
Apple IIGS

#11: Ensoniq DOC Swap-Mode Anomaly 1 of 3

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#11: Ensoniq DOC Swap-Mode Anomaly

Revised by: Jim Mensch November 1988
Written by: Jim Merritt April 1987

Under certain conditions, the IIGS Ensoniq Digital Oscillator Chip (DOC) inserts a spurious
zero-crossing byte into the output sample stream. The output sample waveform may mask the
anomaly, but if it does not, the user may hear intermittent clicks or even a more pervasive
“static.” This Technical Note discusses the situations in which the DOC produces this spurious
zero crossing, as well as strategies to avoid or mask this undesirable behavior.

Background

The Ensoniq DOC in the Apple IIGS is actually a microprocessor dedicated to producing sound.
Like a time-sharing computer, the DOC continually scans through its array of sound oscillators,
proceeding from lower-numbered oscillators to higher-numbered ones, and updates the signal
output level of each active one to match that indicated by the oscillator’s current sample byte.

An oscillator can operate in any one of several functional modes, as described in the Apple IIGS

Hardware Reference. Here, however, we are concerned only with swap mode, where two
consecutive oscillators are considered as a single generator. The low-numbered oscillator in the
pair is always even. For example, the pairs of oscillators 0 & 1, 2 & 3, … , 12 & 13, and 14 &
15 constitute generators. The IIGS Sound Tool Set – the FFStartSound call in particular –
configures the oscillators it uses to operate in swap mode. In swap mode, the even-numbered
oscillator plays its waveform first, halts its own playback, then starts its partner which also plays
its waveform, halts its own playback upon exhausting its waveform, and restarts the even-
numbered oscillator. At any time between the start of any particular FFStartSound call and
the time the oscillator finishes playing a wave, the Sound Tool Set interrupt handler may be busy
transferring waveform information from the IIGS main RAM to the dormant oscillator’s buffer in
DOC RAM. Since one oscillator is producing sound while the Sound Tool Set interrupt handler
is transferring waveform information to the other oscillator, you can use a generator pair to
produce continuous sound of arbitrary length, and you are limited only by the amount of memory
you can devote to the waveform in the main RAM.

Each oscillator draws its output samples from a dedicated buffer in DOC RAM, the size and
location of which are specified by parameters to the FFStartSound call. The maximum size
for an oscillator buffer is 32K, but since buffers may neither coincide nor overlap, the practical
maximum may be lower when more than one generator is active. For instance, if four generators

Apple II Technical Notes

2 of 3 Developer Technical Support

(eight paired oscillators) are active simultaneously, the maximum buffer size is 8K, since eight
non-overlapping buffers of 8K each would occupy the entire 64K available in the DOC RAM.

November 1988

Apple IIGS

#11: Ensoniq DOC Swap-Mode Anomaly 3 of 3

The Problem

Whenever a swap occurs from a higher-numbered oscillator to a lower-numbered one, the output
signal from the corresponding generator temporarily falls to the zero-crossing level (silence); this
anomaly does not occur during swaps from lower-numbered oscillators to higher-numbered ones.
The spurious level change lasts no longer than a single sample period, at which time the
interrupted waveform resumes. However, even this tiny glitch in the output can be audible as a
pop or click; the further away the waveform is from the zero crossing when the swap interrupts
it, the louder the ear will perceive the pop or click. When high-to-low swaps occur with great
frequency, the pops and clicks happen so often that they are perceived as gentle, but pervasive,
static.

Several Workarounds

There is no ideal solution to the problem of signal interruption in swap mode. This problem is an
anomaly of the DOC design, which may or may not be addressed in later versions of the chip.
However, we have found three general strategies for mitigating the audible damage to the output
waveform caused by the chip’s undesirable behavior.

Minimize Oscillator Swaps per Unit Time

The more often swaps from high-numbered oscillators to low-numbered ones occur, the more
obtrusive the brief signal interruptions will seem. To minimize the interruptions, you must make
the oscillators play for a longer period of time before swapping to their partners. This means that
they must play at slower output sample rates, use larger buffers in DOC RAM, or use the two in
tandem. Commensurate with the number of active generators you wish to use and the level of
output signal fidelity that you desire, always specify the largest DOC buffer size and the lowest
output sample rate that you possibly can. Remember that a large number of active generators
implies a very small maximum buffer size for any particular oscillator, so you should always try
to minimize the number of generators that are active at any one time. As a rough benchmark, the
clicks of signal interruption begin to blend into highly audible static when you specify buffers
smaller than 8K for use at the maximum-fidelity output sample rate of about 26 kHz. (Note:
The DOC supports greater sample rates, but these rates are limited by the output filtering on the
IIGS which permits no greater signal fidelity than that possible using the 26 kHz rate.) Our
figures suggest that output fidelity must suffer, or signal noise must increase, when more than
four generators (eight oscillators in swap mode) are operating simultaneously.

Avoid Silent or Quiet Passages

The signal content of your waveform can hide the additional noise caused by the “swap-mode
anomaly.” The more complex and louder a waveform, the less your ear will perceive the brief
interruption that occurs whenever a higher-numbered oscillator swaps to a lower-numbered one;
pop and rock music is far less susceptible to this problem than classical, folk, or jazz pieces,
which typically include many quiet passages. In addition, a signal that naturally contains a large
amount of “pink noise,” such as recordings of rainstorms or the surf at the beach, can mask the
anomalous noise altogether.

Apple II Technical Notes

4 of 3 Developer Technical Support

Arrange for Swaps to Occur at or Near Zero Crossings

If the high-to-low swap occurs at a time when the normal output signal level sits at or near the
zero crossing, the swap will cause little or no audible damage to the waveform. When
reproducing arbitrary sampled sound, it is almost impossible to insure that the output signal level
is near the zero crossing. However, when constructing long waveforms for playback, you may
be able to sidestep the chip’s anomalous behavior by ensuring that the waveform values lie at or
near $80 at the end of every waveform segment, where a waveform segment spans twice the
length of one oscillator buffer. For example, if you specify a buffer size of 4K, make sure that
your constructed waveform crosses the baseline after every 8,192 samples, and for 16K buffers,
make sure that the waveform makes a zero crossing after every 32K.

The length of the waveform segment should be twice the buffer length only if you are going to
reproduce the waveform exactly once per FFStartSound call. It may be necessary to shorten
the length of the waveform segment to exactly the specified DOC buffer length if you use the
nextwave_start parameter in the FFStartSound parameter block to invoke automatic
looping of the waveform. In other words, you may need to arrange for twice as many zero
crossings in your constructed waveform in the looping case as you would under normal
circumstances since subsequent repetitions of the waveform during the single FFStartSound
call may begin with either the even or odd oscillator, depending upon which member of the pair
was active when the previous repetition ended. If the playback of a waveform starts with the odd
oscillator, then the odd-to-even swaps will occur at different points in the waveform than they
would when the playback starts with the even oscillator.

Also note that the use of larger buffers causes a progressively longer disabling of interrupts while
the Sound Tool Set moves the waveform into the DOC RAM.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2
• Apple IIGS Hardware Reference

Apple IIGS
#12: Tool Set Interdependencies 1 of 7

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#12: Tool Set Interdependencies
Revised by: Matt Deatherage & Dave Lyons May 1992
Written by: Jim Merritt April 1987

This Technical Note lists all known interdependencies between system tool sets on the Apple IIGS.
Changes since January 1990: Added new and changed dependencies for System Software 6.0.

A tool set is dependent upon another if you must start the latter before starting the former. You
should start tool sets in the order listed below. Names marked with an asterisk (*) indicate a
recommendation to start the corresponding tool set, but the order is not required for operation of the
dependent tool. Apple recommends using StartUpTools to start up all the tool sets your
application needs. See the Apple IIGS Toolbox Reference, Volume 3 for more details.

Tool Set Interdependencies

Tool Locator Tool #1 ($01)
No dependencies. Always start this tool set before any others.

Memory Manager Tool #2 ($02)
Tool Locator (#1)

Miscellaneous Tools Tool #3 ($03)
Tool Locator (#1)
Memory Manager (#2)

QuickDraw II Tool #4 ($04)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)

Desk Manager Tool #5 ($05)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)
Dialog Manager (#21)
Scrap Manager (#22)

Event Manager Tool #6 ($06)

Apple II Technical Notes

Apple IIGS
2 of 7 #12: Tool Set Interdependencies

Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)

Scheduler Tool #7 ($07)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)

Sound Tools Set Tool #8 ($08)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)

Apple Desktop Bus (ADB) Tool #9 ($09)
Tool Locator (#1)

SANE (Standard Apple Numeric Environment) Tool #10 ($0A)
Tool Locator (#1)
Memory Manager (#2)

Integer Math Tools Tool #11 ($0B)
Tool Locator (#1)

Text Tools Tool #12 ($0C)
Tool Locator (#1)

Window Manager Tool #14 ($0E)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
* QuickDraw Auxiliary (#18) Required in 6.0 and later, and the

Window Manager loads and starts it
for you.

Control Manager (#16)
Menu Manager (#15)
* Line Edit (#20) For AlertWindow call only
* Font Manager (#27) For AlertWindow call only
* Resource Manager (#30) For using resources in Window

Manager calls.

Developer Technical Support May 1992

Apple IIGS
#12: Tool Set Interdependencies 3 of 7

Menu Manager Tool #15 ($0F)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
* Resource Manager (#30) For using resources in Menu

Manager calls.

Control Manager Tool #16 ($10)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Menu Manager (#15)
* QuickDraw Auxiliary (#18) For statText controls.
* Line Edit (#20) For editLine controls.
* Font Manager (#27) For statText controls.
* List Manager (#28) For list controls.
* Resource Manager (#30) For using resources in Control

Manager calls.
* Text Edit (#34) For editText controls.

Note: You should consider the Window, Control, and Menu Managers as one unit and start them
in the given order.

System Loader Tool #17 ($11)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)

QuickDraw Auxiliary Routines Tool #18 ($12)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
* Font Manager (#27)

Note: QuickDraw Auxiliary uses the Font Manager in the picture drawing routines. For proper
operation, you should start the Font Manager before using the QuickDraw Auxiliary picture
routines; however, the picture routines do not fail if the Font Manager is not present.

Apple II Technical Notes

Apple IIGS
4 of 7 #12: Tool Set Interdependencies

Print Manager Tool #19 ($13)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
QuickDraw Auxiliary (#18)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)
Dialog Manager (#21)
List Manager (#28)
Font Manager (#27)

Line Edit Tool #20 ($14)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
* QuickDraw Auxiliary (#18) For Text2 items; see below.
Scrap Manager (#22)
* Font Manager (#27) For Text2 items; see below.

Dialog Manager Tool #21 ($15)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
* QuickDraw Auxiliary (#18) For Text2 items; see below.
Line Edit (#20)
* Font Manager (#27) For Text2 items; see below.

Note: Line Edit, the Dialog Manager, and the Control Manager require the presence of the Font
Manager and QuickDraw Auxiliary if you use LETextBox2, statText controls, or
LongStatText2 items which require any font styling (e.g., outline, boldface, etc.).

Scrap Manager Tool #22 ($16)
Tool Locator (#1)
Memory Manager (#2)

Developer Technical Support May 1992

Apple IIGS
#12: Tool Set Interdependencies 5 of 7

Standard File Operations Tool #23 ($17)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
* QuickDraw Auxiliary (#18) Required in 6.0 and later, and the

Window Manager loads and starts it
for you.

Line Edit (#20)
Dialog Manager (#21)
* List Manager (#28)
* Resource Manager (#30) For using resources in Standard File

Operations calls.

Note: Standard File 3.0 and later use the List Manager for displaying a list of file names.
Although Standard File functions properly if the application has not started the List
Manager, it saves time if the application does so.

Note Synthesizer Tool #25 ($19)
Tool Locator (#1)
Memory Manager (#2)
Sound Tools (#8)

Note Sequencer Tool #26 ($1A)
Tool Locator (#1)
Memory Manager (#2)
Sound Tools (#8)
Note Synthesizer (#25)

Note: The Note Sequencer automatically handles the start and shutdown of the Free-Form Sound
Tools (#8) and the Note Synthesizer (#25), so programs that use the Note Sequencer must
not execute start or shutdown calls for those tools. Automatic start does not imply
automatic loading. If you plan to use the Note Sequencer, you must still load the Free-
Form Sound Tool and the Synthesizer Tool explicitly through calls to the Tool Locator
routines LoadTools or LoadOneTool or by calling the System Loader and Tool
Locator directly in appropriate cases.

Font Manager Tool #27 ($1B)
Tool Locator (#1)
Memory Manager (#2)
* Miscellaneous Tools (#3) For ChooseFont call only.
QuickDraw II (#4)
* Integer Math Tools (#11) For ChooseFont call only.
* Window Manager (#14) For ChooseFont call only.
* Control Manager (#16) For ChooseFont call only.
* Menu Manager (#15) For FixFontMenu call only.
* List Manager (#28) For FixFontMenu

and ChooseFont calls.
* Line Edit (#20) For ChooseFont call only.
* Dialog Manager (#21) For ChooseFont call only.

Apple II Technical Notes

Apple IIGS
6 of 7 #12: Tool Set Interdependencies

List Manager Tool #28 ($1C)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)

Audio Compression and Expansion (ACE) Tool #29 ($1D)
Tool Locator (#1)
Memory Manager (#2)

Resource Manager Tool #30 ($1E)
Tool Locator (#1)
Memory Manager (#2)

MIDI Tools Tool #32 ($20)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
Sound Manager (#8)
* Note Synthesizer (#25)

Note: The MIDI Tools require the Note Synthesizer if you intend to use the MIDI clock feature.
If you are not using the MIDI clock, the Note Synthesizer is not required.

Text Edit Tool #34 ($22)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
QuickDraw Auxiliary (#18)
Scrap Manager (#22)
Font Manager (#27)
* Resource Manager (#30) For using resources in Text Edit calls.

MIDI Synth Tool #35 ($23)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
Sound Tools (#8)

Media Control Tool Tool #38 ($26)
Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
Integer Math (#11)
Resource Manager (#30)

Developer Technical Support May 1992

Apple IIGS
#12: Tool Set Interdependencies 7 of 7

Recommended Start Order

A close look at the preceding information will reveal apparent “circular dependencies” between
various tool sets (i.e., two or more tool sets may depend upon each other). To resolve the issue of
which tool set to start first in such a situation, here is a list of the most commonly used tool sets,
given in the order in which an application should start them. You may start those tools which are
indented at a specific level at that time or any time thereafter.

Tool Locator (#1)
ADB Tools (#9)
Integer Math Tools (#11)
Text Tools (#12)

Memory Manager (#2)
SANE (#10)
ACE (#29)

Resource Manager (#30)
Miscellaneous Tools (#3)

Scheduler (#7)
System Loader (#17) LoaderStartup does nothing.
Media Control (#38)

QuickDraw II (#4)
QuickDraw II Auxiliary (#18)

Event Manager (#6)
Window Manager (#14)
Control Manager (#16)
Menu Manager (#15)
Line Edit (#20)
Dialog Manager (#21)

either
Sound Tools then (#8)
Note Synthesizer (#25)

or
Note Sequencer (#26)

MIDI Tools (#32)
MIDI Synth (#35)

Standard File Operations (#23)
Scrap Manager (#22)
List Manager (#28)
Font Manager (#27)
Print Manager (#19)
Text Edit (#34)
Desk Manager (#5)

Note: Although you may start the sound-related tools any time after the Miscellaneous Tools, we
recommend you start them after most of the Desktop-related tools. We also recommend
you start the Desk Manager last and shut it down first.

Further Reference
• Apple IIGS Toolbox Reference

Apple IIGS

#13: ROM 1.0 Modem Firmware Bug 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#13: ROM 1.0 Modem Firmware Bug

Revised by: Matt Deatherage November 1988
Written by: Mike Askins April 1986

This Technical Note formerly discussed a bug involving buffering and serial port setting
commands in the modem firmware in ROM 1.0.

Apple IIGS ROM 2.0 fixes a bug involving buffering and serial port setting commands in the
modem firmware. You should not have to write a special case to handle this bug since it is
reasonable to expect users to have the updated ROM which is offered as a free upgrade from
Apple.

Apple IIGS

#14: Standard File Screwiness 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#14: Standard File Screwiness

Revised by: Dave Lyons May 1992
Written by: Guillermo Ortiz, Matt Deatherage, & Dave Lyons June 1987

This Technical Note describes known anomalies in Standard File.
Changes since December 1991: Updated for System 6.0. Problems with the infinite loop and
SFMultiGet2 reply record are fixed.

Prefix Check is Case Sensitive

When you advance to the next volume using Command-Tab (or just Tab, before 6.0), Standard
File checks your prefix against the name of the volume now in the same device you were just
using, to see if you switched disks (this is possible on a 5.25 drive, for example). If the name
doesn’t match, you stay at the same device.

Unfortunately, the comparison in 6.0 and earlier is case sensitive. If you have a volume called
“MyDisk” and prefix zero is set to “:MYDISK”, advancing to the next volume doesn’t get you
anywhere the first time (but the prefix changes from “:MYDISK” to “:MyDisk”).

The following two problems are fixed in System 6.0:

Infinite Loop with Empty Prefixes

In System Software versions 5.0 through 5.0.4, all Standard File dialogs can hang if both
prefixes 0 and 8 are empty (GS/OS uses prefix 8 to expand partial pathnames if prefix 0 is
empty).

If this affects your software, use GetPrefix to check for empty prefixes before calling
Standard File. If 0 and 8 are both empty, set prefix 0 to “*:” (or any other convenient
pathname).

SFMultiGet2 (and SFPMultiGet2) reply record

SFMultiGet2 and SFPMultiGet2 in System 5.0.4 and earlier accidentally validate the
multi-file reply record as if it were a regular new-style reply record (as for SFGetFile2, for
example). The validation is a check that the words at offsets $08 and $0E in the record are not
$0002 (these are nameRefDesc and pathRefDesc in a new-style reply record).

Apple II Technical Notes

2 of 1 #14: Standard File Screwiness

To ensure that Standard File does not erroneously reject your multi-file reply record (and return
error $1704), you may include ten bytes of $00 following the six-byte record.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 2 & 3

Apple IIGS

#15: InstallFont and Big Fonts 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#15: InstallFont and Big Fonts

Revised by: Eric Soldan & Matt Deatherage July 1989
Written by: Guillermo Ortiz June 1987

When the Font Manager executes InstallFont, it may try to scale the selected font if bit 15
of the ScaleWord is clear; a font larger than 32K causes this call to fail.
Changes since November 1988: Noted System Software 5.0 enhancements.

Before System Software 5.0, the Font Manager could not scale a font larger than 32K, so
InstallFont would fail if scaling was required and the desired font exceeded this limit. If
the call failed for this reason, it reported an FMScaleSizeErr ($1B0C) error.

This is not the same situation as when there is not enough memory available to hold a newly
scaled font. The situation will generate Memory Manager errors.

System Software 5.0 can scale fonts to be larger than 32K, so there is no longer the limit
imposed by System Software 4.0 and earlier. In addition, System Software 5.0 can handle font
sizes up to 255 points, if memory is available. Note that this is a different situation than trying to
scale a font which was originally larger than 32K, but both work under 5.0 and later.

Apple IIGS

#16: Notes on Background Printing 1 of 2

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#16: Notes on Background Printing

Revised by: Mike Askins November 1988
Written by: Mike Askins June 1987

This Technical Note attempts to pinpoint some of the common problems people encounter when
using background printing as available through the serial firmware.

Calling Sequence

Init call Starts the serial firmware
SetOutBuff Specifies a buffer to place data to be printed

Places data in buffer (amount < buffer size)
SendQueue Starts the background printing process

Correctly Making the SendQueue Call

The Apple IIGS Firmware Reference incorrectly documents the parameters you pass to
SendQueue. The correct specification of the recharge address does not correspond to the
standard method of passing a full 32-bit address. Set the parameters as follows:

SendQueue
Launches background printing.

CmdList DFB $04 ;Parameter Count
DFB$18 ;Command Code
DW $00 ;Result Code (output)
DW DataLength
DFB RechargeAddress (bank)
DFB RechargeAddress (high)
DFB RechargeAddress (low)
DFB $00

Using the Default Buffer

You can use the area which the firmware reserves for transparent buffering to place data for
background printing. This is advantageous since the firmware calls the Memory Manager to

Apple II Technical Notes

2 of 2 Developer Technical Support

allocate space for the buffer (you must allocate the space from the Memory Manager if you use
the SetOutBuff call to set up a buffer).

November 1988

Apple IIGS

#16: Notes on Background Printing 3 of 2

To use the serial firmware’s buffer, you must first enable buffering by initializing the port with
PINIT and sending it the string “^IBE” with PWRITE. Once you enable buffering, call
GetOutBuff to find the size and location of the buffer, then place your data (buffersize - 1) in
the buffer and call SendQueue.

Data Size

Make sure that the amount of data you place in the buffer is at least one byte less than the size of
the buffer since the firmware uses one byte of the buffer for bookkeeping purposes; if you place
too much data in the buffer, it will continually print the buffer’s contents and never call your
recharge routine.

The Recharge Routine

You should treat the recharge routine as an interrupt handler and execute it at interrupt time.
Interrupts are disabled at this time, and it is illegal to enable them within the recharge routine.
Like all interrupt handlers, the recharge routine should take care of its business as quickly as
possible then exit; any excessive delays cause interrupt dependent processes (e.g., AppleTalk) to
fail. You should also remember that most of the system code is non-reentrant; you should use
the Scheduler when calling system code which may have been running when the serial interrupt
that invoked the recharge routine occurred.

The serial firmware is not generally reentrant and does not interact with the Scheduler. If you
want to make serial firmware calls (through $C1xx, $C2xx) from your recharge routine, you
must preserve MSLOT (the byte at $0007F8) across those calls. Be aware that any non-recharge
code must not make calls to the serial firmware that will disrupt the background printing process;
sending the string ”^BD” (disable buffering command), for example, is guaranteed to confuse a
running background printing process.

Further Reference
• Apple IIGS Firmware Reference

Apple IIGS

#17: Application Memory Management and the MMStartUp User ID 1 of 2

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#17: Application Memory Management and
the MMStartUp User ID

Revised by: Steven Glass & Rich Williams November 1988
Written by: Jim Merritt June 1987

This Technical Note describes a technique which permits an application to dispose of any
memory it has used with a single Memory Manager call without clobbering other system
components or itself.

Ground Rules for Application Memory Usage

Apple IIGS programs must be responsible for allocating and disposing of any memory they use,
over and above that which the operating system itself gives them. In general, no IIGS program
should use any memory except that which the Memory Manager has explicitly granted to it. A
program may request additional memory for its own use at any time with one or more calls to the
NewHandle routine. At program termination, the application is responsible for explicitly
disposing of any memory that it explicitly acquired, and if it fails to do so, it could leave the IIGS

memory management system in a corrupted state.

You may dispose of memory on a handle-by-handle basis, or you may dispose of it en masse by
calling DisposeAll, but you should never use DisposeAll with the user ID that the
MMStartUp routine provides. This user ID is the “master user ID” for the application, and it
tags the memory space which the operating system reserves for the program’s code and static
data at load time. Calling DisposeAll with this user ID results in immediate deallocation of
the memory in which the calling program resides; therefore, an application which allocates
dynamic data space using only the user ID that MMStartUp gives it should not use
DisposeAll to deallocate that space, but rather use DisposeHandle to deallocate it handle
by handle.

Cleaning Up With DisposeAll

It is possible, however, for a program to use a different, unique user ID when allocating its own
RAM, then pass that user ID to DisposeAll when it terminates to deallocate all of its private
memory at once without endangering itself or other parts of the IIGS system. With this
technique, the question is how best to acquire a new user ID? One method to acquire a new user

Apple II Technical Notes

2 of 2 Developer Technical Support

ID is to request a completely new one of the appropriate type from the User ID Manager in the
Miscellaneous Tools. In this case, when the application terminates, it must not only deallocate
the memory it used, but also the additional user ID which it requested from the User ID
Manager.

Actually, it is not necessary for a program to acquire a completely new user ID to use
DisposeAll without clobbering itself. Instead, the application may modify the auxID field
of the master user ID which MMStartUp assigns to create a unique user ID for allocating its
own memory. The 16-bit user ID contains the auxID field in bits $8 – $B. The value of this
field, which may range from $0 to $F, is always zero in the application’s master user ID, but you
can fill it with any non-zero value to create up to 15 new and distinct user IDs, each of which
you can pass to NewHandle to allocate memory.and to DisposeAll to deallocate memory
without endangering the memory tagged by the master user ID. The following assembly code
fragment illustrates this technique:

; assumes full native mode
pushword #0 ; room for user ID
_MMStartUp
pla ; master user ID
sta MasterID
ora #$0100 ; auxID:= 1

; (COULD HAVE BEEN ANYTHING FROM $1 to $F)

sta MyID ; use this to allocate private memory
...
etc.
...

; ready to exit program
pushword MyID
_DisposeAll ; dumps only my own RAM

; now do any remaining processing related to termination

You do not need to explicitly deallocate any user ID that you derive by changing the auxID
field of a valid master user ID. When the system (usually the one to deallocate the master)
deallocates the master user ID, it also deallocates its derivatives.

One Word of Caution

Several of the Memory Manager’s “All” calls (e.g., DisposeAll) treat a zeroed auxID field
as a wildcard which matches any value that the field may contain, thus if you call DisposeAll
with the application’s master user ID (where the auxID field is zero), the Memory Manager will
not only deallocate all memory belonging to the master user ID, but also all handles and memory
segments that are associated with user IDs which are derived from that master. The Loader’s
UserShutDown mechanism typically executes such a call when cleaning up after a normal
(i.e., non-restartable) application to keep the memory management system from clogging. This
action is purely a defensive measure, and well-behaved applications – particularly restartable
ones – should dispose of their own memory and never rely upon the operating system to clean up
after them.

November 1988

Apple IIGS

#17: Application Memory Management and the MMStartUp User ID 3 of 2

Further Reference
• Apple IIGS Toolbox Reference, Volume 1

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 1 of 10

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#18: Do-It-Yourself SCC Access

Revised by: Jim Luther July 1990
Written by: Jim Luther, Mike Askins, Matt Deatherage & Jim Mensch June 1987

This Technical Note describes how to install and remove a interrupt handler routine for the
Z8530 Serial Communications Controller (SCC) on the Apple IIGS without breaking other parts
of the system. This Note includes many suggestions that, if unheeded, could come back to haunt
you in the form of bug fixes to your program.
Changes since March 1990: Added a method for finding which serial port AppleTalk is using
under GS/OS.

Free Serial Routines Inside

The Z8530 SCC has 2 serial channels, supports several synchronous and asynchronous data
communications protocols, and has 9 read registers and 16 write registers per channel. (Compare
this to the 5 registers of the 6551 Asynchronous Communications Interface Adapter.) To
program the SCC correctly, you must understand five things: the SCC, the Apple IIGS hardware
environment in which the SCC lives, the Apple IIGS interrupt handler firmware, the interrupt
support provided by the operating system, and the data communication protocol you want to use.
If you don’t understand all of these components, stick to the serial firmware.

The Apple IIGS serial firmware is a robust environment for almost every asynchronous serial
programming application. If you want to handle all SCC operations and SCC interrupts on the
IIGS without using the serial firmware, then you must really know the firmware won’t do the job
for you or you wouldn’t be going to a lot of trouble to recreate the services the firmware routines
already provide.

Don’t Eat Your Serial with Your Mouth Open

Your mother has rules and so does Apple. On many systems, your application may be sharing
the SCC chip with System Software such as AppleTalk or the serial firmware. If you want to
access the SCC chip directly without breaking the system (or the system breaking you), then
follow these simple rules.

Rule #1: Before using a serial port, make sure AppleTalk is not already using it.

Apple II Technical Notes

Apple IIGS

2 of 10 #18: Do-It-Yourself SCC Interrupts

If AppleTalk is active, it uses one of the serial ports. The user selects which serial port
AppleTalk uses with the Control Panel. Before using one of the serial ports, you should always
check to make sure AppleTalk is not using that port. If AppleTalk is using the serial port your
application wants to use, tough luck; tell the user about it, but don’t even think about using that
port.

Under ProDOS 8, use the method shown in the following sample code to determine if AppleTalk
is using a serial port:

;
; This routine checks to see which serial port, if any, AppleTalk is using.
; The routine sets a flag byte, ApTalkPort, and the accumulator to indicate
; which port (if any) AppleTalk is using.
; $00 = AppleTalk is not using a serial port
; $01 = AppleTalk is using serial port 1 (printer port)
; $02 = AppleTalk is using serial port 2 (modem port)
; Note: This method should be used under ProDOS 8 only. Under GS/OS, use the
; .AppleTalk driver's GetPort DStatus subcall.
;
; Enter routine in emulation mode
;
 longa off
 longi off
 mcopy 2/AInclude/M16.MiscTool

WhichPort start

IDROUTINE equ $FE1F returns system ID information

 stz ApTalkPort default to not AppleTalk

 jsr IDROUTINE call to the system ID routine
 cpy #$03
 bcs NewIIGS

OldIIGS anop this is a pre-ROM 03 IIGS
 clc to native mode
 xce
 rep #$30 16 bit m and x
 longa on
 longi on

 pea $0000 space for result
 pea $0021 Slot 1 setting
 _ReadBParam read battery RAM parameter
; (2 byte result left on stack)

 pea $0000 space for result
 pea $0027 Slot 7 setting
 _ReadBParam read battery RAM parameter
 pla get slot 7 setting (2 bytes)

 sec emulation mode
 xce
 longa off
 longi off

 beq FindYourCard AppleTalk is active
 pla remove slot 1 setting LSB (1 byte)
 bra OldExit

FindYourCard inc ApTalkPort default to port 1

Developer Technical Support July 1990

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 3 of 10

 pla is slot 1 "your card"? (1 byte)
 beq ItsPort2 no, must be port 2
 bra OldExit

ItsPort2 inc ApTalkPort port 2 is AppleTalk

OldExit pla remove slot 1 setting MSB (1 byte)
 lda ApTalkPort
 rts return to caller

NewIIGS anop ROM 03 or greater IIGS
 clc to native mode
 xce
 rep #$30 16 bit m and x
 longa on
 longi on

 pea $0000 space for result
 pea $000C port 2 type
 _ReadBParam read battery RAM parameter
; (2 byte result left on stack)

 pea $0000 space for result
 pea $0000 port 1 type
 _ReadBParam read battery RAM parameter
 pla get port 1 setting (2 bytes)

 sec emulation mode
 xce
 longa off
 longi off

 cmp #$02 is port 1 AppleTalk?
 bne TryPort2 no
 inc ApTalkPort yes
 pla then remove port 2 setting LSB (1 byte)
 bra NewExit and exit

TryPort2 pla get port 2 setting LSB (1 byte)
 cmp #$02 is port 2 AppleTalk?
 bne NewExit no
 lda #$02 yes
 sta ApTalkPort

NewExit pla remove port 2 setting MSB (1 byte)
 lda ApTalkPort
 rts return to caller

ApTalkPort entry
 ds 1 will be 0, 1, or 2
 end

Under GS/OS, use the method shown in the following sample code to determine if AppleTalk is
using a serial port:

;
; This routine checks to see which serial port, if any, AppleTalk is using.
; The routine sets a flag byte, ApTalkPort, and the accumulator to indicate
; which port (if any) AppleTalk is using.
; $0000 = AppleTalk is not using a serial port
; $0001 = AppleTalk is using serial port 1 (printer port)
; $0002 = AppleTalk is using serial port 2 (modem port)
; Note: This method should be used under GS/OS only.
;

Apple II Technical Notes

Apple IIGS

4 of 10 #18: Do-It-Yourself SCC Interrupts

; Enter routine in native 16 bit mode
;
 longa on
 longi on
 mcopy 2/AInclude/M16.GSOS

Developer Technical Support July 1990

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 5 of 10

CheckPort Start

GetPort equ $8001 The .AppleTalk DStatus subcall to get
; the port number AppleTalk is currently
; using.

 phb save data bank
 phk data bank = code bank
 plb

 lda #$0001 start with device #1
 sta DIdevNum

FindATDriver anop
 _DInfoGS DInfoParms ;call Dinfo
 bcs DIError stop searching if error
 lda DIdeviceIDNum
 cmp #$001D is it the AppleTalk main driver?
 beq ATDriverFound yes
 inc DIdevNum check the
 bra FindATDriver next device number

ATDriverFound anop
 lda DIdevNum store device number
 sta DSdevNum in the DStatus parm list
 _DStatusGS DStatusParms ;call DStatus
 lda portNum get the port number
 sta ApTalkPort
 bra Exit

DIError anop
; cmp #$0011 invalid device number, so the
; beq NotFound AppleTalk main driver wasn't found
;
; Add your code to handle any other errors from DInfo here, because the
; end of the device list was not found.

NotFound stz ApTalkPort neither port is in use
 bra Exit

Exit anop
 lda ApTalkPort
 plb restore data bank
 rtl return to caller

ApTalkPort entry
 ds 2 will be 0, 1, or 2

DInfoParms anop
 dc i2'8' pCount = 8 parameters
DIdevNum dc i2'1' devNum
 dc a4'NameBuffer' devName
 ds 2 characteristics
 ds 4 totalBlocks
 ds 2 slotNum
 ds 2 unitNum
 ds 2 version
DIdeviceIDNum ds 2 deviceIDNum

NameBuffer anop
 dc i2'31' Class 1 input string. Max Length=31
 ds 33

Apple II Technical Notes

Apple IIGS

6 of 10 #18: Do-It-Yourself SCC Interrupts

DStatusParms anop
 dc i2'5' pCount = 5 parameters
DSdevNum ds 2 devNum
 dc i2'GetPort' statusCode = GetPort
 dc a4'GetPortSList' statusList = GetPortSList
 dc i4'2' requestCount = 2
 ds 4 transferCount

GetPortSList anop the GetPort subcall's statusList
portNum ds 2 $0001 = AppleTalk is using port 1 (printer
port)
; $0002 = AppleTalk is using port 2 (modem port)
 dc i2'0'

 end

Rule #2: Don’t use the SCC Interrupt Handler Vector.

Contrary to what you may have read in a previous version of this Note, you cannot reliably
attach your SCC interrupt handler to the SCC Interrupt Handler Vector (vector reference number
$0009). The Apple IIGS serial firmware owns the SCC Interrupt Handler Vector (or at least it
thinks it does). Anytime the serial firmware is used, there is a chance that the serial firmware
can grab the SCC Interrupt Handler Vector for its use. CDAs and NDAs that print, the Print
Manager tool set, the Text tool set, and the generated GS/OS character drivers associated with
the serial ports are examples of code that can and do use the serial firmware.

The only safe place to connect into the interrupt chain is through the operating system. The
ProDOS 8 and GS/OS ProDOS 16 call, ALLOC_INTERRUPT is the correct place to attach your
interrupt handler. The GS/OS BindInt call cannot be used to attach your interrupt handler to
the SCC Interrupt Handler Vector (VRN $0009) for the same reason that you cannot use the SCC
Interrupt Handler Vector directly.

Rule #3: Be very, very careful with SCC Write Register 9 (WR9).

The Z8530 SCC has four registers which are shared by both channels (ports). Of those four,
only two are commonly used in the Apple IIGS, RR3 and WR9 . RR3, which only exists in
channel A, lets you check the interrupt pending bits for both SCC channels. WR9 is the Master
Interrupt Control register for both SCC channels and contains the Reset command bits.

You must never reset the channel AppleTalk is using (resetting the channel AppleTalk is using
kills AppleTalk). This means you should never perform a Force Hardware Reset command
(11xxxxxx to WR9) even though the Z8530 Serial Communications Controller Technical Manual
tells you to in the SCC initialization procedure. A hardware reset is performed at system startup,
so you shouldn’t need to perform a channel reset, even to the channel you are using.

The interrupt control bits (bits D5 - D0) in WR9 should not be modified (an exception is when
you are installing your own SCC interrupt handler). AppleTalk expects the interrupt control bits
to always be 001010. If you find the need to perform a channel reset on your channel, remember
that the interrupt control bits are programmed at the same time as a channel reset.

Developer Technical Support July 1990

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 7 of 10

Hints for the Serial Adventure

Next are a few hints for those who would like to explore the world of knocking on the registers
of the Z8530 SCC.

Hint #1: Synchronize your code with the SCC logic.

Before writing to the SCC chip for the first time, you should make an attempt to ensure your
code is synchronized with the SCC’s logic. This needs to be done only once when you are
initializing the SCC. This can be accomplished with a single read of SCC Read Register 0
(RR0). For example, if you’re using serial port 2 (the modem port), the following code reads
RR0 of SCC channel B:

 longa off must be using 8-bit accumulator
 lda $C038 read RR0 of SCC Channel B

Hint #2: Watch out for interrupts from the other SCC channel.

Except for RR0, WR0, and the two SCC data registers, all SCC registers are accessed in a two-
step process. First, the register number you want to select is written to WR0. After the register
number is set, the next read from or write to the command register accesses the register selected
in the first step. Because several of the SCC registers are shared between the two SCC channels
and because code accessing them may not always be yours (i.e., AppleTalk), interrupts should be
disabled during the two steps. The following code shows two quick subroutines to access the
SCC’s Read and Write registers while preventing interrupts between the register number set and
the register read or write steps:

 longa off must be using 8-bit accumulator
 longi off and index registers
;
; Write to a SCC command register - channel A or B.
; Input: A = value to store
; X = SCC register number ($0-$F)
; Y = $01 channel A
; $00 channel B
;
WriteSCC php save the current interrupt status
 sei disable interrupts
 pha save value to write
 txa get SCC register number from X
 sta $C038,y set the register number
 pla restore value to write
 sta $C038,y write the value
 plp restore the interrupt status
 rts

Apple II Technical Notes

Apple IIGS

8 of 10 #18: Do-It-Yourself SCC Interrupts

;
; Read from a SCC command register - channel A or B.
; Input: A = SCC register number ($0-$F)
; Y = $01 channel A
; $00 channel B
; Output: A = register value
;
ReadSCC php save the current interrupt status
 sei disable interrupts
 sta $C038,y set the SCC register number
 lda $C038,y get the value from the SCC register
 xba look ahead 2 lines...
 plp restore the interrupt status
 xba set N and Z flags for exit
 rts

Just to be complete, here’s how RR0, WR0, the receive buffer, and the transmit buffer SCC
registers are accessed on the Apple IIGS:

 longa off must be using 8-bit accumulator
 longi off and index registers
;
; Read RR0 - channel A or B
; Input: Y = $01 channel A
; $00 channel B
; Output: A = RR0 register value
;
ReadRR0 lda $C038,y get the value from RR0
 rts
;
; Write WR0 - channel A or B
; Input: A = value to store at WR0
; Y = $01 channel A
; $00 channel B
;
WriteWR0 sta $C038,y write the value to WR0
 rts
;
; Read from SCC receive buffer - channel A or B
; Input: Y = $01 channel A
; $00 channel B
; Output: A = value of data received
;
ReadData lda $C03A,y get the value from SCC data register
 rts
;
; Write to SCC transmit buffer - channel A or B
; Input: A = value of data to transmit
; Y = $01 channel A
; $00 channel B
;
WriteData sta $C03A,y write the value to SCC data register
 rts

Hint #3: All SCC channels are not created equal.

In the IIGS, the SCC’s receive and transmit clocks for both channels are driven by a single crystal
oscillator circuit. This is accomplished by connecting a 3.6864 MHz crystal between the /RTxC
and /SYNC pins of channel A. Channel B’s /RTxC pin is connected to Channel A’s /SYNC pin
to drive channel B’s clocks from channel A’s oscillator circuit.

Developer Technical Support July 1990

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 9 of 10

Because of this single circuit, Write Register 11 (WR11) bit 7 must be set to 1 for SCC channel A
and must be set to 0 for SCC channel B.

Hint #4: RR3 is available only in SCC channel A.

When your interrupt handler is checking to see if the interrupt condition was caused by your
SCC channel, remember to always look at RR3 in SCC channel A. RR3 in channel A contains
the interrupt pending bits for both SCC channels. RR3 in channel B always returns all zeros,
which doesn’t tell you a lot about what’s happening.

Don’t be a Serial Killer

How to Install and Remove your SCC Interrupt Handler

If you’re going to handle serial I/O and don’t want your application to have to poll the SCC chip
all the time to see if something has happened, you probably want to install an interrupt handling
routine that is called every time a SCC chip condition you want to know about occurs. This
section of the Note shows how to install and remove your own SCC interrupt handler.

The steps for installing your SCC interrupt handler are:

1. Ensure the serial firmware’s Input and Output buffering is disabled. The state of
I/O buffering can be checked by looking at bit 14 of the ModeBitImage
parameter returned by the GetModeBits extended interface call. I/O buffering
can be disabled with the firmware’s BD control command.

2. Disable the SCC Master Interrupt Enable (WR9, bit 3) briefly while performing
the next six steps. The value you should write to WR9 is 00000010.

3. Get the address of the system interrupt flag byte, SerFlag. The ROM version
determines the method of finding the address of SerFlag. In ROM version 01
and later, you can get the address with a call to the Miscellaneous Tools
GetAddr using a reference number of $000E. With ROM version 00 (the
original IIGS ROM), the address of SerFlag is $E10104. Refer to the Apple II
Miscellaneous Technical Note #7, Apple II Family Identification for information
on identifying Apple IIGS ROM versions.

4. Once you have the correct address of SerFlag, preserve the byte’s current
value, then turn on the bits in the byte which reflect the port from which you are
handling interrupts. The bits for the different ports are as follows (note the
relationship of the bits of RR3 to SerFlag):

 Port 1: ORA #%00111000
 Port 2: ORA #%00000111

Apple II Technical Notes

Apple IIGS

10 of 10 #18: Do-It-Yourself SCC Interrupts

5. Initialize the SCC modes. The Z8530 Serial Communications Controller
Technical Manual shows the order the SCC registers must be programmed.
However, you must stray from the manual slightly due to the hardware
implementation of the SCC in the IIGS. A typical initialization sequence to set the
SCC up for asynchronous serial communications through channel B (the modem
port) would look similar to the following:

SCC Register Value Comment
RR0 - ensure synchronization with SCC
WR4 01000100 x16 clock, 1 stop, no parity
WR3 11000000 8 bit receive data, auto enables off, receiver

disabled
WR5 01100010 DTR is active, 8 bit transmit data, no break,

transmit disabled, RTS is inactive
WR11 01010000 no Xtal on channel B, receive and transmit

clock = baud rate generator output
WR12 01011110 low byte of baud rate generator time

constant = $5E - 1200 baud
WR13 00000000 high byte of baud rate generator time

constant = $00 - 1200 baud
WR14 00000000 no local loopback or auto echo, /DTR

follows inverted DTR bit in WR5, use /RTxC
for baud rate generator clock, disable baud
rate generator

WR14 00000001 enable the baud rate generator
WR3 11000001 receiver enabled
WR5 01101010 transmit enabled
WR15 00000000 no interrupts on this channel for now...

6. Tell the SCC which external and status conditions can cause an interrupt by
setting the appropriate bits in WR15. This step is not needed unless you are
setting bit 0 of WR1 (External/Status Master Interrupt Enable) in the next step.

7. Enable the interrupts modes you want by setting the appropriate bits in WR1
(00010011 for all SCC interrupt conditions).

8. Use ALLOC_INTERRUPT to add your interrupt handler to the operating system’s
interrupt vector table. The interrupt identification number returned by
ALLOC_INTERRUPT is needed when you remove your interrupt handler.

9. Reenable the SCC Master Interrupt flag (WR9, bit 3). The value you should write
to WR9 is 00001010.

The interrupt handling routine must conform to the rules listed in the ProDOS 8 Technical
Reference Manual and GS/OS Reference, Volume 2.

When you get ready to shut down your application, you need to remove your interrupt handler.
The steps for removing the SCC interrupt handler you installed are as follows:

Developer Technical Support July 1990

Apple IIGS

#18: Do-It-Yourself SCC Interrupts 11 of 10

1. Disable the SCC Master Interrupt Enable (WR9, bit 3) briefly while performing
the next six steps. The value you should write to WR9 is 00000010.

2. Disable all interrupts modes for your port by writing a $00 to WR1.
3. Remove any character that might be left in the receive data register by reading it

once.
4. Clear any pending transmit overrun and external and status interrupts by writing

11010000 to WR0.
5. Clear any pending transmit interrupt by writing 00101000 to WR0.
6. Use DEALLOC_INTERRUPT to remove your interrupt handler from the operating

system's interrupt vector table.
7. Restore SerFlag to its original value.
8. Reenable the SCC Master Interrupt flag (WR9, bit 3). The value you should write

to WR9 is 00001010.

Further Reference
• Apple IIGS Toolbox Reference Manual, Volume 1
• Apple IIGS Firmware Reference Manual
• Apple IIGS Hardware Reference Manual, Second Edition
• GS/OS Reference, Volumes 1 and 2
• ProDOS 8 Technical Reference Manual
• Apple II Miscellaneous Technical Note #7, Apple II Family Identification
• GS/OS Technical Note #9, Interrupt Handling Anomalies
• Z8530 Serial Communications Controller Technical Manual (Zilog Corporation)
• Z85C30 Serial Communications Controller Technical Manual (Advanced Micro Devices,

Inc.)

Apple IIGS

#19: Multichannel Output with the Apple IIGS Note Synthesizer 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#19: Multichannel Output with the
Apple IIGS Note Synthesizer

Revised by: Jim Mensch November 1988
Written by: John Worthington & Jim Merritt June 1987

This Technical Note discusses multichannel sound with the IIGS Note Synthesizer.

It is possible to play multichannel sound using the IIGS Note Synthesizer Tool Set. The Ensoniq
Digital Oscillator Chip (DOC) supports 16 independent output channels. Since only the low
three bits of the output channel number are available through the IIGS sound expansion
connector, multichannel circuitry may only decode eight output channels (zero through seven).
Output channel eight maps onto channel zero, channel nine onto channel one, etc., and this
mapping continues through all 16 channels.

The setting of the high nibble of the DOCMode byte in a waveform of the waveList portion
of the instrument definition determines the routing of output from a Note Synthesizer instrument
to a particular channel (the actual DOCMode information is in the low nibble of the DOCMode
byte). You may assign each separate element in a waveList to a different output channel to
create multisampled instruments in which some samples play on the left speaker and others on
the right.

Apple standards require stereo expansion cards to map all even output channels to the right and
odd channels to the left. To be compatible with cards that decode more than two of the chip’s
output channels, software should use channel zero for right and channel one for left. This
convention ensures that output is always positioned properly in the stereo space with channel
zero information going to the right front and channel one information going to the left front.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2
• Apple IIGS Toolbox Reference Update

Apple IIGS

#20: Catalog of APW Language Numbers 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#20: Catalog of APW Language Numbers

Revised by: Matt Deatherage March 1990
Written by: Jim Merritt August 1987

This Technical Note formerly listed APW Language Number assignments, which correspond to
auxiliary type values of file type $B0.
Changes since November 1988: This information is now documented in Apple II File Type
Notes, specifically Notes of file type $B0.

The correspondence between APW Language Numbers and auxiliary type values for $B0 files is
no longer one-to-one. Although all APW Language Numbers are stored with their source files in
the auxiliary type field, there now exist assignments of auxiliary type values for file type $B0
which are not APW languages.

Therefore, the contents of this Note can now be found in the File Type Note for file type $B0,
where all such assignments of either kind are still called “APW Language Numbers.”

Further Reference
• File Type Note for file type $B0, Apple IIGS source code files

Apple IIGS

#21: DMA Compatibility for Expansion RAM 1 of 2

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#21: DMA Compatibility for Expansion RAM

Revised by: Glenn A. Baxter November 1988
Written by: Jim Merritt August 1987

This Technical Note discusses the Apple IIGS Extended Memory Slot specification.

The Apple IIGS Extended Memory Slot specification provides for DMA access to no more than
four rows of RAM on a single board through the CROW0 and CROW1 signals. Expansion
board designs that involve more than four rows of RAM are not compatible with DMA accesses.
Each of the four rows can hold either 256K or 1 MB of data. The designs of the Fast Processor
Interface (FPI) and its successor, the CYA, impose this limit. Each row can be organized in any
of the following configurations to yield the respective board capacities assuming there are no
more than four rows:

Chips Configuration Board Capacity
8 256K x 1 DRAM 1 MB
8 1 MB x 1 DRAM 4 MB
2 256K x 4 DRAM 1 MB
2 1 MB x 4 DRAM 4 MB

The CROW0 and CROW1 signals properly decode the row addresses for both normal and DMA
cycles. The Extended Memory Slot interface does not support the latching of bank address
information off the data bus during a DMA cycle, and a card which attempts to latch the bank
address will likely get the last CPU cycle’s bank address. Getting the last address is not a
problem if it accidently happens to be the bank to which you wish to talk, but this is rarely the
case. The card gets the last CPU cycle’s bank address because DMA essentially shuts off the
CPU, so it cannot emit the bank address. The FPI and CYA, which contain the DMA bank
address register ($C037), do not emit the DMA bank address either, thus preventing bus
contention with the processor as it is being removed from that bus. The DMA bank address
register inside the FPI affects the addressing and control information that the Extended Memory
Slot sees; it does not affect the data bus. Therefore, during DMA, the bank address time is filled
with what is essentially random bank address information. Using this random information could
result in damaging the contents of the memory (destroying little things like the operating
system).

Suppose a card were designed to latch the bank address directly from the data bus with the rising
edge of the PH2 clock signal. It could use the bank address to derive the proper RAM row
address and never bother with CROW0 and CROW1 at all. Directly latching the bank address

Apple II Technical Notes

2 of 2 Developer Technical Support

would permit the card to accommodate any desired RAM arrangement in 64K increments,
including an odd number of rows. Although the technique is valid during CPU cycles, it does
not work during DMA cycles since the FPI never emits the DMA bank address onto the data bus.
During DMA cycles, any card that tries to latch the bank address directly, instead latches the
bank address that was put on the data bus during the last CPU cycle, which is probably the
wrong value.

Currently, there does not seem to be a solution for the DMA situation. There the possibility of
“limited DMA compatibility.” An example of a limited-compatibility card would be one with
six banks of memory. It’s lower four banks are DMA compatible since they use the CROW0
and CROW1 lines, but the upper two banks do not work properly with DMA. This limited
approach should be safe, but it is not guaranteed since DMA cards are sometimes aware of the
total system memory and may expect, quite reasonably, to have access to all of the memory
when in fact it does not. There are currently no “memory intelligent” DMA cards, but that could
change at any point. The best we can suggest at this time is for hardware developers to build
only four-row cards allowing up to 4 MB of memory, which is sufficient for most current
applications.

Further Reference
• Apple IIGS Hardware Reference

Apple IIGS

#22: Proper Use of Dynamic Segments 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#22: Proper Use of Dynamic Segments

Rewritten by: Eric Soldan & Andy Stadler September 1990
Written by: Guillermo Ortiz October 1987

This Technical Note discusses strategies that applications can use to deal with dynamic
segments.
Changes since November 1988: Rewrote from scratch to address current problems.

When reading the documentation on dynamic segments, it initially appears that they are even
better than sliced bread. While they are incredibly useful, there are two issues that make dealing
with them somewhat tricky. The first involves loading a dynamic segment; the second involves
unloading a dynamic segment. Everything else works fine.

Loading Dynamic Segments

Loading dynamic segments is supposed to happen automatically. You are supposed to be able to
call the code in the dynamic segment, and the system automatically loads it. As long as there is
enough RAM to load the segment, this is exactly what happens.

The problem arises when there isn’t enough memory. Immediately you have a number of
questions, such as “How do I know if it didn’t load?” and “How is the not-enough-memory error
returned?” Unfortunately, neither of these questions is applicable. Instead, you get a Fatal
System Error, which is not the most useful thing that could happen.

However, there are some reasons for this error. For example, in the Pascal or Toolbox stack
frame system, the called function is responsible for removing the parameters pushed onto the
stack. If the dynamic segment did not load, these parameters cannot be pulled from the stack,
and if they are not pulled from the stack, the operating system cannot return to the caller.

Due to this problem, the best thing to do is to try to load the dynamic segment with
LoadSegName. If it loads, then there is (obviously) enough RAM for it. If it does not load,
then there was not enough RAM; it’s that simple. So, to call a function named dynFN in a
dynamic segment called dynSeg, you would do the following:

 LoadSegName("\pDynSeg");
 if (!_toolErr) {
 dynFN(some, number, of, parameters);
 UnLoadSeg(dynFN);

Apple II Technical Notes

Apple IIGS

2 of 3 #22: Proper Use of Dynamic Segments

 }
 else ErrorAlert("\pOut of RAM.");

Developer Technical Support September 1990

Apple IIGS

#22: Proper Use of Dynamic Segments 3 of 3

Unloading Dynamic Segments

UnLoadSeg used to have a problem, so the above technique would not have worked. As of
System Software 5.0.3, this problem has been fixed. In the example, the code
UnLoadSeg(dynFN) does not pass the address of the dynFN that was loaded into RAM.
Instead, that address represents the entry in the dynamic segment jump table for that particular
function. The jump table is always in RAM. So, you are not actually passing an address of the
segment to be unloaded, but an address in the jump table.

The loader is responsible for figuring out that the address is actually an address in the jump table,
and it is supposed to unload the segment to which the jump table entry refers. The loader did not
handle this case properly until 5.0.3. So, for system disks prior to System Disk 5.0.3, you can
preserve the segment number returned by the LoadSegName call to issue an UnLoadSegNum
call to dispose of the dynamic segment. Due to UnLoadSeg not doing the job prior to 5.0.3,
you could use UnLoadSegNum. This also has problems. ExpressLoad changes the segment
numbers, so it is difficult to maintain the segment numbers if you change the link script. For
these reasons, the below technique should be used for system disks prior to 5.0.3:

void sample()
{
 struct LoadSegNameOut dynSegInfo;

 dynSegInfo = LoadSegName("\pDynSeg");
 if (!_toolErr) {
 dynFN(some, number, of, parameters);
 UnLoadSegNum(dynSegInfo.segNum);
 }
 else ErrorAlert("\pOut of RAM.");
}

Dynamic Segment Interdependencies: Just Say No

Dynamic Segments calling each other almost always lead to unloading conflicts, and more
importantly, they defeat the purpose (if they both have to be in simultaneously then they might as
well be static). Figure 1 is a sample program layout you may want to consider when designing
your application dynamic segment usage:

Main Program
Dispatcher & User Interface

Shared Utility Code

Mode 3
Code

Mode 2
Code

Mode 1
Code

static

dynamic

static

Figure 1–Sample Program Layout

Apple II Technical Notes

Apple IIGS

4 of 3 #22: Proper Use of Dynamic Segments

Also, if one of the dynamic segments described is much more than, say, 32K or 40K, you may
wish to load a pair (or more) of dynamic segments. These dynamic segment pairs would always
be loaded and unloaded simultaneously. Why? Because loading two 25K segments is more
likely to succeed than loading one 50K segment.

A Final Warning:

Data in a dynamic segment is a tricky issue. When you call a dynamic segment, you are not sure
if it got loaded, or if it was already in RAM, and therefore you cannot be sure of the values in
your global data. For example, say that you have a global variable that represents the number of
times that you call the dynamic segment. Every time you call the segment, you would increment
this variable. This technique works great until the dynamic segment gets purged. Once it is
purged, the next time you call it, the variable area would be loaded from disk again, with its
original initial value. The count is no longer valid. To fix this, you can place the global could
variable in the static globals space for the main code. Then the variable would not get purged,
and your count would be valid. Of course, if you have global data that does not ever change,
then it is okay for the data to be in the global segment.

Further Reference
• GS/OS Reference
• Apple IIGS Programmer’s Workshop Assembler Reference

Apple IIGS

#23: Toolbox Use of DOC RAM 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#23: Toolbox Use of DOC RAM

Revised by: Matthew Denman & Matt Deatherage November 1988
Written by: Jim Merritt October 1987

This Technical Note explains why you must be careful about which values you store in the first
page of the Ensoniq Digital Oscillator Chip (DOC) RAM when using Note Synthesizer and
MIDI Tool Sets on the Apple IIGS.

The Apple IIGS Note Synthesizer uses an oscillator as a free-running timer to clock the update of
waveform envelopes when the DOC sounds notes. To act as a timer, the oscillator “plays” the
contents of bytes $00 – $FF in DOC RAM at zero volume. Once it scans through the entire
“waveform buffer,” the oscillator generates an interrupt, which the appropriate Note Synthesizer
routines service.

When using the Note Synthesizer or the Note Sequencer without the MIDI Tool Set, there is no
need to avoid using DOC RAM locations $00 – $FF for general waveform storage. More than
one oscillator can play from the same waveform buffer at the same time, so the function of the
timer oscillator does not affect normal use of the DOC for sound generation purposes in any
way. However, you should not fill the first page of DOC RAM with waveforms that are
delimited by zero bytes (as is sometimes appropriate in special situations, discussion of which is
beyond the scope of this Note). The presence of zero bytes in the first page of DOC RAM can
cause serious system performance degradation and can even cause the system to hang. In
particular, it is always inappropriate to store arbitrary, non-waveform data in the first page of
DOC RAM since such data often includes zero bytes (which would be corrupted were you to
remove or modify them).

The Apple IIGS MIDI Tool Set also uses bytes $00 – $FF of DOC RAM for timing purposes, but
it uses a different oscillator than the Note Synthesizer. If you want MIDI time stamping, you
may not use the first page (bytes $00 – $FF) of DOC RAM for your own purposes since the
MIDI Tool Set uses the contents of those bytes for time-stamping purposes.

You may use the MIDI, Note Synthesizer, and Note Sequencer Tool Sets together, but you must
not use bytes $00 – $FF of DOC RAM for any purpose if using MIDI time stamping, nor store
zero bytes in this area when using the Note Synthesizer. You might consider it appropriate to
avoid using the first page of DOC RAM, if possible, to facilitate adding MIDI support to your
application at a later date.

Apple IIGS

#24: Apple IIGS Toolbox Reference Updates 1 of 7

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#24: Apple IIGS Toolbox Reference Updates

Revised by: Dave Lyons May 1992
Written by: Rilla Reynolds, Matt Deatherage, Dave Lyons, C.K. Haun October 1987

& Eric Soldan

This Technical Note documents changes to the Apple IIGS Toolbox Reference manuals. Please
contact Apple II Developer Technical Support at the address listed in Apple II Technical Note #0
if you have additional corrections or suggestions for any of the Apple IIGS Toolbox
documentation.
Changes since December 1991: Added corrections to Dialog Manager, Menu Manager, Tool
Locator, Window Manager, and Appendix E.

The current Apple IIGS Toolbox reference material is Apple IIGS Toolbox Reference, volumes 1
to 3 as well as this Technical Note. (The Apple IIGS Toolbox Reference Update beta draft from
APDA is obsolete and should not be used.)

Corrections to Volume 1

Desk Manager—FixAppleMenu Can Die With Error $0512

Fatal system error $0512 comes from FixAppleMenu (in the Desk Manager). It means that
one of your installed New Desk Accessories does not have a well-formed menu title string. In
particular, the required backslash (\) character was not found (make sure bit seven is off).

Dialog Manager—editLine Item Value

On page 6-12, the description of an editLine item value should read “Maximum length of the
item text (0 to 255 characters).”

The List Manager Wants the Port Set Properly

The List Manager expects the current grafPort to be set properly before you make most List
Manager calls; drawing can occur in funny places if the grafPort is not set properly before
calls that draw (like SelectMember2). Most List Manager calls, and many other toolbox
calls, require that the current grafPort be explicitly set. Before you call List Manager
routines that draw, set the current port to your window with a SetPort call. Remember the
note in Volume 2 under the NewWindow call—“Important: NewWindow does not set the
current port, but many routines require that a current port exist. Use the QuickDraw II routine

Apple II Technical Notes

Apple IIGS

2 of 7 #24: Apple IIGS Toolbox Reference Updates

SetPort to set the current port.” Using SetPort can prevent toolbox confusion and reduce
your debugging time.

Developer Technical Support May 1992

Apple IIGS

#24: Apple IIGS Toolbox Reference Updates 3 of 7

DeleteMItem Operates on the Current Menu Bar

Page 13-37 says DeleteMItem removes the specified item from the current menu. It means
the item is removed from the current menu bar.

Error $0F02 from GetMItem

GetMItem returns error $0F02 if the specified menu item is not found.

On page 13-45, the return value from GetMenuFlag should read “Word—menuFlag value
for the specified menu.”

On page 13-56, in the description of the hiliteFlag parameter to HiliteMenu, no
particular value of “TRUE” is specified. $0001 is a good value ($8000 does not work; bit 15 is
special).

On page 13-72, SetMenuFlag doesn’t bother to actually explain what it does. If bit 15 of
newValue is zero, each set bit set forces the corresponding bit in the menu’s flag value to be
set. If bit 15 of newValue is one, each clear bit forces the corresponding bit in the menu’s flag
value to be clear. Knowing this, you can set or clear more than one bit at a time, if you want.

SetVector Reference Numbers

On page 14-62, vector reference number $002C is listed as “Message pointer vector.” $002C is
actually the stack-based GS/OS call vector. (The real message pointer vector is not accessible
through GetVector and SetVector.)

Getting a clean Mouse Mode from ReadMouse

On ROM 3 computers, the mouse mode byte returned from ReadMouse sometimes has extra
bits set in the high nibble. Before feeding a ReadMouse value to SetMouse, mask off all but
the low nibble (AND #$000F).

ReadAsciiTime Result Buffer

The description of ReadAsciiTime (in the Miscellaneous Tools) on page 14-16 should say
the most significant bit (not byte) of each character is set to one.

SystemEvent Is All Backwards

Although applications still should not call SystemEvent, we should note for completeness that
the input parameters listed in Volume 1 are exactly backwards in the stack diagram.

Apple II Technical Notes

Apple IIGS

4 of 7 #24: Apple IIGS Toolbox Reference Updates

Corrections to Volume 2

QuickDraw Auxiliary Error Codes

Following are some error codes from QuickDraw Auxiliary that are not listed in volume 2.

 $1210: picEmpty
 $1211: picAlreadyOpen
 $1212: pictureError

 $1221: badRect
 $1222: badMode

FrameRgn Does Not Contribute to an Open Region

The description of the FrameRgn routine on page 16-105 in the Apple IIGS Toolbox Reference,
Volume 2 states that FrameRgn will contribute to a region definition if a region is open when
FrameRgn is called. This is incorrect; FrameRgn does not contribute to the region being
defined. To add a region to another region, use XorRgn or UnionRgn.

Tool Locator, TLMountVolume

On page 24-21, the description of TLMountVolume does not bother to mention that
QuickDraw II and Event Manager must be active. If they are not, you should use
TLTextMountVolume instead.

Tool Locator, SetTSPtr

When using SetTSPtr to patch a system tool set, the Tool Locator and Desk Manager are
special. See Apple IIGS Technical Note #101, Patching the Toolbox.

Window Manager, “Draw Information Bar Routine”

On page 25-23, the code to clean up the stack is incorrect. On the sta <14, the comment
“Works because stack and direct page are equal” is no longer true—they were equal until the
PLY two lines earlier. One way to correct the code is to replace sta <14 with sta 14,s and
sta <12 with sta 12,s.

Window Manager, InvalRect

The description of InvalRect on page 25-80 claims that InvalRect modifies the input
rectangle; the rectangle is actually not modified.

Window Manager, PinRect

On page 25-89, in the description of PinRect, the two greater-than comparisons should be
greater-than-or-equal.

Developer Technical Support May 1992

Apple IIGS

#24: Apple IIGS Toolbox Reference Updates 5 of 7

Window Manager, SetZoomRect

The description of SetZoomRect on page 25-112 refers to fZoomed as bit 2 in the window
frame. fZoomed is actually bit 1, with value $0002.

Window Record Offsets

On page 25-142, note that the offsets given into the window record refer to the record as the
Window Manager treats it internally, with a wNext field at the beginning. When dealing with a
window pointer as seen by an application, you need to subtract four from the offsets shown. For
example, wPort is $00 (not $04), and wControls is $C6 (not $CA).

Appendix A, “Writing Your Own Tool Sets”

At the bottom of page A-8, “lda #$90” should read “lda #$8100” for version 1.0
prototype.

On page A-10, the figure should show two RTL addresses (6 bytes) on the stack.

Corrections to Volume 3

Control Manager: Menu Events

On page 28-15, note that a Menu Event is identified by the value wInSpecial ($0019) in the
what field of the task record. The menu item ID is in the low word of the wmTaskData field.

Control Manager: Dimmed Custom Controls

In the Draw routine for both extended and non-extended controls, the high word of ctlParam
(which was previously undocumented) contains a flag which the definition procedure can use to
draw a normal or dimmed control. The value is $0000 normally, but it is $FFFF when the
control is inactive (hilite value equals $00FF), or when the control’s state is tied to the window’s
state and the window is inactive.

Control Manager: Size Box Controls

The part code for an extended Size Box control is normally 10. If the fCallWindowMgr bit is
set in ctlFlag, the part code is $80; and if the size box is managed by a Text Edit control, the
part code is $84.

When a Size Box control’s fCallWindowMgr bit is set, the control needs to pass a minimum
window size to GrowWindow. It gets this value from its ctlData field, which you can get
with GetCtlTitle and set with SetCtlTitle (the low word is the minimum height, and
the high word is the minimum width). A height of zero defaults to 50, and a width of zero
defaults to 130.

Apple II Technical Notes

Apple IIGS

6 of 7 #24: Apple IIGS Toolbox Reference Updates

Desk Manager: Errors from AddToRunQ and RemoveFromRunQ

The Desk Manager chapter, page 29-6, states no errors are possible for AddToRunQ, but any
errors from the Miscellaneous Tools routine AddToQueue are returned unchanged.

Page 29-8 states no errors are possible from RemoveFromRunQ, but any errors from
DeleteFromQueue are returned unchanged.

Event Manager: What SetAutoKeyLimit Really Does

Page 31-6 says that PostEvent will add up to the new auto-key limit number of auto-key
events before reverting to the rule that auto-key events are only to be posted if the event queue is
empty. This is not quite right. Actually, the parameter to SetAutoKeyLimit is used in a size
comparison on the event queue—if there are newLimit or more events in the queue, auto-key
events will not be posted. Volume 3 incorrectly states that up to newLimit auto-key events
will be posted; this is only true if you assume the event queue is empty before the first auto-key
event comes in.

List Manager

On page 35-9, the description of ResetMember2 does not point out an important difference
between ResetMember2 and NextMember2. ResetMember2 deselects the member found,
but NextMember2 does not change the member’s status.

On page 35-3, bit 5 of the memFlag field is defined—it makes an item inactive. To make use of
this bit, you must also set bit 6 of the List control’s ctlFlag field; if you don’t set this bit, the
user will still be able to select members using the mouse.

Memory Manager

If the Memory Manager detects a corrupted entry in the Out Of Memory Queue, fatal system
error $0209 occurs.

Menu Manager

On page 28-65, the description of the initialValue field is misleading. Cross out the text
“that is, its relative position within the array of items for the menu.” initialValue is simply
a menu item ID, not an offset into an array.

Page 37-7 states “Because caching does not work with menus in windows, the InsertMenu
call automatically disabled caching for such menus.” Actually, InsertMenu doesn’t do that.
You should not set the allowCache bit for a menu in a window.

Miscellaneous Tools: Interrupt State Record Not Always Complete

Developer Technical Support May 1992

Apple IIGS

#24: Apple IIGS Toolbox Reference Updates 7 of 7

The interrupt state record returned from GetInterruptState (and passed to
SetInterruptState) is not always completely filled in. The Interrupt Manager, in the
interest of serving AppleTalk and serial interrupts as rapidly as possible, does not take the time
to save all the items in the record until those timing-critical interrupt handlers have been called.
Some items are not saved at all unless the interrupt is determined to be a BRK instruction. Table
1 shows all items in the current interrupt state record and when they become valid:

Record variable When valid
irq_A always
irq_X always
irq_Y always
irq_S after serial
irq_D always
irq_P only on break
irq_DB after serial
irq_e after serial
irq_K only on break
irq_PC only on break
irq_state after serial
irq_shadow always
irq_mslot after serial

Table 1—Validity of Interrupt Record

Standard File

On page 48-39, the description of origNameRef reads “On output, this string contains the
string confirmed by the user, which may not be the same length as the default value.” This
sentence is confused; ignore it. The string is not changed at all; Standard File doesn’t even know
how long the buffer is.

Tool Locator: Notes on StartUpTools

StartUpTools in System Software 5.0.4 and earlier is intended to be used from applications
only, not from NDAs.

The order of the toolArray entries in the StartStop record is not important.
StartUpTools and ShutDownTools always start up and shut down tools in a correct order.

StartUpTools in System Software 5.0.4 and earlier fails to open your application’s resource
fork if the application’s filename contains a slash (/) or if the application directory path is longer
than 64 characters.

For maximum compatibility, pass your application’s master user ID with any auxID to
StartUpTools instead of allocating a new user ID.

Apple II Technical Notes

Apple IIGS

8 of 7 #24: Apple IIGS Toolbox Reference Updates

Window Manager:NewWindow2 Parameters Override Template Even When You Pass
NIL

The description of the NewWindow2 call on page 52-32 is in error. The description of the
titlePtr , refCon , contentDrawPtr , and defProcPtr says, “To prevent
NewWindow2 from replacing the template values, supply NIL pointers…” This is only true for
the titlePtr parameter—if you pass NIL for any of the other parameters then the value of
that parameter in your window record is also NIL, no matter what the template value was. In
other words, if you have the value $99 stored in your template refCon field, and you pass NIL
for the refCon value in a NewWindow2 call, the value of the refCon in the returned
grafPortPtr is NIL.

Developer Technical Support May 1992

Apple IIGS

#24: Apple IIGS Toolbox Reference Updates 9 of 7

Appendix E: rTextForLETextBox2 Resources

Page E-68 of Volume 3 shows a length field at the beginning of an rTextForLETextBox2
resource. This field is not actually present. The length is simply the size of the resource—it is
not stored redundantly.

Appendix E: rTwoRects Resources

When the two rectangles are for 320- and 640-mode, by convention the rectangle for 320 mode
comes first.

Further Reference:
• Apple IIGS Toolbox Reference, Volumes 1–3
• Apple IIGS Technical Note #101, Patching the Toolbox

Apple IIGS
#25: Apple IIGS Firmware Reference Updates 1 of 7

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#25: Apple IIGS Firmware Reference Updates
Revised by: Dave Lyons May 1992
Written by: Rilla Reynolds, Dave Lyons, & Jim Luther October 1987 to September 1990

This Technical Note includes updates to the May 1987 edition of the Apple IIGS Firmware
Reference, published by Addison-Wesley (Part Number 030-3121-A). The new Monitor
commands require an Apple IIGS revised ROM (Part Number 342-0077-B), which is available
without charge from an authorized Apple dealer. Please contact Apple II Developer Technical
Support at the address listed in Apple II Technical Note #0 if you have additional corrections or
suggestions for this manual.
Changes since September 1990: Added a reference to Apple IIGS Technical Note #102 for
TOBRAMSETUP.

Contents

Page vii, Chapter 7 SmartPort Firmware: Change “Generic SmartPort calls 121” to
“Standard and Extended SmartPort calls 121.”

Chapter 2: Notes For Programmers

Page 11, Environment for the Firmware Routines: Refer to Apple IIGS Technical Note
#88, The Page One Stack in a 16-Bit World for more information on manipulating the stack
pointer.

Chapter 3: System Monitor Firmware

Page 24, Table 3-1 (continued), Monitor commands grouped by type: Add a
miscellaneous-type and a debugging-type Monitor command to the table, as follows:

Command type Command format
…
Quit Monitor Q
Install Visit Monitor and MemoryPeeker desk accessories #
…
Enter mini-assembler !
Set flags (e, m, x) for full-native mode Control-N

Page 43, Back to BASIC: The last paragraph should read: “If you are using DOS 3.3 or
ProDOS®, use the Monitor Q (Quit) command to return to the language you were using with
your program and variables intact.”

Apple II Technical Notes

Apple IIGS
2 of 7 #25: Apple IIGS Firmware Reference Updates

Page 48, Table 3-6, Commands for program execution and debugging: Add a Monitor
command to the table:

Command type Command format
…
Enter mini-assembler !
Set flags (e, m, x) for full-native mode Control-N

Page 66, after final paragraph: Add a new Monitor instruction heading and description:

Native Mode Set Control-N (Native Mode)

Control-N sets the m, x, e flags to 0 for full-native mode. All other registers are
unchanged.

Page 67, after final paragraph: Add a new Monitor instruction heading and description:

Turn on ROM Desk Accessories, #

Enables the currently available ROM desk accessories, Visit Monitor and Memory
Peeker. These desk accessories remain active in the desk accessory menu until power is
shut off. Control-Open Apple-Reset has no affect on these items. To exit the Visit
Monitor desk accessory, press Control-Y then press Return. To exit the Memory
Peeker desk accessory, press Q.

Chapter 4: Video Firmware

Page 77, Table 4-4, Control characters with 80-column firmware on: Change the actions
taken by Control-E and Control-F to read (they were reversed):

Control character Action taken by C3COUT1
Control-E Turns cursor on
Control-F Turns cursor off

Chapter 5: Serial-Port Firmware

Page 82, Compatibility: The second half of the third sentence in the first paragraph should
read: “…the Apple IIGS hardware is different from that used on the SSC.”

Page 91, Input buffering, BE and BD: This heading should be “Input/Output buffering, BE
and BD.”

Page 94, Table 5-6: The Extended Interface footnote which states, “If the function call returns
with the carry bit set...” is incorrect. For Apple IIGS ROM 01, the Extended Serial Interface
does not return the error condition in the carry bit. Programs using the Extended Serial
Interface should check for a non-zero result value in the result code rather than the carry bit to
determine if an error has occurred. For additional error handling information using the
Extended Interface, see Apple IIGS Technical Note #50, Extended Serial Interface Error
Handling.

Developer Technical Support May 1992

Apple IIGS
#25: Apple IIGS Firmware Reference Updates 3 of 7

Page 95, Error handling: The second sentence should read: “If the character has a framing
or parity error (assuming that the parity option is not set to None), the character is deleted from
the input stream and the appropriate mode bit is set.”

Page 96, Note: The Note should read: “The InQStatus elapsed-time counter functions
correctly only if a heartbeat interrupt task has been started. A heartbeat interrupt task is a set of
functions called by interrupt code that run automatically at one-thirtieth of a second intervals.

Page 96, Interrupt notification: The fourth sentence in the first paragraph should be: “The
system interrupt handler will transfer control to the user’s interrupt vector at $03FE in bank
$00.”

Page 97, Interrupt notification: The last three paragraphs should be replaced with this
paragraph: “The interrupt completion routine executes as part of the firmware interrupt
handler and must be run in that environment. The interrupt completion routine must preserve
the DBR, speed, 8-bit native mode, D register, stack pointer (or just use the current stack), and
MSLOT for proper operation. A/X/Y need not be preserved.”

Page 100, SetModeBits: The first sentence in the paragraph following the CMDLIST should
read: “Use this call to alter any of the mode bits whose function is described below.”

Page 105, GetIntInfo: The command list should read:

CMDLIST DFB $03 ;Parameter count
 DFB $0C ;Command code
 DW $00 ;result code (output)
 DW $00 ;interrupt setting (output)
 DL Completion address ;(output)

The following should be added after the command list: “Note: The Parameter count of $03 is
correct even though there are four parameters.”

The following should be added after the last paragraph: “Note: Before making this call from
an interrupt completion routine, you must set the operating environment to look and act exactly
like a 6502 in all respects. During interrupt completion routines, you must preserve the DBR,
speed, 8-bit native mode, D register, stack pointer (or just use the current stack), and MSLOT for
proper operation. A/X/Y need not be preserved. See “Environments for the Firmware
Routines” in chapter 2, Notes for Programmers for details about setting and restoring the
operating environment.

Page 106, SetIntInfo: The command list should read:

CMDLIST DFB $03 ;Parameter count
 DFB $0D ;Command code
 DW $00 ;result code (output)
 DW Interrupt setting ;(input)
 DL Completion address ;(input)

The following should be added after the command list, “Note: The Parameter count of $03 is
correct even though there are four parameters.”

Apple II Technical Notes

Apple IIGS
4 of 7 #25: Apple IIGS Firmware Reference Updates

Chapter 7: SmartPort Firmware

Page 120, Issuing a call to SmartPort: The standard and extended SmartPort call examples
should be:

This is an example of a standard SmartPort call:

SP_CALL JSR DISPATCH ;Call SmartPort command dispatcher
 DC i1'CMDNUM' ;This specifies the command type
 DC i2'CMDLIST' ;Word ptr to param list in bank $00
 BCS ERROR ;Carry is set on an error

This is an example of an extended SmartPort call:

SP_EXT_CALL JSR DISPATCH ;Call SmartPort command dispatcher
 DC i1'CMDNUM+$40' ;This specifies the ext cmd type
 DC i4'CMDLIST' ;Pointer to the parameter list
 BCS ERROR ;Carry is set on an error

Page 121, Generic SmartPort calls: Change occurrences of “Generic SmartPort Calls” to
“Standard and Extended SmartPort Calls” in the header and the first sentence. Refer to
SmartPort Technical Note #2, SmartPort Calls Updated, for updated information on the
SmartPort STATUS call.

Page 122, Statcode = $00: Change the function of bit 0 of the first device status byte to: “1 =
Device currently open (character devices only) or disk switched (block device only).”

Page 124: SmartPort device types should be same as those documented in SmartPort Technical
Note #4, SmartPort Device Types.

Page 125, SmartPort driver status: See SmartPort Technical Note #2, SmartPort Calls
Updated, for the correct format of the status list for unit 0, status code 0.

Vendors must request a Vendor ID Assignment from Developer Technical Support before
using a specific value in bytes two and three.

Page 125, Possible errors: Add the following:
$1F No interrupt. Interrupts not supported.
$2B No write. Disk write-protected.
$2F Offline. Disk off-line or no disk in drive.

Page 126, ReadBlock: Add a sentence at the end of the first paragraph which reads, “ O n
return, the X and Y registers indicate the number of bytes transferred.”

Page 131, Open: The following changes apply for the CMDNUM:

Standard callExtended call
CMDNUM $06 $46

Page 132, Read: Add a sentence at the end of the first paragraph which reads, “On return, the
X and Y registers indicate the number of bytes transferred.”

Developer Technical Support May 1992

Apple IIGS
#25: Apple IIGS Firmware Reference Updates 5 of 7

Page 140, Figure 7-8, Disk-sector format: Change to the following:

13
5-Nibble
SelfSync

Fields

1
5-Nibble
SelfSync

Field

699 GCR
Nibbles

A SelfSync Field is four 20us selfsync nibbles written as a sequence of five 16us nibbles.
F

F

D
5

A
A 96

T
ra

ck

Se
ct

or

Si
de

Fo
rm

at

A
dr

sL
R

C

D
E

A
A F
F

F
F

D
5

A
A

A
D

Se
ct

or

4
C

he
ck

su
m

D
E

A
A F
F

Page 140, ResetHook: The Control code and Control list should be:

Control Code Control list
$06 Count low byte $04

Count high byte $00
Hook reference number $xx, $00, $00, $00

Page 141, SetInterleave: The Control code and Control list should be:

Control Code Control list
$0A Count low byte $01

Count high byte $00
Interleave $01 to $0C

Page 143, UniDiskStat: The Status code and Status list should be:

Status Code Status list
$05 Byte $04

Soft error $00
Retries $xx
A register after execute $xx
Y register after execute $xx
P register after execute $xx
Byte $xx

Page 152, Passing parameters to a ROM disk: Add a sentence to the end of the second
paragraph which reads: “These locations will not be preserved between SmartPort calls.”

Page 156, Table 7-6, SmartPort error codes: Add the following error code:

Acc value Error type Description
$69 IOTERM I/O terminated due to new line

Page 166, Table 7-8, Standard command packet contents”:
Byte 3 descriptions should read “Byte 2 of param list.”
Byte 4 descriptions should read “Byte 3 of param list.”
Byte 5 descriptions should read “Byte 4 of param list.”
Byte 6 descriptions should read “Byte 5 of param list.”
Byte 7 descriptions should read “Byte 6 of param list.”
Byte 8 descriptions should read “Byte 7 of param list.”
Byte 9 descriptions should read “Byte 8 of param list.”

Chapter 8: Interrupt-Handler Firmware

Apple II Technical Notes

Apple IIGS
6 of 7 #25: Apple IIGS Firmware Reference Updates

Page 184, Serial-port interrupt notification: The last three paragraphs should be replaced
with this paragraph: “The interrupt completion routine executes as part of the firmware
interrupt handler and must be run in that environment. The interrupt completion routine must
preserve the DBR, speed, 8-bit native mode, D register, stack pointer (or just use the current
stack), and MSLOT for proper operation. A/X/Y need not be preserved.”

Chapter 9: Apple DeskTop Bus Microcontroller

Page 191, Sync, $07: The first sentence should read: “This command performs the three
preceding commands in sequence.”

Page 194, Receive Bytes, $48: The fourth sentence should read: “The second byte value is a
combination of the device address in the high nibble and the ADB command in the low nibble
(see the Apple IIGS Hardware Reference).”

Chapter 10: Mouse Firmware

Page 201: Mouse button positions should be changed as follows:

• X data byte
If bit 7 = 0, then mouse button 1 is down.
If bit 7 = 1, then mouse button 1 is up.

• Y data byte
If bit 7 = 0, then mouse button 0 is down.
If bit 7 = 1, then mouse button 0 is up.

Page 205, Figure 10-1, Position and status information:
Bit 7 description should be: “Currently, button 0 is up/down (0/1).”
Bit 6 description should be: “Previously, button 0 was up/down (0/1).”

Appendix B: Firmware ID Bytes

Page 223, Table B-2, Register bit information: Change the table to show that Bits 7-0 of
the Y register hold the ROM version number, and the X register is reserved. In addition, the
table description should read: “The Y register contains the machine ID and the ROM version
number. The X register is reserved.”

Page 249, COUT1: In the third sentence, change the value of line feed from $8C to $8A.

Page 277, RDALTZP: Change the comment to read: “Bit 7 = 1 if alt zp enabled.”

Developer Technical Support May 1992

Apple IIGS
#25: Apple IIGS Firmware Reference Updates 7 of 7

Appendix D: Vectors

Page 272: At the end of the introductory paragraph, add “The vectors TOWRITEBRAM through
TOPRINTMSG8 must be called in eight-bit native mode.”

See Apple IIGS Technical Note #102, Various Vectors, for more information about the
TOBRAMSETUP vector.

Further Reference:
• Apple IIGS Firmware Reference
• Apple IIGS Firmware Reference 1MB Apple IIGS Update
• Apple IIGS Technical Note #50, Extended Serial Interface Handling
• Apple IIGS Technical Note #102, Various Vectors
• SmartPort Technical Note #2, SmartPort Calls Updated

	11. Ensoniq DOC Swap-Mode Anomaly
	12. Tool Set Interdependencies
	13. ROM 1.0 Modem Firmware Bug
	14. Standard File Screwiness
	15. InstallFont & Big Fonts
	16. Notes on Background Printing
	17. Application Memory Management & MMStartUp User ID
	18. Do-It-Yourself SCC Access
	19. Multichannel Output with the Apple IIGS Note Synthesizer
	20. Catalog of APW Language Numbers
	21. DMA Compatibility for Expansion RAM
	22. Proper Use of Dynamic Segments
	23. Toolbox Use of DOC RAM
	24. Apple IIGS Toobox Reference Updates
	25. Apple IIGS Firmware Reference Updates

