
Chapter 9

Example

READ #10; anIntl%, anInt2%, anInt3% 'Sequential access of a BDF file
READ #10,3; aStr$, aDblInt@ 'Random access of a BDF file

TML BASIC Language Reference %5 Statements and Functions



REC Function

Syntax
REC (FileNumber)

Action

The REC function returns the current record number of the file previously opened
with its file reference number equal to FileNumber.

When using INPUT# or READ# statements to access the catalog of a directory, REC
will return the number of the line currently being accessed.

See Also

OPEN
INPUT#
READ#

Example
OPEN "SOMEFILE", AS #1
FOR i% = 1 TO 5
READ# 1,1i%; myInt%
PRINT "Record "; REC(l); "™ has integer value "; myInt$%
NEXT i$%

CLOSE #1

TML BASIC Language Reference p.o's} Statements and Functions



REM Statement

Syntax
REM AnyText
Acfion

The REM statement, also called the remark statement, is used to place descriptive
information about your code in a program. The REM statement continues to the
end of the current line. It is not possible to follow the REM statement with another
statement on the same line separated by a colon. When compiling a program, TML
BASIC ignores the REM statement so that it has no effect on the program.

TML BASIC offers an alternative to the REM statement called the Comment. A
comment behaves just like a REM statement, but consists only of the single quote ()
character.
See Also

Chapter 7, Comments
Example
REM The following lines show how REM and ' can be used

Interest = Principle * Rate : REM Calculate the interest due
Interest = Principle * Rate 'Calculate the interest due

TML BASIC Language Reference %7 Statements and Functions



RENAME Statement

Syntax

RENAME OldPathname, NewPathname [,FILTYP= TXT|SRC|BDF |FileType]

Action

The RENAME statement is used to change the name of a volume, subdirectory or
any other file. The arguments OldPathname and NewPathname must be string
expressions which represent legal ProDOS 16 pathnames. The OldPathname must
be the pathname of an existing file which is given the new pathname specified by
NewPathname. Using RENAME, it is possible to change the local name of a file or
to move the file to another subdirectory, but it is not possible to move the file to
another disk by merely changing its name.

When the optional FILTYP= argument is used, the file type of NewPathname will
be changed after the file is successfully renamed. It is possible only to change the file
type of a file by using the FILTYP= where the value of OldPathname is the same as
the NewPathname.

See Also
Chapter 9, Files

Example

"Make current directory be the PART1.EXAMPLES folder on the TML BASIC disk
PREFIX "/TML/PART1.EXAMPLES"

'Rename the HELLOWORLD.BAS file to HELLO.BAS
RENAME "HELLOWORLD.BAS", "HELLO.BAS"

'Rename HELLO.BAS so that it is now in the PART2.EXAMPLES folder
RENAME "HELLO.BAS", "/TML/PART2.EXAMPLES/HELLO.BAS"

TML BASIC Language Reference X8 Statements and Functions



REP$ Function

Syntax
REPS (StringExpression, NumericExpression)
Acfion

The REP$ function returns a string containing a number of characters equal to
NumericExpression whose characters are all equal to the first character of
StringExpression.

NumericExpression must be an integer in the range 1 to 255 inclusive or an "Illegal
Quantity Error" will occur. If the value of StringExpression is a null string then
REPS$ returns a string of question mark characters (?).

See Also
SPACE$

Example

Msg$ = "TML BASIC"

PRINT Msg$

PRINT REP$ ("-",LEN (Msg$))
PRINT

PRINT REP$ ("",5)

OUTPUT:

TML BASIC

TML BASIC Language Reference V.o Statements and Functions



RESTORE Statement

Syntax
RESTORE [Label ]

Acfion

The RESTORE statement is used to move TML BASIC's DATA list pointer to the
first data item in the DATA statement indicated by Label. After the RESTORE
statement is executed, the next READ statement will begin reading values starting

with the indicated DATA statement.

If a Label is not given in the RESTORE

statement, the next READ will begin reading from the first DATA statement in the
program. Using this statement, a DATA statement can be read and re-read as many

times as a program needs.

If the line indicated by Label does not contain a DATA statement then the result of

the next READ statement is unpredictable.

See Also

DATA
READ

Example
READ AS,B$

RESTORE Names
READ C$,D$

PRINT A$,B$,C$,D$
END

Names: DATA Apple, Orange
DATA Pear, Grape

OUTPUT:

Apple Orange Apple Orange

TML BASIC Language Reference

Statements and Functions



RESUME Statement

Syntax

RESUME
RESUME NEXT

Action

The RESUME statements restart execution of a program after error handling was
trapped by the ON BREAK, ON ERR or ON EXCEPTION statements.

The RESUME statement causes execution to restart with the statement that caused
the error. The RESUME NEXT statement causes execution to restart with the
statement immediately following the statement which caused the error.

If the RESUME statement is executed when the program has not encountered an
error, it has no effect, and execution continues with the next statement.

See Also

ON BREAK
ON ERR
ON EXCEPTION

Compiler/Interpreter Differences

The RESUME statement requires a significant amount of code be generated by TML
BASIC to implement this statement. Since most programs do not use the ON
ERR..RESUME statements, TML BASIC allows you to turn off the code generation
needed to support this statement. This is done by turning off the On Error option in
the Preferences Dialog or by using the $OnError metastatement. If the On Error code
generation is turned off and a program uses this statement, TML BASIC will report
the error:  "'On Error option must be ON for this Statement".

Example
ON BREAK GOTO HandleBreak

Wait:
PRINT "Wait for break"”
GOTO Wait
HandleBreak :
PRINT "Break occurred”
GETS$ AS
IF A$ = "." THEN END
RESUME

TML BASIC Language Reference 271 Statements and Functions



RETURN Statements

Syntax

RETURN
RETURN 0

Action

RETURN causes program execution to branch to the statement after the most
recently executed GOSUB instruction.

When a GOSUB statement is executed, TML BASIC stores the address of the
statement following the GOSUB statement on the Runtime Stack. When the
RETURN statement is executed, the address on the Runtime Stack is removed, and
control is transferred to that address. If the RETURN statement is executed without
having first executed a GOSUB statement, the runtime error "RETURN/POP
without matching GOSUB"is reported.

RETURN 0 is a special case of RETURN statement used for event-handling
subroutines defined by EVENTDEF and MENUDEF. These subroutines are
implicitly called by the TASKPOLL statement. This special form of the RETURN
statement is required because of the different calling mechanism used by the
TASKPOLL statement. As such, the RETURN 0 statement should never be used by
a subroutine which is called by a normal GOSUB statement.

See Also

GOSUB
EVENTDEF
MENUDEF
POP
TASKPOLL

Example

MainProgramStart: PRINT "Main program "
GOSUB MySubroutine
PRINT "Main program again™
END

MySubroutine: PRINT "Hi from MySubroutine"
RETURN

OUTPUT :

Main program

Hi from MySubroutine
Main program again

TML BASIC Language Reference 272 Statements and Functions



RIGHTS Function

Syntax
RIGHTS (StringExpression, NumericExpression)
Action

The RIGHTS$ function returns the NumericExpression string of characters occurring
rightmost in the string StringExpression.

StringExpression may be any string variable, string constant or string expression. If
NumericExpression is a real value, it is rounded to the nearest whole number. The
value of NumericExpression must be between 1 through 255 inclusive or an "Illegal
Quantity Error" occurs. To find the number of characters in the string, use the LEN
function.

See Also

LEFT$
LEN
MID$

Example
PRINT RIGHTS ("TML BASIC is great",5)
OUTPUT:

great

TML BASIC Language Reference 273 Statements and Functions



RND Function

Syntax
RND (NumericExpression)

Action
The RND function returns a random, real value, between 0 and 1.

Numbers generated by RND are not actually random, but are the result of a
pseudo-random algorithm to a starting seed value. Given the same seed value,
RND will produce the same sequence of "random" numbers. To set the seed value
use the RANDOMIZE statement.

Calling RND with NumericExpression equal to zero (0) returns the previous
random number, any other value returns the next "random" number in the
sequence.

See Also

RANDOMIZE

Example

dummy$ = TIME (0) 'Read the Apple IIGS clock
RANDOMIZE TIME (3) 'RANDOMIZE given the current seconds

FOR i =1 to 5 "Compute 5 random numbers
PRINT RND (i)
NEXT i

OUTPUT:

0.6561249
0.4910289
0.7219557
0.9089912
0.415245

TML BASIC Language Reference 274 Statements and Functions



ROUND Function

Syntax
ROUND ( NumericExpression)

Action

The ROUND function returns the integer value nearest the value of
NumericExpression. ROUND should be used in place of the commonly used
INT(NumericExpression + 0.5), since it returns a result consistent with other SANE
capabilities.

See Also

INT
Chapter 7

Example

FOR i = 1 TO 2 STEP 0.1
PRINT i, ROUND (i)

NEXT i
OUTPUT:

1 1
1.1 1
1.2 1
1.3 1
1.4 1
1.5 2
1.6 2
1.7 2
1.8 2
1.9 2

TML BASIC Language Reference 275 Statements and Functions



RUN Statement

Syntax
RUN PathName
Acfion

The RUN statement is used to directly execute another program from the current
program without having to return to the Apple IIGS Finder. When the RUN
program terminates, control returns to the Finder. To return control back to the
calling program use the CHAIN statement.

PathName must be a string expression which is a legal ProDOS 16 pathname for an
executable program. The pathname can be the name of any compiled TML BASIC
program or any other application you might own.

Compiler/Interpreter Differences

TML BASIC does not allow the optional Label argument that GS BASIC supports.
When the RUN statement is executed, TML BASIC begins execution of the next

program at its beginning.
See Also

CHAIN
Chapter 9, Files

Example

'Ask user for the next program to run
INPUT "Enter the name of the program you wish to run: "; ProgName$

'Now run the requested program

RUN ProgName$
END

TML BASIC Language Reference 276 Statements and Functions



SCALB Function

Syntax
SCALB (Scale, NumericExpression)

Action

The SCALB function scales the NumericExpression by 2AScale. The function
effectively shifts the value of NumericExpression right or left Scale binary digits.

LOGSB is related to SCALB, returning the Scale for a given NumericExpression.
See Also
LOGB
Example
PRINT SCALB (4,12) 'Equivalent to 244 * 12

OUTPUT:

192

TML BASIC Language Reference 277 Statements and Functions



SCALE Function

Syntax
SCALE (Scale, NumericExpression)
Acfion

The SCALE function is used in conjunction with the PRINT USING statement.
SCALE converts the NumericExpression argument to its string representation and
then shifts the decimal point to the right Scale number of digits. If the value of
Scale is positive then the decimal point is moved to the right, otherwise the decimal
point is moved to the left.

See Also
PRINT USING

Example

A& = 12345678901234567
PRINT USING "$$20&#.##";SCALE (-2,A&)

OUTPUT:

$123,456,789,012,345.67

TML BASIC Language Reference 278 Statements and Functions



SECONDS@ Reserved Variable

Syntax
SECONDS@

Action

The SECONDS@ reserved variable contains the value of a counter maintained by
the TIMER ON statement. SECONDS@ returns a double integer value in the range
-1 through 86400. The value zero is returned until a TIMER ON statement has been
executed. If TIMER OFF mode is currently in effect, the value of SECONDS@ does
not change.

Due to the presence of numerous interrupt sources in the Apple IIGS, many of
which have higher priority than the 1-second clock interrupt, the SECONDS@ value
is not always exact. However, SECONDS@ will always be exact immediately after
execution of the TIMER ON statement. TIMER ON may be used as often as needed
during a program.

See Also

TIMER ON and TIMER OFF
ON TIMER

Example<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>