Apple Ic Technical Reference
Manual

Includes ROM Listings for Memory Expandable lic

> $24.95 FPT
USA

Apple® Technical Library Titles
for the Apple Ile and Ilc

The Official Publications from
Apple Computer, Inc.

Apple Ile and Apple IIc programmers, developers,
and enthusiasts will find a wealth of information

in the Apple Technical Library, an ongoing series of
comprehensive reference manuals. The first volumes
in the Library contained detailed information about
the Apple Ile and Apple Ilc computers. They describe
the hardware, firmware, the ProDOS 8 operating sys-
tem, and the Applesoft BASIC programming lan-
guage found in Apple Ile and Iic computers.

These books, written and produced by Apple
Computer, Inc., provide definitive references for
those interested in getting the most out of their
Apple Ile or Ilc.

Apple Technical Library Titles for the Apple Ile
and Ilc include:

Apple Ile Technical Reference

Apple Ilc Technical Reference

Applesoft Tutorial

Applesoft BASIC Programmer’s Reference
Manual

ProDOS 8 Technical Reference

BASIC Programming with ProDOS

Apple Numerics Manual

ImageWriter II Technical Reference
Manual

'@

Apple, IT Apple Ilc Technical
Reference Manual

VAV

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Bonn Sydney Singapore Tokyo
Madrid Bogotd Santiago San Juan

& APPLE COMPUTER, INC.

Copyright © 1984, 1986 by
Apple Computer, Inc.

All rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or by
any means, electronic,
mechanical, photocopying,
recording, or otherwise,
without prior written permission
of Apple Computer, Inc.
Printed in the United States of
America.

Apple, the Apple logo,
ProDOS, and LaserWriter are
registered trademarks of Apple
Computer, Inc.

Macintosh is a trademark of
Apple Computer, Inc.

Microsoft is a registered trade-
mark of Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

ITC Garamond, ITC Avant
Garde Gothic, and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-17752-8
ABCDEFGHIJ-DO-89876
First printing, March 1987

WARRANTY INFORMATION

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESENTA-
TION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS
TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLU-
SIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifica-
tion, extension, or.addition to this
warranty.

Some states do no allow the exclu-
sion or limitation of implied warran-
ties or liability for incidental or
consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Preface

Chapter 1

Contents

Figures and tables xiv

About This Manual xxi

Contents of this manual xxi
The Apple Ilc family xxiii

Identifying your Apple Ilc xxiii

The original Apple IIc xxiv

The UniDisk 3.5 Apple Ilc xxiv

The memory expansion Apple Ilc xxiv
Conventions used in this manual xxv

Introduction 1

The outside of the machine 2
The keyboard 3
Features 3
Special function keys 4
Cursor movement keys 4
Modifier keys 5
The 80/40 switch 5
The keyboard switch 6
Disk-use and power lights 7
The speaker 8
The built-in disk drive 8
The back panel 9
The inside of the machine 11
The internal voltage converter 11
The main logic board 12
The other circuit boards 15

iii

Chapter 2

Chapter 3

Contents

Memory Organization and Control 17

The 65C02 microprocessor 18
Overview of the address space 20
Memory map and memory switching 20
Main RAM addresses ($0000-$BFFF and $D000-$FFFF) 22
Auxiliary RAM addresses ($0000-BFFF and $D000-$FFFF) 22
ROM addresses ($C100-$FFFF) 22
Hardware addresses ($CO00-$COFE) 23
Bank-switched memory 24
Page allocations 26
Page $00 (one-byte addresses) 26
Page $01 (the 65C02 stack) 26
Pages $D0-$FF (ROM and RAM) 26
Using bank selector switches 27
48K memory 36
Page allocations 36
Page $02 (the input buffer) 36
Page $03 (global storage and vectors) 36
Pages $04-$07 (text and low-resolution Page 1) 36
Pages $08-$0B (text and low-resolution Page 2) 38
Pages $08 (communication port buffers) 38
Pages $20-$3F (high-resolution Page 1) 38
Pages $40-$5F (high-resolution Page 2) 39
Using 48K memory switches 39
Transfers between main and auxiliary memory 42
Transferring data 42
Transferring control 43
Using display memory switches 44
The reset routine 49
The cold-start procedure (power on) 51
The warm-start procedure (Control-Reset) 51
Forced cold start (Open Apple-Control-Reset) 52
The reset vector 52

Introduction to Apple llic 1/O 55

The standard I/O links 56
Standard input features 58
RdKey subroutine 58
Keyln subroutine 58
GetLn subroutine 59
Escape codes with GetLn 60
Editing with GetLn 63
Cancel line 63
Backspace 63
Retype 63

Chapter 4

Chapter 5

Standard output features 64
COut subroutine 64
Control characters with COutl 65
Control characters with C3COutl 65
The stop-list feature 67
The text window 68
Normal, inverse, and flashing text 69
Primary character set display 70
Alternate character set display 70
Port /O 71
Standard link entry points 71
Firmware protocol 72
Port I/O space 73
Port ROM space 73
Expansion ROM space 74
Port screen hole RAM space 74
Interrupts 75

Keyboard and Speaker 77

Keyboard input 78

Reading the keyboard 78

Monitor firmware support for keyboard input 82
Speaker output 82

Using the speaker 83

Monitor firmware support for speaker output 84

Video Display Output 85

Video display specifications 87
Text modes 88
Text character sets 88
MouseText 90
40-column versus 80-column text 91
Graphics modes 94
Low-resolution graphics 94
High-resolution graphics 95
Double high-resolution graphics 97
Mixed-mode displays 98
Display pages 99
Display mode switching 101
Display page maps 105
Monitor support for video display output 112
1/0O firmware support for video display output 116

Contents

Vi

Contents

Chapter 6 Block Device 1/0 119

Disk drive I/O 120
Startup 121
Cold start 121
Warm start 123
Memory expansion card I/O 123
The Smartport I/O interface 123
Locating the Smartport 124
Issuing a call to the Smartport 125
Cautions 126
Descriptions of the Smartport calls 126
STATUS 128
Parameter descriptions 128
Possible errors 132
READ BLOCK 132
Parameter descriptions 133
Possible errors 133
WRITE BLOCK 134
Parameter descriptions 134
Possible errors 135
FORMAT 135
Parameter descriptions 135
Possible errors 136
CONTROL 136
Parameter descriptions 136
Possible errors 139
INIT 139
Parameter descriptions 140
Possible errors 140
OPEN 140
Parameter descriptions 140
Possible errors 141
CLOSE 141
Parameter descriptions 141
Possible errors 142
READ 142
Parameter descriptions 142
Possible errors 143
WRITE 143
Parameter descriptions 144
Possible errors 144
An example: issuing a Smartport call 145
Summary of commands and parameters 149
Summary of error codes 150

Chapter 7

Chapter 8

Chapter 9

Serial 1/O Port 1 153

Using serial port 1 155

Characteristics of port 1 at startup 159

Hardware page locations for port 1 159

I/O firmware support for port 1 160

Screen hole locations for port 1 160

Changing port 1 characteristics 161
Data format and baud rate 163
Carriage return and line feed 164
Sending special characters 165
Displaying output on the screen 165

Serial 1/0 Port 2 167

Using serial port 2 169
Characteristics of port 2 at startup 173
Hardware page locations for port 2 173
1/0O firmware support for port 2 174
Screen hole locations for port 2 174
Changing port 2 characteristics 176
Data format and baud rate 177
Carriage return and line feed 179
Routing input and output 179
Half-duplex operation 180
Full-duplex operation 182
Terminal mode 184

Mouse and Game Input 185

Mouse input 186
Mouse connector signals 187
Mouse operating modes 187
Transparent mode 187
Movement interrupt mode 187
Button interrupt mode 188
Movement/button interrupt mode 188
Vertical blanking active modes 188
Mouse soft switches 189
1/0 firmware support for mouse input 191
Pascal support 195
BASIC and assembly-language support 195
Screen holes 196
Using the mouse as a hand controller 198

Contents Vi

Game input 198
The hand controller connector signals 199
Switch inputs (Sw0 and Sw1) 200
Analog inputs (PdI0 and Pdl1) 200
Monitor support for game input 201

Chapter 10 Using the Monitor 203

Invoking the Monitor 204
Syntax of Monitor commands 205
Monitor memory commands 205
Examining memory contents 206
Memory dump 206
Changing memory contents 208
Changing one byte 208
Changing consecutive locations 209
Moving data in memory 210
Comparing data in memory 211
Monitor register commands 212
Changing registers 213
Examining registers 213
Miscellaneous Monitor commands 213
Display inverse and normal 214
Back to BASIC 214
Redirecting input and output 215
Hexadecimal arithmetic 215
Advanced operations 216
Multiple-command lines 216
Filling memory 216
Repeating commands 217
Creating your own commands 218
Machine-language programs 219
Running a program 219
Disassembled programs 220
The STEP and TRACE commands 221
The Mini-Assembler 223
Starting the Mini-Assembler 223
Using the Mini-Assembler 224
Mini-Assembler instruction formats 226
Summary of Monitor commands 227
Examining memory 227
Changing the contents of memory 227
Moving and comparing 227
The Register command 228
Miscellaneous Monitor commands 228
Running and listing programs 229

Viii Contents

Chapter 11

Hardware Implementation 231

Environmental specifications 232
Power requirements 233
The external power supply 233
The external power connector 234
The internal converter 234
Apple IIc overall block diagram 235
The 65C02 microprocessor 237
65C02 block diagram 237
65C02 timing 239
The custom integrated circuits 241
The memory management unit (MMU) 241
The input/output unit JOU) 243
The timing generator (TMG) 245
The general logic unit (GLU) 245
The disk controller unit TWM) 247
Memory addressing 248
ROM addressing 249
RAM addressing 251
Dynamic RAM refreshment 251
Dynamic RAM timing 252
The keyboard 254
The speaker 256
Volume control 256
Output jack 256
The video display 257
The video counters 257
Display memory addressing 258
Display address mapping 258
Video display modes 261
Text displays 263
Low-resolution display 266
High-resolution display 267
Double high-resolution display 269
Video output signals 270
Monitor output 270
Video expansion output 271
Disk I/O 273
Serial I/O 274
ACIA control register 278
ACIA command register 280
ACIA status register 281
ACIA transmit/receive register 282

Contents

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Contents

Mouse input 282

Hand controller input 287
Memory expansion card 291
Schematic diagrams 291

The 65C02 Microprocessor 297

Differences between 6502 and 65C02 297
Differing cycle times 297
Differing instruction results 298
Data sheet 298

Memory Map 308

Page $00 308

Page $03 312

Screen holes 312

The hardware page 316

Important Firmware Locations 322

The tables 322

Port addresses 323

Other video and I/O firmware addresses 326
Applesoft BASIC interpreter addresses 326
Monitor addresses 326

Operating Systems and Languages 328

Operating systems 328

ProDOS 328

DOS 328

Pascal Operating System 329
Languages 329

Applesoft BASIC 329

Integer BASIC 330

Pascal 330

Fortran 330

Logo II 330

Interrupts 331

Introduction 331
What is an interrupt? 331
Interrupts on Apple II computers 332
Interrupt handling on the 65C02 333
The interrupt vector at $FFFE 333

Appendix F

The built-in interrupt handler 334
Saving the memory configuration 335
Managing main and auxiliary stacks 336
User’s interrupt handler at $03FE 336
Handling break instructions 337
Sources of interrupts 338
Firmware handling of interrupts 339
Firmware for mouse and VBL 339
Firmware for keyboard interrupts 340
Using keyboard buffering firmware 341
Using keyboard interrupts through firmware 342
Using external interrupts through firmware 342
Firmware for serial interrupts 343
Using serial buffering transparently 343
Using serial interrupts through firmware 344
Transmitting serial data 344
A loophole in the firmware 345
Bypassing the interrupt firmware 345
Using mouse interrupts without the firmware 345
Using ACIA interrupts without the firmware 347

Apple Il Series Differences 348

Overview 348
Type of processor 350
Machine indentification 350
Memory structure 351
Amount and address ranges of RAM 351
Amount and address ranges of ROM 351
Peripheral-card memory spaces 352
Hardware addresses 353
$C000-SCO0F 353
$C010-SCO1F 353
$C020-SCO2F 354
$C030-SCO3F 354
$C040-SCO4F 354
$C050-SCOSF 354
$C060-SCO6F 355
$C070-SCO7F 355
$C080-SCO8F 356
$C090-SCOFF 356
Monitors 356

Contents

Xi

I/O in general 357
DMA transfers 357
Slots versus ports 357
Interrupts 357
The keyboard 357
Keys, switches, and lights 358
Character sets 358
The speaker 359
The video display 359
Character sets 359
MouseText 360
Vertical blanking 360
Display modes 360
Disk I/O 361
Serial I/O 361
Serial ports versus serial cards 361
Serial I/O buffers 362
Mouse and hand controllers 363
Mouse input 363
Hand controller input and output 363
Cassette I/O 364
Hardware 365
Power 365
Custom chips 365

Appendix G USA and International Models 366

Keyboard layouts and codes 366
USA standard (Sholes) keyboard 367
USA simplified (Dvorak) keyboard 370
ISO layout of USA keyboard 371
English keyboard 372
French keyboad 373
Canadian keyboard 375
German keyboard 376
Italian keyboard 378
Western Spanish keyboard 380
ASCII character sets 381
Certification 383
Product safety 383
Important safety instructions 383
Power supply specifications 383

xii Contents

Appendix H

Appendix |

Conversion Tables 384

Bits and bytes 384

Hexadecimal and decimal 387
Hexadecimal and negative decimal 388
Peripheral identification numbers 389
Eight-bit code conversions 391

Firmware Listings 396

Glossary 509
Bibliography 533
Index 535

Tell Apple Card

Contents

Xili

Figures and tables

Chapter 1 Introduction 1

Figure 1-1 Apple IIc external features, front 2
Figure 1-2 Apple IIc external features, back 2
Figure 1-3 Front of Apple IIc with standard USA keyboard 3
Figure 1-4 USA standard (or Sholes) keyboard,
keyboard switch up 6
Figure 1-5 USA simplified (or Dvorak) keyboard,
keyboard switch down 7

Figure 1-6 Speaker, volume control, and audio output jack 8
Figure 1-7 Built-in disk drive 9
Figure 1-8 Back panel connectors 10

Figure 1-9 Inside the machine 11

Figure 1-10 ~ Power supply and voltage converter 12

Figure 1-11 Original and UniDisk 3.5 IIc main logic board 13
Figure 1-12 Memory expansion IIc main logic board 14
Table 1-1 Keyboard specifications

Chapter2 Memory Organization and Control 17

Figure 2-1 Internal model of the 65C02 microprocessor 19
Figure 2-2 Apple IIc memory map 21

Figure 2-3 Bank-switched memory map 25

Figure 2-4 Read ROM 29

Figure 2-5 Read ROM, write RAM, and use first $D0 bank 30
Figure 2-6 Read ROM, write RAM, and use second $D0 bank 31
Figure 2-7 Read RAM and use first $D0 bank 32

Figure 2-8 Read RAM and use second $D0 bank 33

Figure 2-9 Read and write RAM and use first $D0 bank 34
Figure 2-10 ~ Read and write RAM and use second $DO0 bank 35
Figure 2-11 48K memory map 37

Figure 2-12 48K RAM selection, split pairs 40

Figure 2-13 48K RAM selection, one side only 41

Figure 2-14 Page2 selections, 80Store on and HiRes off 47
Figure 2-15 Page?2 selections, 80Store on and HiRes on 48
Figure 2-16 Reset routine flowchart 49

Table 2-1 Bank selector switches 28

Xiv

Chapter 3

Chapter 4

Chapter 5

Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7

48K memory switches 39

48K RAM transfer routines 42
Parameters for MoveAux routine 43
Parameters for XFer routine 43
Display memory switches 45

Page $03 vectors 50

Introduction to Apple lic I/O 55

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9

Prompt characters 59

Escape codes with Getln 61

Control characters with COutl 65
Control characters with C3COutl 66
Text window memory locations 69
Port characteristics 71

Firmware protocol locations 72

Port I/O locations 73

Port screen hole memory locations 74

Keyboard and Speaker 77

Table 4-1
Table 4-2
Table 4-3

Keyboard input characteristics 79
Keys and ASCII codes 80
Speaker output characteristics 83

Video Display Output 85

Figure 5-1
Figure 5-2

Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8

MouseText characters 91

40-column and 80-column text

with alternate character set 92

Text mode characteristics and switching 93
High-resolution display bits 96

Map of 40-column text display 107

Map of 80-column text display 108

Map of low-resolution graphics display 109
Map of high-resolution graphics display 110
Map of double high-resolution graphics display 111
Video output port characteristics 86

Video display specifications 87

Display character sets 89

Low-resolution graphics colors 94
High-resolution graphics colors 97

Double high-resolution graphics colors 99
Video display page locations 101

Display soft switches 102

Figures and tables XV

Table 5-9 Display modes supported by firmware,
including Applesoft 104

Table 5-10 Other display modes 104

Table 5-11 Monitor firmware routines 112

Table 5-12 Port 3 firmware protocol table 116

Table 5-13 Pascal video control functions 117

Chopter 6 Block Device 1/0 119
Figure 6-1 Summary of Smartport calls 149

Table 6-1 Disk I/O port characteristics 120

Chapter 7 Serial 1/O Port 1 153

Figure 7-1 Diagram of port 1 characteristics storage 162
Figure 7-2 Data format 163
Table 7-1 Serial port 1 characteristics 154

Table 7-2 Printer port commands 155

Table 7-3 Port 1 hardware page locations 159
Table 7-4 Port 1 I/O firmware protocol 160
Table 7-5 Port 1 screen hole locations 160

Chopter 8 Serial 1/O Port 2 167

Figure 8-1 Diagram of port 2 characteristics storage 177
Figure 8-2 Devices in a typical communication setup 178
Figure 8-3 Effect of IN#2 180
Figure 8-4 Effect of IN#2 and T command, half duplex 181
Figure 8-5 Effect of IN#2 and T command,
full-duplex terminal 182
Figure 8-6 Effect of IN#2, PR#2, and T command,
full-duplex host 183
Table 8-1 Serial port 2 characteristics 168
Table 8-2 Modem port commands 170
Table 8-3 Port 2 hardware page locations 174
Table 8-4 Port 2 I/O firmware protocol 174
Table 8-5 Port 2 screen hole locations 175

Chapter 9 Mouse and Game Input 185

Table 9-1 Mouse input port characteristics 186
Table 9-2 Mouse soft switches 189

Table 9-3 Mouse firmware routines 193

Table 9-4 Mouse port I/O firmware protocol 195
Table 9-5 Mouse port screen hole locations 197
Table 9-6 Game input characteristics 199

XVi Figures and tables

Chapter 10 Using the Monitor 203

Chapter 11

Table 10-1

Mini-Assembler address formats 226

Hardware Implementation 231

Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 11-11
Figure 11-12
Figure 11-13
Figure 11-14
Figure 11-15
Figure 11-16
Figure 11-17
Figure 11-18
Figure 11-19
Figure 11-20
Figure 11-21
Figure 11-22

Figure 11-23

Figure 11-24
Figure 11-25
Figure 11-26
Figure 11-27
Figure 11-28
Figure 11-29
Figure 11-30
Figure 11-31
Figure 11-32
Figure 11-33
Figure 11-34
Figure 11-35
Figure 11-36
Figure 11-37
Figure 11-38

External power connector 234

Apple IIc block diagram 236

65C02 block diagram 238

65C02 timing signals 240

MMU pinouts 242

IOU pinouts 243

TMG pinouts 245

GLU pinouts 246

IWM pinouts 247

Memory bus organization 249

23128 ROM pinouts 249

2316 ROM pinouts 250

2364 pinouts 250

64K RAM pinouts 251

RAM timing signals 253

Keyboard circuit diagram 254
Keyboard signals 255

Speaker circuit diagram 256

Display address transformation 260
40-column text display memory 261
Video display circuits 262

7-MHz video timing signals: 40-column,
low-resolution, and high-resolution display 264
14-MHz video timing signals: 80-column
and double high-resolution display 265
Video output back panel connectors 270
Video expansion connector pinouts 272
Disk drive connector 274

Serial port circuits 275

6551 ACIA block diagram 276

6551 pinouts 277

Serial port connectors 278

ACIA control register 279

ACIA command register 280

ACIA status register 281

Sample mouse waveform 283

Mouse movement and direction waveforms 283
Mouse connector 284

Mouse circuits 285

Mouse button signals 286

Figures and tables

xvii

xvili

Appendix A

Appendix B

Figures and tables

Figure 11-39
Figure 11-40
Figure 11-41
Figure 11-42
Figure 11-43

Figure 11-44
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 11-14
Table 11-15
Table 11-16
Table 11-17
Table 11-18
Table 11-19
Table 11-20
Table 11-21
Table 11-22

Hand controller connector 287

How to connect switch inputs 288

Hand controller circuits 288

Hand controller signals 289

Memory expansion card connector
pinout diagram 291

Apple IIc schematic diagram 292
Environmental specifications 232
Power supply specifications 233

External power connector signals 234
Internal converter specifications 234
65C02 microprocessor specifications 239
65C02 timing signal descriptions 240
MMU signal descriptions 242

IOU signal descriptions 243

TMG signal descriptions 245

GLU signal descriptions 246

IWM signal descriptions 247

RAM address multiplexing 252

RAM timing signals 253

Display memory addressing 260
Memory address bits for display modes 260
Character-generator control signals 266
Video expansion connector signals 272
Disk drive connector signals 274

6551 signal descriptions 277

Serial port connector signals 278
Mouse connector signals 284

Hand controller connector signals 287

The 65C02 Microprocessor 297

Table A-1

Memory Map

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

Cycle time differences 298

308

Page $00 use 309
Page $03 use 312
Main memory screen hole allocations 313

Auxiliary memory screen hole allocations 315

Addresses $C000-$CO3F 316
Addresses $C040-$COSF 318
Addresses $C060-$CO7F 319
Addresses $C080-$COAF 320
Addresses $COBO-$COFF 321

Appendix C

Appendix E

Appendix F

Appendix G

Important Firmware Locations 322

Table C-1
Table C-2
Table C-3
Table C-4
Table C-5

Table C-6

Interrupts
Table E-1

Table E-2
Table E-3

331

Serial port 1 addresses 323

Serial port 2 addresses 324

Video firmware addresses 324

Mouse port addresses 325

Apple IIc enhanced video

and miscellaneous firmware 326

Apple IIc monitor entry points and vectors 326

Interrupt-handling sequence 335
Activating mouse interrupts 346
Reading mouse interrupts 346

Apple Il Series Differences 348

Figure F-1
Table F-1

Apple II, II Plus, and Ile hand controller signals 364

Apple II series indentification bytes 350

USA and International Models 366

Figure G-1
Figure G-2
Figure G-3
Figure G-4
Figure G-5
Figure G-6
Figure G-7
Figure G-8
Figure G-9

Table G-1
Table G-2

Table G-3
Table G-4

Table G-5

USA standard (or Sholes) keyboard,
keyboard switch up 368

USA simplified (or Dvorak) keyboard,
keyboard switch down 370

ISO version of USA standard keyboard,
keyboard switch up 371

English keyboard, keyboard switch up 372
French keyboard, keyboard switch down 373
Canadian keyboard, keyboard switch down 375
German keyboard, keyboard switch down 376
Italian keyboard, keyboard switch down 378
Western Spanish keyboard, keyboard

switch down 380

Keys and ASCII codes 368

English keyboard code differences

from Table G-1 372

French keyboard code differences

from Table G-1 374

Canadian keyboard code differences

from Table G-1 375

German keyboard code differences

from Table G-1 377

Figures and tables

Xix

XX

Appendix H

Appendix |

Figures and tables

Table G-6 Italian keyboard code differences
from Table G-1 379

Table G-7 Western Spanish keyboard code differences
from Table G-1 381

Table G-8 ASCII code equivalents 381

Table G-9 50-Hz power supply specifications 383

Conversion Tables 384

Figure H-1 Bits, nibbles, and bytes 386

Table H-1 What a bit can represent 385

Table H-2 Values represented by a nibble 386

Table H-3 Hexadecimal/decimal conversion 387

Table H-4 Hexadecimal to negative decimal conversion 388
Table H-5 PIN numbers 390

Table H-6 Control characters, high bit off 392

Table H-7 Special characters, high bit off 393

Table H-8 Uppercase characters, high bit off 394

Table H-9 Lowercase characters, high bit off 395

Firmware Listings 396

Table I-1 Main side ROM map 397
Table I-2 Auxiliary side ROM map 398

Preface

About This Manual

This is the reference manual for the Apple® IIc personal computer.
It contains detailed descriptions of all the hardware and firmware
that make up the Apple Ilc and provides the technical information
that peripheral-card designers and programmers need.

The information in this manual is aimed at assembly-language
programmers and hardware designers, but others interested in the
internal operation of the Apple Ilc can also benefit from reading it.

This manual tells you how the Apple IIc works, but not how to use it.
If you need to know how to set up and use your Apple Ic, read the
Apple Ilc Owner’s Manual.

This manual describes three versions of the Apple Ilc:

O the original Apple Ilc

D the Apple IIc that supports the UniDisk™ 3.5 drive

O the Apple lic that supports the Memory Expansion Card

More information on the various versions of the Apple Iic is
provided under “The Apple IIc Family,” later in this Preface.

Contents of this manual
The Apple Ilc is presented in this manual from the outside in.

Chapter 1 introduces the Apple Ilc, including external controls,
connectors, and the main internal components.

Chapter 2 introduces the 65C02 microprocessor and its directly
addressable memory space.

Chapter 3 introduces the I/O characteristics of the Apple Ilc.
Chapters 4 and 9 cover specific areas of the I/O interface.

xXXi

xxli

Chapter 4 describes the keyboard and speaker.
Chapter 5 describes the video display.

Chapter 6 describes block device I/O, including the Smartport
firmware interface.

Chapter 7 describes serial port 1.
Chapter 8 describes serial port 2.
Chapter 9 describes the mouse/game paddle port.

Chapter 10 describes the Apple IIc's built-in Monitor firmware. The
Monitor helps you write, disassemble, and debug machine-
language programs, as well as providing you with a means to look at
and manipulate the contents of main memory.

Chapter 11 describes the Apple IIc hardware in detail.

Appendix A describes the 65C02 microprocessor in detail,
including the differences between it and the 6502 microprocessor
used on early-model Apple II's. Most of this appendix is a reprint of
the manufacturer’s data sheet for the 65C02.

Appendix B contains a memory map of the Apple Ilc main
memory. Detailed maps are provided for memory pages $00 and
$03, the screen holes, and the hardware page.

Appendix C lists the Apple IIc firmware entry points, including
those for the 1/O firmware and the Monitor firmware.

Appendix D describes some of the operating systems and languages
supported by Apple Computer for the Apple Ilc.

Appendix E describes the operation of the Apple IIc interrupt
handler firmware and how to use it in your programs.

Appendix F outlines the differences and similarities between the
diverse members of the Apple II family of computers.

Appendix G describes the various international versions of the
Apple IIc keyboard and character set. Power and safety information
for international versions of the Apple IIc is also included in this
appendix.

Appendix H contains tables to aid you in code and number base
conversions.

Appendix I contains the firmware listing for the new version of the
Apple IIc and information on obtaining listings for the original and
UniDisk 3.5 ROMs.

The Glossary defines many of the technical terms used in this
manual.

Preface: About This Manual

Important

The Bibliography lists articles and books with additional
information about the Apple Ilc.

Finally, after the index at the back of this manual, you'll find the Tell
Apple Card; please take a minute to fill this card out and mail it back
to us. Your experience with this and other Apple manuals can help
us plan new reference materials.

The Apple lic family

Changes have been made to the Apple IIc since the original version
was introduced. The first change was made in order to support the
UniDisk 3.5 external drive, and included a set of ROM-based
machine-language routines called the Protocol Converter. The
latest version incorporates all the UniDisk 3.5 upgrade features, a
new version of the Protocol Converter called the Smartport, and
support for an optional memory expansion card. All of these
versions are described in this manual. Where there are differences
between the various versions of the Apple Ilc, they will be called out
in the manual. For the sake of convenience, the various versions of
the Apple Ilc are identified by the features they support, such as
memory expansion for the newest Ilc and UniDisk 3.5 for the
version that introduced the UniDisk 3.5 drive support. Unless
specified, all versions of the Apple Ilc operate identically.

Smartport is merely a new name for the Protocol Converter; all
the specifications for the Smartport apply to the Protocol
Converter, and vice versa.

Identifying your Apple lic

There are basically three versions of the Apple Ilc:
O the original Apple Ilc

O the UniDisk 3.5 Apple IIc

O the memory expansion Apple Ilc

You can tell which Apple Ilc you have by checking the value of the
ID byte at ROM location 64447 ($FBBF in hexadecimal). The value
of this byte is 255 ($FF) in the original Apple IIc, 0 ($00) in the
UniDisk 3.5 version, and 3 ($03) in the memory expansion version.

% Checking the ID byte: You can check the value of the ID byte
from Applesoft by typing PRINT PEEK (64447).

The Apple lic family xxiil

XXiv

The original Apple lic

The original Apple IIc is the oldest member of the IIc family. It has
the following features:

0 the 65C02 microprocessor
O 128K of RAM

The UniDisk 3.5 Apple lic

The Apple IIc that introduced support for the UniDisk 3.5 drive is
identified in this manual as the UniDisk 3.5 version. It includes the
following changes from the original Apple Ilc:

O the Protocol Converter, to support the UniDisk 3.5 external disk
drive

O a 256K ROM IC to replace the 128K ROM

O some new serial port commands

O the Mini-Assembler

O two new Monitor commands (STEP and TRACE)
O built-in diagnostics

The UniDisk 3.5 Apple Ilc also includes improved interrupt handler
features and new external drive startup procedures.

The memory expansion Apple lic

The Apple IIc that supports an optional memory expansion card
supports all the features of the UniDisk 3.5 version. It includes the
following changes from the UniDisk 3.5 IIc:

O an internal connector to support an optional memory expansion
card

O 4 64Kx4 RAM ICs to replace the 16 64Kx1 ICs

The Apple IIc that supports the memory expansion option also
reorganizes the I/O port (“slot”) entry points in the firmware. The
mouse, located at port 4 in the original and UniDisk 3.5 versions, is
now at port 7. The memory expansion card uses port 4 in the new
Apple IIc. What this means is that all the mouse I/O entry point
addresses have been changed from $C4XX to $C7XX.

Preface: About This Manual

Warning

Important

Original llc

UniDisk 3.5

Memory expansion

To avoid confusion and maintain compatibility with previous
versions, the text and tables in this book still show the values used
for the original and UniDisk 3.5 versions of the Apple Ilc. However,
a statement reminding you of the change appears near affected
tables.

Remember that the Smartport and the Protocol Converter are
the same thing.

Conventions used in this manual

Special text in this manual is set off in several different ways, as
shown in these examples.

Important warnings look like this. These flag potential danger to
the Apple lic, its software, or you.

Text set off like this Is less urgent or threatening than text in a
Warning box, but still of a critical nature.

Text set off like this applies only fo the original version of the
Apple lic.

Text set off like this applies only to the UniDisk 3.5 version of the
Apple lic.

Text set off like this applies only to the memory expansion
version of the Apple lic.

< By the way: Information that is useful but incidental to the text
is set off like this. You may want to skip over such information
and return to it later.

Terms that appear in boldface in the text are defined in the
Glossary or a marginal gloss.

Computer voice is used to indicate text that should be identical
to your screen display or printout.

Conventions used in this manual XXV

Chapter 1

Introduction

This chapter introduces you to the working parts of the Apple IIc by
briefly describing the major components of the computer—both
internal and external hardware and firmware—and telling you
. where in the manual to find out more about them.

The outside of the machine

This section briefly describes the Apple Iic’s keyboard, controls,
indicators, and expansion connectors.

The Apple IIc comes equipped with a keyboard, speaker (with audio
output jack and volume control), built-in disk drive, external power
supply, and internal voltage converter. It also has built-in interfaces
with external connectors for a serial printer, video monitor, special
video display adapters, modem, mouse, and game controllers.
These external connectors allow you to plug in accessory equipment
without having to go inside the machine to use expansion slots like
those in the Apple Ile,

Figure 1-1 shows the front and right side of an Apple IIc, and
Figure 1-2 shows the back and left side.

Keyboard Disk Drive Back Panel Speaker
(See Figs. 1-4 and 1-5) (See Fig. 1-7) (See Fig. 1-8) Volume Control
(See Fig. 1-6)
Figure 1-1 Figure 1-2
Apple lic external features, Apple lic external features,
front back

Chapter 1: Infroduction

The keyboard

ASCII stands for American The Apple IIc’s primary input device is the keyboard, shown in
standard Code for Information Figure 1-3. The keyboard has a 63-key typewriter layout with both
Inferchange. Table 4-2 lists the

ASCII character encoding for uppercase and lowercase characters and can generate all 128

the standard and simplified USA standard ASCII characters. A reset key, 80/40-column display
keyboards. Appendix G lisfs the selector switch, keyboard layout selector switch, disk-use light, and

encoding for international

keyboards. power light are also located on the front of the computer.

Reset Switch
80/40-Column Switch

Keyboard Switch

Disk-Use Light Power Light

Figure 1-3
Front of Apple lic with standard USA keyboard

Table 1-1 lists the characteristics of all Apple Ilc keyboards and
front panels.

Features

The Apple IIc keyboard has automatic repeat on all character keys.
This means that if you hold the key down longer than about a
second, the character it generates repeats until you let up the key. It
also has two-key rollover, which means if you press a key before
releasing the one you pressed before it, the second character enters
the computer the same as though you had released the previous key
first. (This is important for fast touch-typists.)

The outside of the machine 3

The Open Apple and Solid Apple
keys are connected to 1-bit
addresses in memory, described
in Chapter 9.

Chapter 2 describes the results
of the various reset procedures.

Table 1-1
Keyboard specifications

Number of keys 63

Character encoding ASCII

Number of codes 128

Features Automatic-fepeat, twe-key rollover

Special function keys Reset, Open Apple, Solid Apple,

Cursor movement keys Left Arrow, Right Arrow, Down Arrow,
Up Arrow, Return, Delete, Tab

Modifier keys Control, Shift, Caps Lock, Escape

Front-panel switches 80/40 switch, keyboard switch

Front-panel lights Power light, disk-use light

Special function keys

The Apple Iic keyboard has three special function keys: Reset, and
two keys marked with apples—one outlined (Open Apple) and one
filled in (Solid Apple).

Reset has a direct line to the 65C02 microprocessor’s RESET signal
line (see Chapter 11): holding down Control while pressing Reset
causes the Apple Ilc to restart processing with an internal firmware
program that puts the machine in a known state (see Chapter 2).

You can restart the Apple IIc without turning the power off and back
on again, by holding down both Control and Open Apple while
pressing Reset. Restarting this way is less stressful to the Apple IIc’s
components than normal powerup.

Cursor movement keys

The Apple IIc keyboard has four cursor movement keys with arrows
marked on them: left, right, down, and up. Three other keys can
also cause cursor movements: Return, Delete, and Tab. All seven of
these keys generate ASCII control characters (see Table 4-2). It is up
to the operating system or application program to interpret and act
on the control codes that these keys generate.

Chapter 1: Introduction

The Monitor Is a bullt-in program
that performs some of the basic
activities of the computer, such
as retrieving and storing key
codes as they come in, and
clearing or updating the display
screen.

Important

Modifier keys

Three special keys—Control, Shift, and Caps Lock—generate no
codes when pressed by themselves, but change the codes generated
by other keys they are pressed in combination with. A fourth key,
Escape, generates a nonprinting control code that causes the
Monitor to interpret certain subsequent keystrokes in a modified
way.

O Control, when pressed in combination with letter keys or certain
other keys, produces ASCII control characters. Most of the
control characters are invisible most of the time.

O Shift works the same on the Apple Ilc as on an ordinary
typewriter: it selects uppercase letters and the upper characters
on the keys.

o Caps Lock, in its down position, changes the letter keys to
uppercase, but does not affect other keys.

O Escape is not a modifier key in the same sense as Control and
Shift: you do not hold it down while pressing other keys. Rather,
you press Escape and it generates the ASCII escape (ESC) control
character (key code $1B—see Table 4-2). When the Escape key is
pressed, many programs—including the built-in Monitor
program—then interpret other specific keys as designating an
escape sequence.

The 80/40 switch

The 80/40 switch lets you specify whether a program should display
information in 40 or 80 columns per line. The switch indicates 40-
column display when in its down position, and 80-column display
when in its up position.

Not all programs check this switch. Even programs that do
check the swifch may do so only when the program first starts
up. If that is the case, changing the switch position while the
program is running will have no effect on the program’s display.
(See Table 4-1.)

The outside of the machine 5

The keyboard switch

You use the keyboard switch to select for use one of the two keyboard
layouts and screen character sets built into your Apple IIc. On USA
versions of the Apple Ilc, you select the standard Sholes keyboard
layout (Figure 1-4) with the switch in the up position, and the
Dvorak simplified layout (Figure 1-5) with-the switch in the down
position.

If you normally use the Dvorak keyboard layout, you can gently pry
up the keys from the keyboard and rearrange and replace them in
their Dvorak positions.

ﬂ?ﬁ/ﬂ] ﬂeybaafd /1//'5k use ﬁawef

! @ # 8 % ” & * { / — +
6st ! 2 3 4 5 6 7 § g 0 - = delete
{ y; I
1ab a W I3 R 7 Y U / 0 P [7] \
3 "
control A S 1 f G H J K L ; ! retum
< > ?
shift Z X A v B N M ; . / shift
ot | a 6 | <« > |V T

Figure 1-4
USA standard (or Sholes) keyboard, keyboard switch up

6 Chapter 1: Introduction

ﬂﬂ/llﬂ ﬂeybnaﬂ/ /d/'s/(use ﬁawe/

delete

contro/ retumn

a J K X b M w v Ve shift

shift

caps
lock

-

Figure 1-5
USA simplified (or Dvorak) keyboard. keyboard switch down (shaded characters may be in
different positions on some models)

Appendix G illustrates the On international models, the keycaps indicate the character
keyboard layouts for both positions for the local keyboard layout, which is selected when the
keyboard switch positions on \eaybuard sydich i d Wh e, kesibnd swdichy sel fy
several Internatienal versions of eyboard switch is down. en up, the keyboard switch selects the
the Apple lic. USA standard characters and key layout.

Disk-use and power lights

The red disk-use light glows whenever the built-in disk drive’s motor
is switched on.

The green power light glows when the Apple Ilc is tumed on and
normal power is present at the Apple IIc’s internal power supply.

Warning If the power light flashes on and off, tumn off the computer
immediately. Find out what caused the condition (such as a
brownout or short circuit) and fix the problem before turning
the computer on again. Above all, do not use the disk drive
when the power light is flashing; this may damage the
computer.

The outside of the machine 7

The speaker

The vls:c:yi péogro_rg\s é:ongol the The Apple IIc has a speaker in the bottom of the case, as shown in
sReeuer 1§ GRscRaad Uncer Figure 1-6. The speaker lets Apple Ilc programs produce a variety of
i sounds. There is also a volume control on the left side of the
Apple Ilc case, and a jack for connecting headphones or an
external speaker. The jack accepts eithér one-charinel (monaural)
or two-channel (stereo) plugs, although speaker output is monaural
only. Inserting a plug disconnects the built-in speaker

Volume Control Knob
Speaker (Inside)
Audio Output Jack

Figure 1-6
Speaker, volume control, and audio output jack

The built-in disk drive

The Apple IIc’s built-in disk drive (Figure 1-7) is fully compatible
with the Apple Disk Ilc that reads and writes 5.25-inch single-sided
35-track disks. The drive door is on the right side of the Apple IIc
case.

8 Chapter 1: Introduction

Disk Drive-Door

Figure 1-7
Built-in disk drive

The back panel

The back panel of the Apple IIc (Figure 1-8) has seven connectors
and a main power switch. From left to right they are

O a 9-pin D-type miniature connector for connecting hand
controllers, a mouse, a joystick, or some other device (see
Chapters 9 and 11)

O a 5-pin DIN connector for serial input and output (port 2;
normally for a modem) (see Chapters 7 and 11)

O a 15-pin D-type connector for video expansion (see Chapter 11)
0O an RCA-type jack for a video monitor (see Chapter 11)

O a 19-pin D-type connector for connecting one or more external
devices, such as intelligent disk drives (see Chapters 6 and 11)

O another 5-pin DIN connector for serial input and output (port 1;
normally for a printer or plotter) (see Chapters 8 and 11)

O a special 7-pin DIN connector for power input (see Chapter 11)
Before attaching cables to the Apple IIc back panel connectors, be
sure to move the handle until it clicks into position for propping up

the computer. The handle should be down whenever the computer
is running so that it can maintain proper cooling airflow.

The installation manuals for external devices contain instructions
for connecting them to the Apple Ilc.

The outside of the machine 9

Mouse and Hand Serial Port2 Video Expansion Handle Serial Port 1 Power

Control Connector Connector Connector Connector Switch
(See Figs. 11-37 (See Fig. 11-30) (See Fig. 11-25) (See Fig. 11-30)
and 11-42)
Video Output External External Power
Connector Disk Drive Connector
(See Fig. 11-24) Connector (See Fig. 11-1)

(See Fig. 11-26)

Figure 1-8
Back panel connectors

10 Chapter 1: Introduction

Voltage —

Converter

Built-in ——

Disk Drive

Main Logic Board
(See Figure 1-11)

Speaker J
ook

(underneath)

Complete specifications of the
Apple lic power supply and
voltage converter appearin

Chapter 11.

The inside of the machine

Figure 1-9 shows the main components inside the Apple IIc
computer.

Figure 1-9
Inside the machine

The internal voltage converter

The built-in voltage converter operates from a 12 to 15 VDC input
source, such as provided by the external power supply furnished
with the Apple Ilc (Figure 1-10). The voltage converter provides
power for the logic board, built-in disk drive, one external disk
drive, and the I/O signals available at the back panel.

The inside of the machine

11

Internal Voltage Converter

Power Switch

Power Supply

Figure 1-10
Power supply and voltage converter

The voltage converter produces three different voltages: +5V,
+12V, and -12V. (Minus 5V, needed by some components in the
Apple IIc, is derived from -12V on the main logic board.) It is a
high-efficiency switching converter that protects itself and the rest
of the Apple Ilc against short circuits and other electrical mishaps.

The main logic board

The main logic board, which is mounted flat in the bottom of the
Apple IIc’s case, has almost all the electronic parts of the computer
attached to it.

12 Chapter 1: Introduction

Figure 1-11 shows the main logic board and the most important
integrated circuits (ICs) in the Apple Ilc. They are the CPU (central
processing unit), RAM (random-access memory), ROM (read-
only memory) ICs for keyboard encoding, display character

Firmware is program code that is generation, and firmware, and the five custom ICs.
stored in ROM. It can be read
and executed, but not changed. The processor is a 65C02 microprocessor. The 65€02 is a CMOS

version of the 6502 used in other members of the Apple II family. It
is an 8-bit microprocessor with a 16-bit address bus. In the

Apple IIc, the 65C02 runs at 1 MHz and performs up to 500,000 8-bit
operations per second.

Character Generator ROM
WM
TMG
GLU

Auxiliary RAM

Main RAM

10U

MMU

Keyboard ROM

65C02 Microprocessor
Firmware ROM

@oppiaomputar

Figure 1-11
Original and UniDisk 3.5 lic main logic board

The inside of the machine 13

@rppic’omputar 6 1385

FELE e
zz: E

|
|
I

Figure 1-12
Memory expansion lic main logic board

The keyboard is scanned by an IC that generates matrix values for a
ROM. The value of the ASCII code supplied by the ROM is latched at
a specified memory location and is readable by programs.

The character generator ROM converts ASCII character values to a
form that the video display can use.

The Applesoft language The other ROM contains the Monitor, the Applesoft BASIC
interpreter Is described in the interpreter, enhanced video firmware, and other input/output
Applesoft Tutorial and the fi The fi hat thi . Y
Applesoft BASIC Programmer’s irmware. The firmware that this ROM contains is describe
Reference Manual, throughout this manual.

14 Chapter 1: Introduction

For more on memory addressing,

see Chapter 2.

See Chapters 3 through 9.

Chapter 11 discusses the

functions of these integrated

circuits in some detail.

Warning

Five of the large ICs on the main logic board are custom-made for
the Apple Ilc:

]

The memory management unit (MMU) contains most of the
logic that controls memory addressing in the Apple Ilc.

The input/output unit IOU) contains most of the logic that
controls the built-in input and output features of the Apple Ilc.

The timing generator (TMG) generates all the system and 1/O
clock and timing signals from a 14-MHz oscillator.

The general logic unit (GLU) performs the remaining required
logic functions.

The disk controller unit, also known as the Integrated Woz
Machine (IWM), is a single-chip version of the Apple Disk II
controller card. It controls the built-in and external disk drives
connected to the Apple Ilc.

The other circuit boards

The Apple Ilc contains other circuit boards that serve special
purposes: a motor-speed control and read/write logic board for the
disk drive, and a matrix board for detecting the position of keys
pressed. This manual does not discuss these circuit boards.

Adjustment of disk drive speed must be done by an authorized
Apple Service Center. Do not attempt to adjust the speed of
your built-in disk drive. If you do, you may damage it and you
will void your warranty.

The inside of the machine

15

Chapter 2

Memory
Organization
and Control

17

Each of the other registers holds
eight bits (one byte), so the
65C02 is called an 8-bit
processor.

Appendix A lists the instructions
the 65C02 can carry out, their
use, and their effects on the
registers. For further
information, consult the
pertinent books listed in the
Bibliography.

This chapter introduces the Apple IIc’s processor, the 65C02, and
the memory ranges and locations in the Apple IIc that have been set
aside for special purposes. The last section of this chapter describes
the reset routines, which restore the computer to a known state.

The 65C02 microprocessor

The 65C02 is a general-purpose 8-bit CMOS microprocessor similar
in operation to the 6502 used in other members of the Apple II
family of computers.

Figure 2-1 is a model of the 65C02 microprocessor’s register
organization. Registers are fast-acting built-in storage areas where
the processor performs and keeps track of its work. The 65C02 has
one 16-bit register and five 8-bit registers.

The 16-bit register is called the program counter (PC). It specifies
the address in memory that contains the instruction the processor is
currently carrying out. A 16-bit register can specify any one of
65,536 memory addresses, and so the 65C02 is said to have an
address space of 65,536 locations.

The five 8-bit registers in the 65C02 are the following:

0O The accumulator, or A register. The accumulator is like a desk
top where the processor performs mathematical and logical
operations on information.

O The index registers, X and Y. The processor uses these registers
to modify the address where information is to be found or
placed, and to pass information from one program to another.

O A stack pointer, or S register. The processor uses a 256-byte
region of memory—page $01—as an area to stack up bytes for
future use. The stack is empty when the computer is turned on.
Several 65C02 instructions either push (store) the contents of a
register onto the stack, or pull (retrieve) a byte from the stack and
place it in a register. The S register keeps track of the address of
the byte in the stack that is currently ready for use.

O A processor status register, or P register. Seven of the eight bits of
this register are used as flags to record the outcome of processor
activities, and can be checked by later instructions to determine
what has happened and what the processor should do next.

18 Chapter 2: Memory Organization and Control

Address
Bus

4

\A15 -~

AQ |
A1<—1
A2
A3
A4~y
A5 |
A6 ey

A7

ABL

Internal ADL

A8~y
A9~
A10 —mf
A1~
A12
A13 iy

A14 —am

ABH

Figure 2-1
Internal model of the 65C02 microprocessor (copyright © 1982 by NCR Corporation;

used by permission)

-~-=f—— Register Section

Index
Register
(Y)

Control Section ————3=

RES IRQ NMI

Yy

Index
Register
(X)

Stack Pointer
Register
(S)

Interrupt
Logic

P Yy

[

ALU

Internal ADH

f;

Accumulator
(A)

PCL

Internal Data Bus

=

Instruction
Decode

ref———— RDY

————3= SYNC

PCH

Input Data

Latch (DL)

Legend:

s 8-Bit Line

l = 1-Bit Line

Data Bus

Buffer
)

A A

J

Processor -
Status
Register (P)

,——> ML

| i
iming
Control

Clock B,(In)
Generator
Oscillator

$,(Out)

L 3 $,(Out)

l

Instruction
Register

o000 0O00
NoasON0a2O

YYYYYYYY

The 65C02 microprocessor

Data Bus

19

Soft switches are described
more fully under “Bank-
Switched Memory” and "48K
Memory.”

There are two other ROMs in the
Apple llc: one to generate
characters corresponding to
keystrokes and another to
generate characters for display.
(See "The Keyboard” and “The
Video Display” in Chapter 9.)
However, these ROMs are not
addressable by the
microprocessor.

Overview of the address space

The Apple IIc’s 65C02 microprocessor can address 65,536 (64K)
memory locations. All the Apple IIc’s RAM, ROM, and input and
output (I/0) devices are accessed using addresses in this 64K
address range. Some functions have the same addresses—but not at
the same time. The Apple IIc controls its shared addresses by using
soft switches. A soft switch is a memory location that controls
some aspect of the computer’s operation when it is accessed.

All input and output in the Apple IIc is memory mapped—that is,
specific memory addresses (all in the $CO page) are allocated to
each I/O device. In this chapter, the I/O memory spaces are
described simply as areas of memory. For details of the built-in I/O
features and firmware, refer to the descriptions in Chapters 3
through 9.

A contiguous block of 256 address locations in the 65C02’s address
range is called a page. A 1-byte address counter or 8-bit register can
specify 1 of 256 different locations. Thus, page $00 consists of
memory locations from 0 through 255 (hexadecimal $00 through
$FF); page $01 consists of locations 256 through 511 (hexadecimal
$0100 through $01FF); and so on. In this manual, all page numbers
are given in hexadecimal format.

2

% Note: The first two digits of a four-digit hexadecimal address are
the page number. There are 256 pages of 256 bytes each in the
address space. This kind of page is different from the display
areas in the Apple IIc, which are sometimes referred to as

Page 1 and Page 2. In this manual, dollar signs ($) in addresses
signify that the addresses are in hexadecimal notation.

Memory map and memory switching

Figure 2-2 is 2 map of the Apple IIc’s memory address space and
what the major blocks of addresses are used for. As you can see in
the figure, addresses $C000 through $COFF contain hardware only,
and addresses $C100 through $CFFF contain ROM only. At all
other addresses there are two to five blocks of RAM or ROM
locations. At any given time, only one block of RAM or ROM
occupies each set of addresses. As described later in this chapter,
soft switches in the hardware page control that blocks the processor
is currently using.

20 Chapter 2: Memory Organization and Control

$FFFF _

$D000 _

$C100

Hardware

Bank-Switched Memory
A

$C000

$0200
$0000 ~

Figure 2-2

o N —

—

Hardware
Page

Pages $0
and $01

Apple llc memory map

48K RAM
—A

i

a

ROM Main RAM Auxiliary RAM
A A \

Monitor
Applesoft

BASIC
Interpreter

Bank 1 Bank 2 Bank 1 Bank 2
1/0 Firmware
Memory map and memory switching 21

22

Main RAM addresses ($0000-$BFFF
and $D000-$FFFF)

The area labeled Main RAM in Figure 2-2 is so called because some
or all of it is present in all models of the Apple II series of
computers. The Apple Ilc has 64K bytes of main RAM.

Auxiliary RAM addresses ($0000-$BFFF
and $D000-SFFFF)

The Apple Ilc has 64K of auxiliary RAM built in. Some or all of that
range of auxiliary memory is present in an Apple Ile with one of the
80-column text cards installed (see Appendix F), but there is no
auxiliary RAM in the Apple II or II Plus.

A range of addresses in auxiliary RAM cannot be used
simultaneously with the same range of addresses in main RAM; your
programs must use the soft switches described in this chapter to
select either main or auxiliary memory for any given range of
addresses.

ROM addresses ($C100-$FFFF)

ROM addresses contain the built-in Apple Ilc firmware. Addresses
$C100 through $CFFF belong exclusively to ROM. Addresses $D000
through $FFFF are shared by ROM, main RAM, and auxiliary RAM,;
the selection techniques are described later in this chapter.

The Apple IIc’s built-in ROM pages $C1 through CF (addresses
$C100 through $CFFF) contain I/O firmware. The Apple Ilc I/O
firmware is roughly divided among the built-in I/O devices as
follows:

O Serial port 1 (RS-232 device) firmware entry points are on
page $C1. Much, but not all, of the firmware for the port is in the
$C100 space.

O Serial port 2 (communication device) firmware entry points are
on page $C2. Much, but not all, of the firmware for the port is in
the $C100 space.

Chapter 2: Memory Organization and Control

The operation of the Applesoft
interpreter firmware is
described in the Applesoft
BASIC Programmer’s Reference
Manual.

Chapters 3 through 9 describe
the Apple lic’s input and output
locations. Appendix B lists these
locations in address order, rather
than by function.

Bit numbering in a byte is
explained in Appendix H.

O Video output firmware entry points are on page $C3; the
enhanced video firmware and miscellaneous 1/O support
routines occupy pages $C8 through $CF. This is partly because
there are no slots 8 through F on the Apple IIc and because the
firmware takes up more than one page of firmware memory
space.

O Mouse firmware entry points are on page $C4 (page $C7 in the
memory expansion version).

O

Block device I/O firmware entry points are on page $C6.

KD
L <4

Note: This correspondence of ports and entry points does not
imply that all of each port’s firmware occupies a specific page.
The Apple Ilc I/O port firmware space is allocated in a way that
provides the best possible performance in the available space.

The ROM address range of pages $D0 through $FF contain the
Applesoft BASIC interpreter and the Monitor firmware, allocated as
follows:

O Pages $DO through $F7 (addresses $D000 through $F7FF)
contain the Applesoft interpreter firmware.

O Pages $F8 through $FF (addresses $F800 through $FFFF) contain
the Monitor, described in Chapter 10. You can use some of the
built-in Monitor routines to make input and output procedures in
your assembly-language programs easier to write. These routines
are described in Chapters 3 through 9.

Hardware addresses ($C000-$COFF)

The soft switches that the Apple IIc and your programs use to
control the Apple IIc’s built-in input and output functions are all
found in the $CO memory page (addresses $C000 through $COFF).
In the same range of memory are the switches for selecting blocks of
memory throughout the address space. This chapter describes the
address space (memory) switches.

The hardware functions of the switches in this page fall into five
basic categories:

O Data inpuis. The only data input is location $C000, where the
low-order seven bits (bits 6 through 0) represent the keyboard
key just pressed. (These data are guaranteed valid only when
bit 7 = 1.)

O Flag inputs. Most built-in input locations are single-bit flags in
the high-order (bit 7) position of their respective memory
addresses. Flags have only two values: on (greater than or equal
to 128 or $80) or off (less than 128 or $80).

Memory map and memory switching 23

24

The switch, hand controller (analog) and button inputs, and the
keyboard strobe are examples of flag inputs. The locations for
reading soft-switch states are also of this type.

O Strobe outputs. The clear keyboard strobe (Chapter 4) and
paddle timer strobe (Chapter 9) outputs are controlled by
memory locations. If your program reads the contents of one of
these locations, then the function associated with that location
will be activated.

O Toggle switches. The Apple IIc has only one toggle switch: the

speaker switch. A toggle switch has only one address assigned to
it; each time you access it, it changes to its other state (on or off).

Reading the speaker toggle at location $C030 clicks the speaker
once. However, if you write to the speaker location, the
microprocessor activates the address bus twice during successive
clock cycles, causing the speaker toggle to end up in its original
state before the speaker cone can move. Therefore, you should
read, rather than write, to use this device.

The processor cannot read the on/off status of the speaker
switch.

O Soft switches. Soft switches are two-position switches turned on
by accessing one address and turned off by accessing another
address. Most of these switches have a third address associated
with them for reading the state of the switch.

There are eight soft switches that select different combinations of
bank-switched memory. Four of these eight switches require that
your program read them twice in succession to activate them.

Bank-switched memory

The memory areas described in this section are called bank-
switched memory (Figure 2-3) because so many banks (ranges) of
addresses—one bank of ROM and up to four banks of RAM—occupy
the same group of locations among the upper addresses of
memory. Pages $00 and $01, at the low end of memory, are
included here because the two sets of them—one in main RAM and
one in auxiliary RAM—are controlled by the same switches as the
high-address banks. The stack and zero page are switched this way
so that system software running in the bank-switched memory space
can maintain its own stack and zero page while it manipulates the
48K memory space.

Chapter 2: Memory Organization and Control

7 SFFFF 7]

$F800 _|
$F7FF

Bank-Switched Memory
A

$E000 _|
$DFFF

_ $D000 _|
$CFFF

$C100

—

$BFFF |

$0200
.

Pages $00 {
$0000

and $01

Figure 2-3

ROM

Monitor
Firmware

Applesoft
BASIC
Interpreter

Bank-switched memory map

Main RAM
A

Auxiliary RAM
A

Bank 1

Bank 2

r———7/"7

Bank-switched memory

r)
Bank 1 Bank 2
=71
I I
I I
I I
I |
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
=
25

These memory banks are
controlled by the soft switches
described under “Using Bank
Selector Switches.”

Page allocations

Pages $00 and $01 are used by many of the 65C02 instructions. The
ROM and RAM addresses in bank-switched memory are usually
occupied by system software such as interpreters, compilers, and
operating systems.

Page $00 (one-byte addresses)

Several of the 65C02 microprocessor’s addressing modes—for
example, indirect addressing—require the use of addresses in page
$00, or zero page. However, the Monitor, the interpreters, and the
operating systems all make extensive use of page $00, too. One way
to avoid conflicts is to use only those page-$00 locations not
already used by these other programs. But there is another way.

As you can see from Table B-1 in Appendix B, page $00 is pretty
well used up, except for a few bytes here and there. Rather than
trying to squeeze your data into an unused corner, you may prefer a
safer alternative: turn off interrupts, save the contents of part of
page $00, use that part, then restore the previous contents to page
$00, restore interrupts to their previous state, and then pass control
to another program.

Page $01 (the 65C02 stack)

The 65C02 microprocessor uses page $01 as its stack—a place where
it can store subroutine return addresses, in last-in, first-out
sequence. Programs can also use the stack for temporary storage of
registers (via push and pull instructions). However, programs
should use the stack carefully.

Pages $D0-$FF (ROM and RAM)

The memory address space from locations $D000 through $FFFF is
used for both ROM and RAM. The 12K bytes of ROM in this address
space contain the Monitor and the Applesoft BASIC interpreter.

There are 16K bytes of main RAM in this 12K space, with two banks
occupying the 4K of addresses from $D000 through $DFFF. The
RAM is normally used for storing other languages such as Pascal, or
operating systems such as ProDOS®.

There are also 16K bytes of auxiliary RAM in this 12K space, again
with double occupancy in the address range $D000 through $DFFF.

26 Chapter 2: Memory Organization and Control

Warning

Important

Using bank selector switches

You switch banks of memory in the same way you switch other
functions in the Apple IIc: by using soft switches. These soft switches
do four things:

O select either RAM or ROM in this memory space

O allow or inhibit (write-protect) writing to the RAM when RAM is
selected

O select the first or second 4K-byte bank of RAM in the address
space $D000 through $DFFF

O select either main RAM or auxiliary RAM

Do not use soft switches without careful planning. Careless
switching between RAM and ROM is almost certain to have
catastrophic effects on your program.

Table 2-1 shows the addresses of the soft switches for selecting all
allowed combinations of reading and writing in this memory space,
and the addresses of the locations to read the switch settings.
Figures 2-4 through 2-10 illustrate how to select the combinations
and what the resulting status of each switch is.

To make sure you do not inadvertently remove write protection
from bank-switched RAM, the four write-enable addresses require
that you read them twice in succession (indicated by RR in

Table 2-1).

Because the AItZP switch shares the read keyboard address, you
must write (W in Table 2-1) to its locations to change the switch
setting.

To find out which way a switch is set, read the appropriate location
and then check bit 7 (shown as R7 in Table 2-1). If the bit is a 1, the
answer to the question given in the table is affirmative.

Note that there is no way to check whether write protection is on or
off.

You can’t read one RAM bank and write to the other; if you
select either RAM bank for reading. you get that one for writing
as well. However, you can read ROM and write RAM

(Figures 2-5 and 2-6), which makes It easy to transfer firmware
to bank-switched RAM if you want to use it with a program
there.

Bank-switched memory 27

28

Table 2-1

Bank selector switches

Name Action Hex Dec Function
R $C080 49280 Read RAM; no write;
use $D000 bank 2
RR $C081 49281 Read ROM; write RAM;
use$ D000 bank 2
R $C082 49282 Read ROM; no write;
use $D000 bank 2
RR $C083 49283 Read and write RAM,;
use $D000 bank 2
R $C088 49288 Read RAM; no write;
use $D000 bank 1
RR $C089 49289 Read ROM; write RAM;
use$D000 bank 1
R $CO8A 49290 Read ROM; no write;
use $D000 bank 1
RR $CO8B 49291 Read and write RAM,;
use $D000 bank 1
RdBnk?2 R7 $C011 49169 Read whether $D000
bank 2 (1) or bank 1 (0)
RALCRAM R7 $C012 49170 Read RAM (1) or
ROM (0)
AltZP W $C008 49160 Off: Use main bank,
page $00 and page $01
AltZP w $C009 49161 On: Use auxiliary bank,
page $00 and page $01
RAAItZP R7 $C016 49174 Read whether

Chapter 2: Memory Organization and Control

auxiliary (1) or
main (0) bank

Select memory: Select memory:

W $C008 Turn off AtZP W $C009 Turn on AltZP
R $C082 Read ROM, use bank 2* R $C082 Read ROM, use bank 2*
or R $CO8A Read ROM, use bank 1* or R $CO08A Read ROM, use bank 1*

Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM

ol - —— L ! e

>
P
o
£
[}
=
°
[}
<
[5}
=
3
[
M Bank Bank Bank Bank ‘ Bank Bank Bank
s 1 2 1 2 | : 1 1
[o1]
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit 7 = 0 R7 $C016 Read AltZP; bit 7 = 1
R7 $CO011 *ReadBank2;bit7 = 10r0 R7 $CO11 *Read Bank2; bit7 = 10or 0
R7 $cCo012 Read EnLCRAM; bit 7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0
Legend: % = Read memory D = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
w = Write memory R = Read W = Write
Figure 2-4
Read ROM

Bank-switched memory 29

Select memory:

Select memory:

w $C008 Turn off AltZP W $C009 Turn on AItZP
RR $C089 RR $C089
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
[| [M 1 | 1 | 1 | 1
>~
o
o
£
()
b=
°
5]
£
[3)
=
3
n
~ Bank Bank Bank Bank Bank Bank Bank Bank
s 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00 [
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit7 = 0 R7 $C016 Read AltZP;bit7 =1
R7 $CO11 Read Bank2; bit7 = 0 R7 $CO11 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0
Legend: V//A = Read memory I:] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
&S = Write memory R = Read W = Write

Figure 2-5

Read ROM, write RAM, and use first $SDO bank

30

Chapter 2: Memory Organization and Control

Select memory: Select memory:

W $Co008 Turn off AltZP W $C009 Turn on AltZP
RR $C081 RR $C081
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
I 1 I 1 I I I 1 I 1 [1
-
—
[}
£
[7)
=
°
Q
<
[3}
=
3
(72
¥ Bank Bank Bank Bank Bank Bank Bank Bank
% 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00 [
Read resulting status: Read resulting status:

R7 $C016 Read AltZP;bit7 =0 R7 $C016 Read AltZP; bit 7 = 1

R7 $CO11 Read Bank2; bit 7 = 1 R7 $CO11 Read Bank2; bit 7 = 1

R7 $C012 Read EnLCRAM; bit7 = 0 R7 $C012 Read EnLCRAM; bit 7 = 0

Legend: % = Read memory I:] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
@ = Write memory R = Read W = Write

Figure 2-6
Read ROM, write RAM, and use second $DO bank

Bank-switched memory . 31

Select memory:

Select memory:

W $C008 Turn off AIZP W $C009 Turn on AItZP
R $C088 R $C088
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
[1 [[1 [1 [1 | 1
-
1
o
=
[}
=
°
(]
=
)
=
&
M Bank Bank Bank Bank Bank Bank Bank Bank
g 1 2 1 2 1 2 1 2
oL
Page $01 [
Page $00C
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit7 = 0 R7 $CO016 Read AltZP; bit 7 = 1
R7 $CO11 Read Bank2; bit7 = 0 R7 $CO011 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM; bit7 = 1
Legend: V)] = Read memory D = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
N = Write memory R = Read W = Write
Figure 2-7

Read RAM and use first SDO bank

32

Chapter 2: Memory Organization and Control

Select memory:
W $C008 Turnoff AltZP

Select memory:
W $C009 Turn on AltZP

R $C080 R $C080
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
| I— S R . 1 - I
o
£
(7]
=
he
2]
£
L
=
@
~ Bank Bank Bank
= 1 1 2
mL
Page$01[
Page$00

Read resulting status:

R7 $C016 Read AltZP; bit7 = 0
R7 $CO011 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

Read resulting status:
R7 $C016 Read AlItZP; bit 7 = 1
R7 $CO011 Read Bank2; bit 7 = 1
R7 $C012 Read EnLCRAM; bit 7 = 1

[

Legend: = Read memory [:I
= Write memory R = Read

Inactive memory

R7

= Read, check bit 7 RR = Read twice in succession

= Write

Figure 2-8
Read RAM and use second $D0 bank

Bank-switched memory 33

Select memory: Select memory:

W $C008 Turn off AltZP W $C009 Turn on AItZP
RR $C08B RR $C08B
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
[1 M 1 [1 [1 1 [1
-r
—_
o
£
[}
=
o
5}
<
[3}
=
&
~ Bank Bank Bank Bank Bank Bank Bank Bank
S 1 2 1 2 1 2 1 2
oL
Page $01 E
Page $00 [
Read resulting status: Read resulting status:
R7 $C016 Read AltZP; bit7 = 0 R7 $C016 Read AItZP;bit7 = 1
R7 $CO11 Read Bank2; bit 7 = 0 R7 $CO011 Read Bank2; bit 7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1 R7 $C012 Read EnLCRAM; bit 7 = 1
Legend: % = Read memory ':] = Inactive memory R7 = Read, check bit 7 RR = Read twice in succession
&‘ = Write memory R = Read W = Write
Figure 2-9

Read and write RAM and use first $DO bank

34 Chapter 2: Memory Organization and Control

Select memory:

Select memory:

W $C008 Turn off AltZP W $C009 Turn on AltZP
RR $C083 RR $C083
ROM Main RAM Auxiliary RAM ROM Main RAM Auxiliary RAM
r 1 I 1 1 . A ! —— :
>0 ‘ '
o
(=
)
=
o
9]
ic
L2
=
n
~ Bank Bank Bank Bank Bank
E 1 2 1 2 1
oL
Page $01 [
Page $00 C

Read resulting status:
Read AItZP; bit7 = 0
Read Bank2; bit 7 = 1
Read EnLCRAM; bit 7 = 1

R7 $C016
R7 $CO11
R7 $C012

Read resulting status:

R7 $C016 Read AItZP; bit 7 = 1
R7 $CO11 Read Bank2; bit7 = 0
R7 $C012 Read EnLCRAM; bit 7 = 1

Legend: _ Read memory
&\‘ = Write memory

]

R

Inactive memory

Read

R7 = Read, check bit 7 RR = Read twice in succession

w

= Write

Figure 2-10

Read and write RAM and use second $DO bank

Bank-switched memory

35

Important

A buffer is any storage area set
aside for one program or device
to put information into and
another to take information out
of at a different time or rate.

Refer to Appendix D and to the
appropriate programmer and
reference manuals for operating
system use of page $03.

Global storage refers to an area
reserved for information that
programs use in common.
Vectors—the addresses of
special routines—are examples
of this kind of information. See
“The Reset Routine” about the
global storage and vectors
found on page $03.

48K memory

The 48K memory space (actually, 47.5K) extends from location
$0200 to location $BFFF (Figure 2-11) in both main and auxiliary
RAM. The amount of storage available in this address space
depends on what language or operating system you are using, and
what video display needs your program has.

Page allocations

Most of the Apple IIc’s 48K RAM is available for storing your
programs and data. However, a few RAM pages are reserved for the
use of the Monitor firmware, the Applesoft BASIC interpreter, and
whatever video display you may select.

The system does not prevent your using these pages, but if you
do use them, you must be careful not to disturb the system
data they contain.

Page $02 (the input buffer)

The GetLn input routine uses page $02 as its keyboard-input buffer.
The size of this buffer (256 bytes) sets the maximum size of input
strings read by Applesoft or the Monitor. If you know that you won't
be typing any long input strings (more than, say, 30 characters),
you can store temporary data at the upper end of page $02.

Page $03 (global storage and vectors)

The Monitor and operating systems use parts of page $03 for global
storage and vectors. Table 2-7, later in this chapter, shows the
part of page $03 the built-in firmware uses.

Pages $04-507 (text and low-resolution Page 1)

The most often used display buffer is the text and low-resolution
graphics Page 1 (TLP1 in Figure 2-11), which occupies main
memory pages $04 through $07. It is not usable for program and
data storage if you are using Monitor routines or Applesoft, or with
almost any other program that uses text or low-resolution display.

36 Chapter 2: Memory Organization and Control

Main RAM

Y I H
| |
Bank- I }
Switched | |
Memory | RN
I | |
| |
spooo| 1+ 1 I
$crFF| I '"'“‘I
ROM/HW |
$C000_
($BFFF
$6000_
s (" $5FFF
<
x4
X HRP2
[e0]
< High-
Resolution { $4000_
Pages $3FFF
HRP1
\ $2000 |
$1FFF
$OBFF |
Text and $0800 TLR2
Low-Resolution O7FF | —]
Pages :0400 TLP1 =
\ $0200 |
$01FF
Pages $00 and $01 !]
9 $ $oo00 | L __ B
Figure 2-11

48K memory map

Main Memory
Screen Holes

Auxiliary RAM
[&
] |
| |
| [
[|
| |
b=
| | |
| I |
p———t———
| |
I |

HRP2X
HRP1X
TLP2X
TLPIX =
1]
1 1
e e e e e -

Auxiliary Memory
Screen Holes

48K memory

37

See "Port Screen Hole RAM
Space” in Chapter 3.

Warning

For more on serial port 2, see
Chapter 8.

See Chapter 5.

Text and low-resolution Page 1X (TLP1X) is an identical display
page occupying auxiliary memory pages $04 through $07. This pair
of text and low-resolution graphics pages are used together to
produce 80-column text display.

There are 128 locations in pages $04 through $07 (64 in main RAM,
64 in auxiliary RAM) that are not displayed on the screen. These
locations are called screen holes.

The screen holes are reserved for use by the built-in firmware.

Pages $08-$0B (text and low-resolution Page 2)

The second text and low-resolution graphics display buffer, TLP2,
occupies main memory pages $08 through $0B. Most programs do
not use Page 2 for displays, but TLP2 is there for display use if
required.

Text and low-resolution Page 2X (TLP2X) is an identical display
buffer occupying pages $08 through $0B in auxiliary memory.

Note that Apple IIc firmware does not provide a way to use the
second pair of text and low-resolution graphics pages for 80-
column text display.

Page $08 (communication port buffers)

Serial port 2 uses the first half of auxiliary memory page $08
(addresses $0800 through $087F) as a keyboard input buffer, and the
second half of the page (addresses $0880 through $08FF) as a serial
input buffer. These buffers increase the data transfer rates possible
with the serial communication port. Appendix E explains how to
use these features. If your program does not use this page for
buffers, it can use it as part of TLP2X.

Pages $20-$3F (high-resolution Page 1)

The primary high-resolution graphics display buffer, high-
resolution Page 1 (HRP1), occupies the 32 memory pages from $20
through $3F (locations $2000 through $3FFF). If your program
doesn’t use high-resolution graphics, this area is usable for
programs or data.

High-resolution Page 1X (HRP1X) is an identical display page
occupying auxiliary memory pages $20 through $3F.

The Apple Ilc can display double high-resolution graphics by
interleaving HRP1 and HRP1X.

38 Chapter 2: Memory Organization and Control

For more information about the
display buffers, see Chapter 5.

For details, refer to “Using
Display Memory Switches.”

Pages $40-$5F (high-resolution Page 2)

High-resolution Page 2 occupies main memory pages $40
through $5F (locations $4000 through $5FFF). Most programs use
this area for program or data storage, but it is also available as a
second high-resolution page.

High-resolution Page 2X (HRP2X) occupies auxiliary memory
pages $40 through $5F.

Apple Ilc firmware provides high-resolution graphics routines for
HRP1 and HRP2 only. Refer to the Applesoft BASIC Programmer’s
Reference Manual.

Using 48K memory switches

Two switches select main or auxiliary RAM in the 48K memory
space: RAMRd determines which to use for reading, and RAMW1rt
determines which to use for writing. When these switches are on,
they select auxiliary memory. When they are off, they select main
memory. (This discussion assumes that the 80Store switch, used to
control display memory, is off.)

Each switch has three locations assigned to it (Table 2-2): one to
turn it on, one to turn it off, and a third to read its state. Because the
memory locations for turning the switches on and off are shared
with keyboard reading functions, you must write to these addresses
to use them for memory switching. For each switch, you can read
bit 7 at its third location to check whether the switch is on or off. If
the switch is on, bit 7 is 1; if the switch is off, bit 7 is 0.

Table 2-2
48K memory switches

Name Action Hex Dec Function

RAMRd W $C002 49154 Off: Read main 48K RAM

RAMRd W $C003 49155 On: Read auxiliary 48K RAM

RARAMRd R7 $C013 49171 Read whether main (0) or
aux. (1)

RAMWTrt W $C004 49156 Off: Write to main 48K RAM

RAMWrt W $C005 49157 On: Write to auxiliary 48K
RAM

RARAMWTrt R7 $C014 49172 Read whether main (0) or
aux. (1)

Note: 80Store must be off to switch all memory in this range, including
display memory (Table 2-6).

48K memory 39

Select memory: Select memory:

W $C000 Turn off 80Store W $C000 Turn off 80Store
W $C002 Read from main memory W $C003 Read from auxiliary memory
W $C005 Write to auxiliary memory W $C004 Write to main memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
Il'__——'i | ple ks e I'"——-—"E
st . S N ; ‘ T -———-
b — L — L___n____4l - — L — }_.__1___4;,?
1
| / | X \\ /
< 7 LN 7
o HRP2 NHRP2X\ HRP2 HRP2X
¥ 2N N NN
? % N NN
/HRF;/ HRP 1X HRP1 HRP1X
Z 2] TLP2 :\\\\\ N} TLP2X %\\\\ | TLP2 EZ 74 TLP2X
s SN TLPY SSSSSYN TLPAX PSSSSSSSNIN TLP1 ™ TLP1X
| WpRp———— I —— | S ——— R —
Read resulting status: Read resulting status:
R7 $C018 Read 80Store; bit 7 = 0 R7 $C018 Read 80Store; bit 7 = 0
R7 $C013 Read RAMRd; bit 7 = 0 R7 $C013 Read RAMRd; bit 7 = 1
R7 $C014 Read RAMWrt; bit 7 = 1 R7 $C014 Read RAMWIt; bit 7 = 0
Legend: % = Read memory D = Inactive memory R7 = Read, check bit 7

I

Read W = Write

&\\‘ = Write memory R

Figure 2-12
48K RAM selection, split pairs

40 Chapter 2: Memory Organization and Control

Select memory:

Select memory:

W $C000 Turn off 80Store W $C000 Turn off 80Store
W $C002 Read from main memory W $C003 Read from auxiliary memory
W $C004 Write to main memory W $C005 Write to auxiliary memory
Main RAM Auxiliary RAM Main RAM Auxiliary RAM
I 1 r— 1 [1
r————n ;k:-—‘——f—- . r__.—__I
71 T ST
—_— — - —
)
=
< ,,
o HRP2 HRP2X
4
g |
HRP1 HRP1X HRP1
TLP2 | TLPOX | TLP2
L N TLP1 ™ TLP1X N TLP1 ™ TLPIX
O T —— T S —— .
Read resulting status: Read resulting status:
R7 $Co018 Read 80Store; bit7 = 0 R7 $C018 Read 80Store; bit7 = 0
R7 $C013 Read RAMRd; bit7 = 0 R7 $C013 Read RAMRd; bit 7 = 1
R7 $C014 Read RAMWrt; bit 7 = 0 R7 $C014 Read RAMWrt; bit 7 = 1
Legend: % = Read memory I:] = Inactive memory R7 = Read, check bit 7
& = Write memory R = Read W = Write
Figure 2-13

48K RAM selection, one side only

48K memory

41

42

Important

Warning

Transfers between main and auxiliary memory

If you want to write assembly-language programs that use auxiliary
memory but you don’t want to manage the auxiliary memory
yourself, you can use the built-in 48K RAM transfer routines. These
routines (listed in Table 2-3) make it possible to move between
main and auxiliary memory without having to manipulate the soft
switches described earlier in this chapter.

The routines described below make it easier to use auxiliary
memory, but they do not protect you from errors. You still have
to plan your use of auxiliary memory to avoid catastrophic
effects on your program.

Table 2-3

48K RAM transfer routines

Name Action Hex Function

MoveAux JSR $C311 Move data blocks between main

and auxiliary 48K memory.

XFer JMP $C314 Transfer program control between
main and auxiliary 48K memory.

Transferring data

In your assembly-language programs, you can use the built-in
routine named MoveAux to copy blocks of data from main memory
to auxiliary memory or from auxiliary memory to main memory.
Before calling this routine, you must put the data addresses into
byte pairs in page $00 and set or clear the carry bit to select the
direction of the move.

Don’t try to use MoveAux to copy data in bank-switched
memory (page $00, page $01, or pages $DO through $FF).
MoveAux uses page $00 all during the copy.

The pairs of bytes you use for passing addresses to this routine are
called A1, A2, and A4, and they are used for parameter passing by
several of the Apple IIc’s built-in routines. The addresses of these
byte pairs are shown in Table 2-4.

Put the addresses of the first and last bytes of the block of memory
you want to copy into Al and A2. Put the starting address of the
block of memory you want to copy the data to into A4.

Chapter 2: Memory Organization and Control

Table 2-4
Parameters for MoveAux routine

Name Location Parameter passed

Carry 1 = Move from main to auxiliary memory.
0 = Move from auxiliary te*fain memory.
AlL $3C Source starting address, low-order byte.
AlH $3D Source starting address, high-order byte.
A2L $3E Source ending address, low-order byte.
A2H $3F Source ending address, high-order byte.
A4L $42 Destination starting address, low-order byte.
A4H $43 Destination starting address, high-order byte.

XY, A These registers are preserved.

The MoveAux routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memory, set the carry bit (SEC instruction); to copy data from
auxiliary memory to main memory, clear the carry bit

(CLC instruction).

When you make the subroutine call to MoveAux, the subroutine
copies the block of data as specified by the A register and the carry
bit. When it is finished, the accumulator and the X and Y registers
are just as they were when you called it.

Transferring control

You can use the built-in routine named XFer to transfer control to
and from program segments in auxiliary memory. You must set up
three parameters before using XFer: the address of the routine you
are transferring to, the direction of the transfer, and which page $00
and stack you want to use (Table 2-5).

Table 2-5

Parameters for XFer routine

Name Location Parameter passed

Carry 1 = Transfer from main to auxiliary memory.
0 = Transfer from auxiliary to main memory.

Overflow 1 = Use page $00 and stack in auxiliary
memory.

0 = Use page $00 and stack in main memory.
$03ED Program starting address, low-order byte.
$03EE Program starting address, high-order byte.
X, Y, A These registers are preserved.

48K memory 43

44

Warning

Put the transfer address into the two bytes at locations $03ED

and $03EE, with the low-order byte first, as usual. The direction of
the transfer is controlled by the carry bit: set the carry bit to transfer
to a program in auxiliary memory; clear the carry bit to transfer to a
program in main memory.

Use the overflow bit to select which page $00 and stack you want to
use: clear the overflow bit to use the main memory; set the overflow
bit (cause an overflow condition) to use the auxiliary memory.

After you have set up the parameters, pass control to the XFer
routine by a jump instruction, rather than a subroutine call.

It is your responsibility as the programmer to save the current
stack pointer before using XFer and to restore it after regaining
control. Fallure to do so will cause program errors. Refer to
Appendix E for instructions on how to do this.

Using display memory switches

Selection of main or auxiliary RAM for the 48K memory space is
described earlier in this chapter. However, under many
circumstances your program may want to control reading and
writing to display pages separately. The switches discussed in this
section override the effects of RAMRd and RAMWrt for display
pages only.

Three switches are involved in the display page selection process.
Each of them has three locations assigned to it: one to turn it on,
one to turn it off, and a third to read its state (Table 2-6). One of the
switches, 80Store, shares its on and off addresses with a keyboard
reading function. As a result, your program must write to these
locations to turn the switch on and off.

Chapter 2: Memory Organization and Control

Table 2-6

Display memory switches

Name

Action

Hex

Dec

Function

80Store

80Store

Rd80Store

Page2

Page2

RdPage2

HiRes

HiRes

RdHiRes

I0OUDis

IOUDis

A%

w

R7

R7

$C000

$C001

$C018

$C054

$C055

$Co01C

$C056

$C057

$C01D

$CO7E

$CO7F

49152

49153

49176

49236

49237

49180

49238

49239

49181

49278

49279

Off: RAMRd and
RAMWirt determine RAM
locations.

On: Page?2 switches
between TLP1 and
TLP1X, and (if HiRes on)
between HRP1 and
HRP1X.

Read whether 80Store
on (1) or off (0).

Off: Select TLP1 and
HRP1.

On: If 80Store off, switch
to TLP2, and (if HiRes
on) to HRP2. If 80Store
on, switch to TLP1X, and
(if HiRes on) to HRP1X.

Read whether Page?2
on (1) or off (0).

Off: Display text and
low-resolution page.

On: Display high-
resolution pages; make
Page2 switch between
high-resolution pages.

Read whether HiRes
on (1) or off (0).

On: Disable IOU access
for addresses$COS8 to
$COSF; enable access to
DHiRes switch*.

Off: Enable IOU access
for addresses $CO58 to
$COSF,; disable access to
DHiRes switch*.

48K memory 45

46

Table 2-6 (continued)
Display memory switches

Name Action Hex Dec Function
RAIOUDis R7 $CO7E 49278 Read IOUDis switch
-(1=0ofDt.

DHiRes R/W $COSE 49246 On: (If IOUDis on) turn
on double high-
resolution.

DHiRes R/W $COSF 49247 Off: (If IOUDis on) turn
off double high-
resolution.

RdDHiRes R7 $CO7F 49279 Read DHiRes switch

* The firmware normally leaves IOUDis on.
+ Reading or writing any address in the range $§CO70-$COT7F also triggers
the paddle timer and resets VBIInt (see Chapter 9).

(1=o0on)i.

For each switch, you can read bit 7 at its third location to check
whether the switch is on or off. If the switch is on, bit 7 is 1; if the

switch is off, bit 7 is 0.

Here is how these switches work for reading and writing:

O If HiRes is off, then Page2 switches between text and low-
resolution graphics pages (TLP) only. If HiRes is on, then Page2
switches between TLP and high-resolution graphics pages (HRP).

O If 80Store is off, RAMRd and RAMWrt (Table 2-2) determine
whether main or auxiliary RAM locations are used. Page2 selects
pages for display (Chapter 5), but not for reading and writing.

O If 80Store is on, it overrides RAMRd and RAMWTrt with respect to
the display pages selected by HiRes and Page2 (Figures 2-14

and 2-15).

Chapter 2: Memory Organization and Control

High-Resolution
Graphics Pages

Text and
Low-Resolution
Graphics Pages

Select memory:

Read resulting status:
R7 $C018
R7 $C01D
R7 $Co01C

W $Co001 Turn on 80Store
R $C056 Turn off HiRes
R $C054 Turn off Page2
Main RAM Auxiliary RAM
L ¢ e———=
] I 1
S T
b — b — -———L——4
HRP2 HRP2X
L LU
[T HTTTT
HRP1 HRP1X
- TLP2 /TLP2X ”
IO TLP1 |||||rl||||\TLP1X
Ty—— | ea— -4

Read 80Store; bit 7 = 1
Read HiRes; bit7 = 0
Read Page2; bit7 = 0

Select memory:

W $C001 Turn on 80Store
R $CO056 Turn off HiRes
R $C055 Turnon Page2
Main RAM Auxiliary RAM
l'____'|l ‘r""""—"i‘
F—T T
= -
1]
|
HRP2 HRP2X
LU T
[T [T
HRP1 HRP 1X
|- TLP2 - TLP2X
ARRKRRS
tﬂm\ TLP1 ™ TLP1X
| I — P ——

Read resulting status:

R7 $C018
R7 $CO01D
R7 $C01C

Read 80Store; bit 7 = 1
Read HiRes; bit7 = 0
Read Page2; bit 7 = 1

Legend: %

Read memory

Write memory

‘:I = |nactive memory

_ Controlled by RAMRd and
[]]IIII] ~ RAMWTrt (See Figs. 2-12 and 2-13)

R = Read
W = Write
R7 = Read, check bit 7

‘igure 2-14

’age? selections, 80Store on and HiRes off

48K memory

47

Select memory:
W $Co001 Turn on 80Store
R $C057 Turnon HiRes
R $C054 Turn off Page2

High-Resolution
Graphics Pages

Text and
Low-Resolution
Graphics Pages

Main RAM Auxiliary RAM
I 1 N 1
| bt | . pbummkekie |
1 [} 1 I
mas | SRR
——t— ——t—

e e s s e s

Read resulting status:
R7 $C018 Read 80Store; bit 7 = 1
R7 $C01D Read HiRes; bit 7 = 1
R7 $C01C ReadPage2;bit7 =0

e e e e e ol

HRP2 HRP2X
[LLJLL i
HRP 1 HRP1X
| _11P2 - TLP2X
DS TLPT I TLP1X

Select memory:

W $C001 Turn on 80Store
R $C057 Turn on HiRes
R $C055 Turn on Page2
Main RAM Auxiliary RAM
I " I l _,I
F‘———_'} r;—-'—_ _.1.
T T
T F
HRP2 HRP2X
L I
HRP1 BHRP1X
| TLP2 |- TLP2X
TITITITIT \TLP1 INEEENNE |\TLP1X
_____ - . L el |

Read resulting status:

R7 $CO1
R7 $Co01
R7 $CO01

8 Read 80Store; bit 7 = 1

Legend: _

Read memory l__—l
Write memory I]I[m]

I

Inactive memory

Controlled by RAMRd and

RAMWrt (See Figs. 2-12 and 2-13)

D Read HiRes; bit7 = 1
C Read Page2; bit 7 = 1
R = Read
W = Write

R7 = Read, check bit 7

Figure 2-15
Page?2 selections.

48 Chapter 2: Memory Organization and Control

80Store on and HiRes on

Power On
(Cold Start)

A

The reset routine

A procedure called the reset routine (Figure 2-16) puts the Apple Iic
into a known state when it has just been turned on or when you hold
down Control while pressing Reset. The reset routine puts the
Apple Ilc into its normal operating mode and restarts the program
indicated at locations $03F2 and $03F3 (Table 2-7).

When you initiate a reset, hardware in the Apple Ilc sets the
memory-controlling soft switches to normal: main ROM and RAM
are enabled, auxiliary RAM is disabled and the bank-switched
memory space is set up to read from ROM and write to RAM, using
the second bank at $D000.

(&) - (conTROL) - (RESET)

(Forced G

old Start)

(Warm Start)

Write trash in one location

per memory page (including

power-up validity byte)

— Read/write main 48K RAM
— Read ROM, write main bank-
switched RAM, use bank 2

primary character set, normal
format, cursor at bottom left

— Enable access to DHiRes switch

— 1/0 links: keyboard input (KSW),
display output (CSW)

— Ports: startup settings

— Clear keyboard strobe

— Sound the speaker

— Display 40-column text page $01,

Applesoft

Restart program with
variables intact

Reset

Power-up

Figure 2-16

Reset routine flowchart

y

Restart Applesoft
or Integer BASIC
Do what it
says to do

vector points

id?
byte valid? i

4

Clear screen; display
Apple Ilc, load reset
vector and power-up byte;
initiate disk startup
firmware

Load in New Load I/0 hooks
operating system CONTROL) - and rest of
(1/0 hooks operating system;

2

not yet loaded) run program

Display
Check Disk Drive;
turn off disk motor

Run Applesoft;
no operating system

The reset routine 49

Table 2-7
Page $03 vectors

Vector address Vector function

$03F0 (1008) Address of the subroutine that handles BRK
$03F1 (1009) requests (normally $59, .$FA)

$03F2 (1010) Reset vector (see text) $03F3 (1011)
$03F4 (1012) Power-up byte (see text)

$03F5 (1013) Jump instruction to the subroutine that handles

$03F6 (1014) Applesoft and commands (normally
$4C,$58,3FF)

$03F7 (1015)

$03F8 (1016) Jump instruction to the subroutine that handles
$03F9 (1017) user Control-Y commands
$03FA (1018)

$03FB (1019) Jump instruction to the subroutine that handles
$03FC (1020) nonmaskable interrupts (not used on Apple IIc)
$03FD (1021)

$03FE (1022) Interrupt vector (address of the subroutine that
$03FF (1023) handles interrupt requests) (Appendix E)

The reset routine sets the display-controlling soft switches to display
40-column text Page 1 using the primary character set, then sets the
display window equal to the full 40-column display, puts the cursor
at the bottom of the screen, and sets the text display format to
normal.

The reset routine also sets the keyboard and display as the standard
input and output devices (Chapter 3). It masks mouse interrupts and
sets mouse defaults (Table 9-1). Finally, it enables DHiRes switch
access (by turning on IOUDis), clears the keyboard strobe, and
sounds the speaker.

The Apple IIc has three types of reset: power-on reset, also called

cold-start reset, warm-start reset; and forced cold-start reset. The

procedure described above is the same for any type of reset. What
The reset vector validity check happens next depends on the reset vector. The reset routine checks
is described under “The Reset the reset vector to determine whether it is valid or not. If the reset
Vector. . ; .

was caused by turning the power on, the vector will not be valid, and

the reset routine will perform the cold-start procedure. If the vector

is valid, the routine will perform the warm-start procedure.

50 Chapter 2: Memory Organization and Control

Important

The cold-start procedure (power on)

If the reset vector is not valid, either the Apple IIc has just been
turned on or something has caused memory contents to be
changed. The reset routine clears the display and puts the string
Apple© IIc atthe top of the display. It loads the reset vector and
the validity-check byte, then initiates the startup routine that resides
in the disk controller firmware. The bootstrap routine then loads
whatever operating system resides on the disk in the built-in drive.
When the operating system has been loaded, it displays other
messages on the screen. If there is no disk in the disk drive, the drive
motor keeps spinning for a brief time. Then the firmware shuts it off
and displays the message Check Disk Drive at the bottom of the
screen.

If you press Control-Reset again before the startup procedure is
completed, the reset routine continues without using the disk, and
passes control to the Applesoft BASIC interpreter.

The warm-start procedure (Control-Reset)

Whenever you press Control-Reset when the Apple Ilc has already
completed a cold-start reset, the reset vector is still valid and it is
not necessary to reinitialize the entire system. The reset routine
simply uses the vector to transfer control to the program it points
to, which at power-up is the Applesoft interpreter.

If the vector does point to the Applesoft interpreter, your Applesoft
program and variables are still intact. If you are using DOS or
ProDOS, that operating system is the resident program and it
restarts the BASIC interpreter you were using when you pressed
Control-Reset.

A program residing only in bank-switched RAM cannot use the
reset vector to regain control after a reset, because upon reset
the hardware selects the ROM for reading in the bank-switched
memory space.

The reset routine 51

52

Important

UniDisk 3.5

Forced cold start (Open Apple-Control-Reset)

If a program has set the reset vector to point to its own warm-start
address, as described below, pressing Control-Reset causes transfer
of control to that program. If you want to stop such a program
without turning the power off and on, you can force a cold-start
reset by holding down Control and Open Apple, then pressing and
releasing Reset.

When you want to stop a program unconditionally—for
example, to start up the Apple lic with some other
program—you should use the forced cold-start reset, Open
Apple-Control-Reset, instead of turning the power off and on.

You must hold Open Apple down until the bulilt-in drive starts
to spin. If you release Open Apple before the drive starts to
spin, the Apple lic drops into BASIC instead of rebooting.

The forced cold-start reset works as follows. First, it destroys the
program or data in memory by writing two bytes of arbitrary data
into each page of main RAM. The two bytes that get written over in
page $03 are the ones that contain the reset vector. The warm-start
reset routine finds the error, and so performs a normal cold-start
reset.

Note that if you press both Open Apple and Solid Apple during
power-up or Control-Reset, built-in exercise code is executed. This
code is for production and has no end-user value.

The reset vector

The cold-start reset routine stores the starting address of the built-in
Applesoft interpreter, low-order byte first, in the reset vector
address at locations $03F2 and $03F3. It then stores a validity-check
byte, also called the power-up byte, at location $03F4. The validity-
check byte is computed by performing an exclusive-OR of the
second byte of the vector with the constant 165 (hexadecimal $AS).
Each time you reset the Apple Ilc, the reset routine uses this byte to
determine whether the reset vector is still valid.

Chapter 2: Memory Organization and Control

You can change the reset vector so that the reset routine will transfer
control to your program instead of to the Applesoft interpreter. For
this to work, you must also change the validity-check byte to the
exclusive-OR of the high-order byte of your new reset vector with
the constant 165 ($AS). If you fail to do this, then the next time you
reset the Apple Ilc, the reset routine will determine that the reset
vector is invalid and perform a cold-start reset, eventually
transferring control to the disk bootstrap routine or to Applesoft.

There is a subroutine that generates the validity-check byte for the
current reset vector. This subroutine, called SetPWRC, is at
location $FB6F. When your program finishes, it can return the
Apple IIc to normal operation by restoring the original reset vector
and again calling the subroutine to fix up the validity-check byte.

The reset routine 53

Chapter 3

Intfroduction
to Applellc 1/O

55

56

This chapter is an introduction to the built-in I/O capabilities of the
Apple IIc. It outlines

0 standard 1/O links and their functions
0 I/O firmware protocols

O dedicated memory storage locations
o direct I/O

The next six chapters discuss these capabilities in detail.

The standard 1/0 links

You can use some of the routines in the Apple IIc’s firmware for
your own programs. This can save you both program space and the
time and effort of writing all your own I/O routines.

To use the built-in firmware routines, your program must perform a
JSR to the routine’s entry address. The called routine then performs
an indirect jump through an address stored somewhere in RAM and
begins executing. When the routine has finished doing its work, it
returns (with an RTS) to your program at the first instruction
following the JSR used to call the routine. Memory locations used
for transferring control to other subroutines, such as the indirect
jump’s address used by the character I/O routine, are sometimes
called vectors. In this manual, the locations used for transferring
control to the Apple IIc’s /O subroutines are called the /O links.

In an Apple IIc running without an operating system, each 1/0 link
normally contains the address of the standard input or output
subroutine. An operating system will typically place addresses of its
own I/O routines in these link locations instead.

By calling the I/O subroutines that then jump to the routines
pointed to by the link addresses instead of calling the standard
subroutines directly, you ensure that your program will work
properly with other software, such as the operating system or a
device driver. The I/O links contain the addresses of KeyIn and
COut1 if the enhanced video firmware is off (when the display shows
a flashing checkerboard cursor), and of C3KeyIn and C3COutl if
that firmware is on (when the display shows an inverse solid cursor).

The standard I/O links are two pairs of locations in the Apple Ilc
RAM in the range $36 through $39 that are used for controlling
character input and output.

< Note: Not all operating systems use the standard I/O links. For
example, Apple Pascal does not use them.

Chapter 3: Introduction to Apple lic I/O

The Monitor is discussed in

Chapter 10.

Warning

The link at locations $36 and $37 is called CSW (character output
switch). Individually, location $36 is called CSWZ (CSW low) and
location $37 is called CSWH (CSW high). This link holds the
starting address of the subroutine the Apple Ilc is currently using for
single-character output. This address is normally $§FDFQ, the
address of routine COutl.

When you issue either a PR#n from BASIC or an n Control-P from
the Monitor, the Apple IIc changes this link address to the first
address in the ROM space allocated to port n. That address has the
form $Cn00. Subsequent calls for character output are thus
transferred to the firmware starting at that address. When it has
finished, the firmware executes an RTS (return from subroutine)
instruction to return control to the calling program. Sometimes a
PR#n will cause both input and output switches to be changed (as in
the 80-column firmware).

A similar link at locations $38 and $39 is called KSW (keyboard
input switch). Individually, location $38 is called KSWL (KSW low)
and location $39 is called KSWH (KSW high). This link holds the
starting address of the routine currently being used for single-
character input—normally $§FD1B, the starting address of the
standard input routine Keyln.

When you issue an IN#n command from BASIC or an n Control-K
from the Monitor, the Apple Ilc changes the link address in KSW to
$Cn00, the beginning of an I/O firmware subroutine. Subsequent
calls for character input are thus transferred to that firmware. The
firmware puts the input character, with its high bit set, into the
accumulator and executes an RTS (return from subroutine)
instruction to return control to the program that requested input.

When a disk operating system (DOS or ProDOS) is running, one or
both of the standard I/O links hold addresses of the disk operating
system’s input and output routines. The operating system has
internal locations that hold the addresses of the currently active
character input and output routines.

If a program that Is running with DOS or ProDOS changes the
standard link addresses, either directly or via IN# and PR#
commands, the operating system may be disconnected from
the system. To avoid this problem, when programming in BASIC
you should always Issue an empty PRINT statement (to be sure
that what follows begins a new line) before issuing the PRINT
statement containing Control-D and the IN# or PR# command.

The standard 1/O links 57

Refer to the section on input
and output link addresses in the
operating system manuals for
further details.

Getln also provides on-screen
editing features. See “Editing
With GetlLn.”

After changing either CSW or KSW, your assembly-language
programs running under DOS should call the subroutine at
location $03EA. This subroutine transfers the link address to a
location inside the operating system and then restores the
operating system link address in the standard link location.

Standard input features

The Apple Iic’s firmware includes two different subroutines for
reading from the keyboard, RdKey (read key) and GetLn (get line).

RdKey calls the current character input routine (that is, the one
whose address is stored at KSW). This is normally Keyln or
C3Keyln, which accepts one character from the keyboard. GetLn
accepts a sequence of characters terminated with a carriage return.
Thus GetLn allows line-oriented input using the current input
routine.

RdKey subroutine

A program can get a character from the keyboard by making a
subroutine call to RdKey at memory location $FDOC. RdKey passes
control via the input link KSW to the current input subroutine,
which is normally KeylIn.

RdKey displays a cursor at the current cursor position, which is
immediately to the right of whatever character you last sent to the
display (normally by using the COut routine, described below).

Keyln subroutine

Keyln is the standard input subroutine. When your program calls it,
Keyln displays a cursor, waits until someone presses a key, then
inserts the ASCII code of the key just pressed in the accumulator and
returns to the calling program.

If the enhanced video firmware is inactive, Keyln displays a cursor
by alternately storing a checkerboard block in the cursor location,
storing the original character, then storing the checkerboard again.
If the firmware is active, C3KeyIn places a block cursor on the
screen by inverting (swapping black for white) the character at the
cursor position.

58 Chapter 3: Introduction to Apple lic I/O

Keyln also generates a random number. While it is waiting for the
user to press a key, Keyln repeatedly increments the 16-bit number
in memory locations $4E and $4F. This number keeps increasing
from 0 to $FFFF (65535), then starts over again at 0. The value of
this number changes so rapidly that it is very difficult to predict what
it will be after a key is pressed. A program that reads from the
keyboard can use this value as a random number or as a seed for a
pseudo-random number routine.

Getiln subroutine

Programs often need strings of characters as input. While you could
call RdKey repeatedly to get several characters from the keyboard,
there is an easier way to do it. The routine that you want to use in this
case is named GetLn, and it starts at location $FD6A. Using repeated
calls to RdKey, GetLn accepts characters from the standard input
subroutine—usually Keyln—and puts them into the input buffer
located in the memory page from $0200 to $02FF. GetLn also
provides you with some basic on-screen editing and control
features.

The first thing GetLn does when you call it is to display a prompt.
The prompt indicates to the user that the program is waiting for
input. Different programs use different prompt characters, helping
to remind the user which program is requesting the input. Table 3-1
shows the prompt characters used by different programs on the
Apple Ilc.

GetLn uses the character stored at memory location $33 as the
prompt character. In an assembly-language program, you can
change the prompt to any character you wish. In BASIC, changing
the prompt character has no effect because both BASIC interpreters
and the Monitor restore it each time they request input from the
user.

Table 3-1
Prompt characters

Prompt
character Program requesting input

User’s BASIC program (INPUT statement)
Applesoft BASIC (Appendix D)

Integer BASIC (Appendix D)

Firmware Monitor (Chapter 10)

* V = W

% Note: Applesoft uses GetLnl ($FD6F) when a program is
executing. GetLn1 does not print a prompt.

Standard input features 59

60

Important

As the user types each character, GetLn sends the character to the
standard output routine—normally COutl—which displays it at the
current cursor position and then advances the cursor to indicate the
next character position. Control characters echoed by GetLn are
not executed.

GetLn stores the characters in its buffer, starting at memory
location $0200 and using the X register to index the buffer. GetLn
continues to accept and display characters until the user presses
Return (or Control-X to cancel the line). Then it clears the
remainder of the line the cursor is on, stores the carriage-return
code to mark the end of the buffer, places the cursor at the
beginning of the next line, and returns.

The maximum line-length that GetLn can handle is 255 characters.
If the user types more than this, GetLn sends a backslash (\) and a
carriage return to the display, cancels the line it has accepted so far,
and starts over. To warn the user that the line is getting full, Getln
sounds a bell (tone) at every keypress after the 248th.

< Note: The Applesoft interpreter accepts only 239 characters.

Escape codes with Getiln

GetLn has many special functions that you invoke by typing escape
codes on the keyboard. An escape code is sent by pressing Escape,
releasing it, and then pressing some other key, as shown in

Table 3-2.

Be sure to release Escape right away. If you hold it too long.
the auto-repeat mechanism begins, which may cancel the
Escape.

Chapter 3: Infroduction to Apple lic I/O

Table 3-2

Escape codes with Getln

Escape code Function
Escape Clears the window and homes the cursor
(places it in the upper-left corner of
the screen); exits from escape mode
Escape A Moves the cursor right one line; exits
or Escape a from escape mode
Escape B Moves the cursor left one line; exits
or Escape b from escape mode
Escape C Moves the cursor down one line; exits
or Escape c from escape mode
Escape D Moves the cursor up one line; exits from
or Escape d escape mode
Escape E Clears to the end of the line; exits from
or Escape e escape mode
Escape F Clears to the bottom of the window; exits
or Escape f from escape mode
Escape I Moves the cursor up one line; remains in
or Escape i escape mode
or Escape Up Arrow
Escape J Moves the cursor left one space; remains
or Escape j in escape mode*
or Escape Left Arrow
Escape K Moves the cursor right one space;
or Escape k remains in escape mode*
or Escape Right Arrow
Escape M Moves the cursor down one line;
or Escape m remains in escape mode*

or Escape Down Arrow

Escape 4

Switches to 40-column mode; sets links to
C3KeyIn and C3COutl; restores normal
window size (Table 3-5); exits from
escape modet

Standard input features 61

62

Table 3-2 (continued)
Escape codes with GetlLn

Escape code Function

Escape 8 Switches to 80-column mode; sets links
to C3KeyIn and C3COutl; restores
normal window size (Table 3-5); exits
from escape modet

Escape Control-D Disables control characters; only
carriage return, linefeed, bell, and
backspace have an effect when printed

Escape Control-E Reactivates control characters

Escape Control-Q Deactivates the enhanced video
firmware; sets links to Keyln and COutl;
restores normal window size (Table 3-5);
exits from escape modet

* Cursor-control key: see text.
t This code functions only when the enhanced video firmware is active.

In escape mode, you can keep using the arrow keys and the cursor
movement keys I, J, K, and M without pressing Escape again. This
enables you to perform repeated cursor moves by holding down the
appropriate key.

When GetLn is in escape mode, it displays an inverse plus sign as
the cursor. You leave escape mode by typing any key other than a
cursor movement key.

% Note: The escape codes with the arrow keys are the standard
cursor movement keys on the Apple Ilc. The escape codes with
I, J, K, and M are the standard cursor movement keys on the
Apple II and II Plus, and are present on the Apple Ilc for
compatibility.

Escape sequences can be used in the middle of an input line to
change the appearance of the screen. They have no effect on the
input line.

Chapter 3: Introduction to Apple lic I/O

For an introduction to editing
with these features, refer to- the
Applesoft Tutorial.

See “Escape Codes With
Getln.”

Editing with GetlLn

Subroutine GetLn provides the standard on-screen editing features
used by the BASIC interpreters and the Monitor. Any program that
uses GetLn for reading the keyboard has these features.

Cancel line

Any time you are typing a line, pressing Control-X causes GetLn to
cancel the line. GetLn displays a backslash (\) and issues a carriage
return, then displays the prompt and waits for you to type a new
line. GetLn takes the same action when you type more than

255 characters, as described above. '

Backspace

When you press Left Arrow (or Control-H), GetLn moves its buffer
pointer back one space, effectively deleting the last character in its
buffer. It also sends a backspace character to routine COut, which
moves the cursor back one space. If you type another character
now, it replaces the character you backspaced over, both on the
display and in the line buffer.

Each time you press Left Arrow, it moves the cursor left and deletes
another character, until you are back at the beginning of the line. If
you then press Left Arrow one more time, you have effectively
canceled the line, and GetLn issues a carriage return and displays
the prompt. The cursor moves even if the deleted character is an
invisible control character. Thus it is possible for screen alignment
and buffer alignment to be different.

Retype

Right Arrow (or Control-U) has a function that is complementary to
the backspace function. When you press Right Arrow, GetLn picks
up the character under the cursor just as if it had been typed on the
keyboard. You can use this procedure to pick up characters that you
just deleted by backspacing across them. You can use the backspace
and retype functions with the cursor-motion functions to edit data
on the display.

Standard input features 63

64

Warning

Standard output features

The standard output routine is named COut (character output). COut
normally calls COutl or C3COutl, which sends one character to the
display, advances the cursor position, and scrolls the display when

necessary. COutl and C3COut1 restrict their use of the display to an
active area called the text window, described later in this chapter.

COut subroutine

Your program makes a subroutine call to COut at memory location
$FDED with a character in the accumulator. COut then passes
control via the output link CSW to the current output subroutine,
normally COutl or C3COut1, which takes the character in the
accumulator and writes it out. If the accumulator contains an
uppercase or lowercase letter, a number, or a special character,
COutl or C3COutl displays it; if the accumulator contains a control
character, COutl or C3COutl either performs one of the special
functions described below or ignores the character.

Each time you send a character to COut1 or C3COutl, it displays the
character at the current cursor position, replacing whatever was
there, and then advances the cursor position one space to the right.
If the cursor position is already at the right edge of the window,
COut1 or C3COutl moves it to the leftmost position on the next line
down. If this would move the cursor position past the end of the last
line in the window, COutl or C3COut1 scrolls the display up one
line and sets the cursor position at the left end of the new bottom
line.

The cursor position is controlled by the values in memory
locations $24 and $25. These locations are named CH, for cursor
horizontal, and CV, for cursor vertical. COutl and C3COutl do not
display a cursor, but the input routines described above do, and
they use this cursor position. However, changing CV directly does
not change the cursor’s vertical position until the next carriage
return or reaching the end of the current line causes a call to VTab
(for setting the base address within windows). If some other routine
displays a cursor, it will not necessarily put it in the cursor position
used by COutl or C3COutl.

When the video fimware Is set for 80-column display. the value
of CH Is kept at 0 and the true horizontal position is stored

at $057B. When the 80-column video firmware Is active, use
$057B Instead of CH.

Chapter 3: Introduction to Apple lic 1/O

Control characters with COutl

Escape codes are described COutl does not display control characters. Instead, the control
g‘gﬁr" Escape Codes With characters listed in Table 3-3 are used to initiate some action by the

firmware. Other control characters are ignored. Most of the
functions listed here can also be invoked from the keyboard, either
by typing the control character listed or by using the appropriate
escape code. The stop-list function, described separately, can only
be invoked from the keyboard.

Table 3-3

Control characters with COutl

Control ASCIl Applelic

character name name Action taken by COut1

Control-G BEL Bell Produces a 1000-Hz tone for
0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-J LF Line feed Moves cursor position down
to next line in window;
scrolls if needed

Control-M CR Return Moves cursor position to left

end of next line in window;
scrolls if needed

Control characters with C3COut1

When the 80-column firmware is active, COut calls C3COut1 instead
of COutl1 for character output. C3COutl does not display control
characters, but you can use some control characters to control
some of what the routine does. All other control characters are
ignored.

The control characters listed in Table 3-4 are used to initiate some
action by the firmware. Except for the stop-list function (Control-S)
you can send control characters to C3COutl either from a program
or from the Apple IIc's keyboard. The stop-list function can only be
invoked from the keyboard. Most of the functions listed here can
also be performed by using an equivalent escape code.

Standard output features 65

66

Table 3-4

Control characters with C3COutl

Control ASCII Apple lic

character name name Action taken by C3COut1

Control-G BEL Bell Produces a 1000-Hz tone
for 0.1 second

Control-H BS Backspace Moves cursor position one
space to the left; from left
edge of window, moves to
right end of line above

Control-J LF Line feed Moves cursor position
down to next line in
window; scrolls if needed

Control-K VT Clear EOS Clears from cursor position
to the end of the screen*

Control-L FF Home and Moves cursor position to

clear upper-left corner of window
and clears window*

Control-M CR Return Moves cursor position to
left end of next line in
window; scrolls if needed

Control-N SO Normal Sets display format
normal*

Control-O SI Inverse Sets display format
inverse*

Control-Q DC1 40-column Sets display to 40-column*

Control-R DC2 80-column Sets display to 80-column*

Control-S DC3 Stop-list Stops listing characters on
the display until another
key is pressedt

Control-U NAK Quit Turns off enhanced video
firmware*

Control-V SYN Scroll Scrolls the display down
one line, leaving the cursor
in the current position*

Control-W ETB Scroll-up Scrolls the display up one

Chapter 3: Introduction to Apple lic I/O

line, leaving the cursor in
the current position*

Table 3-4 (continued)
Control characters with C3COut1

Control ASCII Apple lic
character name name Action taken by C3COutl
Control-X CAN Disable Disables MouseText

MouseText character display; uses
inverse uppercase

Control-Y EM Home Moves cursor position to
upper-left corner of window
(but doesn’t clean)*

Control-Z SUB Clear line Clears the line the cursor
position is on*
Control-[ESC Enable Maps inverse uppercase
MouseText characters to MouseText
characters
Control-\ FS Fwd. space = Moves cursor position one

space to the right; from
right edge of window,
moves it to left end of line
below*

Control-] GS Clear EOL Clears from the current
cursor position to the end
of the line (that is, to the
right edge of the window)*

Control-_ UsS Up Moves cursor up a line, no
scroll

* Doesn't work from the keyboard.
t Only works from the keyboard.

The stop-list feature

You can stop the Apple Ilc from updating its display Gf it is using
either COutl or C3COutl) by pressing Control-S. Whenever COutl
or C3COutl gets a carriage return from the program, it checks the
keyboard for a Control-S. If a Control-S has been pressed, COutl or
C3COut1 stops and waits for another key to be pressed before
resuming. The character code of the key that is pressed is ignored
unless it is Control-C, which is passed to the program. This feature
lets you exit BASIC programs from stop-list mode.

Standard output features 67

68

Important

Warning

The text window

The active portion of the display is called the text window. After

you start up the computer or perform a reset, the entire display is
the text window. COut1 or C3COutl1 puts characters only into the
window; when it reaches the end of the last line in the window, it

scrolls only the contents of the window.

You can restrict video activity to any rectangular portion of the
display by changing the current text window. Your programs can
thus control the placement of text in the display and protect other
portions of the screen from being written over by new text. To do
this, store the appropriate values into four locations in memory to
set the top, bottom, left margin, and width of the text window. The
following memory locations control the text window:

O The left margin is stored in memory location $20. This number
is normally 0, the number of the leftmost column in the display.
In a 40-column display, the maximum value for this number is 39
(hexadecimal $27); in an 80-column display, the maximum
value is 79 (hexadecimal $4F).

O The width of the text window is stored in memory location $21.
For a 40-column display, this value is normally 40
(hexadecimal $28); for an 80-column display, it is normally 80
(hexadecimal $50).

O The position of the top line of the text window is stored in
memory location $22. This is normally 0, the topmost line in
the display. Its maximum value is 23 (hexadecimal $17).

O The position of the bottom line of the screen plus 1 is stored in
memory location $23. It is normally 24 (hexadecimal $18) for
the bottom line of the display. Its minimum value is 1.

Pascal does not use this method of supporting window widths.

Be careful not to let the sum of the window width and the
leftmost position in the window exceed the width of the display
you are using (40 or 80 columns). If this happens, COut1 or
C3COut1 may put characters into memory locations outside
the display page. possibly destroying programs or data.

Table 3-5 summarizes the memory locations and the possible
values for the text window parameters.

Chapter 3: Introduction to Apple lic I/O

Table 3-5
Text window

memory locations

Normal values Maximum values
Minimum -
Location value 40-col. 80-col. 40-col. 80-col.

Window

parameter Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex
Left edge 32 $20 00 $0 00 $00 00 300 39 $27 79 $4F
Width 33 $21 00 $00 40 $28 80 $50 40 $28 80 $50
Top edge 34 $22 00 $00 00 $00 00 $00 23 $17 23§17
Bottom edge 35 $23 01 $01 24 $18 24 $18 24 $18 24 $18

‘hese display character sets are
lescribed in Chapter 5.

Normal, inverse, and flashing text

The way that the Apple IIc displays characters is affected by two
things: the value that is stored in the inverse flag (zero page
location $32), and whether the enhanced video firmware is off or
on. The inverse flag’s influence is discussed in the next two
subsections.

If the enhanced video firmware is off, the Apple Ilc displays what is
called the primary character set; if the video firmware is on, the
Apple Ilc displays what is called the alternate character set.

The primary character set includes normal (light on dark), inverse
(dark on light), and flashing (alternating normal and inverse)
characters. Lowercase inverse characters are not included in the
primary character set.

The alternate character set includes normal and inverse characters
(including lowercase inverse), and a set of graphic characters called
MouseText. Flashing characters are not included in the alternate
character set.

If you want your program to display a character, it should first load
the character to be displayed in the accumulator, and then call the
character-output subroutine COut. For example, to display the
character corresponding to $C8, you can use something like this:

LDA #5C8
JSR COut

Standard output features 69

For a brief explanation of logical
functions, refer to Appendix H.

Important

MouseText is described more
fully in Chapter 5.

See “MouseText” In Chapter 5.

Primary character set display

The primary character set is displayed by COutl, which operates
only when the enhanced video firmware is off. The primary
character set includes text in normal, inverse, or flashing format,
but not inverse or flashing lowercase text.

If the value of the character sent to COutl1 is greater than or equal
to $A0, that value is logically ANDed with the value of the inverse
flag (at location $32), then displayed. (If you're curious about
which ASCII character is being sent, subtract $80 from the value
being sent to COutl.) You can use the following inverse flag values:

O $FF (decimal 255) produces the normal character format.
O $3F (decimal 63) produces the inverse character format.

O $7F (decimal 127) produces the flashing character format.

To avold unusual character display results, use only the three
values $3F, $7F, and $FF.

COut1 interprets character values from $80 through $9F as control
characters and tries to execute them.

Character values from $00 through $7F are all interpreted as
display characters, not control characters.

Alternate character set display

The alternate character set includes normal and inverse format
characters and the MouseText graphic characters. You should use
C3COutl, the standard output link when the enhanced video
firmware is active, to display the alternate character set. Here are
the rules for using the alternate character set:

O Control characters are not displayed. Characters sent to
C3COutl are interpreted as control characters if they are in the
range $00 through $1F or $80 through $9F.

O Characters in the range $20 through $7F and $A0 through $FF
are displayed.

O If inverse flag (location $32) bit 7 is 1, the character is normal.

o If inverse flag bit 7 is 0, the character is inverse.

O If MouseText is off, characters $40 through $5F are remapped to
the range $00 through $1F and are displayed as uppercase
inverse characters.

O If MouseText is on, character values $40 through $5F are left
unchanged, and the characters are displayed as MouseText.

70 Chapter 3: Introduction to Apple lic I/O

Memory expansion

Important

Port 1/O

The Apple Ilc is 2 member of the Apple II family of computers;
however, unlike the Apple II, II Plus, and Ile, the Apple IIc does not
have peripheral connector slots. In place of these, it has
ports—the equivalent of firmware interface cards installed in slots.

Standard link entry points

To maintain compatibility with existing software and its protocols,
each port’s I/O firmware has the same standard entry

points ($Cn00) as its equivalent slot in another Apple II would
have. Table 3-6 shows these equivalents, as well as listing the
chapter where each port is described.

The section on the standard I/O links describes how and when these
entry addresses are placed in CSW and KSW. For example, issuing
PR#n or IN#n changes the output and input links, respectively, so
that subsequent output or input is handled by the firmware starting
at address $Cn00, and thus goes to or comes from the selected
device.

The 4memory expansion version of the Apple lic places the
mouse at $C700 and the memory expansion card at $C400.

Table 3-6
Port characteristics
Entry.
Port point Port connector Use Chapter
1 $C100 Serial port 1 Printers 7
2 $C200 Serial port 2 Communication 8
3 $C300 Video Enhanced video 5
connectors firmware
4 $C400 Mouse Mouse 9
5 $C500 Intelligent disk
port devices
6 $C600 Disk drives Built-in and 6
external drives
7 $C700 No device Reserved 6

The addresses shown In Table 3-6 are not entry points in the
sense that you can send characters to be printed by sending
them to JSR $Cn00.

Port 1/O 71

Firmware protocol

The Apple Ilc supports a standard firmware protocol that, in
addition to the standard link address, provides a table of device
identification and entry points to standard and optional firmware
subroutines. The protocol is equivalent to the Pascal 1.1 firmware
protocol in use on other Apple II's, and is outlined in Table 3-7.

Table 3-7
Firmware protocol locations

Address Value Description

$Cn05 $38 Pascal firmware card/port identifier.
$Cn07 $18 Pascal firmware card/port identifier.
$Cn0B $01 Generic signature byte of a firmware card/port.

$Cn0OC $ci Device signature byte: i is an identifier (not
necessarily unique).

¢ = device class (not all used on the Apple IIc):

$00 reserved
$01 printer
$02 hand control or other X-Y device
$03 serial or parallel 1/O card/port
$04 modem ‘
$05 sound or speech device
$06 clock
$07 mass-storage device
$08 80-column card/port
$09 network or bus interface
$0A special purpose (none of the above)
$0B-OF reserved
$Cn0OD i $Cnii is the initialization entry address (PInit).
$CnOE rr $Cnrr is the read routine entry address (PRead)

(returns character read in A register).

$CnOF ww $Cnww is the write routine entry address
(PWrite) (enters with character to write in
A register).

$Cnl10 ss $Cnss is the status routine entry address
(PStatus) (enters with request code in A register:
0 to ask “Are you ready to accept output?” or 1 to
ask “Do you have input ready?”).

$Cnl1 $00 If additional address bytes follow; nonzero if not.

72 Chapter 3: Infroduction to Apple lic I/O

For more information, refer to
the hardware page memory
map in Appendix B.

Table 3-8
Port 1/O locations

Port Locations

1 $C090-$CO9F
2 $COAO0-$COAF
6 $COE0-$COEF

-Each table begins with identification bytes ($Cn05 through $Cn0C).

Then, starting with address $Cn0D, each byte in the table
represents the low-order byte of the entry-point address of a
firmware routine. The high-order byte of each address is always
$Cn, where n is the port number. Your program uses these byte
values to construct its own jump table for subroutine calls to the
ports. ’

All port routines require, on entry, that the X register contain $Cn
and that the Y register contain $n0.

All routines, on exit, return an error code in the X register (0 means
no error occurred; 3 means the request was invalid). The carry bit
in the program status register usually contains a reply to a request
code (0 means no; 1 means yes).

All the Apple IIc ports except the disk port conform to this
protocol. The disk port is described in Chapter 6.

Port 1/O space

By a convention used in other Apple II series machines, each port
or slot has exclusive use of 16 memory locations set aside for data
input and output. The addresses of these locations are of the form
$C080 + #n0, where n is the port or slot number. Table 3-8 lists the
port I/0 space used in the Apple Ilc.

Port ROM space

In the Apple II and Ile, one 256-byte page of memory space is
allocated to each slot. This space is used for read-only memory
(ROM or PROM on the interface card) with driver programs that
control the operation of input/output devices, as outlined in

Table 3-7. On the Apple Ilc, this space is dedicated to port
firmware. However, I/O ROM space in the Apple IIc is used as
efficiently as possible, and there is not a strict correspondence
between firmware for port n and the $Cn00 space, except as regards
entry points.

Port 1/O 73

74

Warning

Expansion ROM space

The 2K-byte memory space from $C800 to $CFFF in the

Apple Iic—called expansion ROM space on the Apple II, II Plus,
and Ile—contains the enhanced video firmware and port and
memory transfer subroutines. The Apple Ilc, unlike the II, II Plus,
or Ile, always has this space switched in.

Port screen hole RAM space

There are 128 bytes of memory (64 in main memory, 64 in auxiliary
memory) allocated to the ports, eight bytes per port, as shown in
Table 3-9. These bytes are reserved for use by the system, except as
described in Chapters 4 through 9.

Table 3-9

Port screen hole memory locations

Beite Ports

address 1 2 3 4 5 é 7

$0478 $0479 $047A $047B $047C $047D $047E $047F
$04F8 $04F9 $04FA $04FB $04FC $04FD $04FE $04FF
$0578 $0579 $057A $057B $057C $057D $0S57E $0S7F
$05F8 $0SF9 $0SFA $0SFB $0SFC $0SFD $OSFE $0SFF
$0678 $0679 $067A $067B $067C $067D $067E $067F
$06F8 $06F9 $06FA $06FB $06FC $06FD $06FE $06FF
$0778 $0779 $077A $077B $077C $077D $077E $077F
$07F8 $07F9 $07FA $07FB $07FC $07FD $07FE $07FF

These addresses are unused bytes in the RAM reserved for text and
low-resolution graphics displays, and hence they are sometimes
called screen holes. These particular locations are not displayed on
the screen and their contents are not changed by the built-in output
routines. In other words, they are used by the output routines but
they are not part of the video display.

All the screen holes Iin auxiliary memory, and many of them Iin
main memory, are reserved for special use by Apple lic
firmware—for example, to store initialization information. Do not
use any locations marked reserved in this manual.

The way that port firmware uses these RAM locations and their
addresses is covered in Chapters 4 through 10.

Chapter 3: Infroduction to Apple lic I/O

Appendix E describes interrupt
handling on the Apple lic.

Interrupts

Interrupts are a way to more efficiently use the hardware in a
computer. Interrupt support built into the Apple IIc’s firmware is
described briefly below.

When the IRQ line on the 65C02 microprocessor is activated, the
65C02 transfers program control through the vector in locations
$FFFE through $FFFF of ROM or whichever bank of RAM is switched
in (Chapter 2). If ROM is switched in, this vector is the address of
the Monitor’s interrupt handler, which determines whether the
request is due to an interrupt that should be handled internally. If
so, the Monitor handles it and then returns control to the
interrupted program.

If the interrupt is due to a BRK ($00) instruction, control is
transferred through the BRK vector ($03F0-03F1). Otherwise,
control is transferred through the IRQ vector ($03FE-$03FF).

Interrupts 75

Chapter 4

Keyboard
and Speaker

77

For a description of how the
keyboard strobe works, refer to

Appendix E.

78

Important

This chapter describes how to use two of the Apple IIc’s built-in
devices: the keyboard and the speaker.

Keyboard input

Table 4-1 describes the characteristics of the keyboard that relate to
programming. You won'’t have to write routines to read the
keyboard from all your assembly-language programs since the
Apple Ilc firmware Monitor provides keyboard support through the
three standard input routines described in Chapter 3—RdKey,
Keyln, and GetLn. You can do all your keyboard handling directly
in your programs if you want to, but it’s nice to know that you’re not
forced to.

Reading the keyboard

The keyboard encoder and ROM (see Chapter 11) can generate all
128 ASCII codes, so all the special character codes in the ASCII
character set are available from the keyboard. Your machine-
language programs can call RdKey to get characters from the
keyboard. RdKey reads characters a byte at a time from the
keyboard data location ($C000) shown in Table 4-1.

Here is how your programs should go about reading the keyboard:

1. Test bit 7 of address $C000 to see if a key has been pressed. Bit 7
is the keyboard strobe bit.

2. When bit 7 goes to a 1, you know that the low-order seven bits of
$C000 are a valid character.

3. Clear the keyboard strobe (bit 7) at $C000 by reading or writing
anything to address $C010.

$C010 has another function besides clearing the keyboard strobe:
its high bit is a 1 while a key is pressed (except the Apple keys,
Control, Shift, Caps Lock, and Reset). Bit 7 at this location is
therefore called any-key-down. You could use this to let a program
do something useful other than just waiting for the next key to be
pressed. (People are generally a lot slower than the Apple Iic.)
Check $C010 occasionally to see if something should be done.

If your program needs to read both the keyboard flag and the
strobe, it must read the strobe bit first. Any time you read the
any-key-down bit at $C010, you also clear the keyboard strobe
bit at $C000.

Chapter 4: Keyboard and Speaker

On game input switches, see
Chapter 9.

on Getln, Getln1, and RdKey,
see Chapter 3.

Table 4-1
Keyboard Iinput characteristics

Port number None

Commands Keyboard is always on, in the sense that any
keypress generates a KSTRB.

Initial Reset routine clears the keyboard strobe and sets
characteristics the keyboard as the standard input device (that is,
sets KSW to point to RdKey).

Hardware locations

$C000 Keyboard data and strobe
$C010 Any-key-down flag and clear-strobe switch
$C060 40-colurn switch status on bit 7; 1 = 40-column
display = switch down
$C061 Open Apple status on bit 7; 1 = pressed (also
game input switch 0)
$C062 Solid Apple status on bit 7; 1 = pressed
Monitor firmware
routines
Location Name Description
$FD6A Getln Gets an input line with prompt
$FD67 GetlnZ Gets an input line with preceding carriage
return
$FD6F Getlnl Gets an input line, but with no preceding
prompt

$FD1B KeyIn The keyboard input subroutine
$FD35 RdChar Gets an input character or escape code
$FDOC RdKey The standard character input subroutine

Use of other pages ,
Page 2 The standard character string input buffer (see GetLn
description)

After your program has cleared the keyboard strobe, the strobe
remains low until another key is pressed.

Table 4-2 shows the ASCII codes generated by all the keys on the
Apple Ilc keyboard. Remember, if the strobe bit is set, the
character values that your program sees will be equal to the values
given in Table 4-2 plus $80.

Keyboard input 79

80

Table 4-2

Keys and ASCII codes

Key alone + Control + Shift + Both
Key Code Char Code Char Code Char Code Char
Delete 7F DEL 7F DEL 7F DEL 7F DEL
Left Arrow 08 BS 08 BS 08 BS 08 BS
Tab 09 HT 09 HT 09 HT 09 HT
Down Arrow 0A LF 0OA LF 0A LF OA LF
Up Arrow 0B VT 0B VT 0B VT 0B VT
Return 0D CR 0D CR 0D CR 0D CR
Right Arrow 15 NAK 15 NAK 15 NAK 15 NAK
Escape 1B ESC 1B ESC 1B ESC 1B ESC
Space 20 SP 20 Sp 20 SPp 20 SP
vy 27 ! 27 ! 22 =* 22 "
, < 2C 2C 3C < 3C <
- _ 2D - 1IF US SF _ 1IF US
. > 2E . 2E . 3E > 3E >
/? 2F / 2F / 3F ? 3F ?
0) 30 0 30 0 29) 29)
1! 31 1 31 1 21 ! 21 !
2@ 32 2 00 NUL 40 @ 00 NUL
3# 33 3 33 3 23 # 23 #
4% 34 4 34 4 24§ 24§
5% 35 5 35 5 25 % 25 %
6 A 36 6 1IE RS SE A 1IE RS
7 & 37 7 37 7 26 & 26 &
8* 38 8 38 8 2A ¢ 2A ¢
9(39 9 39 9 28 (28 (
i 3B ; 3B ; 3A 3A
=+ 3D = 3D = 2B+ 2B+
[{ 5B [1B ESC 7B { 1B ESC
\ 5C \ 1C FS 7C | 1C FS
] SD 1] 1D GS 7D} 1D GS
|~ 60 ! 60 ! 7E ~ 7E ~
A 61 a 01 SOH 41 A 01 SOH
B 62 b 02 STX 42 B 02 STX
C 63 c 03 ETX 43 C 03 ETIX
D 64 d 04 EOT 44 D 04 EOT
E 65 e 05 ENQ 45 E 05 ENQ
F 66 f 06 ACK 46 F 06 ACK
G 67 g 07 BEL 47 G 07 BEL
H 68 h 08 BS 48 H 08 BS
I 69 i 09 HT 49 1 09 HT

Chapter 4: Keyboard and Speaker

Keystrokes can also generate
Interrupts. See Appendix E.

The reset routine Is described In
Chapter 2.

For information on how to have
programs interpret keystrokes In
a standard way, refer to the
Apple Il Design Guidelines listed
in the Bibliography.

Table 4-2 (continued)
Keys and ASCII codes

Key alone + Control + Shift + Both
Key Code Char Code Char Code Char Code Char
J 6A j OA LF 4A] OA LF
K 6B k 0B VT 4B K 0B VT
L 6C | 0C FF 4C L 0C FF
M 6D m 0D CR 4D M 0D CR
N 6E n OE SO 4E N OE SO
(@) 6F o OF SI 4F O OF SI
P 70 p 10 DLE 50 P 10 DLE
Q 71 q 11 DC1 51 Q 11 DC1
R 72 r 12 DC2 52 R 12 DC2
S 73 s 13 DC3 53 S 13 DC3
T 74 t 14 DC4 54 T 14 DC4
U 75 u 15 NAK 55 U 15 NAK
\'% 76 v 16 SYN 56 \'% 16 SYN
w 77 w 17 ETB 57 W 17 ETB
X 78 X 18 CAN 58 X 18 CAN
Y 79 vy 19 EM 59 Y 19 EM
Z JA z 1A SUB 5A Z 1A SUB

Note: Codes are in hexadecimal here; refer to Table G-8 for decimal

equivalents.

There are several keys that do not generate ASCII codes themselves,
but alter the characters produced by other keys. These modifier keys

are Control, Shift, and Caps Lock.

Your programs can also use the Open Apple and Solid Apple as
character modifier keys while handling keyboard input, and, if one
or both of them are pressed, branch to a special routine, such as a
help program. Your program can read Open Apple at $C061 and
Solid Apple at $C062.

Another key that doesn’t generate a code is Reset, located at the
upper-left corner of the keyboard, it is connected directly to the

Apple IIc’s processor. Pressing Reset with Control depressed

normally causes the system to stop whatever program it’s running
and restart itself. If you hold Open Apple while pressing Control-

Reset, the Apple IIc performs a forced cold start. The restart

sequence is described in Chapter 2.

Keyboard input

81

Electrical specifications of the
speaker circuit appear in
Chapter 11.

Monitor firmware support for keyboard input

Chapter 3 describes the three standard Monitor input routines
serving the keyboard: GetLn, RdKey, and KeylIn. This section
discusses the three other available Monitor routines.

GetLnZ

GetLnZ (at address $FD67) is an alternate entry point for GetLn that
first sends a carriage return to the standard output, then continues
into GetLn.

GetLnl

GetlLn1 (at address $FDGF) is an alternate entry point for GetLn that
does not issue a prompt before it accepts the input line. However, if
the user cancels the input line with too many backspaces or with
Control-X, then Getlnl issues the prompt stored at location $33
when it gets another line.

RdChar

RdChar (at address $FD35) is a subroutine that gets characters from
the standard input subroutine, and also interprets the escape codes
listed in Chapter 3.

If the enhanced video firmware is active, Right Arrow (Control-U)
reads a character from the screen as if it were typed from the
keyboard. This is a function of the Monitor’s built-in editing
capability described in Chapter 3.

Speaker output

The Apple IIc has a small speaker mounted near the front of the
bottom plate of its case. The speaker is connected to a soft switch
that toggles; that is, the switch has two states, off and on, and it
changes from one to the other each time it is accessed. Table 4-3
describes the speaker output characteristics.

82 Chapter 4: Keyboard and Speaker

Important

Table 4-3
Speaker output characteristics

Port number None.

Commands Some programs sound the speaker in response to
Control-G.

Initial Reset routine sounds the speaker.

characteristics

Hardware location

$C030 Toggle speaker (read only).

Monitor firmware

routines

Location Name Description

$FBDD Belll Sends a beep to the speaker.
$FF3A Bell Sends Control-G to the current output.

Using the speaker

If you switch the speaker once, by reading or writing to $C030, it
emits a click; to make longer sounds, access the speaker repeatedly.
The switch for the speaker uses memory location $C030. You can
make various tones and buzzes with the speaker by using
combinations of timing loops in your program.

You should always use a read operation to toggle the speaker.
If you write to this soft switch, it switches twice In rapid
succession. The resulting pulse is so short that the speaker
doesn’t have time to respond: it doesn’t make a sound.

Speaker output 83

See Chapter 3.

Monitor firmware support for speaker output

The Monitor supports the speaker with one simple routine, Belll. A
related routine, Bell, supports the current output device—the one
that CSW points to.

Belll

Belll (at address $FDBB) makes a beep through the speaker by
generating a 1-kHz tone in the Apple IIc’s speaker for 0.1 second.
This routine scrambles the A and X registers.

Bell

The Monitor routine Bell (at location $FF3A) writes a bell control
character (ASCII Control-G) to the current output device. This
routine leaves the accumulator holding $87.

84 Chapter 4: Keyboard and Speaker

Chapter 5

Video
Display
Output

85

NTSC stands.for National
Television Standards
Committee, a group that
formulates broadcast and
reception guidelines used by the
USA and several other countries.

Important

The Apple IIc’s primary output device is its video display. You can
use any ordinary color or monochrome video monitor with the
Apple Ilc. An ordinary monitor is one that accepts NTSC-
compatible composite video. If you use Apple IIc color graphics
with a black-and-white monitor, the display will appear as black,
white, and two shades of gray.

If you are only using graphics modes and 40-column text, you can
use a television set for your video display. If the TV set has an input
connector for composite video, you can connect it directly to your
Apple Ilc; otherwise, you must attach an RF video modulator
between the Apple IIc and the television set.

The Apple lic can produce an 80-column text display. However,
if you use an ordinary color or black-and-white television set,
80-column text will be too blurry to read. For a clear 80-column
display, you must use a high-resolution video monitor with a
bandwidth of 14 MHz or greater.

Table 5-1 summarizes the video output port’s characteristics and
points to other information in this chapter.

Table 5-1

Video output port characteristics

Port number Output port 3.

Commands See Figure 5-3.

Initial See Figure 5-3.

characteristics Note: If a program is to use the enhanced video

firmware, it should turn it on and then
immediately check the 80/40 switch. If the
switch is in the 40 position, the program
should issue a Control-Q.

Hardware See Table 5-7.
locations

Monitor firmware See Table 5-11.
routines

1/0 firmware See Table 5-12.
entry points

86 Chapter 5: Video Display Output

Video display specifications

Table 5-2 summarizes the video display’s specifications, and
provides a further guide to other information in this chapter.

Table 5-2 ,
Video display specifications

Display modes 40-column text; map: Figure 5-5
80-column text; map: Figure 5-6

Low-resolution color graphics;
map: Figure 5-7
High-resolution color graphics;
map: Figure 5-8

Double high-resolution color
graphics; map: Figure 5-9

Text capacity 24 lines by 80 columns (character
positions)

Character set 96 ASCII characters (uppercase and
lowercase)

Display formats Normal, inverse, flashing,
MouseText (Table 5-3)

Low-resolution 16 colors (Table 5-4): 40 horizontal

graphics by 48 vertical; map: Figure 5-7

High-resolution 6 colors (Table 5-5): 140 horizontal

graphics by 192 vertical (restricted)

Black and white: 280 horizontal

by 192 vertical; map: Figure 5-8
Double high-resolution 16 colors (Table 5-6): 140 horizontal
graphics by 192 vertical (no restrictions)

Black and white: 560 horizontal
by 192 vertical; map: Figure 5-9

The video signal produced by the Apple IIc is NTSC-compatible
. composite color video available at two places on the back panel of
See “Video Output Signals” in the Apple Ilc: theé RCA-type phono jack and the 15-pin D-type
g:;gggg;lhgmg:z on video connector. Use the RCA-type phono jack to connect a video
' monitor, and the DB-15 connector for an external video modulator
or other video expansion hardware.

Video display specifications 87

See “MouseText.”

Text modes

Either of the Apple IIc’s two text modes can display all 96 ASCII
characters: uppercase and lowercase letters, the ten digits,
punctuation marks, and special characters. Each character is
displayed in an area of the screen that is seven dots wide by eight
dots high. The characters are formed by a dot matrix five dots wide
(with a few exceptions, such as underscore), leaving two blank
columns of dots between characters in a row. Except for lowercase
letters with descenders, the characters are only seven dots high,
leaving one blank line of dots between rows of characters.

The normal display has white (or other monochrome color used by
your monitor) dots on a dark background. Characters can also be
displayed as black dots on a white background; this is called
inverse video.

Text character sets

The Apple IIic can display either of two text character sets: the
primary set and an alternate set (Table 5-3). The forms of the
characters in the two sets are actually the same, but the available
display formats are different. The display formats are

0O normal, with white dots on a black screen
O inverse, with black dots on a white screen
O flashing, alternating between normal and inverse

The Apple IIc can display uppercase characters in all three
formats—normal, inverse, and flashing—with the primary
character set. Lowercase letters can only be displayed in normal
format. This makes the primary character set compatible with most
software written for the Apple II and II Plus, which can display text
in flashing format but don’t have lowercase characters.

The alternate character set trades the flashing format for a complete
set of inverse characters. With the alternate character set, the
Apple IIc can display uppercase letters, lowercase letters, numbers,
and special characters in either normal format or inverse format. It
can also display MouseText.

88 Chapter &: Video Display Output

To identify particular characters
and values, refer to Table 4-2,

You can select between character sets with the alternate-text soft
switch, described later in this chapter. Table 5-3 shows the
character codes in decimal and hexadecimal for th