
Apple IIGS

#36: Port Driver Specifications 1 of 7

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#36: Port Driver Specifications

Revised by: Matt Deatherage & Suki Lee September 1989
Written by: Dan Hitchens May 1988

This Technical Note describes how to write your own drivers for Apple IIGS ports.
Changed since January 1989: Added description of new port driver structure.

Introduction

A port driver handles certain hardware-specific duties for the Print Manager, such as initializing
firmware and handling low-level hardware handshaking protocols, if any are implemented. The
port driver structure, like the printer driver structure, insulates the Print Manager from low-level
details of printers and interface cards (or ports) so that the same calls work across various
hardware configurations, provided drivers are installed on the boot disk.

Note that a port driver could also easily be called a card driver; the term port is used because the
first ones written were for the internal ports of the Apple IIGS. A port driver could interface any
printer (for which there is a printer driver) with any kind of port or peripheral card that can
handle it. A familiar example would be a parallel printer interface card—a port driver for a
parallel card would enable the Print Manager to print graphics to any parallel printer connected
to it (provided, again, there was a printer driver for the particular printer installed).

In general, you need a port driver for each port or interface card through which you intend to
print, and a printer driver for each printer to which you intend to print. On System Disk 4.0,
Apple provides port driver files for the printer port (PRINTER), the modem port (MODEM), a
port connected to the AppleTalk network (APPLETALK), and a parallel printer interface card
(PARALLEL.CARD). Apple also provides printer drivers for the ImageWriter and ImageWriter
II (IMAGEWRITER), the ImageWriter LQ (IMAGEWRITER.LQ), the LaserWriter
family.(LASERWRITER), and an Epson (EPSON). With this configuration, you can print to
any of the printer types above through any of the ports, cards, or over AppleTalk. Other printer
drivers and port drivers would extend the user’s selection of available configurations.

Apple II Technical Notes

2 of 7 Developer Technical Support

What’s in a Port Driver

File Structure

Users can install new port drivers into the system by copying a port driver file into a subdirectory
called DRIVERS within the SYSTEM subdirectory or by running the Installer if the driver is
supplied with a script to install it. The port driver file must be of type $BB. There are two kinds
of port drivers: local drivers, intended to drive a printer connected locally, and network drivers,
which handle printers connected over an AppleTalk network. Local drivers have an auxiliary
type of $0002, and AppleTalk drivers (there should be only one) have an auxiliary type of $0003.

Port Driver Calls

A port driver must support the following calls:

PrDevPrChanged $1913
PrDevStartup $1A13
PrDevShutDown $1B13
PrDevOpen $1C13
PrDevRead $1D13
PrDevWrite $1E13
PrDevClose $1F13
PrDevStatus $2013
PrDevAsyncRead $2113 (alias PrDevInitBack)
PrDevWriteBackground $2213 (alias PrDevFillBack)
PrPortVer $2413
PrDevIsItSafe $3013

Note that a network port driver has much more work to do than a regular (local) port or card
driver. A local driver only has to worry about one printer, whereas a network port driver may
find that there is not even a printer available on a running network. The information on network
drivers is provided mostly for informational purposes; you should never find it necessary to write
your own AppleTalk port driver.

Entering and Exiting a Port Driver

Entering and exiting is the same as described for the printer driver calls in Apple IIGS Technical
Note #35, Printer Driver Specifications. The new driver structure described there applies as
well. As of this writing, there are no optional calls a port driver may support. The documented
list must be supported in its entirety.

September 1989

Apple IIGS

#36: Port Driver Specifications 3 of 7

PrDevPrChanged $1913

Description:
The Print Manager makes this call every time the user accepts this port driver in the Choose
Printer dialog.

Input: LONG printer name pointer

Direct Connect:
• Makes sure that this port has been set up correctly in the Control Panel (parity, baud rate,

etc.), and puts up an alert for the user if it has not been. Remember that if you change
settings, even at the user’s request, you should change the Battery RAM parameters as well,
so the setting changes will be reflected when the user enters the Control Panel.

Network:
• Copies the printer name to local storage for use in the NBPLookup function of the

AppleTalk PAPopen and PAPstatus calls, usually by placing it in the AppleTalk
parameter block. This function is similar to that performed by PrStartUp, except that
PrDevPrChanged is called whenever the printer is changed by the user with the Choose
Printer dialog.

PrDevStartUp $1A13

Description:
This call is not required to do anything. However, if your driver needs to initialize itself by
allocating memory or other setup tasks, this is the place to do it. Network drivers should
copy the printer name to a local storage area for later use.

Input: LONG printer name pointer
LONG zone name pointer

Direct Connect:
• Required to do nothing. This is a good place to do your own set-up tasks, if you have any.

Network:
• Copies the printer name and the zone name to local storage for use in the NBPLookup

function of the AppleTalk PAPopen and PAPstatus calls, usually by placing it in the
AppleTalk parameter block.

PrDevShutDown $1B13

Description:
This call, like PrDevStartUp, is not required to do anything. However, if your driver
performs other tasks when it starts, from the normal (allocating memory) to the obscure
(installing heartbeat tasks), it should undo them here. If you allocate anything when you

Apple II Technical Notes

4 of 7 Developer Technical Support

start, you should deallocate it when you shutdown. Note that this call may be made without a
balancing PrDevStartUp, so be prepared for this instance. For example, do not try to
blindly deallocate a handle that your PrDevStartUp routine allocates and stores in local
storage; if you have not called PrDevStartUp, there is no telling what will be in your local
storage area.

Input: none

PrDevOpen $1C13

Description:
This call basically prepares the firmware for printing. It must initialize the firmware for both
input and output. Input is required so the connected printer may be polled for its status.

A network driver has considerably more work to do, including the possibility of
asynchronous communications. Details are provided below.

Input: LONG completion routine pointer
LONG reserved long

Direct Connect:
• Initializes the firmware for input and output, preparing for reading from or writing to the

printer.
• If the completion pointer is NIL, then RTL. If it is not NIL, then perform a JSL to the

completion routine.

Network:
• Initializes the End-Of-Write parameter in the AppleTalk PAPWrite parameter block to

zero. Never call AppleTalk INIT to initialize the firmware.
• If the completion pointer is NIL, then prepares for synchronous communications. If it is not

NIL, prepares for asynchronous printing.
• Calls AppleTalk PAPopen to make connection, returning an error if one is returned to you.
• Stores the AppleTalk Session number in the PAPRead, PAPWrite and PAPClose

parameter blocks.
• Executes an RTL if there is no completion routine (pointer is NIL), otherwise perform a JSL

to the completion routine.

PrDevRead $1D13

Description:
This call reads input from the printer.

Input: WORD space for result
LONG buffer pointer
WORD number of bytes to transfer

September 1989

Apple IIGS

#36: Port Driver Specifications 5 of 7

Output: WORD number of bytes transferred

Direct Connect:
• Reads a specified number of bytes from the printer into the buffer.

Network:
• Calls AppleTalk PAPRead to read synchronously. Since there is no completion pointer,

reading from a network device must always be done synchronously. To read
asynchronously, use PrDevAsyncRead.

Apple II Technical Notes

6 of 7 Developer Technical Support

PrDevWrite $1E13

Description:
Writes the data in the buffer to the printer and calls the completion routine.

Input: LONG write completion pointer
LONG buffer pointer
WORD buffer length

Direct Connect:
• Writes the contents of the buffer to the printer.
• If the completion pointer is NIL , then RTL . If it is not, then perform a JSL to the

completion routine.

Network:
• If the completion pointer is NIL, then writing will occur synchronously. Otherwise, writing

will occur asynchronously.
• Calls AppleTalk PAPWrite to transfer the contents of the buffer.
• If the completion pointer is NIL, then RTL to the caller. Otherwise, perform a JSL to the

completion routine first, with the error code in the accumulator.

PrDevClose $1F13

Description:
This call is not required to do anything. However, if you allocate any system resources with
PrDevOpen, you should deallocate them at this time. As with start and shutdown, note that
PrDevClose could be called without a balancing PrDevOpen (the reverse is not true),
and you must be prepared for this if you try to deallocate resources which were never
allocated.

Input: none

Direct Connect:
• No required function.

Network:
• Sets End-Of-Write parameter in AppleTalk PAPWrite parameter block to one.
• Calls PAPWrite with no data.
• Calls PAPClose.

September 1989

Apple IIGS

#36: Port Driver Specifications 7 of 7

PrDevStatus $2013

Description:
This call performs differently for direct connect and network drivers. For direct connect
drivers, it currently has no required function, although it may return the status of the port in
the future. For network drivers, it calls an AppleTalk status routine, which returns a status
string in the buffer (normally a string like “Status: The print server is spooling your
document”).

Input: LONG status buffer pointer

Direct Connect:
• Does nothing.

Network:
• Calls AppleTalk PAPStatus.

PrDevAsyncRead $2113

Description:
Since PrDevRead cannot read asynchronously, this call is provided for that task. Note that
this does nothing for direct connect drivers, and if the completion pointer is NIL, it behaves
for network drivers exactly as PrDevRead does.

Input: WORD space for result
LONG completion pointer
WORD buffer length
LONG buffer pointer

Output: WORD number of bytes transferred
Direct Connect:
• Does nothing.

Network:
• If the completion pointer is NIL, then performs exactly as PrDevRead.
• Calls AppleTalk PAPRead; the actual length read is passed back in the PAPRead parameter

block.
• Perform a JSL to the completion routine, which returns the length read in the X register and

an EOF flag in the Y register. As usual, the accumulator contains the error code and the carry
is set if an error occurs.

• In the case of a synchronous call, it performs a JSL to the completion routine, which pushes
the length read onto the stack.

PrDevWriteBackground $2213

Apple II Technical Notes

8 of 7 Developer Technical Support

Description:
This routine is not implemented at this time.

Input: LONG completion procedure pointer
WORD buffer length
LONG buffer pointer

September 1989

Apple IIGS

#36: Port Driver Specifications 9 of 7

PrPortVer $2413

Description:
Returns the version number of the currently installed port driver.

Input: WORD space for result

Output: WORD Port driver’s version number

Direct Connect and Network:
• Gets the internal version number of the port driver and returns it on the stack.

Note:
The internal version number is stored as a major byte and a minor byte (i.e., $0103 represents
version 1.3)

PrDevIsItSafe $3013

Description:
This call checks to see if the port or card which your driver controls is enabled. It should
check at least the corresponding bit of $E0C02D, and checking the Battery RAM settings
wouldn’t hurt any either.

Input: WORD space for result

Output: WORD Boolean indicating if port is enabled

Direct Connect and Network:
• Checks the system to see if the hardware and/or firmware for the card or port this driver

controls is enabled, and returns TRUE if it is safe to proceed and FALSE if not. Note that for
a port driver that controls an interface card, this call should return FALSE if the card is
disabled and the port is enabled, while for a port driver which controls an Apple IIGS internal
port, the returned value should be TRUE if the port is enabled and FALSE if not.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 & 2
• Apple IIGS Technical Note #35, Printer Driver Specifications

Apple IIGS

#37: Free-Form Synthesizer Tips 1 of 3

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#37: Free-Form Synthesizer Tips

Revised by: Jim Mensch November 1988
Written by: Jim Mensch May 1988

This Technical Note is intended to help a person who is unfamiliar with the Apple IIGS Sound
Tool Set use the Free-Form Synthesizer effectively.

The primary function of the Free-Form Synthesizer is to allow an application program to start
one or more complex digitized or computed waveforms playing on the Apple IIGS without
further intervention from the application. The waveform is a series of bytes, each representing
the amplitude of your outgoing sound at a particular moment in time (defined by the sampling
frequency you set). After a call to FFStartSound, the Sound Tool Set takes care of all chores
involved in loading the DOC RAM, setting up registers, and actually playing your sound. Once
playing, your sound will continue until either the Sound Tool Set encounters a NIL pointer in the
waveform list, or until you call FFStopSound.

FFStartSound Parameters

FFStartSound has only two parameters: the first a Word containing channel, generator, and
mode information, and the second a Pointer to a parameter block.

12345678 0101112131415 9

DOC channel number ($0-$1)
top 3 bits should be set to 0

Generator number ($0-$E)

Reserved must be set to 0

Free-Form Synthesizer=$01
Note Synthesizer=$02

Reserved =$03-$07
Application defined = $08-$0F

Figure 1 – Channel-Generator-Mode Word

The Channel-Generator-Mode Word is broken down into 4 nibbles. The low-order nibble
specifies the particular synthesizer you are using. (Because this Note is only about the Free-

Apple II Technical Notes

2 of 3 Developer Technical Support

Form Synthesizer, we will be using only a 1 in this nibble.) The adjacent nibble must be set to 0
for now. The next nibble specifies which generator to use. The IIGS has 15 generators from
which to choose, and as the application designer, it is up to you to decide which one to use. It
might be appropriate, however, to call FFGeneratorStatus first to ensure that the generator
currently is available. (It could be in use already by a desk accessory or previously started
sound.) The high-order nibble specifies which channel to use. The IIGS supports two separate
sound channels for output. If you are using a stereo adapter, you could start up many sounds and
route them to either channel 0 or channel 1 to get a full stereo effect. (The channel is ignored if
you are not using a special piece of multi-channel hardware.)

The parameter block contains parameters describing the sound and how it should be played.
Here is a sample Pascal definition of that parameter block:

FFParmBlock = record
waveStart:Ptr;
waveSize:Integer;
freqOffset:Integer;
DOCBuffer:Integer; { High order byte significant }
bufferSize:Integer; { Low order byte significant }
nextWave:^FFParmBlock;
volSetting:Integer;

 end;

The first parameter is a 4-byte address telling the Free-Form Synthesizer where in memory it can
locate your sample data. The next parameter is a word specifying the number of 256-byte pages
of sound you wish to play. The waveform data should be a series of bytes, each representing one
sample. Wave tables must be exact multiples of 256 bytes.

Note: A zero value in the waveform can cause a sound to stop, so be sure to check your
data to ensure that this does not happen.

The frequency offset parameter specifies the sampling frequency that the Free-Form Synthesizer
should use during playback. This number can be computed by the following formula:

freqOffset = ((32*Sample rate in Hertz)/1645)

The frequency offset parameter is the most often misunderstood parameter, so I will explain a
little about sampling rates. The sampling rate is how many samples (bytes) per second to play.
If you have a digitized wave that represents 2 seconds of sound, and it takes up 44K of memory,
then it was sampled at 22 kHz (which, by the way, is good for full sound reproduction). The
sampling rate must be at least twice that of the maximum fundamental frequency you want to
sample. However, for good sound reproduction, you may want to sample at least eight times the
fundamental frequency in order to capture the higher harmonics of musical instruments and the
human voice.

The DOC starting address and buffer size tell the Free-Form Synthesizer which portion of the
64K sound RAM to use as a buffer during playback. The wave is taken from your waveform in
chunks and placed in sound RAM for playback. Each time the buffer nears empty, it will need to
be reloaded with more sound. The size of the buffer specified determines how often the Free-
Form Synthesizer must interrupt the 65816 to reload the buffer. The buffer size must be a power

November 1988

Apple IIGS

#37: Free-Form Synthesizer Tips 3 of 3

of two because of the way the sound General Logic Unit (GLU) specifies addresses. (The value
for this parameter must also be a power of two.) A good length to use would be at least 1/10
second of sound. For example, if you were using a sampling rate of 16 kHz (16,000 samples per
second), you would want a buffer at least 2,048 bytes long, or about 8 pages. It does not hurt to
round this number up. You manage the DOC RAM, so you should decide what memory to use.
It is usually a good idea to have multiple buffers if you have a chain of waves. (I like leaving
page zero free, as the Note Synthesizer uses the data in the first 256 bytes, and accidentally
placing a zero in that page could cause it to fail.)

The next wave pointer is a 4-byte pointer to the next parameter block. With this parameter you
can string together many waveforms for more continuous sound, or you can make your sounds
infinitely recursive by pointing back to the original wave form.

The volume setting is a word which represents the relative playback volume. It can range from 0
to 255.

Other Tips

When you shut down the Sound Tool Set, it will stop all pending sounds, so be sure to leave
ample time between starting and ending a sound. If you have a series of wave forms strung
together, you can change their parameters on the fly. Changes take effect as soon as the
waveform is started. (You could use this to find the correct sampling frequency of a wave, by
having the next wave pointer point back to the start of your parameter block. This would cause
the sound to play indefinitely. You then could change the freqOffset value, and the sound
would change each time it is restarted.)

Here is a sample code segment (in APW Assembler format) that creates a 1-kHz wave in
memory sampled at 16 kHz and plays it:

FFSound DATA

theSound ds $2000 ; FFSound wave...
MyFFRecord dc A4'theSound' ; address of wave

dc i'$20' ; size of wave in pages..
Rate dc i'311' ; 16-kHz sample rate

dc i'1' ; DOC starting address
dc i'$0800' ; DOC buffer size
dc a4'0' ; no next wave

Vol1 dc i'$007F' ; kinda medium..

; 1-kHz triangle wave sampled at 16 kHz one full segment
oneAngle dc i1'$40,$50,$60,$70,$80,$90,$A0,$B0'

dc i1'$C0,$B0,$A0,$90,$80,$70,$60,$50'
End

TestFF Start
Using FFSound

MakeWave ANop
ldx #$0000

MW0010 txa ; get index
and #$000F ; use just low nibble as index
tay ; into triangle wave table
lda oneAngle,y ;

Apple II Technical Notes

4 of 3 Developer Technical Support

sta theSound,X ; and store it into sound buf
inx
inx
cpx #$2000 ; we Done?
blt MW0010 ; nope better finish
PushWord #$0001
PushLong #MyFFRecord
_FFStartSound
rts
end

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#38: List Controls in Dialog Boxes 1 of 5

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#38: List Controls in Dialog Boxes

Revised by: C.K. Haun September 1990
Written by: Keith Rollin, Dave Lyons & Eric Soldan May 1988

This Technical Note describes how to include a list control into a dialog box. Sample APW C
source code is included.
Changes since March 1990: Changed input parameter definition for myFilterProc from
long pointer to word pointer.

The need to put a list control into a dialog box is obvious. The Print Manager does it. The Font
Manager does it. You may want to use one in your own application to manage a list of data base
fields or spreadsheet functions. However, performing the task is not as obvious as the need.

Given the features of TaskMaster in System Software 5.0, it is now much easier to emulate a
modal dialog in a normal window. If you need to add a list control to a modal dialog, you should
seriously consider emulating a modal dialog with a normal window instead of using the Dialog
Manager. If you use the Dialog Manager, the following procedure and sample C fragment
illustrate the technique necessary for adding a list control.

Note that only one list control is allowed in a modal dialog. If you need more than one, the
Dialog Manager cannot help you—create a normal window instead.

Individual Steps

Basically, there are three check-off items for putting a list control into a dialog box:

1. You must install the list explicitly into the dialog box yourself. This should be
done after you have created the dialog box with a call to NewModalDialog or
GetNewModalDialog. Do not install it as a UserItem or UserCtlItem.
Installing it as a UserItem would cause the Dialog Manager to place an
invisible custom control over the list, preventing later use of FindControl to
manage it. Installing the list as a UserCtlItem does not allow the list control
to be properly initialized.

Note: After you add the list control, you must not add any more dialog items.

 InitValues()

Apple II Technical Notes

Apple IIGS

2 of 5 #38: List Controls in Dialog Boxes

 {
 /* Get a Full Screen, invisible dialog window with only
 a Quit button in it*/
 myDialog = GetNewModalDialog(&PrintDialog);

Developer Technical Support September 1990

Apple IIGS

#38: List Controls in Dialog Boxes 3 of 5

 /* Add this List Control ourselves */
 myListHndl = CreateList(myDialog,&myList);

 /* Get the handle for the Scrollbar Control */
 listScrollHandle = (**myListHndl).ctlListBar;

 /* Save and Zero out the RefCons */
 listRefCons = GetCtlRefCon(myListHndl);
 scrollRefCons = GetCtlRefCon(listScrollHandle);
 ZeroRefCons(); /* This is explained below in item #3 */

 /* Now show the dialog box */
 ShowWindow(myDialog);
 }

2. Because the list control is not a dialog item, a custom FilterProc must be
installed for ModalDialog to test for mouse-down events. Pass the address of
this routine (with the high bit set so that default handling of items is in effect)
when you call ModalDialog.

 pascal Word myFilterProc(theDialog, theEvent, theItem)
 GrafPortPtr theDialog;
 EventRecord *theEvent;
 word *theItem;

 {
 CtlRecHndl tHandle;

 if ((*theEvent).what == mouseDownEvt) {
 FindControl(&tHandle,(*theEvent).where,theDialog);
 if ((tHandle == myListHndl) || (tHandle == listScrollHandle)) {

 /* Set the RefCons back to the way the list manager likes them */
 RestoreRefCons();
 TrackControl((*theEvent).where,(LongProcPtr) -1, tHandle);
 ZeroRefCons();

 /* Tell the Dialog Manager that we handled this event */
 return(true);
 }
 }
 /* We didn't do anything, so return false to get Dialog Manager
 to handle this event */
 return(false);
 }

3. The Dialog Manager uses the RefCon field of its items (all of which are installed
as controls). Unfortunately, the List Manager also uses the RefCon field for its
own purposes. This shared use means that a judicious juggling of those values is
required. This juggling is the reason for the two routines RestoreRefCons
and ZeroRefCons used above.

 /* Zero out the RefCons for the Dialog Manager */
 ZeroRefCons()
 {
 SetCtlRefCon(0,myListHndl);
 SetCtlRefCon(0,listScrollHandle);
 }

Apple II Technical Notes

Apple IIGS

4 of 5 #38: List Controls in Dialog Boxes

 /* Restore the RefCons for the List Manager */
 RestoreRefCons()
 {
 SetCtlRefCon(listRefCons,myListHndl);
 SetCtlRefCon(scrollRefCons,listScrollHandle);
 }

Note: Because the Dialog Manager currently uses the RefCon to keep track of which
dialog item is identified with which particular control, zeroing the RefCon fields
can cause a little confusion. Specifically, those who would like to do
GetFirstDItem from within a Standard File call may get a zeroed RefCon as
a result. This is true for Standard File 3.0 and later (System Software 5.0), as this
is the first implementation of Standard File to use the List Manager.

Putting It All Together

Here are most of the pieces put together. InitTools and ShutDownStuff routines have
been omitted, but they are straightforward.

char **y,*z;
GrafPortPtr myDialog;
ListCtlRecHndl myListHndl;
CtlRecHndl listScrollHandle;
long listRefCons, scrollRefCons;

#define Quit ok

char quitStr[] = "\pQuit";

ItemTemplate quitButton = {
 Quit,
 140,450,154,590,
 buttonItem,
 quitStr,
 0,
 0,
 NULL};

DialogTemplate PrintDialog = {
 30,20,190,620,
 false,
 0,
 &quitButton,
 NULL};

char string1[] = "String1";
char string2[] = "String2";
char string3[] = "String3";
char string4[] = "String4";
char string5[] = "String5";
char string6[] = "String6";
char string7[] = "String7";
char string8[] = "String8";

Developer Technical Support September 1990

Apple IIGS

#38: List Controls in Dialog Boxes 5 of 5

MemRec myMembers[8] = {
 string1, 00,
 string2, 00,
 string3, 00,
 string4, 00,
 string5, 00,
 string6, 00,
 string7, 00,
 string8, 00};

ListRec myList = {
 40,175,102,400, /* Enclosing Rectangle */
 8, /* Number of List Members */
 6, /* Max Viewable members */
 3, /* Bit Flag */
 1, /* First member in view */
 NULL, /* List control's handle */
 NULL, /* Address of Custom drawing routine */
 10, /* Height of list members */
 5, /* Size of Member Records */
 (MemRecPtr)myMembers,/* Pointer to first element in MemRec[] */
 NULL, /* Becomes Control's refCon */
 NULL /* Color table for list's scroll bar */
 };

/* ************************** */

main()
{
 word what;

 InitTools(); /* initialize tools */
 InitValues(); /* Get dialog box. Install List control */
 do {
 what = ModalDialog((WordProcPtr)((long)myFilterProc | 0x80000000));
 } while (what != Quit);
 ShutDownStuff();
}

pascal Word myFilterProc(theDialog, theEvent, theItem)
 GrafPortPtr theDialog;
 EventRecord *theEvent;
 word *theItem;

{
 CtlRecHndl tHandle;

 if ((*theEvent).what == mouseDownEvt) {
 FindControl(&tHandle,(*theEvent).where,theDialog);
 if ((tHandle == myListHndl) || (tHandle == listScrollHandle)) {

 /* Set the RefCons back to the way the list manager likes them */
 RestoreRefCons();
 TrackControl((*theEvent).where,(LongProcPtr) -1, tHandle);
 ZeroRefCons();

 /* Tell the Dialog Manager that we handled this event */
 return(true);
 }
 }
 /* We didn't do anything, so return false to get Dialog Manager
 to handle this event */
 return(false);
}

Apple II Technical Notes

Apple IIGS

6 of 5 #38: List Controls in Dialog Boxes

/* Zero out the Refcons for the Dialog Manager */
ZeroRefCons()
{
 SetCtlRefCon(0,myListHndl);
 SetCtlRefCon(0,listScrollHandle);
}

/* Restore the Refcons for the List Manager */
RestoreRefCons()
{
 SetCtlRefCon(listRefCons,myListHndl);
 SetCtlRefCon(scrollRefCons,listScrollHandle);
}

InitValues()
{
 /* Get a Full Screen, invisible dialog window with only a Quit button in it*/
 myDialog = GetNewModalDialog(&PrintDialog);

 /* Add this List Control ourselves */
 myListHndl = CreateList(myDialog,&myList);

 /* Get the handle for the Scrollbar Control */
 listScrollHandle = (**myListHndl).ctlListBar;

 /* Save and Zero out the RefCons */
 listRefCons = GetCtlRefCon(myListHndl);
 scrollRefCons = GetCtlRefCon(listScrollHandle);
 ZeroRefCons();

 /* Now show the dialog box */
 ShowWindow(myDialog);
}

Apple IIGS

#39: Mega II Video Counters 1 of 2

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#39: Mega II Video Counters

Revised by: Dave Lyons July 1989
Written by: J. Rickard May 1988

This Technical Note describes the Mega II video output registers, which your applications can
use to get information about where the beam is located on the Apple IIGS display.
Changes since November 1988: Corrected description of when VBL begins and simplified
example code to read the scan line number.

The Mega II controls video timing for the Apple IIGS with a 16-bit counter split into a 7-bit
horizontal and a 9-bit vertical part (Figure 1). The counter outputs are made available to
programs running on the machine through two addresses in the I/O space, $C02E for the vertical
count and $C02F for the horizontal count. These outputs can be used by a program for finer
control over display update timing.

V5 V4 V3 V2 V1 V0 VC VB VA HPE H5 H4 H3 H2 H1 H0

Vertical Counter Horizontal Counter

$E0C02E $E0C02F

Figure 1 – Mega II Video Counter

You can see that one bit of the nine-bit vertical counter is in location $E0C02F with the seven
bits of the horizontal counter. Keep this location in mind when reading the counters.

The seven-bit horizontal counter starts at $00 and counts from $40 to $7F (the sequence is $00,
$40, $41,…,$7E, $7F, $00, $40,…). The active video time consists of 40 one µsec clock cycles
starting with $58 and ending with $7F. Since this count changes at 980 nanosecond intervals, it
will probably be of little use to most programs.

The nine-bit vertical counter ranges from $FA through $1FF (250 through 511) in NTSC mode
(vertical line count of 262) and from $C8 through $1FF (200 through 511) in PAL video timing
mode (vertical line count of 312). Vertical counter value $100 corresponds to scan line zero in
NTSC mode. The vertical count changes at 63.7 µsec intervals, giving a program time to

Apple II Technical Notes

Apple IIGS

2 of 2 #39: Mega II Video Counters

respond to a specific count before it changes. The vertical counter byte, at $E0C02E, only
changes half as often (at 127 µsec intervals) since the lowest bit of the nine-bit counter is
actually stored in the next byte (at $E0C02F).

The nine-bit counter consists of bits VA, VB, VC, V0, V1, V2, V3, V4 and V5. Bits V0 through
V5 can be read as a six-bit value. If this value is between 0 and 23, it is the line on the text
screen currently being updated. Other values indicate the vertical blanking cycle is occurring.
Bits VA through VC can be read as a three-bit value (0-7) indicating which scan line of a text
character (characters are composed of eight lines) is currently being drawn.

The vertical counter can also be used to determine which scan line (0-191 for most video modes,
including high-resolution and double high-resolution, and 0–199 for super high-resolution) is
being updated at any given moment.

Example

Suppose you want to repaint a portion of the super high-resolution screen that will require more
time than the vertical blanking period allows. You will have a tear in your animation when the
screen’s refresh cycle catches up with your drawing.

One solution to this problem would be locating the approximate place the tear occurs and starting
your drawing when the system is scanning that line of graphics. Let’s say you are painting an
area that is about (for example) 100 pixels wide and 200 pixels tall in 320 mode, and that the tear
will occur somewhere around scan line 80. To avoid the tear, you would wait until the system is
scanning line 80, then you would start redrawing at the top of the screen. This way, you should
be finished drawing when the system is back to scanning line 80 again and you will have flicker-
free screen updating.

The tricky part is trying to determine just when the system is scanning any given scan line. One
way to determine this is to examine the Mega II video counter registers at $E0C02E (vertical)
and $E0C02F (horizontal), described above. By using some simple arithmetic you can come up
with the exact scan line being updated. The following piece of code computes the current scan
line number (assuming eight-bit native mode):

lda >$E0C02F
asl A ;VA is now in the Carry flag
lda >$E0C02E
rol A ;roll Carry into bit 0

The result (in A) is the low byte of the vertical counter. This value is 0 for the first scan line, 1
for the second scan line, etc. Values $FA to $FF are used twice, since you ignore the high byte
of the vertical counter. (The six scan lines immediately above scan line 0 are numbered $0FA to
$0FF, and the six above those are $1FA to $1FF.) The example code leaves the highest bit of the
vertical counter in the Carry flag, if you really want it.

Note that the VBL interrupts always trigger at scan line 192, even in Super Hi-Res display mode,
and that the $C019 soft switch indicates vertical blanking is in effect starting at scan line 192.
Be careful polling for a specific scan line number—if interrupts are enabled, it is conceivable

Developer Technical Support July 1989

Apple IIGS

#39: Mega II Video Counters 3 of 2

that the system will be busy processing an interrupt every time that scan line is being scanned, so
your program will hang forever waiting for it.

Setting a scan line interrupt is another way to determine when a particular super high-resolution
scan line is being drawn. However, you must be careful in turning scan line interrupts on and off
so that you do not interfere with the cursor in QuickDraw II (which uses scan line interrupts).

Further Reference
• Apple IIGS Toolbox Reference, Volume 2
• Apple IIGS Technical Note #40, VBL Signal

Apple IIGS

#40: VBL Signal 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#40: VBL Signal

Revised by: Dave Lyons July 1989
Written by: Rob Moore & Rilla Reynolds May 1988

This Technical Note discusses reading the VBL signal to accomplish smooth animation.
Changes since November 1988: Noted that vertical blanking does not begin when you might
expect on the Apple IIGS and removed references to the Apple IIc.

Applications can accomplish smooth animation on the Apple IIGS and Apple IIe by changing the
data on the screen during the time the system is tracing the unusable area of the display. This
time is called “vertical blanking” or “VBL” in this Note. You can determine the state of the
VBL signal by reading location $C019.

On the Apple IIGS, the $C019 sense of the VBL signal differs from the IIe. On the IIGS, the
screen is blanked when the most significant bit of $C019 is high (greater than 127 or $7F), while
on the IIe, the screen is blanked when the bit is low (less than 128 or $80).

A VBL interrupt also is available on Apple II systems via the Apple IIGS Miscellaneous Tool Set
or mouse firmware, the Apple IIe mouse card, and the Apple IIc mouse firmware.

On the Apple IIGS, vertical blanking begins at scan line 192 regardless of the display mode.
When the Super Hi-Res display is visible, vertical blanking begins eight scan lines before the
bottom of the display area. If the VBL interrupt is enabled, it triggers at scan line 192.

Further Reference
• Apple IIGS Technical Note #39, Mega II Video Counters

Apple IIGS

#41: Font Family Numbers 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#41: Font Family Numbers

Revised by: Matt Deatherage & Keith Rollin November 1990
Written by: Rilla Reynolds & Jeff Erickson May 1988

This Technical Note lists fonts and font family numbers as well as considerations when printing
to a LaserWriter printer and a word of caution about using font family numbers.
Changes since November 1988: Added information about the font family numbering
convention used by those who assign font family numbers.

The following table lists fonts and their corresponding font family numbers. All family numbers
are listed in decimal format except the first three.

ID Family Name ID Family Name
$FFFD Chicago 12 Los Angeles
$FFFE Shaston 13 Zapf Dingbats®†
$FFFF (no font) 14 Bookman®†

0 System Font 15 Helvetica Narrow†
1 System Font 16 Palatino®†
2 New York 18 Zapf Chancery®†
3 Geneva 20 Times®†
4 Monaco 21 Helvetica®†
5 Venice 22 Courier†
6 London 23 Symbol†
7 Athens 24 Taliesin
8 San Francisco 33 Avant Garde®†
9 Toronto 34 New Century Schoolbook†

11 Cairo

Fonts denoted with a cross (†) are resident in the ROM on the LaserWriter Plus, IINT and IINTX

printers. The name of Times on these printers is actually Times-Roman. The decimal font
family ID for Shaston (a modified Helvetica) is 65534 (–2), not 65524 as documented in the Font
Manager chapter of the Apple IIGS Toolbox Reference.

When printing to a LaserWriter printer with the font substitution option turned on, the system
substitutes Times, Helvetica, and Courier for the screen fonts New York, Geneva, and Monaco
respectively.

Apple II Technical Notes

Apple IIGS

2 of 2 #41: Font Family Numbers

Prior to System Software 3.2, all non-LaserWriter fonts (except New York, Geneva, and
Shaston) were converted to Courier when printing. With System Software 3.2 and later, the
LaserWriter driver prints bitmap versions of the screen fonts if they are non-LaserWriter fonts
unless it is driving an original LaserWriter printer. In this case, fonts which are in ROM on later
LaserWriter printers are converted to Courier unless you download a PostScript® version of the
font prior to printing. This difference is a limitation of the current LaserWriter driver and it
occurs even if the font substitution option is turned off. With System Software 5.0 and later, the
LaserWriter driver uses fonts previously downloaded, although it does not download PostScript
fonts itself.

Font Family Number Conventions

By convention, font family numbers that have the high bit set are designed for the 5:12 aspect
ratio of the Apple IIGS computer. Font family numbers with the high bit clear are designed for
computers with a 1:1 pixel aspect ratio, such as the Macintosh. Fonts designed for a 1:1 pixel
aspect ratio appear “tall and skinny” when displayed on an Apple IIGS.

Some third-party font packages were released before this convention was defined; therefore, font
family numbers between 1000 and 1200 (decimal) do not adhere to this convention.

Caution

Font family numbers can be arbitrary numbers which the system assigns to fonts. We
recommend that you always ask for a font by name (with the Font Manager call GetFamNum),
then use the returned family number as input to those calls which require it. (On the Macintosh,
the Font/DA Mover checks to see if a font family number is already in use by the system when it
installs fonts. If it finds that a number is already in use, it changes the current font number to an
unused number. If you move a font from the Macintosh to the IIGS, the font family number is
likely to be arbitrary, as is the font family number of any user-created fonts.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• Apple IIGS Technical Note #67, LaserWriter Font Mapping

PostScript is a registered trademark of Adobe Systems, Incorporated.
Helvetica, Palatino, and Times are registered trademarks of Linotype AG.
ITC Avant Garde, ITC Bookman, ITC Zapf Chancery, and ITC Zapf Dingbats are registered
trademarks of International Typeface Corporation.

Apple IIGS

#42: Custom Windows 1 of 15

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#42: Custom Windows

Written by: Dan Oliver & Keith Rollin November 1988

This Technical Note describes custom windows which are now supported with Window Manager
version 2.2. This Note supersedes all prior documentation on custom windows.

With Window Manager version 2.2 or later, which is available on Apple IIGS System Disk 3.2
and later, you may now define your own type of window or window shape, such as a round or
hexagonal window. You also may define a window which performs tasks that would normally
be handled by an application.

To define your own type of window, a custom window, you must write a routine that performs
some window functions. This routine is a window definition procedure (defProc), and in this
case it is a custom window defProc. When the Window Manager needs to do something
window specific, it calls your defProc.

The window defProc is a good part of the Window Manager, and writing one is not an easy
task. A window defProc must perform complicated tasks that are very dependent on the state
of the machine, and it must be very careful not to disturb the state of the machine. One of the
problems in writing a defProc is knowing when it can do something and when it cannot. It is
almost impossible to document all of the combinations of calls that you can or cannot make from
one part or another of the defProc, and even if all cases were found, the resulting document
would read like something from an obscure government bureau and probably be even harder to
understand.

Now that you know writing a defProc is tough, here’s how to make things as easy as possible.
Try to understand how the system interacts with the defProc and work with the system. For
example, a defProc is called to hit test window parts when the user presses the mouse button.
The Window Manager will pass that part back to the defProc to perform drawing while the
Window Manager is tracking the pressed button. The defProc could keep control when asked
to hit test and perform the tracking itself, but since this is not how the system is designed to
work, your defProc will be hard to write, may not ever work correctly, and may break in
future versions of the Window Manager. Try to stay on the path outlined in this Technical Note.
Also understand that the interface to definition procedures is as general as possible to allow them
to perform tasks which are as yet unknown. To allow for this future growth, the outlined path is
not always a clear path.

Apple II Technical Notes

2 of 15 Developer Technical Support

Another way to make things easier is to write conservative code. Do not assume things like the
data bank being set to something nice when the defProc is called or the caller restoring the
direct page pointer upon return if you have changed it. Use caution. A defProc can be very
difficult to debug because it is not very linear and can be called when you least expect.

Interaction Between the Window Manager and TaskMaster

The Window Manager and TaskMaster actually do much less than many people think since
window definition procedures perform most of the tasks. The definition procedures handle such
things as title bars, information bars, and scroll bars, while the Window Manager and
TaskMaster support these things by passing requests to the defProc in standard ways. The
Window Manager knows that windows have some shape, overlap, may contain parts, may be
invisible, and are created and deleted, but it does not know much else. TaskMaster knows to
call GetNextEvent and performs some tasks, but much of what many people consider
TaskMaster is contained in the standard document window defProc. In addition to the list
mentioned above, the defProc handles calling TrackGoAway and scrolling the content. The
remainder of this Note describes what is expected of a defProc and when.

Telling the Window Manager About Your Window

You tell the Window Manager about your custom window when NewWindow creates it. Instead
of passing the parameter list defined in NewWindow, you pass a pointer to a custom window
parameter list. A custom window parameter list is defined as follows:

paramID WORD ID of parameter list, zero for custom.
newDefProc LONG Address of your custom defProc.
newData BYTE[n] Additional data defined by your defProc.

NewWindow checks the paramID field and calls your defProc with the pointer to the
parameter list. See the wNew operation under Calling the Custom DefProc for more information.

Once NewWindow creates the window, the Window Manager will always know that it is defined
by your defProc.

Calling the Custom defProc

A window defProc is called with the following items on the stack:

November 1988

Apple IIGS

#42: Custom Windows 3 of 15

param

WORD - operation number to be performed.

LONG - pointer to window's record.

LONG - pointer to additional parameter defined by each operation.

BYTE[3] - long return address.

windGlobals LONG - pointer to Window Globals (defined below).

Stack Pointer

1

4

8

12

14

RTL address

OperationCode

theWindow

result LONG - result returned to Window Manager, defined by each operation.16

Figure 1 – Stack Prior to Calling a Window defProc

The defProc must return with the carry flag clear if there was no error or with the carry flag set
and the y register set with an error code if there was an error.

Window globals (windGlobals) is a pointer to a table of variables which the Window
Manager maintains for use by the defProc. The table is defined as follows:

lineW WORD Width of vertical lines (size depends on video mode).
titleHeight WORD Height of a standard title bar.
titleYPos WORD Y offset for the title (in system font) to center in a standard title bar.
closeHeight WORD Height of the close box icon.
closeWidth WORD Width of the close box icon.
defWindClr LONG Pointer to the default window color table.
windIconFont LONG Handle of the current window icon font.
screenMode WORD TRUE if 640 mode, FALSE if 320 mode.
pattern BYTE[32] Temporary pattern buffer.
callerDpage WORD Direct page pointer of the last caller to TaskMaster.
callerDataB WORD Data bank of the last caller to TaskMaster (bank in both bytes).

Operation numbers are as follows (each operation is described later in its own section):

wDraw 0 Draw the window’s frame.
wHit 1 Tell in what region the mouse button was pressed.
wCalcRgns 2 Calculate wStrucRgn and wContRgn.
wNew 3 Complete the creation of a window.
wDispose 4 Complete the disposal of a window.
wGetDrag 5 Return address that will draw the outline of the window while dragging.
wGrowFrame 6 Draw the outline of a window being resized.
wRecSize 7 Return size of the additional space needed in the window record.
wPosition 8 Return RECT that is the window’s portRect.
wBehind 9 Return where the window should be placed in the window list.
wCallDefProc 10 Generic call to a defProc, defined by the defProc.

wDraw, Operation 0

The wDraw operation draws the window’s frame and is only called for visible windows. This
operation draws in local coordinates in the current GrafPort, which is the Window Manager’s
GrafPort. When the drawing is finished, the only states of the GrafPort that may have
changed are the pen pattern, the fill pattern, and the pen size, as all other states must be the same
as when the defProc was called. This means that if you change the font to print some text, you

Apple II Technical Notes

4 of 15 Developer Technical Support

must save and restore the original font. For the pen, PenNormal will restore the pen to an
acceptable state.

Param is defined as follows:

Bit 31 1 to highlight the indicated part, 0 to unhighlight.
Bits 0-30 The part to draw (either highlighted or unhighlighted):

0 Draw the window’s entire frame, including any frame controls and
the items listed below. Note that you should check the window’s
fHilited flag to determine how to draw the frame.

1 Draw the go-away region.
2 Draw the zoom region.
3 Draw the information bar.

Result returned must be zero and the carry flag must be clear.

The Window Manager will draw the content.

November 1988

Apple IIGS

#42: Custom Windows 5 of 15

Need to Redraw Your Window?

If your custom window defProc gets called to change some item in its window record (see
wCallDefProc below), you may want to redraw your window. For instance, if your
application makes a SetWTitle call, you would want to draw the name of the new title on the
screen.

The routine wCallDefProc can call the wDraw routine to do this drawing. However, it
should bracket the calls to wDraw with two Window Manager calls that save and restore some
internal variables:

StartFrameDrawing $5A0E
PUSH:LONG Pointer to the window record (not the GrafPort)

This call does the setup for drawing a window frame and is only called by a window definition
procedure before drawing the frame. You should call EndFrameDrawing when finished
drawing.

EndFrameDrawing $5B0E
No input or output

This call restores the Window Manager variables after a call to StartFrameDrawing and is only
called by a window definition procedure after drawing a window frame.

wHit, Operation 1

The wHit operation is called to hit test the window’s frame. Given a set of screen coordinates,
this operation should return what part, if any, of the window is at that coordinate. This operation
is only called for visible windows. The current port will be that of the Window Manager and the
window frame will be in local coordinates.

Param is defined as:

Bits 0-15 Vertical (Y) coordinate in local coordinates.
Bits 16-31 Horizontal (X) coordinate in local coordinates.

Result returned must be one of the following values and the carry flag must be clear:

wNoHit 0 Not on the window at all.
wInDrag 20 Coordinates are in the window’s drag region (title bar).
wInGrow 21 Coordinates are in the window’s grow region (size box).
wInGoAway 22 Coordinates are in the window’s go-away region (close box).
wInZoom 23 Coordinates are in the window’s zoom region (zoom box).
wInInfo 24 Coordinates are in the window’s information bar.
wInFrame 27 Coordinates are in the window, but not in any of the other areas.

Apple II Technical Notes

6 of 15 Developer Technical Support

xx Any code the application can handle (bit 15 is reserved for
theWindow Manager)

November 1988

Apple IIGS

#42: Custom Windows 7 of 15

wCalcRgns, Operation 2

The wCalcRgns operation, which is called only for visible windows, is used to calculate the
window’s entire region (frame plus content called StrucRgn) and just its content region (called
ContRgn). Both regions must be set to global coordinates, and both will already be allocated
with their handles stored in the window record’s wStrucRgn and wContRgn fields.

Use the portRect and the boundsRect of the window’s GrafPort to calculate these two
regions. The port will have been set from the information passed to NewWindow along with any
size changes. A method for obtaining the global RECT of the content is given below. Refer to
the QuickDraw II chapter in the Apple IIGS Toolbox Reference for a full description of ports.
When calculating the regions, do not change the clip region (ClipRgn) or the visible region
(VisRgn) of the GrafPort.

Param is not defined and should not be used.

Result returned must be zero and the carry flag must be clear.

IN: window = pointer to window record.
OUT: rect = global RECT of window’s content.

ldy #wPort+portRect+y1
lda [<window],y
ldy #wPort+portInfo+boundsRect+y1
sec
sbc [<window],y
sta <rect+y1

;
ldy #wPort+portRect+x1
lda [<window],y
ldy #wPort+portInfo+boundsRect+x1
sec
sbc [<window],y
sta <rect+x1

;
ldy #wPort+portRect+y2
lda [<window],y
ldy #wPort+portInfo+boundsRect+y1
sec
sbc [<window],y
sta <rect+y2

;
ldy #wPort+portRect+x2
lda [<window],y
ldy #wPort+portInfo+boundsRect+x1
sec
sbc [<window],y
sta <rect+x2

Although there are other ways to obtain the global RECT of the content, this example gives the
correct method. You should never rely on the top and left side of the portRect being zero.

Apple II Technical Notes

8 of 15 Developer Technical Support

wNew, Operation 3

The wNew operation is called to perform any additional initialization that may be required for a
custom window. The following items are already done for the window:

• If a window record is supposed to be allocated, it is. All fields, other than those fields listed
below, are set to zero

• A port opens in the window record’s wPort field.
• The window is added to the Window Manager’s window list, and the wNext field is set.
• The wDefProc, wStrucRgn, wContRgn and wUpdate regions are set with the handles

of the allocated regions. It is the responsibility of the defProc to define the shape of the
wStrucRgn and wContRgn regions.

• The fAllocated and fHilited bits in the wFrame field of the window record are set
(see the window record definition for a definition of these bits) and should not be disturbed;
all other bits in wFrame are set to zero. The defProc should set the fCtlTie, fVis and
fQContent bits, and it can set and use other bits in the wFrame field as it wishes.

• It is the responsibility of the defProc to set the wRefCon, wContDraw, and
wFrameCtls fields, the bits already mentioned in the wFrame field, and any other fields
which it defines in the wCustom part of the window record.

Param is a pointer to the parameter list pointer which was passed to NewWindow.

Result returned must be zero and the carry flag must be clear.

wDispose, Operation 4

The wDispose operation is called to perform any additional disposal that may be required of a
custom window. This operation is called before the Window Manager performs any disposal
actions on the window.

Param is not defined and should not be used.

Result should be FALSE to continue disposal or TRUE to abort the disposal. In either case,
the carry flag should be clear. Returning TRUE would be very unusual and should be carefully
thought out. After returning FALSE, the Window Manager will erase the window, remove the
window from the Window Manager’s window list, free any controls in the window’s
wControls and wFrameCtl lists, free the handles in the wStrucRgn, wContRgn and
wUpdateRgn fields, close the window’s GrafPort, and free its record if it is allocated (see
the wFrame field).

wGetDrag, Operation 5

The wGetDrag operation is called to get the address of a routine that will draw an outline of the
window.

November 1988

Apple IIGS

#42: Custom Windows 9 of 15

Param is not defined and should not be used.

Result returned must be the address of a frame outline routine or zero for a default frame; the
default frame is the bounds RECT of the strucRgn. The frame outline routine is called from
DragRect with dragRectPtr set to the bounds RECT of the strucRgn. Your routine is
called with the following parameters:

PUSH:WORD - delta X
PUSH:WORD - delta Y
PUSH:BYTE[3] - return address

Your routine should draw or erase the outline of the object in its new position using the passed
deltas. You have several different methods of determining whether to erase or draw and how to
compute the position of the object, the easiest method being to draw the outline using XOR mode.
The first time your routine is called, you draw. The next time your routine is called, you erase.
Your routine should draw in the current port. The current pen pattern will be the pattern pointed
to by dragPatternPtr from DragRect and the pen mode is XOR.

You also need to know where to draw the outline. One way is to offset the starting RECT
(dragRectPtr) by the given deltas. You should make a copy of the bounds RECT of the
strucRgn when wGetDrag is called. Modify that rectangle with the deltas to obtain the
rectangle to frame.

wGrowFrame, Operation 6

The wGrowFrame operation is called to draw an outline of the window when the window is
being resized.

This operation should use the current port, pen pattern, and pen mode. The frame should be
drawn with only the following QuickDraw II calls: Line, LineTo, FrameRect, FrameRgn,
FramePoly, FrameOval, FrameRRect, and FrameArc (the Invert equivalents to Frame
could also be used). You want to use the current GrafPort setting with only certain
QuickDraw II calls since this routine will be called an even number of times; the first time it is
called to draw the frame and the next time to erase that which it drew the first time. If it needs to
use QuickDraw II calls other than those listed above, this operation handler could keep track of
odd and even calls to know whether to draw or erase the frame.

Param is a pointer to the following parameter list:

newSize RECT Rectangle that defines the new size.
drawFlag WORD TRUE to draw the frame, FALSE to erase.
startRect RECT Bounds of wStrucRgn when dragging started.
deltaY WORD Vertical movement since starting to drag (signed).
deltaX WORD Horizontal movement since starting to drag (signed).

Result should be:

Apple II Technical Notes

10 of 15 Developer Technical Support

TRUE if frame drawn, FALSE to draw default frame.

TRUE if newSize RECT has been recomputed, FALSE if newSize RECT OK.

30 29 6 5 4 3 2 1 031

The Window Manager assumes that the frame of the grow outline is the same as the bounds of
the window’s wStrucRgn. This RECT is stored in the startRect of the parameter list and
does not change through out the dragging. The next assumption is that the window grows from
the lower right corner. As the cursor moves, the lower right corner of the RECT in newSize
changes. However, if these assumptions are not correct for a custom window they can be
overridden by changing the RECT in newSize (by using startRect or the window’s record
and the deltas) and returning TRUE for bit 1 in Result. The carry flag should return clear.

wRecSize, Operation 7

The wRecSize operation is called to ask how large a window record should be allocated.

Note: The window pointer passed in theWindow is not valid for this call.

Param is the parameter list pointer that is passed to NewWindow.

Result is the number of additional bytes required in the window record. The standard window
record header will always be allocated.

Example:

If your custom window needs a one word field in the window record for your own use you would
return 2 in Result. The Window Manager takes Result and adds to it the size of the
standard record header of 212 bytes and allocates a window record that is 214 bytes long in this
case. Your one word field is at the end of the standard window record header with an offset of
212 bytes.

If there is some error, return the carry flag set with an error code in the y register, which will
cause NewWindow to abort and return the error code to the application which called it. If there
is no error, return the carry flag clear.

Window Record Already Allocated?

If the window record is already allocated then Result should be the pointer to the window
record with bit 31 of the pointer set to TRUE. Generally, window records are allocated (refer to
Window Record Definition at the end of this Note for more information about window records).

wPosition, Operation 8

Param is the parameter list pointer that is passed to NewWindow.

November 1988

Apple IIGS

#42: Custom Windows 11 of 15

Result is a pointer to the RECT that will be the window’s portRect, and you should return
the carry flag clear.

wBehind, Operation 9

Param is the parameter list pointer that is passed to NewWindow.

Result is where the window should be placed in the window list. A long $FFFFFFFF means
insert the window as the top window while a long $00000000 means to insert it as the bottom
window. Any other value is a pointer to the window behind which this window should be
placed. You should return the carry flag clear.

Apple II Technical Notes

12 of 15 Developer Technical Support

wCallDefProc, Operation 10

WCallDefProc is a generic call to the defProc that is defined by the defProc. With this
call a window defProc can define many special functions.

The input to the defProc is:

param = pointer to the following parameter table:

dRequest WORD Requested operation number.
paramID WORD Parameter block type:

$0000-$7FFF reserved by system ($0000 defined below).
$8000-$FFFF reserved for custom defProcs.

newParam BYTE[n] New parameter field used by some operations.

The paramID field defines dRequest, which in turn defines newParam and the result of the
wCallDefProc call. You can think of dRequest as the operation number passed to the
defProc. Here is an example of how the paramID defines dRequest: if paramID is zero,
dRequest 3 is defined as wSetPage (defined below); but if paramID is $8345 (or any
number other than zero), dRequest 3 could be defined as something entirely different.

The following dRequest values are defined for wCallDefProc operations with a paramID
of zero. Your defProc should check for handling only these codes. In the future, codes 34 and
greater may be defined, and your defProc should know not to handle them.

wSetOrgMask 0 wGetInfoDraw 17
wSetMaxGrow 1 wGetOrigin 18
wSetScroll 2 wGetDataSize 19
wSetPage 3 wGetZoomRect 20
wSetInfoRefCon 4 wGetTitle 21
wSetInfoDraw 5 wGetColorTable 22
wSetOrigin 6 wGetFrameFlag 23
wSetDataSize 7 wGetInfoRect 24
wSetZoomRect 8 wGetDrawInfo 25
wSetTitle 9 wGetStartInfoDraw 26
wSetColorTable 10 wGetEndInfoDraw 27
wSetFrameFlag 11 wZoomWindow 28
wGetOrgMask 12 wStartDrawing 29
wGetMaxGrow 13 wStartMove 30
wGetScroll 14 wStartGrow 31
wGetPage 15 wNewSize 32
wGetInfoRefCon 16 wTask 33

wSetOrgMask 0
newParam = WORD - window’s origin mask.
result = None.

Called when SetOriginMask is called.

wSetMaxGrow 1

November 1988

Apple IIGS

#42: Custom Windows 13 of 15

newParam = WORD - maximum window height.
WORD - maximum window width.

result = None.

Called when SetMaxGrow is called.

wSetScroll 2
newParam = WORD - number of pixels to scroll when arrow is

selected.
result = None.

Called when SetScroll is called.

wSetPage 3
newParam = WORD - pixels to scroll when page region is selected.
result = None.

Called when SetPage is called.

wSetInfoRefCon 4
newParam = LONG - value passed to info bar draw routine

(app’s use only).
result = None.

Called when SetInfoRefCon is called.

wSetInfoDraw 5
newParam = LONG - address of info bar draw routine.
result = None.

Called when SetInfoDraw is called.

wSetOrigin 6
newParam = WORD - flag, TRUE to scroll content.

WORD - window’s Y origin.
WORD - window’s X origin.

result = None.

Called when SetContentOrigin is called.

wSetDataSize 7
newParam = WORD - height of window’s data area.

WORD - width of window’s data area.
result = None.

Called when SetDataSize is called.

wSetZoomRect 8
newParam = LONG - pointer to new zoom RECT.
result = None.

Called when SetZoomRect is called.

wSetTitle 9

Apple II Technical Notes

14 of 15 Developer Technical Support

newParam = LONG - pointer to new title.
result = None.

Called when SetWTitle is called.

November 1988

Apple IIGS

#42: Custom Windows 15 of 15

wSetColorTable 10
newParam = LONG - pointer to new color table.
result = None.

Called when SetFrameColor is called.

wSetFrameFlag 11
newParam = LONG - pointer to new zoom RECT.
result = None.

Called when SetWFrame is called.

wGetOrgMask 12
newParam = None.
result = WORD - window’s origin mask.

wGetMaxGrow 13
newParam = None.
result = Low word is window’s maximum height when grown.

High word is window’s maximum width when grown.

Called when GetMaxGrow is called.

wGetScroll 14
newParam = None.
result = Low word is number of pixels to scroll when arrow is selected.

Called when GetScroll is called.

wGetPage 15
newParam = None.
result = Low word is pixels to scroll when page region is selected.

Called when GetPage is called.

wGetInfoRefCon 16
newParam = None.
result = Value passed to info bar draw routine.

Called when GetInfoRefCon is called.

wGetInfoDraw 17
newParam = None.
result = Address of info bar draw routine.

Called when GetInfoDraw is called.

wGetOrigin 18
newParam = None.
result = Low word is content’s Y origin.

High word is content’s X origin.

Called when GetContentOrigin is called.

Apple II Technical Notes

16 of 15 Developer Technical Support

November 1988

Apple IIGS

#42: Custom Windows 17 of 15

wGetDataSize 19
newParam = None.
result = Low word is window’s data height.

High word is window’s data width.

Called when GetDataSize is called.

wGetZoomRect 20
newParam = None
result = Pointer to window’s current zoom RECT.

Called when GetZoomRect is called.

wGetTitle 21
newParam = None
result = Pointer to window’s title.

Called when SetWTitle is called.

wGetColorTable 22
newParam = None.
result = Pointer to window’s color table.

Called when SetFrameColor is called.

wGetFrameFlag 23
newParam = None.
result = Low word is window’s wFrame field.

Called when SetWFrame is called.

wGetInfoRect 24
newParam = LONG - pointer to place to store info bar’s enclosing RECT.
result = None.

Called when GetRectInfo is called.

wGetDrawInfo 25
newParam = None.
result = None.

Called when DrawInfoBar is called.

wGetStartInfoDraw 26
newParam = LONG - pointer to place to store info bar’s enclosing

RECT.
result = None.

Called when StartInfoDrawing is called.

wGetEndInfoDraw 27
newParam = None.
result = None.

Apple II Technical Notes

18 of 15 Developer Technical Support

Called when EndInfoDrawing is called.

November 1988

Apple IIGS

#42: Custom Windows 19 of 15

wZoomWindow 28
newParam = None.
result = None.

Called when ZoomWindow is called.

wStartDrawing 29
newParam = None.
result = None.

Called when StartDrawing is called.

wStartMove 30
newParam = WORD - new y position (global).

WORD - x position (global).
result = Low word is new y position (global).

High word is x position (global).

Called before MoveWindow moves a window.

wStartGrow 31
newParam = None.
result = None.

Called before GrowWindow tracks the growing of a window.

wNewSize 32
newParam = LONG - pointer to:

WORD - proposed new height.
WORD - proposed new width.
These two values can be changed.

result = Low word TRUE if only uncovered content should be drawn.
FALSE if entire content should be redrawn.

Called by SizeWindow before it resizes a window. The new height and width can be
changed by modifying the words pointed to by the pointer in newParam.

wTask 33
newParam = LONG - pointer to task record.

WORD - result from FindWindow.
result = Low word is code returned by TaskMaster (zero if handled).

High word is task performed. Returned in TaskData if code is 0.

Called from TaskMaster when it cannot handle a task. If the user presses the mouse
button over a window, TaskMaster will call FindWindow to find out what part of the
window. TaskMaster will then handle the task if FindWindow returns
wInMenuBar or bit 15 of the window pointer is set (system window). Otherwise, the
result of FindWindow is passed to wTask to be handled or not.

If the defProc can handle the task it should do so and return zero in the low word of the
result (which will be the result to the application returned from TaskMaster) and a
code of the task performed in the high word of the result (which is returned to the
application in its task record TaskData field). Fields in the task record may also be

Apple II Technical Notes

20 of 15 Developer Technical Support

modified to return parameters to the application as this is the same record passed to
TaskMaster.

If the defProc cannot handle the task, it should return the result from FindWindow
(the second field in newParam) in the low word of the result. The high word of the
result is not used.

For example, the standard document window defProc handles the following results
from FindWindow if the taskMask record allows.

wInContent Brings the window to the top.
wInDrag Calls DragWindow.
wInGrow Brings the window to the top. If it is already on the top, it calls

GrowWindow and SizeWindow.
wInGoAway Calls TrackGoAway.
wInZoom Calls TrackZoom and ZoomWindow.
wInInfo Brings the window to the top.
wInFrame Brings the window to the top. If it is already on the top, checks if

it is on one of the window’s scroll bars, tracks it, and scrolls the
window’s content as needed.

A custom window defProc can return any code (bit 15 is used for system windows) it
wants when it is called to do a hit test. This code would be that returned by
FindWindow, and the application would have to know about the code if it called
FindWindow instead of TaskMaster. If TaskMaster is used, the code that
FindWindow returns is passed back to your defProc with a wCallDefProc and
wTask. The defProc could perform any task it wanted: change colors, eject a disk,
run a spelling checker, or anything else.

Window Record Definition

November 1988

Apple IIGS

#42: Custom Windows 21 of 15

wNext LONG - Pointer to next window record, zero is end of list.

182

4

178

174

0

wPort BYTE[170] - Window's grafPort.

LONG - Address of window's definition procedure.

LONG - Reserved for application's use.

LONG - Address of routine that will draw window's content.

186

LONG - Handle of window's structure region.

202

198

194

190

LONG - Handle of window's content region.

LONG - Handle of window's update region.

wCtls LONG - Handle of first control in window's content.

LONG - Handle of first control in window's frame.206

210 WORD - Flags that define window.

LONG - Reserved by Window Manager, do not use.

wCustom BYTE[n] - Additional data space defined by window's defProc.

wFrame

wFrameCtls

wUpdateRgn

wDefProc

wRefCon

wContDraw

wStrucRgn

wContRgn

212

wReserved

The changes use some vacant space under the window port and add the wReserved field to the
record for future expansion.

In addition to defining the window record, the wFrame field needs to be further defined. In the
diagram below the shaded bits are reserved for use by each window defProc (the values shown
are those used by the standard document window defProc). Bits not shaded are reserved by
the Window Manager and are applicable to all windows.

0123456789101112131415

wFrame

F_HILITED
F_ZOOMED
F_ALLOCATED
F_CTL_TIE
F_INFO
F_VIS
F_QCONTENT
F_MOVE
F_ZOOM
F_FLEX
F_GROW
F_BSCRL
F_RSCRL
F_ALERT
F_CLOSE
F_TITLE

Further Reference
• Apple IIGS Toolbox Reference, Volume 1
• System Disk 4.0 Release Notes

Apple II Technical Notes

22 of 15 Developer Technical Support

Apple IIGS

#43: Undocumented Feature of CalcMenuSize 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#43: Undocumented Feature of CalcMenuSize

Revised by: Matt Deatherage March 1991
Written by: Dan Oliver November 1988

This Technical Note documents that CalcMenuSize can accept a parameter of $FFFF to
recalculate menus with uninitialized heights and widths.
Changes since November 1988: This Note is now obsolete.

This Note formerly described how CalcMenuSize behaves when menu widths and heights are
stored as $0000 or $FFFF. This behavior is now documented in Volume 3 of the Apple IIGS

Toolbox Reference on page 37-3.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3

Apple IIGS

#44: GetPenState and SetPenState Record Error 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#44: GetPenState and SetPenState Record Error

Revised by: Matt Deatherage March 1991
Written by: Keith Rollin November 1988

This Technical Note corrects an error in the record used for GetPenState and
SetPenState.
Changes since November 1988: This note is now obsolete.

This Note formerly described an error in the pen state record in Volume 1 of the Apple IIGS

Toolbox Reference. This error is corrected on page 43-2 of Volume 3 of the Toolbox Reference.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3

Apple IIGS

#45: Parameters for GetFrameColor 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#45: Parameters for GetFrameColor

Revised by: Matt Deatherage September 1989
Written by: Dan Oliver November 1988

This Technical Note formerly attempted to correct the description of the parameters passed to
and returned from the routine GetFrameColor in the Window Manager chapter of the Apple
IIGS Toolbox Reference. This call works as documented since System Software 3.2; therefore,
former versions of this Note were incorrect.
Changes since November 1988: Corrected our error. Sorry for any inconvenience.

This Note formerly stated the following: “The Apple IIGS Toolbox Reference, Volume 2
incorrectly describes the parameters passed to and returned from GetFrameColor on page
25–57.”

However, this is incorrect. Beginning with System Software 3.2, GetFrameColor works as
documented in the Apple IIGS Toolbox Reference, Volume 2. Prior to System Software 3.2, the
call did not work at all. We apologize for any inconvenience this confusion may have caused.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#46: DrawPicture Data Format 1 of 4

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#46: DrawPicture Data Format

Written by: Jeff Erickson & Keith Rollin November 1988

This Technical Note describes the internal format of the QuickDraw II picture data structure.

This Technical Note presents the internal format of the QuickDraw II picture data structure for
informational purposes only. You should not use this information to write your own bottleneck
procedures; the only routines which should create and read PICT format files are those provided
in QuickDraw II. If we added new objects to the picture definition, your program would not
operate on new pictures. This Note documents this information for debugging purposes only.

Picture Data Structure Definition

Pictures are stored in memory in the following format:

They begin with a WORD which indicates the mode of the port which was used to record when
the picture was created. This information is useful when the picture is played back, possibly in a
different graphics mode.

Following the WORD is a RECT which indicates the frame of the picture and is used for scaling
when you redraw the picture. Following the RECT is the version number of this PICT format,
then a series of word-sized opcodes which describe the sequences of QuickDraw II commands
that were used to create the picture.

Name Description Size (bytes)
pictSCB picture’s scan line control byte 2 (high byte = 0)
picFrame picture’s boundary rectangle 8
version picture version 2 (Currently $8211)
opcode operation code 2
<data> operation data variable, depending on opcode
:
opcode operation code 2
<data> operation data variable, depending on opcode

Opcodes

Apple II Technical Notes

2 of 4 Developer Technical Support

As mentioned above, pictures are described by a series of opcodes which are used to record the
QuickDraw II commands that created the picture. These opcodes are two bytes long and are
usually followed by a number of parameters.

All currently defined opcodes and their parameters are listed below. Any opcodes not listed here
are reserved.

Opcode Name Description Parm Bytes Parameter Description
$0000 NOP no operation 0 none
$0001 ClipRgn clip to a region [region size] region
$0002 BkPat background pattern 32 background pattern (8x8

pixels)
$0003 TxFont text font 4 Font Manager font ID (long)
$0004 TxFace text face 2 text face (word)
$0005 TxMode text mode 2 text mode (word)
$0006 SpExtra space extra 4 space extra (fixed)
$0007 PnSize pen size 4 pen size (point)
$0008 PnMode pen mode 2 pen mode (word)
$0009 PnPat pen pattern 32 pen pattern (8x8 pixels)
$000A FillPat fill pattern 32 fill pattern (8x8 pixels)
$000B OvSize oval size 4 oval size (point)
$000C Origin origin 4 origin (point)
$000D TxSize text size 2 text size (word)
$000E FGColor foreground color 2 color (word)
$000F BGColor background color 2 color (word)
$XX11 Version version 0 none: high byte = version

(currently $82)
$0012 ChExtra character extra 4 char. extra (fixed)
$0013 PnMask pen mask 8 mask (8 bytes)
$0014 ArcRot arc rot 2 Reserved (related to things

drawn w/patterns). (word)
$0015 FontFlags font flags 2 font flags (word)
$0020 Line line 8 pnLoc (point), newPt

(point)
$0021 LineFrom line from pen loc. 4 newPt (point)
$0022 ShortLine short line 6 pnLoc (point), dv, dh

(signed bytes)
$0023 ShortLFrom ditto from pen loc 2 dv, dh (signed bytes)
$0028 LongText long text 5+text txLoc (point), count

(byte), text
$0029 DHText hor. offset text 2+text dh (unsigned byte), count

(byte), text
$002A DVText vert. offset text 2+text dv (unsigned byte), count

(byte), text
$002B DHDVText offset text 3+text dv, dh (unsigned bytes),

count (byte), text

November 1988

Apple IIGS

#46: DrawPicture Data Format 3 of 4

$002C RealLongText very long text 6+text txLoc (point), count
(word), text

Opcodes between $0030 and $008C are a combination of a graphic verb and a graphic object, as
listed below (where “V” stands for the graphic verb, and “X” is a stands for the graphic object).
For example, $0069 means PaintSameArc, and is followed by two one-word parameters.

Apple II Technical Notes

4 of 4 Developer Technical Support

Graphic Verbs:

$00X0 Frame… frame something [Specific to object type: see below.]
$00X1 Paint… paint something
$00X2 Erase… erase something
$00X3 Invert… invert something
$00X4 Fill… fill something
$00XV+8 …Same… draw same thing somehow [See below; underlined parms do not

appear.]

Graphic Objects:

$003V …Rect draw a rectangle somehow 8 (0 if – SameRect) rect (2 points)
$004V …RRect draw a round rect somehow 8 (0) rect (2 points)
$005V …Oval draw an oval somehow 8 (0) rect (2 points)
$006V …Arc draw an arc somehow 12 (4) rect (2 points), start, arc angle

(words)
$007V …Poly draw a polygon somehow [polygon size] (0) polygon
$008V …Rgn draw a region somehow [region size] (0) region

$0090 BitsRect copybits, rect clipped variable† (see below, but without
maskRgn)

$0091 BitsRgn copybits, rgn clipped variable† (see below)
$00A1 LongComment long comment 4+data kind (word), size (word), data

†Bits… data:

origSCB original scan line control byte 2 SCB (word — high byte = 0)
BWvsColor black and white vs. color 2 reserved (word)
width width of pixel image in bytes 2 width (word)
boundsRect bounds rectangle 8 rect (2 points)
srcRect source rectangle 8 rect (2 points)
destRect destination rectangle 8 rect (2 points)
mode transfer mode 2 pen mode (word)
maskRgn mask region (BitsRgn ONLY!) [region size] region
pixData pixel image [pixdata size] width*(bounds.bottom-

bounds.top)

Differences Between IIGS Pictures and Macintosh Pictures

1. QuickDraw II pictures are modeled after PICT2 on the Macintosh, which use two
bytes for its opcodes and data (the exception to this is the $11 (version) opcode,
which is followed by a one-byte parameter). Macintosh PICT 1.0 formats, which
use one-byte opcodes, would have to undergo extensive modifications to be
displayed on the IIGS.

November 1988

Apple IIGS

#46: DrawPicture Data Format 5 of 4

2. There is no EndOfPicture opcode on the IIGS as there is on the Macintosh.
Also, the first word of the picture is a pictSCB, not the length of the picture.
The picture size is determined solely by the size of the handle on the IIGS. There
is also no picture header on the IIGS as on the Macintosh.

3. The number sex of the Macintosh is opposite that of the Apple IIGS. The
Macintosh stores the high bytes of words and long words first, whereas the IIGS

stores the low byte first.
4. The following Macintosh picture opcodes are not available on the IIGS:

txRatio , PackBitsRect , PackBitsRgn , shortComment ,
EndOfPicture.

5. QuickDraw II defines the following opcodes that the Macintosh does not:
ChExtra ($12), PnMask ($13), ArcRot ($14), FontFlags ($15), and
RealLongText ($2C).

Notes on the Interpretation of IIGS Pictures

• The state of the pen, the clip region, various patterns and colors, and the origin of
the current port is saved before a picture is drawn, and restored afterwards. The
current port is set up in a default state equivalent to that of a newly created port
just before drawing begins. Picture opcodes act just like their QuickDraw II tool
counterparts, with a few exceptions.

• Two pen locations are tracked as the picture is drawn, one for lines and one for
text. Thus, LineFrom always draws from the end of the last line, regardless of
any intermediate text opcodes.

• Text calls do not change the position of the “text pen,” as do normal QuickDraw
II text calls. Thus, if a picture contains two lines of text, the second one directly
below the first, the second will be stored using a DVtext opcode.

• DrawPicture performs considerable setup before it draws pictures. Among
other things, it calls InstallFont, which is a Font Manager call. If you are
going to support pictures in your application, you should load and start the Font
Manager.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#47: What SetDataSize Does 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#47: What SetDataSize Does

Written by: Keith Rollin November 1988

This Technical Note clears up any ambiguity in the description of the SetDataSize call.

The Apple IIGS supports windows that contain scroll bars in their frames. These scroll bars are
handled by TaskMaster and differ from Macintosh scroll bars in that the size of the “thumb”
or “elevator” is used to indicate the size of the visible area of the document in relation to the total
size of the document (the “data size”). Initially, the visible size and the data size are defined by
the parameter list passed to NewWindow; however, either of these can be changed by
SizeWindow and SetDataSize, respectively.

SetDataSize is used to not only change the range of scrolling allowed, but also to redraw the
size of the thumb to reflect the fact that the data size has changed with respect to the visible area.
However, page 25-97 of the Apple IIGS Toolbox Reference contains the following description of
SetDataSize:

“Sets the height and width of the data area of a specified window. Setting these
values will not change the scroll bars or generate update events.”

When the manual states that SetDataSize “will not change the scroll bars,” it is referring to
the location, or value, of the thumb. Assume a situation where you have a word processor that
scrolls the page using TaskMaster scroll bars. If you delete a range of text, you would also
shorten the entire size of the document. Calling SetDataSize to reflect that would indeed
change the size of the thumb, but it would not change its location. If you were already scrolled
to the bottom of the document when you called SetDataSize, the thumb would become larger
(to reflect the fact the the total data size became smaller with respect to the visible data size) and
overwrite the down arrow of the scroll bar. To prevent this situation from occurring, you should
also change the origin of the window with SetContentOrigin before calling
SetDataSize.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#48: All About AlertWindow 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#48: All About AlertWindow

Revised by: Matt Deatherage & Dave Lyons November 1990
Written by: Dan Oliver & Keith Rollin November 1988

This Technical Note formerly documented the features and behavior of AlertWindow.
Changes since July 1989: The information on AlertWindow formerly found in this Note has
been updated and is now included in the Apple IIGS Toolbox Reference, Volume 3.

The information on AlertWindow formerly found in this Note has been updated and is now
included in the Apple IIGS Toolbox Reference, Volume 3. This Window Manager call was first
introduced in System Software 3.2.

Apple IIGS

#49: Rebooting (Really) 1 of 3

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#49: Rebooting (Really)

Revised by: Matt Deatherage January 1989
Written by: Matt Deatherage & Jim Merritt November 1988

This Technical Note discusses rebooting the Apple IIGS from software.
Changed since November 1988: Corrected two assembly-language instructions in the
FROMNATV routine in the example code.

In days gone by, many Apple II applications had a Quit menu option. Unfortunately, a large
number of these simply rebooted the machine. Today, this is far from desirable. Even with the
advantages of GS/OS-reduced booting time (around 34 seconds with an Apple 3.5 Drive),
waiting for the operating system to reload, as well as wiping out any ongoing tasks by desk
accessories (such as an alarm clock) makes the standard ProDOS 8 or GS/OS QUIT call much
more attractive.

However, there are still instances where an application may wish to require the user to reboot. A
common example might be a game. The game might use GS/OS in a completely standard way,
but if you QUIT from the program GS/OS booted into, you will be returned to the same program.
Since most applications will boot into the Finder, this is not a widespread problem. However,
the Finder must also provide the reboot option, and alternate program selector applications may
wish to provide this functionality as well.

The Easy Way

GS/OS provides a mechanism for rebooting with the OSShutdown call. This call, documented
in GS/OS Reference, Volume 1, will either reboot the system (after first shutting down all loaded
and generated drivers and closing all open sessions) or will shut down everything and present a
dialog box which states, “You may now power down your Apple IIGS safely.” A Restart button
is provided which allows the user to reboot without pressing Control-Open Apple-Reset .

Note: When using System Disk 4.0, if the Window Manager is active when you issue
the OSShutdown call, there must be at least one open window; it need not be
visible, but it must be open. This will be fixed in the next revision of GS/OS.

The OSShutdown call also provides a way to resize the internal RAM disk (named /RAM5 by
default). Most programs have absolutely no need to use this mechanism, and should avoid it
whenever possible. A notable exception would be a third-party RAM disk utility which uses a

Apple II Technical Notes

2 of 3 Developer Technical Support

battery backup, which may need to make changes which require resizing the RAM disk. Of
course, such a utility should ask the user to ensure that erasing the RAM disk content is
acceptable. Resizing the RAM disk is only possible when using the OSShutdown call; any
other method you may be using to accomplish this function from software will break in the
future.

January 1989

Apple IIGS

#49: Rebooting (Really) 3 of 3

If you are using GS/OS, you should always use OSShutdown. You must not reboot the system
in any other fashion. The OSShutdown mechanism provides a convenient and supported way
to restart or shut down the system. Doing it another way can easily cause a loss of data.

The Hard Way

Programs not using GS/OS have a little more work to do. The supported non-GS/OS method of
rebooting is similar to the method used on 8-bit machines: change the value of POWERUP
($00/03F4) and do a long jump to RESET ($FA62). However, there are a few catches:

1. The jump must be made in emulation mode.
2. Interrupts must be disabled.
3. The data bank register must be set to zero.
4. The direct page must be zero.
5. ROM firmware must be visible in the memory map.
6. Internal interrupt sources (such as the ones for AppleTalk) must be shut down.

Simply disabling interrupts without shutting down AppleTalk interrupt sources inside the system
will cause the system to hang when the jump to RESET is made. Turning off these internal
interrupt sources is accomplished by changing softswitch values at $C039 (SCCAREG), $C041
(INTEN), and $C047 (CLRVBLINT).

The following code example demonstrates the correct method:

POWRUP equ $0003F4 ;the power-up byte in bank zero
STATEREG equ $C068 ;ROM/RAM state register
CLRVBLINT equ $C047 ;clear VBL interrupt flags register
INTEN equ $C041 ;interrupt enable register
SCCAREG equ $C039 ;SCC register
RESET equ $00FA62 ;ROM reset entry point
;
FROMNATV anop ;enter here from native mode

sei ;disable interrupts
pea 0
pea 0 ;push four zero bytes on the stack
plb ;pull data bank register
plb ;(twice to balance the stack)
pld ;pull 16-bit data bank register
sec
xce ;go into emulation mode
longa off
longi off

FROMEMUL anop ;enter here from emulation mode
sei ;disable interrupts for people entering here
dec POWRUP ;invalidate the power up byte
lda #$0C ;ROM parameters
sta STATEREG ;swap in the ROM and everything else out
stz CLRVBLINT ;clear VBL interrupts
stz INTEN ;turn off internal interrupt sources
lda #$09
sta SCCAREG ;shut down SCC interrupt sources
lda #$C0
sta SCCAREG
jml RESET ;and off we go into the wild blue yonder

Apple II Technical Notes

4 of 3 Developer Technical Support

January 1989

Apple IIGS

#49: Rebooting (Really) 5 of 3

These methods of restarting the system are presented for those applications that absolutely must
do so. Rebooting is not a suggested way of ending an application and the techniques described
in this Note should be used with extreme caution.

Further Reference
• Apple IIGS Firmware Reference
• GS/OS Reference, Volume 1

	36. Port Driver Specifications
	37. Free-Form Synthesizer Tips
	38. List Controls in Dialog Boxes
	39. Mega II Video Counters
	40. VBL Signal
	41. Font Family Numbers
	42. Custom Windows
	43. Undocumented Feature of CalcMenuSize
	44. GetPenState & SetPenState Record Error
	45. Parameters for GetFrameColor
	46. DrawPicture Data Format
	47. What SetDataSize Does
	48. All About AlertWindow
	49. Rebooting (Really)

