
Apple IIGS

#50: Extended Serial Interface Error Handling 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#50: Extended Serial Interface Error Handling

Written by: Dan Strnad January 1989

This Technical Note discusses error reporting by the Extended Serial Interface.

For Apple IIGS ROM 01, the Extended Serial Interface does not return the error condition in the
carry bit. Programs using the Extended Serial Interface should check for a non-zero result value
in the result code rather than the carry bit to determine if an error has occurred. The following
eight-bit APW code demonstrates this error checking using the SetDTR command. The
SetDTR routine zeros the result bytes if no error has occurred.

LONGA OFF ;PREPARE ASSEMBLER FOR EMULATION MODE
LONGI OFF
65C02 ON
KEEP SETDTR2
START

SLOT EQU $01
SEC ;SET EMULATION MODE
XCE
JMP BEGIN

CMDLST DC H'03' ;PARAMETER COUNT
DC H'0B' ;SETDTR COMMAND CODE

RESLT DC I'0' ;RESULT CODE (OUTPUT)
DTRSTAT DC I'0' ;BIT 7 IS STATE OF DTR (INPUT)
BEGIN LDA #SLOT ;COMPUTE $CN VALUE TO BE USED

ORA #$C0
STA OFFSET+2 ;MODIFY INSTRUCTIONS LOADING OFFSETS
STA XOFFSET+2
STA ICALL+2 ;MODIFY INSTRUCTIONS CALLING FIRMWARE
STA XCALL+2

IOFFSET LDA $C00D ;THIS INSTRUCTION MODIFIED AT RUNTIME
STA ICALL+1 ;MODIFY JSR TO INIT

XOFFSET LDA $C012 ;THIS INSTRUCTION MODIFIED AT RUNTIME
STA XCALL+1 ;MODIFY JSR TO EXTENDED SERIAL INTERFACE

ICALL JSR $C000 ;THIS INSTRUCTION MODIFIED AT RUNTIME
LDA #<CMDLST ;LOW BYTE OF COMMAND LIST
LDX #>CMDLST ;HIGH BYTE OF COMMAND LIST
LDY #0 ;24-BIT ADDRESS NOT USED BY 8-BIT PROGRAM

XCALL JSR $C000 ;THIS INSTRUCTION MODIFIED AT RUNTIME
LDA RESLT ;DID AN ERROR OCCUR?
BNE ERROR ;YES- HANDLE THE ERROR
...

ERROR
...
END

Apple IIGS
#51: How to Avoid Running Out of Memory 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#51: How to Avoid Running Out of Memory
Revised by: Dave Lyons May 1992
Written by: Eric Soldan January 1989

This Technical Note discusses handling nearly-out-of-memory situations when working with the
IIGS tools.
Changes since September 1990: Added discussion of an Out-of-memory routine problem fixed
in System 6.0.

Introduction

Running out of memory is a concern for most every application. Working with the Toolbox makes
monitoring this situation a little more difficult since your application is not the only one allocating
memory.

Low-level toolbox functions (for example, QuickDraw II calls) require that a 16K block of memory
be allocatable, while high-level routines (for example, the Window Manager) require that a 32K
block of memory be allocatable. Apple does not guarantee that toolbox functions behave
reasonably if there is less memory available, and the tools are not stress-tested with less than the
minimum required memory available.

Since the toolbox assumes reasonable memory-allocation requests succeed, just waiting for an out-
of-memory error is not adequate memory management. To make your application work reliably in
low-memory situations, you need a method of ensuring that the toolbox gets memory when it needs
it. This Note describes two approaches.

How Much Memory Can Be Allocated

There’s no way to tell how much memory can be allocated without actually trying to allocate it.

MaxBlock tells you the size of the largest single free block, but this doesn’t take into account
purgeable blocks, compaction, and out-of-memory routines (see Apple IIGS Toolbox Reference,
volume 3). FreeMem and RealFreeMem cannot tell you how badly fragmented the memory is,
and they do not take into account out-of-memory routines.

A Suggested Method

A method of checking for a nearly-out-of-memory condition is to have your own purgeable handle
just for this task. If the handle has not been purged, then you have plenty of memory for the
toolbox, and in the worst case, the toolbox purges your handle if it needs the RAM.

Apple II Technical Notes

Apple IIGS
2 of 3 #51: How to Avoid Running Out of Memory

The less often your purgeable handle gets purged, the better performance you get in nearly-out-of-
memory situations. Therefore, you should arrange for other purgeable memory, not necessarily
belonging to your application, to be purged before your handle. For example, you want dormant
applications to be purged, rather than having your handle get repeatedly purged and reallocated. So
the purge level of this handle should be one.

The check to see if a handle has been purged is very fast. If it has been purged, you have to try to
reallocate it. Reallocating a handle is not a fast process, so the fewer times the handle is purged, the
faster the check is and the better your performance. Unless you are in a nearly-out-of-memory
situation, the handle should not be purged at all, and you should have virtually no overhead for this
process.

This technique can be implemented as follows:

appStart
;
; Somewhere at start, create a purgeable handle of size N,
; called "loMemHndl", purge level 1.
;
 rts

;
; Here's an example of checking for nearly-out-of-memory:
;
 jsr preCheckLoMem
 bcc goForIt
 bcs HandleError ;Handle errors appropriately.
goForIt (_ToolboxCall[s]) ;Make as many as needed.
;
; Here you can make your toolbox calls. Since you prechecked
; for nearly-out-of-memory conditions, you should have no memory
; errors at this point.
;
; You could also check after calls, as shown here:
;
 (_ToolboxCall)
 jsr checkLoMem ;Call this to see if low.
 bcc noError
 bcs HandleError ;Take care of errors.

noError jsr lifeIsGood
 .
 .
 .
 rts

Developer Technical Support March 1992

Apple IIGS
#51: How to Avoid Running Out of Memory 3 of 3

;
; Here are some sample routines to check for the nearly-out-of-
; memory condition.
;
checkLoMem bcs retErr
preCheckLoMem lda [loMemHndl]
 ldy #2
 ora [loMemHndl],y
 beq gotPurged
 lda #0
 clc
 rts
gotPurged (Try reallocating it into loMemHndl, purge level 1.)
 (If you can't, you will get a $0201 error. You may wish to
 return the $201 error, or you may wish to change it into
 your own error code.)
;
retErr rts ;This is a single exit point
 ;whether errors were present
 ;or not.

You can determine the size of this purgeable handle, but like determining what size stack is adequate
for an application, there is no single “right” answer. There are different considerations for size of
the purgeable handle for each application, and these may change during the development process.
Use your best judgement, keeping in mind that high-level toolbox routines require a 32K block.

An Alternative

For better control over when your handle is purged or disposed, you can write an out-of-memory
routine as described in the Memory Manager chapter of Apple IIGS Toolbox Reference, volume 3.
Out-of-memory routines have the opportunity to free up memory before or after the Memory
Manager attempts to purge purgeable handles, and this manual contains a sample of such a routine.

Note: If your Out-of-memory routine frees up memory on the second pass, there is a
problem with the Memory Manager in System Software 5.0 through 5.0.4 that may
affect you. If your routine frees enough bytes on the second pass, but the Memory
Manager still cannot complete the request it is working on, it can hang for a couple
of minutes and then crash. This is fixed in System 6.0.

Further Reference:
• Apple IIGS Toolbox Reference, Volumes 1-3

Apple IIGS
#52: Loading and Special Memory 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#52: Loading and Special Memory
Revised by: Dave Lyons May 1992
Written by: Eric Soldan January 1989

This Technical Note discusses strategies for preventing applications from loading into special
memory.
Changes since July 1989: Noted that the System 6 Loader always tries non-special memory
before special memory.

The System 6.0 Loader always tries to load segments into non-special memory before allowing
them to load into special memory. The rest of this Note is useful if your application does not
require System 6, or if you need an example of an initialization segment.

The System Loader loads your application starting at the lowest memory location possible. If you
allow your program to load into special memory, the Loader first tries bank $01. If your program
cannot load into special memory, it starts at bank $02. Either way, the Loader progresses to higher
banks, and eventually, it may even try loading into bank $E1, which contains the super hi-res
screen.

The problem with allowing your application to load into special memory is that the super hi-res
screen is part of special memory. If you have a desktop application, part of your application may
load into the super hi-res screen, and when you try to start QuickDraw II, it fails because the screen
memory is already allocated.

When QuickDraw II fails because your program loaded into the SHR screen, it seems reasonable
to assume that the Loader put your program there because it needed the RAM which special
memory provides. This logic seems to make sense, but it is not completely reliable. The Loader (in
System Software earlier than 6.0) tries to put your program into special memory before it tries
purging dormant applications. This means that the more programs that run from the Finder that set
the GS/OS or ProDOS 16 “restartable from memory” bit, the more likely it is that the next
application launched that can load into special memory will load into the super hi-res screen.

For this reason, it is important not to let your application load into special memory, or at least not
load into the super hi-res screen. If your application is not allowed to load into special memory,
then the Loader will purge other dormant applications to make space for yours. One way to
accomplish this is when linking your application. You can set the “no special memory” bit in the
OMF KIND field of applications using OMF 2.0 or later, but this also prohibits your application
from using bank $01.

Another way to avoid loading into the super hi-res screen is to have your initial segment allocate the
super hi-res screen. You can accomplish this by starting QuickDraw II in your initial segment, then
the rest of your program cannot load into the already-allocated super hi-res screen. This strategy
could fail if the initial segment loaded into the super hi-res screen, but this is very unlikely and can
be prevented by flagging the initial segment to only load into non-special memory. You can do this
by setting the “no special memory” bit in the KIND field only for the initial segment.

Apple II Technical Notes

Apple IIGS
2 of 3 #52: Loading and Special Memory

Here’s an example of such an initial segment in MPW IIGS format:

**
*
* You may wish to do this stuff in the initial segment of your
* application. The initial segment should be set so that it does not
* load into special memory, or else it is possible that it would load
* into the super hi-res screen. If this occurred, then QuickDraw II would
* not be able to be started.
*
* Once QuickDraw II is started, the super hi-res screen is taken,
* therefore the rest of the application can not load into it. Therefore,
* special memory is generally an acceptable place for the rest of the
* application to load, since the special memory needed for the screen
* is already taken.
*
* If the performance of your application would be adversely affected
* by memory fragmentation, then you should also consider purging
* other dormant applications and dormant tools, and then compacting
* memory. This will prevent fragmentation as much as possible
* while your application is loading. It also has the cost of longer
* startup time since some tools may have to be reloaded. This is the
* only way to be sure that tools that you don't want are removed
* from memory before the rest of your application tries to load
* around them.
*
* The Finder is a dormant application when your application is
* launched. This will cause the Finder to be thrown out of memory,
* and it will have to be reloaded when your application is quit.
*
**

case on

include 'e16.memory'
include 'm16.memory'
include 'm16.quickdraw'

screenMode equ $80
AppMaxWidth equ 160 ;Double this and your application

;will print in BetterText mode.

initialScreen PROC

myID equ 1 ;long
zpagehndl equ myID+4 ;long

stkAfterLocals equ zpagehndl+4

directReg equ stkAfterLocals
retAddr equ directReg+2
passedParms equ retAddr+3

phd ;Set up stack frame.
tsc
sec
sbc #stkAfterLocals-1
tcs
tcd
pha
_MMStartUp
pla
sta myID ;Get the userID

Developer Technical Support May 1992

Apple IIGS
#52: Loading and Special Memory 3 of 3

pha
_HLockAll ;Lock down the rest of ourselves, in

;case we are being restarted. The
;loader does not prelock down stuff,
;so we would be disposing of the rest
;of ourselves.

pea $1000
_PurgeAll ;Purge other dormant applications.

;This is optional.
pea $4000
_PurgeAll ;Purge dormant tools.

;This is optional.

_CompactMem ;Clean up memory. This is advised.

pha ;Make direct space for QuickDraw.
pha
pea $300>>16 ;Hi-byte of $300 address.
pea $300
pei myID
pea attrLocked+attrFixed+attrPage+attrBank
lda #0
pha
pha
_NewHandle
plx
stx zpagehndl
plx
stx zpagehndl+2
bcc @a
ERRORDEATH 'Out of bank 0 memory'

@a lda zpagehndl
sta >qdstarthndl ;Used for disposing handle at shutdown.
txa
sta >qdstarthndl+2
lda [zpagehndl] ;Start up QuickDraw. This protects
pha ;screen RAM from the rest of the
pea screenMode ;application loading into it.
pea AppMaxWidth
pei myID
_QDStartUp
bcc @b
ERRORDEATH 'Can''t start up QuickDraw'

@b ;Do title screen here.
tsc
clc
adc #stkAfterLocals-1
tcs
pld
rtl

qdstarthndl dc.l 0

ENDP
END

Further Reference:
• GS/OS Reference, Volume 1
• MPW IIGS Tools Reference
• APW Assembler Reference

Apple IIGS
#53: Desk Accessories and Tools 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#53: Desk Accessories and Tools
Revised by: Dave “Out of Phase” Lyons May 1992
Written by: Matt Deatherage, Jim Mensch, & Dave Lyons March 1989

This Technical Note discusses compatibility issues that can arise between desk accessories and
applications. Where possible, it presents solutions.
Changes since March 1991: Updated information about QuickDraw Auxiliary and
StartUpTools for System 6.0.

This Note presents guidelines to help applications and desk accessories work together smoothly.

Tool Sets

The greatest conflict between applications and desk accessories, especially NDAs, is the use of
system tool sets. The Apple IIGS Toolbox Reference, Volume 1, defines the minimum collection of
tools sets available to an NDA. The Desk Manager requires that an application start the following
tool sets before calling DeskStartUp:

Tool Locator (#1)
Memory Manager (#2)
Miscellaneous Tools (#3)
QuickDraw II (#4)
Event Manager (#6)
Window Manager (#14)
Menu Manager (#15)
Control Manager (#16)
LineEdit (#20)
Dialog Manager (#21)
Scrap Manager (#22)

NDAs may assume that these tools are all present and running, so they do not need to check for
their presence. NDAs can also use the following tool sets without special consideration for starting
them up: Desk Manager, Scheduler, Apple Desktop Bus, and Integer Math.

In addition to the tool sets applications must start to support NDAs, Apple recommends that
applications start the following tools:

QuickDraw Auxiliary (#18) (see discussion under QuickDraw Auxiliary)
Font Manager (#27)

These two additional tools are so widely used by desk accessories that they should be present.
NDAs may not assume their presence, but it is reasonable to write an NDA that checks for them,
with the assumption that they usually turn out to be available.

Apple II Technical Notes

Apple IIGS
2 of 6 #53: Desk Accessories and Tools

NDA Guidelines

Which Tool Sets Can An NDA Use?

• In general, NDAs can use the tool sets which have already been started up by the host
application, even tools that are not guaranteed to be started up. Using other tool sets is
trickier (see below).

• In general, NDAs should not start up tools that are already started up. (The Resource
Manager is an exception.)

• The Resource Manager must be started separately by each client. See Apple IIGS Technical
Note #71 for detailed information on using the Resource Manager from an NDA.

• Sound tools are an exception to the rule of freely using a tool which is already started. See
the section “Sound Tools” sections later in this note.

• Some tool sets are easily started up each time they are needed, if they are not already
present.

Standard File is an excellent example. If an NDA needs to use Standard File, it should
check to see if the tool is already running. If it is not running, the NDA must use
LoadOneTool to load it, then it must allocate a page of direct-page space and start the tool
before using it. When finished with the tool, the NDA must shut it down, deallocate the
direct-page space, and unload it with UnloadOneTool. (A tool is already running if its
xxxStatus function returns TRUE and does not return an error.)

The important thing here is that the NDA shuts down Standard File immediately after using
it, if it was not already started. This does not cause conflicts with the host application or
with other NDAs.

Note that by pre-initializing the result space of an xxxStatus call to zero, you can avoid
caring whether the tool is present but not started or simply not present.

pea $0000
_SFStatus
pla ;A is nonzero if Standard File is started

From a high-level language, you may not be able to pre-initialize the result space. Instead,
you need something like the C statement:

StdFileActive = (SFStatus() && !_toolErr);

or the Pascal statement:

StdFileActive := (SFStatus<>0) AND (ToolErrorNum=0);

• It is impractical or impossible to start up certain tool sets each time they are needed. These
include the Font Manager, Scrap Manager, and Text Edit.

If an NDA needs to start up a tool and keep it started while letting the application continue
to run, things get interesting. (There is a risk that the host application will later try to start
up the tool set itself and not be able to deal with the tool already being started.)

In practice, the safest thing you can do for a tool you need to leave running is:

Developer Technical Support March 1992

Apple IIGS
#53: Desk Accessories and Tools 3 of 6

—When your NDA is opened, check the tool set’s status. If it is not available, use
LoadOneTool, allocate any needed direct-page space, start up the tool set, and set a flag
indicating that your NDA started the tool set.

—When your NDA’s Init routine is called at DeskShutDown time (Accumulator equal to
zero), check the flag set above. If your NDA started a tool set, shut it down, dispose of any
direct-page space you allocated for it, and call UnloadOneTool.

(Keep in mind that your NDA can be opened and closed many times before
DeskShutDown is called when the application finally quits. If you have started a tool and
set a flag on an open, be sure not to disturb the flag on a future open, when the tool is
already available because you started it! You still need to shut it down at DeskShutDown
time.)

—Do not shut down tool sets when your NDA is closed. To see why, consider what would
happen if two NDAs just like yours were used at the same time. If the NDAs were closed
in any other than the exact opposite order they were opened, some NDAs would have tool
sets shut down from underneath them.

StartUpTools

• StartUpTools in System Software 5.0.4 and earlier is designed to be called only by an
application, not a desk accessory. Unexpected things happen if your NDA calls
StartUpTools (for example, you may get a second copy of the application’s resource
fork open in your NDA’s private resource search path; this wastes RAM and can interfere
with an application’s attempt to write to its own resource fork).

• See the System 6.0 Toolbox documentation for information on using StartUpTools
from an NDA. There are new flag bits you need to know about.

TLStartUp and TLShutDown

• Do not call TLStartUp or TLShutDown from a desk accessory.

• You may call MMStartUp at any time to get your desk accessory’s own memory ID. This
does not allocate a new ID; it just tells you what ID you already have (it returns the memory
ID of the block the MMStartUp call is made from).

User Tool Sets Belong to the Application

• A desk accessory must not install user tool sets, because there is no arbitration of user tool
set numbers. User tool sets are the sole property of the current application.

A desk accessory should not call user tool sets even if it determines that the host application
has installed a certain tool set, because that limits future system software options. For
example, consider a hypothetical multiple-application environment. If DAs call user tool
sets and the system automatically switches between separate collections of user tool sets,
there would be no way for the system to know which set to switch in before giving control
to a desk accessory.

Apple II Technical Notes

Apple IIGS
4 of 6 #53: Desk Accessories and Tools

Bank Zero Memory and Error $0201

• If you get error $0201 (unable to allocate memory block) while trying to launch a ProDOS
8 application, it is probably because your NDA allocated some memory in bank 0 or bank 1
and failed to dispose of it at DeskShutDown time (when the NDA’s Init routine is called
with the accumulator equal to zero). GS/OS needs to allocate all of this memory for
ProDOS 8 to use.

QuickDraw Auxiliary

• In System 6.0 and later, QuickDraw Auxiliary is always available to an NDA, because the
Window Manager automatically loads and starts QuickDraw Auxiliary (because it’s needed
for AlertWindow, for example). To prevent problems, duplicate QDAuxStartUp and
QDAuxShutDown calls are tolerated, and QDShutDown automatically calls
QDAuxShutDown.

• Before System 6.0, starting QuickDraw Auxiliary when the application has not started it can
be a problem. An application that correctly implements switching between 320 and 640
mode calls QDShutDown and QDStartUp. QuickDraw Auxiliary depends heavily on
QuickDraw, and restarting QuickDraw while QuickDraw Auxiliary is active will fry big-
time.

Sound Tools

• A desk accessory cannot use any of the sound tools if they are already started. This is
contrary to the rule for other tool sets, but it is required because there is no memory
management of the sound RAM (or “DOC RAM”). If the Sound Tools (#8) are started,
the application has exclusive control of the 64K DOC RAM used to play sounds. Anything
your desk accessory might put there could overwrite information the application needs.

Saving and restoring DOC RAM around desk accessory usage is not sufficient. Many of
the sound functions are interrupt driven, altering the contents of DOC RAM only during
sound interrupts, so your desk accessory might attempt to replace parts of DOC RAM
which are being played. Since there is no memory management of DOC RAM, desk
accessories must avoid the sound functions of the IIGS if the application is already using
them.

Application Guidelines

For best compatibility with NDAs, applications should follow the following guidelines.

• Be careful about when your application starts and shuts down tools. A highly compatible
approach is to start tools at the beginning of your application and leave them started. For
certain tools, like Standard File, it is reasonable to load and start the tool set each time it’s
needed (you may want to check whether it’s already started, in case some impolite NDA
started Standard File and left it started).

Note that UnloadOneTool followed later by LoadOneTool does not necessarily cause
disk access or ask the user to insert the boot disk. UnloadOneTool calls
UserShutDown to put the tool set into “zombie” state, where it can be restarted from
memory if none of its segments have been purged. Unloading tools while they aren’t in use
is a Good Thing—if the user has plenty of RAM, there’s no noticeable performance hit, but

Developer Technical Support March 1992

Apple IIGS
#53: Desk Accessories and Tools 5 of 6

if RAM space is tight then doing extra disk access still is preferable to actually running out
of memory.

For maximum compatibility, an application should not shut down any tools which were ever
active when it called SystemTask or TaskMaster (until quitting time, of course, when it
shuts down everything, starting with the Desk Manager). The application can start more
tools, but it should not shut down those which are already active.

If your application is going to start a tool and not keep it started, use it and then shut it down
immediately, without allowing desk accessories to be opened during that time.

• Don’t just start the Scrap Manager—use it! Many desk accessories support cutting and
pasting to exchange text and pictures with your application, but they can do it only if you
use the Scrap Manager. If you have a need for your own private scrap internally, you
should still also use the Scrap Manager to exchange text and pictures with other
applications and DAs.

• Provide an Edit menu, and when an NDA window comes to the front enable the menu and
the Undo, Cut, Copy, Paste, and Clear items.

• Applications should never make a Close call with reference number zero at file level zero.
(If you need to use Close with reference number zero, use GetLevel and SetLevel to
avoid closing files you did not open.)

DAs written recently can open their files at an internal file level, as documented in GS/OS
Technical Note #13, but applications still need to avoid closing all files at level zero for
compatibility with older desk accessories.

• An application with some memory to spare can save NDAs time by providing them the
additional tools which they are most likely to use.

The most common tools which desk accessories require besides those available in the
standard Desk Manager set are QuickDraw Auxiliary (#18), the Print Manager (#19),
Standard File (#23), the Font Manager (#27), and the List Manager (#28).

• When you call TaskMaster or GetNextEvent, or EventAvail, be sure bit 10 is
turned on in the event mask, to enable “desk accessory” events. If you turn this bit off,
users will not be able to get to the Classic Desk Accessory menu by pressing Apple-Ctrl-
ESC.

Apple II Technical Notes

Apple IIGS
6 of 6 #53: Desk Accessories and Tools

CDA Guidelines

• CDAs are nearly always modal, but by using the HeartBeat interrupt queue or other
mechanisms, they can get control when the user is no longer “in” the CDA. The list of
guaranteed tools for NDAs does not apply to CDAs, and CDAs must be prepared to deal
with the ProDOS 8 environment as well as GS/OS.

• Under ProDOS 8, a CDA will not be able to allocate any bank 0 space through the Memory
Manager; it can only use page 0 and page 1 safely (the stack is in page 1).

• Do not call TLStartUp or TLShutDown from a desk accessory.

• You may call MMStartUp at any time to get your DA’s own memory ID. This does not
allocate a new ID; it just tells you what ID you already have (it returns the memory ID of
the block the MMStartUp call is made from).

Further Reference:
• Apple IIGS Toolbox Reference
• Programmer’s Introduction to the Apple IIGS
• Apple IIGS Technical Note #71, Desk Accessory Tips and Techniques
• Apple IIGS Technical Note #83, Resource Manager Stuff

Apple IIGS

#54: MIDI Drivers 1 of 19

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#54: MIDI Drivers

Revised by: Matt Deatherage November 1990
Written by: Jim Mensch May 1989

This Technical Note describes how to write a driver for use with the Apple IIGS MIDI tools.
Changes since May 1989: Noted that MIDI drivers also work with the MIDI Synth tool.

Apple ships two drivers with the MIDI tool set, APPLE.MIDI and CARD6850.MIDI,
respectively. These drivers are adequate for almost all MIDI hardware currently on the market
for the Apple IIGS; however, if your hardware is not compatible with either of these drivers, you
have to write your own. This Note includes all the information you need to create a MIDI driver.
Note that the same drivers that work with MIDI Tools (Tool #32) also work with the MIDI Synth
(Tool #35). This Note collectively refers to MIDI Tools and MIDI Synth as the “MIDI tools.”

Purpose of the Driver and Description of Hardware Requirements

The Apple MIDI tools communicate to the MIDI world via a simple driver. The driver’s
function is managing the transmission and reception of single bytes of MIDI data between the
tools and the particular MIDI hardware involved. The MIDI tools operate on the assumption that
the hardware has a method of interrupting the system when a character has been received and
when a character can be transmitted. Since there is quite a bit of overhead in processing MIDI
data, and since MIDI data can comes across a standard MIDI bus at a rate of over 3000 bytes per
second, it is suggested that you provide a means for your device to buffer a few characters to
reduce system overhead caused by interrupts if you are designing hardware to be used with the
MIDI tools.

Format of the Driver File

The driver file is a standard OMF load file, which can be created with any of the popular Apple
IIGS assemblers. The file must start with a dispatch table that contains the addresses of the
standard driver routines. All driver routines must be in the same segment as the dispatch table.
The dispatch table should have 13 four-byte entries, each of which contains the address of the
appropriate routine minus one. Table 1 contains addresses of routines in the MIDI driver to
perform specific functions.

Apple II Technical Notes

Apple IIGS

2 of 19 #54: MIDI Drivers

Call Function
Init Called to initialize the port and prime the driver
ShutDown Called to close the port and clean up after driver
Reset Called at reset time by the MIDI tools
IntHandler Called when your interrupt occurs
PollRecv Poll input the port for data
RecvIntOn Turns on receiver interrupts
RecvIntOff Turns off receiver interrupts
PollXmit Polls the transmitter to see if another character

can be sent
XmitIntOn Enables transmitter interrupts
XmitIntOff Disables transmitter interrupts
NotImp Currently unused
NotImp Currently unused
NotImp Currently unused

Table 1–MIDI Driver Function Routines

Routine Calling Conventions

All driver routines are called with full 16-bit mode enabled and should exit the same way. On
entry to each routine, the accumulator contains the direct page pointer that the driver should use
if it wants to use the MIDI Tools’ or MIDI Synth’s direct page. It is the driver’s responsibility to
set the direct page register and restore it on exit. All other parameters are passed on the stack
and should be removed from the stack before the routine exits. The MIDI tools set aside 128
bytes of space on the passed direct page for use by the driver. They are bytes $80–$FF.

If you want to report an error inside of any routine (except IntHandler), set the carry flag on
exit and load the accumulator with the error code. Use predefined error codes whenever
possible. If you need to report a device specific error, use errors in the range $C0–$FF. The
MIDI tools will set the high byte of the error code properly for you, so you do not need to do it
yourself. Table 2 lists all of the potential predefined error codes.

Error Code Error Definition
miToolsErr ($2004) The required tools were not started
miNoBufErr ($2007) No buffer is currently allocated
miDevNotAvail ($2080) Requested device is not available
miDevSlotBusy ($2081) Requested slot is already in use
miDevBusy ($2082) Requested device is already in use
miDevOverrun ($2083) Device overrun by incoming MIDI

data
miDevNoConnect ($2084) No connection to MIDI
miDevReadErr ($2085) Framing error in received MIDI data
miDevVersion ($2086) ROM version is incompatible with

driver

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 3 of 19

miDevIntHndlr ($2087) Conflicting interrupt handler
installed

Apple II Technical Notes

Apple IIGS

4 of 19 #54: MIDI Drivers

The Driver Routines

Init

This routine is called by the MIDI tools when it wants to initialize your port and tell the driver to
prepare itself for the rest of the calls. Figure 1 shows how the stack looks on entry to this call.

previous contents

longspace

NewIntAddr

SlotNum

SlotFlag

UserID

RTLRTL

RTL

LONG - Space for result

LONG - Pointer to MIDI tools int vector

WORD - Number of slot/port to use

WORD - 0=Internal port 1=card in slot

WORD - User ID of current application

SP

Figure 1–The Stack on Entry to Init

The Init routine should first test to see if the port specified by SlotFlag and SlotNum is
available for use. SlotNum is the number of the slot or the port that the user has requested for
use, and SlotFlag indicates whether it is a built-in port or a card in a slot. After determining
that the requested device is available, you should initialize the device, allocate any memory that
your driver may require (beyond what is available in the direct page), and set the proper system
interrupt vector to the address passed in NewIntAddr. Before setting the vector, be sure to
save the old value, as the MIDI tools expect the result from this routine to be the old address
stored in the vector. On exit, the stack should contain the return address and the old vector
address.

ShutDown

This routine is called when the MIDI tools want your driver to release the MIDI device and
prepare to be unloaded. Figure 2 shows how the stack looks on entry to this call.

previous contents

OldIntVector

RTLRTL

RTL SP

LONG - Old interrupt vector pointer

Figure 2–The Stack on Entry to ShutDown

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 5 of 19

Your routine should change the interrupt vector that you used to OldIntVector. It should
then deallocate all the memory that it allocated, disable all interrupts on the device, and if
needed, tell the system that you are no longer using the port in question.

Reset

This routine is called when the system has been reset by the user. Figure 3 shows how the stack
looks on entry to this call.

previous contents

OldIntVector

RTLRTL

RTL SP

LONG - Old interrupt vector pointer

Figure 3–The Stack on Entry to Reset

All you should do at this point is attempt to deallocate any memory you were using and disable
interrupts on the device you were using.

Note: Do not set the interrupt vector to OldIntVector, instead remove the value
from the stack and dispose of it.

IntHandler

The IntHandler routine is called by the MIDI tools when an interrupt occurs for the vector
that you are using. The MIDI driver performs some setup then calls your routine. This routine
does not have any parameters on the stack.

Once called, your IntHandler routine should test the port to see if an interrupt has occurred
on your device. If your device did not cause the interrupt, you should set the carry and exit as
quickly as possible, reducing the system interrupt overhead.

If your device caused the interrupt, you should test the receiver to see if any bytes of data are
waiting to be read. If there is data waiting, you should load that data into the accumulator and
perform a JSL to the following code:

InBufGlue PEA $0400
 PHD
 RTL

This code calls the MIDI tools and tell them to accept the character in the accumulator into its
input buffer. After accepting the data, control is passed back to the instruction following your
JSL. If you received a byte of data and an error occurred during reception, you should load the
number of the error code into the y register and perform a JSL to the following code:

Apple II Technical Notes

Apple IIGS

6 of 19 #54: MIDI Drivers

InErrGlue PEA $0500
 PHD
 RTL

Again, you will regain control right after the JSL. Once in your interrupt routine, you may
perform the calls above for as much data as you like. For example, if your device has a three-
byte buffer, you could call InBufGlue once for each waiting character, thus reducing your
interrupt overhead and possibly preventing unneeded interrupts.

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 7 of 19

If the transmitter on your device is ready to send data, you should perform a JSL to the
following code:

OutBufGlue PEA $8400
 PHD
 RTL

This routine will return with the carry set if no data is waiting to be transmitted or the carry clear
if data is available. If data is waiting, the next character to send will be in the accumulator, and
you should simply send it at that time. If no more data is available, you should disable
transmitter interrupts and exit. The MIDI tools will re-enable transmitter interrupts the next time
it has data to send.

PollRecv

The PollRecv (Poll Receive) routine is called by the MIDI tools every now and then to see if
any data might be waiting to be read. There are no parameters on the stack for this call. Your
driver should test to see if any data is available and transmit it all to the MIDI tools via the
InBufGlue described in the IntHandler description.

PollXmit

The PollXmit (Poll Transmit) routine is called by the MIDI tools when any data is added to
the MIDI output buffer. There are no parameters on the stack for this routine. Your driver
should enable transmitter interrupts, test to see if it can send any data immediately, and if it can,
call OutBufGlue as described int the IntHandler description to get data to send.

XmitIntOn and RecvIntOn

These routines are called when the MIDI tools want to explicitly enable transmitter or receiver
interrupts. They have no parameters on the stack and should, when called, enable transmitter
interrupts for XmitIntOn and receiver interrupts for RecvIntOn.

XmitIntOff and RecvIntOff

These routine are called when the MIDI tools want to explicitly disable transmitter or receiver
interrupts. They have no parameters on the stack and should, when called, disable transmitter
interrupts for XmitIntOff and receiver interrupts for RecvIntOff.

NotImp

These routines are not yet implemented, but your driver should be ready to handle a call to them.
When called, they should clear the accumulator, clear the carry and perform an RTL back to the
MIDI tools.

Apple II Technical Notes

Apple IIGS

8 of 19 #54: MIDI Drivers

A MIDI Driver Skeleton

You can use the following sample code as a basis for a MIDI driver. It is not a complete driver
in itself, and you will need to add code where comments with asterisks (***) appear for it to be
functional. This example is in MPW IIGS assembler format.

* MIDI.DRVR.Aii
*
* (C) Copyright Apple Computer, Inc. 1988
* All rights reserved.
*
* by Don Marsh & Jim Mensch
* 10/26/88
*
* This is a shell that can be used to create custom MIDI drivers for use with
* the Apple MIDI tool set. This shell is not functional, but can be used as a
* starting point for creating your own custom MIDI drivers.
*
* Files: System Macros and equates
*
*
*
* Modification History:
*
* Version 1.0 Mensch
*
* 10/26/88
*
* Create first draft
*

Include 'E16.MIDI'
Include 'M16.MiscTool'
Include 'E16.MiscTool'
Include 'M16.util'

;
; Direct page usage Note:
; MIDI drivers may use the upper half ($80-$FF) of the MIDI direct page. When
; a MIDI driver routine is called the Accumulator will contain the direct page
; pointer for the MIDI tool set. If your driver requires more storage than
; 128 bytes, it will have to allocate them itself using the memory manager.

theuserID equ $80 ; location to store the passed user ID
PortInUse equ theuserID+2 ; storage for the port number in use
deref equ PortInUse+2
Temp equ Deref+4

EJECT

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 9 of 19

*
DispatchTable RECORD
*
* Description: Every MIDI Driver must start with a driver dispatch table
* that contains the entry point minus 1 of each of the
* required entry points.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:

Import DRVRInit
Import DRVRShutDown
Import DRVRReset
Import DRVRIntHandler
Import DRVRPollRecv
Import DRVRRecvIntOn
Import DRVRRecvIntOff
Import DRVRPollXmit
Import DRVRXmitIntOn
Import DRVRXmitIntOff
Import DRVRNotImplemented

*
* Entry Points: None
*

DC.L DRVRInit
DC.L DRVRShutDown
DC.L DRVRReset
DC.L DRVRIntHandler
DC.L DRVRPollRecv
DC.L DRVRRecvIntOn
DC.L DRVRRecvIntOff
DC.L DRVRPollXmit
DC.L DRVRXmitIntOn
DC.L DRVRXmitIntOff
DC.L DRVRNotImplemented
DC.L DRVRNotImplemented
DC.L DRVRNotImplemented

; a few of the routines will need a temporary storage location that can be used
; even after the direct page is set back to what it was, This is a good place
; to put it!

ErrorCode ds.W 1 ; temporary holder of an error code
EndR

EJECT

Apple II Technical Notes

Apple IIGS

10 of 19 #54: MIDI Drivers

*
DRVRInit PROC
*
* Description: This is called by the MIDI Tools when it needs to Init
* your MIDI Driver. This is usually in response to a MIDIxxx
* call made by the application.
* When this routine is called, you should allocate any buffer
* space that you will need beyond the direct page, you should
* enable the interrupts on your MIDI Device, and then set the
* appropriate system interrupt vector and return the old vector
* value. If the init works fine, clear the carry and return.
* If an error occurs return the appropriate error code
* in the Accumulator, and set the carry.
*
*
* Inputs: UserID:Word ID of application, for mem allocation
* SlotFlag:Word 0 for internal port/ 1 for slot
* SlotNum:Word number of slot/port to use
* NewIntVector:Long address to give system as its new
* interrupt vector. This routine is in the
* MIDI tool set, and it performs needed
* setup before it calls your interrupt
* routine
*
* Outputs: OldIntVector:Long Address interrupt vector used to have
*
* External Refs: None
*
* Entry Points: None
*

; Offsets for parameters on the stack

ProcStatus equ 1
OldDPage equ ProcStatus+1
ReturnAddress equ OldDPage+2
UserID equ ReturnAddress+3
SlotFlag equ UserID+2
SlotNum equ SlotFlag+2
NewIntVector equ SlotNum+2
OldIntVector equ NewIntVector+4
ParmBytes equ 10
ParmEnd equ ReturnAddress+ParmBytes

; first disable interrupts since we are going to be setting up interrupt vectors
; and enabling interrupt generating hardware. We wouldn't want an interrupt to go
; off before we were ready to handle it! Then set us up to use the MIDI direct
; page.

php ; save the old proc status
phd ; save the old direct page
tcd ; Set Direct page to the one passed
SEI ; and disable interrupts

; now get the user ID and save it, and allocate any buffers that we may need
; Since most drivers will never need more than 128 bytes of storage we will
; not allocate any storage space

lda UserID,s ; first save the user ID for later
sta theUserID ; in our section of the MIDI DPage

; *** Insert any memory allocation needed here ***

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 11 of 19

; Next, you should check the slot flag and number to see if they are compatible
; with this driver. If they are, you should continue and initialize the proper
; port. If they are not proper, you should exit with an error.
; For this example, I will be testing the SlotFlag, to see if it is set to
; external.

lda SlotFlag,s ; first test the slot flag to be sure
bne FlagOK ; its non-zero.

ldy #miDevNotAvail ; if its zero, signal not available
bra InitError ; and exit via error routine

FlagOK lda SlotNum,s ; Now save the slot number in
sta PortInUse ; our data area

; *** At this point you should test the firmware in the desired slot to be sure
; that the card you want is properly installed, if it is not then you should
; pass back the appropriate error ***

; Now that you know that you have the proper slot information and you have tested
; to be sure that you have the hardware needed for the driver it is time for you
; to initialize the interface and to enable its interrupts.

; *** Install code to initialize your hardware/interrupts here ***

; Now that the Port has been properly initialized, you must set up the proper
; system interrupt vector. Since we required an external card above it would
; make sense that you need to use the "Other unspecified interrupt handler"
; vector (Number $0017). But first, remember to get the original vector pointer
; because we must return it to the MIDI tools.

PushLong #0 ; space for result
PushWord #otherIntHnd ; vector to retrieve
_GetVector ; and get the vector in question
PullLong Temp ; place in storage for a sec

lda Temp ; now place it on the stack
sta OldIntVector ; as the result of this function
lda Temp+2
sta OldIntVector+2

lda NewIntVector ; now move the MIDI Interrupt routine
sta Temp ; pointer into temporary storage
lda NewIntVector+2
sta Temp+2

PushWord #otherIntHnd ; now set the vector to point to
PushLong Temp ; the MIDI drivers interrupt routine
_SetVector

; The driver is now all set up, pull off the passed parms and we are done!
Done ldy #0 ; set the error code to 0. No error
;
; This is the alternate label for the Done routine that should be called when
; an error has occurred.
InitError

lda ReturnAddress,s ; Move the return address below the
sta ParmEnd,s ; parameters
lda ReturnAddress+1,s
sta ParmEnd+1,s

pld ; get the direct page back
plp ; get the processor status back

Apple II Technical Notes

Apple IIGS

12 of 19 #54: MIDI Drivers

tsc ; now adjust the stack pointer
sec ; so that the parameters are gone
sbc #ParmBytes
tcs ; now the return address is on Top

tya ; put any error into <A>
cmp #1 ; set the carry if non-zero
RTL ; and return

EndP

EJECT

*
DRVRShutDown PROC
*
* Description: This routine will be called whenever the MIDI Tools want
* to cause your driver to let go of the port it was using.
*
*
* Inputs: OldIntVector:Long Address to place back into the system
* interrupt vector you were using
*
* Outputs: Carry clear if successful
* Carry set if not, error in <A>
*
* External Refs:

Import DrvrRecvIntOff
Import DRVRXMitIntOff

*
* Entry Points:
*

With DispatchTable

ProcStatus equ 1
OldDPage equ ProcStatus+1
ReturnAddress equ OldDPage+2
OldIntVector equ ReturnAddress+3
ParmBytes equ 4
ParmEnd equ ReturnAddress+ParmBytes

; first disable interrupts since we are going to be setting up interrupt vectors
; We wouldn't want an interrupt to go off before we were ready to handle it!
; Then set us up to use the MIDI direct page.

php ; save the old proc status
phd ; save the old direct page
tcd ; Set Direct page to the one passed
SEI ; and disable interrupts

lda #0 ; zero out the temp error code
sta >ErrorCode

; Now First, re-install the old interrupt vector

lda OldIntVector ; get the old vector off the stack
sta Temp ; and save it in globals for a sec
lda OldIntVector+2
sta Temp+2

PushWord #otherIntHnd ; now set the vector to point to
PushLong Temp ; its original routine.
_SetVector

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 13 of 19

; Next, turn off the interface hardware, and tell it to stop generating
; interrupts. We can share some code here and call our DRVRRecvIntOff and
; DRVRXmitIntOff routines. Always remember load the direct page into the
; accumulator.

tdc ; get direct page into <A>
jsl DRVRXmitIntOff ; and turn off transmitter interrupts

tdc
jsl DRVRRecvIntOff ; and now receiver interrupts.

; *** Usually turning off interrupts will be all that you would need to do at
; this point, however, if your interface card requires extra shutdown code
; this is where you would place it ***

; *** If you allocated any memory in the DRVRInit call, this is the place to
; get rid of it.

; If an error were to occur in this routine, you should simply store the error
; number in our temporary error code variable like this
;
; lda #ErrorNumber
; Sta >ErrorCode

Done
; Now that we are done shutting down the driver, pull off the passed data
; and end.

pld ; first retrieve the old dpage
plp ; and processor status

Longa Off ; next move the return address
SEP #$20 ; we need a short acc for this trick

pla ; pull the 3 byte return address
ply ; into <A> and <Y>

plx ; now remove the remaining bytes
plx ; of passed parameters

phy ; and restore the return address
pha

Longa On
REP #$30 ; and turn back on full 16-bit mode

lda >ErrorCode ; retrieve the error code
cmp #1 ; and set the carry if non-zero
RTL
EndP

EJECT

Apple II Technical Notes

Apple IIGS

14 of 19 #54: MIDI Drivers

*
DRVRReset PROC
*
* Description: This routine will be called whenever MIDIReset is called.
* and that should only happen when an actual reset occurred.
* It should in most cases perform the exact same functions
* as MIDI Shutdown.
*
*
* Inputs: OldIntVector:Long Original contents of interrupt vector
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

jmp DRVRShutDown

EndP

EJECT

*
DRVRIntHandler PROC
*
* Description: This routine is the very core of the MIDI driver. It takes
* care of passing data back and forth between the MIDI tools
* and your hardware. It will be called for both input and
* output.
*
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs:

Import DRVRXmitIntOff
*
* Entry Points:

Export InBufGlue
Export InErrGlue
Export OutBufGlue

*

phd ; first, save the current dpage
tcd ; and use the MIDI DPage

; The first thing the interrupt routine should do is to test to see if the
; interrupt was actually generated by our port. If it was then we should handle
; it, but if not, we should simply exit this routine with the carry set as
; fast as we can, so that the next interrupt handler will get it in a timely
; manner.

; *** Insert code here to test to see if the original interrupt was yours ***

beq ServicePort ; if it was our, handle it

; If the interrupt was not ours, set the carry and leave
pld ; restore the direct page
sec
rtl

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 15 of 19

ServicePort ; the interrupt was ours, continue

; This routine should test the interrupt again, too see if the port is ready
; to transmit or receive, If it is ready to transmit or receive, it should
; then call the ServiceRecv, or ServiceXMit routines

; *** Insert code here to test for receive

bne ServiceRecv ; if chars waiting try receive it

; If no more characters are waiting, see if we are ready to transmit any
; characters.

bne ServiceXMit ; if can send a character do it

; If both the above tests fail, then exit the interrupt handler for now
pld ; restore the direct page
clc ; clear the carry to indicate serviced
RTL ; and return

; The following routine ServiceRecv will be called when a character is waiting
; It should retrieve that character, pass it to the MIDI drivers, and then
; branch back to the beginning of ServicePort, to see if any more chars are
; waiting.
ServiceRecv

; *** Place code here that retrieves a byte of data from the port ***

; Call MIDI tools this way if no error has occurred on receive (<A> contains the
; data read)
RecvOK

jsl InBufGlue ; call the MIDI tools
bra ServicePort ; and check for more data in or out

; Call MIDI this way if a reception error has occurred (<A> contains the
; data read)
RecvErr

ldy #miDevReadErr ; load Y with the error
jsl InErrGlue ; call the midi tools
bra ServicePort

; The routine ServiceXmit will be called when the port is ready to send data.
; it will actually call the MIDI tools and get a character to send.
ServiceXmit

jsl OutBufGlue ; call the MIDI tools for the next char
bcs NoMoreData ; if the carry set then no data to send

; *** at this point the byte to transmit is in <A>, place your code to output
; it thru the port here ***

; Now that the data has been sent, you can either loop thru ServicePort again,
; or you could simply end and wait for the next interrupt to send another
; character. This sample will simply exit at this point

bra Done ; after sending the character end.

Apple II Technical Notes

Apple IIGS

16 of 19 #54: MIDI Drivers

; NoMoreData is called when the MIDI Tools said that they did not have any more
; data to transmit, so we should turn off transmitter interrupts at this point
; in case our device likes to keep interrupting if its empty.
NoMoreData

phd ; push the direct page reg on the stack
jsl DRVRXmitIntOff ; enable xmit interrupts

Done
pld ; restore the DPage
clc ; signal the interrupt as handled
rtl ; and get outta here!

; The routine inbufglue should be called when you received a character from your
; port with no error and you want to pass it to the MIDI tools.
InBufGlue pea $0400 ; push on the long address of the

phd ; direct page and a proc status byte
RTL ; and jump back to the MIDI tools

; The routine inErrGlue should be called when you received a character from your
; port and an error has occurred. In this case, it should still be passed to the
; MIDI driver, as it may still be useful
inErrGlue pea $0500 ; push on the long address of the

phd ; direct page and a proc status byte
RTL ; and jump back to the MIDI tools

; The routine OutBufGlue should be called when you are ready to send a char
; out your port. The MIDI tools will will return with the character to send
; in <A>. If the MIDI tools have no more characters to send then OutBufGlue
; will return with the carry set.
OutBufGlue pea $8400 ; push on the long address of the

phd ; direct page and a proc status byte
RTL ; and jump back to the MIDI tools
EndP

EJECT

*
DRVRPollRecv PROC
*
* Description: This routine is called by the MIDI tools when it wants to
* pool the port for data instead of waiting for an interrupt.
* its function is similar to that of the our interrupt handler
* except that it only does input.
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs:

Import InBufGlue
Import InErrGlue

*
* Entry Points: None
*

phd ; first, save the current dpage
tcd ; and use the MIDI DPage
php
SEI

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 17 of 19

ServicePort ; the interrupt was ours, continue

; This routine should test the port too see if the port has any data for use
; to receive. If it does, it calls the MIDI tools and hands it off. Also note
; this routine will turn off interrupts, since we wouldn't want any stray
; receiver interrupts to spoil our fun and grab the data from us. (This is
; very important for certain types of ports which may signal that the port
; is ready and the generate an interrupt, thus leaving us in a situation where
; our interrupt routines could steal the interrupt right out from under us before
; we fetched it, thus allowing us to possibly double post a character.

; *** Insert code here to test for received data ***

bne ServiceRecv ; if chars waiting try receive it

; If no more data is waiting exit this routine.
plp
pld ; restore the direct page
clc ; clear the carry no errors possible
RTL ; and return

; The following routine ServiceRecv will be called when a character is waiting
; It should retrieve that character, pass it to the MIDI drivers, and then
; branch back to the beginning of ServicePort, to see if any more chars are
; waiting.
ServiceRecv

; *** Place code here that retrieves a byte of data from the port ***

; Call MIDI tools this way if no error has occurred on receive (<A> contains the
; data read)
RecvOK

jsl InBufGlue ; call the MIDI tools
bra ServicePort ; and check for more data in or out

; Call MIDI this way if a reception error has occurred (<A> contains the
; data read)
RecvErr

ldy #miDevReadErr ; load Y with the error
jsl InErrGlue ; call the midi tools
bra ServicePort
EndP
EJECT

Apple II Technical Notes

Apple IIGS

18 of 19 #54: MIDI Drivers

*
DRVRPollXMit PROC
*
* Description: This routine is called when the MIDI tools wants to start
* an output stream. The tool set calls this routine for the
* first character of data, and then this routine is
* responsible for enabling transmitter interrupts and sending
* the character.
*
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs: None

Import OutBufGlue
Import DRVRXmitIntOn

*
* Entry Points: None
*

phd ; first, save the current dpage
tcd ; and use the MIDI DPage
php ; disable interrupts as we are now going
SEI ; to turn on xmitter interrupts.

; First see if the port is ready to send any data, if not simply exit

; *** Insert code here to test if output is ready ***

bcs Done ; if not, then simply end

; The port is ready to accept a character for output so, call MIDI tools
; to get the next character

jsl OutBufGlue ; get the next character
bcs Done ; if carry set, no chars to xmit so end

pha ; save the character to send
phd ; push the direct page reg on the stack
jsl DRVRXmitIntOn ; enable xmit interrupts
pla ; retrieve the character to send

; *** Insert code here to transmit a character ***
Done

plp ; get the old interrupt status
pld ; get the old direct page
lda #0 ; no errors are possible
clc
rtl

EndP

EJECT

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 19 of 19

*
DRVRXmitIntOn PROC
*
* Description: This routine will be called when the MIDI tools need to
* enable transmitter interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

php ; save proc status/interrupt state
phd ; save the old direct page
tcd ; use the MIDI tools DPage
SEI ; disable interrupts

; *** Insert code here to enable transmitter interrupts on your device

pld ; recover old direct page
plp ; recover old interrupt state
lda #0 ; and return no-error (none possible)
clc
rtl
EndP

*
DRVRXmitIntOff PROC
*
* Description: This routine will be called when the MIDI tools need to
* Disable transmitter interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

php ; save proc status/interrupt state
phd ; save the old direct page
tcd ; use the MIDI tools DPage
SEI ; disable interrupts

; *** Insert code here to Disable transmitter interrupts on your device

pld ; recover old direct page
plp ; recover old interrupt state
lda #0 ; and return no-error (none possible)
clc
rtl
EndP

EJECT

Apple II Technical Notes

Apple IIGS

20 of 19 #54: MIDI Drivers

*
DRVRRecvIntOn PROC
*
* Description: This routine will be called when the MIDI tools need to
* enable receiver interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

php ; save proc status/interrupt state
phd ; save the old direct page
tcd ; use the MIDI tools DPage
SEI ; disable interrupts

; *** Insert code here to enable receiver interrupts on your device

pld ; recover old direct page
plp ; recover old interrupt state
lda #0 ; and return no-error (none possible)
clc
rtl
EndP

*
DRVRRecvIntOff PROC
*
* Description: This routine will be called when the MIDI tools need to
* Disable receiver interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

php ; save proc status/interrupt state
phd ; save the old direct page
tcd ; use the MIDI tools DPage
SEI ; disable interrupts

; *** Insert code here to Disable receiver interrupts on your device

pld ; recover old direct page
plp ; recover old interrupt state
lda #0 ; and return no-error (none possible)
clc
rtl
EndP

Developer Technical Support November 1990

Apple IIGS

#54: MIDI Drivers 21 of 19

*
DRVRNotImplemented PROC
*
* Description: Dummy routine, should leave the stack alone and return
* no error
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*

lda #0
clc
RTL
EndP

END

Further Reference:
• Apple IIGS Toolbox Reference Update

Apple IIGS

#55: Avoiding ClrHeartBeat 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#55: Avoiding ClrHeartBeat

Written by: Matt Deatherage July 1989

This Technical Note lists changes to the description for ClrHeartBeat. This information
supersedes the description in the Apple IIGS Toolbox Reference Manual.

The Apple IIGS Toolbox Reference Manual gives the following cautionary note in the description
for the call ClrHeartBeat:

“A desk accessory may have installed tasks in the Heartbeat Interrupt Task
queue. If you make a ClrHeartBeat call, you will remove those tasks.
Therefore, under normal circumstances you should not make this call.”

This isn’t rude enough to get the point across to some people, so we’ll try again:

The Heartbeat Interrupt Task queue does not belong to the application. Different portions of
System Software can, and will, install Heartbeat Tasks. If these tasks are removed, anything
from a system crash to media corruption may result. Nothing but System Software should make
this call.

Further Reference
• Apple IIGS Toolbox Reference Manual

Apple IIGS

#56: Managing Dynamic Segments 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#56: Managing Dynamic Segments

Revised by: Matt Deatherage November 1990
Written by: Eric Soldan July 1989

This Technical Note discusses application difficulties when transferring control to dynamic
segments during low-memory conditions.
Changes since July 1989: The information formerly covered in this Note is now discussed in
greater detail in Apple IIGS Technical Note #22, Proper Use of Dynamic Segments.

This Note formerly warned of the dangers of using dynamic segments—if memory is not
available for the dynamic segment, the system crashes. Apple IIGS Technical Note #22, Proper
Use of Dynamic Segments, covers this problem and strategies for working around it.

Apple IIGS

#57: The Memory Manager and Interrupts 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#57: The Memory Manager and Interrupts

Revised by: Dave “nocturnal” Lyons December 1991
Written by: Dave Lyons July 1989

This Technical Note discusses how you can use the Memory Manager from interrupt routines
and documents a flag byte that debugging utilities can use to temporarily prevent the Memory
Manager from moving or purging memory.
Changes since July 1989: Expanded and retitled Note to discuss safe use of the Memory
Manager at interrupt time.

The Memory Manager does not disable interrupts while it’s busy. Instead, it increments the
system BUSY flag when it’s in the middle of something important.

Can interrupt routines call the Memory Manager?

If you write code that executes at interrupt time, you must check the BUSY flag (the byte at
$E100FF) before making any Memory Manager calls. If the BUSY flag is zero, it’s safe to call
the Memory Manager. If the BUSY flag is nonzero, the Memory Manager may be in the middle
of a call, so it is not safe to call it.

What routines must check the BUSY flag?

Classic desk accessory main routines and shutdown routines do not need to check the BUSY flag.
If the Event Manager is active, the CDA gets control during GetNextEvent, not at interrupt
time. If the Event Manager is not active, the CDA gets control only when the BUSY flag reaches
zero.

GS/OS signal handlers do not need to check the BUSY flag, because the system dispatches
signals only when the BUSY flag is zero.

Run Queue tasks do not need to check the BUSY flag before calling the Memory Manager. The
system dispatches Run Queue tasks at SystemTask time—the BUSY flag may not be zero, but
no Memory Manager call will be in progress.

Heartbeat interrupt tasks and other interrupt handlers do need to check the BUSY flag before
calling the Memory Manager.

Apple II Technical Notes

Apple IIGS

2 of 2 #57: The Memory Manager and Interrupts

Interrupt-time use of moveable memory blocks

If an interrupt-time routine needs access to an unlocked, non-fixed memory block, you must
check the BUSY flag. It is not sufficient to lock the block, use it, and then unlock it (even if you
twiddle the handle’s access word directly). If the BUSY flag is non-zero, the Memory Manager
could be in the middle of compacting memory, which means your block could be “in transit”
from one address to another (some bytes copied, some not).

To use already-allocated memory at interrupt time, either keep the block locked or fixed, or
check that the BUSY flag is zero before using the memory at interrupt time.

What if BUSY is nonzero?

If the BUSY flag is nonzero, you may want to (depending on your application) exit the interrupt
routine and hope the BUSY flag is zero the next time, or call SchAddTask in the Scheduler to
make the system call your routine when the BUSY flag next returns to zero. Keep in mind,
though, that only four scheduled tasks can be pending at a time.

Interrupt-time flag byte

If the byte at location $E100CB is non-zero, the Memory Manager will not move any memory
blocks, and it will not purge any blocks while trying to allocate memory (PurgeHandle and
PurgeAll will still purge blocks).

Debugging utilities may temporarily increment this byte to allocate memory in situations when it
is not safe for existing memory blocks to be moved or purged.

This flag byte is for use only by debugging aids and System Software. It would be mind-
numbingly stupid for an application to use this flag instead of using HLock and HUnlock, since
the advantages of a Memory Manager architecture with relocatable blocks would be lost.

It is not useful to check the value of the $E100CB flag. It is always set during interrupt handling
whether any non-reentrant system component is busy or not.

Apple IIGS

#58: Keyboard Modifiers Register Anomaly 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#58: Keyboard Modifiers Register Anomaly

Written by: Dave Lyons July 1989

This Technical Note discusses an anomaly with the keyboard modifiers register at location
$C025 which prevents it from always properly reflecting the state of the Control and Shift keys.

There are two cases where pressing the Control key turns on the Shift bit instead of the Control
bit in the keyboard modifiers register:

• An arrow key (or a Control key equivalent to an arrow key) is being held down
and is repeating

• The Space bar or Delete key is being held down and repeating with the Fast
Space/Delete option selected in the Control Panel

Since the Event Manager reads the modifiers byte, desktop applications may be affected by this
anomaly.

Further Reference
• Apple IIGS Hardware Reference

Apple IIGS

#59: Do Not Create Zero-Length Text Scraps 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#59: Do Not Create Zero-Length Text Scraps

Revised by: Dave Lyons January 1991
Written by: Dave Lyons July 1989

This Technical Note described a problem with zero-length text scraps.
Changed since July 1989: This Note is obsolete beginning with System Software 5.0.3. There
is no longer a problem with creating a text scrap of length zero.

In System Software 5.0.3 and later, LEFromScrap no longer trashes memory if you create a
text scrap (scrap type 0) with length zero.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#60: Menu Manager Memorabilia 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#60: Menu Manager Memorabilia

Revised by: Matt Deatherage, Dave Lyons, & Tim Swihart November 1990
Written by: Dave Lyons July 1989

This Technical Note discusses the Menu Manager, specifically a few anomalies and some tips
for making menus your friends.
Changes since May 1990: Noted that System Software 5.0.3 fixes a bug in NewMenuBar2.

The Menu Manager Is Your Friend

In general, this is the truth. You can do all kinds of nifty things with menus, especially in
System Software 5.0 and later. However, there are a few things you should know unless you
generally are fond of pain in your life.

Disabling Menus Gracefully

As documented, SetMenuFlag can be used to disable and enable entire menus. When a menu
is disabled, the menu title and all items within the menu are disabled. You may pull down a
disabled menu, but you may not select any item within it (unless the routine MenuGlobal has
been used to allow inactive menu items to be selected).

Volume 1 of the Apple IIGS Toolbox Reference says you should call DrawMenuBar if you
change the appearance of a menu title with SetMenuFlag. You can do this; this is fine. It
may, however, induce dizziness if used often.

A more graceful way to dim menus is to follow SetMenuFlag with HiliteMenu. Calling
HiliteMenu causes the menu title to be redrawn to reflect the current (or new) highlighting
and menu flags. Using HiliteMenu instead of DrawMenuBar allows you to disable and
enable menus gracefully, without noticeable flicker or threat of nasty patent infringement
lawsuits from strobe light manufacturers.

Apple II Technical Notes

Apple IIGS

2 of 4 #60: Menu Manager Memorabilia

“System” Bars Versus “Window” Bars

As far as the Menu Manager is concerned, there are only two kinds of menu bars. One kind is in
a window and the other kind is not. The former are called “window” menu bars and the latter are
generally referred to as “system” menu bars.

Most people think of the System bar as the big menu bar across the top of the screen. This is
encouraged by calls like SetSysBar, which takes a menu bar handle and sets the menu bar
across the top of the screen to that menu bar. Trying to rename one or the other of these two
concepts at this point is probably useless; instead, this Note refers to the bar across the top of the
screen as the “System” bar (with a capital S), and menu bars not in windows as “system” bars
(with a lowercase s).

When you start the Menu Manager, it creates an empty System bar for you. Before System
Software 5.0, most people simply called NewMenu and InsertMenu to insert menus into that
System bar. All was well in the world.

When 5.0 was released, it became very easy to create a new menu bar and all the menus within it
using the NewMenuBar2 call. This avoids a lot of code, and many new people use it. The
problem comes with DrawMenuBar. If you simply call NewMenuBar2 to obtain your menu
bar and menus from resources, then call DrawMenuBar to make them visible, you usually get
an empty menu bar. Why? The windowPtr parameter passed to NewMenuBar2 determines
whether or not the new menu bar created is a system bar or a window bar—it does not force the
new bar to be the System (note the capital ‘S’) bar. So when DrawMenuBar draws the current
System bar, it hasn’t changed from the empty default one created by MenuStartUp.

This is why Volume 3 of Apple IIGS Toolbox Reference recommends code similar to the
following:

 menuHandle := NewMenuBar2(refDesc,menuBarTRef,NIL);
 SetSysBar(menuHandle);
 SetMenuBar(NIL); {NIL makes the System bar the current menu bar}

if you want your menu bar to be the one across the top of the screen.

A Bug in NewMenuBar2

NewMenuBar2 is a handy thing to have around, but it does have a problem in 5.0.2 and earlier.
When the Menu Manager is done with resources, it tries to use the internal toolbox call
CMReleaseResource to free them in memory. However, it passes the wrong resource ID,
and CMReleaseResource calls SysFailMgr if it encounters any errors at all (such as
Specified resource not found).

What NewMenuBar2 does improperly is push the high word of the resource ID onto the stack
twice, instead of the high word followed by the low word. Because of the way the Resource
Manager operates, CMReleaseResource returns with no error if the ID passed is NIL, but

Developer Technical Support November 1990

Apple IIGS

#60: Menu Manager Memorabilia 3 of 4

the resource is not released (another good reason not to try to use the illegal value NIL as a
resource ID).

Apple II Technical Notes

Apple IIGS

4 of 4 #60: Menu Manager Memorabilia

If the high word of the menu bar resource is $0000, NewMenuBar2 passes a resource ID of
NIL to CMReleaseResource, which then doesn’t quite release the resource, but returns no
error. The menu bar resource hangs around in memory until ResourceShutDown. It’s
usually fairly small, so this is no loss. It still takes up less room than menu strings, which had to
stay in memory until MenuShutDown.

If the high word of the menu bar resource is not zero, the bug causes CMReleaseResource to
bring down the system. When using System Software 5.0.2 or earlier, make sure all menu bar
resource IDs have a high word of $0000. System Software 5.0.3 fixes this bug.

Menu and Menu Title ID Numbers

Table 13-4 in Volume 1 of Apple IIGS Toolbox Reference gives a listing of menu and menu item
ID numbers. In both lists, $0000 and $FFFF are “reserved for internal use” and noted that $0000
usually indicates the first menu in the bar (or first item in the menu) and $FFFF usually indicates
the last menu in the bar (or last item in the menu). Some developers have taken this to mean that
they should give their first menu an ID of $0000 and their last one an ID of $FFFF.

This assumption is incorrect.. The Menu Manager may change these values internally to reflect
such IDs, but they must not be assigned that way by an application. Some applications that use
IDs of $0000 or $FFFF break under System Software 5.0 and later. Note that $0000 can be used
as the insertAfter parameter to InsertMenu to insert a menu at the left of a menu bar, but
$FFFF is not a valid insertAfter value.

Desk Accessories and Menus

Some desk accessory developers would like to have their NDAs insert a menu in the System
menu bar. While the menu itself can be inserted, the NDA cannot detect that a user has selected
an item within that menu. The application gets the event and does not know what to do with it.
NDAs that need a menu can put a menu bar in their own window. Since the mouseDown event
then happens within the NDA’s window, the NDA gets the event and can handle it normally. Be
sure to make the NDA’s menu bar the current menu bar before calling MenuSelect from
within your NDA (to avoid possible conflicts between NDA menu item IDs and application
menu item IDs). Restore the current menu bar to the application’s menu bar before returning
control to the application. Failure to do so prevents the application from finding its menus.
Apple IIGS Technical Note #3, Window Information Bar Use documents how to put a menu in a
window’s information bar.

Documentation Error in MenuSelect

Volume 1 of Apple IIGS Toolbox Reference states that MenuSelect returns the menu ID and
the item ID of the selected item in the when field of the event record. This is incorrect.
MenuSelect actually returns the information in the wmTaskData field of the task record
(and this, in fact, is why you pass a task record and not just an event record to MenuSelect).

Developer Technical Support November 1990

Apple IIGS

#60: Menu Manager Memorabilia 5 of 4

Apple II Technical Notes

Apple IIGS

6 of 4 #60: Menu Manager Memorabilia

Menu Strings and Bank Boundaries

NewMenu takes a pointer to a string; this string must not cross a bank boundary. If it does, a
menu containing random garbage may result.

If your NewMenu strings are contained in your code segments, everything is fine—code
segments cannot cross bank boundaries. Depending on your development environment, strings
that are not in a code segment may or may not be allowed to cross bank boundaries. If you can
find no other way to guarantee the strings do not cross a bank boundary, use NewHandle to
allocate blocks with attributes $4010 (fixed, no bank cross) and copy the strings to these blocks.

If you create menus from resources, be sure the resources have their noCrossBank attribute
bits set. Note that a memory block that can cross a bank boundary usually does not, so your
application may be working by accident.

Note that this restriction applies only to menu strings, not the menu templates that can be used
with NewMenu2.

Return Values From GetMenuTitle and GetMItem

Starting with System Software 5.0, GetMenuTitle and GetMItem can return handles and
resource IDs, not just pointers. The type of data returned depends on how the menu or item was
created, so existing applications are not affected. For more information, see Apple IIGS Toolbox
Reference, Volume 3, Chapter 37, “New Features of the Menu Manager.”

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 & 3
• Apple IIGS Technical Note #3, Window Information Bar Use

Apple IIGS

#61: Window Title Handles 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#61: Window Title Handles

Written by: Dave Lyons July 1989

This Technical Note discusses extensions to SetWTitle and GetWTitle in System Software
5.0 and later which allow handles to be used as window titles.

Prior to System Software 5.0, window titles were pointers to Pascal-style strings (with a leading
length byte), but now window titles can be stored in handles, with bit 31 of titlePtr set to
indicate that the parameter is actually a handle.

Once you call SetWTitle with a handle for the title parameter, the handle belongs to the
Window Manager, which will dispose of it when the window is closed or retitled. You must not
dispose of the handle yourself, and you must not change the data it contains.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS

#62: No Non-Solid Window Background Patterns 1 of 1

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#62: No Non-Solid Window Background Patterns

Written by: Dave Lyons July 1989

This Technical Note discusses why window background patterns should always be solid; non-
solid patterns are not always drawn with the expected alignment.

When the Window Manager erases part of a window’s content area to its port’s background
pattern, it is not always aligned with already-drawn parts of the window. With a solid
background pattern, this has no visible effect; however, if you try to use a grid, for example, the
effect is obvious.

To simulate a non-solid background pattern, just erase the desired area to the pattern you want in
your update routine. For best results, use a solid background pattern of the color most common
in the pattern you really want.

For example, if you want a white grid on a black background, give the window a solid black
background pattern, and use FillRect during the update routine to draw the grid. If you keep
the default white background pattern, the end result will be the same, but your window content
will briefly be solid white before your update routine fills it with your pattern.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Apple IIGS
#63: Master Color Values 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#63: Master Color Values
Revised by: Dave Lyons May 1991
Written by: Jim Luther July 1989

This Technical Note documents master color values used for the Apple IIGS text, text background,
and border colors.
Changes since July 1989: Added information on the standard QuickDraw II 640-mode color
table and provided a 320-mode color table that produces similar colors.

Border Color Values

There are times when you may want to make parts of the IIGS Super Hi-Res screen the same color
as the text, text background, and border colors. This is particularly useful when using the Apple II
Video Overlay Card. Table 1 lists each color using the names from the Control Panel CDA, the
color register values used for that color by the color registers, and the master color value used for
that color by the Super Hi-Res screen.

Color Color Register Master Color
Name Value Value
Black $0 $0000
Deep Red $1 $0D03
Dark Blue $2 $0009
Purple $3 $0D2D
Dark Green $4 $0072
Dark Gray $5 $0555
Medium Blue $6 $022F
Light Blue $7 $06AF
Brown $8 $0850
Orange $9 $0F60
Light Gray $A $0AAA
Pink $B $0F98
Light Green $C $01D0
Yellow $D $0FF0
Aquamarine $E $04F9
White $F $0FFF

Table 1–Master Color Values

The Apple IIGS Hardware Reference documents the color registers at $C022 and $C034, and the
Apple IIGS Toolbox Reference, Volume 2 documents the master color values.

Apple II Technical Notes

Apple IIGS
2 of 2 #63: Master Color Values

Standard 640-mode Color Table

The description of dithering on pages 16-35 and 16-36 of Apple IIgs Toolbox Reference, Volume 2
is correct, but some of the color values in Table 16-5 are incorrect. Table 2 lists the standard
QuickDraw II 640-mode color table:

Color Table Color Master Color
Offset Name Value
$0 Black $0000
$1 Red $0F00
$2 Green $00F0
$3 White $0FFF
$4 Black $0000
$5 Blue $000F
$6 Yellow-green $0FF0
$7 White $0FFF
$8 Black $0000
$9 Red $0F00
$A Green $00F0
$B White $0FFF
$C Black $0000
$D Blue $000F
$E Yellow-green $0FF0
$F White $0FFF

Table 2–Standard 640-mode Color Table

Table 3 shows Master Color values you can use in 320-mode to get close approximations of the
sixteen standard 640-mode “solid” (really dithered) 640-mode colors.

Color Table Color Master Color
Offset Name Value
$0 Black $0000
$1 Deep Blue $0008
$2 Yellow-brown $0880
$3 Gray $0888
$4 Red $0800
$5 Purple $0808
$6 Orange $0F80
$7 Pink $0F88
$8 Dark Green $0080
$9 Aqua $0088
$A Bright Green $08F0
$B Pale Green $08F8
$C Gray $0888
$D Periwinkle Blue $088F
$E Yellow $0FF8
$F White $0FFF

Table 3–Standard 640-mode Color Table

Further Reference
• Apple IIGS Hardware Reference, pp. 58, 76-78
• Apple IIGS Toolbox Reference, Volume 2, p. 16-31

Developer Technical Support May 1991

Apple IIGS
#63: Master Color Values 3 of 2

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 1 of 15

Apple II
Technical Notes

Developer Technical Support
Apple IIGS

#64: Apple IIGS Installer and Installer Scripts

Revised by: Jim Luther September 1989
Written by: Jim Luther & “Jay” Schaffer July 1989

This Technical Note describes how the Apple IIGS Installer program executes script files and
documents how to write script files for it. Note that some of the information in this Note is
specific to Installer V1.10.
Changes since July 1989: Changed the sourcePrefix and sourcePathname field
descriptions, since sourcePrefix must not be empty if any sourcePathname fields are
partial pathnames.

Introduction

The Apple IIGS Installer, a utility program that is included with Apple IIGS System Software, can
be used to install System Software or applications on a given volume. “Scripts” control the
Installer, and they are simply lists of files with information about where and how to install those
files. The user interface of the Installer is described in the Apple IIGS System Tools Manual.
This Note describes how the Installer executes scripts and how to write scripts to install your
applications.

Installer Setup on Disk

Setting up the Installer on your application disk is a simple procedure.

1. Copy the Installer program to your application disk.
2. Create a subdirectory (folder) named Scripts at the same directory level as the

Installer program.
3. Copy your scripts into the Scripts subdirectory.

How the Installer Processes Scripts

The Installer reads script files into memory in their entirety, parses them, strips them of all
comments, compacts them, then verifies them. It then checks the scriptFlags field to see if
a Caution alert should be displayed. This facility permits the script writer to force the user to

Apple II Technical Notes

Apple IIGS

2 of 15 #64: Apple IIGS Installer and Installer Scripts

read the script’s help message and make a choice to either continue with file manipulations or
skip the installation altogether, which is especially useful when a script installation would be
inappropriate on a certain volume.

The Installer then executes the script in two passes. The first pass determines if the update can
be completed by calculating the total size of the files to be deleted from the destination volume
and of the files to be installed. If there is not sufficient room on the destination volume, the
Installer determines the amount of additional space required to complete installation (number of
blocks needed divided by two, plus one), reports this result to the user in terms of kilobytes, then
terminates execution of the script. It is impossible to determine directory block requirements
with complete accuracy. The Installer’s space calculation algorithms are good, but they are not
perfect.

If the first pass determines that there is sufficient room for the complete update, the Installer
continues with the second pass, deleting and copying files in accordance with the instructions
contained in the script flags. The Installer “blindly” unlocks locked files and folders, creates
necessary subdirectories if they do not already exist, and replaces requested files without regard
to version numbers or creation dates of existing files.

The user may terminate execution of any script (and of those which follow) by pressing the
Open-Apple–Period (-.) key combination. The Installer checks for key-down events between
every file transfer and at the end of the first pass. If the user requests termination, the Installer
warns of the possibility of leaving an unknown mix of file versions on the volume and gives the
user the opportunity to continue with the installation or to terminate as requested. (See the
“Error Handling” section for more details.)

Scripts are typically written with the ability to remove all of their related files from a particular
volume (i.e., in case of an accidental installation); however, they do not have the ability to
remove directories which contain files (even if the script installed them), and they can neither
recover nor list files which were deleted during the installation process.

After processing all the instructions in a script, the Installer checks to see if additional scripts are
selected, and, if they are, it executes them in the order in which they appear in the update
selection window until all scripts are successfully completed. Once all selected scripts are
completed, the Installer notifies the user that the installation or removal process was successful.

It is important to note several facts about script execution:

• Each script is processed from beginning to end as if it were the only script
selected.

• If the execution of a script generates an error, or if the user terminates further
processing of a script, the queue is cleared of any additional scripts waiting to be
executed and control returns to the user.

• It is possible for the Installer to execute several scripts successfully before
encountering one which cannot be executed due to insufficient space on the
destination volume.

• All selected scripts use the folder that the user selects as the “Application Folder.”

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 3 of 15

If a user installs or removes system files (i.e., tools, fonts, drivers, etc.) from the boot volume, it
may create problems. Therefore, whenever a system level update occurs on a boot volume, the
Installer disables all desk accessories and closes the Sys.Resources file. When the user quits the
Installer after a system level update, it alerts the user of the need to restart the system, and the
default response to this alert is to restart.

Error Handling

User Cancel Request

If the user cancels script execution any time after it has started (i.e., by pressing the Open-
Apple–Period (-.) key combination), the Installer treats it as an error condition since there is
likely an unknown mix of file versions on the volume. In this case, the Installer gives the user
the opportunity to continue with the installation or to terminate as requested. A user-initiated
cancel request is not acknowledged until the current file copy or delete request is complete.
Terminating script execution also clears the queue of other scripts waiting for execution and
returns control to the user.

Non-Recoverable Errors

Some errors are simply fatal. If a directory or file is corrupted, the media is bad, or the selected
script is longer than 65,535 bytes, the Installer halts execution of the script and alerts the user
that a fatal error has occurred with a Stop alert box. Clicking the OK button in this alert box
clears the queue of other scripts waiting for execution and returns control to the user.

Script Errors and File Not Found Errors

When the Installer detects a script error or a File Not Found error, it reports the name of the
source file and destination file it was processing with the normal error message. This additional
information should help script writers find the offending fileSpecification field. If the
error is associated with the header, no filename is reported. This condition clears the queue of
other scripts waiting for execution and returns control to the user.

Volume Not Found Errors

Volume Not Found errors produce a dialog box prompting the user to insert the missing volume.
If the user clicks the OK button, the Installer attempts the file access call again, but if the user
clicks the Cancel button, the Installer flags it as an error condition, clears the queue of other
scripts waiting for execution, and returns control to the user.

Script File Composition

A script is simply a list of instructions for the Installer, and it can specify that files be copied
from a source volume to a destination volume (or directory, when applicable) or that files be

Apple II Technical Notes

Apple IIGS

4 of 15 #64: Apple IIGS Installer and Installer Scripts

removed from a destination volume. Script files are ASCII files (file type $04) containing
printable ASCII characters (i.e., with the high-bit clear). The directory in which the Installer
resides must contain a directory named Scripts, in which all script files visible to that copy of the
Installer must be located. Script files may not exceed 65,535 bytes in length. Any attempt to
execute a script larger than this size produces a non-recoverable error.

A script consists of a header field followed by any number of fileSpecification and
comment fields. These fields are separated by tildes (~). Two consecutive tildes signal the end
of the script, and any additional characters past the end of script marker are ignored. Figure 1
shows the syntax diagram for a script.

header

~ fileSpecification

comment

~ ~

Figure 1–Script Syntax Diagram

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 5 of 15

header Field

The header field consists of the scriptIdentifier, scriptVersion, scriptFlag,
scriptName, and scriptHelp fields, and it may also contain an optional sourcePrefix
field. These fields supply the installer with general information about the script file. No
comments are permitted within the header field. Figure 2 shows the syntax diagram for the
header field.

scriptIdentifier

scriptVersion

scriptFlag

scriptName

scriptHelp

sourcePrefix

Figure 2–header Field Syntax Diagram

The scriptIdentifier field identifies the text file as a script file, and it consists of eight
characters (“SCRIPT” followed by two carriage returns, or 53 43 52 49 50 54 0D 0D in
hexadecimal). Figure 3 shows the syntax diagram for the scriptIdentifier field.

“SCRIPT” followed by 2 carriage return characters

Figure 3–scriptIdentifier Field Syntax Diagram

The scriptVersion field defines the minimum version of the Installer program that can read
and execute the instructions in this script file. It should normally consist of seven characters
(“V1.10” followed by two carriage returns, or 56 31 2E 31 30 0D 0D in hexadecimal).

Version 1.0 of the Installer moves only the data fork and does not return an error. For
compatibility with the original release of the Installer, the value of scriptVersion is V1.00.
Scripts which move extended files (i.e., files with resource forks) or work with an AppleShare
volume must have a scriptVersion of V1.10. Figure 4 shows the syntax diagram for the
scriptVersion field.

“V1.10” followed by 2 carriage return characters

Apple II Technical Notes

Apple IIGS

6 of 15 #64: Apple IIGS Installer and Installer Scripts

Figure 4–scriptVersion Field Syntax Diagram

The scriptFlag field defines the directory requirements of the script file. The first character
of the scriptFlag field must be either the uppercase character “R” (indicating that the
installation must occur at the root directory, such as in a System Software update) or the
uppercase character “X” (indicating that the user must specify the directory where installation
should take place).

The second character of the scriptFlag field must be either an uppercase or lowercase
character “R” (indicating that the Remove command is valid for this script) or an uppercase or
lowercase character “N” (indicating that the Remove command is not valid and the button should
be dimmed and inactive). If this character is lowercase, before any file manipulations begin, the
Installer displays a Caution alert with the contents of the scriptHelp field and button controls
to permit the user to choose whether to execute the script or to skip it and go to the next script, if
any.

For example, a scriptFlag field might contain the following four characters: “Rr” followed
by two carriage returns, or 52 52 0D 0D in hexadecimal. Figure 5 shows the syntax diagram for
the scriptFlag field.

2 carriage return charactersR

X

R

r

N

n

Figure 5–scriptFlag Field Syntax Diagram

The scriptName field defines the name of the script as it appears in the Installer’s script
selection window. It is recommended that care be taken to use a name that fits within the display
window. This field consists of any number of characters ending with a carriage return and may
not include a tilde or carriage return. An example of scriptName might be: “Example Script”
followed by a carriage return, or 45 78 61 6D 70 6C 65 20 53 63 72 69 70 74 0D in hexadecimal.
Figure 6 shows the syntax diagram for the scriptName field.

any character except ~ and carriage return

carriage return

Figure 6–scriptName Field Syntax Diagram

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 7 of 15

The scriptHelp field defines the text which appears when the user clicks the Help button. It
is recommended that care be taken to ensure the text fits within the help window. This field
consists of any number of characters ending with two backslashes (\\) and a carriage return. It
may not include two consecutive backslashes or a tilde; however, it may include carriage returns.
An example of scriptHelp might be: “Help\\” followed by a carriage return, or 48 65 6C 70
5C 5C 0D in hexadecimal. Figure 7 shows the syntax diagram for the scriptHelp field.

any character except \ \ and ~

\ \ followed by a carriage return

Figure 7–scriptHelp Field Syntax Diagram

The optional sourcePrefix field is the prefix used with source files defined by partial
pathnames. Either slashes (/) or colons (:) may be used as the pathname separator character. If
there is no sourcePrefix, this entry must be empty. If no sourcePrefix is specified, all
sourcePathname fields used within fileSpecification fields must be full pathnames.
An example of a sourcePrefix might be: “:System.Disk:System”, or 3A 53 79 73 74 65 6D
2E 44 69 73 6B 3A 53 79 73 74 65 6D in hexadecimal. Figure 8 shows the syntax diagram for
the sourcePrefix field. GS/OS Reference defines legal pathnames and prefixes.

legal GS/OS prefix

Figure 8–sourcePrefix Field Syntax Diagram

Apple II Technical Notes

Apple IIGS

8 of 15 #64: Apple IIGS Installer and Installer Scripts

fileSpecification Field

A fileSpecification field contains the instructions to copy a file to or remove a file from
the destination volume (or directory, when applicable). A fileSpecification field is
composed of the fileSpecWorkspace, fileSpecFlags, fileTypeAuxType,
createDateTime, sourcePathname, and destinationPathname fields. The script
may contain as many fileSpecification fields as necessary. Figure 9 shows the syntax
diagram for the fileSpecification field.

fileSpecWorkspace

fileSpecFlags

fileTypeAuxType

createDateTime

sourcePathname

destinationPathname

Figure 9–fileSpecification Field Syntax Diagram

The fileSpecWorkspace field is 16 bytes that the Installer uses for work space, it can
contain any character except a tilde, and it may not begin with a tilde or an asterisk (*). It is
suggested that 15 readable characters followed by a carriage return might be easiest to see and
count. An example of fileSpecWorkspace might be: “:::Workspace:::” followed by a
carriage return, or 3A 3A 3A 57 6F 72 6B 73 70 61 63 65 3A 3A 3A 0D in hexadecimal. Figure
10 shows the syntax diagram for the fileSpecWorkspace field.

any 1 character except ~ and * any 15 characters except ~

Figure 10–fileSpecWorkspace Field Syntax Diagram

The fileSpecFlags tell the Installer what this fileSpecification does. The
fileSpecFlags field consists of the requiredFlag field followed by the
optionalFlags field and a carriage return. Figure 11 shows the syntax diagram for the
fileSpecFlags field.

requiredFlag optionalFlags carriage return

Figure 11–fileSpecFlags Field Syntax Diagram

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 9 of 15

The requiredFlag field tells the Installer what to do with this fileSpecification
when the Install or Remove buttons are used. The requiredFlag field must start with only
one of the following characters: 1, 2, 3, or 4, and it must end with a carriage return. Any
number of characters (except tilde and carriage return) may fall between the flag character and
the ending carriage return. These additional characters are ignored by the Installer, making it
possible to place comments within a requiredFlag field. Figure 12 shows the syntax
diagram for the requiredFlag field.

The four requiredFlag characters tell the installer the following:

1 If the user clicks the Install button, delete the destinationPathname from
the destination volume, if it exists, and copy the file from the source volume. If
the user clicks the Remove button, delete the destinationPathname from
the destination volume, if it exists.

2 If the user clicks the Install button, delete the destinationPathname from
the destination volume, if it exists, and copy the file from the source volume. If
the user clicks the Remove button, do nothing.

3 If the user clicks the Install button, delete the destinationPathname from
the destination volume, if it exists. If the user clicks the Remove button, delete
the destinationPathname from the destination volume, if it exists.

4 If the user clicks the Install button, delete the destinationPathname from
the destination volume, if it exists. If the user clicks the Remove button, do
nothing.

any character except ~ and carriage return

carriage return

1

2

3

4

Figure 12–requiredFlag Field Syntax Diagram

The optionalFlags field gives the Installer additional duties to perform with this
fileSpecification when the Install or Remove buttons are used. The five option fields,
B, C, D, F, and U (must be uppercase), within the optionalFlags field are formatted the
same as the requiredFlag field. Figure 13 shows the syntax diagram for the
optionalFlags field.

The five optionalFlags characters tell the installer the following:

B This flag instructs the Installer to replace the boot code on blocks zero and one of
the destination volume. The boot code replacement fileSpecification is
reserved for use by Apple Computer, Inc.

Apple II Technical Notes

Apple IIGS

10 of 15 #64: Apple IIGS Installer and Installer Scripts

C The creation date and time of the file designated by the sourcePathname field
must match the createDateTime entry in this fileSpecification field.

D The designated destinationPathname should be deleted if, and only if, it
has a creation date and time that is older than createDateTime. This flag
must be used with a “4” requiredFlag.

F The file type and auxiliary type of the file designated by the sourcePathname
must match the fileTypeAuxType field in this fileSpecification field.

U Update (replace) the existing destinationPathname only if it exists. This
flag must be used with a “1” or a “2” requiredFlag.

B

C

D

U

any character except ~ and carriage return

carriage return

any character except ~ and carriage return

carriage return

any character except ~ and carriage return

carriage return

any character except ~ and carriage return

carriage return

F

any character except ~ and carriage return

carriage return

Figure 13–optionalFlags Field Syntax Diagram

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 11 of 15

The fileTypeAuxType field is used if the “F” optionalFlags field is present in the
fileSpecification field. If the fileTypeAuxType field is used, it must start with a
fileType field and an auxType field and must end with a carriage return. Any number of
characters (except tilde and carriage return) may fall between the auxType field and the ending
carriage return. These additional characters are ignored by the Installer, making it possible to
place comments within the fileTypeAuxType field. If the “F” optionalFlags field is
not used, then the fileTypeAuxType field must be only a carriage return. For a list of current file
types and auxiliary types, see the Apple II File Type Notes. Figure 14 shows the syntax diagram
for the fileTypeAuxType field.

fileType auxType

any character except ~ and carriage return

carriage return

Figure 14–fileTypeAuxType Field Syntax Diagram

The fileType part of the fileTypeAuxType field consists of four, and only four,
hexadecimal digits. These four digits identify a GS/OS file type if the “F” optionalFlags
field is present in the fileSpecification field. An example of fileType might be:
“00B3”, or 30 30 42 33 in hexadecimal. Figure 15 shows the syntax diagram for the fileType
field.

four and only four hexadecimal digits

Figure 15–fileType Field Syntax Diagram

The auxType part of the fileTypeAuxType field consists of eight, and only eight,
hexadecimal digits. These eight hexadecimal digits identify a GS/OS auxiliary type if the “F”
optionalFlags field is present in the fileSpecification field. An example of
auxType might be: “00000000”, or 30 30 30 30 30 30 30 30 in hexadecimal. Figure 16 shows
the syntax diagram for the auxType field.

eight and only eight hexadecimal digits

Figure 16–auxType Field Syntax Diagram

Apple II Technical Notes

Apple IIGS

12 of 15 #64: Apple IIGS Installer and Installer Scripts

The createDateTime field is used if the “C” or “D” optionalFlags fields are present in
the fileSpecification field. If the createDateTime field is used, it must start with a
date field, a single space and a time field and must end with a carriage return. Any number of
characters (except tilde and carriage return) may fall between the time field and the ending
carriage return. These additional characters are ignored by the Installer, making it possible to
place comments within the createDateTime field. If the “C” or “D” optionalFlags
fields are not used, then the createDateTime field must be only a carriage return. Figure 17
shows the syntax diagram for the createDateTime field.

date time

any character except ~ and carriage return

carriage return

space

Figure 17–createDateTime Field Syntax Diagram

The date subfield of the createDateTime field is nine ASCII characters consisting of the
day of the month, a space, a three-character month abbreviation, a space, and the year. The day
of the month is a two-character number between 01 and 31. The month abbreviation may be
“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, “Nov”, or “Dec” in any
combination of uppercase and lowercase characters. The year is a two-character number
between 00 and 99. An example of the date subfield might be: “31 Mar 57”, or 33 31 20 4D 61
72 20 35 37 in hexadecimal. Figure 18 shows the syntax diagram for the date subfield.

two and only two decimal digits

three character month abbreviation

two and only two decimal digits

space

space

Figure 18–date Field Syntax Diagram

The time subfield of the createDateTime field is five ASCII characters consisting of the
military format hour of the day, a colon, and the minute of the hour. The hour of the day is a
two-character number between 00 and 23. The minute of the hour is a two-character number
between 00 and 59. An example of the time subfield might be: “08:30”, or 30 38 3A 33 30 in
hexadecimal. Figure 19 shows the syntax diagram for the time subfield.

two and only two decimal digits

colon two and only two decimal digits

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 13 of 15

Figure 19–time Field Syntax Diagram

The sourcePathname field describes the name and location of the source file. The
sourcePathname field consists of a valid GS/OS pathname followed by a carriage return. If
the sourcePathname is a partial pathname, the sourcePrefix in the header field is
used to complete the full pathname. If no sourcePrefix is specified in the header field, all
sourcePathname fields must be full pathnames. If the fileSpecFlags indicate removal
only, then the sourcePathname is a carriage return only. No optional comments are
permitted in this field. Figure 20 shows the syntax diagram for the sourcePathname field.
GS/OS Reference defines legal pathnames and prefixes.

valid GS/OS pathname

carriage return

Figure 20–sourcePathname Field Syntax Diagram

The destinationPathname field describes the name and location of the destination file.
The destinationPathname field consists of a valid GS/OS partial pathname (the prefix has
already been set by the Installer to the location of the destination directory, either the root
directory or a user selected directory) followed by a carriage return. No optional comments are
permitted in this field. Figure 21 shows the syntax diagram for the destinationPathname
field. GS/OS Reference defines legal pathnames and prefixes.

Note that GS/OS now allows filenames to contain both uppercase and lowercase characters.
Although filenames are not case sensitive, you should be consistent in your use of uppercase and
lowercase usage in the destinationPathname field. Whatever you use here is what
everyone sees.

valid GS/OS partial pathname carriage return

Figure 21–destinationPathname Field Syntax Diagram

comment Field

The comment field allows commenting script files. A comment field must begin with an
asterisk. The Installer ignores all characters within a comment field, except tilde, and the
comment field ends at the first tilde encountered. Figure 22 shows the syntax diagram for the
comment field.

*

any character except ~

Figure 22–comment Field Syntax Diagram

Apple II Technical Notes

Apple IIGS

14 of 15 #64: Apple IIGS Installer and Installer Scripts

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 15 of 15

Examples

Now that the script language is described, it’s time to look at a couple of example scripts. The
first example, CD-ROM from the System.Tools disk, installs the files necessary for you to use
CD-ROM drives. The CD-ROM script is an example of using the Installer to install or update
existing software. The second example, Advanced Disk Utility from the System.Tools disk,
installs the files necessary to update the Advanced Disk Utility program. The Advanced Disk
Utility script is an example of using the Installer to install an application in any directory on the
destination volume. In both examples (Examples 1 and 2), carriage returns are shown with a
paragraph mark (¶) since they are used as delimiters within scripts.

The CD-ROM Script

The header field starts with “SCRIPT” to identify this text file as a script file. The
scriptVersion is “V1.10” because this script may have to copy the resource fork of a file.
The scriptFlag field is “RR”, which tells the Installer to install at the root directory level and
that the Remove button is valid for this script. The second “R” character in the scriptFlag
field is uppercase, which tells the Installer not to display a Caution alert with the contents of the
scriptHelp field. The scriptName field is “CD-ROM”. The scriptName is shown in
the Installer’s list of scripts. The scriptHelp field (everything between the scriptName
field and the “\\” delimiter) is the text that will be displayed if the Installer’s Help button is used.
The sourcePrefix is “:SYSTEM.TOOLS”. That is the name of the volume where the source
files for this update are found.

After the header field, there is a single comment field and then five fileSpecification
fields. The comment field starts at the asterisk after the first tilde and ends at the next tilde. All
five fileSpecification fields start with the suggested 16-byte fileSpecWorkSpace
(“:::WorkSpace:::¶”) and end at the next tilde.

The first, fourth, and fifth fileSpecification fields use the “1” requiredFlag. This
flag tells the Installer to copy the sourcePathname to the destinationPathname if the
Install button is used, or to delete the destinationPathname if the Remove button is used.
Notice the three blank lines after the “1” requiredFlag. The first blank line marks the end of
the fileSpecFlags. The fileTypeAuxType field, the second blank line, is blank because
the “F” optionalFlags field is not used. The createDateTime field, the third blank line,
is blank because the “C” and “D” optionalFlags are not used.

The second fileSpecification field uses the “3” requiredFlag to tell the Installer to
delete the destinationPathname, “System:Drivers:SCSI.Driver”, if either the Install or the
Delete button is used. SCSI.Driver is the interim SCSI driver from System Software 4.0. The
sourcePathname field, the fourth blank line after the “3” requiredFlag, is not needed
since the “3” requiredFlag is used.

The third fileSpecification field uses the “2” requiredFlag to tell the Installer to
delete the destinationPathname, “System:Drivers:SCSI.Manager” if the Install button is
used. The Installer does not delete the destinationPathname if the Remove button is

Apple II Technical Notes

Apple IIGS

16 of 15 #64: Apple IIGS Installer and Installer Scripts

used. The “2” requiredFlag prevents this script from removing SCSI.Manager, which
might have been installed by another script.

Two consecutive tildes after the fifth fileSpecification field signal the end of this script.

Developer Technical Support September 1989

Apple IIGS

#64: Apple IIGS Installer and Installer Scripts 17 of 15

SCRIPT¶
¶
V1.10¶
¶
RR¶
¶
CD-ROM¶
This script installs the files necessary for you to use CD-ROM drives. The selected
disk must be a startup disk.\\¶
:SYSTEM.TOOLS~*¶
 This is the Installer script necessary to move the CD-ROM files from :SYSTEM.TOOLS to
the user's startup disk.¶
~:::Workspace:::¶
1¶
¶
¶
¶
System:FSTs:HS.FST¶
System:FSTs:HS.FST¶
~:::Workspace:::¶
3¶
¶
¶
¶
¶
System:Drivers:SCSI.Driver¶
~:::Workspace:::¶
2¶
¶
¶
¶
System:Drivers:SCSI.Manager¶
System:Drivers:SCSI.Manager¶
~:::Workspace:::¶
1¶
¶
¶
¶
System:Drivers:SCSICD.Driver¶
System:Drivers:SCSICD.Driver¶
~:::Workspace:::¶
1¶
¶
¶
¶
System:Desk.Accs:CDRemote¶
System:Desk.Accs:CDRemote¶
~~

Example 1–CD-ROM Script

Apple II Technical Notes

Apple IIGS

18 of 15 #64: Apple IIGS Installer and Installer Scripts

The Advanced Disk Utility Script

The header field starts with “SCRIPT” to identify this text file as a script file. The
scriptVersion is “V1.10” because this script may have to copy the resource fork of a file.
The scriptFlag field is “XR”, which tells the Installer the user must specify the directory
where the installation should take place and that the Remove button is valid for this script. The
second character (R) in the scriptFlag field is uppercase, which tells the Installer not to
display a Caution alert with the contents of the scriptHelp field. The scriptName field is
“Advanced Disk Utility”. The scriptName will be shown in the Installer’s list of scripts. The
scriptHelp field (everything between the scriptName field and the “\\” delimiter) is the
text that will be displayed if the Installer’s Help button is used. The sourcePrefix is
“:SYSTEM.TOOLS”. That is the name of the volume where the source files for this update are
found.

After the header field, there is a single comment field then one fileSpecification
field. The comment field starts at the asterisk after the first tilde and ends at the next tilde. The
fileSpecification field starts with the suggested 16-byte fileSpecWorkSpace
(“:::WorkSpace:::¶”) and ends at the next tilde.

The fileSpecification field uses the “1” requiredFlag. This tells the Installer to
copy the sourcePathname to the destinationPathname if the Install button is used or
to delete the destinationPathname if the Remove button is used.

Two consecutive tildes signal the end of this script.

SCRIPT¶
¶
V1.10¶
¶
XR¶
¶
Advanced Disk Utility¶
This script installs the files necessary to update the Advanced Disk Utility program.
These files will be installed on the selected disk.\\¶
:SYSTEM.TOOLS~*¶
 This is the Installer script necessary to update the Advanced Disk Utility file from
:SYSTEM.TOOLS to the user's disk.¶
~:::Workspace:::¶
1¶
¶
¶
¶
Adv.Disk.Util¶
Adv.Disk.Util¶
~~

Example 2–Advanced Disk Utility Script

Further Reference
• Apple IIGS System Tools Manual
• GS/OS Reference

	50. Extended Serial Interface Error Handling
	51. How to Avoid Running Out of Memory
	52. Loading & Special Memory
	53. Desk Accessories & Tools
	54. MIDI Drivers
	55. Avoiding ClrHeartBeat
	56. Managing Dynamic Segments
	57. The Memory Manager & Interrupts
	58. Keyboard Modifiers Register Anomaly
	59. Do Not Create Zero-Length Text Scraps
	60. Menu Manager Memorabilia
	61. Window Title Handles
	62. No Non-Solid Window Background Patterns
	63. Master Color Values
	64. Apple IIGS Installer & Installer Scripts

