5 sophisticated disk utilities with which you can:

* edit normal or protected disks

* quickly find and recover any intact file, however
badly the disk is corrupted

* list programs directly from any disk - protected or not

* examine textfiles directly from any disk - protected
or not

* analyse the formatting of normal or protected disks

* decrypt commercial software - or encrypt your own

* rapidly auto-search normal or protected disks for
anything you like

* understand &use the latest copy protection methods

* use your Apple as a powerful document retrieval system

* make use of an exhaustive knowledge of disk lore

Includes “THE CIA FILES”, a complete 60,000+ word guide
to the Apple®disk.

THE CIA FILES

COPYRIGHT (C) 1983 BY

GOLDEN DELICIOUS SOFTWARE LTD.,
7 SLOANE AVENUE, LONDON SW3 3JD, ENGLAND

This manual is copyrighted and published by Golden Delicious

Software Ltd. All rights are reserved by Golden Delicious
Software, Ltd. It is expressly forbidden to copy, duplicate,
sell, or otherwise distribute this manual, except by prior

written consent of Golden Delicious Software.

This software and manual are sold "as is” and without
warranties as to performance or merchantability. This software
and manual are sold without any express or implied warranties
whatsoever. Because of the diversity of conditions and hardware
under which this program may be used, no warranty of fitness for
a particular purpose is offered. The user is advised to test the
programs and contents of this manual thoroughly before relying on
them. The user must assume the entire risk of using the programs
and manual. Any liability of Golden Delicious Software Ltd. will
be limited exclusively to product replacement or refund of the
purchase price. Such replacement or refund will be at the
discretion of the directors of Golden- Delicious Software Ltd.

INC The word APPLE is a registered trademark of APPLE COMPUTER,

TABLE OF CONTENTS

CHAPTER ONE - An Introduction to The CIA

CHAPTER ™\O - Tricky Dick

CHAPTER THREE - Intermediate Level Tricks withTricky Dick

CHAPTER FOUR - The Linguist

CHAPTER FIVE - The Secrets of Software Protection

CHAPTER SIX - The Code Breaker

CHAPTER SEVEN - The Tracer

CHAPTER EIGHT - The Tracker

APPENDIX A - Getting on Top of Hex

29

36

58

75

87

112

120

CHAPTER ONE — An Introduction to The CIA

Welcome to the world of the CIA!

The CIA is a group of 5 powerful disk espionage utilities
that will allow you to investigate, analyse, edit, protect,
decrypt, encrypt, locate, list, translate, trace, verify, and
examime programs and datafiles on normal and protected disks.
It contains many new features never before offered to the Apple
computing public. What!s more, much of the disk lore that
appears in this book has never found its way into print until
now.

Herefs what the CIA lineup looks like.

TRICKY,JPI&K is an all-purpose disk editor with a difference
- it can be used both on normal ggj most protected diskettes.
Not only that, it enables you to read in a sector directly from
a disk and list the sector’s contents on your screen or printer
in Integer or Applesoft BASIC, assembler, hex, and ASCIl. Among
may other wuses you will find Tricky Dick’s tricks invaluable for
patching and customizing your own disks, protecting your
software, and reading and altering normal and most protected
programs.

THE LINGUIST dumps a track of raw nibbles directly from aBli
disk - protected or nnT. 1t also decodes address data found on

the disk and translates raw disk nibbles into hex. The
translated nibbles can then be listed by Tricky Dick in BASIC,
assembler, and ASCII. This means that The Linguist makes it

possible for you to list the programs and textfiles from
disk, normal, corrupted, or locked. You can use it to have a
closer look at your favorite games, examine disk formatting, and
recover lost programs no matter how badly the disk they’re on is
corrupted.

THE pmt Nm axclies. normal. and most protected
disks sector by sector for any 1 - 6 strings you specify in ASCII
or hex. It will also sniff out the VTOC, catalog sectors, and

track/sectgr lists on noTTnaX and protected disks. You can choose
oirer -sume, or all of its 9 search options, and The Tracer will
carry them out , scanning an entire disk in 19 -
135 seconds. When it finds something you’re looking for it jumps
back in Tricky Dick and places a cursor on the item it’s located.
This allows you to thoroughly search and edit a disk in record
time.

makes use of a special table in DOS 3.3 and
3.2 to decryjal®Uie.-most pjogular ”secret code” used to hide
commercial programs from prying eyes. What’s more, this book’s
chapter on The Code Breaker tells you how to protect and encrypt
your own files wusing the same method.

TM LTMr.r.M closely shadows the disk arm, reporting its
every move as DOS LOAD'T, SAVES, RENAMES, or does anything else to
a disk. The Tracker leaves on your screen or printer a list of
every track and sector visited, and every read or write operation
carried out during any disk access. You can use this utility to
find out exactly where a disk is crashing, make a permanent
record of your files, and learn more about how DOS works.

THE CIA FILES is this book. It consists of well over 50,000
wordsrTnrrWWPmy a seTT?5~crf extensive and carefully worked
out tutorials designed to turn you into a disk expert. As you
learn to use the CIA utilities, they also become your personal
guides, leading you step by step from a beginner’s knowledge of
the disk to that of a pro. Here you’ll find a wealth of
information relating to disk repair and file recovery, DOS
patches, copy protection, disk formatting, program encryption,
and many other vital topics. Much of the material appears here
in print for the first time.

Xoe £il

In order to make the CIA as flexible as possible, we’ve
adopted a modular approach which works like this. Tricky Dick is
what you might call a chief executive program, in that it
controls the operations of the other CIA utilities. They are

accessed through Tricky Dick, and considerable information gets
passed back and forth as they work a disk over.

The first step ,in using the CIA is to BRUN Tricky Dick.
Then when you need to call upon one of the other utilities, you
simply BLOAD it. A single keystroke transfers control to the
utility you have just summoned and enables it to carry out its
work. During certain oprations, the module in question will pass
data to Tricky Dick for special processing. For example, when
The Tracer finds a string it’s looking for, it automatically
jumps back to Tricky Dick, displays the string, and places Tricky
Dick’s cursor on the first character. Now Tricky Dick is in
charge and needs only a few keystrokes from you to edit the
string and/or the other data in the sector where it resides.

The only exception to this system is The Tracker who works
alone. Complete instructions for wusing Tricky Dick in
conjunction with the modules are given in this book.

GfiAdiB R&iUfiiiaUS
As you may have gathered from the previous discussion, The

CIA programs are NOT copy-protected in any way. However, in
order to give you some hands-on practice using CIA on locked

disks, | have "protected” track $22 and placed a "half-track"
between tracks $20 and $21. Nevertheless, the CIA programn
are copyable, listable, and modifiable. In fact, this book

contains a number of special patches to customize Tricky Dick and
some of the modules.

M MmMmmmMmimmMmm
*

m
'

m

t a
E &
o
-
=
L
—
=
>

This means that before doing anything else you should makE
at least two backups of the CIA disk, You'll need to use FIIT?on
ydtITANINlerysTemMaster disk for this purpose (COPYA won't work
because of tracks $22 and $20 1/2). After reading part of this
book, you will also be able to copy track $22 across to your
backups.

frwba Uselbis Book

Each of the CIA programs has at least one chapter devoted to

it. Near the beginning of each program's chapter you'll find a
concise set of instructions for using that program. |If you are
an experienced disk person, this will be enough to get you going.

However, if you're closer to being a beginner, the way to use
each chapter is to try out its instructions in order to get
familiar with their effect on the program in question. The next
step is to move on to the tutorial which directly follows the
instructions and work your way through it.

As you work through the tutorials from beginning to end of
the book, you'll find that the material becomes more and more
advanced. | set it out this way so that no matter what your
level of expertise, you could find a starting point in this book
from which to progress to greater knowledge about the disk.

If you've already got some experience, you may find that
some of the material in the first couple of chapters is not new

to you, having appeared elsewhere in the literature. Its
inclusion was necessary so that even an Apple newcomer would have
a place to start. So if some of the tricks described in the
beginning of this book look familiar, take heart and move on to
the next chapter - I'm pretty sure that sooner or later you'll
find plenty of things to get your teeth into.

baaalk a Lias

Our goal is to produce good, sound, usuable software for a
wide range of interests, and at a low cost. In order to do that
effectively, we have to know about jfiGUE particular needs and
interests. So if there are any improvements you'd like to see in
the CIA, any similar types of software you'd like see written, or
any bugs you spot in the programs or this book, let us know. Due
to our hectic schedules, | can't promise you a letter in return,
but you can rest assured that we'll take your complaints,
compliments, and ideas seriously when we're putting together
future projects.

If and when any CIA updates emerge, we'll write to and ,
offer them to you at a premium price. We'll also keep you posted!
about any other software we've got going. But in order, to keep
this sort of contact with our customers, we need to know about

you. To make sure we do, if you didn't get this program
directly from Golden Delicious Software, drop us a post card with
your name and address for our records. This is a ploy to

make you a "registered owner" of our software as many program

publishers attempt to do, but rather to enable us to keep you
posted on any exciting new developments in our product line as
soon as they break.

Here's hoping you get many hours of fun out of the CIA!

ft m!

m T
QD *

»
f a
* a
*—

r
* K«
F -

CHAPTER TWO - Tricky Dick

Your first CIA contact is Tricky Dick. So get out a blank
floppy and get ready to enter a new domain of disk doctoring.

But first, if you have not already done so, make a couple of
copies of the CIA disk, using FID, and write protect them. Then
put the original away and boot up one of the copies. When the
CIA menu appears, select option £1. | know you’re anxious to get
better acquainted with Tricky Dick, but just before you start,
you might be interested in hearing..

A FIRST WORD ABOUT DISK DATA

If you are already familiar with the differences between a
raw nibble dump directly from the disk and a dISk read usmg
RWTS, you can skip this explanation and jump to "Tricky Dick’s
Instructions™ in the next section. Up to now, these two methods
of reading a disk seem to have been documented in a manner
comprehensible only to those progammers capable of writing
machine code in their sleep. This prompted me to start things
off with a detailed discussion designed clarify disk examination
fﬂr)éou and enable you to get the maximum use and enjoyment from
the CIA.

The first thing you need to know is that when you SAVE or
BSAVE any program, DOS totally alters the program code just
before writing it to the disk. The next time you load or run
that program, DOS changes it right back again to its original
form. The user, naturally enough, never notices this process,
and it is carried out in a manner guaranteed not to interfere in
any way with the running of your Apple.

Why should DOS go to all this extra trouble whenever any
information is put on or taken off the disk? The answer lies
deep in the innards of your machine. The Apple’s hardware (and
that of many other micros) has some innate limitations which
restrict the range of byte values that can be allowed to pass
between the machine and its disk drives.

Now if you type ”CALL -151” into your machine and then list
a large range of memory (by typing, say, "F800.FFFF”) you will
probably notice that almost every byte value from $00 to $FF can
be seen scrolling by (see Appendix A if you feel the need of a
brush-up on hexadecimal numbers at this point). Everything that
is stored in RAM - programs, ASCIlI code, textfiles, etc. - is
represented by a block of one or more hex values in this range.
This means that your machine has 256 different byte values to
make use of for representing information in memory (since there
are 256 different hex numbers in the range $00 to $FF).

Unfortunately, when communicating with its disk drives, your
Apple can’t handle such a large range of values. Because of the
hardware constraints mentioned above, DOS 3*3 only sends to the

disk, or receives from it, values from $96 to $FF (150 to 256 Iri

decimal). Even within this limited range some bytes are
,Fillegal” in that they violate the Apple*s hardware rules.
Others are ™reserved", i.e., set aside for special disk use. In
fact, DOS 3.3 has to represent all the 256 different values that
appear in RAM using only 64 values on the disk. Even more

amazing is the fact that earlier versions of DOS had to make do
with even a smaller range of disk bytes.

Alittle later on, I*m going to explain these mysteries in
considerable depth, but for the moment let*s come back to the

subject of the two different ways of reading a disk. These are
(1) a raw nibble dump, and (2) an RWIS read.

N lbe Blkbls Qubjc

The expression "raw nibbles" refers to the information

as it is represented on the disk - in other words, in the
specially encoded form described above. When you examine this
disk data, you will of course notice (if you are reading a DOS

3.3 disk) that the hex numbers that appear on your screen range
in value from $96 to $FF. So, unless you have built-in boolean
logic in your brain, this will hardly be recognizable as program
or textfile code.

More interestingly, however, you will also see a lot of data
which is flat part of any program. In fact, you will behold
dozens of hex numbers whose sole raison d*etre is to help DOS do
its job in getting information on and off the disk. These "DOS
marks" will tell you a great deal about the disk and will be
covered in detail later on. For now, suffice it to say that when
you do a raw nibble dump, you can summon up a display of anything
on the disk except the label - exactly as it is written on the
track you select for reading,

Xbe BUISBaL)

"RWTS" is an abbreviation for a subroutine in DOS called
"Read and Write Tracks and Sectors". RWTS is the part of DOS

that does all the donkey work involved in putting data on the
disk and getting it back into the machine. One of its more
important jobs is to translate the raw nibbles on the disk back
into code which is intelligible both to the Apple ROMS and to
programmers.

Another function RWIS carries out is filtering out the DOS
marks referred to above. Once a program is loaded into memory,
they serve no further purpose and hence are discarded just after
being picked up by the read/write head. So what you get when you
do an RWTS read iIs a block of data, neatly translated back into
numbers that represent program or textfile code, and without any
superfluous disk information thrown in. Another way of thinking
about this is to remember that when DOS loads or runs any
program, it automatically performs an RWIS read to get the
program into memory. A raw nibble dump, on the other hand,

= M
N

* M m mMmmmmim/IMmMmmm m

M
| —
[

“

fc 3

comes directly from the disk itself, bypassing RWIS and DOS
entirely.

The software on the CIA disk will enable you to read a disk
in either of the above ways. Tricky Dick by itself can only do
an RWTS read. But if you also get The Linguist on the case, you
TO1 also be able to carry out a raw nibble dump on any disk
whatsoever. Much, much more about these functions will be
revealed in due course, but first let's get better acquainted
with Tricky Dick.

TRICKY DICK’S INSTRUCTIONS

This section briefly outlines the commands used in operating
Tricky Dick. If you already possess considerable disk knowledge
and experience, these should be enough to get you going. If you
have somewhat less expertise, the way to use this section is to
work through it fairly carefully trying out the various
commands, and watching their effect on Tricky Dick’s display
After this, you should work through the Tricky Dick tutorial
which follows this section. This tutorial is designed not only
to help you use Tricky Dick as effectively as possible, but also
to put you well on the road to becoming a disk expert.

~ _Ibe Jciskas Diels Disalas: Press any k*ey to get out of the
initial display that appears when Tricky Dick is run. This will

bring up the data viewing area, but will leave intact the three
lines of parameters at the top of the screen and the command line
at the bottom. These will always remain in view no matter what

Tricky Dick is doing. "ALL COMMANDS" at the lower right of the
screen prompts you to enter the instruction you wish Tricky Dick
to execute. Each command is echoed on the right of the to
serve as a reminder of your last input.

UslQ Li ¢ Hitting the '/' key brings up a list
of each command along with its accompanying key stroke.
before a letter indicates that the CTRL key must be pressed at
the same time as the letter. The help screen can be accessed at
any time. Hit any key to get back to the data display.

DQS L2BIm CONTROL D toggles between DOS
versions 3.2 and 3.3, telling Tricky Dick which one is on the
disk it’s going to be working with. The current version is shown
under the word "DOS" at the top of the display.

> Slat* Driifi* and Defies Ssleet Q]MMOImJ) brings the
cursor up next to ,SL=I. If your disk controller card is in slot

6, just hit RETURN; if not type in the correct slot number.
Tricky Dick will check that an Apple disk controller card
actually exists in the slot you specify. |If a card with P5 and
P6 PROMs is present, DOS 3.2 will automatically be brought into
play. The cursor will move to *DRr' prompting you for the number
of the drive which contains the disk you wish to work on. After

? in this information, hit RETURN to go to 'PR=!. The
defaut value (PR=0) means that printer output is disabled. You

only need to enter your printer card's slot number when you are
ready to print out some data from Tricky Dick.

~ Xcsek fled SestflE Selsst LI* £» .2. SCCOVSI- Hittin
brings the cursor to the top of screen next to »T=* Select the

track number you need and hit RETURN. The cursor will move down
next to the *S=', waiting for you to key in the sector you wish
to read. Enter single digit track or sector numbers by typing
the digit followed by RETURN. A RETURN alone in response to "T="
and "S=" accepts the value shown. Alternatively, you can
decrement or increment the track number shown by hitting the e<e
or '>' key respectively (either with or without pressing SHIFT at
the same time). Track numbers wrap around when you get to $22.

In a similar manner, you can clock the sector number forward
or back by hitting the right or left arrows respectively. If you
have selected DOS 3.2, sectors numbers wrap aound when you reach
$0C; with DOS 3.3, wraparound occurs at sector $0F. However, the

command allows you to designate track numbers greater than
$22 or sector numbers greater than $0F/$0C.

n L2Ble Press CTRL R to read the sector you
have selected into Tricky Dick's buffer (an area in memory
specially set side for data storage). The disk you are reading
should be in the drive indicated by 'DR=*. The sector data will
be displayed in the data viewing area on your screen immediately
after a successful read.

The volume of the disk you have just read
will appear under the letters "VOL" in the upper right hand
corner of the screen.

~>CUESfIiE MfiySffICfli U.il.K.U acd . l, I% K and M
move the cursor around the data display in exactly the same way
they do when used for Applesoft editing. When these commands
take the cursor beyond the edge of the screen, scrolling or
wrapping around occurs. For example, pressing 'K when the
cursor is at the end of a row causes it to jump to the beginning
of the next row; pressing 'M when the cursor is in the bottom
line of the display causes the screen to scroll up one line.
Scrolling can be continued until the first or last line of the
sector data appears on the screen. Holding down CTRL and hitting
any of these four keys increases the distance covered, causing
the cursor to jump to the edge of the display.

EdiifJ)LDg Sifiglfi Dytss ifl Disclax: This is accomplished by
placing the cursor over the byte you wish to change, and typing
in the new hex value. Single-digit hex numbers must be entered

with a leading zero (e.g., enter *5f as '05%). If you type the
first digit of an entry and then change your mind, simply hit 'J’
or *K'. This moves the cursor away and cancels the entry.

Similarly, if you type the first digit incorrectly and want to
change it, hit the space bar and start again.

o N T T T T T T T T

M T X « T T T T M 7T T

»1

=

«

r*

L2fm Imti: Just after loading Tricky Dick,
the words "NORMAL HEX" will appear at the lower left of your
screen next to the word "DATA". They mean that you can enter hex
digits from the key board and these digits will appear in the
data display under the cursor. This allows you to edit the
screen display before writing it to the disk.

Keying in the " chaj*cter™ (SHIFT 2) places you in "high
ASCII" mode and causes an inverse "HIGH ASCII" message to appear

in the lower left of yor screen. In this mode, each time you
press aoji key, its corresponding ASCIlI code number with the high
bit set will appear under the cursor, and the cursor will advance

to the next space. This allows you to type alphanumeric
characters into the data display without looking up their
corresponding high ASCII codes. Before you can issue any other
command, you*1l need to hit the CTRL, SHIFT, and *Pf keys .
simul taneoust/~~tx:err). This puts you back into the "**
"NORMAL HEX' mode and allows Tricky Dick to accept your keyboard
commands again.

Inputting a * character XSHIET 7) will place you in *
standard, or "low" ASCII mode (signalled by "LOW ASCII" in the
usual' pTace). VI this mode, each keypress leaves its normal
ASCIl code under the cursor. To return to normal Tricky Dick A"
functioning, hold down the CTRL, SHIFT, and 1P* keys together.
(CTRL g).

\ Ibfi When you boot up Tricky Dick and read a
sector, the data viewing area will show the (i.e., the
first 128 bytes) of the sector data. On therlr tight of the
screen you will also see an eight-column alphanumeric symbol
display. This part of the screen gives an ASCII translation of
the hex data. Contr.ol_ckaxj.QkfiXA slusw. up ojj torse, and all
flashing sy mbols peClclianaad ft rii stm att] »

To view the secj%fldr{iglf of the sector, hit either CTRL Mor
RETURN, bringing tlTe cursor down to the bottom of the screen!
You can now scroll through the remaining data by holding down the
1MV and REPT keys'-together. From there, you can scroll back to
the beginning by hitting CTRL I, followed by pressing *X and
REPT simultaneously. Alternatively, hold down the CTRL key and
press 1F*, fM», and 1F’, in that order. The column of hex
numbers on the far left which are followed by a ** tell you what
portion of the sector data you are viewing. They are offsets in
Tricky Dick’s data buffer and range from $00 to $FF in 8 byte
increments.

2 YEliccicg) DataBiSDtaxsLDEl- 1f _you are inthe viewing mo
described in the preceeding two paragraphs, a CTRL F will erase
the alphanumeric symbols on the right of the scrdtfT and display
all the data in the last sector read. The cursor will remain
over the same byte during the flip. The leftmost column of
numbers indicates buffer offsets, but with the trailing zero
ommitted to retain clear screen formatting.

From this full sector display, you can of course get back to
the partial screen with ASCIlI by simply pressing CTRT”"agai n.
When you do, Tricky Dick displays the next 128 bytes of data,
starting with the row in the full display where you left your
cursor. For example, if your cursor was in the row numbered $5,
then after CTRL F you will see the 16 rows of data and symbols
numbered from $50 to $C8. As before, the cursor will remain over
the same byte during the flip.

EiaUifig LZi» ZII- In either of the above two
displays, CTRL Z replaces the sector data with zeros beginning
with the byW”’over which the cursor is placed, and extending
right to the end of the sector. CTRL X fills the sector from the
cursor to the end with the byte vaTue under the cursor. Note
that these commands do not write anything on the disk itself.

J Sector Data LLI: Hitting fLf disassembles the
sector code beginning with the byte und?TP the cursor and
continuing until the screen is filled. The middle column of the
display gives the ASCIlI translation of the hex data to its left.
Repeated pressing of ,LI carries on the disassembly until the end
of the sector is reached. After disassembling a screenfull of
hex you can return to the previous hex display by hitting the
space bar or some other noncommand Kkey. The cursor will be
positioned next to the last byte that was disassembled.

M m T T T T T T T T Tl

it
f*

* K

m

/ Listingh a o 1 e s a i t sod lotesec Cede L»L. LI- if the sector

data contains Applesoft or Integer BASIC code, a listing can also
be displayed. To accomplish this wunique feat, Tricky Dick
requires only that you select the language you wish to list by
pressing CEBJLJ-» then typing an *Af for Applesoft, an *1* for.
integjer®, or a for assembler. FTnally, hit 1L*~for a listing
wnicTThegins with the byte under the cursor. Keep typing 'L's'
until you have listed all the code in the sector buffer.

~ kcibioebobbe Disk LZil) sobCtrl
key writes the contents of the sector mjffeF'to the sector whose
address shown at the top of the screen. WARNING: Be sure that

all the information shown on the screen is correct before
executing a write - once you do it, the die is cast! If you foul
up here, you will clobber the disk you are working on, perhaps

irreparably. This means checking to be certain you have selected
the correct drive, track, and sector numbers - and that the data
displayed on the screen is the data you want written on the disk.

To help prevent accidents, a unique safety factor has been

built in here. When you hit CTRLJ , you will hear a series of 6

siiort tones over a p”~rToor” nds. Keying" in a 'Y
during this sequence writes to the disk and stops the tone*:;.
"However~ ii' y6UTFTA"TT'pressed CTRL W by mistake (not hard to do,

-since most commands involve the CTRL key), you can simply elect
Lfo do nothing, and when the tones cease, the write instruction is
automatically cancelled. If you don't want to hear 3 seconds of
sound effects, hit any key except *1* and they will stop
immediately.

10

F 49

F

w?

w, fOI#)WERﬂt

F
F

m T T T T T

3

mf

ri

VFfiCCCl ~EE££E&EE: When an error occurs during the operation of
Tricky Dick, a tone is sounded and a flashing error message
occurs inside the *<-->* mark in the -upper right corner of the
screen. Just above, Tricky Dick displays the accompanying DOS
error code inside the ,<00>* A subsequent normal read or write
operation clears both the error message and its code from the
screen. The chart below shows the type of error, its flashing
designator, and its DOS code.

Type of Error e<—>e designation DOS code
Write Protect Error <WP> 10
Drive Error (Read or Write) <10> 40

) DeaXosuith . . . Ueonstaotlacil Seetec back

to the "features of Tricky Dick which allow you chuckle, chuckle,
to read from and write to disks whose formatting has been altered
- either by accident or design. In order to do this with the
least amount of work, you*11 need to use The Linguis.1 to
determine the exact nature and extent of any such alterations.
The instructions for The Linguist are in a later chapter of this
book.

Hit CTRLJLand the cuf£9X wl11%jAIBu j ? t Q f tlhe
sector marksT You can then move the cursor along ‘this data with
thgTYeTF and right arrows. To replace any digit, simply position
the cursor over it and type in the new digit. The change will
appear and the cursor will move to the next symbol. A RETURN
Sets the cursor back to the data display.

In the top line, "D5AA96n is the standard DOS 3.3 address
field header and "DEAA" is the address field trailer. If you have
changed the DOS version to 3.2 the top line will read "D5AAB5"
which is the 3.2 address header, the next line, "D5AAAD" refers
to the data field header and "DEAA" is that field's trailer.

by replacing one or more of the header or trailer *

bytes with a 1001, you can tell Tricky Dick to accept any value”~ P O
in that position. For example, 'DE00* in the first line causes*-*
the second byte of all address field trailers to be ignored”?
during reading or writing.

The third line shows the data field header and trailer (the ~.
latter with an added 1EB* once again. The header and trailer
you select here will appear in the data field of the next sector
you wecifcfi to the disk. This line is used only for writing and
allows you to alter the values in the data field header and
trailer of any sector you write to the disk

Finally, by chaiyinfl the in the [park section to
*N*s* you can tell Tricky Dick to ignore the address field
checksum (the first ’Yf) and/or the data field checksum (the
second 'Y'"). The *0* just below the two 'Y's* indicates that
Tricky Dick will always write a sector of data to the disk with a
data field checksum of $00

1

- >Th

\ Ecifltias Used facx £co» lcickx Dick £2£. £1= Typing ctrl p
allows you to select the form in which you wish the "secfor data

in Tricky Dick’s diplay to be printed. The cursor will jump to
the print select parameter, prompting you to type in one of the
following instructions: 'H for a hex dump with ASCII
translations; *A for an Applesoft listing of the sector code,
1 for an Integer listing and ’*’ for a disassembly. The next
step is to type CTRL 0, followed by two RETURNS. This brings the
cursor in position next to the "PR=" for you to key in the slot
number of your printer interface. Finally, after making sure
your printer is turned on, type ’P’ for the action to begin. |If
you select the wrong slot, you may find that Tricky Dick hangs,
or that other strange things happen.

If you are in the ’#* *A* or *1* modes you will get a
listing from the last cursor position to the end of the sector
data. In the *H mode you get a full sector dump irrespective of

the cursor position.

L2H2ElI MI: Typing a SHIFT_EL_displays a list
of the Tricky Dick coresident modules, their names, and a brief

description of their functions. |If one of the modules is already
in memory, its name will be displayed at the top of the screen
just to the right of the inverse "Tricky Dick". If no module is

in memory, Tricky Dick’s version number will be displayed.

V £*IEIf}E IEIEkx Dick I££EE£l« «Cl: Tricky Dick does not tamper
with RESET, so you can use this old standby to jump out any time
(except while writing to a disk, of course). CX&L-X also exits
to BASIC and reminds you that you can restart Tricky Dick by
typing a (or wuse CALL 205-1). CTRL Y (or 803Gl. from the
monitor also gets things going again.”

n IQ £ Mfiflulf L2EX- To load a module while running

P Dick, type "CTRL C" followed by BLPAD (name of, mqdule).
Whefi the disk drive~St.ops sinning, key”in a and you are
ready to roll. When you get back into tricky Dick you will
notice that the name of the module presently in memory replaces
Tricky’s version number in the banner at the top of the screen.
To go into a module you have loaded into memory, type CTEL’E. and
the module’s introductory display will appear on the screen.
Then hit any key and you’re ready for action.

If you hit CTRL Ewith no module in memory, Tricky Dick will
let you know by sounding a rather pleasant tone. When you jump
to one of the modules, the words "TRICKY DICK" at the top of the

screen get changed from inverse to normal. At the same instant,
the fflCfijyifiteS name switches from normal to inverse. This lets you
know at glance which program you,’re "in” - it’s always the. one

myvho.a.e_iuaianNis In Inverse,”.

IMPORTANT NOTE: The DOS modifications which are explained in
the following tutorial and elsewhere in this section of the book
ONLY apply to a standard DOS 3.3. slave disk. If you have a disk
with any other kind of DOS (including 3.2 or one of the speedy

12

fc

fc

fc

fc

—

fc

ft?

fc

IS

W = > 5

rt

fa

«

DOS versions) do not attempt the patches that follow without
making sure the code being written over is the same as in DOS
3.3. The locations for many of the patches are bound to be
different, and you could end up ruining a disk.

THE TRICKY DICK TUTORIAL

This tutorial represents the first leg of your journey
towards disk expertise. Along the way, you'll pick up a lot of
new information, not only about DOS and disk formatting, but also
about the Apple Il in general and how to get even more enjoyment
out of it. I sincerely hope this trip is as much fun for you as
it was for me when | first began exploring the inner world of
DOS.

Boot up the CIA disk, select Tricky Dick from the menu, and
when the initial display comes up, press the '/' Kkey. This
brings up the help screen., a source you can always appeal to if
you need to recall any of the commands described in the last
section.

Before doing anything else, hit the space bar to bring up
the data display. This should show a scTe'enTuTl of $00*s
indicating that Tricky Dick is empty. When you read a sector off
the disk, it is deposited in a specially reserved area of memory
(called the "buffer”), and immediately copied to the screen.

An important feature is the column of numbers on the far
left. This starts with a *00' and ends with a *78f at the bottom
of the screen. Each of these numbers is an "offset" into the
buffer, meaning that it is used to count the bytes found there.
The way this works can best be illustrated by the second row
which starts with *08*

byte numbers: $08 $09 $0A $0B $oc $0D $OE $OF
/ / / / / / / /
2nd row - 08: 00 00 00 00 00 00 00 00

The *08* in the second row tells us that the first byte in
th%t row is the 8th byte in the buffer; the next byte is the 9th,
and so on. ~

Since you can change bytes simply by placing the cursor over
them and typing in the new value, you will rarely have to think
about offsets. However, in this tutorial, | will be using the
numbers that appear in the leftmost column as line numbers. So,
for example, | would refer to the row above not as "the second
row", but rather as "row $08". This notation will ultimately
save you a lot of counting.

As you can see, the numbers referred to above are in

hexadecimal. This a policy | will be following throughout the
book, so if you are a bit rusty on the hex number system, now is
the time to turn to Appendix A for a bit of a brush-up. If you

13

are completely hexed by hex, take heart and dive in to the
appendix anyway. In both the US and England, 10 year old school
kids are learning alternative number systems as part of their
normal class work. If they can do it, so can you!

Now let’s do some disk espionage. Start by making a Elfi
copy of your entire original Apple System Master diskette and
leave it un-writeprotected. Take the CIA disk out of your drive
and put the copy in its place. |If you have two drives, leave the
CIA disk in drive 1 and put the practice copy in the other drive.

vin the latter case, select the drive the copy is in by keying in

* y CTRL 0, RETURN, the drive number, and RETURN in that order. | f

V<2 /Meverything is working O.K., the cursor should have hopped up to

" V*SL=», then down to ’'DR=» after the first RETURN. The drive

number should have been echoed after *DR=* and the last RETURN
should have caused the cursor to jump back into the display.

If you have just booted up, the sector address at the top of
the screen should read "TzO” followed by ”S=0n. So select track
11, sector 0 by typing in the following sequence.

) ; 11 0 RETURN

During this keying-in sequence, the cursor will perform
another series of gazelle-like leaps, finally returning to the
data display. The track and sector parameters at the top of the
screen should now read ”T=11 S=0" and the screen should be filled

with ’0*s’. The last 8 columns on the right of the screen should
be filled with inverse signs. This section of the display
gives the ASCII translations of the sector data.

Ibe iialBs Zable ef Cootebba C

Now press QXRL R and watch the action. After about one
second of disk whirring, some scattered bits of data will appear

among the screenfull of zeros. You are now looking at the
notorious Volume Table of Contents (alias the VTOC), apart of
the disk which, sooner or later inevery Apple enthusiasts life,
gets overwritten with random data.

We’re not going to worry too much at the moment about fixing
a clobbered VTOC, but rest assured that before finishing this
part of the book, you will be able to perform masterful surgery
on this vital diskette organ, even in its most mutilated state.
For now, let’s take a closer look at the very top line of data
which should read: P > fwi N

04 11 COF 03 00 00 FE 00

The first number, *04* has no function and can always be
ignored. The next two numbers give the location where the first
catalog entries have been written. They should read "110F",
telling us that the catalog starts at track $11, sector $0F (it
starts at sector $0C on a 3.2 disk). The '3f tells you that th<*
disk’s DOS verson is 3.3 (a f2f = 3.2). The 'FE1 two bytes along

14

fe

fc

fc

fc

fe

fc

fc

fc

fe

fc

fe

fc

fe

fe

fe

fe

fe

fe

fc

fc

fc

fe

*9

I«

|*

«IT

«n

w (

is the volume number of this disk (decimal 25*0.

The next 3 rows are pretty uninteresting, since they contain
nothing but zeros. The fifth row (numbered with a *20* in the
leftmost column) contains a *7A* as its last byte. This
indicates that each file's track and sector list (we'll talk
about these a bit later on) is allowed to hold up to $7A (decimal
122)track and sector addresses.

After another row of zeros, we come to the following line:
<
12 01 00 00 23 10 00 01

The first number, *12', twtiicates that track $12 was the
last track allocated by DOS for fille storage. The '01" following
it tells us that the next track /DOS will attempt to write to is
$12 + $01 or $13. Now these two lumbers may be different on your
practice copy of the System/Master disk, since any small
variation in the way FID has written out the files could alter
its selection of the next trap: to be used. For example, instead
of a '1', you may see an VEF. This tells you that DOS will
search in a direction, i.e., 12 - 1, for the next
available track. In many implementations, a hex number whose
high bit is set, in other words, whose value is $80 or greater
(see Appendix A), is taken to be a negative number by the system
(in which case it qualifies to bear the impressive title, "signed
8-bit binary number").

Skii)ping over the two unused *00*s' brings us to '23 10*.
This tells us that DOS has formatted $23 (decimal 35) tracks on
this disk and that each track contains $10 (decimal 16) sectors.
The final '00 01' on this line indicates that there are $100
(decimal 256) bytes per sector on the present disk (remember that

the 6502 usually handles two byte numbers in reverse - i.e., with
the high byte last and the low byte first).
/ The Bit Macs

We now arrive at the "bit map" field, the most important
area of the VTOC. This begins on the next line, which should be
numbered $38 on your display, and extends up to line $C8. The
bit maps are a block of data which tells DOS which tracks and
sectors have not yet been written on, and hence are available for
storing files. In order to avoid clobbering your precious
programs, DOS is obliged to take a look at the bit map field each
time you ask it to save any new information on the disk.

The bit maps on the work disk you are now examining will
consist mainly of '0O's* interspersed with a few higher values.
This is not the most helpful configuration for you to learn on,
so let's try a little experiment which should prove more
educational. Here's what to do.

15

(1) Take your work disk out of the drive and put an
unitialized diskette in its place.

(2) Hit "CTRL C".

(3) Type "CALL-151" to go into the monitor.

(4) Type "BEFE:24".

(5) Now "INIT HELLO" the unitialized disk..

(6) Key in CTRL Y, jumping back into Tricky Dick.

(7) Make sure the display reads "T=11", "S=00", and check
that D = the drive which contains the initialized disk.

(8) Hit *CTRL Rf, reading in the diskfs VTOC.

Right away you will notice, if all has gone according to
plan, that the bottom of the screen contains a couple of dozen
'FF's' that were not present in the practice disk’s VIOC data.
This state of affairs makes explaining things much easier.

Now hit RETURN, followed by a series of "Ms, until line $38
reaches the very top of the screen. This scrolls up some more
of the VTOC, exposing another batch of 'FF’s*. Since the bit
maps start with the first byte in row $38 (a *00*), this brings
the largest possible number of them into view. It also brings me
to the meaning of all the »00»s, °'FF’s’, and other hex numbers
scattered around the place.

Whoever wrote DOS employed a simple and elegant way of
recording the status, full or emptP/, of every single sector on
the disk - and squeezing this vital information into as little
space as possible. He (or she) did this by assigning a two byte
"map" to each track and structuring DOS to vary the maps* values
in a way which signals the track’s available sectors. The
illustration below shows how the maps are linked to their
respective tracks.

trk $00 trk $01

38: 100 001 00 00 100 00! 00 00
trk $02 trk $03

40: i00 00! 00 00 IFF FF! 00 00
trk $04 trk $05

U3 IFF FFj 00 00 IFF FFI 00 00

trk $1E trk $1F
BO. IFF FF| 00 00 100 00! 00 00

16

As you can see, the first *00 00* in row $38 is the bit map
for track $00. DOS skips the following two '00's' and assigns
the third byte-pair to track $01. This process continues
throughout the bit map field.

But how do we translate this succession of seemingly
meaningless data into information about each sector's status?
The answer lies in the fact that all hex bytes are composed of 8
individual bits (see appendix A if you are unclear on this).
Now if we allot each track two bytes for its bit map, we
immediately get 16 bits to play with. This works out quite
nicely, since each track contains 16 sectors. And what is even
more convenient, each bit can take on one of two values - a *0*
or a *1* So if we assign a single bit to each sector in the
track, we can show that a sector is free by setting its bit to a
1 A 'O value for any sector's bit would signal us (and DOS)
that it contains data. The way DOS links bits to sectors is
shown in the example below.

sector numbers: F E D C B A 9 8 7 6 5 4 3 2 1 0
bit values: 0 0 1 1 1 1 1 1 11 1 1 1 1 1 1
byte values: 3 F F F

Assigning »0's' to sectors $0F and $0E shows that these are
in use; the 'l's' paired with sectors $0D - $00 tells us that
they are free. Since your Apple automatically tranlates the
binary number '0011111" into the hex number '3F', and '11111111'
into 'FF', the bit map shows up as '3F FF' in the display.

In fact, if you look at the first two bytes in line $80 on
your screen, you will probably see this very same bit map.
Counting up the bit maps, starting with the one assigned to track
$00 in line $38, would tell us that '3F FF' represents the status
of the sectors in track $12 (decimal 18). Track $12 is where the
HELLO program was placed when you initialized the practice disk
and it occupies sectors $0E and $0F. Note that when DOS writes
data on a track, it always starts with the highest numbered
available sector and works down.

The table at the end of Appendix A allows us to translate
any bit map into a hex value since it gives hex (and decimal)
equivalents for binary numbers. A glance at the table quickly
informs us that if we want to show that all 16 sectors on a given
track are free, we need to set all its 16 bits to 'l', giving us
an 'FF FF' byte-pair. Similarly, to reserve an entire track, we
need to shove a '00 00' into its bit map.

Eeeeioaua lcaek £22

All of which brings me to the reason for asking you to type
in that *BEFE:24' a couple of pages' back. That was a patch to
DOS which told it to initialize 36 (hex $24) tracks instead of
its usual 35. This means you can now make use of track $23

17

(decimal 35), gaining an extra 4K of program storage (remember
that track $23 is the $24th track on the disk because DOS starts
with track $00). Here's how to do it.

Hold down the 'M' and REPT keys until the rest of the VTOC
has scrolled into view and line $F8 appears at the bottom of your
screen. The bit map for track $23 can be found in line $CO as
shown below.

trk $23
CO: FF FF 00 00 '00 00i 00 00

Since DOS isn't used to formatting track $23, it writes
*0*s' in the track's bit map to make sure it doesn't get used.
You are now going to make short work of this trivial obstacle to
greater disk storage.

Using the 'I', 'J* 'K», and 'M' keys, place the cursor on
the byte indicated by the two '**'s' in the above illustration
and type in two 'FF's*. Your display should now look like this.

CO. FF FF 00 00 FF FF 00 0O

Next, type CIRL F to flip screens, CITRL | to jump to the top
of the page, and CTRL F again; this brings you back to the first
part of the VTOC. Now place the cursor over the '23* in line
$30,

30: 12 01 00 00 23 10 00 01

and change it to a '24* to tell DOS that it now has $24 (decimal
36) tracks to contend with.

Finally, check the display to make sure that track $11,
sector $00 is selected, and that 'D=* the drive of the newly
initialized disk. Then hit CTRL W followed by 'Y» before the
tones stop. Finish off by reading back the VIOC with a CTRL R to
make sure your alteration took. You now have an extra track at
your disposal.

Qettias 8csaw Icack £
At this point you may be wondering if it's possible to
reclaim even more disk space. If so, read on because I'm going

to show you how to wrest another 16 sectors from DOS' grasping
clutches, bringing the grand total to 32. Let's begin by looking
at one of the 3 tracks, which, according to page 135 in the DOS
Manual, is exclusively reserved for DOS. Start by selecting
track $02, sector $0F, and reading it in. Follow this with CTRL
F to get the entire sector's data on the screen at once. Notice
anything funny?

~That's right - you are now staring at a sector full of
nothing. Proceed by hitting the left arrow once to decrement the

sector number to $0E and then read this sector in. Again you*Il

see a screenfull of *0*s*, If you continue by alternately
pressing the left arrow followed by a CTRL R you will be able to
do a rapid sector by sector scan of the entire track. This

should reveal that every sector from $0F down to $05 is devoid of
data.

In spite of the fact that DOS only uses 5 sectors ($00 -
$04) on track $02, a quick look at its bit map tells us that the
entire track is reserved. Apple may have done this to leave room
for further expansion of DOS, but for our purposes, the remaining
sectors are going to come in mighty handy for file storage. So
let*s grab them right now by reading in the VTOC and altering the
track $02 bit map as follows.

Start by reading in sector $00 of track $11. You should
still have the full sector display, so press CTRL I, causing the
cursor to jump to the top edge of the screen. Follow this with
CTRL F which takes you back to the display of the first half of
the sector with ASCII. When switching displays in this manner,
remember that the shorter ASCII display will start with the line
in the full display where the cursor was last placed. The cursor
itself will always remain over the same byte through any number
of screen flips.

We are going to work on the bit map for track $02 which is
located in line $40.

trk $02
40: 10000j 00 00 FF FF 00 00

But before we do, we need to figure out which byte values
must be substituted in. Since we want to free up sectors $0F -
$05, the bina% equivalent of the required bit map should end up

e

looking like t following.
sector numbers: F E D C B A 9 8 7 6 5 4 3 2 10
bit values: 11 1 1 1 1 1 1 11 10 0 0 0 o0

byte values: F F E O

The table in Appendix A tells that us that the *11111111*
and *11100000* in the bit map translate into $FF and $EO
respectively. After shoving these bytes in the track $03 bit
map, row $40 should look like this.

40: FF EO 00 00 FF FF 00 00
If it does, and the drive, track, and sector values are

correct, write it to the disk and read it back for verification.
This brings the grand total of liberated sectors to 27.

19

ScatfibiBS bBBCB feoff b@balee leads

The final 5 sectors of the 32 | promised you are going to
come from the catalog track. This is possible because DOS has
provided us with more catalog space on track $11 than we could
ever fill with file names. Even with the disk completely full of
short programs, the catalog hardly ever extends below sectors $07
or $08 (DOS places file names on the catalog starting at sector

$0F and progressing downward). Therefore, it is possible to
safely make use of sectors $01 - $05 for program storage. As
usual, it is necessary to indicate this in the track $11 bit map

which is displayed in line $78.

trk $11
78: FF FF 00 00 !00 00! 00 00

The new bit map which signals the availability of sectors
$01- $05 is: 000 0 00O OO00O0111110. Changing this
into hex gives us f00 3Elwhich should beplugged into the track
$11 bit map to produce:

78: FF FF 00 00 00 3E 00 00

Check everything and then write this to the disk. But don*t
leave yet. You have one important additional detail to attend
to. Each sector on track $11 including the VTOC contains the
address of the next sector DOS is supposed to access during any
operation involving the catalog. Let's have a look at sector $06
as an example of this. Clock the sector count forward by holding
down the right arrow and the REPEAT keys simultaneously. When
you reach $06, do a read and take a lookat row $00. It should
look like this.

$00: 00 11 05 00 00 00 00 00

The *11 05* is a link pointer which tells DOS that the next
catalog sector is track $11, sector $05. If you look at the same
two bytes on sector $07, you will see *11 06* pointing back to
sector $06, and so on throughout the track. In any disk
operation, the VTOC is accessed first, and its link pointer reads
MI OF', telling DOS to begin searching downward from sector $0F
for the requested file name.

Now the one thing we dfIDit want is for DOS to write file
names over any program code that may be stored on track $11.
Fortunately, all we have to do to prevent this is to write two
'GO'S' over the link pointer in sector $06. So you should change
row $00 from the form shown above to the one below.

00: 00 00 00O 00 OO 00 0O 00
Writing this back to sector $06 insures that DOS will never
look at any sectors lower than $06 for free space when placing

file names in the catalog. If all the sectors from $0F to $06
are completely filled (an extremely unlikely possibility), and

20

ft

ft

fc r*

ft

ri

sS

fn

fii

fii

>(->>oo

T w w3

you try to save yet another file, you will simply get a DISK FULL
ERROR", leaving sectors $01 - $05 untouched.

Before making use of this space, however, there is one last
change that must be made. To protect the catalog, DOS has an
internal safeguard against saving files on track $11. This must
now be disabled, so read in track $02, sector $01, and get line
$90 up on the screen.

90: B3 18 69 11 8D BB B3 8D

Change byte $92 from a f691to an *A9 and write the sector
back to the disk. You now have an extra 8K of disk storage.

QfiUiBg fiid Of U®B

In a final frenzy of greed, you could free another 21
sectors by writing »FF’s’ in the bit maps for tracks $01 and $02
leaving the VTOC display looking like this:

38: 0000 00 OOFF FF 00 00
40: FFFF 00 O00FF FF 00 00

Since this infringes on the disk space occupied by DOS,
eventually part of DOS will get overwritten by your files, and
the disk will no longer boot. You can still access the files,
though, if you first boot DOS from another disk.

Note: freeing track $00 in this manner is of no benefit,
since DOSwill refuse towrite onthis track even ifits bit map
contains ’'FF’s* and all the others are zeroed out.Patching DOS
to write on track $00 is not advisable because if a file’s track
and sector list happens to end up there, the file is likely to be
inaccessible.

fteoaicigg a LIQ

I think you can now see that if a VIOC on one of your disks
accidently gets corrupted, it is a trivial matter to rescue the
files. To demonstrate th|s let’s start by blowing away a VTOC.
Take the newly initialised disk out of your drive and put your
practice copy of the System Master diskette in its place. Next,
read in its VTOC, place the cursor on the first byte in row $00
(probably a $04), and type in *OF'. Place the cursor back over

this byte and press CIRL X The sector will instantly be filled
with *0F*s*. Write this information back to the VIOC of your
practice disk. If you now try to boot it or load a file, you

will get a FILE NOT FOUND error (DOS now thinks that the catalog
begins with sector $0F on track $0F).

To fix this, read in the VIOC from a good disk and place the
cursor on the first byte in line $38. Now press CTRL Z, filling
the display with ’00*s* from the cursor to the end of the sector.
This zero’s out the entire bit map field and thus makes sure that
no files on the disk get overwritten during future use. Finally,

21

write this information onto track $11, sector $00 of the
clobbered disk. It is now perfectly usable again, its only fault
being that no more data can be stored on it. If this were not a
practice diskette, the solution would simply be to FID (not COPYA
because it also transfers the zeroed-out VTOC) all the files
across to a newly initialised disk and reinitialise the one that
got corrupted. However, don’t bother doing this with vyour
practice copy.

UodeleUfig EcagcaKS

The first thing you need to know is that DELETEing a file
does notautomatically remove it from the disk. The onlything
that happens is that acouple of bytes on the catalog track get
changed and the bit maps are adjusted. The file’s name in the
directory and its program code still remain intact. The only
exception to this may occur if you have saved other programs to
the disk since DELETEing the file in question. [If so, DOS may
have overwritten part or all of it.

Put your practice copy of the System Master diskette in a
drive and read in track $11, sector $0F. Rows $08 through $28
should look pretty much like this:

first byte of file name space
/

08: 00 00 00 13 OF 82 G G5 @@@SOBHE
10 C CCCF A0 A0 A0 A0 AD :LLO

(2 more rows of *AO’s* here)
28: A0 A0 A AD 06 00 14 OF : FOTO
/
last byte of file name space

The *130F* in row $08 indicates that HELLO’S track and
sector list (more about these later) can be found on track $13,
sector $0F (but see the next paragraph); the ’82” tells us that
HELLO is a locked Applesoft file. The next five symbols are the
screen codes (i.e., ASCIl numbers with the high bit set -
remember?) for the letters H-E-L-L-0, and the 25 trailing *A0**
are screen codes for blanks. Their purpose is to fill in the
unusued part of the 30 spaces allotted by DOS to each file name.
The fourth *A0* in line $28 is the last byte of file name space.
*06” indicates that HELLO’S length is 6 sectors.

IMPORTANT NOTE: If your System Master is different from
mine, or if your version of FID allocated space in some other way
than mine did when you made your practice copy, the various track
and sector numbers that appear in this book’s illustrations may
not agree with yours. This is no problem, however, since their

on the catalog track or elsewhere will always be the
same. So later on when we start tracking down files from
addresses recorded in various places on the disk, all you need to
do is substitute the information on your disk in place of the

22

fc !!

? fll

IF I

IF fl
IF 4§

tutorials instructions.

Now | want you to do the unthinkable. Get out of Tricky
Dick with a CTRL C, then UNLOCK and DELETE the HELLO file on your
practice diskette. Jump back with a CALL 2051 and hit the space
bar. The display of the HELLO catalog entry, just as it was

before you DELETEd it, will reappear on the screen. Now stare
hard at the two numbers on the screen which were designated in
the illustration above as the first and last bytes of the file

name space. Having fixed these firmly in view, hit CTRL R and
watch the change.

You should have seen the first byte ($13) jump down to
replace the last byte ($A0), and a <FF* appear where the first
byte was. This is all that actually happened during the DELETE.
So here's how your screen should now look.

first byte of file name space
/

08: 00 00 00 FF OF 02 C8 C5 :e@S8SOBHE
10: @C CC CF A A0 A0 A0 AD :LLO

28 A0 A0 AD 13 02 00 14 OF : SBeTO
/
last byte of file name space

All we have to undelete HELLO is to put things back the way
they were. So just type an *A0* over the *13* in the last byte
position and put a *13* in the first byte where the *FF* is.

Lines $08 and $28 should end up looking like the following
illustration.

08: 00 00 00 13 OF 02 C8 G5

28: A0 AD A0 AD 06 00 14 OF
If they do, write the sector back to the disk.

HELLO will now load, run, and appear during a CATALOG just
like before. However, there is still one small detail we need to
attend to. Read in the VTOC sector and bring line $80 into view.
If you zeroed out the VTOC during the first part of this
tutorial, you will probably now find a *FC? in that line instead
of a '00*. This is because DOS has altered the track $13 bit map
to reflect the fact that sectors $0F and OE, previously occupied
by HELLO, are now available.

One way to fix the present VTIOC is simply to write a *00*
over the 'FCL However, changing bit maps is not advisable with
most files, since you are unlikely to know which sectors they
occupied before they got DELETEd. So the best thing to do is to
load the file in question into memory and then save it back again

23

to the disk. When this is done, DOS will automatically adjust
the bit maps for you.

Site Eikafis

Remember that *82* in the third byte position? Notice that
it got changed to »02» after the DELETE. This is the file type
flag; the first value signals a locked, and the second, an
unlocked Applesoft program. Here’s the complete list.

LEehfilad irfifilkd
Text (T) 00 80
Integer (1) 01 81
Applesoft (A) 02 82
Binary (B) 04 84
S-type (S) 08 88
Relocatable (R) 10 90

Sometimes control characters are embedded on purpose (a
rather dated protection measure) or accidently in program names
in the catalog. |If this happens, the name will appear when you
CATALOG the disk, but you won’t be able to access the file. To
see how to deal with this minor nuisance, jump out of the
Tricky Dick. Then UNLOCK and DELETE ANIMALS on your copy of the
system master disk. Now type SAVE followed by these keystrokes:

T CIRL A E CIRLB S ClIRLC T

plus RETURN. This saves a file called ”"TEST” with control
characters hidden between each letter. Now CATALOG the disk.
You will find "TEST” second from the top of the list. However,
if you try to LOAD or RUN TEST you will end up with a FILE NOT
FOUND error.

Incidently, a neat trick for quickly spotting file names
which contain control characters is to type INVERSE, followed by
CATALOG. Do this with your practice disk, and have a close look
at the right edge of the white field in which the inverse catalog
entries appear. Directly opposite TEST you will see a telltale
notch telling you that some hidden characters have used up screen
space without actually appearing on the screen.

Now go back into Tricky Dick, read in track $11, sector $0F,
and look at line $30. In the ASCII section on the right you will
see the file name "TEST” with an inverse ’'Al, *B* and ’'C* in
between its letters. These are the control characters you typed
in when you saved the file. You can still RUN or LOAD TEST by
typing in these extra symbols when you access the file, but this
would be rather troublesome.

Next, place the cursor over the second byte in row $30 (a
’D4’). Next type in SHIFT 2. You will see the inverse message

24

"HIGH ASCII" appear next to the word "DATA" at the bottom of the

screen. This inidicates that anything you now type will be in
screen ASCIlI with the high bit set. Key in the letters T-E-S-T
and follow this with 3 taps on the space bar. You will see the
letters echoed in the ASCII section, and the spaces will appear

in the hex dump as 'AO's*. Now press down the CTRL, SHIFT, and
'P* keys all at the same time. The display at the bottom of the
screen will change to "NORMAL HEX" and you will be back in normal
mode. Finally, write the altered sector to the disk. All those

nasty control characters are gone and the file will now answer to

its real name.
EiuAiui sodLlsaceicea BiaacxEileis Addcess <
This exercise will take us further afield on our jouney

along the Apple disk, and we will be leaving track $11 to trace

the whereabouts of some actual program code.

Read in track $11, sector $0F. Then hit CTRL F, followed
by CTRL Mto get to the bottom of the sector, and finish off with
another CTRL F to flip back to the ASCII display. Lines $D8 and
$E0 should contain the following information.

D8: A ADAD1L 0019 OF 84 :Q0YOD:
EO: C2 CFCFD4 BLB3 AD AD:B0O0OT13

The f19 OF1 in line $D8 tells us where to find the first
sector of BOOT13. The *84* in the same line tells us that we’re
dealing with a binary file. So let’s read in track $19, sector
$O0F and have a look.

We are still in the lower half ofthe sector display (rows
$80 - $F8), but need to get back to the beginning. Holding down
the CTRL key while pressing ’F* *1* and another <F should do
the trick. The 3 rows of numbers starting on line $08 constitute
BOOT13*s track and sector list. As the name implies, this lists
all the tracks and sectors occupied by the file. If your copy is
the same as mine, this should show BOOT13 starting on track $19,
sector $0E, and running down to track $19, sector $06.

08: 0000 0000 19 OE19 OD

18: 1908 1907 19 0600 00

Now hit the left arrow key to get to sector $0E, and do a
read. Your sceen will display the first 128 bytes of the program
code. The first 4 bytes of this data give the address and length
of BO0OT13.

first byte of program code

address length /
00: 100 17! 'FO 08! 20 E3 03 84

25

In the wusual 6502 reverse notation, this tells wus that
B0O0T13 starts at location $1700 in memory and is $8F0 (decimal
2288) bytes long. You can relocate BO0O0T13 so that it BRUNS or
BLOADS at another address in memory simply by changing the first
two bytes. For example, change byte $01 from *17* to *16 and
write the sector back to the disk. Then get out of Tricky Dick,
BLOAD B00T13, and type CALL -151 followed by '1600L*. You will
see the first 3 bytes of the program, *20 E3 03* start at $1600
instead of the original $1700. Do not try to run BO0T13 at this
address, however, because it is not a relocatable program.

You will now have to BRUN Tricky Dick once more, since
B00T13 has blown part of it out of memory. Do this, and read in
track $19, sector $0E again. If you plan on puttlng your

practice copy of the System Master to use later on, you had
better change BO0OT13fs start address back to $1700.

Place the cursor on byte $04 (a *20*) in row $00 and hit the
1L* key. This will give you a disassembly of the first sector's
code. The first instruction should read "JSR $03E3" (meaning
Jump to a SubRoutine which starts at the address $03E3). This is
a kind of indirectly routed GOSUB to a DOS subroutine which
tells DOS the whereabouts of some vital disk reading parameters.

Keep pressing *L' until byte $A9 scrolls into view near the

top of the screen. You should now be able to see the word
"SECTOR” in the ASCIlI display column. The addition of this
ASCIl information to the disassembly enables you to quickly

locate any text in a block of machine code. Keep hitting 'L's'
until you have dissambled your way through the entire sector.

When you reach the end, the lower part of your screen will be
blank and nothing further happens in response to an 'L'.
Usfcifig #c lotetee Bebb k

This works pretty much the same way as the above process.
Read in track $11, sector $0F and find the address of HELLO'S
track and sector list. It should be located on track $13, sector
$0F, so increment the track number by pressing the *' key twice
and do a read. The track and sector information now on your
screen reveals that the HELLO program code starts on sector $0E
and occupies 5 sectors on the same track.

Now read in sector $0E and take a look at the first line.
The illustration below shows how to interpret the data that it
contains.

start of program code
length line no. /
00: 171 04! j19 08i jOA 00! B2 20
\ /
memory location of next line

The first 2 bytes tell us that HELLO is $471 (decimal 1137)
bytes long (no starting address is given at the beginning of an

Applesoft program because it automatically loads at $801). Bytes
$02 - $03 are a pointer indicating that when HELLO is in RAM, the
next line will start at $819* Each line of an APPLESOFT program
starts with this type of pointer, though, of course, you don't
see it when you LIST the code. Moving on, the !0A 00* is the hex
equivalent of the first line number (line 10). Finally, the
program code itself starts with 'B2f, the Applesoft token which
stands for 1REML

Now press CTRL L, followed by 'A*. The cursor will jump to
the top of the screen and change the '<*L>' to a '<AL>'. This
tells Tricky Dick that you want a listing of some Applesoft code.
Put the cursor over the *62* and press ** to list the first
sectorful of BASIC. The continuation of this code can be found
by moving on to sector $0D and typing 'L* again. You can look at
the whole of any Applesoft program by noting in its track and
sector list the sectors it occupies, then working through them as
explained here.

By the way, when you are listing the first sector of an
Applesoft program, placing the cursor anywhere to the left of the
first token may result in a spurious first line number. This is
because Tricky Dick interprets the length and pointer bytes as
BASIC tokens. The rule to follow when LISTing any sector is to
place the cursor on the first byte to the right of the first *00*
in the sector.

Integer listings work almost exactly the same as those of
Applesoft. |If you want to try one, get the address of the track
and sector list for ANIMALS from track $11 (the *81' in front of
the file name tells you that itfs a locked integer program).
The first line in the first sector should look like the following
illustration.

first byte of program
length line no. /
00: |6D 10! 08 !00 00J 5F Bl E8
\

length of first line

The preliminary information tells us that ANIMALS is $106D
(decimal 4205) bytes long, the first line is 8 bytes long, and
its line number is 0.

Type in CTRL L, then *If, to switch on the INTEGER BASIC
lister. Put the cursor over the first program byte (the *5F')
and hit 'L' to display a listing of the first sector.

To return to the assembly listing mode, simply type CTRL L
followed by a You can also get any of the above listings on
your printer as explained under "Printing Hard Copy from Tricky
Dick" in "Tricky Dick's Instructions” in the first part of this
section.

27

If you have followed along with me this far, you will have
put to use most of the Tricky Dick commands in realistic disk
editing tasks. So by now, you should be able to use Tricky Dick
pretty easily and find little difficulty in doing more advanced
work. But what is far more important, you already know more
about the DOS 3.3 disk than about 80% of all Apple users. This
is only the beginning, however. By the time we finish our work
together, 1 hope to elevate your standing from the top 20% to the
top 1% of the DOS intelligensia. So turn off your machine for a
while and take a well-deserved coffee break before we begin

28

~ @ M MmMTTTTTTMTRT T Ty T TTT T T T
~

fe 51
fc 3

CHAPTER THREE — Intermediate Level Tricks with Tricky Dick

These aren't really any more difficult than the things
discussed in the foregoing tutorial, but Ifmé;oing to describe
them in somewhat less detail. So if you already knew something
about disk formatting when you bought the CIA, and found the
tutorial a bit elementary, this is the place to start. But don't
forget that the following techniques apply to DOS 3*3 only unless
otherwise stated.

bUQXdikQy DCS lan&ua&a £fied Clfibbec

DOS 3.3 has particularly pesky subroutine which stores a $00
in the first byte.of the language card whenever we do a PRE6.
This in turn makes DOS think that the language card is empty. So
if you happen to have INTEGER BASIC (or some other program)
there, and then boot up from the keyboard, you always have to
reboot your System Master and hang around while 1t reloads
INTEGER. Most of the time, however, a perfectly good image of
INTEGER is still in the language card in spite of the LANGUAGE
NOT AVAILABLE message you get when you try to call it.

Fixing this is a piece of cake. Just read in track $00,
sector $09, and write 3 'EA's over the '8D 00 EO* in line $DO,
leaving it looking like this.

DO GO A9 00 EA EA EA 4C 44

Then write it back to the disk. Any disk with this patch in
its DOS will leave INTEGER in peace when booting.

IMPORTANT NOTE: | know it seems obvious, but don't forget to
reboot the DOS you've just altered with the following patches if
you want to see them in action.

BELIQ Eilfi

To make this simple alteration, read in track $01, sector
$09. Starting with byte $75 in line $70, you will see the name
of the HELLO program. If you want another file on the disk to
run automatically on boot-up, put the cursor over the first byte
of the HELLO file's name (a 'C8 for 'H* on most disks), and key
in SHIFT 2 (the " character). Now type in the new file's name
and press down the CTRL, SHIFT, and @ keys together, returning to
normal operation. If the name of the new file is shorter than
that of the old one, there will be some unwanted characters
tacked on at the end. Be sure to type 'AO's' (ASCII for spaces)
over these before writing the sector back to the disk.

a Binaw fif £XEfablfi EALLAi EIfi

Normally, when DOS finishes booting into RAM it issues a
RUN command to start the HELLO program. However, if you used the
foregoing method to switch HELLO to a machine language or EXEC
file, you will obviously want DOS to issue the correct BRUN or

29

EXEC command on boot-up. To do this read in track $00, sector
$0D and change byte $42 from a ’OS* to:

(1) a *34* to BRUN a binary HELLO program;
(2) a *14* to EXEC an EXEC file.

Now write the sector back to the disk. You may wish to make
this and the foregoing patch on a COPY of your CIA disk so that
it*s DOS BRUNs Tricky Dick immediately on boot-up. |If you do,
you should leave line $40 looking like the example below.

40: 03 A9 31\1 DO 05 AD 62 2A
binary HELLO flag

Lasting a Eeqg£3i? Dfis and Buffex:a

Having carried out the preceeding two operations, you might
decide that it would also be useful to place your program in some
secure spot in memory where subsequent loading and running of
other files cannot overwrite it. The best way of doing this is
to move the DOS buffers down and load your program on top of
them. A simple DOS patch will insure their complete safety even
if DOS is coldstarted.

To set things up, read in track $00, sector $0C.
00: D3 1C 81 IE BD IE 75 2A

The next step is to subtract the length of your program in
bytes from $1CD3, the number shown in reverse at the beginning of
line $00. So if your file was, say, $200 (decimal 512) bytes
long, you’d have to work out that $1CD3 - $200 = $1AD3* You
should now reverse the high and low bytes of this result in the
classical 6502 manner, type them over the *D3 1Cl, and write the
whole works to the disk.

00: D3 1A 81 IE BD IE 75 2A
What happens is, the *1A D3f gets changed to !9A D31 on boot

up, moving the buffers down the required amount. This allows you
to fix your program to run $9D00 - $200 = $9B00 in RAM

£liB)IBat*iD& bbe Eauae ducioz a G&XALQG

If you manage to accumulate a large number of files on a
single disk, you may find it useful to have continuous scrolling
during a CATALOG. If so, read in track $01, sector $0D of the
disk whose DOS you wish to provide this service. Then simply
change byte $34 from a *CE* to a ’60* as shown below.

30: 8D 20 ED FD 6(\) 9D 33 DO
changed byte

Write this back to the disk and you will find, after
rebooting, that the patched version of DOS will not stop after

each screenfull of file names during a CATALOG, but will scroll
rapidly through to the end of the list. If you have an autostart
monitor, you can use CTRL S to stop/restart the listing.

Chscgiag ths WOUIUE2 Catalog Message

In order to personalize your disks, you might like to have
some message other than "DISK VOLUME 256" appear when a CATALOG
is executed. If so, read track $02, sector $02 and change the
"DISK VOLUME" message (written backwards!) that begins at byte
$BO. If you write over the space ($3A0) at byte $AF, you can
squeeze in up to 12 characters by hitting SHIFT 2 (the ™ sign)
and typing them in backwards. So if your new heading is to be,
say, "Sammy*s Disk", lines $A8 - $B8 would look like the
illustration below.

firslt byte of entry

A8: 9 Cl C2 p3 D2 CI C (B :1ABSRABK
BO: D3 C9 C4 A0 D3 A7 D9 D :SID S*WM
BS: D Cl p3 04 11 OF 04 00 :MASDQUD@

last byte of entry

If you carried out the preceeding instructions, and
rebooted, you should get the following heading on each CATALOG.

SAMMY*S DISK254

This looks a bit messy, so to get rid of the *254* read in
track $01, sector $0C ain type 3 'EA*s* over bytes $CO0 - $C2,
ending up with:

CO. EA EA EA 20 2F AE 20 2F

After writingi this back to the disk and rebooting, vyour
catalog message will blaze forth in its most pristine form.

Euffiog tieadaaes eo tbs Catalog leads

There are few more frustrating experiences than searching
through dozens of disks for a program you urgently need,
realizing that you have overlooked it, and then having to start
the whole tedious business from scratch once again. Some order
can be brought to disk chaos by inserting headings on the catalog
track and making sure the type of files that they apply to are
placed underneath. For example, it might be useful to get the
following display upon CATALOGIing a disk.

T 000 GAVES

T 000 -

*B 062 PIRATE*S SWAG

*B 071 ROBIN HOOD»S LOOT

31

With a newly initialized disk in the drive, type in the
following sequence: SAVE XXXXX SAVE YYYYY DELETE XXXXX DELETE
YYYYY. Then examine track $11, sector $0F and you will see the
*X and *Y* strings just beneath the HELLO entry. The oX's* will
most likely be in line $30. So start by placing the cursor on
the *FF* in the line above (byte $2E) and type in *24 00 00*.
This should leave your cursor on the first of the 5 'DS's* (ASCII
for *X* in line 30.

Now you can press SHIFT 2 and type in the letters G A M E
S, leaving the string *C7 CI CD C5 D3* in place of the Be
sure to finish this sequence by pressing CIRL SHIFT P (CTRL @ to
gﬁ_t back into normal mode. Lines $28 and $30 should look like
this.

28: ADOAD ADAD 0200 2400 : B@$0:
30: 00 C7 CICD C5D3 ADAD :@GAVES

The next step isto press ,M 3 times to brin% yourcursor
48. :

over the f131 at the endofthestring of ~O’sin line
Type in *A0 00*. This should bring you to the beginning of the
deleted entry for the *Yf program.

Now you have only to repeat the above process. In other
words, just type *24 00 00* over the »FF OF 02* in line $50.
Then follow this with a SHIFT 2 and hit the *-f key 5 times,
leaving a trail of 1AD1s' over the 'D9*sf. After CTRL @ move
straight down to the M4 021 and replace this with an fA0 00*.
Finally, check everything and write the sector back to the disk.
Reboot and do a CATALOG to make sure the heading got set up 0.K,

If you want a flashing instead of a normal heading, press
SHIFT 7 (the 1 character) before typing in the heading's letters.
Inverse characters can be obtained by changing the normal screen
ASCIl numbers as follows:

numbers beginning with a 'C" ... change the 'C' to a *0*
numbers beginning with a *D' ... change the *Df to a *1*
'AD0" (@ SPACE) v change the 'A' toa *2*

If you change the ASCIlI for "GAMES" in this manner, you
would end up with:

30: 00 07 01 OD 05 13 A0 AD :0GAMES

You can now transfer your favorite games to the disk and
they will automatically appear beneath the heading. If after
doing this you still have some space left over, you can easily
use the same procedure to shove another heading underneath the
games on the catalog. Further files can be added below this, and
so on.

By the way, when you SAVEd the »X* and *¥* files, 4 sectors

were set asideby DOS to store their nonexistent data.
Subsequently DELETEing them readjusted the bit maps to reclaim

32

*

ft

F

= -
-

- [
—)

-t
=)

e e et o [i
>

g

«3

1)

ni

til

this wasted space.

Another point to take note of was the *24* we put in the
dummy files* track pointer byte. This was done to prevent the
catalog heading from being accidently DELETEd. If you now try to
access "GAMES” with any DOS command you will get an 1/0 ERROR,
since track $24 cannot be reached on the Apple drives (the *-*s*
are safe in any case because they are illegal <catalog
characters).

tiidiaz Lbe Ueile 00 the Catalog

If you used the foregoing method to create headings and
want to get the word "HELLO” out of the way - or you simply want
to conceal the existence of your HELLO program during a CATALOG -
you can make it do a disappearing act as follows. First, read in
track $11, sector $O0F and put the cursor over the first *AD*
after the HELLO file*s name. Then type in 19 *88*s* and check
your work by counting up the inverse *Hs* which will have
appeared in the ASCIlI display after "HELLO" (or whatever the
file*s name is). There should be 19, since $88 is the ASCII value
for CTRL H

Having done this, you now need to let DOS in on your little
secret so that it can recognize HELLO on boot-up. So what you
now have to do is change the DOS record of the HELLO file’s name
as described a couple of pages back under "Switching the HELLO
File". Follow those instructions to read in track $01, sector
$09 and add 19 *88*sf after the HELLO program’s name. The
program will run automatically when you boot the disk, but of
course, DOS will ignore any direct commands referring to HELLO,
since HELLO now contains 19 extra control characters.

A couple of points are worth noting here. First of all,
it seems that 19 ’'88*s’ is always the correct formula, regardless
of the file name’s length (but you can’t hide files whose names
are longer than 11 letters due to the 30 character maximum
permitted by DOS). Secondly, the reason this method works is
that CTRL H's output backspaces to the monitor. So what happens
is that the HELLO file’s name gets printed for a tiny fraction of
a second, too quick for anyone to spot it. Then along comes the
next filename to completely overwrite it.

Chao&iQg Q05 Eccec Messages

If you feel capable of a more elequent turn of phrase than
the author of Apple DOS, you might like to change the wording of
some of the DOS error messages. These begin on track $01,
sector $08, byte $75, and end on the next sector ($09), byte $3D.
So let’s assume, for example, that you want to change I/0O ERROR
message to CRASH OUT (clearly a far more descriptive choice).
IS_tartﬂslg:);3 reading in track $01, sector $08. The message starts in
ine .

33

C8: 41 54 43 C8 49 2F 4F 20 :ATCHI/0

Position the cursor over the *49* press SHFT 7 (the *
sign) to go into normal ASCIlI mode, and type "CRASH 0U". Now
press CTRL followed by SHFT 2 (the " sign) to switch to high
ASCII (the last character is in high ASCIlI to flag the end of the
message). Type in the final 'T" and write the sector back. Boot
the disk, leave the drive door open, and type "LOAD HELLO". Your
altered message should quickly appear.

This can be done with any of the error messages. Just
remember to end up with a high ASCIlI character, and make sure
your own message’s length does not exceed the one you are
replacing.

idfss toeMasooed Eccgcarnmecs
Here are a few Tricky Dick tidbits that you assembly
language programmers may find useful. And even if you don't know

your way around an assembler too well yet, some of these may
prove helpful.

When you have one of the CIA modules in memory, hitting CTRL
E causes Tricky Dick to jump to it and begin execution. This
feature makes it possible for you to install your own program and
access it with the same instruction. Furthermore, you can easily
interface your code with Tricky Dick to call Tricky's internal
routines.

The first thing Tricky Dick does on CTRL E is attempt to
distinguish a CIA module from left-over garbage in RAM In order
to do this, it EORs the byte at $8000 with the one at $8001,
then CMP*s this with the byte at $8002. |If a match is found, it
JSRs to $8003 where the modules' code begins. If a match does
not occur, a tone is sounded and normal operation is resumed. To
use the CTRL E hook, you need to assemble your programs to run at
at this address and set up the first 3 bytes accordingly.

Tricky Dick contains both a 3.3 and a 3.2 RWTS. The 3.3
version begins at $3800, and the 3.2 at $3000. They both use the
same 10B which starts at $815, and share the device
characteristics table which starts at $826. The information in
these two lists is in exactly the same order you would normally
expect. A JSR to $121F invokes a subroutine which looks at $82A
to determine which DOS version has been selected, then calls the
appropriate RWIS. Reading or writing with this RWTIS will be done
using the DOS marks shown in Tricky Dick's display. Tricky
Dick stores its sector data into a buffer starting at $2EO00.

If you want to BSAVE Tricky Dick with any patches or changes
to it, use A$803, L$3800.

You can call each of the 3 versons of RWIS in the machine
independently. Thus, you could, for example, use the DOS RWIS at

34

*

m m

*

m m mmmmmmmTimmIMmMimimmiMmimmimIMmm

- e
- =
=%

1 f

$B800 to read a disk, and one of the Tricky Dick RWTS1 to write
it out again - or vice versa. With Tricky Dick and a module in
memory, there is still free core from $4000 to $7FFF for use as a
buffer or anything else. After your program has done its thing,
it can return control to Tricky Dick at any time with an RTS.

bo bte Disk

Well, that just about closes the files on Tricky Dick for
now, though 1*11 be returning to some of this utility’s more
sophisticated capabilities when | show you how to work on copy
protected disks. However, without a little help from the other
members of the CIA, there are just some |JKobs that Tricky can’t
do. You’ll find that for some of the work you’ll be wanting to
carry out, you’re going to need to delve into the most
inaccessible parts both of normal and abnormal disks - and make
complete sense of all the information they contain. That’s why
you now need to meet THE LINGUIST.

35

CHAPTER FOUR — The Linguist

Often during the course of your career in disk espionage,
you’re going to want to scrutinize a floppy at the most intimate
level and obtain a precise translation of what you find there.
It might be that a disk failure has seemingly rendered your most
precious file irrecoverable. Or, it may just be that you are
insatiably curious to discover the latest animation techniques
used in your favorite games. |In fact, whatever your reason for
having acquired an Apple, the need to know more about the
software that makes it spring to life is an inescapable part of
owning and using it.

The ability to do this quickly and easily will help you out
of many sticky situations, and immeasurably increase your

knowledge and enjoyment of your machine. Because of the
Linguist’s unique talents, you’ll soon be able to examine, make
sense of, and translate into machine recognizable form, the raw
data from disk available at the time of this writing -

regardless of the extent to which its formatting has been
accidently corrupted or deliberately altered.

The Linguist allows you to do a raw nibble dump of an entire
track, examine the data at your leisure, and then carry out a
sector by sector translation of the raw disk nibbles into code in
the form that your machine normally deals with. In other words,
the Linguist will transform all 3 of the encoding formats used on
Apple disks (6&2, 5&3, and 4&4) into a recognizable and
executable form.

Incidently, |1’ve noticed that a lot of Apple users are
surprised or at least uncertain when the subject of disk encoding
comes up in a conversation. Few computerists are aware that the
the familiar form of program code, the one you can view by typing
CALL -151 and listing it, gets unrecognlzably altered when it is

written to the disk. Far fewer still can tell you just how the
encoding process works. You already received a fleeting
initiation into the ranks of the DOS elite in ”A First Word about
Disk Data" in chapter two. In the present chapter you will learn
a great deal more about this subject and several others. By the
time you finish the book, you will be the envy of your local

users* group as you nonchalantly extol the speed advantages of
4&4 over 6& and 5&3, and confidently hold forth on other equally
esoteric disk topics.

The immediate importance of all this is that after dumping a
track of raw nibbles and translating them into ordinary hex, you
can immediately jump back to Tricky Dick and display this code as
an Applesoft, Integer, or assembly listing. Of course, Tricky
Dick is also no slouch at translating. But where a disk has been
too badly clobbered, too heavily protected, made sectorless,
encoded in 4&4 - or simply requires a raw nibble examination to
establish the formatting - old Tricky is just not up to the job.
That’s when the Linguist springs into action at the touch of a

36

CTRL E to help out

HONV TO INSTRUCT THE LINGUIST

Just as with Tricky Dick’s instructions, if you’re an
expert, you can get started right away with the Linguist merely
by using this section as a reference guide. On the other hand,
if you would describe yourself as somewhat below the disk master
level, the best thing to do is try out each instruction
carefully, watching its effect on the screen. Having done that,
you’ll be ready for the Linguist tutorial, "The Apple Disk

Language School”, which immediately follows.

Xofi Lioeuist Deeds Xcifikit Disk: Tricky Dick and The Linguist
have what you might call a permanent intimate relationship. That
is, The Linguist will not work properly unless Tricky Dick is
also present in memory. This is because the program uses some
of T. D.’s internal routines in order to both conserve RAM and
to maintain an efficient interface with the user. So if you try
to run The Linguist alone, you’ll get some rather strange
effects.

Once Tricky Dick is in memory, hit CTRL C and BLOAD The
Linguist. It loads in at $8000 in memory and can be accessed at
any time from T. D.

) GettIPfi £oc1s Ooe tO the ClDec) when the Linguist is
in memory, you can jump to it at any time from Tricky ick by
pressing CTRL E When you first enter The Linguist, the disk arm
recalibrates and emits that grating machine-gun rattle we have
all come to know and hate. The sound effects notwithstanding,
this does not in any way harm your drive. Once in The Linguist,
you can always get back to Tricky Dick by typing CIRL C

Xbe Deifi Sficeec U QC 2i: If you happen to need a brief
reminder about any of The Linguist’s commands, just hit the */*
key to display the help screen. This brings up a list of
instructions, together with their accompanying keystrokes. A ’*’
before a letter indicates that the CTRL key must be pressed at
the same time as the letter. You can call up the help screen at
any time.

Ibe Uktiguiskia fiska Hitting the space bar %ets you
from The Linguist’s introductory or help screens to the data
display; several of the Linguist’s commands also automatically do
the same. This screen shows you one memory page (256 bytes) of
code in the data buffer, which starts at $4000 and ends at $7FFF
in RAM The 4-digit hex addresses on the far left of the screen
correspond exactly to memory locations in the buffer. This
allows you to calculate the buffer location of any block of code
by simply counting up. For example, the position of the tenth
byte in row $4000 would be $400A.

37

)seiseobs

EI3&ELALZE The "ALL COMMANDS' message at the bottom
of the screen prompts you enter the instruction you want the
Linguist to carry out. Each command is echoed on the right of
the *?*. An incorrect entry is signalled by a brief "ping".

££1££& Li i kl- You can decrement or increment the
track number (which appears after *1=*) a half track at a time
by hitting the '<’ and > keys respectively. The track numbers
progress up to $7F, at which point wraparound takes place. This
is to allow the use of The Linguist with drives capable of
reading 80-track diskettes. To clock the track number forward or
backward rapidly, hold down one of the two keys and the REPT key
simultaneously. An often quicker way to input a track number is
to type in a followed by the number. This only works for
whole tracks, but the next adjacent half track can always be
specified by hitting the *<f or *>* keys.

Ssekiog the DiskAcid | dbilQ LZSi- Hitting ctrl

recalibrates the disk arm, pulling it back to track $00. It comes
in handy for clocking back the track number rapidly, and also to
give your drive a reference point to find the selected track
(during a raw nibble read your machine makes no check of the
track numbers on the disk to find the current track).

a iKaQk L2&1* Hit CTRL R to read the desired track
into The Linguists buffer. Be sure to select the correct drive

while still in Tricky Dick before jumping to the Linguist. One
buffer page of data will appear in the data display area
immediately after a read. |If the introductory or help screens

were up at the time of this command, a switch to the data display
will automatically take place.

Edggfig febKfiugb the BUEESE Laccousl- Pressing the right arrow
changes the data display to the next page in the buffer. So if
the data from, say, locations $4000 to $40F0 are displayed,
hitting the right arrow once flips to the data located from $4100
to $41F0. This can be continued until you reach the end of the
buffer at S$7FFF. In the same manner, the left arrow pages
backward a page at a time until you get to the beginning of the
buffer. Extremely fast scrolling can be accomplished by holding
down one of the arrows and REPT at the same time. The controls
are "locked" so that you never accidently stray lower than the
beginning or higher than the end of the buffer

) Jyfffi £o0 £he ftfighgjuag os . of £hs BUEfEE ZS1- You can
instartly get back “to the beginning of the buffer at $4000 by
hitting CTRL B; CTRL N takes you right to the end (page $7F).

LI.<L £* B and 21. . 1N 1. J. «

and M move the cursor around the data display just like they do
when used for Applesoft editing. When these commands take the
cursor beyond the edge of the screen, scrolling or wrapping
around occurs. For example, pressing fkK» when the cursor is at
the end of a row causes it to jump to the beginning of the next
row; pressing ,M when the cursor is in the bottom line of the

38

fc
fc

fc
fc
fc

fc

fc
ft
ft

fc

1

ns

uS

s

display causes the screen to scroll up one line. Holding down
CTRL and hitting any of the 4 Kkeys increases the distance
covered, causing the cursor to jump to the edge of the screen.

A continuous scroll can be obtained by moving the cursor to
the top or bottom of the screen and pressing REPT together with
the *1* and M keys respectively. This can be continued until
the first or last line of the buffer data appears on the screen.

Deeotiiotthe Addcess Eieid loformaticfl aaoteolsl: At
the bottom left of your screen you will find a separate line of
data consisting of a 4-digit address followed by 4 2-digit
numbers. It displays a translation from 4&4 into normal hex of 8
consecutive disk nibbles starting with the byte under the cursor.
This enables you to decode the address field information by
placing the cursor on the first byte to the right of 'D5 AA 96*
address field header of any sector. The data line will display
the results in the following order: the buffer address of the
byte under the cursor, the diskfs volume number, the current
track number, the number of the sector whose address field you
are examining, and the address field checksum. The buffer address
is always a 4-digit number and the other items are each 2-digits
long. AIll are in hexadecimal and the sector number represents
the sector on the disk. The meaning and interpretation
of this data will be fully explained in the tutorial which
follows the instruction section.

Since most disks use 4&4 nibbles in the address field only,
the 484 translation will usually be meaningless if the cursor is
placed elsewhere among the sector data. One important exception,
however, occurs when entire files have been deliberately encoded
in the 4&4 mode (as can be found in many current games). If you
are working with such a disk, you can decode a string of 8 4&4
nibbles by positioning the cursor over the first byte of any 4&4
byte-pair.

CbSQgiDg ths fiSCfidlbg Mods To switch between the 6&2,
5&3, and 4&4 decoding modes, hit CTRL D, followed by the number
after the '&*. For example, if you are presently in 6&2, you
will see a ,<62>* just under the *<-->* at the upper right of the
screen. To change to, say, 5&3, type in a CTRL D, causing the
cursor to leap up and cover the *6* This is your cue to press
the f5* key which automatically changes the displayed mode to
15&3f. If you previously changed Tricky Dick's DOS version to
3.2, the display will already show *5&3*-

ICSDSIflfciEg 3 Sector LZI1: After having selected the
encoding mode, place the cursor over the first byte after the 'D5
AA AD* (on a normal disk) data field header of the sector you
want to translate. Then press CTRL T (which evokes a high-
pitched squeek), and jump back to Tricky Dick with a CTRL C. The
sector's raw disk nibbles will have been translated into normal
hex bytes. The translation will be in Tricky Dick's buffer and
can be displayed on the screen in the usual manner by pressing

39

any key. You can also use the procedure described in Tricky
Dick's instructions to get an Applesoft, Integer, or assembly
listing from this code.

If you are jumping back and forth between Tricky Dick and
The Linguist to translate a series of sectors in the above
manner, you may be hampered somewhat by the recalibrate each time
you press CTRL E A patch to the Linguist which eliminates this
is 802£jRE from the monitor. However, if you change track number
you fijusfc et The Linguist recalibrate to get its bearings. Do
this with CTRL S as described previously. To patch back the CTRL
E recalibration, type in 8026:20 from the monitor.

Remember that if you are translating 4&4, the disk is likely
to be sectorless. What you get when using this encoding mode is

a translation of 512 consecutive disk nibbles into 256 bytes of
normal hex.

You probably won't need to do
this often while using The Linguist. If you do, however, you
will have to go back to Tricky Dick with a CTRL C, change the
%rive number from there, and then jump to The Linguist with CTRL

The other Tricky Dick parms such as the sector number, DOS
version, and sector marks are not relevant to the operatlon of
The LlngU|st This is because The Linguist reads in an entire
track at a time and completely ignores the disk's formatting.

Xofi iriflguisfc: Although no printer
dump subroutine has been included in The Linguist, it's easy to
get hard copy of a given section of the buffer. First make a
note of the beginning and ending buffer addresses on The
Linguist's hex display of the block of data you want to print.
Then get into BASIC by hitting RESET once or CTRL C twice and
turn on your printer card. Finally, enter the monitor with CALL
-151, type <first address>.<second address> (e.g., 4000.4010),
and your printer will start churning out the copy.

THE APPLE DISK LANGUAGE SCHOOL - A LINGUIST TUTORIAL

After the preceeding brief breather to get you acquainted
with The Linguist's instructions, we're now ready to begin
another leg of your journe towards enius-level disk 1.Q.
Whereas in the last tutorial we covered the terrain rapidly,
hopping from sector to sector in the catalog track, and even
leaping several tracks in a single bound, we'll now be proceeding
at a much slower pace. In fact, we're going to travel on foot in
this chapter, carefully picking our way from byte to byte on one
track at a time, and pausing often to deliberate on what we find
there.

40

*
ia
«
*
in
® |
_im
*]

ft rf
b 13
ft 1S
feifd
fc
ft rii
ill
ft !
Ib '
b rif
ft !
ft 1!

Let's start by getting Tricky Dick going, pressing CTRL C,
and typing "BLOAD THE LINGUIST”. To meet The Linguist face-to-
face, type CTRL E, bringing up the introductory screen. Though
your drive will immediately begin to emit the dreaded dragging-a-
rake-across-a-corrugated-roof sound, nothing is wrong. The
Linguist is merely seeking the disk arm to track $00 to
recalibrate. Doing this gives The Linguist a reference point to
start counting from when it steps the arm to the requested track.

Now press the '/' key to view the help screen. This gives
an encapsulation of The Linguists instructions that you can
always turn to any time you need a reminder.

Now let's get down to some real diskovery. Put an
initialized diskette in your other drive (or the same drive if
you only own one) and make sure the drive number, shown after
"DR="is correct. If not, you'll have to go back to Tricky Dick
with a CTRL C, change the drive number as described in chapter 2,
and enter The Linguist with a CIRL E

This is probably a good place to expand a little on the two
ways of reading a disk discussed in chapter 2. An additional
difference between a raw nibble dump and an.RWTS read is that the
latter, before doing anything else, looks at certain information
to determine the track number over which the disk arm is
currently positioned. It then uses this number as a reference
point from which it steps one track at a time to get to the
requested track. However, during a raw nibble dump, no analysis
whatsoever of data on any track is ever made. This allows a raw
nibble dump to succeed regardless of the contents and formatting
(or lack thereof) of the disk under consideration.

Unfortunately, this process makes it impossible to answer

the initial question, "where is the disk arm?”. So by
recalibrating to track $00, you give the raw nibble dump routine
a starting point from which to count up the tracks. This

provides a clue to the way nibble copiers operate. Since they
circumvent DOS entirely and deal directly with the raw disk
nibbles, you almost always get the recalibration clatter just
before they start copying.

By the way, at this point you may well be seething at ny
confusing practice of referring to data as "bytes” when they're
sitting in RAM and then switching to the term "nibbles” to talk
about the same data once they get stored on the disk. After all,
aren't nibbles supposed to be shorter than bytes? Well,
unfortunately, "nibbles” has become the "official” term for disk
data for certain technical reasons which don't warrant a
description here. Just remember that the "disk nibbles" you see
in The Linguist's data display are the same size as the "bytes"
we looked at with Tricky Dick - 8 bits long.

Now hit the '>' key twice to clock forward to track $01 and
press CTRL R to read in the entire track and flip to the data
display. You will end up with a screenful of hex numbers, the

41

first two lines of which should look something like this:
fLirst data byte in buffer

4000-9BAFF4EF DFF5F5DF ES5F6F4E7 ESF6F3E6
/4010-E5D6F3FD D9FFBDOD 9FA6BBFD DFD3FAB3
/!
buffer addresses

Please note that although the above 2 lines actually exist
somewhere on track $01 (in sector $0F to be exact), you are
unlikely to see the same data residing in the first two rows of
your display. This is because a raw nibble dump simply turns on
the drive motor, moves the arm to requested track, and then
starts reading at whatever point on that track the arm happens

to end up at. It keeps on reading until it fills the data
storage area. Thus, each time you read the same track, although
you will capture all the data, the dump will begin at a different
place. This contrasts with an RWIS read which always goes

directly to a specificied sector and begins reading precisely at
the beginning of that sector.

Uaia SIQca8z acd Jike Buffec

The "buffer" is a block of memory ($4000 to $7FFF in RAM) in
which The Linguist places the data from the track it has just
read. So the f4000* and *4010' in the last illustration are
addresses at the beginning of The Linguists buffer. The
numbering system works just like Tricky Dick in that the number
on the extreme left is the memory address of the first byte in
its respective row. In other words, the first byte in the row
that starts with ?4000-f (a "B1l) resides at $4000 in memory.
The next byte (an *AF*) can be found at $4001, and so on.

Now let's play around with the display a bit. Hit the right
arrow once and note the instantaneous screen flip. The *4100-*
now at the beginning of the first line tells you that you have
just moved $100 (decimal 256) bytes forward through the
buffer. The display will move along one page each time you press
this key. A "page", by the way, refers to a block of $100
(decimal 256) bytes of RAM beginning at an address ending in
00. Hence the sudden progression from *4000-* to *4100-*
(i.e. page $40 to page $41).

You can get the same effect in reverse by hitting the feff

arrow. If you do so now, you will see page $40 pop back into
view. If your cursor is on the bottom line of the display each
time you hit 'M', another line of 16 bytes will scroll into view.

Asimilar effect in reverse takes place when you press *1* with
the cursor on the top line. Holding down the REPT key together
with either fI* or sMF moves things along a bit faster.

Now since the buffer extends from $4000 to $7FFF in memory

and is thus $4000 (decimal 16384) bytes long, you might like some
rapid means of getting from one end to the other. The Linguist

42

provides a couple of ways of doing this. You can get extremely
fast scrolling by holding down the REPT key together with either
the left or right arrow. Remember also that CTRL N takes you
right to the very end of the buffer and CTRL B shoots you back to
the beginning. Go ahead and try these commands out if you like.

This seems like a good time to point out a couple of
important details about the way raw disk data is placed in The
Linguist!s buffer. First of all, the total number of nibbles
stored on any one track usually runs around 6,300 (decimal). The
exact quantity depends on the speed of the drive in which the
disk was initialized (a crucial factor in a couple of copy
protection techniques I’ll be talking about later on). Since The
Linguist’s buffer is over 16,000 bytes long, this makes it
posssible to store more than one image of the requested track.

Thus, the first image starts at $4000 in the buffer and
almost always ends somewhere on page $58. The second image
usually starts on page $58 or $59 and finishes on or about page
$71. This leaves us with enough space between pages $71 and $7F
to store close to 9 sectors of a third image.

Why bother with more than one image? Remember that during a
raw nibble dump, no analysis whatsoever of the track’s data is
carried out. This means that, unlike an RWIS read by Tricky
Dick, The Linguist does absolutely no checking to make sure the
data has been correctly read. So itTs not at all impossible to
find a glitch or two somewhere in one of the track images. When
you use The Linguist to translate a sector of raw nibbles and
subsequently get Tricky Dick to list it in recognizable code, any
errors in the sector’s original data will make the listing more
difficult to understand. If you find a few apparently
meaningless bytes in the final display, you can always go back to
the track dump and translate one of the other images of the
corrupted sector.

Ibs

Press the right arrow a few times and watch for a longish
string of *FF*s* in the midst of the other data. They should
always serve as a focal point when looking through the raw
nibbles, so stop flipping wnen you reach the first batch.
These °'FF’s’ are the notorious sync bytes (or sync nibbles) which
enable the machine to lock in correctly on the data it reads in.

Just to put you in the picture on sync bytes, |1’mgoing to
digress a bit here to describe them more fully. First of all, if
you look in Appendix A vyou’ll find that °'FF’ in hexadecimal
translates into *11111111* in binary. However, the sync ’'FF’s'
are somewhat special in that they have 2 extra zeros tacked on
the end to give *1111111100°, a kind of 10-bit byte.

These extra 2 'O*s*, believe it or not, enable the machine
to correctly divide up into 8-bit bytes the thousands of bits
that come pouring in on each read. Fortunately, the precise way

43

this process unfolds is of no relevance to anyone but a
professional engineer, a state of affairs which allows us both to
escape a detailed 3Pages or so of explanation. Nevertheless,
there are a couple of things about sync bytes which need to be

mentioned.
First of all, you need to know that the 2 *0fsf are thrown
away well before the sync bytes get stored in memory. In fact,

it Is this very throwing away process which makes these bytes do
their job. Secondly, the sync bytes mark the beginning of the
two areas into which the sector iIs divided - the address field
?r_]d the data field. Let*s have a look at the address field
irst.

Zbfi Field

To help along the discussion of these two sector parts, |
have reproduced a block of data from my raw nibble dump of track
$01. Don't worry about locating this same patch of data in your
own dump. Just compare it with any group of bytes which begins a
longish string of eFF,s*.

address field sync bytes address field header
/] [
410 - FF FF FF FF FF FF FF FF FF FF FF FF FF D5 AA 96
41BO - FF FE AAAB AF AE FA FB DEAAEBAC F7FFFFFF

\ \ \ / \ / \ / \ I
volume track sector check- traller garbage data field
sum sync bytes

The address field is the first part of each sector and is
preceeded by about 8-14 *FF sync bytes. They ensure that DOS
is correctly locked in to read the bit stream just before
encountering a sector's address information so as not to overlook
the crucial information that foIIows This information begins
with the address field "header” or "prologue"”, whose purpose is
to tell DOS, "the address field starts here - get ready to
analyse it". On normal disks, this header is a string of 3 bytes
which starts with the two reserved values, *05* and 'AA'. The
third byte in a DOS 3.3 header is *96* as shown above and in a
3.2 header it's a 'B5'. These reserved bytes are never used
anywhere on the disk to represent file code, which ensures that
DOS doesn't mistake file data for a header.

DOS then has its hands full for the following few
microseconds during which it has to carry out a surprising number
of operations. It next has to read in, decode, process, and
store (in locations $2F - $2D) the volume, track, and sector
numbers. During all this it also has to compute the "exclusive
or" product (explained in Appendix A) of these 3 values with a
fourth, called the "checksum" If the result of this operation
is zero, DOS carries on its Work if not, it bombs out and you
get the dreaded 1/0 ERROR message.

44

This points up the function of the checksum, which DOS puts
in each sector’s address field whenever you INIT a disk. The
checksum is calculated by combining the crucial information in a
series of exclusive or’s as follows: volume number EOR track
number EOR sector number EOR $00 = checksum. DOS always writes
this result on the disk in the spot shown in the last
illustration

Whenever reading or writing a sector, DOS uses the checksum
to verify that the address field data has been correctly read.
To do this, DOS* RWIS routine performs another series of EOR’s of
the address field info. What it ends up with is a $00 after the
=" sign like this: volume number EOR track number EOR sector
number EOR checksum = $00. If a result other than $00 is
obtained, it means that the address field information of that
particular sector has been incorrectly read or previously
corrupted.

After all that work, DOS still has to verify the trailer to
make sure that it reads correctly. This is a kind of extra check
to be sure that the information DOS has just processed was
actually from a data field. Here we arrive at a strange anomaly
in DOS. Although during an INIT it always writes the 3 trailer
bytes shown in the last illustration, it only checks the *DE AA*
bytes when it reads a sector. In fact you’ll occasionally notice
when examining disks that the second digit in the 'EB* has
somehow gotten changed to something else, altering the byte’s
value to, say, $E9 or $E7.

The additional trailer byte may have been included to give
DOS a small amount of extra time before ingesting the upcoming
data field, before which it has to compare the volume, track, and
sector numbers with those requested. In any case, DOS does get a
little breathing room because the trailer is often followed by
several bytes of garbage left over from previous recordings on
the disk, plus another 4 or 5 sync bytes. Only after this
interval, does the RWTS have to begin dealing with the data field

(which 1’Il deal with myself a little later).
UabaReadies Ccostcaicts
You’ll notice in ny last illustration that each of the first

4 items of address information in line $41B0 consists of 2 bytes.
For example, the volume number, which by default is $FE (decimal
254), is represented by *FF FE* in the address field. But why
not write it in a single byte as *FE’ and do likewise with the
other items? The answer lies in some serious operating
constraints imposed both by the hardware and by the necessity of
locating the beginning of each byte in the bit stream.

Unfortunately, there are several such constraints. For
example, one of the requirements of the sync process described
above is that any byte that passes between the machine and the
disk drive must have its 7th bit set to a ’1* So, as you can
see from the chart in Appendix A we are already precluded from

45

storing any byte on the disk whose value is less than $80.

Moreover, other DOS 3.3 hardware restrictions dictate that
no byte on the disk can contain more than one pair of consecutive
0 bits. So, for example, 11111000 ($F8) or 11001100 ($CC)
would not be permitted. This dictate raises the minimum byte
value to $96. Furthermore, the bytes *D5* and *AA’ are reserved
for use only in headers and trailers. So after all is said and
done, DOS 3.3 is left with only 64 permissable values within the
$96 - $FF range with which to represent data on the disk.

The DOS 3.2 hardware was even less generous. It has the
high bit rule, the 2 reserved bytes, plus its hardware's more
stringent requirement that no disk byte can contain acy;
consecutive *0*s’. That means that in 3.2 there are only 32
allowable values range from $AB to $FF.

If this weren’t enough hassle, DOS has the additional burden
of time constrants when it reads the address field information.
It must assmilate and process each byte in exactly 32
microseconds (4 per bit) - no more, no less. Moreover, extra
logical and storage operations take place during the processing
of this information, so DOS is placed under considerable
pressure.

Since the full range of hex values can’t be stored on the
disk, a single byte of address field information (or any other
data for that matter) needs to be translated into a
representation longer than one byte before being transferred
across. When this data is later retrieved from the disk, a
reverse translation has to take place. Let’s first take a look
at how this is done with the address field values before looking
at how ordinary files are handled

Ibe Boectiice lecboiaue

Since the address field data can conceivably take on any
value, DOS needed an encoding technique for representing every
byte from $00 - $FF (256 in all) using a substantially restricted
range of numbers the technique had to be lightning fast.
Fortunately, the *4&4 encoding technique | have been previously
talking about neatly solves these problems.

Now for the bad news. It takes 2 bytes of 4&4 to represent
1 byte of normal hex. Nevertheless this can’t be avoided, so
follow along with me while | do a 4& encoding of the value $0E
to obtain the 'AF* and *AE’ bytes which represented the track
number in the previous illustration.
Step 1: Use Appendix A to represent $0E in binary

$OE=00001110

46

fe
ft.

>

fe

fe

fe
fc
fc
fc
fe

fc

fe

&=

fc

fe

fC

fe

fe

».

fc

Is

rli

Step 2: Lift out the odd numbered bits
Vot
0 0 10
Step 3: Shove M’s* in front of each bit
10 10 1111
10 10 1110
Step 4: Consult Appendix A to get the hex translations
10101111 = $AF

10101110 = $AE

Of course, DOS doesn*t have to bother with Appendix A to do
any translating, since microcomputers only process binary data;
displaying this data in hex is merely one of their concessions to
our mental frailties. This means that DOS doesn't do steps 1 and
4, so only 2 operations are involved in encoding an ordinary hex
value into its 4&4 equivalent. Decoding it is equally as fast
and easy, since it simply employs a two-step process which is the
reverse of the one above. Other disk encoding techniques have to
rely on looking up bytes in a special table, and hence use up
extra valuable clock cycles (I1fll be talking about these other
techniques later).

itou Icanslabe Address Eieid Header

Getting the ordinary hex equivalent of the address field
bytes is even easier for the lucky possessors of The Linguist
than it is for DOS. All you haveto do is place the cursor on
the first byte after the *D5 AA 96* data field header (an
most disks).

addressfield header
41A0 - FF FF FF FF FFFF FF FF FF FF FF FF FF D5 AA 96
41B0 - FF FE AA AB AFAE FA FB DE AA BB AC F7 FF FF FF
\
place cursor here

The translation will appear in the separated line of data in
the bottom left of your screen as shown below:

buffer address of 1st byte volume sector
\
41B0: FE 01 OE FI

\ \
track checksum

47

'"FFDn

The 4-digit number at the beginning gives the memory address
in the Linguist’s buffer that contains the first byte the cursor
is sitting on (fFEf in this case). So we know immediately that

the ’'FF’ and ’FE’, shown in the illustration before the one
above, are at memory locations $41B0 and $41B1. The rest is
pretty self-explanatory - all but the sector number, that is.

This requires some extra discussion which 1*11 get to in a
second.

The considerable speed advantages of 4&4 over other encoding
techniques have not gone unnoticed by top games programmers. In
fact, a number of current games now use 4&4 to store their high
resolution images on the disk. This is one of the factors which
accounts for the striking speed with which pictures appear on
your screen during the course of play. This speed is usually
further enhanced by doing away with sectoring altogether and
loading an entire track into the high-res screen "on the fly”
(i.e., one byte after the other as quickly as it comes off the
disk). The extra storage demands of 4&4 are usually offset by
"crunching" (i.e. reducing the code necessary to represent) the
high-res images by amounts claimed to be as high as 2000$.

These techniques also of#er the games pros protection of
sorts, since nibble copiers need considerable extra coaching to
copy sectorless disks. Moreover, the additional difficulty of
"cracking" 4&4 encoded files is often enough to discourage all
but the most obsessional enthusiast. Furthermore, until The
Linguist came in out of the cold, no commercially available
utility was capable of translating 4&4 disk code. This meant
that top games writers* could rest assured that their assiduously
guarded programming secrets were unlikely to be rumbled by every
hobbyist with a disk patching program and a smattering of machine
code.

These considerations aside, you can easily cope with such
disks, and | will be coming back to them in greater detail when
we work on The Linguist*s data translating facilities. Now let*s
have a little chat about DOS sector numbering.

Logical gs* Ebgsisal Sectors

In fact, there are 2 types of sector numbering systems - the
physical and the "logical™ . The physical sector numbers are
those physically present on the disk itself. This is the type of
sector that appears in the Linguist’s translation of the address
field data. On a 3.3 disk, these numbers are run consecutively
on the disk. However, since tracks are circular, sector $0F is
followed by sector $00 both on the disk and in the buffer.
You’ll know instantly when you’re looking at sector $00 because
its address field sync gap #ontains a much larger number of
*FF*s* (usually more than 50) than do the other sectors.

This arrangement makes it possible to find a given physical
sector quickly in the Linguist’s display by counting up blocks of
sync bytes while paging through the buffer. For example, if you

48

wanted to get to sector $02 from $00, paging forward through two
strings of 'FF's' would bring you to its address field.

However, although this is how sectoring works in a raw
nibble dump, the story in an RWIS read, and hence when using
Tricky Dick, is entirely different. Here, the physical sector
numbers get translated into completely different logical sectors.
This means that when you select a particular track and read, say,
sector $04 with Tricky Dick, you won't get the same sector data
that appears in physical sector $04 in a Linguist dump. In fact,
what you is the data from physical sector $07, as shown in the
illustration below.

This procedure was not incorporated to annoy and confuse us,
but, just like the universal use of hex instead of decimal, to
make life a lot easier. In fact, the system of logical sectors
adds considerable speed to all DOS operations. Tosee how it
works, hit CTRL C twice to getthe BASIC prompt up and type in
CALL -151, followed by BFB8.BFC7. You'll end up with the
following display (without my labels, of course).

logical sectors: 01 2 3 456 7
/Y Y R R B A |
physical sectors: BFB8-00 OD OB 09 07 05 03 01
physical sectors: BFCO0-0E 0C OA 08 06 04 02 OF
| W VA W W W W
logical sectors: 8 9 A B C D E F

This is the "sector translate" or "soft skew" table which is
used to bring about the "sector interleaving” or "sector skewing"
process. DOS translates the physical sectors it reads from the
disk into logical sectors by counting up in the above table. For
example, physical sector $0B occupies byte number $02 in the
table, so physical sector $0B is logical sector $02.

When you start using The Tracker, you can see this process
in action and compare both types of sectors as the data itself is
being read off disk. This is because The Tracker allows you to
select a display of either logical or physical sectors for any
DOS operation.

The speed advantage of sector skewing come from the fact
that after DOS reads in a sectorfull of data, it has to digest it
a bit before moving on to the next sector. Trying to do this in
time to read the very next physical sector on the track, is
impossible, and would clearly result in a grave case of
indigestion.

In fact, while DOS is processing one sector's data, several
more sectors pass under the head. By staggering ("interleaving",
"skewing") the sectors in such a way as to avoid accessing them
consecutively, a considerable number of unnecessary disk
rotations are eliminated during DOS's work. The table above
helps perform this function for DOS 3.3. You can see that
although the logical sectors (those specified by RWTS) run

49

consecutively, their physical sector equivalents actually being
accessed from the disk are not in consecutive order. The
physical sector order shown in the above table gives DOS time to
process one sector’s data before the next appears under the
read/write head.

So if you can’t read a particular sector number with Tricky
Dick, you can translate it wusing the above table into its
physical sector number, and use the Linguist’s translation
functions to have a look at the code it contains. 1’1l be
guiding you carefully through this process later on in the
chapter under ”"Translating Raw Disk Data with the Linguist”.

DOS 3.2 used a different method of skewing its 13 sectors.
Instead of resorting to a table look-up procedure as does 3.3,
its initialization routine staggers the numbering of the phP/sicaI
sectors on the disk. So if you look at a 3*2 disk, you will see
that the numbers are not consecutive from sector to sector, but
run like this.

00 OA 07 04 01 OB 08 05 02 OC 09 06 03

The normal skew factors for both versions of DOS provide a
kind of middle ground where all types of DOS operations receive
rou%hlgl equal speed benefits. However, the advantage of the 3.3
method is that it is readily modifiable by simply switching
around the values inthe soft skew table, whereas with 3.2, the
formatting of the disk itself would have to bealtered.
Sometimes, altering the sector access order speeds up certain DOS
operations.

Xbe Uaba Eielb
Let’s have another look at my display from the discussion on
the address field. This time 1°Il show you lines $41B0 and

$41 Q0 with labels pertaining to the data field.
datafield sync bytes
[YR W

41B0 - FE AA AB AF AE FA FB DE AA EBAC F7 FF FF FF FF
4100 - FF Db A AMAD [DE DB FB FB DE DEE7 BF EB FE A7 BF
\ |

N !
data field header beginning of sector’s file data

This begins where we left off in our examination of the
address field, and illustrates how the data field is structured.
It starts off with far fewer sync bytes (usually 4 or 5) than
does the address field. These are followed by the *D5 AA AD’
header which is the same on all standard 3.3 and 3.2 disks. The
header enables DOS to identify the beginning of the sector’s data
field which starts in the above illustration with a *D9 byte.

In order to gain some more familiarity with all this, you

might try finding the beginning of a data field and verify the
above marks. Then hit the right arrow once or twice and look for

50

the very next sector's address field sync bytes. Near the
beginning of them, you'll see the data field trailer, which is
the same as that of the address field, a 1DE AA EB*. Here's an
example from one of ny disks of what | mean.

last bytes
of sector data field
$0E's data checksum more garbage
[\ / I
9% 9E 96 (D A7 DE A A BB E7 CF F3 FC FI\:FI\:FI\:FI\:
oLy
data field trailer sector $0F*s address

field sync bytes

As in the address field, a few bytes of garbage may
sometimes be seen among the valid marks. This is no problem and
is ignored by DOS. What is important, however, is the checksum,
which as you can see above is a single byte of data. It works in
much the same way as the address field checksum, in that it is
the product of a series of Exclusive OR's. Each byte of the raw
sector data is EOR'd to the next until the end of sector is
reached. The result is then written out as the last byte. This
iRsAMverified by DOS just after the sectorfs nibbles are read into

You also need to remember that DOS treats the address and
data fields entirely differently in working with any disk. Both
are formatted and assigned their respective sync bytes, headers,
trailers, etc., when you INIT a disk. However, each time DOS
puts a new sectorfull of file data to the disk, it rewrites the
data field's sync bytes, header, trailer, and checksum. This
differs from DOS* treatment of the address field, which it never
touches after it once INITs a disk.

digging kbcfiugft flaw Da&a

When you first flick through The Linguistfs display, you
will probably take one look at the row upon row of densly packed
numbers in the various sectorsldata fields, and rapidly reach
for your copy of Space Zappers. What kind of weirdo could
possibly make sense out of this endless field of alphanumeric
gibberish? Well, let me tell you about a strange mental
phenomenon, as yet unexplained by cognitive psychology, that most
disk snoopers experience fairly early in their endeavors.

You will soon find, after very little practice at all, that
you can merely glance at a data field of raw file nibbles on
almost any disk and be able tell instantly whether it's valid

code or garbage, whether it's the product of 3.2 or 3.3 DOS, and
which of the 3 encoding schemes has been used to write it out.
What is even more surprising, you’ll find yourself doing this
without being able to remember the value of a single byte that
appeared in the display. What you'll develop is a kind of global
perception in which the mere "look"” of a screenfull of raw hex
will tell you all you need to know.

51

So let’s get started right now on your development of this
arcane ability by analysing the sort of stuff that might turn up
in a sector’s data field. I’ve already talked quite a bit
about one of DOS’s 3 encoding techniques, the 4&4. Now it’s time
to get aquainted with the other two, 5&3 and 6&2.

DCS 2*2 fifld 2*2 fiDjsQdiag lecbciciu€s

The 5&3 mode was used by DOS 3.2 in order to satisfy the
hardware restrictions | talked about earlier. Remember that in
3.2 any hex value that passes to and from the disk must have the
high bit set and be devoid of consecutive '0* bits. Furthermore
$D5 and $AA are reserved for headers and trailers. This means
that the lowest permissible value for file encoding is $AB and
that more than one disk nibble must be used to represent an
ordinary hex value.

On the other hand DOS 3.3’s restrictions are a bit more lax
in that, though the high bit rule is still observed, bytes with 1
pair of consecutive *0* bits are o.k. The same two reserved
bytes are used and we end up with a minimum permissible value of
$96 for writing data to the disk. DOS 3.3 uses the 6&2 mode for
data storage.

In order to get a translation of a sector’s raw disk data,
you need to tell the The Linguist which encoding mode was in
effect when the data was stored. Since the two DOS’s each have
their own type of encoding, in most cases the easiest way to go
about this is to identify the DOS version on the disk you are
working with.

Before learning how to make this distinction, you might be
interested in knowing why the two encoding techniques are
referred to as *5&* and *6&*. These nicknames are derived from
the fact that the first step in both recipes for cooking up a
disk version of your programs consists of chopping up their
constituent bytes. In 6&2, bits 7 and 6 of each byte are cut off
and placed in their own special DOS buffer. And, as the name
implies, the 5&3 method starts the ball rolling by lopping off
each bytes highest 3 bits and storing them separately. A
further short series of operations is then performed before the
final data chop suey is ready to be delivered to the disk. [I’Il
be talking in detail about this subsequent processing a bit later
on in our travels together.

In both DOS versions, when a block of *00*s’ gets translated
for disk storage it is represented as a block of the particular
version’s lowest permissible value. Since DOS 3.3 puts »0’s» in
all sectors during an INIT, empty sectors on a 3.3 disk will
usually be filled with 96°’s’ - which translate back into »)*s*
during an RWTS read. DOS 3.2, however, only writes in the
address field information during an INIT, leaving the empty
data fields filled with »FF’s».

52

rtf
ft- IP

fr li

fc

fc

fc

m L

This means that one reliable way of telling which DOS
version a disk was INITed under is to page through a Linguist
dump looking for empty sectors. Track $02 is worth looking at
first, since under a normal DOS only its first few sectors are
used and the rest are filled with zeros; track $22 is also a good
bet, since DOS will tend to save files there only after all or
most of the other tracks have been written on.

Another quick way of telling whether a disk is 3.3 or 3.2
formatted is to look at its sector length. Since DOS 3.2 has
fewer values to play with than 3.3 when translating data, it
naturally has to use more disk nibbles to store the same amount
of program code. In fact, a DOS 3.2 physical sector contains
exactly 410 raw nibbles, whereas a 3.3 sector only holds 342. Of
course, in either version, a physical sectorfull of data gets
translated into 256 bytes of ordinary file code when itfs loaded
into RAM

You don't need to count nibbles on your screen, however,
since it's easy to estimate sector size simply by flipping pages.
Try the following: hit one of the arrow keys a few times in
succession. If you notice that on most presses, you jump from
one block of address field sync bytes to that of the adjacent
sector, you've probably just read a track of 3.3; 3.2 sectors
usually require two arrow key strokes to get from the beginning
of one sector to the beginning of the next.

The most obvious way of identifying the DOS version is of
course simply to look at the address field header. As mentioned
previously, its third byte differs between versions CB51 for
3.2, '96' for 3.3). This may not help you much when looking at
protected disks, though, because they are often formatted with
nonstandard headers.

(D Eoue |d Eque

I've saved the easiest job for the last. You'll remember
from my previous discussion of the subject that 4& encoding
splits a byte in half, and then places *1's' in front of each of
the bits of the resultant 4-bit nibbles. What we end up with is
two 8-bit bytes, with all the odd-numbered bits set to *I*

bit numbers: 76534210
byte £1: 1B1B1B1B
byte £2: 1B1B1B1B

The »B's' represent the bits of the original byte before
being encoded. A quick examination of the chart in Appendix A
will confirm that all the hex bytes whose 4 odd bits are set
consist of letters only. This means that any byte which has one
or more of the numbers from 0 to 9 in it can't be the result of
484 encoding. So if The Linguist presents you with a screenfull
of letters, you've got 4&4 data on your hands.

53

As | mentioned earlier, one important sign that might lead
you to look more closely for 4& encoding is a lack of sectoring
on a track you’re examining. In this case, you can often see
blocks of sync bytes at regular intervals throughout the track,
but no headers or trailers.

Since this is supposed to be a hands on tutorial rather than
a lecture course, probably the best thing for you to do right now
is to compare the above formatting and encoding differences by
reading and examining both a 3.3 and a 3.2 disk with The
Linguist. Now is also the time to have a look at any originals
of games disks you might happen to have in order to see if you
can find some 4&4 to practice on. Surprisingly little practice
will develop your eye to the point where you can pick the correct
DOS and encoding mode used in a matter of seconds. However,
before we actually ask the Linguist to do any translating, you
have to be able to tell if a sector contains

Goodies qgc GachaeeS

Another knack you’ll find useful is the ability to determine
whether a particular track or sector is filled with viable code,
or whether it contains invalid or corrupted data. Being able to

do this will, among other things, save you trying to translate a
useless block of disk nibbles into a program listing. As you’ll
discover in the next chapter, this skill will also help you find

out if a disk contains any hidden “half tracks” (those written
between the pathways on the disk that normal tracks occupy).

Garbage tracks and sectors can be most readily spotted by

looking for illegal bytes in the data field. Certain easily
recognizable illegal bytes are common to all 3 encoding modes and
are shown below.

95 or less

98 - 99 DO _ D2

9C D5

PO - A5 D8

A8 - A9 E0O _ E4

BO - Bl E8

B8 FO _ FI

@ - CA F8

A few rules of thumb can easily be deduced from these
values: look for bytes smaller than $96, and those ending in *0%
*1’, or ’8’. If you find more than a couple of such bytes in a
single sector’s data field, you should strongly suspect that the
nibbles don’t represent valid file code. If only a few are
present the sector might be worth translating anyway, but if a

lot are there, don’t bother - the data is likely to be
meaningless.

IcaQalabing Gisk Gala with ihs

Now we’re going to get The Linguist and Tricky Dick working
together on a type of espionage that no other disk utility

54

ft

ft

ft

ft

fc

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

fc,:

available at the time of this writing can carry out. Make sure
that both programs are loaded into memory, then place your
original System Master diskette in your drive. Next read in
track $11, sector $0F and take a look at the catalog entry for
HELLO. The fouth and fifth bytes in line $08 should tell you
that the HELLO!s track and sector list is on track $13* sector
$0F.

Examining this list tells that HELLO starts on sector $0E of
the same track and runs down to sector $0A. This is our cue to
jump into The Linguist with CTRL E. Now select track $13 and
press CTRL R Our job is to find the sector which contains the
beginning of the program, but we know from our previous
discussion of that, we won’t be looking for sector $0E. To
determine the physical sector we need to translate, take a look
at the sector skew table shown a few pages back. This tells us
that logical sector $0E translates into physical sector $02.

To get sector $02 up on The Linguist’s display, start
looking for a gap of address field sync bytes at the beginning of
The Linguist’s display. If none are present there, you’re sure
to find some on the next page by hitting the right arrow. Now
put your cursor over the first byte after the *D5 AA 96* address
field header. The data line at the lower left of the screen will
tell you the physical number of the sector you are examining.
What you have to do now is start flipping pages by pressing the
right arrow some more while also counting sync gaps. Start your
count on the sector whose number you just translated and
increment it each time you come to an address field sync gap.
When your count reaches $02, you have arrived.

Check to be sure that you’re on $02 by putting the cursor on
the volume number and reading the sector number at the bottom of
the screen. If you have indeed arrived at the right sector, take
a look at the encoding mode indicator at the upper right of the
screen.

<00>
present encoding mode —> <62>

This should indicate that you’re in the 6& mode as shown
above. If not, hit CTRL D and type in a *6' (you would of course
type a *5' if you wanted 5&3, or a *4* for 4&4).

Now The Linguist is ready to show off some wunique
translating skills. Place the cursor on the first byte after the
D5 AA AD’ data field header. This should be a *9A* Now hit
CTRL T and the entire sector will be translated and moved to
Tricky Dick’s data buffer instantly. A subdued squeek will be
heard when this occurs.

To view the translated data, hit CTRL C followed by RETURN.
Tricky Dick’s first display line should look like that
illustrated below.

55

CHAPTER FIVE — The Secrets of Software Protection

In the last chapter, you got a brief introduction to a few
of the unique achievements attainable with the powerful
combination of Tricky Dick and The Linguist. Now Pm going to
show you how to use this irrepressible duo not only to carry out
sophisticated software espionage, but also to sweep aside most of
the counter-measures presently employed by software writers and
publishers to prevent such activities. Having already learned
how to read any disk you wish, you are ready to play an even more
active role - that of actually fiditiDS copy protected code. This
chapter will equip you to cope with most forms of nonstandard
formatting so that you can repair locked disks, patch them, and
investigate their software to the fullest possible extent.

IMPORTANT NOTE: DO WOT ATTEMPT TO WRITE ON THE ORIGINAL
VERSION OF ANY PROTECTED DISK. DOING SO COULD IRREPARABLY
CORRUPT IT AND INVALIDATE ANY ENTITLEMENT TO A REPLACEMENT FROM
THE COMPANY CONCERNED. ALWAYS MAKE A COPY FIRST AND WORK
EXCLUSIVELY WITH THAT.

Sorry, | felt that | had to get that boring but important
disclaimer off my chest right up front. If you choose to ignore
it, remember - you have been warned. Now let’s get down to some
more exciting issues.

Many a lonely hour and much shoe leather have been expended
by expert programmers while walking the streets and riding an
angle to produce an unbeatable disk lock. As a result of their
Herculean efforts, a plethora of strategies, some craftily
ingenious, others crudely simplistic, have been invented to
corral wandering program code. Though highly numerous and varied,
however, almost all copy protection tricks can be classified
under one of only two categories: formatting changes and timing
dependencies.

The first and by far the more common of these involves
tampering with the same disk formatting components you dealt with
in the last chapter. Indeed, it is mere child’s play to produce
a disk whose headers, trailers, checksums, sync bytes, address
information, location of the VTOC and catalog, etc., have been
altered. Most such protection methods can be applied in seconds
by changing a couple of bytes in DOS and INITing a disk. The
funny formatting 1i1s then recognized by the DOS on the INITed
diskette, but not by normal DOS which is used by FID and COPYA.
This means the disk will boot and run normally, but you won’t be
able to back it up using a standard copy program.

By the way, in case you’re curious about how to actually
protect your own disks with some of the above tricks, stay tuned
and keep alert - as you work through my instructions, some of
these secrets will be revealed to you in a most unexpected way.

58

th — th th th

-
@D

th th th th th th th th

fc

Sl

The second protection category, that of making disk
operation timing dependent, usually involves a lot more than just
tweaking DOS a bit. Special routines are employed which either
time the reading of or count up a block of nibbles (usually sync
nibbles) somewhere on the disk. |If these routines fail to find
the quantity of nibbles they are looking for, or are unable to
achieve the required timing, they abort the booting and/or
running of the programs, usually wiping memory in the process.
Even with the skillful use of nibble copiers, it is often quite
difficult to get the number of these crucial nibbles exactly
correct on a copy. This is due in major part to the substantial
timing differences between Apple drives, a factor which software
publishers often greatly enhance by drastically altering the
speed of the drive they use to make the original.

Stses in Bsadiaz Ecoieeted

You'll know soon enough if a program you are interested in
is copy-protected when you hear the familiar sound of disk
suicide on your first attempt to read it with Tricky Dick. The
accompanying *1/0*, flashing merrily away at the top of the
display, is Tricky Dick's way of telling you that this is where
the fun begins. With the supreme disdain such trivial
interruptions to your enjoyment deserve, you next carry out a
couple of simple checks.

The first of these is pretty obvious, but is sometimes
overlooked in one's zest for investigating more intriguing
possibilities. And that is simply to try toggling the Tricky
Dick DOS version to 3.2 (if you are in 3.3), followed by a
reread, to eliminate the possibility that the "protection” method
involves nothing more than merely formatting the disk to boot
under both DOS types. Such a disk usually contains a 3.2 format,
though it is designed to work equally well with 3.3. Naturally,
a switch to the other version should also be tried first if you
originally selected 3.2 to read the disk and were unable to do
S0.

If a DOS toggle doesn't cut any ice, the next step is to hit
CTRL S and make a few changes in Tricky Dick's RWIS parameters.
This command starts things rolling by puting the cursor at the
beginning of the DOS sector mark display. After your work in the
previous chapter, these should now be like old friends to you.
Just to make absolutely sure that we're both in the same ball
park, however, I'm reproducing Tricky's DOS mark display below
for reference.

cursor comes here after CTRL S

/

D5AA96 Y DEAA address field: header, checksum status, trailer
D5AAAD Y DEAA data field: same as above, but for READING only
D5AAAD 0 DEAAEB - data field: same, but for WRITING only

Start out by using the right arrow to skip over the 'D5AA96'
address field header and place the cursor on the 'Y* directly

59

following it. Any time this letter is visible, Tricky Dick will
compute the address field checksum in the normal way before
attempting to read the data field following it. So let’s type an
N over the ’Y* eliminating this check during any subsequent
RWTS read. Now hit the right arrow once more and change the
"DEAA' address field trailer to 0000°. This tells Tricky Dick
to ignore it from now on also.

Pass over the ’'DbAAAD* data field header and change the next
»Y* to a 'N*. As you might suspect, this makes Tricky Dick’s
RWTS forget about the data field checksum. Finally, move on and
change the ’'DEAA* data field trailer to *0000*, finishing off by
hitting RETURN. These adjustments should leave the upper left
corner of Tricky Dick’s display looking like this.

D5AA96 N 0000
D5AAAD N 0000
D5AAAD 0 DEAAEB

What sort of reliability might you expect if you attempt to
read a disk without the benefit of the verification these marks
provide? In fact, 3 of them represent a prime case of overkill
by the author of DOS in his (her?) effort to give you error free
disk access. The two trailers and the address field checksum are
superfluous and contribute almost nothing to accurate operation.

The data field checksum, however, is a horse of a somewhat
different color. It is not altogether unheard of for a computer
to misread a nibble or two while loading in a sectorfull of code.
Under normal circumstances, this would result in a checksum
mismatch which DOS would quickly detect, causing it to reread the

sector. So cancelling the checksum as described above does
involve a small but nonnegligible risk of getting some false data
along with the goodies. | leave to your imagination the results

of subsequently writing a sector corrupted in this manner back to
the disk from which it came.

This brings me to an important tip: |If these parameter
changes enable you to read the disk, try changing the data field
checksum status back to *Y* and reading again. If you succeed,
you can rest assured that the data you get from then on will have
been properly checked by RWIS.

Having gone to the trouble to set up your parameters, don’t
give up immediately if they don’t enable you to read the first
sector you have a shot at. Quite often protected disks contain
only a few trackfuls of legitimate code, the rest being composed
of sync bytes, random values, or other garbage. Remember also
that blank 3.2 sectors have no data field header, this being
wri tten only when file data is placed on the sector. If you
attempt to read a sector of this type with Tricky Dick, you will
get an 1/O error.

So always explore the disk thoroughly, trying various
sectors on various tracks until you come to one you can read.

60

|
|S

'S
m3

>3

Chances are that once you find a sector accessible to Tricky
Dick, there will be several more near it which can also be read.
The best place to start is track $00, sector $00, and then move
to the other sectors on the same track. After that, try tracks
$01 and $02 before looking around the rest of the disk.

By the way, although Pm only talking for the moment about
getting some protected code into Tricky Dick's screen and
eyeballing it, this skill will pay off later when it will enable
you to do important work with protected diskettes - such as
finding and fixing a clobbered VTOC and/or catalog, hunting down
the start of a program, discovering and changing the various
levels and options of a game, etc. In addition, it will even
allow you to protect your own disks. But let's not move ahead
too rapidly just now.

All other considerations aside, the foregoing few simple
changes will enable you to read from (and write to a copy of) a
surprising number of locked disks. Of course, these changes
represent only the preliminaries; the CIA utilities have a number
of other methods up their sleeves for extracting the information
you require in order to get to grips with a protected program.

Usicg Ibs Ucguisl acd Xciskx Disk in laadeis

If after incorporating the above changes, you still are
unable to read any part of a particular disk, it is time to call
on The Linguist to give Tricky Dick a helping hand. After
getting The Linguist into memory, use it to read in and examine
track $00 of the diskette you are interested in. Bear in mind
here that changed address and/or data field headers to be our
next most likely culprit.

Examine the track dump and determine the header values just
like | showed you in the last chapter. If one or both have been
changed, go back to Tricky Dick, hit CTRL S, and change the
sector mark display accordingly. For example, if you found that
the address field header was DC AA 96 and the data field header
wasdDB AA DD, your display should look like this before doing a
read.

DCAA96 N 0000
D5AADD N 0000
D5AAAD 0 DEAAEB

Simple though the foregoing measures may sound, they will
allow you to edit about 80% of all protected disks available at
the time this book was written. In addition, cancelling the data
field checksum will often allow you to read in, and hence rescue,
a clobbered sector on a normally formatted disk. And of course
it is not unheard of for the other sector marks to get
overwritten or changed accidently, a situation easily corrected
with the techniques above.

61

Of course, the CIA has even more tricks for reading the
unreadable, and 1'll be talking about these in due course.
In the meantime, | need to describe briefly how you go about
writing an altered sector back to a nonstandard disk (that is, a
copy of such a disk, if it happens to be protected). The only
further adjustment you need to make concerns the data field marks
shown in the third line of the sector marks display. This line,
if unchanged, looks like the illustration below.

D5AAAD 0 DEAAEB

Every time a sector is written on the disk by RWTS, its data
field header, checksum, and trailer are rewritten. These 3 marks
are repeated in the third line of the display so that you can
read a sector in and write it out with a different header or
trailer. Let's say you want to copy a sector from a disk in
drive one to another disk in drive two. Let's assume the drive
one disk's data field header and trailer are DS5BBAD and DDAA,
respectively, and you want to change these to D5CCAD and DFAA
The appropriate data mark display should look like the following,
minus my comments.

D5AA9% Y DEAA (normal address field header)
D5BBAD Y DDAA (data field header values of drive 1 disk)
D5CCAD 0 DFAAEB (data field header values to go on drive 2 disk)

Your only remaining task would be to read the sector from
drive one and write it to drive two. This technique is quite
handy for protecting your own disks, a topic which | will
be discussing at length a little later on.

Don't worry too much about the extra 'EB* at the end of the
third line. Although you can change it at will, it is ignored by
RWTS and has been included in the display merely to allow you to
distinguish at a glance the data field marks used for writing
from those used for reading. The 'O" in the middle of the third
line has no function except to remind you that the data field

will be written to disk with a checksum of zero.

Just to give you some practice in dealing with altered
formatting, | have "protected” track $22 of your CIA disk using a
variety of the formatting changes you're likely to come across in
commercial software. This, and a hidden half track 1'll soon be
discussing, are the only part of your CIA disk which is "locked".
However, after completing this chapter, you will have no trouble

copying track $22 across to your CIA backups if you wish. Just
be sure to zero out the track $22 bit map in the copy's VTOC, as
| described when we worked on Tricky Dick together.

Following my instructions above, you might want to
immediately try putting 'N's' in the checksums and '0O's' in the
trailers in order to read track $22. Let me save you the bother
of doing this because, heh heh, it won't work (you didn't think |
was going to make things that easy, did you?). Instead, you will
have to dump the track with The Linguist and have a closer look.

62

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc

fc

As part of our fun in this chapter, I'm going to ask you to
write down one or two things about track $22, and also to try to
read some of its sectors. Nothing regimented or school-marmish,
though - just a few quick projects to get you talking to Tricky
Dick and the Linguist a bit more fluently. Later on, you can
check your results against mine which I've recorded on the last
page of this chapter.

Your first assignment is to check the sync bytes and make a
note of them in hex. Paradoxically, altered sync bytes in no way
interfere with a normal RWIS read, but do put something of a
strain on nibble copiers. This is because RWIS finds valid data
by simply recognizing the data field header and reading in the
next 256 bytes. Nibble copiers, on the other hand, cannot be
dependent on this header, since its 3 bytes can take on a large
number of values. This means that they have to home in on the
sync bytes in order to find the beginning of each sector (and
often also the track start). So if you're trying to copy a disk
whose sync bytes have been altered, you'll usually have to tell
your favorite copier what they are by means of one or more
parameter changes.

Having written down the sync bytes, you're next job is to
read the data on sector $00 of track $22 using Tricky Dick.
You'll remember from the last chapter that Tricky Dick reads
logical sectors, while The Linguist's dump shows only physical
sector numbers. Fortunately, logical sector $00 is also physical
sector $00 which means you won't have to use the chart below to
find it in The Linguist's display. You'll also recall from the
last chapter that sector $00 is easy to distinguish from the
other sectors in a raw nibble dump because its address field sync
bytes usually outnumber those of other sectors by about 3 to 1

After finding sector $00, all you have to do is check out
its headers and trailers, jump back to Tricky Dick, put any that
are non-standard in the DOS marks display - and voila - the
sector magically appears on your screeen. If all this doesn't
work quite so magically on the first attempt, hang in there and
keep trying. Resist the temptation to look at the explanations

in the back of the chapter, and instead, hit CTRL Eto check out
the raw data again.

Got it? Good! Now have a shot at reading sectors 1, 2, and
3. They get progressively harder as you work through them in
that order. Consult the chart below to translate the disk's
physical sectors into logical sectors for Tricky Dick's benefit.
Remember that a complete explanation is at the end of this
chapter in case you truly get stuck. When you examine sectors 2

and 3, I'd like you to write down the data field headers and
trailers you find there. They will provide you with some
interesting surprises which 1'll be discussing further in the

answer section.

Logical Sector: 0 1 2 3 45 6 7 8 9 ABCD E F
Physical Sector: 0 D B 9 7 5 3 1 E C A 8 6 4 2 F

If you've arrived at this point successfully, writing to an
altered format will certainly prove to be no sweat. AIll you have
to do is get the right DOS marks in the Tricky Dick display and
use CTRL W in the usual way. I'll explain more fully the various
horizons this opens up when | show you how to use The Tracer. In
the meantime, if you want to practice writing to track $22 just
to get the feel of it, be my guest.

ftew £& Ual>£ Xsifiks

As you may recall from Chapter 4, it is possible to format a
track half way between one of the 34 pathways normally set aside
by DOS for track placement. By writing out a "half track" in

this middle position, the disk protecter insures that it will be
always be overlooked by a standard DOS during any disk operation.
However, his ingenious machinations will not prevent you from

getting at the goodies with Tricky Dick and the Linguist.

Under normal circumstances, you will need to use The
Linguist as shown in the last chapter to discover the location of
any half tracks on a protected diskette. However, in order to
walk you through a half track editing job here, Ifve formatted
one between tracks $20 and $21 on your CIA diskette. This means
you'll have to use your original CIA disk for this exercise,
since the half track won't have gotten transferred to your
backup.

If you've just been practicing on track $22 of your CIA
disk, start by BRUNning Tricky Dick to reset its sector marks.
In any case, you must always "clear" its RWIS by reading track

$00, sector $00 on your CIA disk. This precaution will cancel
any previous misreads that may have been flagged within RWTS, and
hence will avoid a possibly fatal recalibration at a later stage

in the proceedings.

Now hit CTRL C which takes you back to BASIC. Then type CALL
-151, followed by 3DF4:D0 1A N 39A4: DO 56 EA Go back to Tricky
Dick with a CTRL Y plus RETURN.

Next jump to The Linguist and read track 20 1/2. To do
this, hit the ';' key, set the track number to $20, and then
press the '>' key once. This changes the display to '20 +HALF'.
Now hit CTRL R to do a nibble read. We aren't in any way
interested in the raw nibble dump from this track, however, but
are simply reading it so as to position the disk arm over the
half track we want to get at with Tricky Dick.

Finally, go back to Tricky Dick and hit CTRL R The sector
should be read in and you should see the message "THIS IS A HALF
TRACK", followed by the number of the sector you've just read.
If your drive is not in perfect adjustment, this may not work the

first time. If it doesn't, have another try. If you get more
problems, have your drive checked out.

But what was the *D0 1Af for? Well, first off you need to
know that whenever RWTS is instructed to move the diskarm to a
given track, before doing anything, it asks the question, "where
is the arm at this very moment”. To get the answer, it reads the
number of the track over which the arm is presently sitting.
This is easy enough since the address field information of every
sector contains the number of the track it belongs to. If RWIS
finds that it's already placed over the desired track, then it
starts looking right there for the sector that was specified.
But if not, it uses the present track as a reference point from
which it counts up or down to get to the track it really wants.

What we have just done is to patch Tricky Dick!s RWTS so it
thinks that the arm is already correctly positioned, no matter
what number the number of the present track is. Thus, it
searches no further, but immediately goes looking for sector you
requested.

You can now read from or write to any or all of the sectors
on the half track, AS LONG AS NO RECALIBRATION TAKES PLACE. This
could happen if for some reason RWTS had trouble accessing a
sector. What you may then get is the sector you requested, but
from track $00. If this happens, simply jump to The Linguist,
reposition the arm by reading track $20 1/2, and try once more.
And here from ny vast collection is yet another IMPORTANT NOTE:
If you don't see the message "THIS IS A HALF TRACK” written in
the first few bytes of any sector you now read in, don't write
anything on it - you're in the wrong place and must go back to
square one.

Of course a half-track may have also had its headers,
trailers, or checksums diddled with, so you'll want to check
these out with The Linguist before wusing Tricky Dick on it.
Also, it goes without saying that when you are through editing a
half track, you should fix up Tricky Dick's RWIS so it will work
properly. So always remember to go into the monitor and type in
3DF4:AD 78 N 39A4: CD 78 04, or better yet, BRUN Tricky Dick.

If you're working with a half-track on a 3.2 formatted disk,
the patch for Tricky Dick's 3.2 RWTS is 35E7:1A 20 N 3222: DO 56
EA. Everything then works exactly as above. To put it back to
normal, use 35E7:AD 78 N 3222:CD 78 04.

fiditibs fiisbs Hiib Wiecd Xegelt

A protection method which has recently cropped up is that of
changing the track numbers in the address field information so
that some or all tracks have numbers greater than $23 (decimal
35). In fact, the usual pattern is to have track $00 designated
as $FE and then to decrement this number for each successive
track. Though permissible, setting Tricky Dick's track number
to, say, $FE in order to read the real track $00 won't work here.

65

This is because RWTS will use the current track as a reference
point to count up to the one it is supposed to find. Since it
moves forward one track foreach count, and there are only $23
tracks on the disk, the arm would be pushed against the stop
trying to get to track $FE. This brings things to ahalt and
causes Tricky Dick to display an error message.

This is no big deal, however, since exactly the same
procedure used to read half tracks will work for those with funny
numbers. Put in the RWIS patch, read sector $00 of the CIA disk
with Tricky Dick, and position the disk arm over the desired
track with The Linguist. You should then be able to access the
track’s sectors with Tricky Dick.

PROTECTING YOUR OAN DISKETTES

If you’ve done your homework dilligently during this
chapter, you will have discovered a couple of quite effective
protection methods already* Making use of Tricky Dick’s ability
to alter the data field marks and to patch directly to the disk

will give you further tools to enable you to lock a disk up so
tightly that only the most knowledgeable of nibble copier fans
will be able to back it up. Keep in mind that the following

changes apply to DOS 3.3 only. Put the newly initialized
diskette in your drive that you produced in Chapter 2 (that’s the
one with track $23 initialized) and we’ll start by playing around
a bit with the data field on a couple of sectors.

CRsDgafig Rats Eisld Macks

Boot up the Chapter 2 diskette and type in the following
BASIC program:

5 HOME

10 VTAB 14

20 HTAB 8

30 PRINT "1 BET YOU CAN'T COPY ME!”
40 END

Now type SAVE HELLO so that the program is installed on your
practice diskette. BRUN Tricky Dick and find HELLO’S track and
sector list (which is probably located on track $12, sector $0F).
You can choose to protect this sector, the following sector which
contains the program code, or both.

Lets try the T&S list first. Read it in with Tricky Dick
and let’s decide how evil we want to be. We can change this
sector’s data field trailer, header, or both. Let’s say you want
to change the data field header to D5 BB CC, and the data field
trailer to FF AA The first thing to do is set up Tricky Dick’s
DOS marks display to look like the following.

66

D5AA96 Y DEAA
D5AAAD Y DEAA
D5BBCC 0 FFAAEB

This allows you to read in a DOS 3.3 sector whose data field
marks are normal, but to write that same sector back with its
marks changed as shown. So all you have to do now is read in
sector $0F (or whatever HELLO’S T&S list sector is) and write it
back. Do this and try typing RUN HELLO. If you have been
successful, your disk drive will start to sound like a miniature
cement mixer as DOS strives vainly to read your program. It will
quickly give up and send you the dreaded 1/0O ERROR message. Just
to admire your handiwork, load in The Linguist and dump the track
upon which HELLO lives. Logical sector $0F (if this is where
HELLO*S T&S list ended up) will be easy to find since it*s the
same as physical sector $0F on the disk. Just find sector $00*s
big block of bytes and back up one.

There is one crucially important step yet to be carried out
- you’ve got to let the DOS on your protected diskette in on the
tricks you’ve just been up to. If you neglect to do this, of
course, you won’t ever be able to LOAD or RN HELLO. The problem
here is that DOS needs both to recognize the changed marks on the
sectors you’ve just doctored gfld the normal sector marks
everywhere else on the disk. Does this mean you’ve got to do
something drastic - like maybe rewriting RWIS or something?

In fact, the solution is absurdly simple. All you have to
do is make sure your changed headers have at least the ’'D5* byte
in common with the normal headers. Then you patch DOS so that it
accepts the next two header bytes, irrespective of their values,
when searching for the start of the data field. In other words,
you fix DOS to look for any header of the form »D5 XX XX* where
the *XX’s* can take on different values on different sectors.
This means that you can have as many different data field headers
on the disk as you like as long you ensure that they all start
with *D5*

The rationale for this strategy is that your changed and
normal headers must both have a reserved byte (i.e. either a *Db*
or an *AA*) in common so DOS doesn’t accidently mistake 3 other
bytes of disk data for a header. If you use the *AA* for this,
ou end up with XX AA XX, which caused booting problems in my
enchmark trials.

Now let’s patch the DOS on your newly protected diskette so
that it can handle varied headers. Change Tricky Dick’s sector
mark display back so that it shows the normal *D5 AA AD*
headers, then read in track $00, sector $02. Get lines $FO0 and
$F8 up on the screen and type a $00 in place of the bytes at
buffer locations $F3 and $FE as shown below.

67

FO: C9 AA DO F2 AO 56 BD 8C
change to: (\)O
F8: GO 10 FB C9 AD DO E7 A9
change to: Bo

The values you are about to replace with 'OO'sl tell DOS
where to go if a misread of the headers second and third bytes
occurs. In fact, the *F2f and fE7f, plus the 3 numbers in front
of each of them, say "IF the byte just read is not equal to the
correct header value (fAAf or "ADI) THEN jump along $F2 or $E7
memory spaces to another set of instructions” The instructions
in question stop everything and output an error message. Having
now replaced the crucial bytes with ,0,st, write the sector back
to the disk.

Your 100* patches tell DOS to jump along aficfl memory spaces

if a misread occurs. In other words, they say: "if the header
byte is incorrect, don't jump anywhere at all - just continue as
if nothing happened" This insures that DOS will execute the

same chain of instructions whether or not it encounters the
values it expects when reading the second and third bytes.

Your last job is to fix DOS so that it will accept both the
normal address field trailer bytes, and those you have altered.
Here, there is even more latitude for creativity, since any two
legal (and some "illegal") values will work. In fact, you are
now going to tell DOS to keep on doing its thing, irrespective of
what bytes it sees in the trailer.

Read in track $00, sector $03 and get lines 30 - 40 on the
data display. Then change bytes $37 and $3F to *00*. Finish off
téy Ii:hanging byte $40 to a *00*, and write the sector back to the
isk.

30: 80 QO 10 FB 9 DE DO 0A
change to: E)O
38. EABD 8C QO 10 FB C9 AA
change to: })O

40: FO SO 38 60 AD FC 84 26
\
change to: DO

This tells RWTS to branch 0 spaces if the first trailer byte
is incorrect, just as before. The patches in lines $38 and $40
change the verification procedure so that RWTS looks for $00 as
the second trailer byte, then continues normally if this value is
not found. Since $00 is an illegal byte, and hence can’t aoDear
in the trailer at all, RWIS always keeps on as if nothing at all

68

< M * T 7T oK

#

fc

fc

fc

fc

fc

fc

fc

fc

had happened. So DOS will now ignore the data field trailers
entirely, allowing you to change these from sector to sector at
will, Now try rebooting and, voila, "I BET YOU CANT COPY ME!”
appears on the screen.

You can now repeat the foregoing tricks on the sector
containing your HELLO program code. The most effective way to
make use of these techniques is to change the data field marks on
several sectors of a program you*re trying to protect. It's also
a good idea to change the headers from sector to sector within
the same track. This latter measure makes the process of nibble
copying the disk something of a horror show with many copy

programs. Also try using data headers made up only of "illegal"
bytes as explained in the answer section of this chapter.
g £3 WD

One place on the disk that gets overlooked by every standard
Apple copy program (and most people using nibble copiers) s
track $23. As I've already mentioned, DOS is not configured to
use this track, even though it is completely accessable on 99.9%
of all Apple drives (if your drive is one of the 0.1% that can't
use this track, take It back to your dealer and demand that it be
made to work properly). This makes track $23 an ideal place to
hide something you want to keep from any would-be backer-uppers
of your software. And what better item to conceal there than the
VTOC, since no DOS operation can go forward without first
visiting this vital sector?

With any disk which has been initialized and doctored to use
track $23 as described in chapter 2, use Tricky Dick to read in
the VTOC at track $11, sector $00, and write it back to any
sector of your choice on track $23. Now read in track $01,
sector $0B and change byte $01 from an *11* to a 1231 This
tells DOS to go to track $23 to find the VTOC.

00: A9 1{ 8D FA B5 60 20 ID
change to a *23f

The only other patch you have to make is to track $01,
sector $0F by changing its byte $0D from a *00* to whatever
sector on track $23 now contains the VTOC.

08: B7 AE FA B5 AD O(\) 4C 52
change to thesector number you selected

Finally, go back and zero out the original VIOC on track $11
by reading it in, pressing CTRL Z with the cursor on byte $00,
and writing it back to the disk. If a normal DOS is used to
boot or catalog the disk, the only thing that happens is that DOS
puts the "DISK VOLUME 254" message at the top of the screen. If,
on the other hand, you want a crashout to occur in this
situation, simply write an $FF in byte $01 of the now zeroed

69

sector $00 on track $11. This causes a normal DOS to try to seek
the diskarm to track $FF on a CATALOG or boot.

00: 00 00 00 00 00 00 00 00
\
change to »FF

You have probably deduced that the VTOC could be somewhwere
other than track $23 by simply replacing the MI* in the first
patch with the number of the desired track. However, you will
need to protect the disk in other ways, since COPYA will scoop up
F$he moved VTOC along with everything else, wunless it is on track
23.

Wherever you decide to put the VTOC, be sure to alter its
bit maps to show that the sector it occupies is not to be written
to. While you're working on the maps, you might as well free up
track $11, sector $00 also. That way you can use it for program

storage. The bit maps are covered in detail in Chapter 2.
Tcateclice BAV
No matter how much you mess around with the disk formatting,
there still remains one important potential leak to be plugged.

A would-be program purloiner can simply hit RESET while your
software is running, and then save it to a normally formatted
disk. This is easily done by booting in DOS from a normal slave
diskette after first moving any file code on pages $08 and $03
(the only program storage areas that are disturbed by this
process) to a unused part of memory with the monitor move routine
(described on pages 44-46 of the Apple manual). After the boot,
It remains only to restore the code to pages $08 and $03 and to
SAVE or BSAVE your program.

Fortunately, it's just as easy to take precautions against
this process as it is to carry it out. First of all, a single
byte DOS patch will effectively prevent anyone from interrupting
your program with an autostart ROM RESET. Start by reading in
track $00, sector $0D of the disk to be protected, and place an
*FF! in byte $37 as shown below.

30: AD 53 9E 8D F3 03 49 %\
change to *FF'

Now write the sector back to the disk. When DOS is booted
in, this patch will cause a flag (the "powerup byte” - see page
37 of the Apple manual) to be altered so that when RESET is
pressed, your machine will think it has just been turned on and
will boot up again. This effectively stops anyone from breaking
into your program while it is running.

Another way of protecting RAM is to alter the DOS command
table so that commands like SAVE, BSAVE, or CATALOG won't work.
This table is located at the end of track $01, sector $07, and

runs from byte $84 to byte $FF (plus a bit on sector $08). Using
Tricky Dick, you could change any DOS commands that might be used
to rip off your programs. Or, you could simply write 'GO'S* over
them, rendering them completely inoperative. The chapter on The
Tracer which follows this one describes the process in detail.

Abetter idea, however, is to modify DOS so that qgq direct
keyboard commands of any kind can be entered. This does away
with the necessity of revectoring RESET to reboot and stops
people from LISTing a BASIC program. The following method
applies to DOS 3.3 only.

The first step is to read in track $00, sector $0E and put
the cursor on byte $ED. Change this and the next two bytes
(i.e., the *59 84 A8«) to »4C E5 BC* (JMP $BCE5) as shown below.
Then write the sector back.

E8: 20 M AL 29 7F 4C E5 BC

What youfve done is modify the DOS routine which takes apart
all direct entries from the keyboard to see if they*re DOS
commands. Instead of comparing an entry with the DOS command
table the routine is now set ot JuMP to $BCE5 in DOS. This
section of memory is completely wunused wunder normal
circumstances, but we're soon going to fix that.

Next read in track $00, sector $06 and put the Tricky Dick
cursor on byte $E5 (which should be an *88*). When you boot DOS,
this part of the sector gets loaded into the unused memory
locations that start at $BCE5, so this is where we want to put
our patch. Here you have to type in a fairly lengthy set of
instructions, so be sure check your work before writing it back
to the disk. Change lines $EO, $E8, and $FO0 to look like the
illustration below.

patch starts here
/

EO: A5 E8 91 AD 94 A9 08 85
ES: CE A9 00 85 (D A8 AA 91
FO:CD&II)FBEGCEII)F(

patch ends here

The above patch is actually a loop which wipes most of the
machine's memory. When control is transferred to it, the
subroutine starts at $800 writing zero after zero, and doesn't
stop until it overwrites part of its own code and crashes.

These two patches change things so that whenever a command
is keyed in from BASIC, any program in memory (except code
residing on page $03), plus a goodly chunk of DOS, will be
totally eradicated. The subroutine terminates when it finally
jumps to one of the 'GO'S' it has written over itself. This is
interpreted as a BReaK instruction, causing the monitor to
display the usual »** register contents, and BReaK address.

71

However, if the memory around that address is now inspected,
what’s left of the subroutine, though somewhat disguised, can
still be seen and perhaps interpreted by an assembly language
pro%rammer. And if that programmer really knows his DOS, he
might just figure out where the calling statement was patched in.

So to make things even more difficult, there is one final
patch to go in. Read in track $00, sector $0D and change line
$70 to look like this:

$70: 4C 03 EO 4C 65 FF 4C 58
o
bytes which have been altered

What you’ve done is changed the address that tells the 6502
where to go when it encounters a BReaK instruction. Normally,
this destination is $FA59, a monitor subroutine which brings
about the familiar register display and "beep”. When DOS is
booted, it stores this address at $3F0 in memory where it is then
consulted for any BReaK handling that may be necessary during the
operation of the machine. This is one of the well documented
"page 3 vectors" (see page 65 of the Apple manual) that you’ve no
doubt read about and/or used.

The new address that you’ve just patched into DOS tells the
6502 to jump to $EO003 and start execution there whenever a BReaK
occurs. However, this address is the entry point for BASIC, and
merely causes the BASIC prompt to be displayed. Since the memory
wipe routine terminates only when it writes ’00*s* into itself
and one of them gets interpreted as a BReaK, control is simply
returned to BASIC after the dirty work is done.

So let’s say somebody tries to LIST or SAVE one of your
protected programs. To his amazement, he gets absolutely no
response except another *]* prompt. Because DOS has been wiped
out, keyboard commands are passed straight on to the BASIC
interpreter, so the user can now enter any BASIC command he likes
(although DOS commands merely elicit a SYNTAX ERROR). But it’s
too late - your program is gone so there’s nothing to LIST, and
DOS is inoperative. He’ll play hell figuring out what happened
because the address of the memory wipe subroutine has not been
displayed, nor do the sequence of the events that heve occurred
make any apparent sense.

Having effectively nonplussed the competition, let’s see how
you did when the shoe was on the other foot. The discussion below
will allow you to compare your work on track $22*s altered
formatting with my analysis of it.

WHAT WAS ON TRACK $22

- These consisted of the values, FE
AB, throughout all the address field sync gaps (nobody said sync
bytes all have to be the same value). Toggling the sync byte

values like this stops almost every bit copier if it’s being

72

* M M M ~ ~ = th MMt o mTAMmMm?®E T T T T T

¥ T SO G Wk Q¥

QD

Q o

o Qo 2 °

operated in automatic mode - even if the appropriate sync byte
parameters are correctly specified. As | mentioned earlier,
neither these nor any other altered sync bytes have any effect
whatsoever on the standard Apple copy programs.

$QQ - Reading this sector requires that you change
the Tricky Dick address field headers to DC BF AA as shown below.

DCBFAA Y DEAA
D5AAAD Y DEAA
D5AAAD 0 DEAAEB

- Use the same address headers as above, plus D9
AA AD in the data field header. Note that to write to this
sector you would also have to change the data headers in the
third line to the correct value.

DCBFAA Y DEAA
DOAAAD Y DEAA
D5AAAD 0 DEAAEB

S g f i - Here the data field header and trailer have
switched places; the address header is the same as above. You
could also have used *0000* in place of the ’'D5AAL trailer.

DCBFAA Y DEAA
DEAAEB Y DBAA
D5AAAD Y DEAAEB

This switch really fouls up bit copiers, because their
analysis routines often look for correct header and trailer
values, and if they are found, make assumptions about the
beginning of the data field accordingly.

SSTi&fiE - Here | pulled a bit of a fast one. In most of
the current literature purporting to take you underneath Apple
DOS, it is claimed that "illegal” bytes can't be used on the disk
for hardware reasons. This is not strictly true, however, and if
the illegal byte doesn't contain more than 3 consecutive zeros,
it will often work. Witness the data field header on this sector

which is F8 C7 B8 - all of whose bytes are allegedly unsuable.
In addition | changed the data trailer to FF FF FF, just to keep
you on your toes. Your Tricky Dick parms should have looked like
this (FFFF could be replaced with 0000).

DCBFAA Y DEAA
F8C7B8 Y FFFF
D5AAAD Y DEAAEB

Using illegal bytes in headers is quite handy because these
bytes are "reserved" in that they will not be found elsewhere on
the disk - a status normally enjoyed only by 'D5* and 'AA'. As a
result, illegal values are really good for screwing up many of

the current bit copiers, since these programs often expect to

73

find at least one occurrence of *D5 or 'AA'" in all headers. So
if you're really into copy protecting your own software, you
might try some of these values in your disks* data headers, and
experiment around a bit to see exactly which of them work.

Another possibility is to use illegal values as data field
sync bytes. The way to do this is type CALL -151 to get into the
monitor. Then key in *BC60:» followed by whatever sync byte
value you want to use. Finally, [INIT a diskette. You can
transfer programs across to this disk in the normal way. After
doing this, use some of the measures described previously to
protect it further.

Well, this brings my discussion of copy protection to a
close for the moment. But we are by no means finished with the
subject. In the next couple of chapters, you*Il be learning how

to examine locked software even more closely when 1*11 be talking
about some secrets of software protection never before
documented. Now it*s time for you to extend your circle of
friends to The Code Breaker.

CHAPTER SIX — The Code Breaker

If you’ve been doing your homework up to now, your disk
savvy has reached the point where you’re ready to delve into one
of the most esoteric aspects of DOS. In this chapter you and |
are going to be looking at a method of protecting program code
from prying eyes known only to a few of the most priveledged
software "insiders” (until this book hits the dealers* shelves,
that is). You’re going to discover how, by altering only two
bytes in DOS, it’s possible to scramble a whole diskfull of
software, yet enable it to work perfectly well once loaded into
RAM

What |’m talking about is a simple method of encrypting
programs as they are written to the disk and decrypting them as
they are loaded back into memory which, up to now, has
effectively stopped the likes of you and me from investigating
their secrets and patching them to suit our needs. This
remarkable method of software disguise is accomplished by
altering two crucial blocks of data in RWIS - the nibble and byte
translate tables. Just in case you aren’t familiar with these,
1’1l explain them first, and then describe The Code Breaker’s
instructions afterwards. If you already know all about the
tables, you should jump right to the instructions a few pages
hence.

UNRAVELING THE RWTS TRANSLATE TABLES

Probably the best way to get into this subject is to refresh
your memory with abrief summary of what | said in Chapters 2 and
4 about the way file code gets changed just before being recorded

on the disk. You Probably remember that data to be stored
undergo a series of transformations designed to circumvent
certain hardware limitations in the Apple. You’ll no doubt also

recall that the first step of this process involves removing some
bits (two in DOS 3.3, 3 in DOS 3.2) from the front of each byte
and putting »0*s’ in their place. Following this, the chopped-
off bits are reassembled into speareate bytes which themselves
get two leading 'O*s» stuck on the front.

Now you might have noticed an apparent contradiction in all
of this: | said in Chapter 4 that all bytes written to the disk
have to have the highest bit set, yet | also said in the same
breath that their high two or three bits invariably end up as
zeros. The resolution to this paradox is where the translate
tables come in. Their job is to transform these bytes into
"legal" values which have the high bit set, and which have also
met the other hardware imposed requirements for disk storage.

Xoenibble leanslate Xable

The easiest way to end up with legal disk bytes is to set up

75

a list or "table" in memory which contains all the legal values,
then to use the bytes we want to translate as offsets (there's
that word yet again) into the table. For example, let's say that
DOS 3.3 ends up with the value '1A" (0001 1010 in binary) to be
stored on a disk. What it does is count down $1A (decimal 26)
places into the table below and use the value found there. Try
this out yourself.

3.3 Nibble Translate Table

offset:00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
table value: 96 97 OAOBOD O9EO9F A6 A7 AB ACAD AE AF B2B3

offset: 10 11 121314 151617 18 19 1AIB 1C ID IEIF
table value: B4 B5 B6B7 B9 BABBBC BD BE BF CB (O CE CFD3

offset: 20 21 222324 252627 28 29 2A 2B 2C 2D 2E 2F
table value: D6 D7 DODADB DCDDDE DF E5 E6 E7 E9 EA EBEC

offset: 30 31 323334 353637 38 39 3A3B 3C 3D 3EJF
table value: ED EE EFF2F3 F4F5F6 F7 F9 FAFB FC FD FEFF

If you counted alogn $1A bytes, starting with the '96* in
the above table, you should have come up with the value $BF.
This is the legal value that gets substituted for *lA* and
subsequently written on the disk.

The table above is the "nibble translate table"” and is used
by DOS 3.3 in the last stage of translating data in RAM to disk
nibbles. Its use is a part of the "6&2" encoding scheme
discussed in chapter 4. The table starts at $BA29 in DOS, and
you can see it in its natural environment by typing CALL -151,
followed by BA29.BA68. You can also find it with Tricky Dick on
track $00, sector $04, bytes $29 - $68 in the data display.

Xbe Blits Icausists Sable

What goes on must eventually come off, so there also has to
be some provision for translating disk nibbles back into data
which has some meaning to your Apple. And since table look-up
was the last step in writing, it seems inevitable that the same
process would be the first step involved in reading back. In
fact, it is, and it requires a different table which is
illustrated below.

3.3 Byte Translate Table

offset: 96 97 98 99 9A 9B 9C 9D 9E 9F A0 AL A2 A3 A A5
table value: 00 01 98 99 02 03 9C 04 05 06 A0 AL A2 A3 A4 A5
offset: A6 A7 A8 A9 AA AB AC AD AE AF B0 Bl B2 B3 B4 B5
table value: 07 08 A8 A9 AA 09 OA OB CC 0D BO BL OE OF 10 11
offset: B6 B7 B8 B BABB BCBDBE BF W Cl @2 3 & G
table value: 12 13 B8 14 15 16 17 18 19 1A ClI C2 &3 ¢4 5

offset: C6 C7 C8B C9 CAB CC D CECF DD D2 D3 D4 D6
table value: C6 C7 CB8 C9 CAIB CC IC ID IEDODL D2 IF D4 D5
offset: D6 D7 D8 D9 DA DB DC DD DE DF E0O El E2 E3 E4 E5
table value: 20 21 D8 22 23 24 25 26 27 28 EO El E2 E3 E4 29
offset: E6 Ef E8 E9 EA EB EC ED EE EF FO FI F2 F3 F4 F5
table value: 2A 2B E8 2C 2D 2E 2F 30 31 32 FO FI 33 34 35 36

offset: F6 F7 F8 F9 FA FB FC FD FE FF
table value: 37 38 F8 39 3A 3B 3C 3D 3E 3F

This is the DOS 3-3 "byte transi ate table" whieh starts
$BA96 and ends at $BAFF in DOS (type BA96.BAFF from the monitor
or look at track $00, sector $04, bytes $96 - $FF with Tricky
Dick). Notice that the fififififld bxfcfi of each address in the byte
table is the same as a legal disk nibble. For example, the above
table tells us that if '96* had just been read off the disk, it
would be translated into *00* (which you'll find at $BA96).

fiGS 3*2 JcaasisUfiD

The 3.2 table look-up works just in a manner quite similar
to the 3-3 process mentioned above. The main point of departure
is that a different pair of translate tables are used. These are
shown below, and you'll notice that they are much shorter than
the 3-3 tables. This is because there are fewer permissible
values used to encode data for disk storage by 3-2's "5&3"
encoding system. The nibble table shown below runs from $BAAB -
$BAAF in RAM (and is in sector $06 of track $00, bytes $9A -
$B9 on a 3-2 disk). The table shown just after it is the 3.2
byte table and ranges from $BCO9A - $BCB9 (track $00, sector $04,
bytes $AB - FF).

3.2 Nibble Translate Table

offset: 00 0L 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
table value: AB AD AE AF B5 B6 B7 BA BB BD BE BF D6 D7 DA [B

offset: 10 11 12 13 14 15 16 17 18 19 1A IB 1C ID IE IF
table value: DD DE DF EA BB ED EE EF F5 F6 F7 FA FB FD FE FF

3.2 By-te fransl,ate Table

offset: AB AC AD AE AF B0 Bl B2 B3 B4 B5 B6 B7 B8 B9 BA
table value: 00 01 08 10 18 02 03 04 05 06 20 28 30 07 09 38

offset: %BCBDBEBF(DCI C2 c3C4 5 C6Ccr CB o CA
table value: OA 48 50 58 OB OC OD OE OF 11 12 13 14 15 16

offset: (B CC (D CE CF DO DL D2 D3 D4 D5 D6 D7 D8 D9 DA
table value: 17 19 1A IB 1C ID IE 21 22 23 24 60 68 25 26 70

offset: OC DD DE DF EO El B2 E3 4 E5 E6 E7f EB E9 EA
table value: 27 80 88 90 29 2A 2B 2C 2D 2E 2F 31 32 33 98

7

offset: BB EC ED EE EF FO FI F2 F3 F4 F5 F6 F7 F8 F9 FA
table value: AO0 34 A8 BO B8 35 36 37 39 3A GO C8 DO 3B 3C D8

offset: FB FC FD FE FF
table value: EO 3E E8 FO F8

I think you can already see that the use of translate tables
in the encoding process opens up wide vistas for protecting
software. Consider what would happen if you decided to
initialize a disk with a few bytes switched around in these
tables, and then SAVE’d or BSAVE’'d a program. Only the altered
RWIS on the diskette, thus protected, would be able to correctly
translate the disk data back into a sensible sequence of code
when the program was retrieved. A normal RWTS, on the other
hand, would substitute all the stflfldacd byte values in place of
the disk nibbles. However, some of these (the ones you
deliberately changed) would be incorrect, resulting in
meaningless values being deposited in RAM Any attempt to
execute this garbaged code would quickly result in a crash.

And that’s only if somebody succeeded in LOADing or BLOADing
your program in the first place. In most cases, even getting the
scrambled program off the disk would be impossible for a standard
RWTS since the large majority of the program sectorsl data field
checksums would appear invalid. These checksums would make sense
or|1ly to the RWTIS whose translate tables contained the appropriate
alterations.

So tweaking the tables blocks the two main access routes to
your software. First off, the checksum effect stops any copy
program which uses a standard RWIS from backing the software up.
Furthermore, even if someone figures out how to stop RWTS from
calculating the data field checksum (which for DOS 3.3, by the
way, merely requires typing CALL -151, followed by B92E:0), the
code he ends up with will be useless. This stops software
peeping Toms from wusing any of the presently available disk
utilities (except the CIA, of course) to even look at your code.

Since installing this "secret code" on a disk is pretty

simple (as you’ll see in this chapter’s tutorial), it is not too
surprising that it is rapidly becoming widely used by commercial
software houses. As you will learn from the instructions that

follow, The Code Breaker can be used to alter Tricky Dick’s
translate tables so that a disk protected in this manner can be
read and written to. And what’s more, you can use The Tracer to
find tables that have been moved from their standard location.
Once you have found the tables you can then compare them with the
standard versions we’ve already looked at in this chapter. Any
changes can then be typed into The Code Breaker, allowing you to
read, list, and write in the usual manner. In the tutorial later
in this chapter, I’lIl also be discussing in detail both how to
put this type of protection into your own software.

78

JUSXAUGURfi IHE ££fiE BRfiAER

As with the other modules previously discussed, The Code
Breaker only works in conjunction with Tricky Dick, and is
entered from the latter by means of the usual CTRL E. Hitting
CTRL C while in The Code Breaker gets you back to Tricky Dick.

Gdfld» EEEELLE£&IIfIEE: Before jumping into the Code
Breaker, you need to set the slot number of your disk controller
card, the drive number of the target diskette, and the DOS
version.

CQdS BESSKSE Bi22lax: when you first enter The Code
Breaker, you will see its introductory screen. Hitting any key
here takes you immediately to the nibble table display. This
will consist of either the 3*2 or 3*3 nibble translate table,
depending on the DOS version you selected while in Tricky Dick.
The Code Breaker’s cursor will be resting on the table’s first
byte. To the left of each byte in the table is shown the value
that it replaces.

IbE JjEIE $EELEEE LLQE Just like the previous modules, a
»* or *?° takes you to the help screen. This displays each of
the commands and gives a brief summary of them. It can be
summoned up at any time while you are using The Code Breaker.

£d:1£kE)E £&E lesdsIsLS Xah],GS: Once you have the nibble table
on the screen, you can move the cursor from byte to byte with the
**, »J’, *K, and *M keys, just as in the other wutilities.
CTRL I, J, K and M enable you to make big jumps around the
display in the usual manner. CTRL B takes you to the first entry
in the table, and CTRL N shoots you down to the last byte.

Changing byte values in the translate tables is carried by
positioning the cursor over the byte in question and typing the
new hex value over it. Remember to type a leading zero in front
of any single-digit hex number (e.g., type *03* if you want to
enter a *3’).

SauiBi the bbaocaablabia When you have finished
altering the translate table to match the one you found on the
target disk, hit CTRL S to incorporate this table into Tricky
Dick’s RWTS. The CTRL S command puts your changes both in the
nibble table and in the byte table, enabling Tricky Dick to read
from and write to the encrypted disk. If you accidently
duplicate a value or type in an ”illegal” value, it will flash
when you hit CTRL S. This is your cue to use the instruction
described in the next paragraph.

EanID% a MialakS LZ&- 1f you mistype a value when editing
the table, it CTRL Rto restore it to its original state. This
causes all the values you typed in be scrubbed and displays the
previous values.

79

££2bQFIO& ibe Siaobsud DOS lahle LADI*- 1f after altering a
translate table (either before or after consolidating the change
with CTRL S) you wish to return the standard DOS version to
Tricky Dick’s RWTS, simply hit CTRL D. The standard table will
be displayed by the Code Breaker and incorporated by Tricky Dick.
Always remember to do this if you have finished working with an
encrypted disk and now wish to wuse Tricky Dick on normally
encoded software.

THE CODE BREAKER TUTORIAL

In this tutorial 1’m going to adopt a change of pace.

Instead of asking you to work with something on the CIA disk, |I’'m

going to show you how to make up your own practice materials.
This approach will provide you with a double-edged sword. First,

you’ll learn how to use the translate tables to protect your own
software by writing it on the disk in a specially scrambled form.
Once you’ve done this, you’ll then have an ideal practice disk

for learning to use The Code Breaker to decipher software already
encrypted in the same manner.

As |’ve already pointed out, a simple patch to the translate
tables scrambles any programs written to the disk, and usually
also alters the data field checksums so as to make the disk
uncopyable by any utility using a normal DOS. Only the DOS on
the disk thus protected will be able to make sense of the
programs recorded upon it. Add a few more protection measures
from chapter 5 and you’ve got a pretty formidable disk lock.

Start by booting in a normal 3.3 DOS and placing your System
Master diskette in the drive. Now type in LOAD BRIAN’S THEME.
List the program just to make sure it’s there, and type CALL -
151, followed by BA29L. This will display the beginning of the
nibble translate table used in writing program code to the disk.
You can verify this by comparing the first few bytes (*96 97 9A*
etc.) with the 3.3 nibble table | reproduced a few pages back.
About a quarter of the way down the screen you will see the
following line.

BA32- AB ?2??

When DOS is ready to store the value $09, it first
substitutes $AB in place of it. You can confirm this by looking
it up in the 3.3 nibble shown earlier, or counting up from the
96’ at the top of the screen. Let’s change this byte to *A» by
typing in BA32:AA. After keying in BA29L once again, the line
should you changed should look like this.

BA32- AA TAX

80

- T —h 7T = =

MM T T TMthth TItth—~ ~th T3

—
o

th th th

What you have done so far is modify the nibble table so that
whenever RWTIS encounters the value $09 during a write cycle, it

will substitute 'AA* in its place instead of the standard value,
$AB. Though $AA is a "reserved"” value to be used only for
headers and trailers, we can still get away with using it here

(because we haven't touched *D5 which is also used exclusively
for headers and trailers, and DOS really only needs one such
reserved value).

Whenever DOS saves your program code on the disk, it always
reads it back as a final check. And, of course, you'd like to %e
able to run your program later on. This means we also have to
alter the byte translate table which is wused during the read
cycle. So type BAAOL and have a look at the following two lines
about a third of the way down the screen.

BAA9- A9 AA LDA $AA
BAAB- 09 0A ORA $0A

Whenever RWTS reads an *AB* off the disk, it comes to
location $BAAB and retrieves the hex number at that location (the
rule is: add the byte value to $BA00, i.e, $BA00 + $AB = $BAAB).
Thus, $AB gets translated right back into the original value,
$09. However, we’ve just set things up to translate $09 into
$AA, so we’ve got to make sure the reverse process also works.
This means we need to put the f09f in location $BAAA so that $AA
will get interpreted as $09. Do this by typing BAAA 9 AA Then
type BAAOL again and the same 4 bytes should look like this.

BAA9- A9 09 LDA $09
BAAB- AA TAX
BAAC- 0A ASL

This is all the table doctoring you need to do, so place a
blank diskette in your drive and type INIT HELLO. This of course
g1_akkes BRIAN!S THEME the "hello"™ program on the newly initialized
isk.

BRIAN'S THEME and all of DOS is now encrypted so that the
program code is scrambled and most of the checksums appear faulty
to a normal DOS. In fact, we've actually protected the disk
well - so well, in fact, that the disk controller card can’t
recognize the DOS image, and hence the disk is unbootable.

You see, whenever you boot up, your Apple starts the boot
process off by running a small machine language program in ROM on
the controller card. Since this program's job is to read in some
data from the disk, it has to make use of a byte table. However,
none exists in memory since the translate tables are contained in
RWTS which hasn't been booted in yet. The controller card
resolves this Catch-22 situation by generating a temporary table
for its own use.

The program on the card loads in sector $00 on track $00,
and looks at its very first byte. This byte specifies the total

81

number of sectors that are to be read during this stage of the
boot process. In a normal DOS 3-3 (but not always in protected
DOS*) this byte is always $01, conveying the message that only
this first sector is to be loaded into RAM When this
information is digested, the program in the card's ROM passes
program control over to sector $00's code.

The disk controller's ROM code has more than a walk-on part,
however. Sector $00 contains another short batch of machine
language which now calls that ROM code as a subroutine in order
to read in the next 9 consecutive sectors. This means that the
temporary byte table generated by the controller card must be
used to read in sectors $00 - $09 of track $00 (which, by the
way, contain the RWIS image with the permanent translate tables).
Unfortunately, the temporary table contains the standard values,
and hence won't read your protected disk's DOS because you
initialized the entire disk (including its DOS) with a diddled
byte table.

The solution is elementary, though slightly tedious. What
you next have to do is copy the first 9 sectors from any normal
3.3 disk onto the protected disk. That way, the checksums will
be recognizable to the controller card when it uses its standard
byte table to read these sectors in.

Start by putting the CIA in drive one and your newly
initialized disk in drive two. Now boot up the CIA disk and BRUN
Tricky Dick. Read in track £$00, sector $00 from the CIA and
change the drive number to 'DR=2'. Then write the sector to your
protected disk in drive two and increment the sector number by
one with the right arrow. Change the drive number back to *1'
and read in track $00, sector $01 from the CIA disk. Write it to
your protected disk, and continue the process until sectors $00 -
$03 have been transferred. If you only have one drive, you'll
have to swap the two disks back and forth for each sector you
copy with Tricky Dick. This will call for some extra slight-of-
hand, but will obviate the necessity of constantly changing the
drive number back and forth.

Now read in sector $04 from the CIA disk and change byte $32
from an *AB* to an 'AA’" as shown below.

30: A6 A7Al\3 AC AD AE AF B2
change to an 'AA
Then move down to line $A8 and switch the positions of bytes
$AA and $AB (their values are $09 and $A9 in a normal table).
When you've done this the line should look like:
A8: A3 Af\a O% AA 0OA 0B 0C 0D

these bytes have been switched

These changes will no doubt appear familiar, since you just
used them to protect the target disk. If you transfer a normal
$04 across without changing these values, the RWTIS on the

protected disk will just end up with normal nibble and byte
tables, and hence not be able to make sense of the encrypted data
on that disk. On the other hand, if you make the transfer,
the checksum in the target disk’s sector $04 will be
unrecognizable to the controller card, and hence any attempt to
boot the protected disk will fail. The only way to resolve this

dilemma is to install the same changes in the tables on sector
$04 that you originally used to protect the disk.

Finish off by writing the sector to the protected diskette.
Now advance the sector number to $05, switch back to drive one,
and copy it across to drive two. Do the same with sectors $06 -
$09. When this is completed, the disk will be ready to go.
You’ll find that it boots normally and runs BRIAN’'S THEME as the
hello program (if not, repeat the protection process, being extra
careful when copying sectors $00 - $09 across). However, if you
boot up a normal DOS and try to RUN HELLO on the protected disk,
you’ll just get an I/O error due to the checksum effect. You’ll
also get the same result if you try to copy the protected disk
with one of the standard Apple copy programs.

Just to see what the encrypted version of BRIANS THEME looks
like to a normal DOS, reboot your CIA disk. Then type CALL -151,
followed by B92E:0. This cancels all data field checksum errors
and enables you to LOAD HELLO from the disk you’ve just
encrypted. Do this, and if the machine hangs, hit RESET. Now
type LIST and have a look at the program. The first lines will
appear more or less normal, but starting at line 200, the program
code really hits the fan. Everything after that is a real mess,
and of course is incomprehensible to any would-be snoopers.
Running this code will have unpredictable results.

The corrupted BRIAN’S THEME is pretty representative of what
files look like which have been encrypted by changing the
translate tables. You’ll wusually see a large batch of
meaningless data, followed by a few Ilines of sensible
instructions. This in turn merges into more garbage, and so on.

But how does changing only one value in each of the two
tables have such a disasterous effect? Don’t forget that there
are only 1/4 as many DOS 3.3 values available for disk storage as
there are for RAM storage (64 as opposed to 256). So to start
with, $AB (or any other disk nibble you choose to mistranslate)
is more likely to be encountered on the disk than you might
think, and a fair number of bogus translations of it should thus
be found when a file is read in.

Moreover, certain details of the translation process (too
trivial and tedious to go into here) insure that once a changed
value in the byte table is used to translate a disk nibble, the
rot spreads to a substantial number of the nibbles near it,
regardless of their value. Thus, a simple change to the tables

83

up front causes a striking amount of scrambling later on.

Of course if you want to increase the probability of ail
your program being undecipherable, you only have to change some
more bytes in the tables. The best way to do this is to switch
some of the values around. For example, try swapping the nibble
table values at $BA48 (normally a *D3') and $BA53 (an 'E6*) by
typing CALL -151, followed by BA48:E6 N BA53:D3. Make the
corresponding alterations to the byte table with $BAD3:2A N
BAE6:1F (these addresses are obtained by adding $D3 and $E6 onto
$BA00). Then put in the change from $AB to $AA described above.

Finally, initialize a disk and transfer the first 9 sectors
across the way you did before. Use a different diskette,
however, because you’ll need the original $AA disk for the next
section. Remember to incorporate all the changes in the sector
$04 tables using the same method you’ve already learned. Now
get the program into memory (by cancelling the checksum) and have
a look. should stop ’em from ripping off your software!

I g Ltiii EccciSfiked Scitwace

Now that you’ve discovered how to protect software by
patching the translate tables, you’re more than ready to learn
how to unprotect it using the same method. The disk you created
above with the $AA substitution for $AB will make an ideal medium
for you to practice on. Since The Code Breaker does
automatically some of the operations you’ve just done by hand,
you should find this half of the tutorial a piece of cake.

Start by BLOADing The Code Breaker and BRUNing Tricky Dick.
Then put your newly protected disk into your drive and make sure
the drive number and DOS parameters in Tricky Dick’s display are
set to read it. Look at track $11, sector $0F to find the
location of HELLO (in reality, BRIAN’S THEME). Its track and
sector list should be on sector $0F of track 12, and the program

code should begin on sector $0E of the same track. You’ll find
that if you try to read in the first few sectors of the program,
Tricky Dick will fail on about half of them. This is because

your translate table patches have caused the RWTS on the
protected disk to generate data field checksums which appear
incorrect to a normal

Now hit CTRL S and change the data field checksum designator
from ’Y» to *N' as shown in chapter two. This should allow you
to read all the sectors in BRIAN’S THEME. However, you’ll now
find that those which caused a Tricky Dick I/O error before you
cancelled the checksum look like garbage when you finally do
succeed in getting them into Tricky Dick’s display. To verify
this, do an Applesoft listing on them wusing the sequence |
explained in Chapter two. If you ever encounter this same
situation with another disks, you should immediately suspect the
prg?ence of some type of protection involving the translate
tables.

84

F S

f a

-a
f -a

3
f =a
t 4
F S|
£

T, 4
4
r j«

f \m
F *
fcj-s

To test this hypothesis, read in sector $04 on track $00 and
find the beginning of the byte table. As mentioned previously,
it should start on byte $96 of row $90. This byte should be a
00 as shown below.

$90: 82 C5 C4 B3 BO 88 00 01
\
first value in the byte table

A quick inspection of the standard DOS 3.3 byte table
shown earlier will reveal that the positions of 'AA" and *09*
have been reversed. Of course, you already know about this
little subterfuge because you yourself were the agent of its
creation. Nevertheless, pretend that it's new to you and
continue. In order to illustrate how to proceed from here, 1*11
reproduce the appropriate line of 3.3 the byte table.

offset: A6 A7 AB A9 AA AB AC AD AE AF B0 Bl B2 B3B4 B5
table value: 07 08 A8 A9 A\A ({9 0OA 0B 0OC OD BO Bl OE OF10 11

bytes which you reversed

In order to read the disk, we've got to tell The Code
Breaker to edit Tricky Dick's tables to take account of the
altered table values.

To do this, wuse the ’I* 'J*, "K*, and 'L? keys (with or
without pressing the CTRL key at the same time to hurry things
up) to move The Code Breaker's cursor over the 'ABl in the
display, then type in 'AA* This value is in the first column of
the display, part of which is shown below.

07- A6
08- A7
09- AB ===> change to AA
0A- AC
0B- AD

Now to hit CTRL S to "save" the current table, i.e., patch
it into Tricky Dick. Just for some extra practice, hit CTRL N
followed by CTRL B. This will make the cursor jump to the
last and first entries in the table respectively - handy if
you're ever in a hurry to get from one end to the other.

While you're on the first byte, a '96', type in 'AB'. Keep
your eye on this value and hit CTRL R Since this command
restores the table to its previous form, the 'AB* changes right
back to a '96'. However, notice that the 'AA" you previously
entered remains unchanged. This is because you saved it with
CTRL S. If you wanted to go right back to the standard DOS 3.3
nibble table (which you don't at this point), you would type in a

85

CTRL D and the *A& would be replaced with the standard value for
that position, an *ABf. If while on the *96* you had duplicated
one of the bytes in the table, or keyed in an illegal value, it
would have begun to flash. In either case, CTRL R would have put
things back the way they were before you made the offending
keystrokes.

Having successfully edited the translate tables, you can now
read all of the sectors in BRIAN*S THEME, alias HELLO, on the
protected disk. Hit CTRL C to get back to Tricky Dick, and check
this out. If you get an I/O error, go back to The Code Breaker,
hit CTRL D, and try again.

Xbe fib d fib Switch

This is the most common alteration to the tables currently
in use. What the person protecting the disk does is substitute
05 (a value normally reserved for headers) in place of 'D6? (a
legal value). This leaves fD6* out of the tables entirely, and

hence turns into a reserved value as far as that paticular DOS
is concerned. 'DS1is then substituted for 'D51 in the address
and data headers (after all, it has just become a reserved byte).

So if you see headers beginning with this byte, change Tricky
Dick's DOS mark display accordingly, and also cancel the data
field checksum (as explained in Chapter 5). Then read in a few
sectors from here and there and list their contents. If you find
garbage alternating with sensible code, you should suspect that
the Db - D6 switch is in effect.

The next step is to use The Code Breaker to edit the
translate table, putting a *D6* in place of the *D5!. Now read in
a few sectors and list them. The odds are pretty good you'll be
make sense of their contents.

Remember finally that disks whose tables have been altered
may have also been subjected to other protection methods. Be
sure to check for this when working with such a disk.

Well folks, that's all there is to The Code Breaker. You
are now privy to one of the latest software protection secrets
(at the time of writing). By now you should also be pretty handy
with the CIA utilities, and know your way around the disk quite
well. All of which means you are ready for your next encounter
with a new member of the CIA - so turn the page and shake hands
with The Tracer.

86

= T T

— =h

~ ~ T T

sl I s

T

fc

fe

a

CHAPTER SEVEN — The Tracer

If you've ever wanted to find something on a disk, The
Tracer is for you. This member of the CIA team will search each
sector in the range you specify, sniffing out the catalog, the
VTOC, all track and sector lists, and any 1 - 6 strings you
elect. You can choose any or all of these options and The Tracer
will turn them up in record time, jumping into Tricky Dick to
point out each found item on the data display.

The Tracer's services allow you to carry out an almost
unlimited variety of disk tasks quickly and easily. For example,
I'm going to show you in this chapter how to find and rescue lost
files in the most rapid manner physically possible on the Apple.
You'll also learn how to turn your machine into a text retrieval
"search engine" to track down word processor and document files
on the basis of key words and phrases. Or would you like to
search for one or a series of strings specified in high ASCII,
low ASCII, or hex - and do this where either a normal or abnormal
disk format is present? And on the subject of funny formatting,
perhaps you'd find it useful to locate track and sector lists,
the VTOC, and the catalog on protected disks. These and many
other disk miracles are possible once you've soaked up this
chapter, so let's get started right away by learning how to
communicate with The Tracer.

THE TRACER'S INSTRUCTIONS

In the manner to which you are no doubt accustomed by now,
I'm going to start out with a brief discussion of the Tracer's
instructions, and then follow up with a more in-depth tutorial.
As usual, the best way to use this chapter is to read this first
section carefully, trying out the various commands, then proceed
afterwards to the tutorial.

Xcicltu fiacd sod lbe Icacec

Just like the other two modules, you always have to use The
Tracer in conjunction with Tricky Dick. To get The Tracer into
memory, type BLOAD THE TRACER and start up old Tricky. Just as
with the other modules, a CTRL E now gets you directly into The
Tracer and displays its introductory screen. From this screen
you can either press CTRL C to get back to Tricky Dick, or hit
any other key to obtain the menu.

Bgadx far Ibfi Xcacfic

Before jumping from Tricky Dick into The Tracer, you will
need to set the slot and drive numbers (CTRL 0) and the DOS
version (CTRL D) of the disk you wish to search. The 'T=' and
»S=' parameters are adjusted automatically by The Tracer, and the
DOS marks display can be set from The Tracer's menu (as described

87

later). When the menu appears, Tricky Dick's parameters will
still remain in view, but it's author's name (T. TSE) is blanked
from the screen. He wonft mind though, since he didn't write The
Tracer, and | needed the room to display some messages.

Xofi tHEEU

The best way to make use of this section is to get The
Tracer's menu up on the screen and refer to it as | describe its
use. The top part of the menu lists the 5 search options
available. These are:

VERIFY FORMATTING
FIND: T&S LISTS CATALOG SECTORS VTOC
STRINGS:

You make your selections by pressing 'Y' for "yes" or 'N
for "no" when the cursor appears on the first letter of each
option. As selections are made, the cursor jumps from one option
to the next. The Tracer immediately inverses each option you
select, thus highlighting them for later reference as you proceed
through the menu.

The numbers 1 - 6 directly beneath "STRINGS" are where you
type in the hex and/or ASCII strings you want to look for, and
the RANGE section allows you to specify the high and low points
of the range you wish to search. Now let's start at the top of
the menu and work down through it in detail.

lieciftt EccieattiDE

This is where the cursor comes when the menu first appears.
A »Y' here tells The Tracer to read in sectors on the disk, but
not to analyse them in any way. The Tracer will do this using
the DOS version and sector marks shown in the Tricky Dick
display. This allows you to check very rapidly whether a range
of sectors (or the entire disk, if you like) is readable using

a particular set of values in these parameters. Since the
following 4 options do involve analysis of the sector data, if
you type a 'Y' in response to "verify", the cursor will skip over
them and jump straight down to bottom of the menu, prompting you
to enter the range of sectors you wish to check out. If instead
)t/ou type in an 'N' for this first option, the cursor will proceed
o ...
X&S Lists

A »Y* here tells The Tracer to look for and display all
Track and Sector Lists within the search range you are going to
enter later in the menu. Starting here, either a 'Y' or an *N
reply to each option causes the cursor to move directly on to the
next.

88

As the name implies, selecting this option tells The Tracer
to search for catalog sectors within a given range and show them
to you. Of course, with a normal disk you already know where the
catalog is, but this particular service could prove rather useful
when working with protected software where the catalog is likely
to be somewhere else on the disk.

1

This enables you to search for the Volume Table of Contents,
which under a normal DOS is always found on track $11, sector
$00, but which could turn up anywhere on a protected disk. If
you need any brushing up on the function of the VTOC, have
another quick look at ny discussion of it in Chapter 2.

IMPORTANT NOTE: Though this never happened once in
benchmark trials with several dozen disks of personal and
commercial software, it's just possible that a sector which is
not a T&S list, catalog sector, or the VTOC could look like one
of these to The Tracer. Similarly, having written the program
myself, | can think of a few ways of "protecting” these 3 types
of sectors by changing them so that they would be unrecognizable
to The Tracer, yet would not screw up any DOS operations.
Similarly, The Tracer may pass over one of them if the sector has
been badly clobbered. So expect about 99 and 44/100%accuracy,
but don't hope for absolute infallibility.

ANOTHER IMPORTANT NOTE: Protected disks may not have a
VTOC, catalog, or T&S lists. Their programs may be loaded by
direct disk access, thus obviating the need for these 3 items.

SiCiagS

If you answer 'Y* to this option, you will be able to
specify from 1 to 6 strings either in hex, high ASCII, or low
ASCII, and The Tracer will look for them in each sector of the

range you designate. Your 'Yl reply causes the word "STRINGS" to
light up and the cursor to jump just below it, next to the "1-".
This prompts you to tell The Tracer which of the 3 types of

strings you want to enter, so you'll need to select one of the
following:

Skciog Seeing UsstlgnakQx:

Hexadecimal type a '$' sign

High ASCII type an 'H'

Low ASCII type an LI

The character you type will be echoed in inverse on the left

of the cursor. This is your signal to start keying in the
string, whereupon 'the inversed string designator will jump over
to the left of the "1-" to remain there while you fill out the

rest of the menu.

89

If you are entering a be* string, spaces between hex bytes
won't be accepted. This allows maximum room on the menu for your
string. Hex strings can contain from 1 to 15 bytes. Be sure to
put the leading zeros on all hex bytes you enter. For example,
‘3" should be entered as 03.

If you are entering an ASCII string, spaces will be accepted
and will become part of the string. You can also enter control
characters in an ASCIlI search string and these will be displayed
in inverse on the menu. |If you want to designate a CTRL M type
in a CTRL SHIFT M (ordinary CTRL M is the same as a carriage
return - which tells The Tracer that you have finished typing the
present string). High or low ASCIl strings can consist of 1 - 20
alphanumeric characters.

When you enter the 15th byte of a hex string or the 20th
character of an ASCII string, The Tracer will sound a tone and
will refuse to take any more input.

You can indicate wildcard bytes or characters in any string
by using the ,=I sign. However, to avoid certain search
problems, a wildcard will not be accepted as the first character
of a string. So if you want to search for, say, =ILLER, just
enter ILLER, and you will get the same results. If you use
wildcard in a hex string, you'll find that The Tracer will print
a double '=' to indicate that the wildcard status applies to both
digits of the byte.

When you have finished tyi)l in string 1, simply hit RETURN
(or CTRL and the cursor will move to the "2-", prompting you

Ipe in a second string. |If you're entering a hex string,
youI notice that The Tracer won't allow you to press RETURN
unless you have specified both digits of a byte. If after
completing the first string, you don't want to search for any
more, hit RETURN again and the cursor will jump down to the
"RANGE" section of the menu. On the other hand, if you do want to
specify more strings, simply repeat the same entering procedure
for each one.

ScsciBiucg the Bacas

When the cursor first comes here (after you have specified
all the search arguments you are intested in) it will land next
to "LOW TRACK-", prompting you to enter the lowest numbered track
in the range you wish to search. "LOW SECTOR" is the cursor's
next stop and works exactly the same way for the lowest sector.
The high track and sector come last and refer, as their names

imply, to the highest numbered track and sector in your search
range.

Track and sector numbers MUST ALWAYS BE ENTERED IN HEX and
will appear on the menu as 2-digit bytes. However, if you want
to enter a single digit number without typing the Ieadlng zero,
just key in the digit followed by RETURN. For example, if you
wanted to enter '31 as the low sector, hitting the '31 key plus

90

RETURN would leave the entry looking like this: LOW SECTOR-03.

Just as with Tricky Dick, there is no restriction on the
track or sector numbers you are allowed to enter. So, for
example, you could make The Tracer attempt to start its search at
track $FF, sector $FF if you wish. However, since no such
address is likely to exist on any disk, you will simply get a
tortured clicking and grinding sound from your drive as DOS
vainly attempts to push the disk arm 255 tracks inwards towards
the center of the disk. This will will in no way harm your
drive, but it will bring the proceedings to an abrupt halt and
elicit an error message from The Tracer. The reason for making
it possible to enter any track or sector numbers to the standard
values is that the latter may be altered to nonstandard values on
a protected disk you wish to search, and the former may increase
on future disk drives to a quantity well beyond the present $23
(decimal 36) now available on standard Apple drives.

The only time this is likely to cause you problems is if you
are searching a 3.2 disk and, having become accustomed to 3.3
sectoring, accidently specify a sector larger than $0C (decimal
13) in the search range.

When you complete the SEARCH RANGE section, the words "ALL

OK?" will appear at the left edge of the menu, giving you a
chance to check that all the information you have just entered is
correct. If it isn't, type an fNf here and the menu will be

restarted, erasing all your entries in the process. Hitting a
'"Y* at this point begins the search.

Editing fcbeMenu

If before pressing RETURN, you discover that you have made a
typing error when entering a string type designator (*H», »L», or
'$') or a string itself, key in CTRL @ (CTRL SHIFT P). This
erases the entire line and returns the cursor to the starting
point, thus permitting you to retype your string. CTRL @also
wipes the string designator, so you will have to re-enter this
also. CTRL @ also erases the present entry in the "RANGE"
section. Hitting CTRL Z a few times steps back through the RANGE
entries, erasing as it goes. This allows you to replace these
entries without restarting the MENU. It can even be used when
you get the "ALL OK' prompt.

fiy& of fcfee Mean

At almost any time when you are filling in the menu, hitting
CTRL C will return you to Tricky Dick, and ESCAPE will restart
the menu, both instructions cancelling everything you have
entered. The only time you can't use these two commands is after
you have typed the first byte of a string, or the first digit of
a track or sector number. At that point in the proceedings, you
will have to hit CTRL @first before issuing the command.

91

tffiw Ibe leasee leases

When The Tracer scans a disk, the menu is replaced with an
inverse "SEARCHING” message, and the tracks and sectors being
examined are clocked up next to "T=" and "S=" respectively. If
you watch this latter display, you will notice that The Tracer
ALWAYS STARTS ITS SEARCH AT THE HIGHEST TRACK AND SECTOR IN THE
RANGE AND WORKS DOWNWARDS TO THE LOWEST TRACK AND SECTOR. This
strategy has been adopted because DOS always writes files on the
disk i1n this manner. By searching through the sectors in the
same backwards order, The Tracer gains substantial speed
advantages and greatly increases the likelihood of detecting
sector overlaps (soon to be discussed).

bou Ibsleaser Elaesib Ecucd

During the course of a search, The Tracer reads one sector
at a time into Tricky Dick's buffer (at $2E00 - $2EFF) and
checks it to see either if it's one of the sector types you've
selected or contains a string you're looking for. When The
Tracer finds one of the search arguments you've specified on the
menu, it immediately jumps back into Tricky Dick and uses
Tricky's data display with ASCIlI to exhibit the contents of the
lucky sector. The hex numbers which then appear after "T=" and
"S=" indicate the track and sector address where the find was
made.

If The Tracer has found a specified StCAflg, it places Tricky
Dick's cursor on the first byte of that string and, where
possible, the data display is adjusted so that the row in which
the string appears at the top of the data display. In addition,
the word "STRING", in inverse, appears in the upper left corner
of the screen (where "BY T TSE" used to be). This is followed by
the number on the menu after which you typed the string.

Whenever The Tracer finds a T&S list, a catalog sector, or
the VTOC, it displays the first half of the sector in Tricky
Dick's data plus ASCIlI display, and places the cursor on byte
$00. The Tracer will also show, in inverse and at the up”er left
corner of the screen, exactly which of these 3 sector types it
has found.

Note that when The Tracer jumps to Tricky Dick's display to
flag something it has located, it passes complete control to
Tricky Dick. This means that you are actually "in" T.D. and can
use all of its commands and functions. So, for example, if The
Tracer has just found a search string and jumped to Tricky Dick
to place the cursor on the first character, you can easily change
the string and then write the altered sector back to the disk in
the wusual manner. Or, you might want to hit CTRL 'L' to
dissassemble all the code from the flagged string to the end of
the sector. | guess you can see that using the Tracer in tandem
with TrickP/ Dick opens up a wealth of possibilities for disk
diddling, imited only by your requirements and experience with
the two programs.

92

CQctiBuicg Seaceb

Once The Tracer has spotted a string or sector type you are
interested in, and has returned to Tricky Dick to display it, the
hunt is by no means over and the The Tracer is still "live".
This means that if you now press CTRL E, The Tracer will not
flash up its introductory screen as it normally would, but will
continue to analyse the data presently in the buffer if your
selections so require. After that, it will look through all the
remaining sectors in the search range for everything you selected
in the menu.

This means that, unless you specify otherwise, The Tracer
will search through the rest of the sector data presently in
Tricky Dick’s buffer for further occurences of any string it has
just found, gfld will repeat this process for every other string
you typed in the menu. It does this in numerical order, so every
occurrence of string 1 on the menu is flagged first, then all
examples of string 2 are shown, and so on. Once a string has
been located in a given sector, the search for other examples of
it or other selected strings is instantaneous.

However, once The Tracer has found a T&S list, catalog
sector, or VTOC, it will not analyse that sector further when you
hit CTRL E, but will pass on to the next one in the search range
(this doesn’t apply unless you specifically selected one or more
of these 3 search options). In such a case, further analysis of
the same sector data is almost always unnecessary, and skipping
it speeds up the search. For example, if a particular sector
turns out to be a VTOC, then it can’t possibly also be a catalog
sector or a T&S list, nor is it likely to contain any string that
the user is searching for. If you want to be absolutely certain,
however, have a quick look for any of your search strings in
these 3 types of sectors if The Tracer turns one up.

ttadUfig Sestar Qxzulaa

”sector overlap”, | mean that part of a search string is
found in the last couple of bytes of one sector, and the rest of
it is located in the first few bytes of the very next sector.
The bad news about this particular situation is that there is no
way to handle it completely satisfactorily. The good news is
that it is pretty unlikely to occur. For example, the odds
against a 5-byte string which occurs once on the disk being split
between two sectors is 4 in 256, or 63 to 1 against.

Nonetheless, The Tracer has an algorithm for spotting and
flagging overlapping strings. What it does is display the sector
which contains the last of the split string. It also places
Tricky Dick’s cursor on the of the string, and, just to
be sure you know what’s going on, displays a flashing *0* (for
“overlap”) in front of the ”STRING" message in the upper right
corner of the screen. This means you will have to look at the
previous (i.e. consecutively higher numbered) sector to see
and/or change the first part of the string. To do this, press

93

the right arrow once, followed by CTRL R from Tricky Dick. Then
move to line $F8 to see the string's first bytes.

Unfortunately, however, there doesn't seem to be any
practical way of designing a search utility both for standard and
nonstandard DOS which is certain to pick up every single
occurrence of an overlapping string. This is because there are
many possible sector orders other than the standard DOS order
utilized by The Tracer. For example, the sector order may have
been rearranged to speed up disk access, and hence be different
from the sequence in which The Tracer searches the disk (which is
based on a normal DOS skew). Often too, files are not written in
consecutive sectors, but are scattered around the disk. Finally,
and most importantly, don't forget that the image of DOS itself
}glwritten in a sector order which is the reverse of that of
iles.

Altecics the Ssaisb Bants £ccb Xciekli Disk

If The Tracer has just jumped Tricky Dick and is still live
(i.e., hasn't reached the end of its current search range), you
can use "<", ">" and the arrows to select a new starting address
from which to search. If you make use of this facility, The
Tracer will always continue searching downwards from any track
and sector shown at "T=" and "S=".

WKiB ids Seatebis Cowoisbsd

When The Tracer has searched throuh the range you nominated,
it will display an "END OF SEARCH RANGE" message and a menu which
allows you to either return to the main menu or go back to Tricky
Dick. Hit a 'l' or a '2' to specify your selection.

Bboctinta Seaceb

At any time while the disk is spinning and The Tracer is
looking at sectors, you can press CTRL A to stop the search. The

track and sector where The Tracer stopped will be shown after
"T=" and "S=", and a "SEARCH ABORTED" message will appear.
You'll also be given the choice of proceeding either to the menu

or to Tricky Dick.

You can even abort a search while in Tricky Dick with a CTRL
A This is used when The Tracer has passed control to Tricky
Dick to display a find, and is thus still live. CTRL A here
"unhooks" The Tracer so that if you now hit CTRL E, rather than
continuing the search, The Tracer flashes up its introductory

screen, allowing you to start anew. In addition the message
stating what The Tracer found is replaced with "BY T TSE" in the
upper right corner of the screen. This latter operation is

useful if you intend to work with Tricky Dick for a while, since
an out-of-date Tracer message on the screen could prove somewhat
distracti ng.

lessee Eccac Uaedliee

If for any reason The Tracer is unable to read a sector in
its search range, everything will come grinding (literally!) to a
halt and you will get a flashing "SECTOR UNREADABLE” message.
The address of the offending sector will appear after "T=" and
"S=", and a 4-option menu will be presented to you. As usual,
you can decide either to go to Tricky Dick or return to The
Tracer's main Menu. In addition, you have the choice of
continuing the search starting with either the next sector or the
next track. The NEXT TRACK option decrements the track number
shown and takes up the search from sector $0F or $0C, depending
on the DOS verions of the target disk.

This may happen frequently with DOS 3.2 disks, since empty
sectors are not formatted with data field marks, and hence cannot
be read. When it does, remember to try the NEXT SECTOR option a
few times before opting out with NEXT TRACK

If you want to try using some different DOS marks to search
the unreadable sector, you can modify the ones shown in the
Tricky Dick display and The Tracer will automatically attempt to
read the sector again. This process is described under "Changing
the Sector Marks” below.

CefgulEitie tc the EceuiousSeatsi)

If you decide to return directly to The Tracer's main menu
from either a "SEARCH ABORTED", an "END OF RANGE", or a "SECTOR
UNREADABLE" menu, you can elect to preserve all the search
arguments (i.e., the strings and sector types) you last
specified. This enables you to avoid typing your menu selections
over again if you want to search another range for the same
arguments. To accomplish this, press CTRL D immediately upon
returning to the main Tracer menu, and the cursor will jump
straight down to the RANGE section. Now you just specify the
high and low addresses of the new search range and The Tracer
will look through this for exactly the same strings and/or sector
options that it was previously hunting for.

Remember, this command is available only if you've just
returned to the main menu from one of the above 3 submenus and

the cursor is flashing over the 'V' in "VERIFY". Moreover, you
must decide to default before entering anything else. If you
start working through the menu, then use ESCAPE to get back to
the start, the default option will be cancelled.

CbaoziDz Sgglgc Macks

Any time you are at the beginning of the menu (i.e., when
the cursor is sitting on "VERIFY"), you can type CTRL S to change
the DOS marks. This process works just as in Tricky Dick and is
described in the two chapters which deal with this utility. You
can also change these marks any time you get a "SECTOR
UNREADABLE" message. Instead of selecting one of the

95

accompanying menu's 4 choices (described above under "Tracer
Error Handling"), simply press CTRL S. The cursor will jump up
to the Tricky Dick sector marks, enabling you to alter them in
the usual manner. When you have made your changes, press RETURN,
and The Tracer will automatically attempt once again to search
the unreadable sector. If it succeeds in reading this sector, it
will continue the search from there using the new sector marks
you just specified.

The above two options come in particularly handy when,
having searched one group of sectors on a protected disk, you
have to nominate different parameters to get through another
batch which have a different set of marks (DOS marks may change
from sector to sector on protected software).

XESfIEE Liams

Whenever |fve described The Tracer's search capabilities to
my computer buddies, their first reaction has almost always gone
something like "wow, it must take a long time to do all that
searching”. This led me to carry out some benchmark tests which,
in fact, demonstrated that The Tracer is just like Speedy
Gonzales - fast, fast, fast. The scan time for a 3.2 disk is
always 68 seconds, irrespective of which options or how many you
choose. Due to sector skew differences between the two DOSI,
however, the picture with 3.3 disks is a bit more complicated.
Here the scan times vary from 19 - 135 seconds, depending on
which options are in effect and what's on the disk.

THE TRACER TUTORIAL

Let's start by checking out your CIA disk to make sure it's
readable by a normal RWIS. BLOAD The Tracer and then BRUN Tricky
Dick. Use CTRL D and CTRL 0 to set the slot, drive, and DOS type
parameters. Then hit a CTRL E to get The Tracer's introductory
screen up and press any key to display the main menu. The cursor
should be on the first option, VERIFY FORMATTING, so answer 'Y*
to this. When the option lights up and the cursor jumps down to
the RANGE section, type the following sequence: 0 RETURN 0 RETURN
21 RETURN F RETURN. This establishes that The Tracer is to read
in each sector in descending order, starting with track $1F
sector $0F, and working down to track $00, sector $00. Since the
disk has some funny formatting from track $20 onward (for you to
practice on) we'll skip these tracks for now and pick them up
later.

Type a 'Y' in reply to the "ALL OK?" message, and sit back
while The Tracer checks out your disk. You'll be able to follow
The Tracer's progress by watching "T=" and "S=", and noting the
track and sector numbers flying by. As | mentioned earlier, the
disk gets scanned backwards, starting with the highest track and
sector in the search range and ending with the lowest. So if
everything is working well, you should observe that the track and

96

sector numbers decrease consecutively as the search proceeds.
When The Tracer has finished, it will display the "END OF SEARCH
RANGE" menu (If you got an error message before The Tracer
reached track $00, sector $00, you’d better make another copy of
the CIA disk). This indicates that every track from $1F
downwards is RWIS readable using the DOS marks shown in the upper
left of the screen. Hit a *1* to get back to the main menu.

Now type an 'N* and the cursor will jump down to T&S LISTS.
For the moment, let’s skip this option by typing another ,N.
Reply 1IN as well to CATALOG SECTORS and VTOC. When you get to
STRINGS, hit a *Y* This option will light up and bring the
cursor down in position to type in string one. Wefre going to be
entering several strings in this part of the menu, so if you make
a typing error in any string and notice it before hitting RETURN,
remember that CTRL @ (CTRL SHIFT P) erases the erroneous entry
and allows you to retype the string. If you spot an error after
you’ve already hit RETURN, use the ESCAPE key to restart the menu
and begin anew.

Type a *$ sign to tell The Tracer that string one will be
in hexadecimal. The inverse *$, which replaces the ** is your
cue to start entering some hex bytes, so type in 2058FC and hit
RETURN. Keying in the first character makes the *$ jump over
beside the ’1-* for your reference throughout the menu. You’ll
also notice that The Tracer doesn’t allow you to insert spaces
between the individual bytes, which means that you’ll need to
type the string just as I've written it above. This feature
conserves space on the screen so that you can get up to 15 bytes
on one line. This is the maximum amount you use to specify a hex
string.

By the way, *20 58 FC*, listed in assembler, is *JSR FC58’,
which says "do a GOSUB to the monitor routine (at $FC58 -
remember, you have to reverse the two bytes of hex addresses when
using 6502 machine code) which clears the screen and homes the
cursor. It is equivalent to "HOME" in BASIC.

You should now find that the cursor is positioned after the
2-, so hit the *$’ again and start string two off by typing in
a ’20°’. Now enter a '=*sign and notice that it isimmediately
echoed twice after the *20*. You already know from the "Tracer’s
Instructions” section above that this is a wildcard designator
which signifies that any two-digit byte in the position the two
= characters occupy is acceptable. Finish off by typing ’'FE*
and hitting RETURN. The *20==FE’ entry tells The Tracer to find
and display any 3-byte machine code instruction which begins with
JSR $FE. In other words, we are interested in having a look at
any Jump to a page $FE SubRoutine in the range of sectors we want
to search. Page $FE ($FE00 - $FEFF) is in the monitor and

contains several subroutines which perform setting up and other
functions for the video.

Just to break the pattern a bit, let’s also look up some
ASCIl. The cursor should now be happily flashing away next to

97

the »3-», so type an 'H* followed by the word "HELLO". Finish
with a RETURN as usual. The »b tells The Tracer that the string
following it is in high ASCIlI. Type another 'H» for string 4 and
enter the word APPLESOFT, followed by a RETURN.

Now get ready for string 5 by typing an »L* This indicates
that the string is to be in low ASCIlI (high and low ASCII are
explained in Appendix A at the back of the book). Just to get
acquainted with the error correcting facility, type the mispelled
word "CATALEG'. Now correct this by hitting CTRL @ The entire
string, plus the 'L' string type designator, will dissapear from
the screen, and the cursor will be returned to the *5-'. From
here you could decide either to restart the menu with ESCAPE, or
to jump back to Tricky Dick with CTRL C

Donft use either of these commands, however. Instead, key
in ILt again, and type out the following string: CATALOr. When
I discuss the results of the search 1*11 explain why you've
replaced the terminal *0* of this word with a wild card.

Hit RETURN to go to '6-', but because we're not going to
look for any more strings on this search, do another RETURN.
This should bring the cursor down to the RANGE section of the
menu, next to "LOW TRACK-". The range we will search on this
trip will extend from track $00, sector $00 up to track $02,
sector $04 (this takes in all of DOS). So type in the following
sequence: 0 RETURN O RETURN 2 RETURN 4 RETURN. If all has gone

well, this should leave the lower part of your menu looking like
the illustration below.

STRINGS:

$1-2058FC

$2-20==FE

ALL H3-HELLO
OK? H4-APPLESOFT

L5-CATALO=
6.

RANGE: LON TRACK-00 HIGH TRACK-02
LOW SECTOR-00 HIGH SECTOR-04

Now hit CTRL Z a couple of times and retype the data you've
just zapped. Then answer 'Y' to "ALL OK?", starting the search.

The "SEARCHING" message will be displayed and, if you look
quickly, you'll see the high track and sector address appear
brierly after 'T=' and 'S='. As usual, the search begins with
this sector and searches downward through consecutive sectors.
You'll also observe that the sector numbers tick by somewhat more
slowly than when you elected to "VERIFY FORMATTING" above. This
is because a string search entails at least 256 comparisons per
sector for each string in the menu; The "VERIFY" command merely

reads the sectors into Tricky Dick's buffer without analysing
them in any way.

The first string The Tracer will locate is string 3
("HELLO). The "T= S=" address shows you that this is on track
$01, sector $09. In order to point out the string, The Tracer
has transferred control back to Tricky Dick and put the latter's
cursor on the first byte of HELLO. The Tracer has also adjusted
the TD display so that the line containing HELLO (line $70) is at
the top. Counting along this line until you get to the cursor
tells you that the string's first character is in byte $75 of the
sector. Finally, The Tracer has put the inverse message "STRING
3" in the upper right corner of the screen where "BY T TSE" used
to be. You are now effectively in Tricky Dick and could change
the file's name on the disk as discussed in chapter 2, or for
that matter, use any of the TD commands.

For the moment, however, let's skip the commands and
continue tracing our strings. In order to do this, you have to
transfer control back to The Tracer by hitting CTRL E, Tricky
Dick's instruction to jump to an external module. This time,
however, The Tracer knows that it is in the middle of a search
and doesn't display its introductory screen as the modules
normally do when summoned in this manner. Instead, The Tracer
keeps looking through the same sector for all of your 5 strings.

You'll find on pressing CTRL E that in less than an
eyeblink, The Tracer has found an occurrence of string 4
("APPLESOFT") near the end of the same sector (at byte $B8), and
has displayed it in the usual way. This word tells DOS the
principal language the machine is likely to be using.

Hit CTRL E again and The Tracer looks through two more
sectors, stopping at track $01, sector $07, and putting the TD
cursor on byte $D2. The "STRING 5" message in the upper right
corner tells us that "CATALO=" has been located. Notice here
that The Tracer can't put the line containing "CATALO=" at the
top of the display because this line is too near the end of the
sector.

If you inspect the ASCII display at the right of the screen,
you'll probably recognize most of the familiar DOS commands.
This tells us that we have arrived at the DOS command table which
is used to compare direct instructions that come from the
keyboard. But why did we put a wild card at the end of
"CATALOG"? Notice that the first few letters in CATALOG are in
low ASCII, as is immediately recognizable from the first byte
under the cursor. The letter 'C' in low ASCIlI is $43;
translating it to $C3 by setting its high bit would put it in
high ASCII. If you read the hex equivalents of CATALOG'S
letters, you'll see that they all start with '4's* or '5*s* and
hence are all in low ASCII - except the last one ($C7 at byte
$D8) which is high. And that of course is why we put in the wild
card for this character; without it The Tracer would have been
looking for low ASCIlI representations of every letter in CATALOG
including the last, and hence would have overlooked this string.

99

Changing the last byte of a string from low to high ASCII
(or vice versa) is a common programming practice in machine code.
It gives the program an easy way of recognizing the end of a
string - just look to see if the high bit of the last character
is different from that of the other characters. Therefore, it is
always wise to substitute a wildcard for this character when
searching for string whose representation you are uncertain of.

You could now elect to change the CATALOG command to
something else while still in Tricky Dick (DOGALOG perhaps?).
The only snag is that the new name must contain the same amount
of letters as did the old. If you wish to shorten any of the DOS
commands, you have move all the commands ahead of it in the table
down a number of spaces equal to the number of letters missing.
So, for example, shortening CATALOG to CAT, though useful, would
be rather Tricky using Dick, since moving every subsequent
command down 4 spaces would have to be done by hand. There have
been many programs featured in the users mags which enable you to
dt? this automatically, so itfs probably wiser to employ one of
them.

Hitting CTRL E takes us back on the trail of our 5 strings
and results in The Tracer turning up one of them on track $00,
sector $09, byte $C8. The display tells wus that we have
unearthed an example of String two, which was 20==FE (JSR to any
address in page $FE). The string is 20 93 FE, a subroutine call
in the monitor which does a PR hash 0.

Another CTRL E leads The Tracer to find a second occurence
of String two, this time in track $00, sector $01, byte $44.
This time itfs a 20 89 FE which is the same as IN hash 0.

Taking the search further leads us to track $00, sector
$001, byte $D0 at which we find the first example of String 1
(2058FC). As | mentioned earlier, this is the machine code
equivalent of "HOME" in BASIC. Here, CTRL E reveals yet another
occurence of string 2 in line $38. It's 20 89 FE again and CTRL
E locates 20 93 FE right behind it. A final CTRL E takes us to
the "END OF SEARCH RANGE" menu. Hit a *1' at this point to get
back to the main menu. YOULL NEED TO USE YOUR CIA ORIGINAL DISK
FOR THIS NEXT SEARCH, since it has one of the targets you'll be
looking for.

From the main menu, reply 'N' to VERIFY FORMATTING, but *Y
to T&S LISTS, CATALOG SECTORS, VTOC, and STRINGS. When the
cursor gets to 'l-', enter GOLDEN DELICIOUS as a high ASCII
string. Then nominate track $10, sector $0F as the low address
of the search range, and track $15, sector $0F as the high end.
Start the search and continue it each time The Tracer happens
upon one of your search options.

The first thing you'll notice is that there are several T&S
lists between track $15 and track $11. Each time The Tracer
discovers one of these it will put Tricky Dick's cursor on the

first byte of the sector, and a T&S LIST message will appear in

100

the upper right corner of the screen. When you get to track $11,
sector $0F, The Tracer will send you a "CATALOG" message in the
usual place and display the first sector of the catalog with the
cursor again on the first byte. Continue the search with more
CTRL B*s and The Tracer will display a couple of more catalog
sectors. This is not exactly astounding since we made no effort
to protect the CIA disk. However, a catalog search could come in
handy when you are working with the software of less generous
publishers whose catalog (if present at all) may turn up anywhere
on the disk. 1’lIl talk about this a bit more in a later section
of the chapter.

When you get to track $11, sector $01, you*ll get a somewhat

different reaction from The Tracer than usual. You.will see a
"STRING 1" message with a flashing *0* in front of it. Line $08
will be in the top of the data display, and it will look like
this:

08: C9 CF Db DiﬂAOAOAOAO :10US
cursor is here

The flashing *0* tells you that string one ("GOLDEN
DELICIOUS") overlaps two sectors. In such a case, The Tracer
places the TD cursor on the iasfc byte of the string, and puts the
line which contains it at the top of the display. More of this
hallowed name can be seen in line $00. However, to view and/or
change the very first part of the string, back up one sector to
sector $02 by hitting the right arrow. Now do a CTRL R and get
to the bottom of the data display. You will see the first part
of the string ("GOLD") in line $F8.

However, you've just altered the track and sector address
while in Tricky Dick. Recall from the "Tracer*s Instructions"
earlier that if you do this before The Tracer has reached the end
of the search range, the search will continue from the altered
address. So having just changed *S=* to $02 in order to read
that sector, you will find that CTRL E leads The Tracer to search
it and rediscover string one on sector $01. In order to make
sure that sector $01 gets fully inspected, however, just let this
happen, and continue the search with the familiar CIRL E

The next search option The Tracer will uncover is the VTOC
sector on track $11, sector $00. Again, not too astounding, but
a useful option when working with a protected disk whose VTOC has
been moved. While still in the VTOC, change Tricky Dick*s track
number to $10 and the sector number to $05. Remember that
changing the track and sector address before The Tracer reaches
the end of its search range gives you a chance to change your
mind in the middle of a search and either skip over some sectors,
or go back and have a second look through some that have already
been inspected.

Before hitting CTRL E to start the search again, take note
that | want you to hit CTRL A as soon as the search is in

101

progress. Ready? Good, hit CTRL E and follow this up quickly
with CTRL A This will result in a "SEARCH ABORTED" message and
a choice of going back to Tricky Dick or the main menu. Type in
a *1* to do the latter.

Before doing anything else, hit CTRL D for "default" and the
cursor will jump straight to the RANGE section. This means that
The Tracer will recall the last search options you selected and
is prepared to track them down through any new range you specify.
Remember that you can choose this option only when you come to
the menu from a Tracer abort, end of range message, or error
message. Now make track $12, sector $00 the low end of the range,
and track $1F, sector $0F the high address. Hit RETURN, and
before long The Tracer will come up with a T&S List. lIgnore this
and open the drive door. Now hit CTRL E, and surprise, surprise,
you get a "SECTOR UNREADABLE" message.

The accompanying menu presents you with the usual choices of
proceeding to Tricky Dick or The Tracer. But you also can elect
to keep on trying to search the disk, either taking up your
mission on the very next (i.e. the next lower) sector, or
electing to skip to the next track. Close the drive door, type a
2 to take this latter route, and yo”Il notice that the *T=
S=* address changes immediately to the next lower track, sector
$0F. It then continues its usual sector-by-sector descending
search from there. This menu will become highly familiar as you
search protected software, since its DOS marks may vary from
sector to sector. You'll also see it as you work with normal DOS
3.2 disks whose blank sectors are unreadable due to their lack of
data marks

When you arrive at the next T& list, hit CTRL Awhile still
in Tricky Dick. This aborts the search and removes the message
from the upper left corner of the screen, replacing it with "BY T
TSE". You have effectively turned off The Tracers disk reading
routines, and if you now hit CTRL E, the search will not
continue. Instead, you'll get The Tracer's Introductory screen.
Try a CTRL E just to check, and then do a CTRL C to get back to
Tricky Dick.

Well, the last few pages should have given you a pretty good
chance to rehearse most of The Tracer's instructions. Now that
you two have a good working relationship, let's get down to some
more interesting stuff.

IrasiBg Lest Eilea Ibs leasee

Suppose you are working with your machine and suddenly
realize that you have DELETE'd a file you really wanted to Kkeep.
In chz_aé)_ter 2 we discussed how to fix this in a matter of seconds,

it U babaik cu& sdy wozs 111SS o £bs disk sisss the
dfiisJtiQD* ut suppose further that you have made the supreme
blunder of actually SAVEing a couple of programs before realizing
that the DELETE'd file consists of, say, the only copy of your
nearly complete PhD thesis. You certainly will have read the

102

T

-h T

~ T T =+ T 7

Tn

dire warnings, repeated time and again in the popular computer
literature, that this particular mistake usually causes the file
concerned to be overwritten with the SAVE'd programs.

Since you somehow just never got around to making a backup
of your thesis, must you now forsake the halls of academe for a
less stressful environment, perhaps taking up work as a sludge
scraper, or at some other profession that does not require you to
create word-processed documents? Well, thanks to your sagacious
decision to become the owner of The CIA disk, you may yet land
that assistant professorship you had your eye on.

In order to determine the possiblity of salvation from the
foregoing horror, Ifd like your to carry out a little experiment.
Put a BfiwWly in your drive and type in the
following sequence of BASIC instructions with a RETURN after each
one.

FP

10 ReM TEST 3
SAVE TEST 3
DELETE TEST 3
10 ReM TEST 2
SAVE TEST 2
DELETE TEST 2
10 REM TEST 1
SAVE TEST 1
DELETE TEST 1
10 REM TEST 0
SAVE TEST 0
DELETE TEST 0

What you have obviously done is to create, SAVE, and
subsequently DELETE, 4 APPLESOFT programs. Doing so in the

sequence specified above has given each of TESTs 0 - 2 a darn
good chance to overwrite one of the programs that preceeded it.

In other words, you have committed the Final Fatal Foul-up
no less than 3 times! And so, we ask ourselves, how many of your
one-line programs are still intact on the disk, and how many have
been obliterated? To answer this pithy question, carry out the
operations below with Tricky Dick and The Tracer in memory.

103

Set up the Tricky Dick parameters to read the disk with the
4 test programs on It and go to the The Tracer's menu. Then
select the T&S LISTS and STRINGS options. Type an 'L' for string
one and enter the word TEST. The search range should extend from
track $12, sector $00 to track $19, sector $0F. Type these
numbers into the menu and start off the search.

The Tracer's first stop will probably be somewhere pretty
close to track $16, sector $0F, where you will find a T&S list.
The next CTRL E turns up string one in the very next sector as
part of the "TEST 0" REM statement in program TEST 0 (you could
check out the entire program by listing it in APPLESOFT with CTRL
L, 'A*, and *L'). This is no big deal, however, since TEST 0 was
the last program we saved, and hence couldn't have been
clobbered.

Continuing the search will bring you to sector $0F of the
next lower track where you'll discover another T&S list. CTRL E
again uncovers the program TEST 1 on the sector $0E of the same
track. We can see that its code is all intact, establishing that
it was not overwritten, even though we DELETE'd it and SAVE'd
another program thereafter.

To make a long story short, if you keep pumping in CTRL E's,
you'll get exactly the same results for the other two files,
neither of which have been replaced by first DELETEing them and
then SAVEing additional programs afterwards. All programs will
probably reside on sectors $0E and $0F of 4 consecutive tracks.
This happy state of affairs is due to DOS having a built-in
propensity to avoid overwriting DELETE'd files. This is because
it records the last track it accessed in the VTOC (at byte $30)
and attempts to find free space on a track Qfctofijc that this one
when it performs its next disk operation. As you may remember
from our work in Chapter two, the next VIOC byte ($31) tells DOS
which direction from the last accessed track to take when looking
for empty sectors. Please note, however, that this does NOT
guarantee that a happy ending to the foregoing saga of the lost
thesis would always be obtainable - so don't get careless, O.K.?

Another important use for the search procedure you used in
our little experiment is to locate lost files when one or more

catalog sectors have been clobbered. Once the catalog is
destroyed, of course, there is no record on the disk of the
starting address of any of the disk's files. Never mind, though,

because the Tracer makes a rescue operation child's play.

The first step is to search the entire disk for T&S lists,
together with any strings or other code that you think might
exist in a missing file. Remember to specify these strings in
low ASCII if you're trying to recover an APPLESOFT program, and
high ASCII for an INTEGER program. High ASCII is usually used in
textfiles as well. If you <can remember any specific
instructions, look up the their BASIC tokens in the Apple manual,
and enter these in the menu as a hex string. Whenever The Tracer
finds a T&S LIST, always be sure to list the first few sectors it

contains with Tricky Dick, Inspect them carefully to make sure
they belong to a file you want to recover. |If they do, make a
note of the track and sector upon which the T&S list is located,
together with the number of track and sector pairs in that list..

Once you have found all the missing files, the next problem
is to restore the catalog track and put the file entries back.
Chapters two and three describe the composition of catalog
sectors in detail, and referring to them should help you in
carrying out this reconstruction. Rather than do this completely
from scratch, try the following sequence.

(1) Put Tricky Dick's cursor on the first byte of one of the
clobbered catalog sector and type CTRL Z Write the zeroed
sector back to the disk. Repeat this for every corrupted sector.

(2) Restore the link pointers of each zeroed sector. You'll
recall from chapter two that these specify the track and sector
of the next catalog sector. They occupy bytes $01 (the track
number) and $02 (the sector number) of each catalog sector. On a
normally formatted disk, each sector's two bytes point at the
next lower sector.

(3) With the BASIC prompt on the screen, type FP. Then key
in SAVE followed by the name of the first APPLESOFT program whose
name you wish to restore to the catalog track. Repeat this
procedure with each of the other programs to be rescued. [If the
program is a binary file, use BSAVE. Use BSAVE for all textfiles
and INTEGER programs also. This step puts the file names back in
the right places and partially restores the catalog sectors.

(4) Replace the length values of each file name with the
correct values you have copied down (i.e., the number of track
and sector pairs in the file's T&S list). These come at the end
of the 'AO's' after the file name and, until you change them to
the right values, will read *02 00' for each file entry.

(5) Replace the present address of each filename's T&S list
with the correct address (which you wrote down during The
Tracer's search). This address consists of two hex bytes just in
front of the file type byte.

(6) For INTEGER program ana textfile names only, put the
correct file type esignator ('01" for |INTEGER, '00' for
textfiles) in place of the one that is now there (an '04* if you
followed my instructions above). Remember, this designator byte
is the first hex value in front of each file name.

Though the foregoing procedure involves doing some
operations by hand, my benchmark trials with Apple users as
subjects shows that it is a far faster way to resurrect lost
files than using any of the "automatic" file recovery software
presently available. This is because the automatic software
restores every file on the disk to the catalog whether you really
wanted it or not. Most of my subjects found this an unacceptably

105

slow process.

Remember to refer to Chapter 2 for more details of the
placement of the hex values in the catalog sectors. Just to keep
in the spirit of this tutorial, | suggest you take your newly
initialized disk with the TEST programs on it and deliberately
clobber its catalog sector. Then try restoring all 4 TEST
programs plus HELLO to the catalog. If it doesnft work the first
time, blow away the catalog again and have another try. This
will get you in good shape for the Real Thing.

Ufilog Ibe leasee lee lext, Betciejial

Suppose you have a substantial number of disks full of word-
processor files which are mainly correspondence. Moreover,
you've got a meeting with your accountant tomorrow and have to
bring copies of every letter you've written to Plummet Airlines.
To make things worse, perhaps you (like me) have a memory which
is even less reliable than Plummet's arrival times. How are you
going to dig out all those letters?

In fact this job is pretty simple because all you do is
enter PLUMMET AIRLINES in high ASCIlI in The Tracer's menu
(although you'd better check one or two of your correspondence
files just to make sure your word processor doesn't use low ASCII
or some method of non-ASCIl text compression). Then you search
every disk from top to bottom, wusing this string as a search
argument. When you find only the string in a piece of
correspondence, make a note of the name you gave it when it was
written to the disk. When you're done, you produce hard copy of
all the letters whose names you wrote down.

Of course, there could be one minor hitch in all of this -
you might not be able to remember the letter's filename when you
see it in Tricky Dick's display. If so, you will have to find
its T&S list, and from there, go to the catalog track to match
the T&S list's address with the letter's name. This is going to
require a bit more work - but it serves you right for having such
a lousy memory!

Fortunately there are a couple of shortcuts you can use to
track down an unknown file's catalog entry. Firstly, to find the
file's T&S list, specify a range of its tracks and sectors as a
Tracer search string. Let's say Tracer has located the words
"Plummet Airlines" on sector $05 of track $14. The commands CTRL
A and CTRL E, followed by any keystroke, will take you back to
The Tracer's menu. Once here, you select only the STRINGS option
and enter string one in hex as shown below.

STRINGS:
$1-1405

This track and sector pair must appear somewhere on the
file's T&S in the order illustrated above. The Tracer will most

106

likely find this T&S list in under 15 seconds if the disk is
nearly full.

By the way, remember not to also select the T&S LIST,
CATALOG SECTORS, or VTOC options on the menu for this search. As
I mentioned earlier, when the Tracer finds one of these, it
doesn't search the same sector for any strings you might have
specified.

When you've got the track and sector address of the file's
T&S list, the final step is to go back to The Tracer's menu and
specify these two bytes as a hex search string. So if the list
was on, say, track $15, sector $0F, your string entry should look
like this: $1-150F. You should now search all the catalog
sectors on the disk (i.e from track $11, sector $0F, down to
sector $01 of the same track). This search will probably take
less than 3 seconds. If all has gone well, The Tracer will place
Tricky Dick's cursor exactly 3 bytes in front of the filename you
are looking for. This, of course, is because DOS writes the
address of each file's track and sector list in this position.

If you find more than several unknown files on the same
diskette, you can track down up to 6 of them, simultaneously.
First, go through the entire disk making a note of every track
and sector address in which your search string occurs. Then
specify up to 6 of these pairs as Tracer search strings, writing
down each T&S list that The Tracer turns up. Finally, enter all
the T&S list addresses as search strings, and put The Tracer to
work on the catalog track.

Of course, you don't have to Ilimit yourself to
correspondence files when using this technique. You can apply
the same procedure to any stored textfiles created by any
database program, providing the files contain recognizable
alphanumeric characters. You can also use the same technique for
locating programs.

Seacabiag Disks uiithHacks

Everything you have carried out so far in this tutorial can
also be done with the vast majority of protected disks presently
available. If you have worked carefully through the last
chapter, you'll already have a pretty good idea about how
to search locked software with The Tracer. With many nonstandard
disks, all you have to do is utilize the methods | described
in that chapter for determining and setting up the Tricky Dick
sector marks, before entering The Tracer.

To get some practice in using The Tracer in this way, let's
search track $22 (the one l've protected) on your CIA disk for a
couple of strings. From Tricky Dick, specify which drive the
disk is in and set the DOS version to 3-3. Then jump into The
Tracer. Hit CTRL S and set the address field header to 'DC BF
AA». Select the STRINGS option only, and specify two high ASCII
search strings as follows:

107

HI-SECTOR
H2-INITIALIZE

Set up the SEARCH RANGE to examine all of track $22 and
start the Tracer on its merry way. After a bit hesitation on

$0F, the sectors will clock by in their usual manner until The
Tracer gets down to $03. Here, The Tracer will vainly try to do
a read, but will fail, displaying the SECTOR UNREADABLE menu.

I might add that if you were not working on the CIA disk, with
whose track $22 ideosyncracies you are already familiar, it would
have been wuseful to have first used The Tracer to VERIFY
FORMATTING on all $23 tracks. |If problems were encountered, the
disk's formatting should have next been checked out with The
Linguist. Armed with the information on DOS marks gleaned from
this member of the CIA, you would then have been able to carry
out the proceedure that I'm going to describe next.

From your work in the last chapter you may remember that, in
order to gain access to this sector, you have to change the data
field header from *D5AAAD* to 'F8C7B8', and the data field
trailer from 'DEAA to 'FFFF*. To make these changes, ignore the
4 choices on the error menu, and hit CTRL S instead. After
fixing up the header and trailer, a RETURN causes the cursor to
disappear and the previously inaccessible sector to be
automatically reread using the new parameters.

A considerable amount of noisy recalibrating will take place

as The Tracer gets to grips with the new marks. Then the
familiar "ping” will be heard as the Tracer transfers
communication to Tricky Dick and displays string two. By the
way, if you haven't already done so, you might find it

interesting to read the contents of this sector and the next one
we are about to search.

An alternative to the foregoing procedure is to select the
"TRACER MENU" option when the Tracer does a misread. From the
main menu, hit CTRL S and change the sector marks to those
necessary to read the present sector. Then hit RETURN, followed
by CTRL D. This latter command takes the cursor directly to the
RANGE section where you enter track $22, sector $03 for both the
high and low addresses of the search range. Then start the
search in the usual way.

A CTRL E here unearths another occurrence of the word
"initialize" in the same sector. On the next Tracer call the
search continues, again unsuccessfully, on sector $02. The data
field header and trailer of this sector are DEAAEB and DS5AA,
respectively, so change them accordingly and hit RETURN (or go
back to the main menu and carry out the alternative procedure |
described above). The next attempt should pick up another
example of string one. Follow the same plan with sector $01
whose data header is D9AAAD, and whose data trailer is normal.
Do the same for $00 where both the data header and trailer are
normal. The word 'sector* should be flagged on both these last
two sectors.

108

SsacQhiug Disks uibh Modified Seoioi; tfuiskecs

An occasionally used method of copy protection is to alter
the sector numbers in the address field information to
nonstandard values. For example, it is not too difficult to
format a 3.3 disk so that the sectors on one or more tracks do
not range from $00 - $0F, but instead vary, say, from $10 - $1F.
By first checking the disk with The Linguist, you can easily
detect this and still get at all the sectors with Tricky Dick,
since the latter allows you to use the f;1 command to enter any
2-digit hex number after 1S=*

The Tracer, however, automatically returns the sector number
to $0F (or $0C if DOS 3.2 is active) whenever it finishes one
track and moves on to the next. So what you have to do is fix
The Tracer so that it sets this value correctly according to the
numbering scheme on the track. You first need to find out with
The Linguist the highest numbered sector on the track or range of
tracks you want to search. Then go into the monitor with CALL -
151 and type 811B:A9 XX EA, where XX is the highest sector
number. This patch to The Tracer will enable you to read and
analyse the entire track with ease. Don't worry too much about
the lowest sector; if this is less than $48, The Tracer will
still clock the sector numbers by until it reaches $00, at which
point it proceeds to the next track. With a value greater than
$48, wait for the error menu and take the "NEXT TRACK"' option.

When you are through searching the disk with the funny
sector numbers, don't forget to either BLOAD The Tracer again, or
go back to the monitor to put things back in order with 811B:AD
0A 80.

Another alternative numbering scheme consists of
incrementing the sector numbers by even amounts, e.g. $02, $04,
$06, etc. If you encounter this subterfuge, specify a one-track
search range and set the high address to the highest numbered
sector you found on the track. During the search, The Tracer
will display the error menu every time it attempts to read an odd
numbered sector as it steps through the range. When this
happens, just take the "NEXT SECTOR" option, and the track will
get fully searched.

Seacsbi&g Haifa s Stcaceelg Nurbered Jeaslss

Having dealt with half tracks previously, you should have no
trouble here. However, the proceedure is a bit more involved,

and you need two disk drives to bring it off. Here is the
proceedure.

(D Put the CIA disk in drive one and the target disk in
drive two.

. (2) Get The Linguist into RAM and position the dci&f £yq
disk arm over the track to be read.

109

(3) Load in The Tracer from drive one.

(4) Put the half track patch into Tricky Dick’s RWITS as
described in Chapter 5.

(5) Go into The Tracer and specify a search range from
sector $00 to sector $0F of the track to be examined. Make sure
you enter the same track number in the menu that appears on the
track you*re going to search.

Now go to it. If you hear a recalibrate, you may have to
start again. Just to make sure you’ve got the hang of searching
half tracks, carry out the above sequence of operations on track
20 1/2 of the CIA disk. Search a few of the sectors for the word
"this” in high ASCII.

Searching tracks which are numbered in a nonstandard way
requires a bit of patience but can also be handled if you have
two disk drives. All you have to do is follow steps 1 - 5 above
for each track you want to search.

Eiodioe the Babe acd nibble Icauslais lablaa

If you're dealing with a normal DOS, you know from the
previous chapter where these are located. But on protected
disks, it’s just possible that the two tables may have been
moved. This means that you have to find them before you can do
any editing.

Finding the tables is usually no sweat. Once you've
determined how to read the disk, simply instruct The Tracer to
search the disk for the following strings.

£qc a DCS 3*2 disk £ol a DOS 3*3 disk
$1-010810 $1-96979A
$2-141516 $2-B EBFCB
$3-3EE8FO $3-FCFDFE
$4-ABADAE $4-000198
$5-D6D7DA $5-C0C1C2
$6-FDFEFF $6-3B3C3D

Half the strings in each column consist of 3 consecutive
bytes from the byte table of their respective DOS versions; the
other half are similarly constructed from the two DOS* nibble
tables. Since the reason for finding the tables is to determine
if any of their bytes have been altered, it makes sense to search
for several several small chuncks of each of them. That way, you
maximize the liklihood of specifying search strings which exactly
correspond to parts of the tables and hence increase The Tracer’s
chances of turning them up. Needless to say, if the above
strings don’t work (a highly unlikely possibility) pick some
different chunks and try again.

110

When The Tracer flags the tables, the final step is to
compare them with the normal vesions shown in the chapter on The
Code Breaker. If any bytes are different, make a note of them
and use The Code Breaker to edit the tables accordingly.

It looks like we're nearing the end of our little journey
together. If you have followed along with me all the way, your
disk savvy ought to have grown by a substantial amount, and by
now you should be commanding some considerable respect among your
computer buddies. However, we haven»t quite reached the end of
the line yet. I still have to introduce you to one more CIA
operative. And that's The Tracker.

CHAPTER EIGHT — The Tracker

The Tracker’s job is to follow the disk arm from sector to
sector as it makes 1ts rounds during any DOSoperation. Once on
the trail, The Tracker faithfully records on your screen each
sector visited and all read or write operations performed while
DOS is LOADing, SAVEing, RENAMEing, or doing anything else to a
file. The entire record stays on your screen for as long as you
wish, and if you need a permanent copy, The Tracker dumps the
contents of the screen to your printer at the touch of a key.

The Tracker’s activities enable you to pinpoint the exact
sector of a corrupted file or catalog where things are going
wrong. This enables you to make short work of locating the
source of the problem and subsequently fixing it with the other
CIA utilities. Or, how would you like to like to put DOS under a
magnifying glass, watching every move it makes as it carries out
any disk operation. The Tracker acts as a private tutor in this
regard, showing you just what DOS is doing during any disk
access. The Tracker can even be used with some protected disks,
helping you find where hidden-nibble count tracks and other
protection devices are located. These and other uses will be
detailed, as usual, in the Tutorial which follows a brief summary
of the instructions.

MAKING THE TRACKER TRACK

~The best way to use these instructions is in the now
familiar manner - carefully read through them, trying out each,
and then get stuck into the tutorial which follows.

Ibe lIcafikec Stands

Unlike the previous 3 CIA modules you have been working with
in this book, The Tracker does need Tricky Dick in memory in
order to function properly; all of its routines are self-
contained. The Tracker works on its own, installing several DOS
patches in crucial places so as to momentarily divert the flow of
control out of DOS and through itself whenever a sector is read
or written. After carefully monitoring DOSl1 activities during
this brief detour, it passes control back to DOS and patiently
waits for the next burst of information. All of the data it
collects are passed along to your video monitor for your
scrutiny. They remain there as long as you like.

Ibs lodfikeJT EcsXecs DCS 2*3

The Tracker was chiefly designed to be used with a standard
DOS 3.3. It won’t work with 3.2, and may have problems with a
modified DOS, including any of the many speeded-up versions
currently available.

CSU.LJ3& Iofi lcafikec go DQ5 Tcoil

Start by typing in RUN TRACKER, whereupon you will be given
a choice of two memory areas in which to place The Tracker. The
first is between DOS and its buffers. |If you choose this option,
the BASIC loader program now running will throw a couple of fast
POKES into DOS and finish up with a DOS subroutine CALL to move
the buffers down in memory. This creates an insulated "hole" in
which The Tracker is automatically BLOADed, and from which it
operates with full assurance of not being clobbered by any BASIC
program you load into RAM

The second place that can serve as The Tracker's
headquarters consists of the 5 pages of RAM beginning at $8800.
This area comes in handy when you wish to follow DOS through the
loading of a program which itself makes use of space above the
buffers. In fact, $8800 is pretty safe most of the time, since
few programs put any code there.

When you type in your choice, you will be asked if you're
sure about the location. If you type a *¥* and The Tracker will
be summoned; if you typed an incorrect instruction, hit an 'N' to
restart the menu.

By the way, just before BRUNing The Tracker, the loader
program commits suicide by overwriting part of itself. This is
to get rid of any executable BASIC in memory which might
interfere with your work. So if you want to take a look at the
loader itself, type in LOAD TRACKER, followed by LIST (the
instructions which change the DOS buffer locations are in lines
1000 - 1020, in case you're interested).

Once The Tracker is BLOADed, hit any key to remove the
introductory screen and start the menu.

Ilhe Usnu

The Tracker's menu gives you one or two display options,
depending on how you respond to the first. Each is followed by a
default value which can be accepted by typing a RETURN.

The first thing you will see is the TRACKS ONLY option. If
you type 'Y' in response to this, The Tracker will only show you
the tracks being visited during a DOS operation; it will omit the
sectors being accessed. However, if you hit RETURN or 'N* the
sector numbers will also be shown.

The next choice to appear is LOGICAL OR PHYSICAL SECTORS.
A RETURN or 'L' takes the logical sector default; a 'P' tells The
Tracker to show you the physical numbers. The difference between
cwo sector numbering schemes is explained in Chapter 4.

The final question asks "IS THIS OK". If you're happy with

your choices, type a RETURN or a 'Y* if not hit an 'N to
restart the menu. An ESCAPE in response to any question also

113

reruns the menu.

Ibs Icaabscls Disclea

During any DOS disk operation, the tracks and sectors are
displayed from left to right in the order that they are visited
by the disk arm. This is carried out in real time, with the
number of each track and sector getting written on the screen the
moment it is accessed. The track numbers are printed in cofi
and the sector numbers appear in type. In order to save
screen space, The Tracker never repeats the same track number
twice in a row. Thus, every sector number following a track
number refers to a sector on that track. This means that if your
last DOS command was CATALOG, the display of the next DOS
operation will start off without a track number. This is because
the catalog track the first track accessed during any disk
access are the same (track $11).

You*Ill also notice that an inverse fR* or IW, followed by a

> will appear on the screen from time to time. The ,R* tells
you that a read cycle is in progress; the fW indicates that
information is being written to the disk. To conserve screen

space, these letters appear only at the beginning of each cycle.
In other words, when DOS stops reading and starts writing, or
vice versa, the corresponding letter appears on the screen and
applies to all the track and sector numbers following it. Youfll
find in many cases that DOS switches between these two functions
several times during a single operation, for example while
RENAMEing or SAVEing.

All the information The Tracker outputs to your video
monitor is listed horizontally across the screen in rows,
startin? at the very top, and moving down, row by row. [If the
screen fills completely and The Tracker is still collecting data,
it jumps back to the top of the screen and keeps on writing.
This, of course, is going to overwrite some of the data just
recorded. However, this almost never becomes a problem, and
you’ll find that the track and sector numbers accessed during
most DOS operations won't take up the entire screen.

When The Tracker prints a row of information on the screen,
it also moves the text window down one line. This means that you
canft accidentally type something into your Apple and clobber the

display. If you issue a HOVE command when Tracker information is
shown, the screen will be cleared only up to the last line of
data. Similarly, a CATALOG will cause the filenames to scroll up

underneath the data display.

When a DOS operation is completed, The Tracker puts a
flashing '**' after the last sector accessed. This enables you
to instantly find the end of the current display, irrespective of

anything else that happens to be on the screen. If you watch
closely when The Tracker is tracking a DOS operation, youfll see
the '**' racing frantically along ahead of the other bytes. I f

other garbage is present on the screen when this is happening,

114

you may also notice that The Tracker clears a path through it two
bytes ahead of the information being written.

If you RUN or BRUN a file, it will load into memory and The
Tracker will display in the usual way all the tracks and sectors
being accessed. However, the program will not start running.
Instead a flashing 1Rl will appear at the end of the data

display. This is because the very first thing many programs do
is reset the text window and clear the screen to prepare for
displaying a logo, menu, or what have you. Naturally, all the
data The Tracker has just printed instantly goes down the tubes
in such a situation. So The Tracker stops DOS from running the
program and waits until you have had time to examine and digest
the information. When you are ready to continue, hit any key
(except 'P1) and the program will start up.

This feature comes in handy when you are tracking a program,
one of whose first functions 1s to load or run another program.
In such a case, one or both of the programs are highly likely to
replace Tracker information with their own display before you get
a chance to see whatfs going on.

If you get a flashing fR* and you decide that you want a
permanent record of the information displayed so far, turn on
your printer and hit the *P» key. This causes the entire screen
to be dumped to the printer. YOUR PRINTER CARD MUST BE IN SLOT 1
FOR THIS OPTION TO WORK. When your hard copy is ready, hit any
key to run the program just loaded.

Itofi |E<8fik»£ElIS i!SE
You can instantly get the menu back at any time by presswkl)g

RESET. Alittle later on, Ifll show you how this can
disconnected.

Ibs Izaabsc Lines od

Once The Tracker is installed, it remains "live" until you
disconnect it as described below, or reboot DOS. This means
that if you load in a file, run it, modify it, or whatever, The
Tracker waits patiently for the next disk access. Youfll
sometimes find that in the course of your work you will have
completely forgotten about The Tracker. Then, when you least
expect it, The Tracker will pop up again and string data across
the screen the very instant the disk drive starts spinning.

Jhe and Qqu&eqlul Qyiticcs

Once The Tracker is installed, you can type an from
BASIC or a CTRL Y from the monitor and a "YOUR COMMAND?" message
will appear. This enables you to make use of one of several

options by responding with one of the letters shown below.

B returns you to BASIC if you typed a to get the command

115

prompt up, or to the monitor if you got the prompt with a CTRL Y.
This option is useful in case you hit an <& or CTRL Y by
mistake.

R revectors RESET back to its wusual destination in the
monitor. Once you have issued this instruction, a RESET will no
longer take you to the menu. This means that you can interrupt a
disk operation with RESET (after first opening the drive door, of
course!). This is handy if you notice that during a particular
access, code is being executed which wipes the screen without
first engaging the The Tracker*s flashing *R* trap.

U unhooks The Tracker so that it does not output any data
during a DOS operation. However, even after this instruction has
been given, The Tracker lies dormant, waiting to leap into action
once again if you issue an ’S1 command as explained below.

Z (zap) unhooks The Tracker god puts the DOS buffers back in
their normal location. You only need to use this instruction if
you have elected to load The Tracker between DOS and its buffers
and now wish to INIT a disk. A disk INITed with the buffers
moved is likely to crash. Once having used *Z* you should RUN
TRACKER and start all over again if you wish to work further with
The Tracker.

S starts the Tracker up again from the very beginning (handy
if you previously issued a *Ul command and want to get The
Tracker back). If you use this instruction, the RESET,
ampersand, and CTRL Y vectors will be set up by The Tracker, and
the menu will be displayed.

P dumps the screen to your printer. This enables you to
make a permanent record of The Tracker*s display at any time.
Before issuing this instruction, make sure your printer is turned

on and the printer card is in fiflfi. Otherwise, the program
will hang.
After you have made your selection, The Tracker will ask

«ARE YOU SURE?” If you are, hit a *Yf or RETURN and you command
will be carried out. If you type an N here, the "YOUR COMMAND”
prompt will appear once again, giving you a chance to change your
mind.

THE TRACKER TUTORIAL

Put The CIA disk in your drive, type in RUN TRACKER, and
select the "run at $8800” option. Hit any key to get rid of the
introductory screen, and in response to The Tracker*s menu press
RETURN 3 times, taking the menu defaults. You are now ready to
start tracking, so place a diskette in your drive newly
initialized with the following HELLO program:

10 HOME
20 VTAB 14:HTAB 17
30 PRINT "HELLO

When this is done, key in LOAD HELLO. The drive will start
spinning and The Tracker will start shadowing the disk arm,
spewing out information as it goes. When the LOAD is complete,
this series of bytes should be at the top of your screen:

11 R 0 F 12 F E **

In my illustration, the numbers in boldface type should be
in inverse on your screen. The inverse Ml 1tells you that the
disk arm moved to track $11 first of all. The inverse fR* means

that RWTS next switched into a read mode. The next two numbers
indicate that the arm went first to sector $00, then to sector
$OF on track $11. As you can probably recite in your sleep by
now, track $11, sector $00 contains the VTOC, and sector $0F on
the same track is where the catalog begins. All DOS operations
on a normally formatted disk begin by accessing the VTOC, and
then going to sector $0F to start searching for the specified
file name.

In this case, DOS found the HELLO file name in sector $OF,
as you might well expect, and also read in the location of its
track and sector list in the same sector. The next inverse
number, a M2* tells us that the arm swung over to track $12 to
find the T&S list, the first stop in loading in any file. The
,Fl indicated that HELLO'S T&S list is on sector 3$0F of track
$12. DOS read this list in so it could find the rest of the
program's sectors. In this case there is only one more sector -
$0E on track $12. The 'E' in the display tells us that DOS read
this sector into RAM completing the LOAD. Type LIST to confirm
that the program is right where it ought to be.

Now hit RESET to return to the menu and type 'Y* in response
to the first option. This tells The Tracker to display tracks
only. If you now LOAD HELLO, you'll get just an inverse *11' and
*12, the two tracks visited.

Hit RESET again, and this time answer 'P' to the "LOGICAL CR
PHYSICAL SECTORS?" question. Now type RUN HELLO. Your display
should look like this:

11 RRFO0O12F2 R
flashing

This time, you’ve listed HELLO'S physical sector numbers.
The only difference between this display and the last one is that
the very last sector number is a '2* instead of an 'E'. Youfll
probably remember from Chapter 4 that sector numbers $0F and $00
are the same in both systems, but that logical sector $0Efs
physical number on the disk is $02.

117

The flashing 'R indicates that a program wants to run but
is being held back by The Tracker. This is in case the program
does something to wipe out the display when it first starts
running. If your printer card is in slot one, you can get hard
copy of the information shown on the screen by turning on your
printer and hitting fPf while the Ris still flashing. If not,
hit any key and the program will run.

If you want to see a more dramatic example of the
differences between the two sector numbering schemes, try
BLOADing Tricky Dick first with one option in effect, and then
with the other.

Ibe taecsacd and CactcolaX CcBBaods

Now type in an ’'&, and in response to the "YOUR
INSTRUCTION?” prompt, press the R key. Hit a *Y’ or RETURN in
response to "ARE YOU SURE?", and try to restart the menu with a
RESET. Nothing will happen because ,R revectors ’RESET’ back to
its normal destination in the monitor. However, The Tracker is
still live and will continue to clock up DOS data. Now you can
use RESET to interrupt a program running in RAM or a disk access
(providing you lift the drive door for the latter).

To make the RESET vector point back to The Tracker's menu,
type *& again and hit the *5* key. This starts The Tracker up
from scratch. While you are experimenting with the ampersand
commands, turn to The Tracker’s instructions a few pages back and
try out the other ampersand/CTRL Y options.

Finally, finish off this practice session by RENAMEing HELLO
to HI, and DELETEing HI. Then try INITing a disk with The

Tracker installed. Notice the intricate and lengthy sequence of
operations carried out by DOS during these various functions.
If you do, you’ll begin to see why so many speeded-up versions of

DOS proliferate.
Qu Trail Ibs Hild Dgbsls

Some protected disks currently on the market are normally
formatted and have a standard DOS, allowing you to CATALOG them,
and to load and save files in the usual way. However, try as you
will, you can’t back them up with an ordinary copy program.
In almost every case, this indicates that the programs are
accessing the disk during loading and looking for something
special.

There are several things that software protected in this
manner might look for on the disk. The most common target, and
by far one of the most resistant to copying, is the nibble-count
track (also referred to as a "dongle track™). This is usually a
completely unformatted track consisting almost entirely of sync
bytes. Buried somewhere in the midst of all the 'FF’s’ (or
whatever value the sync bytes take) is one or perhaps a couple of
"lock bytes" which differ in value from the syncs. At some stage

118

m T T

QD

QD

durlng the loading of a program protected in this_ manner, the
track read and its sync bytes are counted up. This is where
the Iock bytes come in, since they supply a reference point upon
which the counting algorithm can start and finish.

If the total number of syncs read in doesn't match or nearly
match a magic number the software publisher has put in a special
place on the disk, various nasty things immediately take place
(such as a memory wipe, a disk crash, and perhaps even a subtle
disk corruption). Since a nlbble count track is quite difficult
to copy even with a so-called "nibble copier”, the number of sync
bytes on a copied version is unlikely to be the same as on the
original disk. This means that when you try to boot the copy,
the nibble count won't be anywhere near the value of the hidden
number.

One way round this problem is to disable the routine which
counts up the nibbles, an operation often made considerably
easier if you know exactly when the track is accessed. The
former task requires a considerable knowledge of machine code,
but the latter task can be carried out automatically with The
Tracker, providing the protected disk is running a normal DOS.

After installing The Tracker, simply run the program with
the suspected nibble-count routine. Watch the display closely.
If a dongle track is present, it is unlikely to be divided up
into sectors. So what ynuMi spp is an inverse track number
appear nn thP gpjppn ui_hh rm,SPfit.nrs between it and the very next
tTaT"TT number. In addltlon there wTl1 usually "be sinne
turibidStaDie ~delay between the printing of these two track
numbers while all the nibbles are being read and counted up.

If this occurs, you immediately know the number of the
dongle track, and precisely when it 1s accessed during a load.
If you find such a track on one program on a disk, check all the

other programs for the same trick. However, to put a stop to
this nefarious operation, you'll have to bone up on machine code.
Well, | guess we've just about come to the end of our work

together. By now, the CIA utilities should be old friends to
you, and you should be as familiar with the Apple disk as you are
with your own back yard. | sincerely you enjoyed this tutorial
and that the CIA will give you many hours of pleasure.

119

APPENDIX A — Getting on Top of Hex

Using the hexadecimal number system is a bit like having sex

- once you've tried it, you'll never want to give it up
(unfortunately, however, 1| can’t think of any other features that
hex usage and sexual experience have in common). So this

appendix is designed to enable the virginal newcomer to hex to
effectively penetrate this unnecessarily mysterious subject and
come to a full understanding of its seemingly arcane symbol
system. If you work carefully through the next few pages,
satisfaction is guaranteed.

EUBE)X tFUB)KEE

You already know that the number system we use day in and
day out is based on the digits 0, 1, 2, 3, 4, 5, 6, 7, 8,
This gives wusonly 10digits (a total which corresponds nicely to
the number of fingers we havel!) with which to construct the
nearly infinite range of numbers we have to deal with in our many
activities.

Stop to reflect for a moment on how this miraculous process

works. If we’re counting up a large amount of something, we
start out by saying "one, two, three, ...", and so on, until we
get to 9.Here we have already run out of our allotted 10

symbols for enumerating things. So what do we do if we need to
keep on counting? We go right back to *0’ and start over again.
Only this time we stick a '1* in front of the numbers we’re
using. This gives us 11, 12, 13, and so on, up to 19.

To keep the count going from there, we now stick a 2 in
front and keep right on using the same 10 symbols. This process
repeats itself over and over again in a loop until we reach 99.
When that happens, of course, we’ve used up all our allotted

symbols twice. But this doesn’t stop us at all. We just stick a
third digit in front and keep right on counting: 100, 101, 102,
etc. So powerful is this seemingly obvious process that a

British mathematician, Alan Turing, showed that any machine that
can do it can compute just about any function that we humans
might want to carry out. Only a few years after he published
this startling research, the first working example of that device
we have all come to know and worship - the digital computer - was
built.

Why has this kindergarten exercise been the subject of deep
mathematical research, not to mention some considerable
belaboring by me in the last 3 paragraphs? Because it is so
remarkably flexible - so flexible, in fact, that it can be used
with any number system, no matter how few or how many symbols it
contains.

~ Let’s say for example that homo sapiens had evolved with
8 fingers on each hand, leaving the human race a total of 16 to
count with, instead of the familiar ten that actually grace the

120

perimeters of our palms. Would this have meant that primitive
man would have been unable to determine, say, how many head of
buffalo (or wives, perhaps) that he could call his own? Not a
bit of it! We don't have to plow our way through Alan Turing's
paper to see that our Neanderthal forebearers (and we ourselves)
could still do any amount of counting necessary for survival.

In fact, we would need nothing more than a set of 16 symbols
upon which to repeat endlessly the magical loop that | described
above. In fact, we already know of 10 symbols from our everyday
"decimal™ number system which would be likely candidates: the
digits from 0 to 9. We couldn't really use the numbers from 10 -
15 for the six symbols we're missing, though. They consist of 2
digits, a characteristic which makes them unsuitable for the
counting loop I've been discussing.

One solution would be to use the letters from A - F when we
ran out of digits while counting something. This would give us a
total of 16 counting symbols:

0123456789 ABCDEF

This time, when we got to '91in our count, we could keep
going a little longer by chanting "nine, ay, bee, see,...", and
so on until we got to "ef". At this point we would be in the
same predicament we encountered with our "decimal” number system
- we would have run out of symbols. Knowingabout ourspecial
loop would save the day, however. We wouldsimply go back to

zero and count up again - just like | did with the decimal
numbers. So we'd put a '1* in front of the zero andcall it
"ten". Then off we'd go with "eleven, twelve"”, etc. We would be
doing exactly the same thing as before, except that 10 would come
after 'F' instead of after '9'. When we got to '191» we could
continue: 1A', 'IB', '1C, ... right up to 'IF'. After that we

would start with '20', just like before.

If we continue this process long enough, we would get to
'FF', the last of our two-digit numerals. What has happened here
is that we have counted up to *F repeatedly - just like before
when we counted up to '91 repeatedly to get '99*. So just like
'99* in our previous system, 'FF' would be followed by "100', and
so the process would continue as long as we wished.

What our mythical prehistoric race - with their 16 fingers
scraping the earth as they shuffled through their existence -
would have left us is a sixteen-based or "hexadecimal" system of
numbers. Much to the consternation of beginning computerists,
whose counting habits evolved from their 10-fingered ancestors,
machine code programmers positively revel in this number system.
Does this mean that they were really born with 16 fingers? Since
the seemingly incomprehensible verbal output from many such
programmers insures that the beginner will never get close enough
to shake hands with them, he or she is unlikely ever to find out.

121

Making Biases

Let’s put aside the question of our many-fingered friends
for the moment and engage in another piece of fantasy. Letfs
suppose this time that evolution had left us with a cruel
endowment - two hands, but only QQg finger! Surely this would
have relegated the human race to a numberless existence - no
arithmetic, algebra, calculus, or the remarkable mathematical
accomplishments of an Einstein or a Godel.

What could you possibly do with one finger if you wanted to
count up a large amount of something (no rude answers please)?
In fact, there are two ways you could use your solitary
appendage. First, you could close it into a fist (if that’s the
right word), and second, you could stick it up in the air. |
think %ou can already see that these two movements alone might
form the basis of a useful counting procedure. Just as in the
previous two systems, let’s let our symbols start with *0*
We'll signify this with a closed fist. Then we could let a
finger thrust into the air stand for a *1* This means we could
begin by pointing at the ceiling and intoning "one". But we've
already run out of fingers, so our number system can only contain
the symbols:

0 1

Let’s see what would happen if we applied our counting loop
to this number system. As usual, we start by counting "one”, but
already find that we’ve run out of single digits. The way we
handled this in both our previous examples was to go back and

start with *0’, this time putting a "1* in front of it. If we do
that now, we end up by folding our finger against our palm and
saying ”"ten”, writing it as "10”. After ten we can thrust our

finger in the air again and sing out "eleven", writing "11".

So far we’ve used exactly the same rule of thumb (or finger)
that formed the basis of our counting in the previous two
systems: Whenever you use up all the single digits you have, go
back and use them once more. Each time you start with zero
again, increment the number in front of the digits. In decimal
this would enable us to count by *1's’ from MO’ to *20° to ’30,
and so on. The result of the same process with only '1’s’ and
*0's'" would give us:

0 1 10 11
Notice that here we’ve already run out of numerals that can

be formed with one or two digits. This is exactly the same thing
that happened to us when we got to ’99f in decimal or 'FF' in

hex. In other words, just as *99* is obtained by counting up to
9’ repeatedly, here an *11’ the result of counting up to 1
repeatedly (well, actually only twice). The only difference

between the 3 systems is that the fewer the one-digit counting
symbols you have, the quicker you run out of two-digit numbers.

122

What we did before when we exhausted all our 2-digit
combinations was to say "one hundred"”, and to begin to form
numerals by shoving a tkAsd digit in front of them. W can do
exactly the same again and get:

0 1 10 1 100 101 110 11

Now we*ve run out of 3-digit numbers, so we continue the
process by saying "one thousand", just as we do when we reach
’999', the last 3-digit number in decimal. We can thus continue
from 111

1000 1001 1010 1011 1100 1101 1110 1111

- and keep on indefinitely. Of course, the quantity of digits
in our numerals would increase markedly as we kept on counting.
However, this would probably be a trivial consideration to a
person with only one finger.

So even using only 2 symbols in this "binary" number system,
you can count up to any amount you like. And our old friend,
Alan Turing, showed us that if you can count, you can represent
and manipulate useful data. However, just one person waggling a
single finger up and down would take a long time to process most
kinds of information that we might be interested in. So one way
to speed things up would be to form a large population of such
people into small groups. By arranging a group!s collective
fingers into different patterns of "up" or "down", it could
represent a single unit of information - like a letter or a
number, for example.

The size of the groups may be somewhat arbitrary, but let*s
just say that each contains 8 members of our finger-flinging
population. This means that each group could signal a binary
number, a raised finger representing a *11, and a lowered finger
signifying a *0*. The numbers possible to form in this manner
would range from 0, with each member's finger pressed against his
palm, to 11111111, with all 8 members* fingers raised. In
decimal terms, one group could then represent the numbers from 0
to 255 (binary 11111111, hex FF).

This system also makes possible group-to-group communication
which could take place by one group shouting its number to
another group. However, since things would get pretty noisy
under this system, it might be more orderly to designate a few
special groups as registrars (or "registers", perhaps) who would
run to one group, look at its finger pattern, reproduce it on
their own fingers, and finally, race along to another group to
show it to them.

These possibilities are extremely fortunate, since your
computer's insides are something like a city populated by this
mythical race. Although looking inside your Apple won*t reveal a
vast field of waggling fingers, your machine does contain
thousands of microscopic switch-like devices which can only adopt

123

one of two states - open and shut.

If one of these tiny switches (properly called a "flip-
flop”) is open it, signals a *0'; if itl!s closed, it represents a
1 Each switch's output is popularly referred to as a "bit".
Since 256 bit-patterns can be formed from just 8 bits, it is

possible to use them to represent all numbers, letters,
punctuation, machine instructions, plus a number of other
specialized symbols. Accordingly, the Apple and most other

microcomputers to handle information using groups of 8 bits.
These are called "bytes".

I guess you can see why the binary number system is pretty
important in computing. But where does hexadecimal come into the
picture? The most important reason for bringing in hex is that
although your Apple loves binary, experience shows that your
brain can't cope very well at all with all those confusing arrays
of 'Vs* and ,0,sl. In fact working in binary proved to be a
nightmare for the earlier pioneers of computing.

This means that we need an easier number system to cope with

system of numbering, since all data, instructions, and even
memory locations are represented in the machine in binary. Now
you might think that decimal is the obvious choice. It isn't,

however and to see why not, have a look at the following table
which compares binary to hexadecimal.

binary: 0 1 10 11 100 101 110 111 1000 1001 1010
hex: 0 1 2 3 4 5 6 7 8 9 A
binary: 1011 1100 1101 1110 1111
hex: B Cc D E F

Notice that all the possible patterns of 4 binary bits are
exhausted at exactly the same that we run out of single-digit hex
numerals. This has to do with the fact that 16 =2 raised to the
power of 4. Don!t worry to much about this, but instead think of
how easy this fact makes conversion between the two systems.

In fact, all you have to do to convert ggx binary number to
hex, or vice versa, is use the above table. For example, let's
convert 11001001 into hex.

Stepl: Split the binary number into 4-bit groups.

1100 1001

Step 2: Use the table to translate each group of 4 bits into
its hex equivalent.

1100 = C 1001 =9

124

Step 3: Shove the two hex numbers together.
(0]

The answer is C9. To show that it is a hex number, a »$ is
always placed in front, giving us $C9. You'll see me using this
convention extensively throughout the book.

To get from hex to binary is equally simple. You just
reverse the process. For example, to translate $4A, we use the
chart above to find that 4 = 100 and A = 1010. Thus $4A =
1001010. By the way, because every bit in an 8-bit byte has to
be accounted for, 1001010 should be written 01001010. This first
zero is called a ifigdiag zero; it doesnft alter 1001010*3 value
any more than, say, the leading *0* in *09T (i.e., 09 = 9).

No such simple conversion procedure is available for
translating between binary and decimal, so hex has got to be the
choice. Once you get used to it though, it*s really a joy to
use. Everything in computing is organized in *16*s* making it
easy for you to see just where you are. | won't go into examples
here, but suffice it to see that you'll soon appreciate
hexadecimal as you learn more about computing.

Seas flesessacis tie* eed Bicsex Jsesetj

When a machine-code programmer is dealing with data he often
is concerned about which bits are ggfc (i.e., which equal *1') and
which are (equal to *0'). Of particular importance are the
ftggb IUl (alias the sign bit, the high order bit, bit 7) and the
low bit (the low order bit, bit 0). The 8 bits in a byte are
numbered as follows.

bit number 7} i i 4l 312 J}l f

an 8-bit byte 0 1 0 0 1 00 1

You can see that the high bit is clear and the low bit is
set. All bytes passing into and out of your Apple must have the
high bit set. Sowhen you type in data from the keyboard, load
files from the disk, or sendinformation to the screen, this rule
will be in effect.

This means that the Apple recognizes two types of ASCII -

the normal version, or "low” ASCII, in which each character's
high bit is clear (e.g. $41 = binary 0100 0001 = 'A'), and
"high" or "screen" ASCIlI which is exactly the same, ££££&F£ that
the high bit is set (e.g.$Cl = 1100 0001 = 'A'"). The CIA

utilities make it convenient for you to work with both.

One quirk displayed by the 6502 (in common with certain
other microprocessors) is that it can't properly interpret an
memory address unless its two bytes are reversed. For example,

125

if you wanted to instruct the 6502 to deal with the address,
$FC58, you would have to specify it as f58 FC'.

exfiivaiiie fifiias

A final item you need to know about is a machine-code
instruction which comes up on a number of occasions when you are
working with a disk. It is called "Exclusive OR, abbreviated
EOR Now you already know about the 4 arithmetic operations, +,
-, I, and x. Each of these 4 can be performed on binary and hex,
as well as decimal. The way to think about EOR is as a 5th

arithmetic operation that can only be performed on the binary
translation of a hex or decimal number. This is because it

involves only the individual bits themselves. Here*s how it
works:
0 EOR0=0 0 EOR1 =1 1EORO0 =1 1EOR1=0
In a nutshell, if two bits are the same, their EOR product
is 0; if they're different, it's 1. In the four cases above |

only used one bit. Here's an example of what would happen if you
applied these four rules to all 8 bits in a byte.

$41 EOR $73 = $32
$41 = 0100 0001 $73 = 0111 0011

0100 0001
EOR 0111 0011

0011 0010

HEX - BINARY - DECIMAL CONVERSION CHART

On the next page, |Ifve set out a chart you can use to
convert hex to binary and vice-versa. It shows the first 16
values, and includes some other commonly used higher values. All
decimal equivalents are also given.

126

Hex

TMMUOW>O© 0N DU AWN RO

Binary

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal

e ey
ORrWNFPFOOVONOUTTRWNRO

127

Binary

0001
0010
0011
0100
0111
1000
1010
1100
1110
1111
1111

0000
0000
1111
0000
1111
0000
1010
0000
1000
1110
1111

Decimal

16
32
63
64
127
128
170
192
232
254
255

CHAPTER ONE -

CHAPTER TWO -

INDEX
AN INTRODUCTION TO THE CIA

TRICKY DICK

THE LINGUIST

THE TRACER

THE CODE BREAKER

THE TRACKER

THE CIA FILES

THE CIA MODULES

GOLDEN DELICIOUS GOES BARE
HOW TO USE THIS BOOK

DROP US A LINE

TRICKY DICK

A FIRST WORD ABOUT DISK DATA

THE RAW NIBBLE DUMP

THE RWTS READ

TRICK DICK™S INSTRUCTIONS

THE TRICKY DICK DISPLAY

HELP SCREEN (/ OR ?)

SELECT DOS VERSION rD)

SLOT DRIVE AND DEVICE SELECT r0)

TRACK AND SECTOR SELECTION (. < > ARROWS)
READING A SECTOR TB)

VOLUME NO.

CURSER MOVEMENT (1JKM AND NIAJ-"K'M)
EDITING SINGLE BYTES IN THE DISPLAY

DATA ENTRY MODES (5 " 7)

THE DATA DISPLAY

FLIPPING DATA DISPLAYS ('F)

SECTOR FILLING rZ AX>

DISASSEMBLING SECTOR DATA <L)

LISTING APPLESOFT AND INTEGER CODE rL, L)
WRITING TO THE DISK <sli AND Y)

ERROR MESSAGES

DEALING WITH NON-STANDARD SECTOR MARKS r*S)
PRINTING HARD COPY FROM TRICKY DICK (*P, P)
MODULE CHECK-OUT (SHIFT M)

EXITING TRICKY DICK (RESET, NC>

JUMPING TO A MODULE C'E)

THE TRICKY DICK TUTORIAL

THE VOLUME TABLE OF CONTENTS

THE BIT MAPS

FREEING UP TRACK $23

GETTING EXTRA SPACE ON TRACK $02
SNATCHING SPACE FROM THE CATALOG TRACK
GETTING RID OF DOS

REPAIRING A CLOBBERED VTOC

UNDELETED PROGRAMS

FILE TYPE FLAGS

ELIMINATING HIDDEN CONTROL CHARACTERS

FINDING AND CHANGING A BINARY FILE"S ADDRESS AND LENGTH

LISTING APPLESOFT OR INTEGER PROGRAMS
DIRECTLY FROM THE DISK

wwpphhND N =

(8,

© ©WOWWEWOEOoWNNNN~NOToO,

CHAPTER THREE - INTERMEDIATE TRICKS WITH TRICKY DICK

AVOIDING DOS LANGUAGE CARD CLOBBER
SWITCHING THE HELLO FILE

USING A BINARY OR EXECABLE HELLO FILE
CHANGING THE "DISK VOLUME™ CATALOG MESSAGE
PUTTING HEADINGS ON THE CATALOG TRACK
HIDING THE HELLO FILE ON THE CATALOG
CHANGING DOS ERROR MESSAGES

SOME IDEAS FOR ADVANCED PROGRAMMERS

MOVING CLOSER TO THE DISK

CHAPTER FOUR - THE LINGUIST

HOW TO INSTRUCT THE LINGUIST

THE LINGUIST NEEDS TRICKY DICK

GETTING FROM ONE TO THE OTHER (AE,~C)

THE HELP SCREEN (/ or ?>

THE LINGUIST S DATA DISPLAY

ENTERING COMMANDS

TRACK SELECT « : M

SEEKING THE DISK ARM TO TRACK $00 rS>
READING A TRACK ("R)

PAGING THROUGH THE BUFFER (ARROWS)

JUMP TO THE BEGINING OR END OF THE BUFFER (AB AN>
CURSER MOVEMENTS <IyJ,K,M AND AITAJ~KAM>
DECODING THE ADDRESS FIELD INFORMATION (CURSER CONTROLS)
CHANGING THE DECODING MODE rD>
TRANSLATING A SECTOR <-~T)

CHANGING THE DRIVE NUMBER

GETTING HARD COPY FROM THE LINGUIST

THE APPLE DISK LANGUAGE SCHOOL - A LINGUIST TUTOTIAL
DATA STORAGE AND THE BUFFER

THE SYNCH BYTES

THE ADDRESS FIELD

DATA ENCODING CONSTRAINTS

THE 4S<4 ENCODING TECHNIQUE

HOW TO TRANSLATE THE ADDRESS FIELD HEADER
LOGICAL VS. PHYSICAL SECTORS

THE DATA FIELD

DIGGING THROUGH THE RAW DATA

DOS 3.2 AND 3.3 ENCODING TECHNIQUES

MORE ON FOUR ?N FOUR

GOODIES OR GARBAGE?

TRANSLATE RAW DISK DATA WITH THE LINGUIST

CHAPTER FIVE- THE SECRETS OF SOFTWARE

PROTECTION

FIRST STEPS 1IN READING PROTECTED DISKS

USING THE LINGUIST AND TRICKY DICK IN TANDEM
HOW TO EDIT HALF TRACKS

EDITING DISKS WITH WEIRD TRACK NUMBERS
PROTECTING YOUR OWN DISKETTES

CHANGING DATA FIELD MARKS

MOVING THE VTOC

PROTECTING RAM

WHAT WAS ON TRACK $22

CHAPTER SIX -

CHAPTER SEVEN

THE CODE BREAKER

UNRAVELING THE RWTS TRANSLATE TABLES
THE NIBBLE TRANSLATE TABLE

THE BYTE TRANSLATE TABLE

DOS 3.2 TRANSLATION

INSTRUCTING THE CODE BREAKER

TRICKY DICK PREPARATION

THE CODE BREAKER DISPLAY

THE HELP SCREEN (/ OR ?)

EDITING THE TRANSLATE TABLES

SAVING THE CHANGED TABLE <AS)
ERASING A MISTAKE ("R)

RESTORING THE STANDARD DOS TABLE <"D>
THE CODE BREAKER TUTORIAL

ENCRYPTING YoUR PROGRAMS

HOW TO EDIT ENCRYPTED SOFTWARE

THE D5 - D6 SWITCH

- THE TRACER

THE TRACER™S INSTRUCTIONS

TRICKY DICK AND THE TRACER

GETTING READY FOR THE TRACER

THE MENU

VERIFY FORMATTING

T&S LISTS

CATALOG SECTORS

VT0C

STRINGS

SPECIFYING THE RANGE

MENU VERIFICATION

EDITING THE MENU

JUMPING OUT OF THE MENU

HOW THE TRACER TRACES

HOW THE TRACER FLAGS WHAT 1T HAS FOUND
CONTINUEING THE SEARCH

HANDLING THE SECTOR OVERLAP

ALTERING THE SEARCH RANGE FROM TRICKY DICK
WHEN THE SEARCH IS COMPLETED

ABORTING A SEARCH

TRACER ERROR HANDLING

DEFAULTING TO THE PREVIOUS SEARCH ARGUMENTS
CHANGING THE SECTOR MARKS

TRACER SCAN TIMES

THE TRACER TUTORIAL

TRACING LOST FILES WITH THE TRACER

USING THE TRACER FOR TEXT RETRIEVAL
SEARCHING DISKS WITH MODIFIED DOS MARKS
SEARCHING DISKS WITH MODIFIED SECTOR NUMBERS
SEARCHING HALF - AND STRANGELY NUMBERED TRACKS
FINDING THE BYTE AND NIBBLE TRANSLATE TABLES

CHAPTER EIGHT - THE TRACKER

APPENDIX A

MAKING THE TRACKER TRACK

THE TRACKER STANDS ALONE

THE TRACKER PREFERS 3.3

GETTING THE TRACKER ON THE DOS TRAIL
THE TRACKER™S MENU

THE TRACKER®S DISPLAY

THE TRACKER®"S USE OF RESET

THE TRACKER LIVES ON

THE AMPERSAND AND CONTROL-Y OPTIONS
THE TRACKER TUTORIAL

THE AMPERSAND AND CONTROL-Y COMMANDS
ON THE TRAIL OF THE WILD DONGLE f A/i*bbU>

FUNNY NUMBER SYSTEMS

MAKING IT WITH BINARY

SOME NECESSARY HEX AND BINARY JARGON
BACKWARD ADDRESSES

EXCLUSIVE ORING

HEX-BINARY-DECIMAL CONVERSION CHART

112

112
112
112
113
113
114
115
115
115
116
118
118

120

120
122
125
125
126
127

ITRICKY DICKI v-:L.O BY T TSE
D5AA% Y DEAA DOS SL=6 T=Il <00> VOL
D5AAAD Y DEAA 3.3 DR=1 S=OF <—> 254
DS5AAAD 0 DEAAEB PR=0 <*L> <62> <b
00 00 11 CE 00 00 00 00 00

08 00 00 00 12 OF 82 C3 AO

10 CQ AOCI AODAMODAODAO A I'A

18 A0 AD ADO ADO AD AO AO AO

20 AD AD AD AO AO AO AO AO

28 AD AO AD AO 02 00 10 OF B@PO:
30 82%8CFCFD4C5D2AO BBOOTER
38 AO AO AO A0 AO AD AO

40 AO AO AO MO AO A0 AO O

48 AO ADO AD AO AD A0 AO 07 G
50 00 10 08 84 CC CF Cl C4 @PHDLOAD:
58 C5 D2 AO AO AO AO AO AO ER :
60 AO AO AD AO AO AD AO AO

68 AD AD AD ADO AO AO AO AO

70 AO AO 03 00 10 05 84 DO C@PEDP:
78 C9 C3 D4 D5 D2 C5 AO AO ICTURE :

DATA: NORMAL HEX ALL COVIMANDS:.C

TRICKY DICK LTHE LINGUISTI
DS96AA Y AADE DOS SL=6 T=11+HALF VOL

D6ACAF N 0000
D5AAAD 0 DEAAEB

4000--96969696
4010--96969696
4020--96969696
4030--96969696

3.3

96969696
96969696
96969696
96969696

DR=1 S=0F
PR=1 <IL> <44> <b

96969696
96969696
96969696
9696DEAA

BY T TSE

<—> 254

96969696
96969696
96969696
EBEADFFF

4040- -FFFFFFFF

FFFFFFFF

4050- -D5AA%jFH FEAABBAF

4060- -FFFFFFFF
4070--96969696
4080--96969696
4090--AEAT79696
40A0--B596B4D6
40B0--96969696
40C0-+9DAGIBI6
40D0- -BFBDBD9%6
40E0--96969696
40F0--B49B969F

FFFFDSAA
97EFEFD9
96AEAE96
96979796
96D6B496
96969696
96969696
96969696
96969696
9D9ECD96

4053: FE 11 OF EO

FFFFFFFF
AFFAEADE
ADATACAD
9BD99AB6
ATAT9I6AT
F2EFDG6EF
F7A79D9D
9B9B96B4
96969DA6

96969696

969696DF
96969696

FFFFFFFF
AAEEFBFF
AF9D9696
B6969696

9DAEATAE
B49BB6F2
96969D9D
B496DADA
DAB4BDBF
96969696

969DAGDA
96969696

ALL COVIMANDS:.C

wmaSm

oonoMii

F1 - g y

mmh

