
Apple IIGS

#92:  Twisted Tales of TextEdit 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#92: Twisted Tales of TextEdit

Revised by: Dave Lyons December 1991
Written by: C.K. Haun <TR> and Dave Lyons September 1990

This Technical Note discusses some undocumented features and some bugs in the TextEdit tool
set through System Software 5.0.4.
Changes since November 1990:  Noted that a non-control TENew creates a Text Edit record for
the current port.

TENew

TextEdit records you create with TENew are always tied to the current port at the time of the
TENew  call, whether or not the fNotControl  bit is set.  (For TextEdit controls,
NewControl2 is the preferred call.)

TEInsert

Using the TEInsert call on an invisible TextEdit record causes the screen to scroll, exactly as
if the TextEdit record were visible.

If you use LETextBox2 style text as input for a TEInsert call, any style change information
contained at the end of the LETextBox2 text is ignored.  To ensure that the style change is not
ignored, append an additional character at the end of the block, then delete (with
TESetSelect and TEDelete) the extra character after the TEInsert call.

TEGetText

The documentation for TEGetText says that a dataFormat value of $4 returns the text as
“Formatted for input to LineEdit LETextBox2”.  This is not a reliable return method—this call
may or may not succeed.  Greater chance for success occurs with less than 4,000 characters in
the TextEdit record.

TEGetText also supports getting just the text of the current selection range.  Adding $0020
(onlyGetSelection) to the number passed in bufferDescriptor returns the text of the
current selection.  This technique does not work with data format LETextBox2, but does work
with all other formats.  Also, there is no corresponding bit for the associated style record, so you



Apple II Technical Notes

Apple IIGS

2 of 2  #92:  Twisted Tales of TextEdit

cannot get the style for just the current selection this way, if you request style information you
get a styleRef for the entire TextEdit record.

TEClick

Using TEClick or TestControl on an inactive record currently causes that record to
activate.

TERuler

Pixel tabbing values must all be greater than zero or TextEdit loops infinitely on a tab.

TEGetRuler & TESetRuler

TERuler, for the default ruler or any ruler that uses a tabType value of $1 returns a ruler four
bytes longer than described in the documentation.  The extra four bytes are all $FF, and they are
the terminator characters for tabType $2 rulers.  Expand your buffers by four bytes to prevent
overwriting any data.  TextEdit also expects the additional information on a TESetRuler call,
so you should pad your ruler with four $FF bytes if you are using a type $1 ruler.

TESetText

Passing a zero-length class one input string (a word length string with the word set to zero) to
TESetText causes TextEdit to crash.

TEPaintText

TEPaintText currently prints colored text in only four colors.

It’s Not Dirty, It’s Text

There has been some confusion about determining if a TextEdit record has been changed.  The
documentation has been a little vague, and the process itself has mislead some people.  Here is
The Truth:  there is a TextEdit dirty flag, and you can use it and rely on it to tell you when a
TextEdit record has changed.

The TextEdit dirty flag is bit 6 (fRecordDirty in the E16.TextEdit interface file) of the
ctlFlag byte.  This has caused some confusion because the ctlFlag byte is at offset $12 in
the control definition template, and it is at offset $10 in the TextEdit or Control record.  Just
remember that it is not in the same place in the record as it is in the template.



Developer Technical Support December 1991

Apple IIGS

#92:  Twisted Tales of TextEdit 3 of 2

If it is set, then the TextEdit or Control record has been changed since the last time the dirty bit
was cleared.  The dirty bit is clear initially when you create the TextEdit or Control record.
Anytime after that, if the user enters text into the TextEdit record, TextEdit sets the dirty flag.  It
is up to your application to clear the dirty flag; TextEdit has no way of knowing when you’ve
saved or cleared data.

Further Reference
• Apple IIGS Toolbox Reference, Volume 3



Apple IIGS
#93:  Compatible Printing 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#93: Compatible Printing
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage September 1990

This Technical Note discusses printing on the Apple IIGS and how you can make your printing
code more compatible.
Changes since September 1990:  Added a note about expecting print records to keep the same
attributes across Print Manager calls.  Added the StyleWriter’s iDev value.

How Does Printing Work Anyway?

There are, in general, two types of printing done on the Apple IIGS.  The first kind is “desktop”
printing, which uses the Apple IIGS Print Manager to render images created by QuickDraw II onto
an output device.  The other kind of printing is “text” printing, which is similar to the way classic
Apple II applications print—you send ASCII text somewhere and a printer prints it as ASCII text.
This printing normally involves no graphics and is very quick.

This Note covers both types of printing, and by understanding the internals and the methods used
to print, you can avoid compatibility headaches in the future.

Desktop Printing

Desktop printing uses the Apple IIGS Print Manager.  The process is described in detail in the Print
Manager chapter of the Apple IIGS Toolbox Reference, and usually consists of a simple print loop:

Open a document (PrOpenDoc)
Open a page (PrOpenPage)
Draw or Image the page in your favorite way
Close the page (PrClosePage)
Repeat for each page

Close the document (PrCloseDoc)
Print the document if it’s spooled (PrPicFile)

Note that you should always call PrPicFile at the end of your print loop.  It completes the
printing process, even for immediate or draft printing.

There’s one real secret about the Print Manager that can cloud your understanding of printing—the
Print Manager doesn’t actually do anything.  It loads, unloads, and keeps track of printer drivers
and port drivers and performs some necessary housekeeping, but that’s about it.  Many people
believe that the Print Manager is responsible for all imaging, managing documents, managing a
printing grafPort and such, but it’s not.  (The myth is perpetuated by the Toolbox Reference
which refers to these functions as handled by the Print Manager.)  In fact, these functions are
handled by printer drivers.



Apple II Technical Notes

2 of 4 93:  Compatible Printing

You actually call the printer driver for all of the routines in the print loop; all the Print Manager does
is make sure the driver is loaded and dispatch to it.  Therefore, most of the compatibility issues you
have with printing are not with the Print Manager, but with printer drivers.

Dealing With the Print Record

It’s the printer driver’s job to get information about a printing job from the user (it’s the printer
driver that handles the style and job dialog boxes, since the Print Manager cannot generically know
what style and job options any printer can support), keep track of it, and print the document using
those settings.  Those settings are kept in a data structure associated with a document known as a
print record.

Apple had only released two printer drivers at the time the first volume of the Toolbox Reference
was published, and therefore the descriptions of the print record in that volume tend to be absolute.
For example, the iDev field is documented as “one for an ImageWriter and three for a
LaserWriter.”  In fact, the iDev field is the only method of print record interpretation available and
there are several values for it:

$0001 = ImageWriter
$0002 = ImageWriter LQ
$0003 = LaserWriter
$0004 = Epson
$0065 = StyleWriter
$8001 = Generic dot-matrix (interprets the style subrecord like the ImageWriter driver)
$8003 = Generic laser printer (interprets the style subrecord like the LaserWriter driver)

If you have checks in your code like “If it’s not $0001, it must be a LaserWriter,” you have
problems with most of the other printer types.

The $8000 and greater iDev values are defined for third-party printer drivers.  The printer driver
has no way other than the print record to keep track of values for a given print job, so it has to store
all such information in the print record.  If all third-party drivers use proprietary style subrecord
formats, no applications can read or set any of those values.  Those drivers which can use the
compatible $8000 and greater iDev values indicate to applications that the definitions in Toolbox
Reference for the ImageWriter and LaserWriter drivers apply to these drivers as well.  iDev values
of $0002 or $0004 also interpret the style subrecord as the ImageWriter driver does.

Print Record Rules

Remember:  the print record is the only way the printer driver has to maintain information about a
particular job.  The print record belongs to the user, the document, and the printer driver—not the
application.  Here are some rules for staying out of print record trouble.

• Always call PrValidate when changing fields in the print record.  Even if a
driver interprets the style subrecord like the ImageWriter driver, it may not support
all the ImageWriter’s style features (e.g., color printing).  Calling PrValidate
every time you change something in the print record gives the printer driver a chance
to look at the havoc you’ve wreaked and correct it if necessary.

You do not always get a feature you want.  If a printer does not support color
printing, you can set the “color” bit all day long and PrValidate clears it every
time.  You should be prepared for a new printer driver that does not support the
features you want, and inform the user that the feature is not supported by this
printer.



Developer Technical Support May 1992

Apple IIGS
#93:  Compatible Printing 3 of 4

• Do not patch PrValidate to make it ignore bogus values in the print record
unless instructed to do so by the printer driver author.

• Never, never tread on reserved fields in the print record.  If you find a particular
driver storing useful values some place, forget it.  This is the only place a driver has
to store information about a print job and some of it is not going to be supported.

In particular, never try to interpret any values you may find in the printX
subrecord of the print record.  This subrecord is for the private use of printer
drivers.  Although printX is currently the worst compatibility risk, you must not
tamper with other reserved fields.

• Don’t assume that the print record will keep the same memory attributes across calls
to the Print Manager (and therefore the printer driver).  Specifically, don’t assume
that a print record will stay locked across calls to the Print Manager.

• If you want to learn more about printing, learn how printer drivers work.  The
specifications are in Apple IIGS Technical Note #35, appropriately entitled “Printer
Driver Specifications.”  An understanding of how printer drivers do their work is an
understanding of how printing works.

Text Printing

Text printing generally uses the built-in ASCII mode of most dot-matrix printers to print text
quickly and efficiently.

Desktop printer drivers often have a “draft” mode, where they print text immediately instead of
imaging it in the appropriate font and style.  This is accomplished by intercepting low-level
QuickDraw II routines called bottleneck procedures.  When QuickDraw is called to draw text, the
printer driver gets control instead and sends the text to the printer.

Although this is useful to users of desktop printer drivers, it is not a required feature of any printer
driver, and those that do implement it each do so in their individual way.  For example, the
LaserWriter driver doesn’t support this model of “draft” printing because the LaserWriter is
normally a PostScript® device—sending straight ASCII to it doesn’t necessarily work.

To imitate the way classic Apple II applications print, your application prompts the user for some
device through which to print, and ASCII characters are sent through that device.  There are a few
ways to do this.

Using the Print Manager

You can still use the Print Manager to print in ASCII mode by bypassing the printer driver.  Simply
use the Port Driver to send ASCII characters to the given target device with the PrDevWrite call.
The specifications for Port Driver calls are in Apple IIGS Technical Note #36, also appropriately
entitled “Port Driver Specifications.”  You make port driver calls as if they were Print Manager
calls.



Apple II Technical Notes

4 of 4 93:  Compatible Printing

Although this method has been used, Apple does not recommend it.  If the selected port driver is a
network driver, this method is troublesome.

Using the Text Tools

By using the Apple IIGS Text Tools, you can ask the user what slot to print through and send
ASCII characters to that slot or port.  Although this is better than using the Port Driver, it still has
problems.  The Text Tools cannot be fully GS/OS Slot Arbiter compatible; therefore, there might be
GS/OS devices accessible to the user to which your application does not let him print.  Also, it’s
difficult to detect which slots really have Text Tools’ devices without knowing about Apple II
firmware, and prompting the user for a slot number invites trying to print to the disk firwmare,
which usually justs reboot the machine (unceremoniously).

Using GS/OS

GS/OS supports character drivers, such as printer interfaces, and using them is the best way to
handle ASCII printing.  GS/OS supports loaded drivers for character devices if you have them, and
generates drivers for character devices it can recognize.  In addition, GS/OS drivers have
identification words so you can prompt with real messages instead of cryptic slot numbers.

You can use the GS/OS call DInfo to loop through all drivers and prepare a list of character
drivers.  You can then change their device IDs into text phrases, place them in a list, and prompt the
user to select one.  This call usually results in a list such as “Printer port, Modem port, Remote
Print Manager, Printer interface, Text screen [the Console driver].”  You may wish to change the
names of the devices slightly to make the choice easier (e.g., “network printer” instead of “Remote
Print Manager”).

Apple strongly recommends using GS/OS for ASCII printing from 16-bit applications.

Note: The Remote Print Manager (.RPM) device driver in System Software 5.0 to 5.0.2
has a bug which causes character loss.  System Software 5.0.3 fixes this bug.

Further Reference
• Apple IIGS Toolbox Reference
• GS/OS Reference
• Apple IIGS Technical Note #34, Low-level QuickDraw II Routines
• Apple IIGS Technical Note #35, Printer Driver Specifications
• Apple IIGS Technical Note #36, Port Driver Specifications
• Apple IIGS Technical Note #69, The Ins and Outs of Slot Arbitration
• Apple IIGS Technical Note #75, BeginUpdate Anomaly

PostScript is a registered trademark of Adobe Systems Incorporated.



Apple IIGS
#94:  Packing It In (and Out) 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#94: Packing It In (and Out)
Revised by: Dave Lyons May 1992
Written by: C.K. Haun <TR> September 1990

This Technical Note discusses a potential problem with the Miscellaneous Tools routine
UnPackBytes.
Changes since September 1990: Noted that the problem detecting the end of the unpack-to buffer
near the end of a bank is fixed in System 6.0.

PackBytes and UnPackBytes are handy data compression and expansion routines built into
the Apple IIGS System Software.  Using them can dramatically reduce the amount of space your
application uses on disk or in memory, but you need to understand how these calls work to avoid
problems in your applications.

Buffer Size, Buffer Size, Buff, Buff, Buffer Size

There are some situations where the Miscellaneous Tools call UnPackBytes does not function as
expected and can cause your application to loop infinitely while you’re waiting for an unpacking
process to finish.

The following packed data and code (in APW assembly) demonstrates the problem.  It shows a
small routine that unpacks data in two steps, simulating the situation in many applications where an
arbitrary amount of data is unpacked in a variable amount of unpacking actions, depending on the
results of the last unpack pass.

UnPackBuffer      ds    160                     ; area to unpack the data to
UnPackBufferPtr   dc    i4’UnPackBuffer’        ; pointer to unpacking buffer
UnPackBufferSize  ds    2
temp              ds    2

PackedData        dc h’FFFFFFFF’
EndPackData       anop
PackLength        dc i2’EndPackData-PackedData’ ; how many bytes of packed data

* In packbytes format $FFFF means ‘64 repeats of the next byte ($FF) taken as 4 bytes’ as
* described on page 14-39 of Toolbox Reference, so
* this data should unpack into 512 $FF bytes



Apple II Technical Notes

Apple IIGS
2 of 4 #94:  Packing It In (and Out)

* The following code loops infinitely

                  lda   #160                    ; Unpack buffer size
                  sta   UnPackBufferSize
UnPackLoop        pea   0                       ; return space
                  pushlong #PackedData          ; pointer to packed data
                  pea   2                       ; size of the packed data, unpack two bytes
                                                ; at a time
                  pushlong #UnPackBufferPtr     ; pointer to pointer to unpacking buffer
                  pushlong #UnPackBufferSize    ; pointer to word with the size of the
                                                ;  unpacking buffer
                  _UnPackBytes
                  pla                           ; returns 0 bytes unpacked
                  sta   temp
                  lda   PackLength
                  sec
                  sbc   temp                    ; subtracting it from our known
                  sta   PackLength              ; length of packed data
                  bne   UnPackLoop              ; this is always be non-zero

The problem is in the data and the buffer size.  UnPackBytes is being told to unpack two bytes
($FFFF), which generate 256 bytes of unpacked data, into a 160-byte buffer.  Instead of reporting
an error with this condition, UnPackBytes instead just does nothing and passes back zero as the
returned number of bytes unpacked.  If you are relying on the unpacked byte count returned to
control your unpacking loop, then you may encounter this problem.

UnPackBytes can be used to unpack in multiple steps, of course, but it cannot unpack a partial
record.  It cannot unpack 160 bytes of the 256 bytes specified in this record because
UnPackBytes does not maintain any state information, so it must unpack full records or do
nothing.  If the buffer had been 256 bytes, this call would have succeeded.

The Fix

Fortunately, it’s easy to avoid this situation if  you know that it can exist.  Simply, always supply
UnPackBytes with a buffer that is big enough for it to unpack at least two bytes (a flag or count
byte and a data byte).  The largest value of a flag or count word possible is $FF, 64 repeats of the
next byte taken as four bytes, which generates 256 unpacked bytes.  So always give
UnPackBytes a 256-byte long output buffer and you should never encounter this problem.

Check Your Current Applications

Please check your current applications to see if you could encounter this problem.  One of the most
likely places for this error to occur is in applications that process Apple Preferred (file type $C0,
auxiliary type $0002) pictures.  While most pictures currently available are screen-width or less
(160 bytes or less per scan line), the Apple Preferred format and QuickDraw II both support
pictures that are wider than the current Apple IIGS screen.  If someone has created a picture with a
PixelsPerScanLine value of 1,280 with a ModeWord of $0080, it would generate a scan line
that was 320 bytes long.  If a scan line in this hypothetical picture were all white, for example, the
first two bytes of the packed scan line would be $FFFF, and applications that assume a standard
maximum 160 bytes per scan line would not handle this correctly.



Developer Technical Support May 1992

Apple IIGS
#94:  Packing It In (and Out) 3 of 4

But That’s Not All…

In System Software earlier than 6.0, UnPackBytes has some other buffering problems of which
you need to be aware.  The size and location of the input buffer (the buffer containing your packed
data) can also cause problems.

You can ignore this section if your application requires System 6.0.

Note: These problems only occur if you are doing multipass unpacks.  If you always
unpack a packed data range in one pass (with one call to UnPackBytes for the
whole data set) then you are not affected by these problems, and the restrictions
described herein do not apply.

Multipass Restrictions

When performing a multipass unpack (as described on pp. 14-43..44 of the Apple IIGS Toolbox
Reference, Volume 1) the packed data needs to follow two rules.

Rule 1: Your packed data buffer cannot cross a bank boundary.
Rule 2: Your packed data buffer needs to be at least 65 bytes longer than the actual size

of the data.

These rules are required by a bug in UnPackBytes.  When UnPackBytes begins to unpack a
record, it checks the record data to see if there are enough bytes in the current source buffer to
unpack the number of bytes requested in the record header (described on pg. 14-39 of the Apple
IIGS Toolbox Reference, Volume 1).  If there are not enough bytes left for the current record (i.e.,
the header says to process 63 bytes, and there are only 30 left in the buffer), UnPackBytes
returns to the caller.  The caller then adjusts the source buffer for the next pass based on the amount
of actual bytes unpacked, so the bytes left over from the last pass get processed the next time.

The problem occurs when the partial record is close to the end of a bank.  When UnPackBytes
checks to see if there is enough data left in the buffer, the check is flawed when the real end of the
buffer is near the end of a bank, and a complete copy of the partial record would extend into the
next bank.  UnPackBytes erroneously thinks that the record is complete, and happily unpacks the
remaining actual packed data, plus random information from the next bank.  It continues to unpack
nonsense data until it fills the unpacking buffer and the number of bytes unpacked returned by the
UnPackBytes call is greater than the bufferSize parameter passed as input.

To prevent this bug from occurring, you need to make sure that the buffer for the packed data is at
least one record length away from the end of a memory bank.  Since the largest packed data record
is one flag byte and 64 data bytes, adding 65 bytes to the end of your buffer does the trick.  This
ensures that your packed data is 65 bytes away from the end.

Following is an example of a safe way to prepare your packed data buffer for multipass unpacking,
in APW assembly:



Apple II Technical Notes

Apple IIGS
4 of 4 #94:  Packing It In (and Out)

* Some data space
myCallBlock  dc     i2’2’                ; two parameters
fileRefNum   ds     2                    ; file reference number
EOFreturned  ds     4                    ; file length returned by this call
myIDNumber   ds     2                    ; your application memory manager ID number
* assume that a packed data file is open, and it’s a plain packed screen image, not over 32K
             jsl    $E100A8              ; ask GS/OS for the length of the data
             dc     i2‘$2019’            ; Get_EOF call
             dc     i4‘myCallBlock’

* Now we need a handle to read it into
             pha
             pha                         ; return space
             pea    0                    ; size, high word
             lda    EOFreturned          ; the actual size of the packed data
             sta    actualPackDataSize
             clc
             adc    #65                  ; ask for a handle 65 bytes longer than the data
             pha
             lda    myIDnumber           ; Memory Manager ID for your application
             pha
             pea    $8010                ; attrLocked and attrNoCross
             pea    0
             pea    0                    ; anywhere
             _NewHandle                  ; get the handle

Now you have a handle 65 bytes longer than your data that does not cross a bank boundary.  You
are ready to read in the data and perform a multipass unpack.

PackBytes Buffers Count Too

PackBytes can also cause you problems if you do not plan for the worst-case situation.  Unlike
the other toolbox compression routine ACECompress, PackBytes is not guaranteed to shrink
the source data.  In fact, your data size may actually grow after a PackBytes call.

If you pass a data stream of 64 bytes, all with different values, to PackBytes, PackBytes puts
65 bytes in your output buffer—the 64 original data bytes and the flag byte of $3F, indicating “64
bytes follow, all different.”  Unless you preprocess or analyze your data before packing to avoid
this situation, make sure your output buffer is large enough to hold the worst case situation, one
additional byte generated for every 64 bytes passed to PackBytes for compression.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• File Type Note for File Type $C0, Auxiliary Type $0002, Apple Preferred Format



Apple IIGS
#95:  ROM Diagnostic Errors 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#95: ROM Diagnostic Errors

Written by: Dan Strnad September 1990

This Technical Note describes errors returned by the ROM Diagnostics on Apple IIGS systems.

The Built-In Diagnostics Revealed

The IIGS has a self-test capability in ROM.  The self-test is activated by pressing Open-Apple
and Option on power up, or Open-Apple, Option, and Reset.  During the test, the test number is
visible on the bottom of the screen followed by six zeros.  After all tests are complete, a
continuous 6 KHz one-second beep sounds and the screen displays a System Good message.
If any test fails, the screen displays a message of the form System Bad: AABBCCDD on the
lower left hand side and a staggered AABBCCDD on the upper left hand side to help read the error
code in the event of a RAM failure.  In the event of video failure, the failure code is also sent to
the printer port.  In the number contained in the error message, AA is the test number that failed
and the failure code is embedded in the BB, CC, and DD fields.  The complete failure codes for
each of the 12 tests are as follows:

Self Test 1:  ROM Test

AA = 01
BB = Failed checksum
DD = 01 if the test encountered bad RAM and the error code is a RAM error code similar to

the RAM Test error codes

For a failure in  ROM, the ROM diagnostics also display RM on the top left hand
corner of the screen.

Self Test 2:  RAM Test

AA = 02
BB = Bank Number (or $FF for ADB Tool call error)
CC = Bit(s) failed

Self Test 3:  Soft Switches and State Register Test

AA = 03



Apple II Technical Notes

Apple IIGS

2 of 3 #95:  ROM Diagnostic Errors

BB = State Register bit (if any)
CC = Low byte of soft switch address



Developer Technical Support September 1990

Apple IIGS
#95:  ROM Diagnostic Errors 3 of 3

Self Test 4:  RAM Address Test

AA = 04
BB = Failed bank number (or $FF for ADB Tool call error)
CCDD = Failed address

Self Test 5:  Speed Test

AA = 05
BB = 01:  Speed stuck slow

02:  Speed stuck fast

Self Test 6: Serial Test

AA = 06:
BB = 01:  Register R/W

04:  Tx Buffer empty status
05:  Tx Buffer empty failure
06:  All Sent Status fail
07:  Rx Char available
08:  Bad data

Self Test 7:  Clock Test

AA = 07
DD = 01:  Fatal error occurred and the test is aborted

Self Test 8:  Battery RAM Test

AA = 08
BB = 01:  Address test and CC = bad address

02:  Non-volatile RAM failed and CC = pattern, DD = address

Self Test 9:  Apple Desktop Bus Test

AA = 09
BBCC = Bad checksum
DD = 01:  Apple Desktop Bus tools call encountered a fatal error, no checksum  computed.

Self Test 10:  Shadow Register Test

AA = 0A
BB = 01:  Text page 1 fail

02:  Text page 2 fail
03:  Apple Desktop Bus Tool call error
04:  Power On Clear bit error



Apple II Technical Notes

Apple IIGS

4 of 3 #95:  ROM Diagnostic Errors

Self Test 11: Interrupts Test

AA = 0B
BB = 01:  VBL interrupt time-out

02:  VBL IRQ status fail
03:  1/4 sec interrupt
04:  1/4 sec interrupt
05:
06:  VGC IRQ
07:  Scan line

Self Test 12:  Sound Test

AA = 0C
DD = 01:  RAM data error

02:  RAM address error
03:  Data register failed
04:  Control register failed
05:  Oscillator interrupt timeout

Further Reference
• Apple IIGS Hardware Reference, Second Edition



Apple IIGS

#96:  Standard File Customization 1 of 4

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#96: Standard File Customization

Written by: Dan Strnad November 1990

This Technical Note discusses particulars of using custom dialog boxes for the Open and Save
File dialog boxes and custom drawing routines to display the files and folders listed.

About the Templates

Volume 3 of the Apple IIGS Toolbox Reference states the following about the Open File dialog
box template for Standard File:

“The scroll bar item (item5) is not used for single-file calls.  For multifile calls, this
item contains the Accept Button Definition.”

What is not stated explicitly is that, although the scroll bar item is not used for single-file calls, a
place holder for it must be included in the dialog box template.  Another particular not explicitly
stated is that the strings used by the item templates must be Pascal strings; no listType field is
provided in the extended list control record as was present in the List Manager’s original list
record structure.

Custom Item Draw Procedures

Custom item draw procedures have the rectangle in which the item is to be drawn, the List
Manager’s memrec structure corresponding to that item, and a handle to the extended list
control record available on the stack.  By including a custom item draw procedure, programs are
able to get a handle to the extended list control record.  The custom item draw procedure could
also make the handle available to other routines, such as the dialogHook routine.  With the
handle, programs can now perform specialized operations during a standard file call, such as
checking which item is selected before allowing the user to cancel.  The code fragment below
(from DTS Apple II Sample Code #18, AccessPriv) illustrates the use of SFPGetFile2 with a
custom item draw routine.

static char SaveStr[] = "\pSave";
static char OpenStr[] = "\pOpen";
static char CloseStr[] = "\pClose";
static char DriveStr[] = "\pDrive";
static char CancelStr[] = "\pCancel";



Apple II Technical Notes

2 of 4 #96:  Standard File Customization

static char FolderStr[] = "\pNew Folder";
static char AcceptStr[] = "\pAccept";



Developer Technical Support November 1990

Apple IIGS

#96:  Standard File Customization 3 of 4

ItemTemplate OpenBut640 =   {1,
                            61,265,73,375,
                            buttonItem,
                            OpenStr,
                            0,
                            0,
                            0L};

ItemTemplate CloseBut640 =  {2,
                            79,265,91,375,
                            buttonItem,
                            CloseStr,
                            0,
                            0,
                            0L};

ItemTemplate NextBut640 =   {3,
                            25,265,37,375,
                            buttonItem,
                            DriveStr,
                            0,
                            0,
                            0L};

ItemTemplate CancelBut640 = {4,
                            97,265,109,375,
                            buttonItem,
                            CancelStr,
                            0,
                            0,
                            0L};

ItemTemplate Scroll640 =    {5,
                            43,265,55,375,
                            buttonItem,
                            AcceptStr,
                            0,
                            0,
                            0L};

ItemTemplate Path640 =      {6,
                            12,15,24,395,
                            userItem,
                            0L,
                            0,
                            0,
                            0L};

ItemTemplate Files640 =     {7,
                            25,18,107,215,
                            userItem + itemDisable,
                            0L,
                            0,
                            0,
                            0L};

ItemTemplate Prompt640 =    {8,
                            3,15,12,395,
                            statText + itemDisable,
                            0L,
                            0,
                            0,
                            0L};



Apple II Technical Notes

4 of 4 #96:  Standard File Customization

/*************************************************************************
*
* myDialogHook
*
***************************************************************************/

pascal void myDialogHook(strip1,strip2)
long strip1;
long strip2;
{
}

/*************************************************************************
*
* CustomItemDraw
*
**************************************************************************/

pascal void CustomItemDraw(itemDrawPtr)
Pointer itemDrawPtr;
{
static unsigned int flag, dbr;        /* result, data bank register value */
byte          StringCount;
char          *ItemPascalString;
Word          ItemFileType;
Long          ItemAuxType;
Rect          *TheItemRectPtr;
MemRec        *TheMemRecPtr;
CtlRecHndl    TheSFListControlHndl;
Point         MyOldPenPos,
              MyNewPenPos;

static char FileString[] = "xxxx yyyyyyyy ";

/* save our data bank and set current to global page */
dbr = SaveDB();
/* Get the Rect from High on the Stack */
TheItemRectPtr = (Rect *)(*((long *)(((long)&itemDrawPtr)+ 36L)));
                                                         /* save old pen position */
GetPen(&MyOldPenPos);                                    /* Set our pen position */
MyNewPenPos.h = TheItemRectPtr->h1 + 5;
MyNewPenPos.v = TheItemRectPtr->v2 -2;
MoveTo(MyNewPenPos);                                     /* relocate the pen */

/* get our member record; this is just to reveal where it is on the stack */
TheMemRecPtr = (MemRec *)(*((long *)(((long)&itemDrawPtr)+ 32L)));

/* get the list cntrol handle; ditto */
TheSFListControlHndl = (CtlRecHndl)(*((long *)(((long)&itemDrawPtr)+ 28L)));

StringCount = (byte) *itemDrawPtr;                       /* get the string length */
ItemPascalString = itemDrawPtr;                          /* set our user string */
ItemFileType =  *(Word *)(itemDrawPtr+StringCount+1L);   /* get our FileType */
ItemAuxType =  *(Long *)(itemDrawPtr+StringCount+3L);    /* get our AuxType */

/* format for display */
sprintf(FileString, "%.4x-%.8lx ",ItemFileType,ItemAuxType);
c2pstr(FileString);                              /* turn it into a P string */
DrawString(FileString);                          /* Draw it */
DrawString(ItemPascalString);                    /* catenate File name to the other
info */
FrameRect(TheItemRectPtr);
MoveTo(MyOldPenPos);                             /* return the pen to starting
position */
RestoreDB(dbr);                                  /* restore our data bank */



Developer Technical Support November 1990

Apple IIGS

#96:  Standard File Customization 5 of 4

}

/*************************************************************************
*
* ChooseFolder
*
* presents user with dialog to select folder to show/set privileges of
*
**************************************************************************/

void    SomeProc()
{
DialogTemplate GetDialog640;

GetDialog640.dtBoundsRect.v1 = 0;
GetDialog640.dtBoundsRect.h1 = 0;
GetDialog640.dtBoundsRect.v2 = 114;
GetDialog640.dtBoundsRect.h2 = 400;
GetDialog640.dtVisible = -1;
GetDialog640.dtRefCon = 0L;
GetDialog640.dtItemList[0] = &OpenBut640;
GetDialog640.dtItemList[1] = &CloseBut640;
GetDialog640.dtItemList[2] = &NextBut640;
GetDialog640.dtItemList[3] = &CancelBut640;
GetDialog640.dtItemList[4] = &Scroll640;
GetDialog640.dtItemList[5] = &Path640;
GetDialog640.dtItemList[6] = &Files640;
GetDialog640.dtItemList[7] = &Prompt640;
GetDialog640.dtItemList[8] = 0L;

SFPGetFile2(    /* user selection of folder to get/set privs of */
            120, 53,
            CustomItemDraw,
            refIsPointer,
            prompt,
            0L,
            0L,
            &GetDialog640,
            myDialogHook,
            &myReply
);

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1 & 3
• DTS Apple II Sample Code #18, AccessPriv



Apple IIGS

#97:  Picture Comments and Printing 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS

#97: Picture Comments and Printing

Written by: Matt Deatherage, Suki Lee & Ben Koning November 1990

This Technical Note discusses QuickDraw Auxiliary picture comments and how they can be
used to help control the printing process.

What’s a Picture Comment?

Picture comments are a way in which extra information beyond normal QuickDraw II calls can
be embedded in a QuickDraw II picture.  Comments can contain virtually anything; they consist
of a length, a handle containing the comment and a “kind” that identifies the general type of
information in the comment.  Picture comment kinds less than or equal to 256 ($100) are
reserved for Apple Computer, Inc.

For comments to have any significance, there must be a way that a routine can take special action
on them.  One of the standard bottleneck procedures is called every time a picture comment is
encountered, and it is passed the picture comment’s kind, size, and handle on QuickDraw II’s
direct page.  You can insert the address of a custom picture comment handler into the
grafProcs field of a grafPort as described in Apple IIGS Technical Note #34, Low-Level
QuickDraw II Routines.  If no custom comment handler is present in the grafPort, the system
calls its own StdComment routine, which ignores all comments.

The current picture comment handling routine (either a custom one or the system’s default one)
is called whenever a picture comment is generated (with the QuickDraw Auxiliary call
PicComment) or played back from a picture (from within DrawPicture).  Since the picture
comment handling procedure is called when the comment is created, a picture does not have to
be open for this facility to work.

Picture comments are ideal ways for applications to pass information to printer drivers as they
are generated through toolbox calls and are easily accessible to any desktop program.  If the
printer driver is printing in immediate mode, it can intercept and act on the picture comment
when it is generated.  If the printer driver is printing in deferred mode and recording page images
with QuickDraw II pictures, it can intercept and act on the picture comment when the picture is
played back.

Apple’s ImageWriter, ImageWriter LQ and LaserWriter drivers (from System Software 5.0.3) all
support various kinds of picture comments for controlling printed output.  Applications are



Apple II Technical Notes

Apple IIGS

2 of 3 #97:  Picture Comments and Printing

encouraged to use these picture comments for finer control over printing.  Authors of printer
drivers are encouraged to act on these picture comments where appropriate, so applications
which use them achieve similar results across printing platforms.

The LaserWriter Driver’s Picture Comments

Version 2.2 and later of the LaserWriter driver support the following five PostScript® picture
comments:

Name Kind Size Handle
PostScriptBegin 190 0 NIL
PostScriptEnd 191 0 NIL
PostScriptHandle 192 – PostScript data
PostScriptFile 193 – PostScript path name
TextIsPostScript 194 0 NIL

Table 1—PostScript Picture Comments

The print loop must be completed normally with or without any PostScript picture comments that
are included.  PostScript transmission must begin with the PostScriptBegin picture
comment and end with the PostScriptEnd  picture comment.  Never nest
PostScriptBegin and PostScriptEnd picture comments.

The PostScriptHandle picture comment takes a handle containing PostScript commands
(in the form of ASCII data) and sends it to the LaserWriter.  The size field must contain the
size of the handle.

The PostScriptFile picture comment takes a handle containing the pathname of a disk file
containing PostScript commands.  The size field must contain the size of the pathname.

The TextIsPostScript picture comment takes text drawn through the QuickDraw II
StdText bottleneck and sends it to the LaserWriter as PostScript.  This picture comment has
the effect, from the application’s point of view, of interpreting all strings passed to
DrawString and similar calls as PostScript.  This picture comment is specific to LaserWriters
(idev = $0003).  Other drivers do not implement this picture comment; therefore, text drawn
through QuickDraw II is simply printed—it is neither interpreted as PostScript nor ignored.

The driver does not check for PostScript errors, so the data sent to the LaserWriter must be
correct.  Always terminate PostScript text with a carriage return character.  The transformation
the driver uses flips text and prints it upside down on the page.  Applications should set their
own transformation matrices to serve their needs.  Never use the LaserWriter’s
userdict—define a local dictionary for your application’s use.  Never use exitserver,
initgraphics, grestoreall, erasepage, or showpage PostScript commands, as
these commands can alter the driver’s environment.



Developer Technical Support November 1990

Apple IIGS

#97:  Picture Comments and Printing 3 of 3

See Chapter 3 of the LaserWriter Reference Manual for some examples of how to use picture
comments.



Apple II Technical Notes

Apple IIGS

4 of 3 #97:  Picture Comments and Printing

The ImageWriter Driver’s Picture Comments

ImageWriter driver version 4.0 and later uses three picture comments to control alternate color
selection:

Name Kind Size Handle
Reserved 250 – Reserved
FillColorTable 251 42 See below
ChangeSCBs 252 14 See below

The structure passed in the handle to FillColorTable looks like the following:

version word must be zero
signature word must be $A55A
tableno word the color table to be modified (0-15)
table 32 bytes The new color values for the color table
reserved long must be zero

The structure passed in the handle to ChangeSCBs looks like the following:

version word must be zero
signature word must be $A55A
Y1 word line number of first SCB to change (from zero to

rPage.Y2)
Y2 word line number of last SCB to change (from zero to

rPage.Y2)
SCBvalue word the new scan line control byte
reserved long must be zero

PrOpenPage reinitializes the printing grafPort, so these picture comments should be used
immediately after PrOpenPage to set custom colors.  Having lines with both 320- and 640-
mode is not recommended and will probably not be supported in the future.

The ImageWriter driver uses picture comment 250 to internally mark the end of a page.
Applications must not use this picture comment; use PrClosePage to end a page’s definition.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1–3
• Apple IIGS Technical Note #34, Low-Level QuickDraw II Routines
• Apple IIGS Technical Note #35, Printer Driver Specifications
• Apple IIGS Technical Note #93, Compatible Printing
• d e v e l o p, October 1990, Issue 4, “Driving to Print”

PostScript is a registered trademark of Adobe Systems, Incorporated.



Apple IIGS

#98:  Aren’t Windows A Pane? 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#98: Aren’t Windows A Pane?

Revised by: Dave Lyons May 1992
Written by: Dave Lyons January 1991

This Technical Note describes interesting Window Manager things.
Changes since January 1991:  Noted that in System 6.0 it’s safe to use Window color table
resources.  Added a section on changing the desktop pattern or picture.

Changing the Desktop Pattern or Picture

The best way to set a new desktop pattern or picture is as follows.  This works with the Finder
and other desktop applications.

1. Use MessageCenter to delete message 2, the desktop message.  (If there wasn’t one,
that’s fine—there still isn’t.)

2. Use MessageCenter to create a new message 2, containing the pattern or picture you
want (see the Window Manager chapter of Apple IIGS Toolbox Reference, Volume 3).

3. Call Desktop (in the Window Manager) with a deskTopOp of 8 and a dtParam of
$00000000.  This notifies any part of the system that cares (such as the Finder) that there
is a new desktop pattern.

4. Call Desktop with a deskTopOp of 4 and a dtParam of $00000000 and keep the
result.

5. Call Desktop with a deskTopOp of 5 and use the result from step 4 as dtParam.
This sets the desktop pattern to what it already is, forcing the desktop to redraw (this
works whether a pattern, picture, or pointer to desktop-drawing routine is involved).

A Warning About Window Color Table Handles And Resources

The System 6.0 Window Manager fixes the problem described below.  If your application
requires System 6, you can safely ignore this section.

All versions of the Window Manager that support window color tables specified as handles or
resources, up to and including System Software 5.0.4, work unreliably when a standard
window’s color table is supplied by handle or resource ID.



Apple II Technical Notes

Apple IIGS

2 of 2 #98:  Aren’t Windows A Pane?

The problem is not immediately obvious; only one bit of memory is accidentally cleared, but the
address is unpredictable in advance.  (When unlocking the color table handle, the standard
window definition procedure attempts to unlock the handle manually by turning off bit 15 of
word offset +4 in the master pointer record.  But it gets the high and low words of the handle
reversed and usually turns off bit 15 of the word at offset $80E4 or $80E5 in some bank of RAM
determined by the low byte of the handle.)

The solution is to avoid supplying color table handles or resource IDs to the Window Manager.
Supply color table pointers instead. You can get a color table pointer from a color table resource
ID by calling LoadResource on the color table resource, locking the handle and dereferencing
it.  Memory is less fragmented if color table resources used in this way are marked as
attrFixed.

One method is to put the window color table pointer into the window template before calling
NewWindow2.  If you are creating the window from an rWindParam1 resource, you need to
use LoadResource to get the template into RAM so that you can stuff the color table pointer
into the template.  (Be sure to change the moreFlags field to indicate that the color table is a
pointer, if the template indicates it’s a resource.)  After you create the window with
NewWindow2 (by handle), use ReleaseResource to release the rWindParam1 resource.

Another method is to create the window as invisible and pass the window color table pointer to
SetFrameColor before calling ShowWindow.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 2-3



Apple IIGS

#99:  Supplemental Scrap Types 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#99: Supplemental Scrap Types

Revised by: Dave Lyons May 1992
Written by: Matt Deatherage & Matthew Reimer January 1991

This Technical Note describes public scrap types.
Changes since March 1991:  Added information on Scrap Type $8003 (Resource Reference
Scrap); added a cross-reference to HyperCard IIGS Technical Note #3.

The Apple IIGS Toolbox Reference lists only two known scrap types—text ($0000) and pictures
($0001).  Other assigned scrap types are documented in this Note.  The format used to describe
the scraps is similar to that used in File Type Notes, where the offsets, given in the form (+xxx),
determine the offset from the beginning of the scrap handle.

Sampled Sound Scrap (Type: $0002)

The following describes the Sampled Sound scrap format.  It consists of a ten-byte header
followed by the sample data bytes.  This format is identical to the sampled sound resource
format.

Format (+000) Word This must always be zero.
Wave Size (+002) Word Sample size in pages (256 bytes per page).  For

example, an 8K sample takes 32 pages; a 128K
sample requires $200 pages.

Rel Pitch (+004) Word The high byte of this word is a semitone value; the
low byte is a fractional semitone.  These values are
used to tune the sample to correct pitch.  (See
HyperCard IIGS Technical Note #3, Tuning Sampled
Sounds.)

Stereo (+006) Word The output channel for this sound is in the low nibble
of this word.

Sample rate (+008) Word The sampling rate of the sound, in Hertz (Hz).
Sound (+010) Bytes The sampled sound data.  The bytes are all 8-bit

samples.  The sample starts here and continues until
the end of the scrap.

TextEdit Style Scrap (Type:  $0064)



Apple II Technical Notes

Apple IIGS

2 of 2  #99:  Supplemental Scrap Types

The TextEdit Style Scrap format is the same as the TEFormat structure defined in Volume 3 of
the Apple IIGS Toolbox Reference, which is also the same as the rStyleBlock resource format
defined in the same volume.



Developer Technical Support May 1992

Apple IIGS

#99:  Supplemental Scrap Types 3 of 2

Icon Scrap (Type: $4945)

The Icon scrap format is the same as the format for Finder Icon Data records, documented in
detail in the File Type Note for File Type $CA, Finder Icon Files.  If there is more than one Icon
Data record in a scrap, they are concatenated together with no intervening space.

Mask Scrap (Type: $8001)

The Mask scrap format is exactly the same as the PICT scrap ($0001) format, except that the
pixel image the picture draws contains only zeroes and ones.  When drawn, this picture creates a
mask.  The mask has zeroes where the image can be seen through the mask, and ones where the
mask does not allow the picture through.  When pasting a Mask scrap, initialize the destination
bitmap to zero and draw the picture.

You can create the mask image by using regular QuickDraw II calls (using ovals, rectangles,
etc.) or you can create it independently and include it with PaintPixels or other pixel map
manipulation routines.

Color Table Scrap (Type: $8002)

The following describes the Color Table scrap format.  The scrap contains color tables so that
applications can keep custom colors with pictures copied to the clipboard.  The scrap has the
same format as the Apple Preferred Format picture PALETTES block:

NumColorTables (+000) Word The count of the number of color tables in the scrap
ColorTableArray (+002) 32 Bytes The color tables for the scrap.  There are

NumColorTables of them, each 32 bytes long.

Resource Reference Scrap (Type: $8003)

The Resource Reference scrap is designed to allow resource editors to exchange resource data
through an external scrap file using the Scrap Manager.

resScrapType (+000) Word Type of resource (within the resScrapPath file)
resScrapID (+002) Long ID of resource (within the resScrapPath file)
resScrapPath (+006) WString Full GS/OS class-one pathname to an extended file

containing the specified resource.

If the specified resource contains references to other resources (for example, an rWindParam1
resource with a title string, control list, control templates, etc.), all the referenced resources must
be present in the resScrapPath file.

It is the responsibility of the application using this scrap to handle resource ID conflicts that
might arise from a Paste operation.  The application should not modify or destroy the
resScrapPath file.



Apple II Technical Notes

Apple IIGS

4 of 2  #99:  Supplemental Scrap Types

Further Reference
• Apple IIGS Toolbox Reference
• HyperCard IIGS Technical Note #3, Tuning Sampled Sounds
• File Type Note for file type $CA, all auxiliary types, Finder Icons File
• File Type Note for file type $C0, auxiliary type $0002, Apple Preferred Format



Apple IIGS
#100:  VersionVille 1 of 5

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#100: VersionVille
Revised by: Matt Deatherage May 1992
Written by: Matt Deatherage January 1991

This Technical Note is all there is to know about versions, version formats and version numbers on
the Apple IIGS.
Changes since January 1991:  Revised to include System Software 6.0.

Version Number Formats

There are three kinds of version numbers on the Apple IIGS.  Two of the three are documented
elsewhere but are repeated here for convenience.

System Tool Set Versions

The Apple IIGS system tools use a one-word version number.  The high-order four bits of this
word have special meaning.  Bits 8-11 are the major version number and bits 0-7 are the minor
version number.  This is illustrated in Figure 1.

F E D C B A 9 8 7 6 5 4 3 2 1 0

Minor
Release

1 = Prototype

1 = Special features

Major
Release

Figure 1—Toolbox Version Numbers

Note that this definition is different and supersedes the definition in the Apple IIGS Toolbox
Reference for system tool sets.  Previous documentation reserves only bit 15 as the prototype bit;
this has been expanded.  Bits 14-12 of user tool set version words have no special meaning; they
are still part of the major release.

Note: When comparing the major and minor release version numbers to check the
installed version of a system tool, mask off bits 15-12 first (for example, by using
an AND #$0FFF instruction).



Apple II Technical Notes

Apple IIGS
2 of 5 #100:  VersionVille

SmartPort Or GS/OS Driver Versions

GS/OS drivers and SmartPort firmware drivers use an alternate one-word version number,
described in Figure 2.

F E D C B A 9 8 7 6 5 4 3 2 1 0

Major
Release

Minor
Release

$A = Alpha
$B = Beta
$E = Experimental
$0 = Final

Figure 2—GS/OS Driver And SmartPort Version Numbers

Apple IIGS Long Version Format

Long version format is a 32-bit (two-word) format similar to the standard Macintosh version
numbering scheme defined in Macintosh Technical Note #189, Version Territory, except the four
bytes are stored least significant byte first, as is standard on the Apple II, and the values of the stage
are different.  Figure 3 shows the format of a long version.

F E D C B A 9 8 7 6 5 4 3 2 1 01F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

Major version
(2 digits, BCD)
Example:
$25= Version 25

Minor version
(1 digit, BCD)
Example:
$0 = Version x.0

Bug version
(1 digit, BCD)
Example:
$4 = Version 
x.y.4

Stage
001=develop
010=alpha
011=beta
100=final
101=release

Must be zero Release version
(2 digits, BCD)
Example:
Long version of
$25048006 = Version
25.0.4f6

Figure 3—Long Version Numbers

Long version format allows for bug versions, unlike toolbox versions.  Also, you can do unsigned
long comparisons of long versions to determine which revision is later.

Note: If the version stage is 101 (release), the release version must be zero.  For example,
you may not have version 25.0.4 release 16.  “Release version” implies that the
product is no longer under development and has no developmental version numbers.

System Version Numbers

The most important of the numerous version numbers in the system are the system tool version
numbers.  These numbers, passed to LoadTools, LoadOneTool or StartUpTools ensure
that you’re getting at least the version you want, or maybe a later one.  This mechanism is your
primary defense against old system software—by requiring the latest tool versions in your
application, you are notified by the Tool Locator early in your program if the system has the latest
system software installed or not.

Note that ROM 1 and ROM 3 have different version numbers for seven tools under
5.0.4—QuickDraw II, the Scheduler, ADB, SANE, Integer Math, Text Tools and the List Manager.
In each case, the ROM 01 version is lower and should be used in your LoadOneTool,
LoadTools or StartUpTools calls.



Developer Technical Support May 1992

Apple IIGS
#100:  VersionVille 3 of 5

The current revision of Apple IIGS System Software is 6.0.  Assuming a correct installation,
requiring QuickDraw 3.7 in effect requires System Software 6.0, although you may check the
system’s rVersion resource in the system resource file if you require more detailed information
about the system sovtware version.

System Tool Set Versions

Number Tool ROM 1 ROM 3
1 Tool Locator $0301 $0301
2 Memory Manager $0302 $0302
3 Misc Tools $0302 $0302
4 QuickDraw II $0307 $0307
5 Desk Manager $0304 $0304
6 Event Manager $0301 $0301
7 Scheduler $0300 $0300
8 Sound Tools $0303 $0303
9 ADB $0300 $0300
10 SANE $0300 $0300
11 Integer Math $0300 $0300
12 Text Tools $0300 $0300
13 [used internally] $0300 $0300
14 Window Manager $0303 $0303
15 Menu Manager $0303 $0303
16 Control Manager $0303 $0303
17 [System Loader] $0400 $0400
18 QuickDraw II Aux $0304 $0304
19 Print Manager $0301 $0301
20 Line Edit $0303 $0303
21 Dialog Manager $0304 $0304
22 Scrap Manager $0301 $0301
23 Standard File $0303 $0303
25 Note Synthesizer $0104 $0104
26 Note Sequencer $0104 $0104
27 Font Manager $0303 $0303
28 List Manager $0303 $0303
29 ACE $0103 $0103
30 Resource Manager $0102 $0102
32 MIDI Tools $0103 $0103
33 Video Overlay $0103 $0103
34 Text Edit $0103 $0103
35 MIDI Synth $0100 $0100
38 Media Control $0100 $0100



Apple II Technical Notes

Apple IIGS
4 of 5 #100:  VersionVille

Toolbox Driver Version Numbers

Driver Version
ImageWriter II 4.2
ImageWriter LQ 4.2
LaserWriter 3.2
StyleWriter 1.0
Epson 2.0
Printer Port Driver 2.1
Modem Port Driver 2.1
Parallel Card Port Driver 2.0
AppleTalk Port Driver 3.0
Pioneer 4200 (MC) 1.0
Pioneer 2000 (MC) 1.0
Apple CD SC (MC) 1.0

GS/OS Version Numbers

Component Version
GS/OS 4.1
ProDOS FST 4.1
AppleShare FST 4.0
High Sierra FST 4.0
Character FST 4.0
DOS 3.3 FST 1.2
HFS FST 1.0
Pascal FST 1.0
AFP Driver 4.0
Apple II RAMCard driver 1.0
AppleDisk 3.5 Driver 5.3
AppleDisk 5.25 Driver 2.5
AppleTalk Main Driver 4.0
Console Driver 3.2
RPM Driver 4.0
SCSI CD Driver 6.0
SCSI HD Driver 6.0
SCSI Scanner Driver 6.0
SCSI Tape Driver 6.0
UniDisk 3.5 Driver 3.0



Developer Technical Support May 1992

Apple IIGS
#100:  VersionVille 5 of 5

Control Panel Version Numbers

CDev Version
AppleShare 2.0
Direct Connect Printer 1.1
FolderPriv 1.0
General 2.0
Keyboard 1.1
Media Control 1.1
MIDI 1.0
Modem Port 1.1
Monitor 1.1
Network Printer Namer 1.0
Network Printer Chooser 1.0
Network 1.0
Printer Port 1.1
RAM 1.1
SetStart 1.0
Slots 1.2
Sound 2.0
Time 2.0

Further Reference
• Apple IIGS Toolbox Reference
• GS/OS Reference
• GS/OS Technical Note #1, Contents of System Disk and System Tools
• File Type Note for File Type $C7, Control Panel Devices



Apple IIGS
#101:  Patching the Toolbox 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#101: Patching the Toolbox
Revised by: Eric Shepherd December 2000
Written by: Dave Lyons May 1991

This Technical Note presents guidelines on when and how to patch Apple IIGS Toolbox functions.
Changes since May 1992:  Noted a system bug preventing the automatic removal of Toolbox
function patches from working correctly.

Introduction

There is normally no need to patch the toolbox; avoid patching whenever you can.  If you must
patch a toolbox function, be sure to have a good understanding of the call you’re patching and how
it interacts with the whole system.

No toolbox patch is risk-free.  Future versions of the toolbox could change in ways that make your
patch less useful.  (For example, if you patched NewControl to have some global effect on
controls being created, your patch became less useful when NewControl2 was introduced in
System Software 5.0.)

For better compatibility, patch with care!  If any parameters passed are outside the range that was
allowed when you wrote your patch, just pass the call straight through; the new toolbox probably
knows something your patch doesn’t.

Patching the Toolbox From an Application

An application can easily patch a function for the duration of that application.

After starting up the tools, construct a Function Pointer Table (FPT) the same size as the existing
FPT (call GetTSPtr and examine the first word of the table; multiply it by four to get the size of
the FPT in bytes).  The first longword of your FPT is the number of functions in the tool set; do
not hard-code this value!  Get it from the existing FPT on the fly.  Fill the rest of your FPT with
zeroes, except for the functions you want to patch.  You must always patch the BootInit function
(the first function) to return no error.  Remember that the function pointer values are one less than
the addresses of your replacement functions.

On exit, when you call TLShutDown your patch will be automatically removed.  (If you’re using
ShutDownTools, you should call MMShutDown and TLShutDown after you call
ShutDownTools.)

Note: Toolbox function patches are not actually correctly removed from the system at
TLShutDown time.  Instead, you will have to save the original FPT when before
your application patches the Toolbox functions, then restore it before your
application exits.



Apple II Technical Notes

Apple IIGS
2 of 3 #101:  Patching the Toolbox

Note:  In the description of SetTSPtr on page 24-19 of Apple IIGS Toolbox Reference, Volume
2, there are several references to the TPT.  Keep in mind that the TPT is the Toolset Pointer Table,
not the Function Table Pointer you pass to SetTSPtr.  While SetTSPtr copies the TPT to
RAM if necessary, it does not make a copy of the FPT.  After you call SetTSPtr, the FPT you
passed is being used, and any zero values in your table were filled in.

Patching the Toolbox From a Desk Accessory or Setup File

A permanent initialization file or Desk Accessory can patch toolbox functions at boot time by
constructing an FPT for SetTSPtr, as described for an application, but there is an extra step to
make the patch “stick.”

Call LoadOneTool and then SetTSPtr; then call SetDefaultTPT (see Apple IIGS Toolbox
Reference Volume 3, page 51-16).

It is not safe to call SetDefaultTPT while an application is running (temporary application
patches would be made permanent, and later the application would go away).  Since there are desk
accessories that install other desk accessories while applications are running, desk accessory that
wants to install a tool patch should make the class-one GS/OS GetName call; if the null string is
returned, no application is executing yet, so it is safe to make the patch.  (Otherwise the desk
accessory should ask the user to put the desk accessory file in the System:Desk.Accs folder and
restart the system.)

Patching the Tool Locator or Desk Manager

On ROM 3 systems, the SetTSPtr call treats toolsets 1 (Tool Locator) and 5 (Desk Manager)
specially, for compatibility with system software versions earlier than 5.0.

You must pass a systemOrUser value of $0001 (not $0000) when patching one of these
toolsets, or the SetTSPtr call will have no effect.  Passing this special systemOrUser value
works for other ROM versions, too—you don’t have to check the ROM version.

Avoid Tail Patching

The best kind of patch is a pre-patch or head patch:  it does some extra work and then jumps to the
original function (as found in the FPT before applying the patch).  Make sure the A, X, and Y
registers contain the same values when you jump to the original function as they did when the patch
got control.

A “tail patch” which calls the original function and then regains control is much more of a
compatibility risk, because there are several instances where System Software patches examine
return addresses to fix problems in large toolbox calls which call small ones (by patching the small
one to realize it’s being called from the big one, many K of RAM remain available to your
application).

If you tail patch a function which the system already patched, you may prevent the toolbox from
working correctly.



May 1992

Apple IIGS
#101:  Patching the Toolbox 3 of 3

Patching the Tool Dispatcher

If you need to patch a large number of functions, especially for a general purpose utility like a
debugger, it may make more sense to patch the tool dispatcher vectors instead of patching individual
functions.  See Apple IIGS Technical Note #87, Patching the Tool Dispatcher.

Further Reference
• Apple IIGS Toolbox Reference
• Apple IIGS Technical Note #87, Patching the Tool Dispatcher



Apple IIGS
#102:  Various Vectors 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#102: Various Vectors
Revised by: Dave Lyons May 1992
Written by: Dave Lyons December 1991

This Technical Note describes system vectors that are not fully described in other documentation.
Changes since December 1991:  Added information about the TOBRAMSETUP vector.

The TOBRAMSETUP vector

The TOBRAMSETUP vector is documented in Appendix D of the Apple IIGS Firmware Reference.
Two clarifications are needed:

• TOBRAMSETUP must be called in 8-bit native mode (SEP #$30).

• Before System 6.0, TOBRAMSETUP required that the Bank register be $00 (bad
things would happen if it was not).  This requirement is gone in 6.0.

The MOVE_INFO vector

MOVE_INFO is a flexible, low-overhead data transfer routine.  It can transfer buffer-to-buffer,
buffer-to-location, location-to-buffer, and buffer-to-buffer reversing the order of the bytes.

Apple IIGS GS/OS Device Driver Reference  tells you how to call MOVE_INFO from a GS/OS
driver environment (JSL to $01FC70), but this requires the language-card RAM to be banked in
correctly.

Another vector points to the same routine:  $E10200.  If you aren’t a GS/OS device driver, it is
more convenient to JSL to $E10200, because you don’t have to worry about banking in the
$01FCxx vectors.  The $E10200 vector is available whenever GS/OS is active, under System
Software 5.0 or later.

The DYN_SLOT_ARBITER and SET_SYS_SPEED vectors

Two other GS/OS System Service vectors are duplicated in bank $E1:  SET_SYS_SPEED
($E10204) and DYN_SLOT_ARBITER ($E10208).  Like MOVE_INFO, these are available when
GS/OS is active under System Software 5.0 or later.

Further Reference
• Apple IIGS GS/OS Device Driver Reference
• Apple IIGS Firmware Reference



Apple IIGS
#103:  Inline Procedure Name Format 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#103: Inline Procedure Name Format
Modified by: Matt Deatherage May 1992
Written by: Dave Lyons December 1991

This Technical Note describes a simple format for imbedding procedure names in object code, for
use by debugging utilities.
Changes since December 1991:  Changed &syscnt to &SYSCNT so it works with the
CASE ON APW directive.  Clarified the possible addition of parameters after the Pascal string.

GSBug 1.5b18 and later support a simple convention for including procedure names inline in the
object code, for debugging purposes.

Inline Name Format

82 xx xx brl pastName
71 77 dc.w $7771
nn xx xx xx xx... str 'the name string'
                       pastName     ...

That is, an imbedded name is a BRL around a signature word and a Pascal string.  The name string
can theoretically be up to 255 characters long, but in practice only short names are useful.  For
example, GSBug displays only the first 15 characters of a name when it is encountered, and only
the first 11 when it appears as the operand of a JSR or JSL instruction.

Names in this format always start with a BRL, not a BRA or JMP.  Signature word values other than
$7771 are reserved for future definition, and more information may be added after the Pascal
string.

Be careful what you name!

Be careful not to name something important—like a table, or a label from which you compute other
addresses.  The extra bytes generated by the inline name would mess up your calculations.  If you
name a heartbeat task, out-of-memory queue routine, or other construction that needs a special
header, be sure to put the name where the executable code starts, not at the beginning of the header.

APW Assembly Macro

The following macro is for the APW assembler.  If you equate DebugSymbols to zero, the macro
generates no object code.  If DebugSymbols is nonzero, the macro generates an inline name
corresponding to its label.



Apple II Technical Notes

Apple IIGS
2 of 3 #103: Inline Procedure Name Format

Use the name macro anywhere you would use a label.  For example:

DebugSymbols   GEQU 1
...
CountItems     name

The macro:

     MACRO
&lab name
&lab anop
     aif DebugSymbols=0,.pastName
     brl pastName&SYSCNT
     dc i'$7771'
     dc i1'L:&lab',c'&lab'
pastName&SYSCNT anop
.pastName
     MEND

MPW IIGS Assembly Macros

The following macros are for the MPW IIGS assembler.  If you equate DebugSymbols to zero,
the macros generate no object code.  If DebugSymbols is nonzero, the macros generate inline
names corresponding to their labels.

Use the name macro anywhere you would use a label.  Use the procname macro in place of a
proc directive, at the beginning of a procedure.  For example:

DebugSymbols equ 1
...
CountItems name
TaskLoop procname

The macros:

macro
&lab name
&lab

if DebugSymbols<>0 then
brl @pastName
lclc &olds

&olds setc &setting('string')
string asis
dc.w $7771
dc.b &len(&lab),'&lab'
string &olds

@pastName
endif
mend

* You can use procname instead of proc

macro
&lab procname &x
&lab proc &x

if DebugSymbols<>0 then
brl @pastName
lclc &olds

&olds setc &setting('string')
string asis
dc.w $7771



May 1992

Apple IIGS
#103:  Inline Procedure Name Format 3 of 3

dc.b &len(&lab),'&lab'
string &olds

@pastName
endif
mend

Writing utilities that recognize inline names

If you write a utility that recognizes inline procedure names in this format, check for a signature
word of $777x, not specifically $7771.  This allows more information to be added to the format
later (a signature of $7772 could mean there is a Pascal string followed by parameter-passing
information, for example).



Apple IIGS

#104:  Font Manager Fundamentals 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#104: Font Manager Fundamentals

Written by: Matt Deatherage December 1991

This Technical Note discusses information and philosophy of that typographical toolset, the Font
Manager.

FixFontMenu only works once per FMStartUp

You may have noticed that none of the Font Manager calls that translate font family numbers to
menu item IDs (or vice-versa) require a menu ID as a parameter.  That’s because the Font
Manager was designed with the idea that an application would only need one font menu, so it
keeps one correspondence in private static storage.

This means that once someone has called FixFontMenu, any later FixFontMenu call during
that Font Manager session will destroy the results of the first one, unless all the parameters are
identical.  The Font Manager doesn’t remove the font menu items, but it does not return the
correct results from FamNum2ItemID or ItemID2FamNum.

This means if you’re a new desk accessory, the Font Manager can’t help you create a font
menu—attempting to use FixFontMenu will make any application font menu useless.  You
can use Font Manager routines such as CountFamiles, FindFamily and GetFamInfo to
obtain all the information necessary to build your own font menu (or font choosing dialog box,
for that matter—but if you create a dialog for an NDA, remember that it has to fit in 320 mode
also).

Font styling requires QuickDraw Auxiliary

The Font Manager can’t create fonts with outline, shadow or italic styles unless QuickDraw
Auxiliary (tool set #18) is present and started.  These facts are mentioned in pieces other places,
but not in one place—if you want normal Font Manager operations, you must load and start
QuickDraw Auxiliary.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1–3



Apple IIGS

#105:  We Interrupt This CPU... 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#105: We Interrupt This CPU...

Written by: Matt Deatherage May 1992

This Technical Note supplements the discussion of how interrupts generally work (or don’t
work) on the Apple IIGS found in the Apple IIGS Firmware Reference.  It also discusses how to
patch into the interrupt chain and when not to use software interrupts.

This Note is a Supplement

That’s right, a supplement.  This is not the definitive, end-all discussion of interrupts on the
Apple IIGS.  Most of the information you need to know is available, and has been for several
years, in the Apple IIGS Firmware Reference.  If you’re going to write an interrupt routine, you
need to read Chapter 6 of the Firmware Reference.

No excuses.  If you don’t have the book, buy it or borrow it.  People who use your software don’t
want to hear a sad story about how you wanted to spend the money on a couple of CDs instead of
preventing their machine from crashing.

If you haven’t read Chapter 6 of the Firmware Reference, do so before continuing; the rest of
this Note will make much more sense if you’re familiar with the material covered in that chapter.

A Note About Timing

There are lots of times listed in this Note, concerning how fast certain kinds of interrupts must be
serviced before they’re lost.  Please remember that all times listed are ideal times—actual times
are likely to be shorter.  For example, a maximum response time of a millisecond means you
have one millisecond from the time the peripheral asserts the /IRQ line until the interrupt must
be serviced.  If interrupts are disabled for the first 750 microseconds (µs) of that, then your
maximum response time is 250 µs.  This is why we constantly remind programmers to keep
interrupts disabled for absolutely the shortest time possible.  Also, all times reflecting serial or
AppleTalk interrupts already take into account the serial chip’s internal 3-byte buffer.

So What the Heck Are All Those Vectors?



Apple II Technical Notes

2 of 6  #105:  We Interrupt This CPU...

At first, looking at all those various vectors seems pretty darned intimidating.  However, the
structure becomes clearer when you think about interrupt priority.

Some microprocessors allow interrupt requests to have priorities—higher priority interrupts can
interrupt lower priority ones.  The 65816 doesn’t have this capability, so the best the Apple IIGS

can do is check possible interrupt sources in highest-priority-first order.  For example, AppleTalk
interrupts must always be processed extremely quickly—from the time an AppleTalk interrupt is
asserted, someone must read the data from the SCC within a maximum of 104.167 µs or data can
be lost.  That’s not very much time at all, especially considering that the system may have
interrupts disabled, or may be running at 1 MHz speed when the interrupt fires.

Serial interrupts are next—at 19,200 baud, there’s a maximum of 1.094 milliseconds to read data
before it’s lost.  (Multiplication shows that 38,400 baud has a maximum of 547 µs, and 57,600
baud has a maximum delay of 273.5 µs.  Not much at all.)

You’d hope the Interrupt Manager in ROM would be smart enough to service AppleTalk
interrupts first and serial interrupts next, and in fact that’s what it does.  In fact, it services them
so fast that not all the system information is saved before checking the hardware and dispatching
(if necessary) to the IRQ.APTALK or IRQ.SERIAL vectors.  See Apple IIGS Technical Note
#24 for more information on which system state information isn’t saved before calling those
vectors.

The list of interrupt priorities is on page 180 of the Firmware Reference.  What’s not clear from
any description of interrupt handling is that each internal interrupt source’s vector is only called
if the Interrupt Manager determines it is the source of the interrupt.  For example, the
IRQ.DSKACC vector is not called unless the user pressed Command-Control-Esc to generate
the interrupt.  This insures that external interrupt handlers for slot-based peripherals are
dispatched to as quickly as possible—if each vectored routine had to determine interrupt
ownership, every interrupt would have significantly more overhead.

There are two additions to the priority list in the Firmware Reference—the first is also an
exception to the “interrupt handlers don’t have to identify the interrupt” rule.  On ROM 3
machines only, vector $E1021C (IRQ.MIDI) gets control immediately after determining the
interrupt isn’t an AppleTalk interrupt.  MIDI data can come in so quickly that it needs higher
priority than serial interrupts.  However, to improve performance, routines called through this
vector must return as fast as possible (faster would be better) to avoid delaying interrupts further
down the chain, like serial interrupts.  Also note that this vector doesn’t exist on ROM 1.

The second addition is to the final priority, simply defined as “external slot.”  The documentation
doesn’t clearly indicate how this works—it kind of implies this is just calling IRQ.OTHER.  In
fact, if no IRQ.OTHER routine claims the interrupt, the system does some voodoo magic to
switch to emulation mode and jumps through the vector at $03FE, just like all previous Apple II
models.  And just like in older systems, whatever code is pointed to by $03FE must end with an
RTI instruction.  This behavior is preserved for compatibility, although it is the slowest interrupt
response available on the IIGS.



Developer Technical Support May 1992

Apple IIGS

#105:  We Interrupt This CPU... 3 of 6

Getting Control In Time

Passing control to external handlers isn’t always quick enough for some people.  If you’re
writing a telecommunications program, for example, you have no more than 1.094 ms from the
time a character is received to get it out of the SCC or you’ll lose data at 19,200 baud.

The Interrupt Manager is a very tight piece of code—if it were running in RAM and the system
was temporarily slowed down to 1 MHz, there would only be room for about two more
instructions before AppleTalk would lose data.  Since AppleTalk has to be serviced within 104.2
µs (as discussed previously), and since IRQ.SERIAL is called as quickly as possible after
IRQ.APTALK (the only delay is if you’re on ROM 3 and a non-trivial MIDI interrupt handler is
installed), patching in at IRQ.SERIAL poses no problems for most high-speed communications,
even up to 57,600 baud.  In other words, it’s not necessary to patch any vector other than
IRQ.SERIAL to achieve the results you want.



Apple II Technical Notes

4 of 6  #105:  We Interrupt This CPU...

The problem comes when you have external communications hardware—making it through the
internal interrupt chain is too slow if your external communications hardware has the same kinds
of limitation the SCC does (namely, a 3-byte internal buffer).  External vectors are only called
after all the internal sources verify it’s not their interrupt, and by that time your card may have
lost data.

Patching the Main Interrupt Vector

In these cases, where there is no possible way to service an interrupt in time through the Interrupt
Manager’s normal priority chain, and in these cases only, it’s acceptable to patch out the main
interrupt vector at $E10010 (preferably using GetVector and SetVector with reference
number $0004).  But even then, there are rules to follow.

1. You should duplicate the functionality of the main interrupt vector exactly until
the point where you must gain control or lose data.  For example, if your card
requires that you service interrupts within a millisecond or lose data, AppleTalk
interrupts still have higher priority over your interrupts because AppleTalk
interrupts must be serviced within 104 µs.   In this example case, your code
should duplicate the functionality of the Interrupt Manager up through and
including the call to IRQ.APTALK, and then (and only then) call your interrupt
handler, where you handle the interrupt if it’s yours and pass control to the rest of
the interrupt chain if it’s not.

2. You should only service your interrupts before AppleTalk if your interrupts
require servicing in less than 104 µs.  If they don’t, give AppleTalk first shot.  If
they do, you must clearly inform the user, both in documentation and on the
screen, that if they proceed with this function network services may be
interrupted, and that they may have to restart the system to restore them.  Users
must also have the option to back out and cancel at this point.  No, this isn’t a
pleasant message to deliver, but it’s much nicer than to completely disconnect
AppleTalk and lock up the system if it was booted from a server.

3. You should only patch out the main interrupt vector when absolutely necessary.
For example, if you’re communicating with hardware that runs at multiple speeds
and only the highest speed generates interrupts that require patching the main
vector, you should not be patching the main vector when not using that highest
speed.  For telecommunication programs, this means different interrupt handling
routines depending on baud rates.  To do this any other way lessens the reliability
of other high-speed interrupt-driven peripherals in the system.

And remember, it’s only acceptable to patch the main interrupt vector when there is no other way
to service interrupts fast enough.  At all other times, even in the same program, service your
interrupts in other ways.

Vectors vs. Binding vs. Allocating



Developer Technical Support May 1992

Apple IIGS

#105:  We Interrupt This CPU... 5 of 6

There are three main ways to get into the IIGS interrupt-handling chain—by patching vectors
directly, by using the ProDOS 8 or ProDOS 16 call ALLOC_INTERRUPT, and by using the
GS/OS call BindInt.  Each behaves differently and has advantages and disadvantages.  We’ll
go from the highest level to the lowest in discussing them.



Apple II Technical Notes

6 of 6  #105:  We Interrupt This CPU...

BindInt—easy to use, but not as easy to control

BindInt’s vector reference numbers (VRNs) are designed to correspond to vectors in the
IIGS Interrupt Manager’s chain.  Comparing the list of numbers on page 265 of GS/OS Reference
to the list of vectors starting on page 266 of the Apple IIGS Firmware Reference will make this
more obvious.

When you call BindInt, GS/OS replaces the address in the appropriate interrupt vector with an
address inside GS/OS.  The routine it points to calls all the routines bound to that vector,
including the one that was originally installed (usually the ROM’s built-in SEC/RTL address).
That is, if IRQ.VBL pointed to the Miscellaneous Tools’ Heartbeat Task code before a program
made four separate BindInt calls to VRN $000C, then after those calls completed, IRQ.VBL
would point to code inside GS/OS that called all four bound routines and the Miscellaneous
Tools’ Heartbeat Task code.

This is why each bound routine is told (through the microprocessor’s carry flag) if one of the
other routines has already claimed the interrupt and why preserving that status is important.
BindInt is a convenient way to get code time during various kinds of interrupts, but you
should note that you can’t control in what order bound handlers are called.

ALLOC_INTERRUPT—old style interrupt management

ALLOC_INTERRUPT and the ProDOS 8 equivalent, ALLOC_INT take the address of the
routine you pass and keep it in an internal table.  When an interrupt occurs, each address in the
table is called in turn until one of the interrupt handlers claims it.  In older days, failure by any of
the installed interrupt handlers to claim the interrupt would bring the system to a crashing
halt—nowadays unclaimed interrupts are ignored by both ProDOS 8 and GS/OS.

What the manuals don’t tell you is that any routine installed in this way is called after the system
has jumped through address $03FE in bank zero—in other words, at the last possible chance.
For any kind of timing-sensitive interrupts, these routines are not sufficient.

The table that stores these routines is of a fixed size—ProDOS 8’s table holds four routines, and
GS/OS’s holds 16.  If you try to install more handlers than that, you’ll get an error from the
operating system.

Patching Vectors—high level of control, high risk

The lowest level at which you can get control is by directly patching the Interrupt Manager’s
vectors as documented in the Firmware Reference.  Although this lets you get control as soon as
the Interrupt Manager determines which vector to call, it also carries some compatibility risks.

Any BindInt calls with VRNs that reference a vector you patch make GS/OS take your
routine’s address and store it internally.  This is a problem for anyone who daisy-chained into the
same interrupt vector after you did—there’s no good way to disconnect yourself without
disconnecting everyone who patched in after you.  This is Bad.



Developer Technical Support May 1992

Apple IIGS

#105:  We Interrupt This CPU... 7 of 6

If you patch vectors directly, you have to check the vector when you’re ready to remove your
routine.  If the vector doesn’t still point to your address, someone else has patched into the vector
after you and you can’t remove yourself.  In these cases, you have to leave a “code stub” that
takes no action other than passing control along to the address that was installed when you
patched in, and you have to leave that code stub at the same address as your interrupt handler.
(Since you don’t know who has patched the vector after you, you have no way to communicate
with those programs and tell them you’re going away.)

This means your interrupt handler can’t be in your main program.  If it is, when GS/OS calls
UserShutDown to remove your program from memory, you’ll orphan one or more pointers to
your interrupt handler (which doesn’t exist anymore).  You must allocate memory and load your
interrupt handler with a different user ID than your main program so your code stub can survive
when your program quits.  Also note that this means repeated launchings of your program could
leave lots and lots of code stubs in memory—so if you can find a way other than patching
vectors directly, you’re encouraged to use it.

Software Interrupts—BRK and COP

Sometimes developers forget that BRK  and COP  instructions are in fact software
interrupts—when the IIGS’s 65816 encounters one of these instructions, it goes through the same
Interrupt Manager procedures that all interrupts go through.

Among other things, this means that encountering one of these instructions inside an interrupt
routine will overwrite all the system’s saved information (such as registers or system state
variables) with new ones, meaning you’ll never be able to return from the first interrupt.  This
isn’t too much of a problem with BRK (except when debugging interrupt routines), but a recent
fad popularity for COP makes this worth mentioning.

Some developers are trying to use COP instructions for all kinds of general-purpose mechanisms,
but the system is not designed to handle this.  Using a COP instruction to pass control to a shell
or a library routine in production-level code is not acceptable for several reasons.  First, any COP
instruction inside an interrupt handler will bring the system to its knees.  Second, there is no
arbitration for the COP vector so multiple users of it will collide.  Third, although a COP
instruction takes only two bytes, it takes many hundreds more cycles to execute than a JSL
instruction, slowing the system down for no reason.

COP instructions are perfectly acceptable in non-production level (debugging) code, but
developers should not use them as a way for different program modules to communicate.  Such
use is not supported and is strongly discouraged by Apple.

Before we RTI—A Summary

This Note covers many issues concerning interrupts, so here’s a summary.  This isn’t all the
explanation—refer to individual topics for discussions and reasons.



Apple II Technical Notes

8 of 6  #105:  We Interrupt This CPU...

• Never disable interrupts for longer than necessary—you make life really difficult
on routines that rely on high-speed interrupt capability.

• Interrupt routines should patch in as late as possible in the interrupt process
without losing data.  If your interrupt source doesn’t need servicing as fast as
AppleTalk does, don’t patch in before AppleTalk.

• Patching the main interrupt vector at $E10010 is only acceptable if there’s no
possible way to service external interrupts quickly enough (internal interrupt
sources, like serial ports, should always use other vectors), and even then the
vector most only be patched while necessary; if a slower interrupt source is used
in the same program, unpatch the vector.

• Different methods of installing interrupt handlers give you different levels of
control.  BindInt is the overall best method, although you can’t control in what
order bound routines are called.

• COP instructions are unacceptable in non-debugging code; they should never take
the place of JSL instructions or other methods of inter-process communication.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIGS Toolbox Reference, Volume 3
• GS/OS Reference
• ProDOS 8 Technical Reference Manual
• Apple IIGS Technical Note #24,  Apple IIGS Toolbox Reference updates



Apple IIGS
#106: ADB Addendum 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#106: ADB Addendum
Written by: Dave Lyons May 1992

This Technical Note documents some bits in the ADB SendInfo data byte for setModes and
clearModes.

SendInfo is documented in Volume 1 of Apple IIGS Toolbox Reference, but it doesn’t tell you
what any of the bits in the setModes/clearModes data byte are for.  Well, here are the useful
ones:

Bit Value Description
6 $40 Shift+CapsLock=Lowercase mode
4 $10 Keyboard buffering
3 $08 Dual-speed keys
2 $04 Fast space/delete keys

For example, to turn off keyboard buffering without altering the user’s Battery RAM, you can do
the following:

             pea 1                   ;number of data bytes
             pushlong #modesToClear  ;pointer to data byte
             pea 5                   ;modeCmd = clearModes
             _SendInfo
             ...

modesToClear dc.b $10                ;bit 4 = keyboard buffering

Note that the user’s control panel setting will become current again if they hit Command-Ctrl-Esc
(the system calls the TOBRAMSETUP vector at $E10094 to update the system from Battery RAM).

Further Reference
• Apple IIGS Toolbox Reference, Volume 1



Apple IIGS
#107: Tool Locator Tribulations 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#107: Tool Locator Tribulations
Written by: Dave Lyons May 1992

This Technical Note tells you what to watch out for in the Tool Locator.

ShutDownTools and System 6.0

In System 6.0, ShutDownTools inappropriately calls HideCursor even if QuickDraw II is not
started.  The results are unpredictable.

If your application does not use QuickDraw II but does use ShutDownTools, you may need to
start up and shut down your tools manually instead.

Note that the HideCursor problem does not occur in the (unusual) case that the System 6.0
noResourceMgr bit (value $0010) is set.

Contents of the StartUpTools Tool Table

You should not include the Tool Locator or Memory Manager in your tool table.  Instead, call
TLStartUp and MMStartUp before calling StartUpTools, and call MMShutDown and
TLShutDown after ShutDownTools.

Since StartUpTools automatically starts the Resource Manager for you, you should not include
Resource Manager in the tool table, either.  Doing so has no ill effect in System Software 6.0 and
later, but in System Software 5.0 through 5.0.4 you got duplicate ResourceStartUp and
ResourceShutDown calls.

The order of the tool table entries does not matter.  (Toolbox Reference 3, page 51-8, says
“Although StartUpTools handles the order of tool startup for you...”, but this is widely
overlooked.)

Further Reference
• Apple IIGS Toolbox Reference, Volume 3



Apple IIGS
#108: Finder Funkiness 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#108: Finder Funkiness
Written by: Dave Lyons May 1992

This Technical Note tells you what to watch out for in Finder 6.0.

Icon Search Order

When the Finder looks for an icon it uses the first match it finds.  When more than one icon would
match, the order is important.

Some icons are built right into the Finder’s resource fork—those are always searched last.  Other
than that, the Finder searches in device-number order (for example, icons on device number $0001,
the boot device, override icons on other devices).

On each disk, icons in Desktop files override icons in old-style icon files.  Among old-style icon
files in the same Icons folder, each icon file overrides subsequent (as returned by GetDirEntry)
files in the same directory.  Within an icons file, earlier icons override later icons.

If you create a “generic” icon that matches a broad class of files—for example, all files of a
particular file type—you have to be very careful where you put that icon.  A generic icon in any
file’s rBundle will wind up in a Desktop file, where it will override some old-style icon files (or
all of them, if the Desktop file is on the boot disk).

There’s really no good place for a custom generic icon.  (Well, the Finder’s resource fork would be
a good place, but we recommend not messing with that.)  A halfway-good place is in old-style icons
folders, at the end, on the highest-numbered convenient device (for example, your third hard drive
partition of three).

Note that the 6.0 Finder’s matching order for old-style icons is more or less the reverse of what it
was in previous versions.

Filename Matching and Wildcards

When an icon matches by filename and has a leading wildcard, the match always fails if there are
any lowercase characters in the string.  For example, “*.TXT” is fine, but “*.Txt” never
matches.

Also, a leading wildcard matches one or more characters, instead of (as intended) zero or more
characters.  “*ICONS” matches “MyIcons” and “Other.Icons”, but not “Icons”.  You
can usually work around this by omitting the character after the wildcards:  “*CONS” matches all
three.

These notes apply both to old-style icon files and to new matchFilename structures.



Apple II Technical Notes

2 of 2 #108: Finder Funkiness

Shut Down Default is Not Configurable

The System 6.0 Finder Documentation shows one of the words in the rRectList(1) resource as
the default choice for the Shut Down dialog.  Actually, the default is not configurable, and this word
in the resource should remain zero.  Utilities can customize the Finder’s “Shut Down…”
command by accepting the finderSaysMItemSelected request.

Further Reference
• System 6.0 Documentation


	92. Twisted Tales of TextEdit
	93. Compatible Printing
	94. Packing It In (and Out)
	95. ROM Diagnostic Errors
	96. Standard File Customization
	97. Picture Comments & Printing
	98. Aren't Windows a Pane?
	99. Supplemental Scrap Types
	100. VersionVille
	101. Patching the Toolbox
	102. Various Vectors
	103. Inline Procedure Name Format
	104. Font Manager Fundamentals
	105. We Interrupt This CPU...
	106. ADB Addendum
	107. Tool Locator Tribulations
	108. Finder Funkiness

