
Apple IIGS

#80: QuickDraw II Clipping 1 of 9

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#80: QuickDraw II Clipping

Written by: Eric Soldan March 1990

This Technical Note explains a lot about QuickDraw II operation, specifically clipping.

Before Beginning

Before beginning this Note, some statements, disclaimers, and definitions:

1. This is not a substitute for the QuickDraw II introduction in the Apple IIGS

Toolbox Reference, but rather a supplement.
2. A pixelmap is a series of bytes that hold pixel data whose rectangular shape is

defined by a LocInfo structure.

This Note describes in great detail the way that QuickDraw II does things with pixelmaps. It
begins with a description of the LocInfo structure, which is the most important thing to
understand in terms of QuickDraw II pixelmap management. Once this is understood, this Note
covers how it applies to using functions such as PPToPort , PaintPixels , and
CopyPixels. And once this is understood, it then describes how LocInfo structures are
used to control drawing into a grafPort. (PPToPort is used in this Note. PaintPixels
and CopyPixels are very close in function to PaintPixels. The information and theory in
this Note also apply to these calls.)

Understanding the material in this Note should help you better understand the entire toolbox. It
is surprising how much can be accomplished with the toolbox without completely understanding
these concepts; it is also surprising how much easier programming with the toolbox gets when
these concepts are fully understood.

Note: Structures are written with C syntax in this Note. In addition, this Note uses the
screen address 0xE12000L. The possibility of shadowing being active and the
screen address being 0x12000L is ignored.

The Beginning

One must begin with the LocInfo structure, which is as follows:

Apple II Technical Notes

Apple IIGS

2 of 9 #80: QuickDraw II Clipping

struct LocInfo {
 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word width; /* Width */
 Rect boundsRect; /* BoundsRect */
};

For this Note, one can change this structure a little bit by calling the width element
rowBytes. This convention is good because rowBytes is more descriptive than width (it
indicates that one is measuring the width in bytes) and it allows one to use the word “width”
elsewhere in this Note without confusion. So for the purposes of the Note, the new LocInfo
structure definition is as follows:

struct LocInfo {
 Word portSCB; /* SCB in low byte */
 Pointer ptrToPixImage; /* ImageRef */
 Word rowBytes; /* Width in bytes*/
 Rect boundsRect; /* BoundsRect */
};

The ptrToPixImage field is a pointer to some block of bytes in memory. (This block of
bytes is referred to as the pixImage from here on.) A pixImage doesn’t have any inherent
shape. QuickDraw II deals with it as a rectangle, and the LocInfo record defines the
rectangularity of it.

When saving a 32,000 byte screen image, one doesn’t save the number of bytes of which each
row consists. One assumes that each row is 160 bytes by convention, and this is a safe
assumption, since the IIGS video hardware expects 160 bytes. But the point is that in the 32,000
bytes of screen data, there is no indicator as to the specific size of a row. One must just know
that it is 160 bytes per row. This size is fine for screen shots, but it is not fine when different
pixelmaps can be different widths. If they can be different widths, then one also needs some
information as to what those widths are, hence the portSCB, rowBytes, and boundsRect
fields in a LocInfo structure.

The boundsRect and portSCB fields tell the shape of the pixelmap in pixels, the
boundsRect tells how many pixels wide and tall the pixelmap is, and the portSCB tells how
big those pixels are (320-mode pixels are four bits wide and 640-mode pixels are two bits wide).
One would think that this would be enough information to determine the size of the pixImage,
but it isn’t. The rowBytes can be larger than the boundsRect/portSCB would indicate
(see Figure 1). This situation is legal; it means that some bytes are being wasted, but it is legal.

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 3 of 9

boundsRect
0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

Figure 1–Sample LocInfo Structure

One simply has to know the size of the pixImage, since it cannot be determined by the
LocInfo information. If the pixImage is the screen, then it is 32,000 bytes. If it is a fixed or
locked handle, then one can do a FindHandle on the pointer followed by a GetHandleSize
on the found handle.

Figure 1 represents a sample LocInfo structure. The portSCB (although not pictured) is also
relevant, as it determines the size of the pixels. If the pixelmap is a 320-mode pixelmap, one
could change it to a 640-mode pixelmap by changing the portSCB to 640 mode and doubling
the width of the boundsRect. In doing this conversion, note that rowBytes is not affected
and that the pixImage does not change size.

In the example illustrated in Figure 1, the pixImage is bigger than the boundsRect, but
again, this is okay. However, this is not the case for the screen, where the rowBytes is 160 and
the height of the boundsRect is 200 (the size of the screen is exactly equal to 160 * 200 =
32,000).

There are some rules to determining the rowBytes value. First, rowBytes must not be too
small. This is obvious. Second, rowBytes must be evenly divisible by eight. This is not at all
obvious, but it is very important. QuickDraw II makes some assumptions for speed, and one of
them is that rowBytes is a multiple of eight.

So much for describing the LocInfo structure. Now for how to use it via PPToPort.

PPToPort accepts (among other things) a pointer to a source LocInfo record and a pointer to
a source rectangle. PPToPort does not use the source rectangle directly; it first intersects it
with the boundsRect in the LocInfo record, and it uses this intersection rectangle instead.
This intersection rectangle guarantees that the area involved is completely enclosed by the

Apple II Technical Notes

Apple IIGS

4 of 9 #80: QuickDraw II Clipping

boundsRect (and therefore within the pixImage). If the source rectangle is entirely outside
the boundsRect, then the intersection of the source rectangle and the boundsRect is empty,
thus nothing is drawn.

boundsRect
0,0

50,25

523,77

rowBytes

Block of bytes pointed to by ptrToPixImage.

313,97

intersection rectangle

313,77

sourceRect

Figure 2–Sample LocInfo Structure With sourceRect

Figure 2 contains a sourceRect which is not completely contained by the boundsRect; the
sourceRect is so wide that it even goes beyond the edge of the pixImage. If the entire
contents of this rectangle were drawn, the result would be quite a mess, since it extends beyond
the boundary of the pixelmap. However, PPToPort first intersects the sourceRect and the
boundsRect, and then uses the resulting intersection rectangle (illustrated with a thicker
border in the figure). PPToPort uses only the contents of the intersection rectangle.

Up until now, the boundsRect upper-left corner has always been 0,0. This is an easy way to
think of it, but it is not necessary. The important thing to remember about these rectangles is
their relation to one another. If one were to offset both the boundsRect and sourceRect in
this example, the values for the corners of the rectangles would change, but the relationship
between the two rectangles would stay the same. Figure 3 illustrates the same example if one
were to offset both rectangles by -60,-45.

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 5 of 9

-60,-45
boundsRect

-10,-20

463,32

rowBytes

Block of bytes pointed to by ptrToPixImage.

253,52

intersection rectangle

253,32

sourceRect

Figure 3–Sample LocInfo Structure Offset by -60,-45

Notice that the same area of the pixImage is involved, even though the boundsRect and
sourceRect are offset. When one offsets both the boundsRect and sourceRect by the
same amount, the referenced part of the pixImage does not change—this is an important
concept.

Time to ask a question that is answered shortly: “Why isn’t the upper-left corner of the
boundsRect always 0,0?” Because the LocInfo record isn’t always a source LocInfo
record. It can also be a destination LocInfo record, and the most common pixelmap to which a
destination LocInfo record refers is the screen.

If you had not noticed, the discussion changes gears here—to discuss LocInfo records that
indicate a destination pixelmap. Basically, everything is the same as has been described with
two exceptions. First, destination pixelmaps do not have a sourceRect. Instead there is a
rectangle that describes some portion of the destination pixelmap, and this rectangle is called the
portRect. Second, the LocInfo record is part of a grafPort, and each grafPort has a
LocInfo record as part of the grafPort data structure.

It is important to remember that a LocInfo record can be used as either a source or destination
LocInfo. All a LocInfo record does is define some bytes in memory as a pixImage. Even
the screen, which is usually used as a destination pixelmap, can be used as a source pixelmap.
There could be situations where one might want to take part of the screen and copy it into some
off-screen pixelmap, and in this case, the screen would be a source of pixel data, not a
destination.

In the case of the screen pixelmap, there are no wasted bytes in the pixImage, as all of the
screen bytes are enclosed by the boundsRect. The screen width of 160 is evenly divisible by

Apple II Technical Notes

Apple IIGS

6 of 9 #80: QuickDraw II Clipping

eight, so there is no slop at the right edge, and there are no extra rows hanging off the bottom of
the boundsRect.

Figure 4 shows a sample LocInfo and portRect (every grafPort has a LocInfo and a
portRect).

portRect

boundsRect
0,0

98,54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

640,200

640,143

intersection rectangle

Figure 4–Sample LocInfo and portRect

Following are two important points to remember:

1. Every grafPort works in local (not global) coordinates (local coordinates are
defined soon).

2. The origin of the grafPort is the upper-left corner of the portRect. There is
no GetOrigin call; there is a SetOrigin call, but no GetOrigin. To get
the origin of a grafPort, one needs to do a GetPortRect call, and then look
at the upper-left corner to determine the current origin of the grafPort. This is
the way to get the origin.

In the case of Figure 4, local and global coordinate systems are the same, as is always the case
when the boundsRect has an upper-left corner of 0,0 (which it seldom does). So, for this
exceptional case, one doesn’t need a definition of local coordinates. In the global coordinate
system, the upper-left corner of the screen is 0,0. In local coordinates, the upper-left corner of
the screen is whatever the boundsRect says it is. So when the upper-left corner of the
boundsRect is 0,0, the global and local coordinate systems are the same.

In Figure 4, if one tried to draw something to point 0,0, it would not draw—it would be clipped
because it is outside the portRect. So even if one tried to draw there, it would not change point
0,0. If a user moved a mouse to that location and an application performed a GetMouse (which

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 7 of 9

returns the mouse location in the local coordinates of the current grafPort), it would return
0,0 as the mouse location.

If one did a SetOrigin(0,0), then the boundsRect and portRect would be offset by
the difference between the old and new origins. Both rectangles would be offset, so the
relationship between them would remain the same, as Figure 5 illustrates.

portRect

boundsRect
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89
819,89

intersection rectangle

Figure 5–Sample LocInfo and portRect, Both Offset

Now if a user moves a mouse to the upper-left corner of the screen, a call to GetMouse returns
a value of -98,-54, as expected, and if a user moves the mouse to the upper-left corner of the
portRect, a call to GetMouse returns 0,0, again as expected. This is how origins work and
how the conceptual drawing space relates to the grafPort. The boundsRect of the
grafPort (in the LocInfo record of the grafPort) and the portRect of the grafPort
are offset when one calls SetOrigin. It is that simple.

Now that it is simple, time to complicate matters with one more player in the QuickDraw II
clipping world: the visRgn.

The visRgn exists for one purpose: to cause more clipping. It never causes anything to be
clipped less than the portRect does, and in the case of a top window that is completely visible,
the visRgn and the portRect are exactly the same size. Even more than that, the enclosing
rectangle for the visRgn (every region has an enclosing rectangle) is this case would be exactly
the same as that of the portRect. This all makes sense when one looks at the purpose of a
visRgn. Again, the visRgn can only cause more clipping. If the entire window is visible, one
does not want more clipping, so a visRgn the same size as the portRect guarantees that it
does not clip any more than the portRect, as it must clip the same amount.

Apple II Technical Notes

Apple IIGS

8 of 9 #80: QuickDraw II Clipping

The visRgn is a different size than the portRect when the window is not the top window and
part of it is overlapped (or if part of the window is off the screen). The part that is overlapped is
excluded from the visRgn, and this excluded part is clipped to protect the window above from
being drawn upon. This is how window clipping works. This is all there is to it.

Figure 6 enhances Figure 5 by adding an overlapping window to demonstrate the visRgn.

portRect of current grafPort

boundsRect of current grafPort
-98,-54

0,0

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

portRect of some overlapping window

visRgn of current grafPort

Figure 6–Sample LocInfo and portRect With Overlapping Window

What happens to the visRgn during a SetOrigin? Remember that the boundsRect and
portRect get offset. The visRgn does too. Again, if all of these elements are offset
together, then the relationship between them remains the same; they stay the same, relative to
one another. (For more information, see Einstein’s theory of general relativity.)

The final component for clipping is the clipRgn, which is the application’s property and,
therefore, the application’s responsibility. The system sets the clipRgn about as big as it can
get to start (much bigger than the portRect); this is often referred to as arbitrarily large, even
though it isn’t so arbitrary. The system creates all grafPort structures with a large clipRgn,
and this can be a problem for certain types of QuickDraw II operations. Since the clipRgn
already reaches to the borders of the conceptual drawing space, it cannot be offset; it is
effectively stuck, due to its size. It is a good practice to make the clipRgn smaller than the
system default.

SetOrigin does not offset the clipRgn. (This is why the size problem with a big clipRgn
is not so apparent.) The clipRgn is the only clipping component that is not offset by

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 9 of 9

SetOrigin, and one should consider this when using clipRgn for clipping effects, since an
application must remember to offset it if it needs to be offset.

Now with all of the fundamentals out of the way, it is time to play some grafPort clipping
games. As a refresher, there are four clipping components in a grafPort: the boundsRect,
the portRect, the visRgn, and the clipRgn.

If an application creates its own off-screen grafPort structures, then it can do as it wishes
with all four clipping components. After all, if it has the responsibility to set them up in the first
place, it should have the right to change them. If, however, the Window Manager creates the
grafPort structures, then an application should keeps its figurative hands off certain clipping
components, namely the boundsRect and the visRgn. The clipRgn, by definition, is the
application’s to do with as it sees fit, and if careful, an application can also change the
portRect. Changing the portRect can be very useful, but one needs to be careful and fully
understand all of the ramifications.

So, why would one change the portRect, and how would one do it?

Another figure is in order.

portRect

boundsRect
-98,-54

rowBytes

Block of bytes pointed to by ptrToPixImage.
In the case of the screen, this is $E12000.

542,146

542,89

819,89

intersection rectangle

100,00,0

Figure 7–Sample LocInfo and Modified portRect

One can use the GetPortRect call to get the portRect for the current grafPort. One can
then modify it, and then use the SetPortRect call to inform the grafPort about the change.
Why do this? In Figure 7, the dotted line represents the new left edge of the portRect after the
modification (a simple modification of adding 100 to the old value of zero).

Apple II Technical Notes

Apple IIGS

10 of 9 #80: QuickDraw II Clipping

Note that changing the portRect in this way changes the relationship between the portRect
and the boundsRect. Anything drawn from 0 to 99 (x coordinate) is clipped, since it is
outside the new (modified) portRect. Before the modification, anything drawn from 0 to 99
would have affected the screen.

This modification may cause the portRect to be smaller than the visRgn. This is okay,
since the visRgn can only cause more clipping, not less. So, all of this works just fine. Note
that the origin changed when the left edge of the portRect changed. The upper-left corner of
the portRect is always the origin, and an application changed it. The origin changed without
a SetOrigin call. (Scary, huh?)

One could have done exactly the same thing by making a clipRgn to exclude the x coordinates
from 0 to 99. However, here is something cool. After the modification, do a
SetOrigin(0,0), which sets the upper-left corner of the shrunk portRect to 0,0. One
cannot accomplish this sort of thing as simply by making a clipRgn. One can effectively
move where an origin of 0,0 is the screen, and just building a clipRgn to exclude some part of
the screen does not accomplish this.

Why would one want to change where 0,0 is on the screen? This sort of trick is very useful for
adding rulers to a document window, for example. One of the problems with rulers is that they
should not scroll with the rest of a document. Unfortunately, TaskMaster, if allowed to
handle scrolling, doesn’t know about a ruler at the top of a window and scrolls it with the rest of
the window’s content area. By changing the portRect so that the ruler is not inside of it, one
can keep TaskMaster from scrolling it. In a draw procedure, when it is necessary to draw the
ruler, grow the portRect, set the origin to 0,0, and then draw the ruler. Once it is drawn, set
the portRect back to the smaller size to protect the ruler again.

Another reason one might want to do this is if an application uses a split window (where the top
of the window may show a different part of the document than the bottom). Changing the
portRect has the advantage that the upper-left corner of the portRect is always the origin,
so it makes mapping document coordinates easier.

Another advantage to using the portRect in this way is that it keeps the clipRgn free for
other purposes. Being able to separate types of clipping to either the portRect or the
clipRgn keeps the clipRgn from being overused.

As a final note, it should be observed that the only clipping that is done is on a destination
pixelmap. There is no clipping on a source pixelmap. There is no need. All the clipping needed
is done at the destination end, so it would be wasteful to clip twice.

This finishes the discussion about QuickDraw II and how the boundsRect, portRect,
visRgn, and clipRgn work together to accomplish clipping. Hopefully this Note answers
more questions than it creates.

Further Reference
• Apple IIGS Toolbox Reference, Volume 2

Developer Technical Support March 1990

Apple IIGS

#80: QuickDraw II Clipping 11 of 9

• Relativity the Special and General Theory (1920)

Apple IIGS

#81: Extended Control Ecstasy 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#81: Extended Control Ecstasy

Revised by: Dave Lyons July 1991
Written by: C.K. Haun May 1990

This Technical Note discusses special features and concerns that should be considered when
using the extended controls introduced in System Software 5.0.
Changes since November 1990: Added information on which fields the Control Manager
automatically copies from a custom control’s template to its control record. Corrected
NewControl2 parameter order. Added a note about SetCtlTitle. Changed some “pea
0” instructions into “pha” when pushing space for results.

Introduction

The extended controls introduced in System Software 5.0 allow the application programmer a
great deal more freedom in designing and controlling applications. The new features enhance
the functionality of the controls and TaskMaster, but can cause confusion and consternation
if you are careless with the new parameter block . This Note also includes a discussion of the
multipart nature of many of the extended controls and some pointers for writing extended custom
controls.

Counting The Costs

One of the major stumbling blocks seen when programming the new extended controls is bad
parameter counts. Extended controls introduce parameter blocks and parameter counts to the
Control Manager. You need to fully understand the parameters required and the resulting
parameter count for each control you create, or you can experience program problems that may
be very confusing and difficult to track down.

Remember also that the Control Manager does not understand “skipping parameters.” If you are
creating an extended radio button and you want key equivalents, but not a color table, you
cannot ignore the color table parameter field. There is no way to tell the Control Manager to
“skip” a field during control creation; make sure you initialize all the fields to values that are
meaningful—either a real pointer, handle, resource ID, or zeroes. In this case, if you try to
“skip” the color table and do not zero out the color table parameter field, the resulting radio
button wears ugly colors you do not expect.

Apple II Technical Notes

Apple IIGS

2 of 6 #81: Extended Control Ecstasy

As you can imagine, miscounting parameters in other extended controls can produce confusing
results, so the parameter count is the first place you should check when you’re having
difficulties creating extended controls.

For Rez users, the Types.Rez file contains extended control templates that automatically
generate the correct count value, so programmers creating all their controls with the Resource
Compiler should not have these problems.

Silly Little Bits

The other area of the new parameter block model that is giving folks trouble is the moreflags
field. This field hones the definition given by the reference fields and can cause you much
grief if misused. Make sure to set the reference bits to the values you require. The bit settings
have been standardized across all the extended controls, with %00 indicating a pointer, %01
indicating a handle, and %10 indicating a resource. Remember also to set the bits for all the
references you have—strings, color tables, or whatever else may be ambiguously referenced in
the control.

If you accidentally use the wrong bit pattern, you can experience strange bugs ranging from
garbled text to SysFailMgr caused by a nonexistent resource being referenced. Again, Rez
users can use the equates for all the reference specifiers in the Types.Rez file to avoid confusion
and evil bugs.

The Parts are Greater than the Whole

To create some new extended controls, like pop-up menu controls and LineEdit controls,
functions of different tool sets were combined. Pop-up menu controls are a combination of the
Control Manager and the Menu Manager, LineEdit controls are a blending of the Control
Manager and the LineEdit tool set, and other new control types follow the same pattern.

This means that, at times, you have to go further into the documentation to find information.
Getting the text out of an LineEdit extended control is a multistep process that is a good example
of this type of problem.

MyLineEdit dc i2'8' ; parameter count
 dc i4'1' ; id number 1
 dc i2'10,10,23,90' ; control rectangle
 dc i4'editLineControl' ; process reference
 dc i2'0' ; flags
 dc i2'fCtlCanBeTarget+fCtlWantEvents+fCtlProcRefNotPtr'
 ; moreflags
 dc i2'0' ; refcon
 dc i2'15' ; maximum characters allowed
 dc i4'0' ; no default text
MyLineEditHandle ds 4 ; handle for the created control

 pha
 pha
 pushlong mywindowgrafport ; window that control will reside in
 pea 0 ;verb, single Extended control
 pushlong #MyLineEdit
 _NewControl2

Developer Technical Support July 1991

Apple IIGS

#81: Extended Control Ecstasy 3 of 6

 pla
 sta MyLineEditHandle ; save the control handle
 pla
 sta MyLineEditHandle+2

Apple II Technical Notes

Apple IIGS

4 of 6 #81: Extended Control Ecstasy

When you want to get the text back out of that control later, you begin to experience what it
means to have a control that is an amalgam of various tools. You would start by using the
control handle returned by NewControl2:

Scratch equ $0 ; some scratch space
Scratch2 equ $4

 lda MyLineEditHandle ; move the ControlHandle to
 sta Scratch ; some direct page space
 lda MyLineEditHandle+2
 sta Scratch+2
 lda [Scratch]
 tax
 ldy #2
 lda [Scratch],y ; and dereference it, putting it back in
some dpage
 sta Scratch+2 ; space to use it.
 stx Scratch

That gives you the pointer to the control record. Stored in the control record is the handle of the
LineEdit item that is actually controlling the text processing:

 pha ; make space for the text handle to be
returned
 pha
 ldy #octlData ; offset to the ctlData section
 ; of the ControlRecord
 lda [Scratch],y ; where the handle for the actual LineEdit
 tax ; item was stored
 iny
 iny
 lda [Scratch],y
 pha
 phx
 _LEGetTextHand ; ask for the handle for the text
 pla ; in this LineEdit control
 sta Scratch2 ; and now you have the handle to the text
you want.
 pla
 sta Scratch2+2

The main point is that when you are using extended controls, you often cannot use the Control
Manager to do everything that needs to be done. You also need to understand and use the
supplementary or “hidden” tool sets.

Here’s another example, using a pop-up menu extended control, and in this case we define a font
pop-up that contains all the font names currently available.

MyPopUpControl dc i2'9' ; parameter count of 9
 dc i4'1' ; control ID of 1
 dc i2'2,2,0,0' ; Position, upper left corner of the window,
let
 ; Control Manager calculate full size
 dc i4'popUpControl' ; def proc for PopUp
 dc i2'0' ; flags
 dc i2'fCtlWantEvents+fCtlProcRefNotPtr'
 ; more flags
 dc i4'0' ; ref con
 dc i2'0' ; title width, will be calculated
 dc i4'mymenu' ; pointer to actual menu structure

Developer Technical Support July 1991

Apple IIGS

#81: Extended Control Ecstasy 5 of 6

 dc i2'500' ; initial value, item number of item
 ; to be displayed in popup at creation

Apple II Technical Notes

Apple IIGS

6 of 6 #81: Extended Control Ecstasy

mymenu dc i2'0' ; version number, should be 0
 dc i2'200' ; menu ID number
 dc i2'0' ; menu flags
 dc i4'mymenutitle' ; pointer to menu title
 dc i4'mymenuitem1' ; first menu item
 dc i4'mymenuitem2' ; second menu item
 dc i4'0' ; null terminator, end of menu
mymenutitle str 'Font'

mymenuitem1 dc i2'0' ; version number
 dc i2'500' ; item number
 dc i2'0' ; no hot keys
 dc i2'0' ; not checked
 dc i2'0' ; item flags, no special drawing
 dc i4'mymenuitem1title'
mymenuitem1title str 'Plain'

mymenuitem2 dc i2'0' ; version number
 dc i2'501' ; item number
 dc i2'0' ; no hot keys
 dc i2'0' ; not checked
 dc i2'1' ; item flags, bold face this one
 dc i4'mymenuitem2title'
mymenuitem2title str 'Bold'

Now create this control:

 pha
 pha
 pushlong mywindow ; target window grafptr
 pea 0 ; verb, single control pointer
 pushlong #MyPopUpMenu
 _NewControl2
 pulllong mypopuphandle ; save the handle

This pop-up menu control created is not associated with the menu bar across the top of the
desktop. You can consider each of your pop-up menu controls as separate menu bars, so if you
want to perform Menu Manager calls on a pop-up menu control, you need to set the menu to
point at your pop-up menu control. In this example, to add all the fonts available to the pop-up
menu you would:

 pha
 pha ; space to hold current bar
 _GetMenuBar ; get the handle to the current menu bar
 pushlong mypopuphandle
 _SetMenuBar
 pea 200 ; id number of this menu
 pea 502 ; first font family ID number to use
 pea 0 ; fontspecbits
 _FixFontMenu
 pea 0
 pea 0
 pea 200
 _CalcMenuSize ; re-size the popup menu
 _SetMenuBar ; restore the previous menu as the current
menu

Developer Technical Support July 1991

Apple IIGS

#81: Extended Control Ecstasy 7 of 6

Controls That Are Not Controls

The new picture extended control is not a “full-fledged” control; it has been provided to simplify
your programming tasks. The picture control does not support normal mouse hit testing and
highlighting. Think of it as a built-in extension to your content drawing routine, and not as a
control. It is provided to allow you to refresh your whole window with a single
DrawControls call, instead of drawing the controls and then drawing pictures. The icon
button extended control has been provided as the graphic full-function control. If you need or
want a fully functional control that uses a picture, you should consider writing your own custom
control procedure.

Custom Extended Controls

Custom controls can also benefit from all the advantages of extended controls. You can create a
custom control that uses a template, can be a resource, has a definition procedure that is a
resource, and responds to all the new control calls. If you write an extended custom control or
upgrade a previously-written custom control, there are new messages and changes to existing
messages of which you need to be aware. These changes are documented in volume 3 of the
Apple IIGS Toolbox Reference.

The Control Manager copies the following fields from the control template to the control record
before it sends your control the init message: ctlOwner, ctlID, ctlRect, ctlFlag,
ctlHilite, ctlMoreFlags, ctlVersion, ctlRefCon, and ctlProc. The ctlNext
field is owned by the Control Manager. If any additional fields need to be set up based on the
control template (such as ctlValue, ctlData, ctlColor, and any custom fields), your
init routine needs to take care of it.

Putting your custom control definition procedure in a resource can significantly enhance the
functionality of the custom control. You may find it easier to add to all of your programs and
you do not have to manage the code space required. If you do write a custom control definition
procedure and want to store it as a resource, here are some hints for success.

First, the code you store in your resource fork must be fully compiled and linked code. The code
resource converter uses the System Loader to load the code, so the code must be executable
code, not object code.

Second, set the convert and locked bits of the resource attributes for your code resource.
The convert bit must be set to tell the Resource Manager to call the code resource converter
when it loads this resource. The resource type for control definition procedures is
rCtlDefProc, $800C.

By setting locked but not fixed, memory fragmentation is reduced (because of how the code
resource converter and Memory Manager work). Setting the locked attribute is also
recommended for compatibility with future system software.

Third, keep in mind that this definition procedure may be purged and reloaded whenever the
Memory Manager needs the space. This means that you cannot store any information in your

Apple II Technical Notes

Apple IIGS

8 of 6 #81: Extended Control Ecstasy

definition procedure if you want to keep track of it between calls to the definition procedure. If
you do, and your definition procedure gets purged and reloaded, you lose that data.

If you need data space for your custom control, use the control record as your stash. You can
easily either use the fields already provided in the control record, or you can expand the control
record to as much space as you need (within sensible limits) and store your data there.

Developer Technical Support July 1991

Apple IIGS

#81: Extended Control Ecstasy 9 of 6

Warning: Control definition procedures are initially loaded with purge level zero.
When they are released, they are given purge level three. If they are then
reloaded, the Resource Manager does not change the purge level back to
zero—your definition procedure may then be purged (even while
executing) unless its handle is locked. The solution is to lock your
definition procedure handle within the procedure:

 myPosition pea 0 ; space for result
 pea 0
 pushLong #myPosition
 _FindHandle
 _HLock

and unlock your handle with HUnlock on exit. This keeps your
procedure safe, while not creating “code islands,” which clog up memory.

Changing a Control’s Title

If you call SetCtlTitle to give a control a new title, everything is great if the new title is
referenced the same way as the current title (by pointer, by handle, or by resource ID). If the
new title is referenced differently, you must first call SetCtlMoreFlags on your control so
that the SetCtlTitle value can be interpreted correctly.

Conclusion

The extended controls provided in System Software 5.0 and later are a great leap forward for
programmers. They relieve the application of much of the tedious detail code that relates to
housekeeping, not the guts of application programming. Used in combination with the enhanced
TaskMaster, you can have an application’s visual interface up and running a lot faster, leaving
you more time to work on the heart of your application.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 through 3.

Apple IIGS

#82: Controlling the Control Manager 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#82: Controlling the Control Manager

Revised by: Matt Deatherage November 1990
Written by: Dave Lyons May 1990

This Technical Note describes an anomaly in the NewControl2 call in System Software 5.0.2
and provides a solution.
Changes since May 1990: Noted that System Software 5.0.3 fixes this anomaly.

This Note formerly advised of a problem with NewControl2—the current port was not set
before adding the controls, which gave unpredictable results. System Software 5.0.3 and later fix
this problem.

Apple IIGS
#83: Resource Manager Stuff 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#83: Resource Manager Stuff
Revised by: Matt “Even less of a middle name” Deatherage May 1992
Written by: Dave Lyons May 1990

This Technical Note answers your miscellaneous Resource Manager questions.
Changes since December 1991: Added several notes pertaining to System Software 6.0 and a
note about making Resource Manager calls from a resource converter. Added new discussion
about how “changed” is really a resource attribute.

UniqueResourceID

In System Software 5.0.4 and earlier, calling UniqueResourceID with an IDRange value of
$FFFF does not work reliably. It sometimes returns a system-range ID ($07FFxxxx) if there are
already system-range resources of the specified type present in the current search path.

If you are using a development utility that generates resource IDs using UniqueResourceID,
check the results to make sure no system-range resource IDs are being used by accident. This
problem is fixed in System Software 6.0.

What SetCurResourceFile Does

SetCurResourceFile is documented in Chapter 45 of the Apple IIGS Toolbox Reference,
Volume 3 (see especially “Resource File Search Sequence” near the beginning of the chapter).

This explanation might make you think SetCurResourceFile rearranges the search path, but it
does not; instead, it just makes searches start at a different place in the path.
SetCurResourceFile is useful for controlling what resource files are searched, not for
changing the search order.

How the Toolbox Uses Resources as Templates

The toolbox uses several types of resources as templates for creating other objects. Examples
include rControlList, rControlTemplate , and rWindParam1. The toolbox
automatically releases these resources from memory as soon as it is through with them, so there is
no need to create your template resources with special purge levels in an effort to free more
memory. It is not a problem.

Apple II Technical Notes

Apple IIGS
2 of 6 #83: Resource Manager Stuff

Using Resources From Window Update Routines

In System Software 6.0 and earlier there is no special code to set the current resource application
when the system calls an application window update routine (See Apple IIGS Technical Note #71
for notes on NDAs and the current resource application).

To avoid a situation where a window update routine cannot get needed resources, obey the
following rules:

1. Application window update routines must either (a) assume that the resource
application has the same value it had when the window was created, or (b) save, set,
and restore the current resource application, using GetCurResourceApp and
SetCurResourceApp.

2. NDAs that start the Resource Manager must not call application window update
routines, and they must not cause application window update routines to be called
(for example, if an NDA calls TaskMaster to handle a modal dialog or movable
modal dialog, the tmUpdate bit in wmTaskMask must be off).

CurResourceApp in InfoDefProcs and Custom Windows

The current resource application has no guaranteed value when an information bar definition
procedure or custom window definition procedure gets control. These must always save, set, and
restore the current resource application using GetCurResourceApp and
SetCurResourceApp.

StartUpTools Opens Resource Forks Read-Only

When StartUpTools opens your application’s resource fork, by default it opens it with read-
only access. If your application needs to make changes to the resources on disk in System
Software 5.0.4 and earlier, you need to close the fork and reopen it with read and write access. To
close it, use GetCurResourceFile and CloseResourceFile; to reopen it, use
LGetPathname2 and OpenResourceFile.

Note: You must update the resFileID field in the StartStop record if you close and
reopen your resource fork. CloseResourceFile disposes the handles of any
resources in memory from the file you’re closing, so you must call
DetachResource on any resources you need to keep. (If you pass an
rToolSTartup resource to StartUpTools, the system detaches it for you
automatically.)

In System Software 6.0 and later, setting bit 3 ($0008) of the startStopRefDesc tells the Tool
Locator to open your resource fork with all allowed permissions instead of with just read
permission.

Developer Technical Support May 1992

Apple IIGS
#83: Resource Manager Stuff 3 of 6

Calling StartUpTools From a Shell Application (File Type $B5, EXE)

In System Software 5.0.4 and earlier, StartUpTools tries to open the current application’s
resource fork. It determines the pathname of the “current application” by examining prefix 9:
and making a GET_NAME GS/OS call, but do not assume it will always construct the pathname this
way. If you call StartUpTools from a shell application and expect it to open your EXE file’s
resource fork, you will be disappointed.

If GS/OS has launched your application, life is good—usually, though, a shell has loaded your
shell application directly, so GET_NAME returns the name of the shell instead of the name of your
application file.

To open your shell file’s resource fork, call ResourceStartUp, get the pathname by calling
LGetPathname2 on your user ID, and pass the pathname to OpenResourceFile.
StartUpTools uses this strategy all the time in System Software 6.0 and later, meaning you
don’t have to.

What’s NIL in a Resource Map?

The resource maps for open resource files are kept in memory, and the structure is defined in
chapter 45 of Apple IIGS Toolbox Reference, Volume 3.

The resHandle field of a resource reference record (ResRefRec) is defined as “Handle of
resource in memory. A NIL value indicates that the resource has not been loaded into memory.”
In this case, NIL means that the middle two bytes of the four-byte field are zero. In other words, a
NIL entry in the resource map may have a non-zero value in the low-order byte.

LoadResource and SetResLoad(FALSE)

When you call LoadResource on a locked or fixed resource and SetResLoad is set to FALSE,
you may get Memory Manager error $0204 (lockErr), because the Resource Manager tries to
allocate a locked or fixed zero-length handle, which the Memory Manager does not permit.

Adjusting the Search Depth

If you wish to add some resource files to the beginning of a resource search path and adjust the
depth so that the end point of the search is unchanged, it’s tempting to use
SetResourceFileDepth(0) to get the current depth, add one, and set this new depth with
SetResourceFileDepth.

The problem is that the search depth is often -1 ($FFFF), meaning “search until the end of the
chain.” If you add your adjustment to -1, you do not usually get the intended effect. A solution is
just to check for $FFFF and not adjust the depth in that case.

CurResourceApp after ResourceShutDown

After a ResourceShutDown call, the current resource application is always $401E. (The
Resource Manager starts itself up at boot time with its own memory ID, $401E. Do not ever call
ResourceShutDown while the current resource application is $401E.)

Apple II Technical Notes

Apple IIGS
4 of 6 #83: Resource Manager Stuff

Restoring the CurResourceApp

If you need to start up and shut down the Resource Manager without disturbing the current
resource application, call GetCurResourceApp before ResourceStartUp, and call
SetCurResourceApp to restore the old value after ResourceShutDown.

It does not help to call GetCurResourceApp after ResourceStartUp, since the application
just started up is always the current resource application.

Shell programs which start the Resource Manager need to call SetCurResourceApp after
regaining control from a subprogram (for example, an EXE file) which may have started and shut
down the Resource Manager, leaving the current resource application set to $401E instead of the
shell’s ID.

Shell programs that do not start the Resource Manager have nothing to worry about. In this case
the current resource application is normally $401E, so when a subprogram calls
ResourceShutDown life is still wonderful.

What Information is Kept For Each Resource Application?

When you switch resource applications with SetCurResourceApp, that takes care of all the
application-specific information the Resource Manager has.

There is no need to separately preserve the current resource file, the search depth, the
SetResourceLoad setting, or any application resource converters that are logged in. All of this
information is already recorded separately for each resource application.

“Changed” is a Resource Attribute

This seems obvious when first reading the documentation, but it has a consequence that isn’t so
obvious.

If you mark a resource as changed with MarkResourceChanged and later use
SetResourceAttr to change that resource’s attributes, you must include resChanged in the
attributes you specify or the Resource Manager does not still know the resource has changed.

This means you can undo a MarkResourceChanged call, but it also means you need to preserve
the resChanged bit across SetResourceAttr calls if you don’t want to accidentally achieve
the same effect.

The Resource Manager clears the resChanged attribute when a resource is written to disk; the
attribute indicates the data in memory is more recent than what’s on disk. Normally, adding a
resource with AddResource sets this bit because the resource isn’t actually written to disk until
the resource file is updated.

However, if AddResource has to make the file longer (by extending the EOF), it writes the
resource to disk immediately. This means that in some cases, a resource added with
AddResource will be properly added but the resChanged attribute will not be set. Don’t be
confused if this happens to you.

Developer Technical Support May 1992

Apple IIGS
#83: Resource Manager Stuff 5 of 6

Making Resource Manager Calls From Resource Converters

Don’t. This would be a first-class example of reentrancy, and the Resource Manager is not
reentrant in any class.

Who Owns Handles Passed to AddResource?

When you pass a handle to AddResource, the Resource Manager is responsible for the handle
unless AddResource returns an error. Once you call AddResource, the handle belongs to the
Resource Manager and you must treat it like you would the handle to any other resource.

Named Resource Bugs in System Software 6.0

The new-for-6.0 Resource Manager function RMFindNamedResource compares the resource
name you requested to named resources incorrectly. The comparison algorithm doesn’t compare
the lengths of the strings before starting to compare the characters. This means, for example, that if
you request a resource named “Raymond” and the Resource Manager encounters a named
resource named “Raymond” first, it will return the resource named “Raymond” instead. This
anomaly also affects the HyperCard IIGS named-resource XCMD callback functions, even though
they don’t use the Resource Manager’s named-resource calls.

This anomaly also affects RMLoadNamedResource, which calls RMFindNamedResource.

Debugging Information

The following information is provided for your convenience during program development. It
allows you to check exactly what user IDs are using the Resource Manager, what files are in their
search paths, and what resource converters are logged in.

Do not depend on this information in your program; it is subject to change in future versions of the
Resource Manager.

All the Resource Manager’s data structures are rooted in the Resource Manager tool set’s Work
Area Pointer (WAP). To get the Resource Manager’s WAP, call GetWAP (in the Tool Locator)
with userOrSystem = $0000 and tsNum = $001E.

The WAP value is a handle to the Resource Manager’s block of global data. Several interesting
areas in this block are listed below.

+$0A2 curApp Word Offset into the globals block of the current resource
application’s Application Record.

+$2B0 sysFile Long Handle of system file map, or NIL if none.
+$2B4 sysConvertList Long Handle of system converter list, or NIL if none.
+$2B8 appList 20*n bytes List of Application Records (20 bytes each).

Each Application Record has this format:

+000 appFlag Word 0=entry available, 1=entry used, $FFFF = end of array.
+002 appID Word User ID of application.
+004 appFiles Long Handle of application’s first resource map, NIL=none.
+008 appCur Long Handle of application’s current resource map, NIL=none.
+012 appConverters Long Handle of application’s converter list, NIL=none.
+016 appReadFlag Word 1=read resources, 0=don’t read (SetResourceLoad).

Apple II Technical Notes

Apple IIGS
6 of 6 #83: Resource Manager Stuff

+018 appFileDepth Word Number of files to search in this path.

Converter lists have this format:

+000 n Word Number of entries in the table (entries can be unused).
+002 theConverters 6*n bytes List of converter entries (6 bytes each).

Each Converter entry has this format:

+000 resType Word Resource type for this converter ($0000 for unused entry).
+002 convAddress Long Address of resource converter.

The format for a resource map is described starting on page 45-17 of Apple IIGS Toolbox
Reference, Volume 3.

Remember, don’t depend on this information in your application; use it during debugging, and use
it to write debugging utilities.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3
• Apple IIGS Technical Note #71, DA Tips and Techniques

Apple IIGS

#84: TaskMaster Madness 1 of 5

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#84: TaskMaster Madness

Written by: C.K. Haun <TR> July 1990

This Technical Note discusses the enhancements made to TaskMaster in System Software
5.0.

TaskMaster has been expanded to handle extended control actions and give you more
information about events in System Software 5.0. This Note discusses some features of the
expanded TaskMaster and TaskMasterDA, and how you can best exploit the new features
in your applications.

Stop Making It So Difficult

Developers just want to work too hard. You get a neat new thing like the expanded
TaskMaster, and you still want to do all the work yourself. The new TaskMaster does
nearly everything for you, as long as you treat it correctly.

What this means is you do not have to call FindControl, TrackControl, TEIdle,
LEKey, handle keystrokes for controls, keep track of click counts, or any of the other mundane
event management tasks unless you specifically want to perform actions that TaskMaster does
not perform. For the standard controls and situations this means that you do not have to do
anything.

The magic keys to this life of freedom and ease are the five newly defined taskMask flag bits,
labeled in the interfaces as tmContentControls, tmControlKey, tmControlMenu,
tmMultiClick and tmIdleEvents. This Note looks at what the new bits do for you, but
first a word of warning.

Warning: If you set any of these new bits, TaskMaster assumes you are using the
new extended task record. This means that you cannot just go into an
older program and set these bits and expect your program to work
successfully. You also must allocate the additional space for the extended
portion of the task record. If you do not, TaskMaster puts task data in
areas that you do not expect, and Bad Things happen.

Apple II Technical Notes

2 of 5 #84: TaskMaster Madness

Bits ’o This, Bits ’o That

Click Bits

tmMultiClick tells TaskMaster to keep the new “click information” fields in the extended
task record updated. This allows you to have TaskMaster keep track of multiclick events; the
wmClickCount field is one, two or three depending on whether the last action was a single,
double, or triple click. In fact, if you can click your mouse button fast enough, you can time
quadruple clicks, sextuple clicks, or as high as you want, although anything over triple-clicking
is nearly impossible for users to consistently manage. wmClickCount just gets incremented
by one when the click falls within the double time interval. wmLastClickTick is updated
with the system tick value at last click. wmLastClickPt contains the location of the last
mouse click. TaskMaster calls GetDblTime internally to determine the correct time
intervals for these values.

Idle Bits

tmIdleEvents tells TaskMaster to call the idle routines for controls that need idle events,
like TextEdit controls and LineEdit controls. This also means that only the active control is
blinking a cursor, since TaskMaster is working with the target bits of the extended control
records to keep track of which TextEdit or LineEdit control is active and switching the target
control in response to mouse clicks and Tab keypresses. This is also the area where you tell
TaskMaster how to highlight your window controls. Using the Control Manager calls
MakeNextCtlTarget and MakeThisCtlTarget allows you to specify which LineEdit or
TextEdit control is active. You can use these calls to highlight input errors the user has made.
For example, if someone has entered text in a LineEdit control that requires a number, you can
alert the user if he enters non-numeric characters with an Alert or AlertWindow call. You
can then direct the user to the LineEdit control that contains the bad entry by calling
MakeThisCtlTarget with the handle of that LineEdit control. This deactivates any other
target control and moves the insertion point to the LineEdit control that needs the correction.

Contentious Bits

tmContentControls, tmControlMenu and tmControlKey bits are the real
workhorses of the expanded TaskMaster.

When the tmContentControls and tmControlMenu bits are set, TaskMaster
handles the mouse activity side of events—tracking, highlighting or popping-up the selected
control. If the control is a radio button, check box, pop-up menu or list control, TaskMaster
also performs the correct action for the click, either setting the control value, scrolling the list,
setting the pop-up menu to the selected item, and so on. TaskMaster then returns a
taskCode of wInControl ($21). The control handle is stored in wmTaskData2, the part
code of the part selected in wmTaskData3 and the control ID is in wmTaskData4. For many
of the controls in your windows your application needs to take no further actions, TaskMaster
has set the control values. When the user closes the window or clicks on a button that causes an
action, you can then read the values of all the controls you care about at that point and do what
you need to do, instead of keeping track as the user manipulates controls.

Developer Technical Support July 1990

Apple IIGS

#84: TaskMaster Madness 3 of 5

The last new bit, tmControlKey, works with the tmControlMenu bit to handle key events
for your extended controls.

When a key event occurs, TaskMaster sends the event to the internal routine
TaskMasterKey. TaskMasterKey first looks at the tmMenuKey bit (which has been in
TaskMaster since the Window Manager was implemented). If it is set, then TaskMaster
tries to handle the event as a menu event, calling MenuKey for the current menu bar.

Note: This also means that any key equivalents in your main menu bar (across the top of
the desktop) take precedence over key equivalents in your window controls.

If this fails (or that bit is not set) and tmControlKey is set, then TaskMasterKey polls the
controls in the currently open window for any controls that would like this keystroke, either for
controls with a keyEquivalent field or a pop-up menu control with key equivalents for menu
items. If it finds a control that wants the key event, it is handled very much like a mouse event.
The action for the control is performed (checking a check box, for example) and the
wmTaskData fields are filled as they would be for a mouse click, and an event code of
wInControl ($21) is returned. If a key event did occur, you can differentiate it from a mouse
event by looking at the wmWhat field of the taskRecord. Even though a wInControl
event code was passed back by TaskMaster, the wmWhat field is either $0001 or $0003, the
former for a mouse down event and the latter if a keystroke stimulated the wInControl event.

Even More Bits

All these new features rely very heavily on the changes made to the Control Manager in System
Software 5.0. Many of the TaskMaster features, keystrokes, target controls, and so on only
work if you have the moreFlags bits set correctly in your control definitions. If you are
having difficulty with new TaskMaster features, check your control definitions against the
information in the Control Manager chapter of Volume 3 of the Apple IIGS Toolbox Reference
and Apple IIGS Technical Note #81, Extended Control Ecstasy.

Don’t Get Goofy

There are some dangers in these new features, of course. By allowing built-in key equivalencies
for almost all the controls that can exist in a window, it may be tempting to define key
equivalents for everything, and create weird and unusual key combinations for your controls.
Please remember the Human Interface Guidelines (specifically Human Interface Note #8,
Keyboard Equivalents) and keep your use of keystroke equivalents to a minimum.
Multimodifier keystrokes (Command-Option-Shift, for example) do not enhance the user’s
experience and can be very confusing.

NDAs Can Have Fun Too

Apple II Technical Notes

4 of 5 #84: TaskMaster Madness

TaskMasterDA has also been added to the Window Manager, providing your new desk
accessories (NDAs) with the same kind of TaskMaster support your applications have. This
lets you easily use extended controls inside NDAs, following the same basic rules as in an
application. There are only a few things to worry about.

Developer Technical Support July 1990

Apple IIGS

#84: TaskMaster Madness 5 of 5

What Does That Stack Picture Really Mean?

The input to TaskMasterDA, as shown in Volume 3 of the Apple IIGS Toolbox Reference, is as
follows:

word, return space

word, eventMask, ignored

long, pointer to taskRecord

space

eventMask

taskRecord

pointer

Figure 1–TaskMasterDA Stack Picture

The call returns a word value, the taskCode . The space and eventMask are self-
explanatory. The book tells you that the eventMask is ignored, which makes sense since the
host application has already gotten the event and you have already specified an eventMask in
your NDA header, so you can use any value here. The taskRecPointer causes the
confusion.

You do not pass a blank event record. When your NDA’s action routine is called, the Y and X
registers contain a pointer to the current event record with which the NDA is working.
TaskMasterDA is filling that taskRecord with some information, so you want to move it
into your NDA’s data area so you can work with it later:

 phy
 phx ; push the pointer that was passed to us
 pushlong #NDArecord ; the space in my NDA for the extended event record
 pea 0
 pea 16 ; only 16 bytes, the original taskRecord size
 _BlockMove

It is very important that you only move 16 bytes. TaskMasterDA can act erratically if the
extended portion of the event record has been filled with nonsense values. This can happen if
your NDA is running in an application that does not use the extended task record and you are
copying non-task data into the extended portion of the task record. By the way, as you are
debugging your NDA and you run into situations where the wmTaskData field values are
weird, this is more than likely the problem.

Also remember to make sure the wmTaskMask field in your NDA’s TaskRecord is set and
the extended portions of the TaskRecord are zeroed out before your NDA starts running; you
want to set all these fields in your NDA’s INIT routine.

Now you can call TaskMasterDA:

 pea 0 ; return space
 pea $FFFF ; eventMask, ignored

Apple II Technical Notes

6 of 5 #84: TaskMaster Madness

 pushlong #nDArecord ; our NDA event record
 _TaskMasterDA
 pla ; event code returned

You can then process the event in a convenient way. Remember again that TaskMaster has
already done the control tracking for the controls in your NDA window. You have the same
multiclick information, control handles and IDs.

Conclusion

TaskMaster is a wonderful thing that makes any programmer’s job easier. So let it work for
you. Learn the capabilities of the new fields and new controls, and take advantage of them. Let
TaskMaster take care of the system details, while you concentrate on the features that make
your application special.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 through 3
• Apple IIGS Technical Note #81, Extended Control Ecstasy
• Human Interface Note #8, Keyboard Equivalents

Apple IIGS

#85: Moving the Mouse 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#85: Moving the Mouse

Written by: Matt Deatherage July 1990

This Technical Note discusses moving the cursor on the screen without touching the mouse.

It is sometimes desirable to programmatically move the QuickDraw II cursor on the screen
without requiring the user to touch the mouse. This can be effective, for example, in tutorial
software that actually shows mouse actions such as pulling down menus and dragging windows.

There is not an easy or obvious way to do this in the toolbox. This is not a bad thing; it prevents
overzealous programmers from zapping the mouse all over the screen for suspicious reasons.
You must remember that the mouse belongs to the user, not to the application. If the user has
put the mouse somewhere, it should only be a user’s action that causes the cursor to move
elsewhere. Most of the time that action is touching the mouse and physically moving it. Do not
move the mouse except in response to a user-initiated command.

The most obvious way to move the mouse position—calling PosMouse with the new mouse
position—is not sufficient; PosMouse does not update the current mouse position. When the
mouse is next moved, a mouse interrupt comes through and the new deltas are added to the old
mouse position, resulting in correct ReadMouse results after the mouse has been physically
moved. Also, PosMouse does not update the cursor on the screen.

Faking Out the System

When you wish to move the mouse yourself, you are in effect replacing (or adding to) the
standard mouse with a small programmatic mouse substitute—your code. This qualifies as a
“device” and can be considered an Event Manager “device driver.” You can then make the
appropriate Event Manager call, FakeMouse. When calling FakeMouse, you supply all the
mouse information yourself, allowing you to move the mouse, simulate button presses, and in
general replace the mouse.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3

Apple IIGS

#86: Risking Resourceful Code 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#86: Risking Resourceful Code

Revised by: Matt Deatherage March 1991
Written by: C.K. Haun <TR> September 1990

This Technical Note covers considerations you need to keep in mind when using code resources.
Changes since September 1990: Now lists XCMD and XFCN resources as “Apple’s code” and
notes that other restrictions apply to them as well.

Code resources are wonderful things that can make your life better than it ever was before. Code
resources are necessary when writing CDevs and can be very useful for control definition
procedures, code modules for extensible programs like resource editors—in fact, almost
anywhere where you use regular compiled and linked code. But to do it right, you need to keep
some rules in mind.

Apple’s Code, Apple’s Rules

The first code resources covered are the ones defined as fully supported by the System Software.
These are rCtlDefProc ($800C), rCodeResource ($8017), rCDEVCode ($8018), rXCMD
($801E) and rXFCN ($801F). Before looking at the specifics, this Note describes in general
terms what happens when the Resource Manager loads a code resource.

When you call the Resource Manager with a request for a code resource (or when the system
does, as with rCtlDefProcs), it loads it like a normal resource. The Resource Manager finds
the resource in a resource map in the current search path, allocates a handle for the resource
using the attributes in the resource attribute bits, and loads the resource into memory.

Now the Resource Manager examines the resConverter bit in the resource header. If this bit
is set, indicating that this resource needs to be converted (as it should be for an rCtlDefProc),
the Resource Manager checks its tables to see if a resource converter has been logged in (with
the ResourceConverter call). For code resources, the correct converter has been logged in
by the manager associated with that resource type. For example, the Control Manager logs in the
code resource converter for rCtlDefProc resource type.

For code resources, InitialLoad2 is used to load the OMF from memory. Then the
Resource Manager returns a handle containing a pointer to the start of the loaded, relocated code.

Rule 1: Code resources must be smaller than 64K

Apple II Technical Notes

Apple IIGS

2 of 3 #86: Risking Resourceful Code

The code resource converter uses the InitialLoad2 function of the System Loader to load
and convert code resources. That means that code resources are restricted in the same way that
loading from memory is. One of these restrictions is that the code must be 64K or less.

Developer Technical Support March 1991

Apple IIGS

#86: Risking Resourceful Code 3 of 3

Rule 2: Compiled and linked code only

Again, since InitialLoad2 is used to convert the code resource, the data must be in OMF
format since InitialLoad2 expects to relocate standard load segments. When you prepare
your code for inclusion in a code resource, compile and link the code as you normally would for
a stand-alone program. Use the file produced by the linker for inclusion in your resource fork.
You can use Rez to move the code from a data fork to your application’s resource fork with a
line in your resource description file similar to the following:

read rCodeResource (MyCodeIDNumber,locked,convert) "MyCompiledAndLinkedCode";

Rule 3: One segment please

Multiple segments are theoretically possible with code resources, but you have to manage
memory IDs and the memory that the additional code segments use yourself. Since the code
resource converter calls InitialLoad2, it uses the Memory Manager ID for the current
resource application, and you cannot specify a different user ID directly. By changing your
current resource application ID (by making an additional call to ResourceStartUp with a
modified master ID, for example) you could manage multisegment code resources.

Rule 4: No dynamic segments

The dynamic segment mechanism does not work with code resources. Of course, your
application can still use dynamic segments, but not code resource dynamic segments.

Rule 5: Set the right attributes

There are two sets of attributes you need to be concerned about for a code resource. The first set
includes the standard resource attributes; the second set covers the attributes that the code itself
has in the OMF image.

You need both sets to get the functionality you want. The resource attributes determine how the
Resource Manager handles the resource. The OMF attributes control what InitialLoad2
does when it converts your code from OMF in a resource handle to relocated executable code.

Remember, you need to set both sets of attributes.

The resource attributes you need to set are locked and convert. The locked flag is
necessary to prevent the resource from moving while InitialLoad2 processes it, and the
convert flag is needed to signal the Resource Manager to call the code resource converter.

You must set the static OMF attribute, the others (like no special memory) you set as appropriate
for your code in your application.

Rule 6: Know where to go

Apple II Technical Notes

Apple IIGS

4 of 3 #86: Risking Resourceful Code

The handle you get back from the Resource Manager when you load and convert a code resource
points to the beginning of the relocated and ready-to-execute code, not to the image of the code
that is stored in the resource fork. So you can immediately jump to this code to execute it.

You can override this if you like—clear the resConverter bit in the resource attributes. If
this bit is zero, the Resource Manager does not call any resource converter (including the code
resource converter).

Rule 7: Remember the Write

Keep in mind that any resource that uses a converter uses that converter both for reading and
writing the resource. If you write out a code resource, the Resource Manager calls the Write
routine for the code resource converter, which currently writes without doing any conversion—it
does not reconvert the code in memory back to OMF format. However, some converters
(perhaps one you write) could reconvert the resource before writing it out.

Your Code, Your Rules

If you want to define your own code resource type (with a resource type of less than $8000 and
greater than 0) you may want to follow the same rules as the system code resources use. In fact,
you can even use the same code resource converter, by using the ResourceConverter call
with your resource type, and log the code resource converter as the converter to use with your
resource type, like the following:

 pha
 pha ; return space
 _GetCodeResConverter ; Misc Tools call to return the loader relocation code
pointer
* ; (leave it on the stack for the next call)
 pea $0678 ; resource type you want to convert with this
converter, any
* ; Application type you wish
 pea %01 ; add this converter to the Application converter list,
* ; and log this routine in
 _ResourceConverter

or you can do whatever you like with the resource, including not having a converter and doing all
the relocation and memory management of the code yourself. This can give you the ability to
add more functionality than the standard code resources provide—dynamic segmentation is one
feature you could implement if you want to handle all the details yourself.

Or, you can manage the code any way you want, but keep the built-in system functions in mind,
and use as many of them as you can. Make your life simpler.

One Final Note

Developer Technical Support March 1991

Apple IIGS

#86: Risking Resourceful Code 5 of 3

If one of your resources is marked convert and preload the Resource Manager only
preloads that resource if the converter for that resource is logged in as a converter for that type.
If the Resource Manager cannot find the converter, it does not preload the resource.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3
• GS/OS Reference
• HyperCard IIGS Script Language Guide
• HyperCard IIGS Technical Note #1, Corrections to the Script Language Guide
• Apple IIGS Sample Code #9, Lister

Apple IIGS

#87: Patching the Tool Dispatcher 1 of 10

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#87: Patching the Tool Dispatcher

Written by: Mike Lagae and Dave Lyons September 1990

This Technical Note presents the Apple standard way to patch into the Apple IIGS Tool
Dispatcher vectors.

This Note presents MPW IIGS assembly-language code which provides the Apple-standard way
for utilities to patch and unpatch the Tool Dispatcher vectors. If all Tool Dispatcher patches
follow this protocol, patches can be installed and removed in any order, without ever accidentally
unpatching somebody who patched in after the one getting removed.

Using this protocol, each patch begins with a header in a standard form—a form recognizable by
these routines (see PatchHeader). This way routines (like RemoveE10000) can scan
through the list of patches and remove one from the middle.

If your patch is going to stay in the system until shutdown, use this standard patch protocol
anyway. This way other utilities can still recognize your patch and scan past it to find the next
one. This Note is not just to show you a way to patch the tool dispatcher—it’s to show you the
way. If you patch tool dispatcher vectors in any other way, you strip other utilities of their
ability to remove their patches.

Of course, patching the Tool Dispatcher vectors slows down all toolbox calls, so you shouldn’t
patch the tool dispatcher without a pretty good reason. If you need to patch a toolbox function, it
is usually better to do it by modifying a tool set’s function pointer table instead of patching the
dispatcher.

The code in this note is specific to the System tool dispatch vectors ($E10000 and $E10004), but
the same technique is recommended for the User tool dispatch vectors—just change $E10000 to
$E10008, $E10004 to $E1000C, and ToolPointerTable to UserToolPointerTable.

Apple II Technical Notes

Apple IIGS

2 of 10 #87: Patching the Tool Dispatcher

What Is This Stuff?

This Note presents the following four routines.

PatchHeader is the simplest patch function that obeys the protocol. This is where you put
your own patch code.

InstallE10000 installs a patch into the patch chain. For example:

 pushlong #PatchHeader
 jsl InstallE10000
 ply
 ply ;remove the input parameter
 bcc noError ;error in A

RemoveE10000 removes a patch from the patch chain. For example:

 pushlong #PatchHeader
 jsl RemoveE10000
 ply
 ply ;remove the input parameter
 bcc noError ;error in A

CheckPatch determines whether the specified address is the starting address of a standard
patch. For example:

 pushlong #PatchHeader
 jsl CheckPatch
 ply
 ply ;remove the input parameter
 bcc validPatch

First, here are some comments and global equates.

**
*
* Patch.e10000 - Routines to patch into the toolbox dispatch
* vectors at $e10000 and $e10004.
*
* By Michael Lagae
* Software Quality Assurance
* GS Toolbox Test Team
*
* July 18, 1989
*
* Written for the MPW IIGS Assembler -- Version 1.1b1, 4/9/90
*
* Copyright 1989-1990 by Apple Computer, Inc.
*
**

 case yes
 machine M65816
 string asis
 msb on
 print on

 export CheckPatch ; Check for a valid patch header.

September 1990

Apple IIGS

#87: Patching the Tool Dispatcher 3 of 10

 export InstallE10000 ; Adds a patch into the toolbox vectors.
 export RemoveE10000 ; Removes a toolbox dispatch vector patch.
 export PatchHeader ; The simplest toolbox dispatch vector patch.

**
* Equates - Various equates required by these routines.
*
versionNumber equ $0100 ; The version number of this library.

dispatch1 equ $e10000 ; The first toolbox dispatch vector.
dispatch2 equ $e10004 ; The second toolbox dispatch vector.
ToolPointerTable equ $e103c0 ; Pointer to the active System TPT.
UserToolPointerTable equ $e103c8 ; Pointer to the active User TPT.

; Error return values from the routines InstallE10000 and RemoveE10000

noError equ $0000 ; Value returned if no error occurs.
badHeaderError equ $8001 ; Patch header wasn't valid.
headerNotFoundError equ $8002 ; Header to remove wasn't in the linked list.

PatchHeader is the standard shell for the actual patch code. Your code goes in here, at
NewDispatch2. When you get control at NewDispatch2, the function number is in X and
there are two RTL addresses on the stack (pushed after the function’s parameters).

Your patch code does not care whether the tool call is being made through the $E10000 or
$E10004 vector—in either case you get control with two RTL addresses on the stack.

**
* PatchHeader - Header required of all routines that will be patched
* into the toolbox dispatch vectors.
*
* Note: The code between next1Vector and NewDispatch2 must be included
* for all calls. The code below NewDispatch2 only needs to be
* included for patches that want to post patch the calls.
*
PatchHeader proc
 entry next1Vector,next2Vector
 entry dispatch1Vector,dispatch2Vector
 entry NewDispatch1,NewDispatch2

next1Vector ; Where dispatch1 should go when finished.
 jml next1Vector ; (Filled in by InstallE10000).
next2Vector ; Where dispatch2 should go when finished.
 jml next2Vector ; (Filled in by InstallE10000).
dispatch1Vector ; Holds the JML instruction from $e10000.
 jml dispatch1Vector ; (Filled in by InstallE10000).
dispatch2Vector ; Holds the JML instruction from $e10004.
 jml dispatch2Vector ; (Filled in by InstallE10000).

anRtl rtl ; An RTL instruction. Its address will be
 ; pushed on the stack for dispatch1 calls.

NewDispatch1 ; Entry point for dispatch1 toolbox vector.

 phk ; Push program bank.
 pea anRtl-1 ; Push the address of a RTL.

NewDispatch2 ; Entry point for dispatch2 toolbox vector.

; The following code should be included in the PatchHeader if the patch wants
; to perform post patching. This code will determine if the call that was made
; actually exists and if it does, post patching can occur. If the call doesn't
; exist, any pre-call routines can be executed, but the post patching shouldn't

Apple II Technical Notes

Apple IIGS

4 of 10 #87: Patching the Tool Dispatcher

; be attempted because the dispatcher will remove the second return address from
; the stack, thus not returning to your post patching routines.
; Stack equates for this routine.

aLong equ $0001 ; A temporary long value.
oldDP equ aLong+4 ; Where the direct page is saved to.
oldTM equ oldDP+2 ; Where the tool call number is saved.

 phx ; Save the call that's being made.
 phd ; Save the current direct page.
 lda >ToolPointerTable+2 ; Get the TPT to determine the number
 pha ; of tool sets loaded.
 lda >ToolPointerTable
 pha
 tsc ; Set the direct page to the stack.
 tcd
 txa ; See if this tool set exits.
 and #$00ff
 cmp [aLong] ; Is it larger than the number of tool sets?
 bcs @noCall ; JIF this tool set doesn't exist.
 asl a
 asl a
 tay ; Now get the pointer to the FPT.
 lda [aLong],y
 tax
 iny
 iny
 lda [aLong],y
 sta aLong+2
 stx aLong
 lda oldTM ; Get the function number.
 and #$ff00
 xba
 cmp [aLong] ; Compare it to the number of entries in table.
@noCall
 pla ; Remove aLong from the stack.
 pla
 pld ; Restore the original direct page.
 plx ; Recover the tool number.

; At this point the carry flag is set if the tool call doesn't exist and clear
; if the tool call exits. No post patching must occur if the carry flag is set.

 jmp next2Vector ; Go to the original $e10004 jump instruction.

 endp

**
* CheckPatch - Checks the passed toolbox dispatch vector to see if it
* points to a valid patch.
*
* Input: Passed via the stack following C conventions.
* newPatchAddr (long) - Address of the patch routine.
*
* Output:
* If newPatchAddr is a valid patch -
* Carry clear
* If newPatchAddr is not a valid patch -
* Carry set
*
CheckPatch proc

zprtl equ $01 ; The address for the rtl on our direct page.
newPatchAddr equ zprtl+3 ; Address of patch (parameter to this routine).

 tsc ; Make the stack the direct page after saving

September 1990

Apple IIGS

#87: Patching the Tool Dispatcher 5 of 10

 phd ; the current direct page.
 tcd

Apple II Technical Notes

Apple IIGS

6 of 10 #87: Patching the Tool Dispatcher

 lda newPatchAddr+2 ; Simple check to check for a valid pointer.
 and #$ff00
 bne BadPatch ; Wasn't zero, can't be a valid pointer.

 lda [newPatchAddr] ; Check for the first JML instruction.
 and #$00ff
 cmp #$005c
 bne BadPatch

 ldy #$04 ; Check for the second JML instruction.
 lda [newPatchAddr],y
 and #$00ff
 cmp #$005c
 bne BadPatch

 ldy #$08 ; Check for the third JML instruction.
 lda [newPatchAddr],y
 and #$00ff
 cmp #$005c
 bne BadPatch

 ldy #$0c ; Check for the fourth JML instruction.
 lda [newPatchAddr],y
 and #$00ff
 cmp #$005c
 bne BadPatch

 ldy #$10 ; Check for the rtl and phk instructions.
 lda [newPatchAddr],y
 cmp #$4b6b
 bne BadPatch

 iny ; Check for the phk and pea instructions.
 lda [newPatchAddr],y
 cmp #$f44b
 bne BadPatch

 clc ; Calculate the address of the rtl instruction.
 lda newPatchAddr
 adc #$000f
 ldy #$13 ; Check for address of the rtl instruction.
 cmp [newPatchAddr],y
 bne BadPatch

GoodPatch
 pld ; Restore the direct page and report
 clc ; that it was a good patch.
 rtl

BadPatch
 pld ; Restore the direct page and report
 sec ; that something was wrong.
 rtl

 endp

**
* InstallE10000 - Sets the jump vector at $e10000 and $e10004 to point to
* the passed new toolbox dispatch vector patch. This routine
* also updates the linked lists so that more than one routine
* can be patched into the dispatch vectors.
*
* Input: Passed via the stack following C conventions.
* newPatchAddr (long) - Address of the patch routine.
*

September 1990

Apple IIGS

#87: Patching the Tool Dispatcher 7 of 10

* Output:
* If an error occurred -
* Carry set, Accumulator contains one of the following error codes:
* badHeaderError
* If no error occurred and patch was installed successfully -
* Carry clear, Accumulator contains zero.
*
InstallE10000 proc

oldPatchAddr equ $01 ; Address of existing patch.
zprtl equ oldPatchAddr+4 ; The address for the rtl.
zpsize equ zprtl-oldPatchAddr ; Size of direct page we'll have on the
stack.
newPatchAddr equ zprtl+3 ; Address of patch (parameter to this
routine).

 tsc ; Move the stack pointer to point beyond
 sec ; the direct page variables that we'll
 sbc #zpsize ; place on the stack.
 tcs
 phd ; Save the direct page register.
 tcd ; Set the direct page.
 php ; Disable interrupts
 sei

 pei newPatchAddr+2 ; Check if patch header is valid.
 pei newPatchAddr
 jsl CheckPatch
 plx ; Remove the parameters from the stack.
 plx
 bcc @1 ; Report the badHeaderError if detected.
 ldy #badHeaderError
 jmp Exit

@1 lda >dispatch1 ; Set up the next1Vector in the new patch.
 sta [newPatchAddr] ; The JML instruction and low byte.
 lda >dispatch1+2
 ldy #$02
 sta [newPatchAddr],y ; The middle and upper bytes.

 lda >dispatch2 ; Set up the next2Vector in the new patch.
 ldy #$04
 sta [newPatchAddr],y ; The JML instruction and low byte.
 lda >dispatch2+2
 ldy #$06
 sta [newPatchAddr],y ; The middle and upper bytes.

 lda >dispatch1+3 ; See if there's already a patch in dispatch1.
 and #$00ff
 sta oldPatchAddr+2
 pha ; High byte of possible header address.
 lda >dispatch1+1
 sec
 sbc #$0011
 sta oldPatchAddr
 pha ; Low byte of possible header address.
 jsl CheckPatch
 plx
 plx
 bcs First ; JIF this will be the first patch installed.

 ldy #$08 ; Set up the dispatch1Vector in the new patch.
 lda [oldPatchAddr],y
 sta [newPatchAddr],y ; The JML instruction and low byte.
 ldy #$0a
 lda [oldPatchAddr],y

Apple II Technical Notes

Apple IIGS

8 of 10 #87: Patching the Tool Dispatcher

 sta [newPatchAddr],y ; The middle and upper bytes.

 ldy #$0c ; Set up the dispatch2Vector in the new patch.
 lda [oldPatchAddr],y
 sta [newPatchAddr],y ; The JML instruction and low byte.
 ldy #$0e
 lda [oldPatchAddr],y
 sta [newPatchAddr],y ; The middle and upper bytes.

 bra PatchIt ; Now patch dispatch1 and dispatch2.

First ldy #$08 ; Set up the dispatch1Vector in the new patch.
 lda >dispatch1
 sta [newPatchAddr],y ; The JML instruction and low byte.
 ldy #$0a
 lda >dispatch1+2
 sta [newPatchAddr],y ; The middle and upper bytes.

 ldy #$0c ; Set up the dispatch2Vector in the new patch.
 lda >dispatch2
 sta [newPatchAddr],y ; The JML instruction and low byte.
 ldy #$0e
 lda >dispatch2+2
 sta [newPatchAddr],y ; The middle and upper bytes.

PatchIt
 clc ; Calculate the address of the new dispatch2.
 lda newPatchAddr
 adc #$0015
 sta newPatchAddr
 xba
 and #$ff00 ; Mask in the JML instruction.
 ora #$005c
 sta >dispatch2 ; The JML instruction and low byte.
 lda newPatchAddr+1
 sta >dispatch2+2 ; The middle and upper bytes.

 sec ; Calculate the address of the new dispatch1.
 lda newPatchAddr
 sbc #$0004
 sta newPatchAddr
 xba
 and #$ff00 ; Mask in the JML instruction.
 ora #$005c
 sta >dispatch1 ; The JML instruction and low byte.
 lda newPatchAddr+1
 sta >dispatch1+2 ; The middle and upper bytes.

 ldy #noError ; Report that all went well.

Exit plp ; Restore the interrupt state.
 pld ; Restore the previous direct page register.
 tsc ; Restore the stack pointer.
 clc
 adc #zpsize
 tcs
 tya ; Value to return.
 beq @noerr
 sec ; Report that there was an error.
 rtl
@noerr clc ; Report that there was no error.
 rtl

 endp

September 1990

Apple IIGS

#87: Patching the Tool Dispatcher 9 of 10

**
* RemoveE10000 - Removes the specified patch from the dispatch1 and dispatch2
* vectors and updates the linked lists for the remaining
* toolbox patches.
*
* Input: Passed via the stack following C conventions.
* patchToRemove (long) - Address of the patch to remove.
*
* Output:
* If an error occurred -
* Carry set, Accumulator contains one of the following error codes:
* badHeaderError
* headerNotFoundError
* If no error occurred and patch was removed successfully -
* Carry clear, Accumulator contains zero.
*
RemoveE10000 proc

patchDispAddr equ $01 ; Address of existing patch (and 1 extra
byte).
prevHeader equ patchDispAddr+5 ; Used to search through the linked list.
zprtl equ prevHeader+4 ; The address for the rtl.
zpsize equ zprtl-patchDispAddr ; Size of direct page we'll have on the
stack.
patchToRemove equ zprtl+3 ; Address of patch (parameter to this
routine).

 tsc ; Move the stack pointer to point beyond
 sec ; the direct page variables that we'll
 sbc #zpsize ; place on the stack.
 tcs
 phd ; Save the direct page register.
 tcd ; Set the direct page.
 php ; Disable interrupts
 sei

 pei patchToRemove+2 ; Check if patch header we were asked to
 pei patchToRemove ; remove is a valid header.
 jsl CheckPatch
 plx ; Remove the parameters from the stack.
 plx
 bcc @1 ; Report the badHeaderError if detected.
 ldy #badHeaderError
 jmp Exit

@1 clc ; Create the JML instruction that would exist
 lda patchToRemove ; if the patchToRemove was installed.
 adc #$0011
 sta patchDispAddr+1
 lda patchToRemove+2
 sta patchDispAddr+3
 lda patchDispAddr ; Mask in the JML instruction.
 and #$ff00
 ora #$005c
 sta patchDispAddr

 cmp >dispatch1 ; Check if the patch to remove is the first
 bne NotFirstOne ; patch installed.
 lda >dispatch1+2
 cmp patchDispAddr+2
 bne NotFirstOne

 lda [patchToRemove] ; Restore the Dispatch1 vector.
 sta >dispatch1
 ldy #$02
 lda [patchToRemove],y

Apple II Technical Notes

Apple IIGS

10 of 10 #87: Patching the Tool Dispatcher

 sta >dispatch1+2

September 1990

Apple IIGS

#87: Patching the Tool Dispatcher 11 of 10

 ldy #$04 ; Restore the Dispatch2 vector.
 lda [patchToRemove],y
 sta >dispatch2
 ldy #$06
 lda [patchToRemove],y
 sta >dispatch2+2

 bra NoErr ; Everything went well.

NotFirstOne
 sec ; Assume that whatever is in dispatch1 is a
 lda >dispatch1+1 ; patch and get the address of its header.
 sbc #$0011
 sta prevHeader ; Low and middle bytes.
 lda >dispatch1+3
 and #$00ff
 sta prevHeader+2 ; Upper byte of header address.

@loop pei prevHeader+2 ; Check if it really is a valid header.
 pei prevHeader
 jsl CheckPatch
 plx ; Remove the parameters from the stack.
 plx
 bcc @2 ; Report that the patch that we asked to
 ldy #headerNotFoundError ; remove wasn't found.
 bra Exit

@2 lda [prevHeader] ; See if this patch points to patch we want
 cmp patchDispAddr ; to remove.
 bne @nope
 ldy #$02
 lda [prevHeader],y
 cmp patchDispAddr+2
 bne @nope

 lda [patchToRemove] ; Restore the next1Vector.
 sta [prevHeader]
 ldy #$02
 lda [patchToRemove],y
 sta [prevHeader],y

 ldy #$04 ; Restore the next2Vector.
 lda [patchToRemove],y
 sta [prevHeader],y
 ldy #$06
 lda [patchToRemove],y
 sta [prevHeader],y

 bra NoErr ; Everything went well.

@nope ldy #$02 ; Get the address of the next patch header.
 lda [prevHeader],y
 tax
 lda [prevHeader]
 sta prevHeader
 stx prevHeader+2

 sec
 lda prevHeader+1
 sbc #$11
 sta prevHeader
 lda prevHeader+3
 and #$00ff
 sta prevHeader+2

Apple II Technical Notes

Apple IIGS

12 of 10 #87: Patching the Tool Dispatcher

 bra @loop ; Now check this header.

NoErr ldy #noError ; Report that all went well.

Exit plp ; Restore the interrupt state.
 pld ; Restore the previous direct page register.
 tsc ; Restore the stack pointer.
 clc
 adc #zpsize
 tcs
 tya ; Value to return.
 beq @noerr
 sec ; Report that there was an error.
 rtl
@noerr clc ; Report that there was no error.
 rtl

 endp

 end

Further Reference
• Apple IIGS Toolbox Reference
• Apple IIGS Technical Note #73, Using User Tool Sets

Apple IIGS

#88: The Page One Stack in a 16-Bit World 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#88: The Page One Stack in a 16-Bit World

Written by: Dave Lyons September 1990

This Technical Note clarifies the protocol for moving the stack pointer in and out of page one.

On page 13 of the Apple IIGS Firmware Reference, under “Save the value of the native-mode
stack pointer,” there is a code sample showing how to switch to the page-one stack by setting the
stack pointer to $01xx, where xx is the contents of EMULSTACK at $01/0100.

However, the manual does not warn you about moving the stack pointer from page one to
another area. When you do that, you must store the low byte of the stack pointer at EMULSTACK
before moving the stack pointer out of page one. If you do not save the page-one stack properly,
interrupt routines or some toolbox calls may destroy a part of the page one stack that you go back
to later, expecting that return addresses are still there.

Note: If the auxiliary-memory stack and zero page are in use, you must use $01/0101
instead of $01/0100. See the Apple IIe Technical Reference Manual, pp. 153-154

Further Reference
• Apple IIGS Firmware Reference
• Apple IIe Technical Reference Manual

Apple IIGS

#89: MessageByName—Catchy Messages 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#89: MessageByName—Catchy Messages

Written by: Dan Strnad & Dave Lyons September 1990

This note clarifies MessageByName and provides examples of creating and retrieving a named
message.

Did You Say You Want To Get A Message?

All you have to do is ask. Apple IIGS Toolbox Reference, Volume 3 already tells you how.
Here’s what the fine print says: with the createItFlag set to FALSE and the name of the
message you are after in the nameString, you call MessageByName. What’s unclear in the
manual is that if the message was found, no error is returned, the createFlag is returned as
FALSE, and messageID contains the ID you can pass to MessageCenter to retrieve the
contents of the message. Here’s an example of MessageByName in use.

The following code creates a named message.

CreateNamedMessage
 pha
 pha
 pea 1 ;create it
 pushlong #MsgBlock
 _MessageByName ;function $1701
 pla
 sta myMsgID ;keep the ID if you want
 pla ;check the createFlag if you
want
 ...

MsgBlock dc.w MsgBlockEnd-MsgBlock
 dc.b 28,'XYZ Software:My Cool Product' ;Pascal-style string
 ... more data goes here
MsgBlockEnd

The following code retrieves the message.

 pha
 pha
 pea 0 ;don't create message
 pushlong #MsgBlock
 _MessageByName ;function $1701
 ply ;keep id of existing message
 pla ;createFlag (ignore)
 bcs noMessage ;carry set if an error occurred

Apple II Technical Notes

2 of 2 #89: MessageByName—Catchy Messages

Developer Technical Support September 1990

Apple IIGS

#89: MessageByName—Catchy Messages 3 of 2

 pea 2 ;MessageCenter action: GET
 phy ;message ID for MessageCenter,
below
 pha
 pha ;space for NewHandle result
 lda #0 ;size of handle (0)
 pha
 pha
 ldx MyID ;ID for empty
 phx
 pha ;handle attributes (0)
 pha
 pha ;no special location
 _NewHandle
 lda 3,s
 sta mcHandle+2
 lda 1,s
 sta mcHandle ;keep a copy of the handle for
later
 _MessageCenter ;takes Action, Msg ID, and
Handle

 lda mcHandle+2
 pha
 lda mcHandle
 pha
 phd
 tsc
 tcd
 ldy #2
 lda [3],y
 tax
 lda [3]
 sta 3
 stx 5

* now read data from the message at [3]
 ldy #$xxxx ;index past the name string
 lda [3],y
 ...
 pld
 pla
 pla

 lda mcHandle+2
 pha
 lda mcHandle
 pha
 _DisposeHandle

noMessage ...

mcHandle dc.l 0
myMsgID dc.w 0

MessageByName is available in Tool Locator versions 3.0 and later (System Software 5.0 and
later).

Further Reference
• Apple IIGS Toolbox Reference, Volumes 2-3

Apple IIGS

#90: 65816 Tips and Pitfalls 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#90: 65816 Tips and Pitfalls

Revised by: Matt “Matt” Deatherage March 1991
Written by: Dave “Dave” Lyons September 1990

This Technical Note presents short 65816 assembly language examples illustrating pitfalls and
clever techniques.
Changes since November 1990: Added more explanations about the JSL table and corrected a
comment.

Dispatching Through an Address Table

The 65816 has a JSR ($aaaa,X) instruction for calling a selected subroutine from a table of
addresses, but it has no JSL ($aaaa,X) instruction. If you need to dispatch to one of several
routines that are not all in the same bank, you need an approach like the following. The idea is to
perform a JSL to a routine which does a long jump by pushing a three-byte “RTL address” on
the stack and then doing an RTL.

 jsl LngJmp ;go jump to the routine
 ...

 LngJmp asl a ;take routine number in A and
 asl a ; multiply it by 4
 tax ;put table index into X
 lda table+1,x ;get “middle” word of address
 pha ; and push it
 lda table,x ;get low word and
 dec a ; decrement it by one
 phb ;push a single throw-away byte
 sta 1,s ;store over low two of the 3 bytes
 rtl ;transfer control to the routine
table dc.l routine1 ;table of 4-byte subroutine addresses
 dc.l routine2
 dc.l routine3
 ...

This code is correct because RTL pulls three bytes off the stack and increments the two low bytes
without incrementing the high byte.

Note: This approach to a table-based JSL is more flexible than JML ($XXXX) because it does
not require any fixed-location storage or bank zero space, other than the stack.

Apple II Technical Notes

Apple IIGS

2 of 3 #90: 65816 Tips and Pitfalls

On the other hand, the following code is not correct. The approach here is to make a table of
addresses minus one.

 asl a W
 asl a R ;multiply index by 4
 tax O ; and put it in X
 lda table+1,x N ;get the “middle” word
 pha G ; and push it
 lda table,x ! ;get the low word
 phb W ;push a single throw-away byte
 sta 1,s R ;store over low two bytes
 rtl O ;transfer control to the routine
 table dc.l routine1-1 N ;table of 4-byte addresses minus one
 dc.l routine2-1 G
 dc.l routine3-1 !
 ...

This second sample code fragment fails if any of the routines in the table comes at the first byte
of a bank. For example, if routine1 is at $060000, the address pushed is $05FFFF, and RTL
transfers control to $050000, not $060000.

Dereferencing Handles Without Direct Page Space

When your code gets called with the D register undefined, you must not use direct page
addressing without setting D to a known good value. Preserving and restoring locations on the
caller’s direct page is not reliable, because D could be pointing at bytes below the stack pointer
(which can be destroyed by interrupts) or even at the $C0xx soft switches (that would make your
direct page accesses accidentally fiddle with hardware).

A common way to get temporary direct page space is to point D at part of your stack. This
following code dereferences a handle stored in the A and X registers (if the handle is $E01234
and refers to a block of memory at $056789, then on entry A=$00E0 and X=$1234, and on exit
A=$0005 and X=$6789).

 phd ;save caller’s direct-page register
 pha ;push high word of handle
 phx ;push low word of handle
 tsc ;get stack pointer in A
 tcd ;and put it in D
 lda [1] ;get low word of master pointer (no “,Y”!)
 tax ; and put it in X
 ldy #$0002 ;offset to high word of master pointer
 lda [1],y ;get high word
 ply ;remove low word of handle
 ply ; and high word
 pld ;restore the caller’s direct-page register

Developer Technical Support March 1991

Apple IIGS

#90: 65816 Tips and Pitfalls 3 of 3

Direct page addressing isn’t the only way to address through pointers. Here’s the same routine
as before, but using the Data Bank register (B) instead of fiddling with D. (Note that handles do
not have to be in bank $E0 or $E1, although they usually are.)

 phb ;save caller’s data bank register
 pha ;push high word of handle on stack
 plb ;sets B to the bank byte of the pointer
 lda |$0002,x ;load the high word of the master pointer
 pha ; and save it on the stack
 lda |$0000,x ;load the low word of the master pointer
 tax ;and return it in X
 pla ;restore the high word in A
 plb ;pull the handle's high word high byte off the stack
 plb ;restore the caller’s data bank register

Emulation Mode Has 65816 Features

You don’t have to switch into Native mode just to do an eight-bit operation with long addressing.
Most 65816-specific instructions and addressing modes work in emulation mode in
approximately the same way they work in eight-bit native mode. See the “Further Reference”
for details.

Further Reference
• Apple IIGS Hardware Reference
• Programming the 65816, Including the 6502, 65C02 and 65802 (Eyes and Lichty, 1986,

Brady)

Apple IIGS

#91: The Wonderful World of Universal Access 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#91: The Wonderful World of Universal Access

Revised by: Dave Lyons May 1992
Written by: Don J. Brady, Matt Deatherage, & Ron Lichty September 1990

This Technical Note discusses how your applications can be compatible with Universal Access
software.
Changes since July 1991: Added caution against reading the keyboard with interrupts disabled.

What’s “Universal Access?”

Universal Access is the name given to software components designed to make Apple computers
(in this case, the Apple IIGS) more accessible to people who might have difficulty using them.
The Apple IIGS is very dependent on graphic objects, a keyboard and mouse; not all people can
use these things very easily.

There are several components to Apple’s Universal Access software:

• CloseView. CloseView magnifies the Apple IIGS screen so that it’s more easily
seen by those with visual impairments. The hardware screen contains a
magnification from two to twelve times as large as the “real” 32K Super Hi-Res
graphics screen.

• Video Keyboard. Video Keyboard is a New Desk Accessory that emulates a
keyboard. A picture of a keyboard appears on the screen; a mouse-down event in
any “key” makes Video Keyboard post a key-down event, so you can use a
pointing device as a keyboard. ADB hardware is available to allow people to use
head gear or other devices instead of mice; Video Keyboard lets these same
devices replace the keyboard as well.

• Easy Access. Easy Access comes in two parts: Sticky Keys and Mouse Keys.
Sticky Keys makes the keyboard easier to use for those who have trouble
pressing more than one key at a time; while Sticky Keys is activated, modifier
keys may be released and still apply to the next keystroke. Mouse Keys allows
the numeric keypad to be used as a mouse substitute. Sticky Keys and Mouse
Keys are included in all ROM 03 Apple IIGS computers. The software versions
allow all Apple IIGS computers to provide these functions, and provide additional
icon feedback (in the upper right menu bar) for Sticky Keys.

Apple II Technical Notes

Apple IIGS

2 of 4 #91: The Wonderful World of Universal Access

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 3 of 4

How It Works (Access Nothing and Checks For Free)

Universal Access generally works by replacing Apple IIGS toolbox functions. For example,
CloseView patches QuickDraw so you do not draw to the actual screen, but to another buffer that
CloseView can then magnify. Video Keyboard patches the Window Manager so that its
keyboard window is always frontmost and fully visible (and accessible). Easy Access uses the
ADB tools and the Event Manager to alter the way the hardware responds.

Since Universal Access changes the way the tools behave, your applications do not have to work
very hard to be accessible to a broad range of physically challenged people. Just by following
the rules, you have an accessible application. There are, however, a few guidelines you should
keep in mind when designing your programs to make them as accessible as they can be.

Universal Access Compatibility Guidelines

• Don’t disable interrupts and then try to read the keyboard. Easy Access on ROM 1
works at the Apple Desktop Bus level—if ADB interrupts are not being serviced, no
keypresses will show up at $C000/$C025. Even Reset will not work, so the user may
have to power down to regain control of the machine.

• Try to avoid using modal dialogs. Not only do lots of modal dialogs make for a
cumbersome interface for everyone, they are especially annoying to those who have
to move the mouse to a lot of OK buttons. More importantly, users cannot open
NDAs like Video Keyboard while modal dialogs are frontmost.

Video Keyboard can also be dragged in front of modal dialogs. If you are in the habit
of using QuickDraw calls to draw items in Dialog Manager modal dialogs instead of
creating custom dialog userItems, Video Keyboard users can drag the keyboard
window in front of your dialog and erase the items (since the only items redrawn are
those redrawn by the Dialog Manager’s update routine). You can easily test this in
all of your dialogs by obscuring each dialog with the Video Keyboard window a piece
at a time, then moving Video Keyboard away, to be sure that all areas are completely
redrawn.

Let’s say, for example, that you have a custom text item that changes between
invocations of the same modal dialog. You might choose to draw the text yourself
with LETextBox2 after creating the dialog with GetNewModalDialog but
before letting the Dialog Manager handle events with ModalDialog:

phx ; port: hi word from GetNewModalDialog
pha ; port: lo word from GetNewModalDialog
_SetPort

lda OurText+2 ; pointer to text to draw in modal dialog
pha
lda OurText
pha
lda OurTextLength ; Text length
pha

Apple II Technical Notes

Apple IIGS

4 of 4 #91: The Wonderful World of Universal Access

pea OurTextRect>>16 ; Text rectangle
pea OurTextRect
pea 0002 ; Text justification (2 = fill)
_LETextBox2

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 5 of 4

To be Universal Access–friendly, you would, instead, implement a userItem
routine like the following:

; .
DrawDialogText
;
; DrawDialogText draws text pointed to by OurText into the Dialog.
; This userItem routine is called only by the Dialog Manager,
; when it’s implementing/updating the dialog.
; .

lda >OurText+2 ; pointer to text to draw in modal dialog
pha
lda >OurText ; (long addressing: data bank unknown)
pha
lda >OurTextLength ; Text length
pha
pea OurTextRect>>16 ; Text rectangle
pea OurTextRect
pea 0002 ; Text justification (2 = fill)
_LETextBox2

lda 1,s ; get return address
sta 7,s ; move to proper location
lda 2,s ; above input parameters
sta 8,s

pla ; move stack pointer up
pla ; to new return address location
pla
rtl

It will be called as a result of adding a template item like the following to the dialog
template (note use of Item Value for the text length, since template Value fields are
not used by userItems):

TextTemplate dc.w 3 ; ID
OurTextRect dc.w TTop,TLeft,TBottom,TRight
 dc.w UserItem+ItemDisable ; Type
 dc.l DrawDialogText ; Pointer to our userItem routine
OurTextLength ds.w 1 ; Text length (cheap place to put

it)
 dc.w 0000 ; Item flag

 dc.l 00000000 ; Item color

Note that this is a simple example of a custom item routine; if you really had custom
text that changed from invocation to invocation, you could use the existing Dialog
Manager ParamText and longStatText2 item mechanisms.

• Use the Event Manager routines for event information. Do not access any hardware
directly or use the lower-level Miscellaneous Tools routines for user event
information—you steal that information from Universal Access. For example, use
the Event Manager routine GetMouse to find the mouse location. Do not use
ReadMouse or you steal mouse movement information from Universal Access.

• Call GetNextEvent or TaskMaster often. Long delays between calls do not let
NDAs like Video Keyboard get events. If you cannot make these calls, at least call
SystemTask.

Apple II Technical Notes

Apple IIGS

6 of 4 #91: The Wonderful World of Universal Access

• Do not assume that the hardware location of the screen is $E12000. Universal Access
components that manipulate the entire screen (like CloseView) move the virtual
screen so the hardware can be used for the magnified screen image.

To find the screen location, look at the ptrToPixImage field in a grafPort after
calling OpenPort (or in your window’s window record after NewWindow). The
image pointer gives the correct location of the screen.

Assuming the current port is on screen, the following code finds the
ptrToPixImage value:

pha
pha ;made space for port pointer
_GetPort
phd ;save direct page location
tsc
tcd ;port pointer is now at 3..6 on direct page
ldy #4 ;offset to high word of ptrToPixImage
lda [3],y ;got high word
tax ; in X
ldy #2 ;offset to low word of ptrToPixImage
lda [3],y ;got low word
tay ; in Y
pld ;restored direct page location
pla
pla ;removed port pointer

The X and Y registers now contain the base address of the screen.

• Do not assume things about being the frontmost window. Even if FrontWindow
says you have the frontmost window, your visRgn may have pieces missing. For
example, the title bar of your window may be partially under the menu bar. Or there
may be a floating “windoid” (like Video Keyboard’s window) over part of your
window.

For these reasons you should not draw directly to the screen without first examining
your window’s visRgn. Do not just check for rectangularity—your visRgn could
be rectangular and parts of your window still be obscured. If you use QuickDraw for
all your drawing, QuickDraw automatically clips drawing activity to be entirely
within the visRgn, so this is not a problem.

• Don’t access QuickDraw data directly; use QuickDraw routines instead. For
example, to access SCB data, use the QuickDraw routines GetSCB and SetSCB
instead of reading the hardware at $E19D00. CloseView may have those SCBs
changed to reflect a magnified portion of the screen. Also use GetColorEntry,
SetColorEntry, GetColorTable, and SetColorTable. Don’t access the
hardware directly.

• Try to allocate memory after starting the tools. If you want to allocate memory
before starting tools, do not use special memory. (Set the attrNoSpec bit in the
attributes.)

Developer Technical Support May 1992

Apple IIGS

#91: The Wonderful World of Universal Access 7 of 4

Further Reference
• Apple IIGS Toolbox Reference
• Apple IIGS Firmware Reference
• Apple II Video Overlay Card Development Kit (APDA)

	80. QuickDraw II Clipping
	81. Extended Control Ecstasy
	82. Controlling the Control Manager
	83. Resource Manager Stuff
	84. TaskMaster Madness
	85. Moving the Mouse
	86. Risking Resourceful Code
	87. Patching the Tool Dispatcher
	88. The Page One Stack in a 16-Bit World
	89. MessageByName - Catchy Messages
	90. 65816 Tips & Pitfalls
	91. The Wonderful World of Universal Access

