
COBOL
Introduction and Operating System Manual

Customer Satisfaction
If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the documentation or media at no
charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day period
after you purchased the software, Apple will replace the applicable diskettes and documentation
with the revised version at no charge to you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your authorized Apple
dealer. Return any item to be replaced with proof of purchase to Apple or an authorized Apple
dealer.

Limitation on Warranties and Liability
Even though Apple has tested the software described in this manual and reviewed its contents,
neither Apple nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As a result, this software and
manual are sold "as is", and you the purchaser are assuming the entire risk as to their quality and
performance. In no event will Apple or its software suppliers be liable for direct, indirect, incidental,
or consequential damages resulting from any defect in the software or manual, even if they have
been advised of the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

Copyright
This manual and the software (computer programs) described in it are copyrighted by Apple or by
Apple's software suppliers, with all rights reserved. Under the copyright laws, this manual or the
programs may not be copied, in whole or part, without the written consent of Apple, except in the
normal use of the software or to make a backup copy. This exception does not allow copies to be
made for others, whether or not sold, but all of the material purchased (with all backup copies) may
be sold, given or loaned to another person. Under the law, copying includes translating into
another language.

You may use the software on any computer owned by you but extra copies cannot be made for this
purpose. For some products, a multi-use license may be purchased to allow the software to be
used on more than one computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Apple dealer for information on multi-use licenses.)

Product Revisions
Apple cannot guarantee that you will receive notice of a revision to the software described in this
manual, even if you have returned a registration card received with the product. You should
periodically check with your authorized Apple Dealer.

© Micro Focus, Inc . 1978, 1982 © Apple Computer, Inc. 1982
1860 Embarcadero Road 20525 Mariani Avenue
Palo Alto, CA 94303 Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Simultaneously published in the U.S.A and Canada.

Reorder Apple Product #A300021

ii COBOL Introduction and Operating System Manual

Acknowledgements
COBOL is an industry language and is not the property of any company or group of companies , or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the committee , in
connection herewith.

The authors and copyright holders of the copyrighted material used herein :

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the Univac ® I
and II , Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation ; IBM
Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM ; FACT,
DSI27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part , in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

Preface

xii Content of this Manual
xiii Symbols Used in this Manual

1 Overview-Getting Started
with Apple Ill COBOL

1 General Introduction
3 Hardware Requirements
4 Reconfiguring the System
5 COBOL Disk Contents
7 SOS Files
8 Using the Apple Ill Console

1 0 Running the COBOL System

2 Demonstration Programs

13 Phone Book (FORMS2 Demonstration)
14 Initialization
17 The First Work Phase
19 The Second Work Phase
20 Running the PHONE Program

xi

1

13

j! '

iv if · OBOL Introduction and Operating System Manual
m

25 Entering a Program from the Console
28 Another Example (Calculation of PI)
30 File Handling Example

3 The COBOL System
and Main Command Une

39 Running under SOS
39 Type-ahead
40 CONTROL Operations
42 File Names
42 SOS Pathnames
43 COBOL File Name Extensions
45 Run-Time System ? Wildcard
45 Turnkey Systems
46 COBOL Command Line Options
46 Animate
47 Compile
48 Forms2
48 Quit
48 Run
49 Switches
49 Utilities
50 Copy
50 Date
51 Ext-dir
51 List-dir
52 Prefix
52 Remove
52 Type
53 Quit
53 Summary
53 Command Entry
53 Control Operations
54 COBOL Command Line Summary

39

"'I I , ~·

Contet v · / 1

I .

4 Compiler Directives 57

57 Compiler Command Format
60 Description of Compiler Directives
60 ANIM
61 BRIEF
61 COMP
61 COPY LIST
62 CRTWIDTH
62 DATE
62 ECHO
63 ERR LIST
63 FLAG
64 FORM
64 FORM FEED
64 IBM
65 INT
65 LIST
66 PRINT
66 REF
66 RESEQ
67 SPECIAL-NAMES Directives
67 FORM FEED
67 SYSIN
67 SYSOUT
67 TAB
68 Compiler Sign-Off

vi COBOL Introduction and Operating System Manual

5 Application Design
and Development 69

69 Program Editing
70 COBOL Formatting
71 A COBOL Program Template
72 Program Editing with Apple Writer Ill
73 Capitalizing Lower -Case Files
74 Editing with the Apple Ill Pascal Editor
77 Setting Markers
78 Program Structure-Segmentation
79 Segments and Overlays
80 Coding for Segmentation
82 Operational Considerations
83 Program Structure-Inter-Program Communication
85 Memory Usage
86 Coding for Program Calls
87 Dynamic Program Hierarchies
89 Operational Considerations
90 Calls to the Operating System

6 Apple Ill Device Control 95

96 File Status
97 ANSI ACCEPT and DISPLAY

100 Console Control Codes
102 Apple Ill Graphics Control
103 Apple Ill ADIS Features
104 General Screen Control
105 Screen-Record Definition
107 Cursor Control in ACCEPT

Contents vii

7 The FORMS2 Utility 109

110 FORMS2 Outputs
112 FORMS2 Tutorial
112 Running FORMS2
112 Edit Mode and Command Mode
115 Compiling and Running the Checkout Program
116 Modifying Previous FORMS2 Output
118 FORMS2 Commands
118 Initialization
123 General Commands
124 Screen Manipulation
127 Programming Commands
129 Windows
130 Indexed File Program Generation

8 Program Debugging
and the Animator 133

133 ANSI Debugging Mode
134 Animator-General Description
135 Animator Tutorial
138 Animation and ACCEPT
140 Operational Considerations
141 Animator Commands
142 Screen Manipulation Commands
142 Screen
144 Find
145 Locate
145 User Screen
146 Execution Control Commands

viii COBOL Introduction and Operating System Manual

146 Breakpoint
147 Until
147 Execute
149 Level
150 Program Counter
150 Compile
151 Name
152 Display and Modification of Data
152 Display
153 Query
153 Monitor

Appendices

A Summary of Compiler Directives 155

B Compile-Time Error Messages 159

C Run-Time Error Messages 165

167 File Handling Errors

D FORMS2 Command Summary 171

171 Initialization
172 Work Phase Initialization
173 General Commands

Contents ix

E Animator Command Summary 111

F COBOL File Formats 181

181 General
182 Fixed (Literal) File Assignment
184 Run-Time File Assignment
186 Apple /// COBOL Disk File Structures Under SOS
186 SEQUENTIAL
186 LINE SEQUENTIAL
187 RELATIVE
187 INDEX SEQUENTIAL
189 Sort-Merge Files

G Conversion
from Other COBOL Systems 191

191 Apple /// COBOL Limits

H Transferring Files Using ACCESS Ill 195

Figures and Tables 197

Index 199

I

I

I

x COBOL Introduction and Operating System Manual
I

This manual, together with its companion manual, the ·Apple Ill COBOL
Language Reference Manual, contains the information you need to write
and run COBOL programs on the Apple 1//. The material in these two
manuals is presented in a condensed format in the Apple Ill COBOL Quick
Reference Guide.

This manual is not a tutorial for the COBOL language; if you are unfamiliar
with COBOL, you should read a good COBOL textbook. The manual does
contain some discussion of COBOL statements, primarily where the
information is specific to the Apple Ill implementation.

If you are unfamiliar with the Apple Ill computer, we encourage you to
read the Apple Ill Owner's Guide. However, you can start reading this
manual and just refer to the Owner's Guide as you need it.

The parts of the Apple Ill COBOL system covered here include:

The Run-Time System, used to handle files and to control the
compilation, execution, and debugging of COBOL programs.

The COBOL Compiler, used to translate files of COBOL source
code into intermediate code for execution by the Run-Time
System.

The system interface to the console keyboard and display, and to
other peripherals available on the Apple Ill.

xii COBOL Introduction and Operating System Manual

The FORMS2 utility, used to generate COBOL source code for
screen-oriented interaction between a COBOL application program
and its operators or users.

The Animator, a screen-oriented interactive debugger used to
study and debug COBOL programs during execution.

Content of this Manual

Chapter 1 is a basic orientation to the COBOL system and to the Apple Ill
computer; it does not assume any knowledge of COBOL.

Chapter 2 uses the sample programs on the /DEMO disk to examine the
most basic features of the COBOL system; it is a tutorial intended to
familiarize you with the features of the system. The first example illustrates
how a non-programmer can use the system to generate simple but useful
filing programs.

Chapter 3 describes the COBOL system's Command Line options, and
gives general instructions for running programs and setting run-time
switches. It also explains how the operator can interact with a running
program.

Chapter 4 describes Compiler directives to control listings and object
code files, and discusses other operational aspects of the Compiler.

Chapter 5 describes the program design and development process, with
special reference to program editing, the subprogram CALL facility, and
segmentation (overlays).

Chapter 6 describes Apple Ill facilities for interaction with the console and
other devices attached to the computer.

Chapter 7 decribes the FORMS2 utility program, which automates the
most common programming tasks in console interaction.

Chapter 8 describes the Animator, a screen-oriented tool for run-time
debugging of COBOL programs.

Preface xiii

Appendix A is an alphabetical list of Compiler directives available in Apple
Ill COBOL.

Appendix B lists all error messages produced by the Apple Ill COBOL
Compiler.

Appendix C lists all error messages that can be signaled by the COBOL
Run-Time System during program execution.

Appendix D summarizes the use of the FORMS2 utility.

Appendix E summarizes the use of the Animator.

Appendix F describes file naming conventions and formats used by Apple
Ill COBOL under SOS (the Apple Ill Sophisticated Operating System).

Appendix G discusses the implementation limits of the Apple Ill COBOL
system and considerations for transferring existing COBOL programs onto
the Apple Ill system.

Appendix H gives specific information for such transfers using the
ACCESS Ill utility.

Symbols Used in this Manual

Throughout this manual, you will see illustrations of the Apple Ill display as
it appears during use of the COBOL system. There are also numerous
gray boxes, showing just a few lines from the full display.

The tutorials in Chapters Two, Seven, and Eight, as well as a number of
examples elsewhere, expect you to interact with the system by typing

i

I

'

xiv COBOL Introduction and Operating System Manual

commands or responding to prompts. To distinguish what you type from
the text that the system puts on the display, the examples show what you
type in boldface.

At any point in the manual, you may see one of the following symbols:

The helping hand indicates an especially useful or noteworthy piece of
information.

The eye means "watch out. " It warns of a potential hazard.

This chapter presents an overview of the Apple /// COBOL Language
System. It tells you what you need to use the system, and points to other
places in this manual and other Apple Ill manuals where you can find
supplementary information. Even if you are familiar with the Apple 1//, you
should at least skim this chapter before proceeding. Then, you can go
ahead to the tutorial and demonstration programs in Chapter 2 or to the
detailed reference material in later chapters.

General Introduction

COBOL (COmmon Business Oriented Language) is the most widely used
programming language for commercial and administrative data processing
applications. Apple Ill COBOL, ANSI standard and certified by the Federal
Compiler Testing Center at High Intermediate level, is a full-featured
implementation including the most frequently used modules.

Most COBOL programmers currently work in a large computer
("mainframe") environment with a batch-oriented operating system . While
Apple Ill COBOL is compatible with traditional mainframe applications, it
also extends the language to the interactive personal computer
environment, providing COBOL programmers with immediacy not possible
on a mainframe. The FORMS2 source-code generator feature, for
example, lets you begin with a blank screen, create and edit data entry
screens, and complete your programming with a fully-operational program.
Using the Animator Option you can conveniently debug your program at

2 COBOL Introduction and Operating System Manual

the source level, maintaining complete control while you actually watch
execution on your monitor screen.

Most COBOL programs developed on other systems can be run on the
Apple 1//. Appendices G and H include complete information about
transporting COBOL programs to the Apple 1//.

Apple Ill COBOL is based on the ANSI COBOL as specified in "American
National Standard Programming Language COBOL" (ANSI X3.23-1974),
and fully implements the following modules at Levels 1 and 2 :

Nucleus

Table Handling

Sequential Input and Output

Relative Input and Output

Inter-Program Communication

Sort Merge

In addition, the following modules are fully implemented at Level 1:

Segmentation

Library

Debug

Using Apple Ill COBOL, a COBOL source file may be created with any
Apple Ill text editor that will produce ASCII or Pascal TEXT files. A
program may also be entered directly from the keyboard. The COBOL
Compiler generates an intermediate code file (more than one if the
program is segmented) and a listing file that includes any error messages.
The intermediate code is then interpreted by the Run-Time System (RTS) .

The COBOL Run-Time System uses SOS, the Apple/// Sophisticated
Operating System, to handle files and the devices (disk drives, printers,
and the keyboard and display) attached to the computer. SOS provides an
integrated and consistent way for your programs to interact with each
other and with the outside world. It also provides a common framework for
all Apple I// language systems, such as Pascal and Business BASIC as
well as COBOL.

Overview-Getting Started with Apple Ill COBOL 3

The COBOL Run-Time System does not use the same interpreter as the
Apple Ill Pascal Language System. TEXT or ASCII files created by the
Pascal system can be read by the COBOL system, but programs
generated by the Pascal system will not run on the COBOL system. You
will need to load ("boot") the Pascal system to run Pascal programs or
any of the utilities provided with the Pascal system. In particular, you will
need to boot another system to edit programs.

The Apple Ill COBOL System includes utilities for copying files, listing
directories, typing files to the console, deleting files, etc. For more
complex tasks (for example, formatting disks or reconfiguring the system)
you will need to use the SOS Utilities, described in Chapter 4 of the Apple
Ill Owner's Guide.

Hardware Requirements

COBOL programs can be executed on any Apple Ill computer; however,
for development work and for large programs, it is useful to have 256K of
random access memory and one or more external disk drives. The Apple
Ill has one built-in disk drive and it allows multiple external drives of several
types: floppy disk drives such as the Disk II or Disk Ill and larger (hard
disk) mass storage devices such as the ProFile. The SOS operating
system can be configured to drive other devices as well. See Chapter 4
of the Apple Ill Owner's Guide for information about the System
Configuration Program utility; for details on individual devices see the
Apple Ill Standard Device Drivers Manual or the manuals that come with
the device, for example, the Apple Ill ProFile Owner's Manual.

!

4 COBOL Introduction and Operating System Manual

Reconfiguring the System

The COBOL Language System is initially configured to drive the console
(keyboard input and display output), the built-in disk drive, and two
external floppy disk drives. The configuration doesn't include a driver for a
printer or for a large disk, such as a ProFile. If you have such devices,
you will want to reconfigure your SOS.DRIVER files to include them.
(Information about reconfiguring your system is included in Chapter 4 of
the Owner's Guide and in the Standard Device Drivers Manual.)

Note to ProFile Users:
If you have a ProFile or other large disk, you should move all the COBOL
system files onto it from the release disks; this will speed up operations
and save your having to shift floppies in and out of the smaller drives.
Files that should be transferred are those in Table 1 -1 that are indented
under the COBOL/ sub-directories. To copy these files, first make a sub­
directory COBOL/ on the large disk; this sub-directory should be at the
first level on the disk. Then copy the COBOL/ files from the system disks
to this new sub-directory on the larger disk. Note that the files ADIS,
ISAM and UTIL that appear on several of the disks are identical; they are
repeated as a convenience to simplify development using smaller disks.
You only need one copy of them on a large disk. For instructions on
making a sub-directory and copying files, see the Apple Ill Owner's
Guide, Chapter 5 : "Operations on Files" .

Although the SOS.DRIVER file provided is configured for two external
disk drives, the examples in this manual will assume only one external
drive. In general, if you have the two external drives, you will not have to
follow the directions to swap diskettes. The Apple Ill COBOL system is
designed to find the system files it needs in any drive that has been
configured.

Overview-Getting Started with Apple Ill COBOL 5

COBOL Disk Contents

The COBOL system comes with four write-protected disks,
/COBOLBOOT, /COMPILER, /ANIMATOR, and /FORMS2. It also includes
a disk named /DEMO with several sample programs. Before you start
Apple ///COBOL for the first time, make a copy of each of these disks. In
addition , you should always keep two copies of important files: one for
everyday use and one for backup. If something happens to the working
copy, you can go to the backup, make a new working copy and proceed.
For instructions on copying a disk, see the Apple Ill Owner's Guide,
Chapter 4 . Table 1-1 is a list of the files on these disks. The indentation
below COBOU indicates that this name stands for a sub-directory
containing the files indented below it.

~ The Compiler, Animator, and FORMS2 are segmented programs; that is,
~ they all have a "root" segment that is loaded when you invoke them by

giving a command to the Run-Time System, plus "overlay" segments that
are loaded at various times during their execution. The Run-Time System
looks for these overlays in the same directory in which it found the root;
do not move these disks during a run of the Compiler, the Animator, or
FORMS2.

The SOS files (SOS.KERNEL, SOS.DRIVER, and SOS.INTERP) don't
need to be on-line after the system has been loaded and the COBOL
Command Line is displayed.

The /FORMS2 disk contains numerous files. Several of these are
"screens" displayed during a run of FORMS2 (the ones ending " .101 ", ... ,
".W02"); these are all ASCII files and can be listed on the console or a
printer. Several others (".CH1 ", ".CH2", " .GN1 " ,and ".GN2") are
COBOL source code; they are used with FORMS2 to create complete
COBOL programs to check FORMS2 screen output or for maintaining
simple indexed files. These files are also ASCII files ; COBOL programmers
may want to list these and study them as examples of Apple Ill COBOL.
They are also duplicated on the /DEMO disk, for convenience in
demonstrations in this manual.

6 COBOL Introduction and Operating System Manual

COBOLBOOT COMPILER ANIMATOR DEMO FORMS2

SOS.KERNEL COBOU COBOU PI.CBL COBOU

SOS.DRIVER COBOL ANIM STOCK1 .CBL FORMS2

SOS.INTERP COBOL. DOD ANIM.DOO STOCK2.CBL FORMS2.1SR

COBOU COBOL. ERR ANIM.ISR DEMO.CBL FORMS2.151

A DIS COBOL.ISR ANIM.I01 COBOU FORMS2.152

I SAM COBOL.I01 ANIM.I02 FORMS2.CH1 FORMS2.153

UTIL COBOL.I02 ANIM.I03 FORMS2.CH2 FORMS2.CH1

COBOL.I03 ANIM.I08 FORMS2.GN1 FORMS2.CH2

AD IS ANIM.I09 FORMS2.GN2 FORMS2.GN1

I SAM ADIS FORMS2.GN2

UTIL IS AM FORMS2.101

FORMS2.102

FORMS2.H01

FORMS2.H02

FORMS2.H03

FORMS2.H04

FORMS2.W01

FORMS2.W02

A DIS

I SAM

Note: the files ADIS, ISAM and UTIL are included on several disks. These files control certain
aspects of the COBOL Run-Time System (COBOL ACCEPT/DISPLAY extensions, Indexed
Sequential File handling, and the COBOL System Utilities). These files must be on-line (i.e. ,
accessible in some disk drive) when the features they control are used.

Table 1·1. COBOL System Disk Contents

Overview-Getting Started with Apple Ill COBOL 7

SOS Files

Table 1-1 shows that files on the Apple Ill have a hierarchical structure;
each disk has a name (its "volume name") and contains a set of files. The
volume name in fact refers to a "directory" on the disk that tells the
system what files the disk contains and where to find them. Some of
these files in turn can be sub-directories to other files, and so on to
arbitrary levels.

In addition, SOS thinks of each device on the system as a file and refers
to it by the name of its driver (.CONSOLE, .PRINTER, .PROFILE, etc.)
You can call a disk by its volume name (for example, /COBOLBOOT) or by
the name of the drive it is in at any given time (for example, .01 for the
built-in drive).

In general, SOS files have names composed of letters, digits and the
special characters "/" (slash) and " ." (period). As an illustration of the file
hierarchy, Figure 1 -1 shows the structure SOS sees when the
/COBOLBOOT disk is in the built-in drive.

/i~
.CONSOLE .01 .02

(/COBOLBOOT}

//~
SOS.KERNEL SOS.ORIVER COBOL SOS.INTERP

II\
AOIS /SAM UTIL

Figure 1·1. SOS File Hierarchy

8 COBOL Introduction and Operating System Manual

Using the Apple Ill Console

Data and program entry on the Apple Ill is based on habits you probably
acquired from typing, keypunching, or terminal use on other systems. The
main body of the keyboard is similar to a typewriter keyboard, with a few
extra keys. To the right of the main keyboard is a "numeric keypad" like
that of a calculator. Four keys with arrows pointing up, down, left and right
form the lower right corner of the main keyboard. These are "cursor
control keys": they control the position on the display of the solid
rectangle that marks the next expected input. The ALPHA LOCK key is in
the lower left corner. This isn't quite the same thing as a typewriter's shift
lock-it does shift the alphabetic keys to upper-case, but numbers and
punctuation keys still work normally. With the ALPHA LOCK key down,
you must still shift to get an "!" instead of a "1 ", for example.

To enhance readability, Apple Ill COBOL recognizes lower case letters;
however, standard ANSI COBOL does not. If you want to write standard
programs (for example, for portability reasons) on the Apple 1//, you may
want to push the ALPHA LOCK key down whenever you write a COBOL
program.

SOS is responsible for handling the characters you type. It does make
some allowances for human fallibility. That is, you can correct your typing
mistakes before a program starts doing dreadful things with them. Most
programs ask the console for a line of input at a time; until you press the
RETURN key you can usually backspace and correct your errors. To
backspace over characters you've typed, press the LEFT-ARROW key
(the key to the right of the space bar) once for each character you want
to backspace over, or just hold the LEFT-ARROW key down-it will repeat
automatically. You will notice one of the following behaviors:

• Each character backed over will disappear from the screen. In
effect, you have "untyped" it; once you have untyped back to the
mistake, you can resume typing from that point. This is the normal
console input mode, observable, for example, when you give
commands to the COBOL Compiler.

• Characters backed over remain visible on the screen. In this case,
you only need to retype the mistaken characters. When you press
RETURN, the whole line is sent, just as you see it, to the
program. Of course, if you typed an extra character or omitted a

Overview-Getting Started with Apple Ill COBOL 9

character, you may need to retype more than one character to
correct the line. This mode is typical of the COBOL Utilities
options; you can observe it by experimenting with listing
directories or typing files. See the examples in Chapter Two or
refer to Chapter Three for details.

If you completely change your mind about what you want to type, or if
there are numerous mistakes throughout a line, you can conveniently
erase the whole line and start over at any time before you press RETURN.
To cancel a line of input, type CONTROL-X by holding down the
CONTROL key on the left of the keyboard and pressing the X key.

SOS never forces you to use upper-case letters. When choosing
commands from the COBOL command line, answering prompts at the
Utilities level , or giving directives to the Compiler, you may use either
lower-case or upper-case letters.

For more information on SOS files, specifically on console input, see
Chapter 3 in this manual, or refer to the Apple Ill Owner's Guide.

10 COBOL Introduction and Operating System Manual

Running the COBOL System

This section explains how to start up Apple Ill COBOL. Note that the
actual keystrokes you will need to type are shown in boldface type.

To start ("boot up") Apple Ill COBOL, insert a copy of the disk labelled
/COBOLBOOT into the built-in drive and turn on your monitor and the
Apple 1//; or if the power is already on press the CONTROL key and the
RESET button (inset at the top of the keyboard, near the built-in drive) .
The built-in drive's red IN USE light will come on, and the drive will whir for
a bit, and give a buzz for any external drive that is empty or has its door
open. Then the screen illustrated in Figure 1 -2 is displayed.

Figure 1-2. System Startup Screen

The top line of this display lists the options available to you ; this manual
refers to it as the "COBOL Command Line". We will study the commands
in detail in Chapter Three ; for now a simple example will suffice to show
how the options are invoked. The cursor is placed at the end of the
command line, waiting for you to type one of the initial letters shown :
A, C, F, Q, R, S, or U.

Overview-Getting Started with Apple Ill COBOL 11

Type U (for Utilities) . The start-up screen disappears and the top line is
replaced by the Utilities menu:

This line lists the options available at the Utilities level; to start, type L (for
List directory). Underneath the menu for the Utilities, you will now see:

with the cursor positioned over the " /". Just press RETURN; you should
see information about the files on the /COBOLBOOT disk. Figure 1 -3
shows what the display should look like. Note that only the first level of
the file hierarchy on the disk is shown; none of the files contained in the
subdirectory COBOL appear.

Figure 1-3. /COBOLBOOT Directory Listing (First Level)

To conclude our initial demonstration, type a (for Quit) to exit the Utilities;
the COBOL Command Line will reappear. Type a once more, and the
system will halt and wait for you to reinitialize it. At this stage you can try
out the demonstrations in Chapter Two, or go ahead to the detailed
discussions in the rest of the manual.

12 COBOL Introduction and Operating System Manual

Demonstration Programs 13

Demonstration Programs

This chapter is a tutorial that uses many of the commands from the
COBOL Command Line to help you become familiar with the operation of
the system. Most of the examples assume some knowledge of COBOL.
The first example does not; its purpose is to illustrate how you can use
the system even without mastering COBOL. Subsequent examples
explore the use of the COBOL Compiler and the Run-Time System
utilities.

This demonstration assumes you are using one external disk drive.

Phone Book (FORMS2 Demonstration)

This example demonstrates how the many pieces of the Apple Ill COBOL
System work together. The example is given as a step-by-step "recipe",
with explanations postponed until subsequent examples. Because we are
anticipating information that is discussed later, some of the steps may
seem rather mysterious. Please follow the steps exactly! If things don't
seem to be going as you expect, don't worry; you can start over by
resetting the Apple Ill-simply press the CONTROL key while holding the
RESET button.

This example uses the FORMS2 utility to create an on-line phone book
containing names, address, and telephone numbers. Similar files can be
created for other purposes; in fact you will see that an operator with no
knowledge of COBOL can follow this "recipe" to set up and maintain files,

14 COBOL Introduction and Operating System Manual

possibly translating existing paper files into computer format. Note that
only simple files can be handled this way; more complex files and
integration of files into a full application system will , of course , require
serious programming effort.

Initialization
1. Set Up. Locate your backup copies of the /DEMO,

/COBOLBOOT, /FORMS2 and /COMPILER disks. Place the
/COBOLBOOT disk into the built-in drive, and turn on the power
or simultaneously press the CONTROL key and the RESET button
if the power is already on.

After you see the COBOL start-up screen, type U to get the
Utilities menu and then P to choose the Prefix option . You will see
the following message:

Current prefix is / COBOLBOOT
New Prefix :

Type /DEMO and RETURN; then type Q to Quit the Utilities. The
Prefix now tells SOS to look for files on the /DEMO disk unless
you specifically tell it otherwise. Now remove /COBOLBOOT from
the built-in drive and insert the /DEMO disk. Place the /FORMS2
disk in your external drive.

2 . Running FORMS2. Type F; this loads and runs the FORMS2
utility program . Note that FORMS2 is a program built on top of the
Apple Ill COBOL System; you can create similar tools for your
own programs. FORMS2 then displays the screen (101), shown in
Figure 2-1 .

Demonstration Programs 15

Figure 2-1. FORMS2 Initialization ; First Screen

3 . Initialization: Step 1. The screen shows an area in which you can
type up to six characters. Type PHONE and then press RETURN;
this name will be used as the basename for the files generated
during this run . If you mistype, you can back up and retype the
line any time before you press RETURN . If you have already
pressed RETURN, don't worry-whatever you typed is probably
an acceptable name anyway. Just use this name instead of
PHONE for the rest of the example .

'

I

16 COBOL Introduction and Operating System Manual

4 . Initialization: Step 2 . The next screen (102 , shown in Figure 2-2)
is a "menu" of options, A through G; type G (for Generate)
followed by RETURN to tell FORMS2 you want to generate a
program that creates and retrieves records. If you are redoing the
demonstration and you reached this point earlier, there may be
some old files around with names like PHONE.DDS and
PHONE.GEN; if so, you will be asked at this stage if you want to
overwrite them. Answer "yes" by typing Y and then pressing
RETURN after each such question. (The same situation may arise
at later stages of this demonstration, too; in each case, type Y
and then press RETURN to overwrite the previous file and
continue the program.)

FORMS2 V1.3 INITIALIZATION PHASE

FILES TO BE CREATED:

FILE COMBINATIONS [l l

DEVICE/DIRECTORY PREFIX (0·40 Chars) [

Press RETURN when complete

(A = DOS)
(B = DOS & CHK)
(C = ODS & CHK & Snn)
(D = ODS & Snn)
(E = Snn)
(F = No files output)
(G = DDS & Snn & GEN)

SCREEN 102

Figure 2-2. FORMS2 Initialization; Second Screen

Demonstration Programs 17

The First Work Phase
5. Initializing the Work Screen. Now a "work screen" (W01 ; see

Figure 2-3) appears. This screen, like the last one, is a "menu"
from which you can select any one of the options ; in this case,
however, just press RETURN to select the default option (A), the
option the system automatically chooses unless you tell it to do
otherwise. Then you can begin creating the screen image you
want to appear on the display when the PHONE program is
running .

FORMS2 V1.3

WORK SCREEN

SCREEN TYPE

Fixed Text allows:

Variable

Press RETURN when complete

WORK PHASE

l l l {A ~ Fixed text on clear screen)
(B ~ Fixed text on last screen)
(C = Variable data redefines last screen)
(D ~ Variable data without redefinition)
(' = Complete this FORMS run)

All characters

Y to define alphanumeric fields
8 to define numeric fields

chars to define numeric edit fields

Figure 2-3. FORMS2 Initialization; Third Screen

18 COBOL Introduction and Operating System Manual

6 . Labelling the Form. Now the display clears and the cursor appears
in the upper lett corner. Note that the bottom line of the screen
has a line of hyphens (" -"); this area is used by the program tor
messages, so you shouldn't use it tor the form .

To create the form, you'll start on the first or second line of the
screen and type a "form" suitable tor an address book. Your
completed form will look like this:

Figure 2-4. "Address Book" Form

To create this screen, simply type the information in Figure 2-4
when we tell you to. But first, here are a few things to keep in
mind:

• It isn't critical how many spaces you leave after each of the
entries.

• DON'T press RETURN at the end of a line. FORMS2 uses the
DOWN-ARROW key (the lower right corner of the main keyboard)
tor moving between lines, saving the RETURN key tor a different
function . Press the DOWN-ARROW key twice to leave a blank line
between the name line and the address and before the telephone
number line. (The other three ARROW keys can be used to move
around the screen, too.) It you accidentally press RETURN, at the
end of a line, press RETURN again to get back to where you
were.

• It you don't like the way a line looks, you can move back and type
over it until you are satisfied. You will learn about more
complicated editing commands in Chapter 7, which discusses
FORMS2 in detail.

Now, type the information shown in Figure 2-4.

Demonstration Programs 19

7. Releasing the Screen. When you have finished typing the form,
press RETURN, then the space bar, and then RETURN again.
Note that although after the first RETURN the cursor will cover
any text in the upper lefthand corner (if you started typing on the
first line), or write something there (if you started typing on the
second line), no harm has been done. This completes the first
phase of work. You will see on the display the COBOL source
code created for your screen, a redisplay of the screen, and a
message telling you that FORMS2 has created a file named
PHONE.SOO. When it is done, FORMS2 will ask you to press
RETURN to go on to the next step.

The Second Work Phase
8. Reinitializing. The work screen W01 (Figure 2-3) should now be

displayed, with a new option selected: option C. Don't change the
option, just press RETURN.

FORMS2 now re-displays the fixed text screen you drew in the
first phase. The first phase created the headings that appear on
the screen when the program is used; the second phase defines
how the user fills in the form with data.

Variable data is defined using the standard COBOL data symbols
X and 9 to stand respectively for alphanumeric data (that is, any
key on the keyboard that produces a visible character on the
screen) and numeric data (digits 0 to 9).

What you must do is go through the form once more and mark
each position that the operator should be allowed to type into.
Type X's over the name and address lines and 9's over the phone
number and ZIP code areas. (Remember that the keys may be
held down to create a whole row of characters very quickly.)
When you are done, you should have a screen that looks like this:

20 COBOL Introduction and Operating System Manual

9 . Separating Key and Data Areas. FORMS2 needs to know which
part of this screen will be the " key" that will be used to keep the
records in order, that is, what index to use for the file you are
creating.

The key must be one or more fields beginning with the first field
on the screen (in this case, last name) . In this example , we 'll
designate the first and last name as the key . To do this, place the
cursor on the first X in the address field and press RETURN , then
*, then RETURN again. This three-key sequence tells FORMS2
where you want to start the (non-key) data area.

10. Completing the FORMS2 Run. To have this screen accepted , the
command is the same as in step 7: RETURN , space bar and
RETURN . Next you see a warning

WORK VALIDATION in
DO NOT press RETURN

while FORMS2 checks that it understands your X's and 9 's. Then
it shows you the COBOL statements it has created and tells you
that it has written the three files PHONE.S01 , PHONE. DDS and
PHONE.GEN to the built-in drive. (Press RETURN as the system
asks you to, as this information is transmitted .) You are now
through with the FORMS2 run , and the original COBOL Command
Line reappears on the top of the screen.

Running the PHONE Program

11 . Compiling the FORMS2 Output. Remove the /FORMS2 disk from
the external drive and replace it with /COMPILER. To compile the
program, type C. When the Compiler has been loaded, the cursor
will reappear on the screen ; type

PHONE.GEN LIST COPYLIST

(and press RETURN). Actually , you only need the first part of this
line. Typing PHONE.GEN tells the Compiler what file to compile ;
LIST directs the Compiler to list the COBOL source code on the
display as it is being compiled . Notice COPY statements in this
code for the standard pieces FORMS2.GN1 and FORMS2.GN2
as well as for PHONE.DDS, which has code specific to this

Demonstration Programs 21

particular example. Listing the code on the screen just gives you
something to watch for a few minutes while the Compiler works.
When the compilation finishes, a message appears at the end of
the listing:

Some parts of this message may be different, if your form isn't the
same as the example. In any case, there should be no errors, and
you can go on to the next stage.

12. Loading the PHONE program. The cursor should now be on the
top line of the screen; type R to start the program running. The
Run-Time System asks you what program you want to run,
prompting you with the message

Type PHONE (and press RETURN). The program now loads and
displays your original screen, placing spaces over all the X's and
zeros over the 9's you typed in during the second phase of the
FORMS2 run. The program is now ready to accept input. You
may find it helpful to move around with the cursor keys for a bit
before you try typing a record. The cursor keys will only move in
the areas you filled in during the second work phase. Note that
the UP- and DOWN-ARROW keys move from field to field,
backwards or forwards. Don't press RETURN; that is reserved for
when you are done with a record. Finally, note that the ESCAPE
key will move you to the start of the key area on the screen. Feel
free to experiment; even if you press RETURN, the worst that can
happen is for you to accidentally terminate the run. You can
always start over at the beginning of this step.

13. Creating New Records. Press ESCAPE to get to the first
character position in the Name field. Type in any last name you
want; after typing the last name, you can press the DOWN­
ARROW key to move to the First Name field . Or just type spaces
or RIGHT-ARROWs to get there. Fill in name, address and phone
number. Try typing something other than a number in the ZIP
Code or Phone Number field; you'll hear a "beep" and nothing will
appear on the screen. Only a digit (0 to 9) will be accepted in a
field you defined as numeric (with 9's) during the FORMS2 run.

I

I

: 22 COBOL Introduction and Operating System Manual

When you have completed filling in the form, press RETURN. You
will see, underneath the form, the message

NEW RECORD WRITTEN

Insert a few more records in this way. Assuming you have
changed both the key area (the name) and some of the data
(address or phone number), a new record will be written each
time.

~ Note that any data left on the screen from one record is still present to
~ be picked up by the next. So, for example, you may be entering several

records for people at the same address; in that case it is convenient not
to have to retype the same data. But you have to be sure to blank out
(space over) anything that doesn't belong in the new record.

If you just change the key, you can also make a new record with
the same address and phone number; for example, as we
mentioned, you may want several records for people who all live
or work at the same place. To do this, change the last name.
Then press ESCAPE to put the cursor on the first character of the
last name. Then press RETURN.

If you just change the key but fail to press ESCAPE or use the
ARROW keys to move back to the first characters before you
press RETURN, you will see instead the message

RECORD NOT FOUND

and the data areas will be blanked out. The program thinks you
are looking for a record already filed under the name you just
typed; pressing ESCAPE first tells it there is no such record-go
ahead and make one. The next section explores the options for
looking up existing records and for changing or deleting them; for
now we are just interested in creating the file in the first place.

14. Performing Other Operations. For the address book to be useful,
you need to be able to look up a name, to " thumb through" the
book when you're not sure of a name, to make corrections or
changes to the entries, and to delete entries when they become
obsolete. All of this can be done by the program we have
generated. In principle, all you do to look up a record is type in
the name and RETURN, or just keep pressing RETURNs to get to

Key
Changed

yes

yes

yes
yes

yes
yes

no

no

no

no
no

Demonstration Programs 23

any record in the file that is alphabetically later than the one you
are at. Table 2-1 shows all of the possible operations; this section
will give some brief examples.

To start with, type AAAA and press RETURN . Probably you will
get the RECORD NOT FOUND message, unless you happen to
have a record for something like the AAAA-1 Car Repair Shop. In
any case, you will now be positioned at the beginning of the file;
press RETURN a couple of times. The display will show the next
couple of records in alphabetical order after AAAA, regardless of
the order in which you created them.

Similarly, if you type N (and blanks to write over other letters in
the key area) the program will, in effect, flip to the second _half of
the alphabet. The next RETURN will then bring up the first record
after N in alphabetical order. If you are looking up Rumpelstiltskin,
just type the key Rum; then a RETURN or two will probably be
enough to get to the right entry without your having to type the
whole name. For any name you type, the program will either tell
you that the file contains no such name or it will display the data
that it has stored for that name.

Specified
Key

Data Already Cursor
Changed Exists* Position Result

yes no anywhere NEW RECORD WRITTEN

yes yes anywhere RECORD ALREADY EXISTS

no no start of key NEW RECORD WRITTEN
no no elsewhere RECORD NOT FOUND

no yes start of key RECORD ALREADY EXISTS

no yes elsewhere displays the record

yes no anywhere NEW RECORD WRITTEN

yes yes anywhere RECORD AMENDED

no no anywhere displays next record

no yes start of key RECORD DELETED
no yes elsewhere displays the record

• Note that if the key has been changed , this column refers to the new key.

Table 2-1. Indexed File (.GEN) Program Operations

0

24 COBOL Introduction and Operating System Manual

Press RETURN enough times, and you will "run off the end" of
the file. The program will warn you

Go ahead and press RETURN; you will be back at the COBOL
Command Line. You can rerun the PHONE program at any time;
as in step 1 2, just type R and PHONE. Whenever the program is
loaded, you will be positioned at the start of the file, and pressing
RETURN will show you the first record in alphabetical order.

The only way to terminate the program is to press RETURN after the final
record. However, you can get to the end quickly (without entering a lot
of RETURNs) by looking up a key like ZZZZZ; this won't be found unless
you have created it as a "sentinel" record at the end, but in any case
another couple of RETURNs will then be enough to finish the run.

Now try creating a new record for a name you already have in the
file; that is, type the name and some new data for it. The program
will not accept this new record; instead it will tell you:

This behavior prevents you from accidentally writing over an old
record. But if you want to change the old record , you can do it, in
the following way. Type the key (and RETURN) to retrieve the old
record; now with the old data showing on the display, type over it
to make any changes you want. Now when you press RETURN
you will see the message

and the new version of the record will replace the old one in the
file.

Finally, to remove an obsolete record from the file, first retrieve it
by typing its key or by stepping to it with RETURNs, then press
ESCAPE to move the cursor to the start of the key and press
RETURN . This will delete the record from the file and confirm by
giving you the message

Demonstration Programs 25

This example has shown one way to create a COBOL program for simple
file creation and maintenance. FORMS2 actually has much more general
use, as a tool to assist a programmer in writing code for console
interaction. For a detailed look at FORMS2, see Chapter Seven.

Entering a Program from the Console

Our next example illustrates how the COBOL Compiler accepts input
directly from the console and processes it line by line as you type it.

If you haven't done the first example, you can set up for the rest of this
chapter as described in step 1 of the previous section ; that is, boot with
the /COBOLBOOT disk in the built-in drive, change the SOS prefix to
/DEMO: type U, P, /DEMO, RETURN, and Q to load the Utilities package,
change the Prefix to /DEMO and Quit the Utilities. Remove /COBOLBOOT
from the built-in drive and replace it with /DEMO; place the /COMPILER
disk in the external drive.

After you type C to load the Compiler, you will see this message at the
top of the display under the COBOL Command Line:

* Apple //1 COBOL V1.0 (C) 1982 Apple Computer Inc.

The cursor is below this, waiting for your commands to the Compiler; type

.CONSOLE LIST"SAMPLE.CBL"

and press RETURN. As in the FORMS2 example, the first word on the line
is the name of the source file; .CONSOLE is the SOS name of the
console driver file. In this example, you want the Compiler listing to be
written to a file rather than sent to the display. That's why you typed
LIST"SAMPLE.CBL" and not simply LIST.

The Compiler will signify acceptance of this directive and then prompt you
for input:

* Accepted - LIST" SAMPLE.CBL"
* Compiling console

26 COBOL Introduction and Operating System Manual

Type in the program displayed in Figure 2-5. Remember to type over to
column 8 for Area A and to column 1 2 for Area B. If you mistype
something, you can correct it before the end of the line by backing over it
with the LEFT-ARROW key. Then press RETURN at the end of each line.
Once you have pressed RETURN, it is too late to make a correction; the
Compiler has accepted the line and is processing it.

Figure 2-5. Console Example Listing

Whether you've made a mistake or not, press RETURN after the last line
and finish the input by typing CONTROL·C (that is, type C while holding
down the CONTROL key) and RETURN. The Compiler finishes its work
and displays the final line shown in Figure 2-5 , with the total ERRORS,
DATA, and s0 on. The cursor then reappears at the top of the display, to
the right of the COBOL command line.

List the directory on /DEMO to see what the Compiler has done: type U to
get the Utilities, L to list, and press RETURN to accept the default /DEMO.
You should see some new files-SAMPLE.CBL and some others. The
other files all have names with the same base (CONSOL) and different
extensions; CONSOL.INT is the intermediate code for running the

Demonstration Programs 27

program. The other files are used by Animator, the Apple Ill COBOL
debugger. To examine the listing, type T; the Utilities respond by asking
you

Type what file ?

Respond by typing SAMPLE.CBL (and pressing RETURN) ; Figure 2-5
should appear on your display. Now type Q to quit the Utilities level and
get back to the main command line. If there were any error messages in
your listing, start over again, entering the program exactly as in Figure
2-5.

Once you have compiled the program without error, it is time to try
running it. Type R, and answer the prompt

File to run :

by typing CONSOL and pressing RETURN , and see the result!

This example has been contrived, but it illustrates a number of points
besides the mechanics of invoking the Run-Time System and the
Compiler.

• Apple /// COBOL extends the DISPLAY verb of COBOL to allow
full use of the display; our message was placed at column 35 of
line 7 on the screen.

• Apple Ill COBOL, like many implementations, relaxes the rules of
standard COBOL on what must be present, and in what order, to
constitute a correct program; here, for example, there is no
IDENTIFICATION or ENVIRONMENT DIVISION and an abbreviated
DATA DIVISION is allowed.

• It is possible, if awkward, to enter a program directly from the
keyboard. However, you can't modify a program this way.
Console input is very useful for testing one feature of a program,
or checking your understanding of some aspect of COBOL or of
the Apple Ill implementation . You can also save such a program
for later recompilation; the Compiler will read SAMPLE.CBL as a
source file , ignoring the asterisked lines added during the previous
compilation.

28 COBOL Introduction and Operating System Manual

In any case, you will want to use an editor for practical program
development. See Chapter Four of this manual for suggestions on
using Apple Ill editors to write COBOL programs.

• Apple Ill COBOL allows lower-case letters in COBOL reserved
words and data-names. Use of lower-case can be extremely
beneficial for legibility; it certainly emphasizes COBOL's similarity
to English sentences. Upper-case letters can be reserved for
standard usage or for emphasis, as in

Move FICA-payment to T AX-form-line-13 .

~ Caution : While lower-case letters are much more legible than upper-case,
~ you may have portability problems if you have to move an Apple Ill

program to an all-upper-case system. See Chapter Five for techniques to
convert lower-case program files to upper-case.

Another Example (Calculation of PI)

The /DEMO disk contains several files of COBOL source code. We will
use three of these (PI.CBL, STOCK1.CBL and STOCK2.CBL) to
demonstrate some of the options available to you in using the Compiler.
The cursor should be at the end of the COBOL command line. Type C
again; after the Compiler's initial message, type

PI LIST FLAG(LOW)

and press RETURN. The first part of this line indicates the source file is
PI.CBL; the file name extension .CBL can be typed, or it can be left to the
Compiler to supply by default, as here. The directives specify that the
Compiler will create a listing on the console and that it will " flag" (by
underlining in the listing) any line in the source code that does not conform
to the low level GSA certification of COBOL implementation. The Compiler
will signal its acceptance of these directives, and tell you it has started
working, and then list the code on your screen. The last part of this listing
is shown in Figure 2-6 .

The flags appear in the left margin of the listing, with dashes continuing to
the right up to the item flagged . Thus, "H-1" in Figure 2-6 stands for the
"High-Intermediate" level of COBOL and indicates items (like the
COMPUTE verb or the " (" symbol in comparisons) which are not

Demonstration Programs 29

implemented in the low level of the COBOL Nucleus. The flags with the
"A/// " label indicate Apple ///extensions to COBOL (like the optional THEN
in the IF sentence or the extended use of DISPLAY in our example) . The
total number of flags is reported among the counters at the end of the
listing.

If you now run this program (as before , at the COBOL Command Line
level type R and then PI in response to the prompt) , you you will see the
screen updated each time around the LOOP of Figure 2-6 with a new
term to be added to the accumulating value of pi.

COBOL: A(nimate C(ompile F(orms2 Q(uit R(un S(witches U(tilities [A3/1.0a]
* • H· I · - - --~~~~-~TE IERM = .(TERM • (N · 2) •• 2} I (4 • N * . {N • 1)).

IF TERM (0 0000000000001 THEN GO TO HALT.
**H·I······-·-······
••Alii·········· ·········"'

ADD TERM TO Pl.
COMPUTE ED = PI * 6.

**H·I--·· · · ·------
MOVE EO TO DI·PI2.
MOVE TERM TO EO
MOVE ED TO DI·TERM2.
DISPLAY 01·2. * * AIIf-
ADD 2 TO N.
IF N (100 GO TO LOOP.

** H-1·-----------
HALT.

STOP RUN .
* Apple If/ COBOL V1 .0 REVISION 0 URN AA/0000/HA
* Compiler (C) 1982 Apple Computer Inc.
* * ERRORS=OOOOO DATA=02580 CODE=00768 DICT=-00512:09846/10358 GSA FLAGS =00010

Figure 2·6. Partial Listing of PI Program

Notice that the listing doesn't have sequence numbers in the left margin.
Try compiling PI.CBL once again , typing in the following line to the
Compiler after you type C:

PI LIST RESEQ NOFORM

30 COBOL Introduction and Operating System Manual

The RESEQ directive instructs the Compiler to supply sequence numbers
in the first six columns of each line. The other new directive, NOFORM,
suppresses the page headers that otherwise appear in the listing. You can
create a sequenced copy of the source file by directing the listing to disk,
for example

PI LIST(PI2.CBL) RESEQ NOFORM

With this command line, the Compiler will create a sequenced version of
the source file . Note that the list file must have a different name from the
source file-you can't write the new listing file on top of the existing
source code file.

File Handling Example

Our final examples, STOCK1.CBL and STOCK2.CBL, illustrate some of
the display-handling capabilities of Apple Ill COBOL. This topic is dealt with
in detail in Chapter 6; our exploration here will be brief. Return to the top
level COBOL command line if you are still on the Utilities level. To compile
STOCK1, type C, then

STOCK1 NOLIST

NOLIST is the negative form of the LIST directive; it tells the Compiler not
to output any listing file. Wait until the compilation is finished and the
Compiler status line appears showing zero errors. Then run the stock file
program (type Rand then STOCK1, followed by RETURN); you should
see Figure 2-7 .

Demonstration Programs 31

Figure 2-7. Screen from STOCK1 Program

The cursor is positioned at the start of the Stock Code field (which is the
key for the index sequential file generated by this program). Type in A-01,
and you will then see the cursor move to the start of the Description field.
Type in something here, for example

Left-hand widget cleaner

After 24 characters of description, the cursor will move down to the Unit
Size field. If you have typed more than 24 characters, you can use the
LEFT-ARROW key to back up to the start of this field. In any case, the
Run-Time System will not let you type in anything but digits into Unit Size;
it will beep at you if you try. It will also prevent you from moving into the
protected areas outside the angle brackets.

Experiment with the cursor keys, the ESCAPE key, and the TAB key to
see what you can do. Getting back to the Unit Size field , type in four
digits, say 0012; then press RETURN to finish the first record and to clear
the entry fields for a new record. This time try stock code B-13, and a
short description like

Blivet: 3-pronged

32 COBOL Introduction and Operating System Manual

and then press the DOWN-ARROW key to go to the Unit Size field. Type
4 for unit size and then press RETURN. What happened? You will see the
same record still displayed; Unit Size is supposed to be four digits but
contains one digit and three blanks. Return to the Unit Size field and step
past the 4 (or type it again) and then type a period; the field will now be
"left zero-filled" and you can write the record out to the file by pressing
RETURN.

You can continue adding records with other keys; the program will close
the files and terminate whenever you press RETURN with the Key field
blank. The /DEMO disk will now contain two new files. STOCK.IT contains
the records you have generated. You can examine it by using the T(ype
command in the Utilities package: type U to get the Utilities, T to select
Type, and STOCK.IT to specify the file. Remember to type Q to exit the
Utilities.

Type can be used to examine any ordinary character file; that is, any file
of ASCII characters or any file in the special TEXT format used by the
Pascal System Editor. When you list a directory (L option in the Utilities),
you will see these files classified as type Asciifile and Textfile
respectively. For more information about file types, see Appendix F.

A large file will move down the display screen too fast for study. To
pause during the Type operation, hold down the CONTROL key and type
the 7 key on the numeric keypad; type 7 a second time to resume the
display output.

For the final example in this chapter, we will simulate a more realistic
COBOL application system by using a second program to interrogate the
file produced by STOCK1. Once again, from the COBOL Command Line
(which should be visible at the top of the screen after you terminate the
STOCK1 program), type C to load the Compiler. Now type only the name
of the source code file:

STOCK2

Demonstration Programs 33

This illustrates a final permutation on the LIST directive: a listing file will be
output to the /DEMO disk, with the file name STOCK2.LST. That is,
unless you tell it otherwise, the Compiler will take the source file name
STOCK2.CBL, strip off the extension .CBL, and add .LST to create a
name for a file which it uses for listing output. As the compilation
proceeds, you will see an error message on the screen. The error has no
impact on the program; it was introduced simply to show the format of
error messages. The error message will appear in the listing file directly
underneath the source code line it refers to; it will also appear on the
screen, as in Figure 2-8.

COBOL: A(nimate C(ompil~ F(orms2 O(uit R(un S(witches U(tilities (A3/1 Oa!l * Apple //1 COBOL VtP (C) 1982 Apple Computerlnc.
STOCK2
* Compiling STOC K2.CBL

MOVE GET-INPUT TO TF-OATE.
** 100********** ** * * Operand missing or has wrong type or is undeclared or 1 • 1 missing * *
* ERRORS = 00001 DATA=01536 CODE=00768 DICT =01102:09256/ 10358 GSA FLAGS = OFF

Figure 2-8. STOCK2 Error Message

The STOCK2 program generates a SEQUENTIAL file, STOCK.TRS, of
orders against stock items in the file STOCK.IT which you just created
with STOCK1 . If you run this program, you will see another screen with

34 COBOL Introduction and Operating System Manual

fields for entering information. Type one of the stock codes you used in
the last example; then type an arbitrary order number, delivery date and
number of units. When you press RETURN, the description from the
original stock record will appear next to the stock code, and the unit size
will be multiplied by the number of units to show you the total quantity
ordered. You can then accept the order (by typing Y, RETURN) or reject it
(by typing N, RETURN) and start over. Remember that to terminate the
program, you can just press RETURN when the fields are blank.

These two stock file programs illustrate a good part of the screen and file
handling capabilities of Apple Ill COBOL. You should find it instructive to
play with the programs a bit and to read through the source code to see
how the effects are obtained. The full listing of STOCK2.LST is given in
Figure 2-9.

You can use the Utilities to type this or STOCK1.CBL onto the display.
The Utilities package also contains a Copy utility which you can use to
print out these files, if you reconfigure your SOS.DRIVER to contain the
driver (.PRINTER or .SILENTYPE) appropriate to your hardware. You will
need to refer to the Apple Ill Owner's Guide, Chapter 4 , for details on
how to configure a printer into your system. Copy and other functions of
the Utilities are discussed in the next chapter.

Listing of the STOCK2 Program

* Apple ///COBOL V1 .0

IDENTIFICATION DIVISION.
PROGRAM-ID. GOODS-IN.
AUTHOR. MICRO FOCUS LTD.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. APPLE-Ill.
OBJECT-COMPUTER. APPLE-Ill.
SPECIAL-NAMES. CONSOLE IS CRT.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

STOCK2.CBL

SELECT STOCK-FILE ASSIGN "STOCK.IT"
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY STOCK-CODE.
SELECT TRANS-FILE
ASSIGN "STOCK.TRS"
ORGANIZATION SEQUENTIAL.

PAGE: 0001

Demonstration Programs 35

* Apple /// COBOL V1 0

DATA DIVISION.
FILE SECTION.
FD STOCK-FILE; RECORD 32.
01 STOCK-ITEM.

02 STOCK-CODE PIC X(4).
02 STOCK-DESCRIPT PIC X(24).
02 UNIT-SIZE PIC 9(4).

FD TRANS-FILE; RECORD 30.
01 TRANS-RECORD.

02 TRAN-NO PIC 9(4).
02 TF-STOCK-CODE PIC X(4).
02 TF-QUANTITY PIC 9(8).
02 TF-ORDER-NO PIC X(6).
02 TF-DATE PIC X(8).

WORKING-STORAGE SECTION.
01 STOCK-INWARD-FORM.

STOCK2.CBL

02 PRG-TITLE PIC X(20) VALUE " GOODS INWARD".
02 FILLER PIC X(140).
02 CODE-HONG PIC X(23) VALUE "STOCK CODE) " .
02 FILLER PIC X(57).
02 ORDER-NO-HONG PIC X(23) VALUE "ORDER NO)".
02 FILLER PIC X(57).
02 DATE-HONG PIC X(24) VALUE "DELIVERY DATE MM/DDIYY".
02 FILLER PIC X(56).
02 UNITS-HONG PIC X(23) VALUE "NO OF UNITS)".

01 STOCK-RECEIPT REDEFINES STOCK-INWARD-FORM.
02 FILLER PIC X(178).
02 SR-STOCK-CODE PIC X(4).
02 FILLER PIC X(74).
02 SR-ORDER-NO PIC X(6).
02 FILLER PIC X(73).
02 SR-DATE.

04 SR-MM PIC 99.
04 FILLER PIC X.
04 SR-DD PIC 99.
04 FILLER PIC X.
04 SR-YY PIC 99.

02 FILLER PIC X(75).
02 SR-NO-OF-UNITS PIC 9(4).

01 CONFIRM-MSG REDEFINES STOCK-INWARD-FORM.
02 FILLER PIC X(184).
02 CM-STOCK-DESCRIPT PIC X(24).
02 FILLER PIC X(352).
02 UNIT-SIZE-HONG PIC X(18).
02 CM-UNIT-SIZE PIC 9(4).
02 FILLER PIC X(58).

PAGE: 0002

'
' I

I
36 COBOL Introduction and Operating System Manual

• Apple Ill COBOL V1.0

02 QUANTITY-HONG PIC X(14).
02 CM-QUANTITY PIC 9(8).
02 FILLER PIC X(58).
02 OK-HONG PIC X(3).
02 CM-Y-OR-N PIC X.

PROCEDURE DIVISION.
START-PROC.

OPEN 1-0 STOCK-FILE.
OPEN OUTPUT TRANS-FILE.
DISPLAY SPACE.
MOVE 0 TO TRAN-NO.
DISPLAY STOCK-INWARD-FORM.

GET-INPUT.
ACCEPT STOCK-RECEIPT.

STOCK2.CBL

IF SR-STOCK-CODE = SPACE GO TO END-IT.
IF SR-NO-OF-UNITS NOT NUMERIC GO TO INVALID-ENTRY.
MOVE SR-STOCK-CODE TO STOCK-CODE.
READ STOCK-FILE; INVALID GO TO INVALID-CODE.

PAGE: 0003

*VALID ENTRY, CALCULATE AND DISPLAY TOTAL QUANTITY IN TO CONFIRM
MOVE STOCK-DESCRIPT TO CM-STOCK-DESCRIPT.
MOVE "UNIT SIZE" TO UNIT-SIZE-HONG.
MOVE UNIT-SIZE TO CM-UNIT-SIZE.
MOVE "QUANTITY IN" TO QUANTITY-HONG.
MOVE UNIT-SIZE TO TF-QUANTITY.
MULTIPLY SR-NO-OF-UNITS BY TF-QUANTITY.
MOVE TF-QUANTITY TO CM-QUANTITY.
MOVE "OK?" TO OK-HONG.
DISPLAY CONFIRM-MSG.
ACCEPT CM-Y-OR-N AT 1004.
IF CM-Y-OR-N = "Y" PERFORM WRITE-TRANS.

• CLEAR INPUT DATA ON SCREEN
MOVE SPACE TO CONFIRM-MSG.
MOVE "MM/DD/YY" TO SR-DATE.
DISPLAY STOCK-RECEIPT.
DISPLAY CONFIRM-MSG.
GO TO GET-INPUT.

WRITE-TRANS.
ADD 1 TO TRAN-NO.
MOVE STOCK-CODE TO TF-STOCK-CODE.
MOVE SR-ORDER-NO TO TF-ORDER-NO.
MOVE GET-INPUT TO TF-DATE.

* * 1 03 * * * * * * * * * *

Operand has wrong data-type or is not declared
WRITE TRANS-RECORD.

INVALID-ENTRY.
DISPLAY "NON-NUMERIC NO OF UNITS" AT 0325.
GO TO GET-INPUT.

* Apple/// COBOL V1.0

INVALID-CODE.
DISPLAY "INVALID CODE
GO TO GET-INPUT.

END-IT.
CLOSE STOCK-FILE.
CLOSE TRANS-FILE.
DISPLAY SPACE.
DISPLAY "END OF PROGRAM".
STOP RUN.

* Apple/// COBOL V1.0
* Compiler © 1 982 Apple Computer Inc.

Demonstration Programs 37

STOCK2.CBL PAGE: 0004

"AT 0325.

URN AA/0000/HA

* ERRORS=00001 DATA=01536 CODE=00768 DICT=01102:60972/62074 GSA

FLAGS= OFF
Figure 2-9. Listing of the STOCK2 Program

38 COBOL Introduction and Operating System Manual

The COBOL System and Main Command Line 39

The COBOL System
and Main Command Une

Running under SOS

As you type commands to the Apple Ill COBOL System, your input is
handled by SOS, the Apple Ill Sophisticated Operating System. SOS
controls the Apple Ill file system and all its on-line peripheral devices.
These devices are integrated into the file system by means of "driver"
files, so that a programmer or operator can refer to them and use them
much like other files. Refer to the Apple Ill Standard Device Drivers Manual
for details about .CONSOLE, .PRINTER, .RS232 and other drivers.

The first chapters of this manual have already looked briefly at some of the
aspects of SOS, namely console input and output and the file hierarchy.
This chapter fills in some of the gaps left by that discussion and refers you
to appropriate places for more information.

Type-ahead
Chapter One discussed how to correct typing mistakes made at the
keyboard. Here, we take up another SOS service for console input.
Whenever you type a key while the system or a program is not expecting
input, SOS stores the key code in a type-ahead buffer. When the program
does request input from the console, the driver will first send along any
characters waiting in this buffer. At this point, the character will be
"echoed" on the screen. The character doesn't show up while it is in the
type-ahead buffer, but it isn't lost-just pending. Type-ahead is limited to

40 COBOL Introduction and Operating System Manual

1 28 characters, enough so that even a fast typist will not usually get too
far ahead of program responses. If you do fill the buffer, you will hear a
"beep" from the console when you type the next character. After the
program consumes some of the pending input, SOS will accept further
keystrokes.

The situation in which you will most likely use type-ahead is in selecting
COBOL system commands and Utility options. A single keystroke will
select the command and begin loading the appropriate code to handle it;
you need not wait for the initial message or intermediate menu to continue
your typing. If your request is simple or your typing secure, you can
complete the request without waiting for each input character to be
displayed.

If you make a typing mistake while typing ahead, there is no harm
done-just wait for the program to catch up with you and correct the
mistake as usual. You can also erase everything in the type-ahead buffer
by pressing the CONTROL key and the 6 on the numeric keypad at the
same time.

CONTROL Operations
Recall from Chapter One that CONTROL-X erases a whole line of input (at
any point before you press RETURN) ; this and the buffer erase
(CONTROL-6) operation are part of a general scheme of operations
invoked by holding down the CONTROL key and typing another key at the
same time. (We refer to this operation as CONTROL-k, where "k" stands
for the key that is typed while CONTROL is held down.) Some of these
control operations are defined as part of the ASCII character-set used by
the Apple///. For example, the LEFT-ARROW key is simply a convenient
substitute for the ASCII backspace character which you also get when you
type CONTROL-H.

Another ASCII definition is the CONTROL-C we used in Chapter Two for
terminating console source code input to the Compiler; the CONTROL-C is
just the ASCII End-of-Text (ETX) character. Also, the CONTROL-X used to
cancel a line of input is the ASCII CANCEL code, CAN.

The Apple /// extends this scheme in a number of ways. One use of
CONTROL special to the Apple Ill is to activate the RESET key inset in the
top of the keyboard . If you push these two keys at the same time, the

I

The COBOL System and Main Command Line 41

Apple Ill will reset (cold start) the system as if you had turned the power
switch off and then on again.

Another special operation is CONTROL- "- (that is, CONTROL and the
back-slash key in the top right corner of the main keyboard) .
CONTROL- "- aborts any program running and returns control to the
COBOL Command Line.

Note that the COBOL Run-Time System will complete file operations and
close any open files before terminating after a CONTROL-" . This means,
for example, that when a program reads input from the console, you will
have to press RETURN after the CONTROL-"- (in order to end the input
operation) .

Also note that the CONTROL- "- operation will cause the Run-Time
System to issue a post-mortem message; for example, if you abort the PI
program of Chapter Two, you will see something like:

Pl.l NT Segment: Root
COBOL PC OODCH : RTS Error 150

The first line of this message names the file running at the time of the
CONTROL- "- and the segment (program overlay) that was interrupted.
Programs without overlays will always specify the root segment; programs
like the Compiler which use overlays may name some segment other than
the root. COBOL PC refers to the Run-Time System program counter; in
this case it was interrupted at a count of DC (hexadecimal) . Error number
150 signifies "Program interrupted by user" (see the list of Run-Time
Errors in Appendix C).

Finally, there are some special console controls using the numeric keypad
to the right of the main keyboard . Several of these are " toggle"
switches-you push them once to get one effect and a second time to
turn off the effect. The numeric controls are:

CONTROL-5 Video Output Switch. This toggle switch turns console
video output off (when first pushed) and back on again
(the next time), and so on. The Apple ///runs about 25
percent faster with the video turned off; so you can
speed up programs (notably, long compiles) by using this
switch. Note that a console input request from a program
will automatically turn the video back on.

42 COBOL Introduction and Operating System Manual

CONTROL-6

CONTROL-?

Flush Type-Ahead Buffer. Typing this removes any
characters in the type-ahead buffer (anything you've
typed that hasn't yet been sent to a program as input) .

Output Pause. This toggle switch "freezes" the console
screen in its current state; if a program tries to put
something new on the screen, it will be suspended until
you toggle the switch again to unfreeze the screen.

Q This control is very useful. Use it to pause at some point in a compilation, V with the listing going out to the screen; or use it while using the Type
command in Utilities to examine some part of a file in detail and then let
the rest go past at top speed. Since most programs interact with the user
at the console, this switch is effectively a general purpose PAUSE
switch.

CONTROL-8 Control Character Display. This toggle switch causes
subsequent control codes to appear on the screen with
visible representations (two-character abbreviations
squeezed into one character position on the screen) .

Q These control operations do not work with the numeric keys on the main
~ keyboard; you must use the keys on the separate numeric keypad. For

more information on console control operations, refer to the Apple Ill
Standard Device Drivers Manual.

File Names

SOS Pathnames
SOS files have names composed of letters, digits and the special
characters "/" (slash) and " ." (period). The letters may be typed in upper­
or lower -case, since SOS capitalizes lower -case letters internally. The full
SOS name of a file always begins either with a " /" , indicating the root
directory of a volume currently on-line, or with a " .", indicating a device
driver. Devices may be block structured, as in the case of disk drives, or
they may be character-oriented, for example .CONSOLE or .PRINTER. A
block device may contain many files, organized in the hierarchical fashion
illustrated above in Chapter One, Figure 1-2. In the case of a chararacter
device, the device name is the full name of the file. For any file on a block
device, the full name traces out a "path" in the file hierarchy from the root

-- --- - - -- - ----

The COBOL System and Main Command Line 43

to the position of the file. Thus, the full "pathname" of the file ISAM on
/COBOLBOOT is:

/COBOLBOOT /COBOUISAM or . 01 /COBOUISAM

Thus COBOL is a "subdirectory" file that contains a list of other files . You
can use the device name (.01 for the built-in drive) instead of the volume
name; but the volume name is more general. If you begin with
/COBOLBOOT, SOS looks for the volume in each on-line drive until it finds
it; you don't need to remember where it is. If SOS can't find the file (if you
mistyped the name, or if the disk is not in the device you specified, or not
in any device) you will see an error message. For example, if you are
trying to run a program, the error message is similar to that from a
CONTROL-'- abort. The Compiler and the Utilities use a message like the
following to report being unable to find a file:

Can 't open (file name)

It can be inconvenient to type out the full pathname of a file, especially if it
is far down in the hierarchy and if you have to keep typing it in many
times. SOS maintains a "prefix" which it will place in front of any file name
you give it that doesn't begin with a period or a slash. That is, if you type
.CONSOLE, or .02/PI.CBL or /OEMO/STOCK.IT, SOS assumes you have
typed a complete pathname. However, if the prefix is /VOL 1 /OIRA (for
example) and you type FILEX, SOS will interpret this to mean:

/VOL 1 /OIRA/FILEX

Whenever you start or reset the system, the prefix is initialized to the
volume name of the disk in the built-in drive. To change this value, use the
Prefix Utility as in the example in Chapter One.

COBOL File Name Extensions
The period has another use in filenames besides beginning the name of a
device. You may want to group together several files in the same directory
with related names. By using a base file name (for example; STOCK1) you
can create a cluster of related files with extensions of the
name-STOCK1.CBL for the source code, STOCK1 .1NT for the
intermediate code object file, etc.

'
'

'

44 COBOL Introduction and Operating System Manual

SOS doesn't care about periods in the middle of file names, but the
COBOL Run-Time System commands use this method to differentiate the
functions of related files. The system also allows certain default values for
these file extensions. Thus, the Compiler expects source file input to have
the extension .CBL. It will accept any file name specified in full (for
example, XYZ.A.B.PQR), but if no extension is given, it will supply the
.CBL that it expects. The most important of the file name extensions used
in the COBOL system are:

.ACP Created by the Compiler for use by the Animator (for handling
COPY statements) .

. ANM Animator file (created by Compiler directive ANIM) .

. CBL COBOL source code file ; default extension for the Compiler
input .

. CHK FORMS2 screen checkout program source code .

. DDS Data Description Statements; COBOL source code defining the
screens created in a FORMS2 run .

. Dnn Dictionary files used by both the Compiler and the Animator;
one per segment (number nn) in the program .

. GEN FORMS2 index file generation program source code .

. Inn Program segment intermediate code (overlays) .

. IDX Index file for Index Sequential file organization (see Appendix F
for more details) .

. INT Intermediate code file (root segment) output by the Compiler;
default extension for Run .

. ISR Inter-segment reference file for segmented programs .

. SXn Work-files for the COBOL Sort-Merge Module (n = 1 or 2) .

-

The COBOL System and Main Command Line 45

.Snn FORMS2 screen image files for each screen created in a
FORMS2 run (n = 00, 01, 02 , ...) .

. TMn Temporary Compiler files (n = 1 or 2) .

Run-Time System ? Wildcard
If you abort the Compiler (by a CONTROL- '-), the RTS Error 150
message indicates that the file name of the intermediate code file for the
Compiler was

?/COBOUCOBOL

The Animator, FORMS2, and the Utilities all are invoked with similar names
(?/COBOUANIM, ?/COBOUFORMS2, and ?/COBOUUTIL respectively).
The "?" here is a special COBOL (not SOS) feature, telling the Run-Time
System to search for the file in all drives on-line. You may use this feature
elsewhere, for example in telling the Run command what file to execute,
or in a COBOL COPY statement like the one in PHONE.GEN from Chapter
Two:

COPY "?/COBOUFORMS2.GN1 " .

Turnkey Systems
For an application that runs a single major program, it is useful to be able
to run the program in a "turnkey" mode. That is, the operator can place a
specially tailored disk in the built-in drive, turn on (or reset) the computer
and begin work immediately, without having to interact with the COBOL
Command Line. As far as such a user is concerned, the Apple /II has
become a dedicated machine for his application.

To create a turnkey system, rename the program you want to run
COBOL.ST ART; for a relatively small application it is convenient to place
this file on a boot disk (for example, you could copy STOCK1.1NT from
/DEMO to a duplicate of your /COBOLBOOT disk, renaming it
COBOL.START by means of the copy operation). But it isn't necessary for
the COBOL.START program to be on the boot disk. As long as it is a first­
level directory entry in any volume on-line at the time the Run-Time
System starts up (at a reset or when the power is turned on), it will be
loaded and executed. Notice that if you switch disks, the COBOL system

I
'

46 COBOL Introduction and Operating System Manual

may start running a different COBOL.START from another disk. Only if the
file COBOL.START is not found will the Run-Time System call its normal
instruction analyzer and display the COBOL Command Line.

When the COBOL.START program terminates, either normally (by
executing a COBOL STOP statement) or as a result of a CONTROL- ",
the Run-Time System will start it again from the beginning as if you had
just powered up. This is convenient for a dedicated application, but it also
means that you will not be able to execute any of the normal COBOL
Command Line options from a turnkey disk. Note, however, that you can
use the cold-start assembler call to exit your application (see Chapter
Four).

COBOL Command Une Options

Whenever you boot up the Apple ///COBOL System, and whenever a
program finishes, either normally or by a CONTROL- "- abort from the
keyboard, you will find the cursor positioned at the end of the COBOL
Command Line, waiting for you to select one of the command options
listed there:

COBOL: A(nimate C(ompile F(orms2 O(uit R(un S(witches U(tilities [A3 1.5a]

The remainder of this chapter discusses th~se commands in detail, except
for the first three, which are given detailed treatment in later chapters and
so only briefly sketched here. Each of these commands is invoked by
typing the key labelled with the command's initial letter (A, C, F, Q, R, S
or U); do not press RETURN after the key. If you type any other key, the
Run-Time System will "beep" at you and again wait for one of these
choices.

Animate
The A command invokes the Animator, the COBOL debugger that brings
your programs to life. After the Animator has been loaded, you will see its
initial message:

* A/// Animator V1.0 (C) 1982 Apple Computer Inc.

The cursor will reappear underneath this message, awaiting input of the
name of the program to be animated. Type the name of the intermediate

The COBOL System and Main Command Line 47

code file, usually a name like program.INT; however, any file name is
acceptable, for example COBOL.START if you are debugging a turnkey
system. If Animator cannot find the file using the name you typed , and if
the name didn't end with .INT, the Animator will supply the extension .INT
and look again . So you can use the " basename" of the program and let
Animator add the .INT by default. If you change your mind and wish to exit
tl:le Animator , type ! when asked for input.

Once Animator has found the intermediate code file , it looks for a source
code file and several other files that were output by the Compiler. The
Animator expects to find a dictionary (.000) file corresponding to the
intermediate code file; this file contains the name of the original source
code file given to the Compiler, which Animator then searches for. Other
files may also be needed, with extensions .ACP (for handling COPY
statements), or .Inn and .Dnn for handling segment number nn of a
segmented program. These files should all be on-line; usually they will be
on the same disk, and Animator will look for them on the same drive as it
found the intermediate code file on .

However, if Animator doesn't find a file on this drive , it will let you specify
a different one. At the bottom of the display, you will see the message

FILE NOT FOUND - S(top run) C(ontinue) A(lter drive)

with the name of the file in question below this. You can then type A,
followed by a directory name, and Animator will prefix that name to the file
name and look again .

Compile
The C command invokes the COBOL Compiler, the subject of Chapter
Four. After the Compiler has been loaded, you will see its initial message:

* Apple Ill COBOL V1.0 (C) 1982 Apple Computer Inc.

The cursor will reappear underneath this message, awaiting input of the
name of the source code file to be compiled plus optional Compiler
directives. If the Compiler can 't find the name of the file as you typed it ,
and if the name you typed doesn't already end with the extension .CBL,
the Compiler will append .CBL to the name and try to find it with this
extensiQn. Note that if you entered the Compiler by accident, you may
type ! followed by RETURN to exit immediately.

48 COBOL Introduction and Operating System Manual

Forms2
The F command invokes the FORMS2 screen manipulation utility, the
subject of Chapter Seven . After FORMS2 has been loaded, you will see
the first of a series of initialization screens. See Chapter Two for an
example and Chapter Seven for detailed discussion. If you type F by
mistake, you can exit immediately from FORMS2 by typing an exclamation
point (!) followed by RETURN.

Quit
The Q command exits the Run-Time System. You will see the following
message in large letters:

INSERT SYSTEM DISK AND REBOOT

No further action is possible until you reset the machine. As you need a
different run time system (for example, the Apple Ill Pascal System) for
editing files, you will in fact switch from one system to another rather
frequently. This command is the cleanest way to end a session with the
COBOL Run-Time System.

Run
The R command loads and executes a program . You will see the prompt
line

File to run :

Type the pathname of the intermediate code file; after you press RETURN,
the file will be loaded and execution will begin . The command assumes
that the file name ends with the extension .INT; if the name you type
doesn't end in .INT, the Run-Time System will supply this extension
automatically. To suppress this, you must type an extra period (.)
character at the end of the name. For example, to run a program named
EXAMPLE (not EXAMPLE.INT) you answer the prompt as follows:

File to run : EXAMPLE.

The COBOL System and Main Command Line 49

Switches
The S command displays or sets run-time switches. There are nine
switches available for use in tailoring different runs of the same program.
One of these switches is the ANSI Standard Debug switch. If this switch is
turned off, then any statements in the program with the USE FOR
DEBUGGING clause are inhibited; if it is on, they come into effect. The
other eight switches, labeled with the digits 0 through 7, may be used for
arbitrary purposes in a program. These are tested in a program by means
of ON STATUS condition-names and OFF STATUS condition- names
defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; see the Apple Ill COBOL Language Reference Manual, Chapter
Three, for the definition of the syntax needed in this paragraph. After you
typeS on the COBOL Command Line, you will see below the COBOL
Command Line the display

0-7, A(nsi C(lear) <ret) Switches ---------

with digits 0 to 7 or a letter A showing in place of the corresponding dash
when the switch is set. Type A or a digit to toggle the switch (set it if it
was off, clear it if it was set) . You can clear all the switches at once by
typing C. Press RETURN to finish your changes and return to the COBOL
Command Line. Once set, the switches remain set until they are changed
by a following S command. This facility is provided primarily for
compatibility with batch systems.

Utilities
The U command invokes the COBOL Utilities package. Once this is
loaded, the Utilities menu will appear, and you may select one of the
options. Of these, some do file handling (listing directories, deleting files,
etc.), and some deal with SOS system parameters. All the options use the
LEFT-ARROW cursor control somewhat differently than the rest of the
COBOL system. Under the control of the Utilities program the backspace
is "non-destructive" ; when you back up with the LEFT-ARROW, the
characters backed over remain on the screen and they will be sent to the
utilities program when you press the RETURN key. Thus you can correct
a single letter typing error without having to retype everything past it on
the line.

50 COBOL Introduction and Operating System Manual

Note also that the Utilities program will throw away any input on the line
after its first blank. If you change a long line into a short one, it isn't
necessary to overtype the tail end of the line with blanks-one blank at the
end of the corrected line is enough to terminate it properly.

The Utilities menu is

Uti I: C(opy ,O(ate, l(ist-dir, E(xt-dir, P(refix, R(emove, T(ype,O(uit

The individual options are

• Copy. This option makes a new copy (the target) of any file (the
source) . After you type C to invoke the option , you will be asked:

Copy what file ?

and after typing in the SOS pathname of the source file, you will
be asked for the target:

to what file ?

The target file does not need to be a disk file. To get a hard-copy
listing of any ASCII or TEXT file, copy it to a printer (.SILENTYPE
or .PRINTER device file) . A copy to the device .CONSOLE is
essentially the same command as the Type utility. In fact, it is
considerably faster .

• Date. This option sets Apple Ill date and time; it displays the
current date and time and prompts for your changes with the
following line below the Utilities menu:

Enter date and time 00- -00 00:00:00

or with the zeros and blanks filled in if you have a dock in your
system or have already set the date and time since the last time
the Apple ///was powered up. Type over any field to change it.
The blanks above can be replaced by any of the standard three­
letter month abbreviations. You may type any combination of
lower- and upper-case: internally the field will be translated to an
initial capital and two lower-case letters. The fields for day, year,
and time will accept any digit values. Press RETURN to enter any
changes you have made, or to get back to the command level.

The COBOL System and Main Command Line 51

Note that if your Apple /// has an internal clock, the time fields will
be incremented automatically while the power is on; otherwise,
the time may be used as a simple " time-stamp" to make files of
an individual work session.

• Ext-dir
• List-dir. Both of these options list a directory on a block device.

Ext-dir gives an "extended directory listing", by listing all levels of
the file hierarchy under the specified directory; List-dir only lists
the files that are directly below the specified directory. The format
of an Ext-dir listing is illustrated in Figure 3-1 ; the corresponding
List-dir listing appears in Figure 1-3.

Figure 3-1. Extended Directory Listing

The current prefix appears as the default value in the prompt line

(This example shows the prompt as it would be if you booted from
the original COBOL System boot disk and haven't changed the
prefix since. Whenever you type E or L, you will see the current
prefix in this prompt.) If you want to list this directory, just press
RETURN. Otherwise, type over the prefix with a disk device name
or a directory and then press RETURN. As you start typing, the
default value will vanish from the prompt line.

52 COBOL Introduction and Operating System Manual

• Prefix. This option displays or changes the prefix that SOS
attaches to file names not beginning with the " /" or " ." characters.
The display resulting from this option is similar to

'1:1

Current Prefix is
New Prefix:

with a display of the current value of the prefix and the cursor
positioned to receive a new value. If you just press RETURN, the
current prefix will remain in effect. If you type a device name (for
example, .d2), SOS will read the volume name of the disk
currently on that device as the new value of the prefix string , and
you will see this volume name replace the string you typed on the
second line of the message. Also if you type a volume name in
lower-case, the Run-Time System will display the name in
capitalized form on this line. At the initial loading of the Run-Time
System, the prefix is set to the volume name of the boot disk in
the built-in drive.

• Remove. This option deletes a file (only one at a time; no "wild­
card" conventions are recognized). The prompt is

File to remove :

Type in the pathname of the file to be deleted. You will then be
asked to confirm this:

Type Y to go ahead with the deletion; any other response returns
you to the Utilities menu.

• Type. This option lists the contents of a file onto the console.
Answer the prompt

Tr,pe what file ? '

with the pathname of the file to be listed. With this option, it is
possible to use the "?" character as shorthand for "any drive" in
place of a device name. To pause at some point during the listing,
use the CONTROL-7 operation.

The COBOL System and Main Command Line 53

• Quit. This option exits from the Utilities to the main COBOL
command line. It is the only way to get out of the Utilities except
for a CONTROL- "- abort.

Summary

Command Entry
• Upper- and lower-case letters are equally acceptable.

• Single keystrokes invoke the options at the main command level
and the Utilities level ; elsewhere , an entry must be terminated by
a RETURN .

• Commands may be typed ahead without waiting for the display of
intermediate prompts.

• Backing up with the LEFT-ARROW key allows the correction of
typing mistakes on the current line.

Control Operations
• CONTROL-C (ASCII ETX) End of file for console input.

• CONTROL-X (ASCII CAN) Erase the current line of input.

• CONTROL- "- Abort a program and return control to the COBOL
command line. May require a following RETURN if the system is
processing an ACCEPT statement.

• Numeric keypad controls :

CONTROL-5 Turn CRT screen on/off ; any output to the
console between CONTROL-S's will be lost.

CONTROL-6 Erase any characters typed ahead (and not yet
processed as input by a program).

CONTROL-? Toggle console acceptance of output; the
program halts until the next CONTROL-? allows
output to resume from where it was stopped .

CONTROL-8 Toggle the visible representation on the display of
control characters in console output.

54 COBOL Introduction and Operating System Manual

COBOL Command Line Summary
A Animate command. Invokes the Apple Ill COBOL Animator. Type

the pathname of the intermediate code file to be animated. Type !
to exit.

C Compile command. Invokes the Apple/// COBOL Compiler. Type
the pathname of the source code file (extension .CBL assumed
by default) and Compiler directives. Type ! to exit.

F Forms2 command. Invokes FORMS2 utility. Type ! to exit.

Q Quit command. Exits the Run-Time System. No further action is
possible until you reset the machine.

R Run command. Loads and executes a program. After the prompt,
type the pathname of the intermediate code file (use an extra
period to terminate the name if the file name doesn't end with the
extension .INT; if it does so end, you don't need to type the
extension).

S Switches command. Display or set run-time switches. Displays the
current settings, dashes when the switch is clear, a digit (0
through 7) or A when the switch is set. Type A or a digit to toggle
the switch (set it if it was off, clear it if 1t was set) . C clears all
switches. Press RETURN to exit back to the COBOL command
line.

U Utilities command. Invokes COBOL utilities. At this level, backing
over characters with the LEFT-ARROW key doesn't erase them;
pressing RETURN sends the entire visible line to the utility.
Options are:

• Copy - copies any disk file to another SOS file; the target can be
a character file (such as .PRINTER) or a disk file. The local name
may be changed in the course of the copy; it must be changed if
a second copy of the file is made to the same directory as the
original.

• Date - sets Apple Ill date and time. Displays the current date and
time. Type over any field to change its value.

• List-dir - lists an Apple /// disk directory.

The COBOL System and Main Command Line 55

• Ext-dir - lists a disk directory and sub-directories. The prompt line
gives the current prefix directory; type over it to list a different
directory.

• Prefix - sets Apple Ill prefix. Displays the current prefix string;
type a new value to change the prefix.

• Remove - removes a file. Type the pathname of the file to be
deleted.

• Type - lists a file on the console. Answer the prompt with the
pathname of the file to be listed. To pause at some point of the
listing, use the CONTROL-? control.

• Quit - exits from the utilities to the Run-Time System.

'
'

'

56 COBOL Introduction and Operating System Manual

Compiler Directives 57

Compiler Directives

Compiler Command Format

After you have invoked the Compiler by selecting the Compile option from
the COBOL Command Line, and the Compiler has issued its initial
message, it expects you to type in a command line in the following format:

file name [directive directive ...]

where

file name is the pathname of a file containing Apple Ill COBOL
source statements. If this name doesn't begin with a period or
a slash, it is appended to the system prefix. The Compiler
searches for this (possibly prefixed) name on-line; if it fails to
find the name, it will try again with a new name formed by
appending " .CBL" to the original name. If the name is still not
found, the Compiler will issue the error message

Open

and return control to the main COBOL command line.

directive is one of the optional Apple /// COBOL directives
described in this chapter. Each directive must be separated by
one or more spaces from any preceding directive or file name
and from any succeeding directive. If the list of directives is too

I

I

'

58 COBOL Introduction and Operating System Manual

long to fit on one line of the screen. it may be continued on a
subsequent line by typing & (ampersand) followed by RETURN.
Here is how an example might look:

/PROFILE/COBOL/DEVELOP/LEDGER RESEQ NOFORM & (R)

(the line ends with an ampersand and a RETURN). The system
will respond to this with

* Accepted - RESEQ
* Accepted - NOFORM
* Accepted - &

and then the next line may be typed in:

DATE "JULY 28, 1982 17:05" NOINT

whereupon the system will respond with

* Accepted - date " July 28, 1982 17:05"
* Accepted - noi nt

and begin compilation.

Directives may appear in any of the following forms:

keyword
keyword[](argument)
keyword[]"argument"
NO[]keyword

The bracketed space means that you may optionally use one or
more spaces before an argument or between the NO and the
directive it negates. In any case where an argument contains a
space, you must use the quotation mark format; otherwise you
may use either parentheses or quotation marks.

Compiler Directives 59

If you press RETURN without entering a file name (and possibly some
directives), the Compiler will assume that the source code will be entered
from the console and that default settings are to be used for the
directives. If you type in only a file name, the default directives will also be
used. Table 4-1 specifies all the directives available in the Apple ///
COBOL Compiler; default directive settings are marked with a " *" and
have their arguments filled in with the default values .

Directive Argument Negative Directive

* ANIM NO ANIM
BRIEF * NO BRIEF
COMP *NO COMP
COPY LIST * NO COPYLIST

* CRTWIDTH "128" NO CRTWIDTH
* DATE** " literal-1" NO DATE
* ECHO NO ECHO

ERRLIST * NO ERRLIST
FLAG "level" *NO FLAG

* FORM "60" NO FORM
IBM *NO IBM

* INT "basename.INT" NO INT
* LIST "basename.LST" NO LIST
* PRINT "basename.LST" NO PRINT

REF *NO REF
RESEQ *NO RESEQ

FORM FEED "function-name"
SYSIN "function-name"
SYSOUT "function-name"
TAB "function-name"

* marks the default value of the directive

- signifies that there is no argument (or, as in the case of DATE, no
negative)

basename is the name given for the source file (minus .CBL extension if
any)

* * If literal-1 is not specified , the system date and time will be used.

Table 4-1. Compiler Directives

Some directives are mutually exclusive. When you type in a command line,
the Compiler will scan it to see whether it can accept all the directives; if it
rejects any directive (either because it can't recognize it or because of

60 COBOL Introduction and Operating System Manual

mutual exclusion) it will print out a message to that effect on the console
and return control to the COBOL Command Line. Table 4-2 shows the
exclusions in effect; most of these concern various listing directives.

Directive

NO LIST

(In cases where [NO] appears,
both the positive and the
negative form of the
directive are excluded.)

ERR LIST

ANIM

Excludes

COPY LIST
ERR LIST
[NO] FORM
LIST
PRINT
[NO] REF
RESEQ

COPY LIST
[NO] REF
RESEQ

NOCRTWIDTH

Table 4-2. Excluded Combinations of Directives

Description of Compiler Directives

ANIM
Format: ANIM

NO ANIM

The ANIM directive causes the Compiler to generate files that can be
used by the Animator for program testing and debugging. If the source
code file is basename.CBL, this option produces the files basename.ANM
and basename.ACP. The Animator also uses the intermediate code files
and dictionary files that are always produced for the root, and any overlay
segments. NO ANIM will suppress the output of those files needed only
by the Animator.

Note that ANIM is mutually exclusive with the NO CRTWIDTH directive,
since the Animator makes use of the internal buffers allocated by the use
of CRTWIDTH.

The default setting of this directive is ANIM.

Compiler Directives 61

BRIEF
Format: BRIEF

NO BRIEF

BRIEF causes the Compiler to omit the explanatory text in error
messages, that is to output only the error number to the listing and to the
console. The Compiler automatically goes into BRIEF mode if it cannot find
the file COBOL.ERR. NO BRIEF causes the explanatory messages to be
output (if the Compiler can find the tile COBOL.ERR on-line) .

The default setting is NO BRIEF.

COMP
Format: COMP

NO COMP

This directive causes the Compiler to generate smaller and taster code tor
arithmetic on PIC 99 and PIC 9(4) operands where no ON SIZE ERROR
clause is specified. In addition to the speed and smaller code size,
another advantage is that it becomes possible to do computations on
characters, tor example converting lower- to upper-case. The
disadvantage of COMP is that when it is in effect, some MOVEs may give
non-ANSI standard results. PIC 99 fields will overflow at 256 rather than
100.

The default setting is NO COMP.

COPYLIST
Format: COPYLIST

NO COPYLIST

COPYLIST causes the contents of a tile named in a COPY statement in
the COBOL source code to be output in the Compiler listing.

At page breaks in the listing, the page header names any COPY file open
at the break. NO COPYLIST suppresses the listing of COPY tile contents.

The default setting is NO COPYLIST.

62 COBOL Introduction and Operating System Manual

CRTWIDTH
Format: CRTWIDTH "line-size"

NO CRTWIDTH

CRTWIDTH specifies the logical line-size of the CRT screen for Format 1
(ANSI standard) DISPLAY statements. NO CRTWIDTH tells the Compiler
that no ANSI standard DISPLAY statement will be compiled. In this case,
the Compiler can use memory otherwise allocated to control tables to
increase dictionary size.

The default setting is CRTWIDTH " 128" (a value chosen to match a
common limit of main-frame COBOL implementations) .

DATE
Format: DATE "literal-1 "

DATE causes the Compiler to replace the comment entry in the DATE­
COMPILED paragraph of the IDENTIFICATION DIVISION with the value of
literal-1 . If literal-1 is not specified, then the system date and time will be
used in its place. If the NO DATE directive is issued, or there is no system
clock and the date has not been set manually, then date-time insertion into
the DATE-COMPILED paragraph is suppressed.

The default is DATE.

ECHO
Format: ECHO

NO ECHO

ECHO causes the Compiler to list error lines on the console (that is, the
source code line in error, a line with the error number underneath this,
and-unless the BRIEF directive is in effect-a final line with explanatory
text). NO ECHO turns off console listing of errors.

The default setting is ECHO.

Compiler Directives 63

ERR LIST
Format: ERRLIST

NO ERRLIST

ERRLIST causes the Compiler to limit the listing file (LIST or PRINT output)
to error lines (the same listing, in other words, that appears on the
console when ECHO is set). Only erroneous source code lines, lines with
the error numbers and (unless a BRIEF listing is selected) lines giving a
short explanation of the errors are written out to the listing file.

The default setting is NO ERRLIST, that is, a full listing file .

FLAG
Format: FLAG "level"

NO FLAG

FLAG causes the Compiler to produce General Services Administration
(GSA) Compiler validation flags as part of the compilation listing. The flags
are also listed on the console if the ECHO directive is in effect.

The parameter "level" must be one of the following:

LOW Produces validation flags for all features higher than the Low
Level of GSA Compiler certification.

L-1 Produces validation flags for all features higher than the Low­
Intermediate Level of GSA Compiler certification.

H-1 Produces validation flags for all features higher than the High­
Intermediate Level of GSA Compiler certification.

HIGH Produces validation flags for all features higher than the High
Level of GSA Compiler certification.

All/ Produces validation flags for the Apple Ill (that is, Micro-Focus
Compact Interactive Standard) extensions to standard COBOL as
it is specified in ANSI Standard X3.23 - 1974. For a list of these
extensions, see the Apple Ill COBOL Language Reference
Manual.

64 COBOL Introduction and Operating System Manual

IBM

The FLAG "All/" directive is the best way to find any part of an Apple Ill
COBOL program that is not in accordance with the ANSI standard. If the
program compiles with no line flagged All/, you may be sure that the
program is a standard COBOL program.

Flags several optional extensions to Standard COBOL
compatible with IBM 81 00 DPPX COBOL (these features are
enabled by specifying the IBM directive below) . For details of
this feature, refer to Appendix J of the Apple Ill COBOL
Language Reference Manual.

The default setting is NOFLAG.

FORM
Format: FORM "page-length"

NO FORM

FORM sets the number of lines to be placed on each page of the
compilation listing file; the minimum number of lines per page is five. Each
output page will have this specified number of lines, except where the
source code has a "/" in the Indicator Area (column seven). which forces
a page eject. NO FORM inhibits the pagination of the listing file ; this is
particularly useful when using the Compiler to generate a sequenced
version of the source code file (see RESEQ below).

The default setting is FORM "60" .

FORM FEED
See SPECIAL-NAMES Directives.

IBM
Format: IBM

NO IBM

IBM enables the language extensions specified in Appendix J of the Apple
Ill COBOL Language Reference Manual. These extensions are compatible
with DPPX COBOL on the IBM 8100. NO IBM directs the Compiler to

regard these features as syntax errors.

The default setting is NO IBM.

/NT
Format: INT "pathname"

NO INT

Compiler Directives 65

INT causes the Compiler to output an intermediate code object file with
(root segment) name given by the quoted SOS pathname. Other
intermediate code files will also be output in the case of a segmented
program; see Chapter Five for details. The NO INT directive tells the
Compiler not to generate any object files for the program.

It is not an error to type several INT directives in one command line, but it
is pointless-the Compiler scans its directives from left to right and will
simply take the last setting of any directive and ignore earlier ones.

The default setting is INT "basename.INT" where basename is the file
name used at the beginning of the command line, minus the " .CBL"
extension if that was present. If you wish to generate a code file whose
name does not end in " .INT", then issue the command INT''basename." .
Note that the " ." at the end of base name prevents the Compiler from
appending the ".INT" suffix.

LIST

Format: LIST
LIST "pathname"
NO LIST

LIST causes the Compiler to produce a listing file such as that illustrated in
Figure 2-9, written to the file specified by the pathname argument. If the
directive is given in the first format Uust LIST with no following argument)
the listing is written to the console; that is, the effect is the same as a
LIST " .CONSOLE" directive.

The default setting is LIST "basename.LST" where basename is the file
name used at the beginning of the command line, minus the .CBL file
extension if that was present.

I

'

66 COBOL Introduction and Operating System Manual

PRINT
Format: PRINT

PRINT "pathname"
NO PRINT

PRINT is identical in effect to LIST and may be used interchangeably with
it.

Default setting: see LIST.

REF
Format: REF

NO REF

REF directs the Compiler to put hexadecimal location references to the
right of each line of source code in the listing file. These locations are
offsets of data items in the DATA DIVISION or offsets of the lines in the
PROCEDURE DIVISION. NO REF omits these location references.

When a program terminates with a run-time error, the error message
contains a reference to the COBOL program counter:

xxxxxxxxx Segment:yyyy

COBOL PC nnnnH : RTS Error mmm

Here, xxxxxxxxx refers to the intermediate code file name, yyyy is "Root'
or an overlay segment number, mmm is the error number (see Appendix
C), and nnnn is PROCEDURE DIVISION offset. This offset will be one of
the offsets printed by the REF directive, or in between two if the error
occurs somewhere in the middle of the statement.

The default setting is NO REF.

RESEQ
Format: RESEQ

NO RESEQ

RESEQ causes the Compiler to generate COBOL sequence numbers in
the first six columns of the listing file. The first source line is numbered

Compiler Directives 67

000010, and subsequent lines increment this by 10. With NO RESEQ, the
Compiler ignores the sequence number area; characters in this area will
be printed in the listing, but they are used for documentation purposes
only.

@ Using the directive combination

LIST ".Dn/basename.CBL" RESEQ NOFORM NOINT

is a useful way of creating a (re)numbered version of a source file. (The
"n" in .Dn above is intended to specify a different disk drive from that
containing the source file -the Compiler will object if you try to overwrite
the original source.) The listing file will contain an extra line at the
beginning (listing the directives in force) and three extra lines at the end,
but these will be ignored by the Compiler if you use the new file as input.
Of course, you can also delete these lines by using a text editor.

SPECIAL-NAMES Directives
The remaining four directives all have the same format and comparable
significance. The format is:

FORMFEED "function-name"
SYSIN "function-name"
SYSOUT "function-name"
TAB "function-name"

The SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION allows
the programmer to associate arbitrary mnemonic names with the functions
SYSIN and SYSOUT (for the system logical input and output) and TAB and
FORM (for certain WRITE ADVANCING clauses) . See the Apple Ill COBOL
Language Reference Manual for the form of such statements.

As a consequence of these functions, the four names FORM, SYSIN,
SYSOUT, and TAB are usually reserved words for Apple Ill COBOL.
However, you may need to use these names as data-names in a program;
for example, you may be transporting a program from a different COBOL
system.

'

I

I

68 COBOL Introduction and Operating System Manual

These directives allow you to change the mnemonic-names in the
ENVIRONMENT DIVISION to any arbitrary value, to avoid such conflicts.
For example:

TAB "Alii-TAB"

directs the Compiler to change the implementor-name of the TAB function
to Alii-TAB; thereby, the name TAB loses all special significance in
compiling this source code.

There are no default settings for these directives, and the Compiler will
reject a negative directive (such as NO SYSIN).

Compiler Sign-Off

At the conclusion of processing, the Compiler will place on the screen
(and at the end of the listing file, as in Figure 2-9) a line of summary
information specifying

ERRORS= nnnnn

DATA=nnnnn

CODE=nnnnn

DICT = nnnnn :mmmmm/ppppp

GSA FLAGS=nnnnn

Total number of errors found

Total number of bytes used
for data items in the object
file

Total number of bytes used
for the PROCEDURE
DIVISION in the object file

Data dictionary space
usage- nnnnn is the amount
used, ppppp is the total
available and mmmmm is the
number of bytes left

Total number of source items
flagged-always 0 if NO
FLAG directive is in effect

I

I

Application Design and Development 69

Application Design and Development

Apple Ill COBOL provides standard COBOL facilities for loading programs
dynamically, for overlaying segments in memory and for invoking programs
(subroutines) written in COBOL. These subroutines must conform to the
Level One specifications of the COBOL modules Segmentation and Inter­
Program Communication. In addition, the COPY verb (of the COBOL
Library module) allows the sharing of complex program pieces, notably
record and file descriptions, among multiple programs with a single source
text to update as changes are made.

With these facilities , large and complex Apple Ill COBOL applications can
be developed. In particular, the total size of the application is not
constrained by intrinsic hardware limits. This chapter describes the use of
these structural facilities, with emphasis on operational and design issues.
Details of the Apple Ill COBOL Language elements for handling Inter­
Program Communication and Segmentation features are given in the Apple
Ill COBOL Language Reference Manual.

Program Editing

This chapter is principally devoted to issues of program design, which is a
conceptual and analytic task, that is, deskwork rather than work at the
computer console. Other chapters of the manual deal with the mechanics
of using the Apple Ill and operating the Compiler and the other system
software. The interface between design and the actual compilation and

70 COBOL Introduction and Operating System Manual

testing of programs lies at the level of program editing; therefore we begin
by considering how to use Apple Ill text editors in COBOL application
development.

The Apple Ill COBOL System does not include a text editor. The COBOL
Run-Time System uses a different interpreter than that in other Apple Ill
Language systems, in order to handle the unique features of COBOL as
efficiently as possible. We assume that you have one of the standard
Apple editors at hand: Apple Writer Ill or the Pascal Editor or any other
editor that can output ASCII or Pascal TEXT files . For details on their use
or the use of individual commands mentioned below, you should refer to
the appropriate manual (the Apple Writer Ill Operating Manual or the Apple
Ill Pascal Introduction, Filer, and Editor manual) .

COBOL Formatting
The formatting rules for COBOL programs-Indicator Area in character
position 7, Area A from positions 8 through 11 , and Area B from 1 2 to
the end of the line-originated in an era dominated by punched card input.
Column numbers are less convenient in the context of screen editing , but
most editors do have the ability to keep track of margins or set tab
positions; some, like the Apple Ill Pascal Editor, can automatically follow
your pattern of indentation (such as in IF-ELSE sentences) to assist you in
the layout of "structured" code patterns.

For Apple Ill COBOL, the important character positions on a line are
position numbers 7 (Indicator Area), 8 (start of Area A), 12 (start of Area
B), and 72 (last character position read). The Compiler ignores anything
after position 72 and anything in the first six character positions (the
Sequence Number Area)- though it can place sequence numbers there if
you direct it to do so by using the RESEQ directive (see Chapter Four).

Both of the editors discussed here count columns differently than COBOL
does: they begin with column 0 at the left of the display and reach column
79 at the right (rather than columns 1 and 80). (Both allow lines longer
than eighty characters, but that is not relevant in a COBOL setting.) You
will need to learn to decrement the COBOL boundary values by one to
correspond to the way the editors count; for example, Area A is editor
columns seven to ten, and the Indicator Area is editor column six.

Application Design and Development 71

A COBOL Program Template
It is worthwhile to create a skeleton COBOL program, containing nothing
but Division headers and your standard IDENTIFICATION and
ENVIRONMENT DIVISION entries, such as AUTHOR, INSTALLATION,
DATE-WRITIEN, DATE-COMPILED, SOURCE-COMPUTER, OBJECT­
COMPUTER. Many of these entries are unnecessary tor the functioning of
a COBOL program, but they are all good documentation and should be
included in any program. Note that Apple Ill COBOL will update the DATE­
COMPILED comment to assist you in tracking different versions of a
program (see the DATE directive in Chapter Four).

Apple Ill COBOL allows you to omit some of the entries required by the
ANSI standard. For example, the console example in Chapter Two omitted
all division headers except tor the PROCEDURE DIVISION. Items which
can be omitted in an Apple Ill COBOL program, but are required by the
ANSI standard, are marked in the Apple Ill COBOL Language Reference
Manual by special notation; they are surrounded by square brackets
overstruck with hyphens. These program documentation entries can be
omitted from "quick and dirty" programs, but should be present in any
production program. In any case, the items required by the ANSI standard
must be present tor the program to be portable. It is good practice,
therefore, to have a model or template file around containing well thought­
out versions of these entries. If you make such a tile and save it, say with
the name MODEL.CBL, then you can always begin a new program by
loading MODEL.CBL and simply changing its name, when you write it out
to disk, to whatever you like tor the new program. Then when you quit
editing, the new file keeps whatever you have incorporated from the
model, and the original MODEL.CBL is still there tor the next time. Use
system utilities to write-protect MODEL.CBL.

Such a file can also contain sample formats tor FD entries or tor your
preferred indentation patterns tor COBOL statements. While you are
editing the new program on top of the model it is easy to delete items you
don't need or to till in the holes in a sentence template. It is
counterproductive to be too elaborate with editing templates, but simple
versions can be very useful in jogging your memory and maintaining a
consistent style (as in data names or in the layout of structured
statements) across several programs.

72 COBOL Introduction and Operating System Manual

Program Editing with Apple Writer Ill
Apple Writer and the Pascal Editor are very different in approach to editing
a text. If you have a choice, you should experiment with both to determine
your own preference. Apple Writer is more like a typewriter or keypunch
in its operation, and is heavily weighted in its design to word processing;
the Pascal Editor is specifically designed to help in writing structured
code.

For COBOL programming purposes, the main advantage of Apple Writer is
that it constantly displays, at the top of the CRT screen, a line of data
about the position of the cursor. In particular, the "Tab" field in this display
tells you what column you are on. The value reported ranges from 0 at the
left hand margin to 79 at the right of the screen, and past that for longer
lines. As mentioned above, you need to adjust COBOL positions down
one in this context, since COBOL numbering begins with 1 in the leftmost
column. Once you have adjusted to this, however, it is easy to keep to
the required COBOL format as you edit your program. For example, when
you approach the end of a line you can type up through column 71 and
then press RETURN and continue the line by inserting a hyphen in column
6.

Be sure to end every line with a RETURN. The Apple Writer
documentation suggests otherwise, but it is discussing word processing
and trying to anticipate text justification and filling operations. You DON'T
want these operations applied to your source code!

Apple Writer also allows you to set "Tab stops" anywhere along a line.
These are initially set to columns 8, 16, 24, etc., which is not a useful
setting for COBOL. However, you can clear these default values, and
reset your own tabs as you move across the screen. Normally you will
find use for stops at each level of a record description and at convenient
indentations within nested statements in the PROCEDURE DIVISION. One
disadvantage of Apple Writer is that you can't move the cursor vertically
up and down the screen; the DOWN-ARROW and UP-ARROW keys move
to the start of the next line or the end of the previous one. To have
column alignment of PICTURE or VALUE phrases, you will need to use tab
stops liberally.

- - ---
0

Application Design and Development 73

Capitalizing Lower-Case Files

Standard COBOL uses only upper-case letters, except in alphanumeric
literals. If your programs are going to be moved from one system to
another, you should probably follow the standard in this regard when
writing them.

In order to enter a program in all upper-case letters, push down the
ALPHA LOCK key below the shift key in the lower left corner of the
keyboard. This key will shift all the alphabetical keys into upper-case, but
it has no effect on any of the other keys. This is a hardware function of
the Apple Ill keyboard; it applies to any editing software that will run on
the Apple ///.

Occasionally, you may find it necessary to convert a lower-case source
code file; for example, if you want to transport an Apple Ill COBOL
program to another system. Some editors have special commands to
convert between cases. In Apple Writer, for example, you can use
CONTROL-C followed by the RIGHT-ARROW or LEFT-ARROW keys to
move across the screen converting every character you pass over to
upper-case; this process is rather impractical for a large file, however.

To convert a large file to upper-case, you can issue 26 separate "find and
replace" commands, replacing all a's with A's, all b's with B's, .. . , and all
z's with Z's. The last of these commands to Apple Writer, for example,
would be:

CONTROL-F /z/Z/a

where the CONTROL-F invokes the find and replace function. This
process is still a bit unwieldy, but note that the Apple Writer WPL feature
allows you to make a file of these commands, which can then be applied
to any file you like.

74 COBOL Introduction and Operating System Manual

Editing with the Apple Ill Pascal Editor
The Pascal editor works in an editing "environment" context that
determines (among other items) margin settings and the name and type of
the file. Normally, when you begin editing a new file margins are set at the
far left and right of the display, and there is a paragraph indentation of five
spaces. For a new file (that is, if you haven't read in an old file to change
it) the editor assumes the pathname /SYSTEM.WRK.TEXT and a special
file type TEXT. All of this can be changed using the Set Environment
command. Once you have entered the editor, just typeS and E, and you
will see a display like that in Figure 5-1 . To change a parameter setting,
type its initial letter and the new value. (If the value can be more than one
character long, you will need to include a RETURN as well.) Figure 5-1
illustrates one useful setting of the Environment. There are several points
worth noting about the example:

• Like Apple Writer, this editor numbers columns from 0 to 79.

• If you type in the new file's name .d2/model.cbl without a period
at the end, the editor will automatically append the extension
. TEXT to what you typed. The final period is not part of the
name-it just tells the editor NOT to extend the name. It's easy to
forget this final period, but mostly it's only a minor annoyance.
The virtue of setting the file name by a Set Environment command
is that the editor will tell you right away what it thought you meant.

• The A(scii option is left False; that is, the file will show up in a
directory listing as type TEXT, not as type ASCII. Either type can
be used, but with an ASCII type file, the margin settings won't be
saved when you save the file-you have to reset the environment
for each edit.

Application Design and Development 75

)Environment: (options) , (ctriC) accepts , (esc) escapes [A3/1.0]
l(ndent auto True
F(illing False
L(eft margin 7
R(ight margin 71
P(ara margin 5
C(ommand char 1\

T(oken search True
A(scii file False
N(ame of file .d2/model.cbl.

original value :
0
79

* SYSTEM.WRK.TEXT

Figure 5-1. A COBOL Editing Environment

After confirming these environment changes (by typing CONTROL-C). type
I to enter the editor's insert mode, and start typing in a program.

As you type in IDENTIFICATION DIVISION, you will notice that the words
appear at the far left of the screen. Unlike Apple Writer, the Pascal Editor
doesn't tell you your column position along the line. How do you know
that you are typing into Area A? One method of course is just to type in
seven blanks before the word IDENTIFICATION; this works, but is prone
to error from typing fewer than seven blanks . The environment margin
settings permit another method that lets the editor do the counting for
you . Leave the insert mode at some point in the typing of the division
header (type CONTROL-C) and select the A(djust command by typing A.
The menu at the top of the display gives you the options

)Adjust: L(eft, R(ight , C(enter, <Moving , < ctriC) accepts , <esc) escapes

Type Land the line the cursor is on will be adjusted, if necessary, to be
flush against the Left Margin set in the Environment. Any time you want to
be sure that a line starts in Area A, just Adjust it Left ; if you want it in Area
B, Adjust Left and then press the RIGHT-ARROW key four times to move
the line to Area B. You must then type CONTROL-C to finish the
adjustment operation .

76 COBOL Introduction and Operating System Manual

As you continue typing in a program, you will notice that each time you
press RETURN to end a line, the cursor will be in place to start the next
line directly under the last one. This "auto-indentation" is very useful for
typing structured code; for example, a "nested IF" statement, or a
complex record description.

Consider the following record:

01 Rec-A.
05 Name.

10 Last
10 First
10 Middle

05 ld.
10 SS-No
10 Emp-No

pic X(16) .
pic X(16) .
pic X(1).

pic 9(9).
pic 9(6).

You will have to type in blanks to indent from the 01 level to the 05 level
and again to indent to the 1 0 level, but the editor will keep you at level 1 0
for each succeeding line until you use the LEFT-ARROW key to back up
to a previous level. (Note that, like Apple Writer, this editor assumes tab
stops at every eighth column; unlike Apple Writer, it won't allow you to
change this.)

If you are deeply indented and need to get back to the start of Area B or
Area A, you may find it convenient to start the new line at the current
deep indentation and then stop inserting and use the Adjust command as
we did above: Adjust Left to get to Area A or follow the Adjust Left with
four RIGHT-ARROWs to get to Area B. Conclude as usual with
CONTROL-C.

What happens when you get to the right margin in a long value clause? In
this case, the line has to be "continued" by typing a hyphen in the
Indicator Area of the next line. Note that the editor will "beep" at you as
you reach the right margin-in fact, the "beep" will occur in the column
before the right margin, allowing you one more character to complete the
line. You should complete the line with this last character, then press
RETURN. On the new line, type the hyphen and then exit from the insert
mode with a CONTROL-C. You now need to adjust the hyphen into the
Indicator Area; type A again and then the LEFT-ARROW to move the

0

Application Design and Development 77

hyphen into the Indicator Area. After obtaining acceptance of this
adjustment with another CONTROL-C. you are ready to continue with
insert mode. If you need to continue the next line also, auto-indentation
will start the new line below the earlier hyphen.

It's easy to miss the last character position in a value clause literal,
especially by over-writing the editor's "beep" by more than one character.
However, you can also use the Adjust command to be sure of this
position. Exit from your insertion and try the Adjust Right option. This will
place the last character you typed exactly at the column set in the
Environment as the right margin for your file. If the line moved when you
adjusted it, your guess was wrong, but you can now correct it by deleting
or inserting characters as necessary.

Setting Markers

The Pascal editor allows you to have up to ten "markers" at any points of
your choice in a file . This facility allows you to jump around from point to
point without having to wear out your finger or your patience on the cursor
keys. You can also use markers with the Copy command to copy just part
of an existing file into the program you are editing, or to duplicate code
from one section of your file in another. When you select the S(et
command from the editor's command line and type M for M(arker, the
editor will prompt you with the message

for a name (one to eight characters long, digits and special characters are
allowed as well as letters) and it will make an internal note associating that
name with the current cursor position. After you have set ten markers, you
will have to replace one of the earlier ones if you want to mark a new
point in your file.

Useful points to mark in any program would be the start of the OAT A
DIVISION and the PROCEDURE DIVISION. In some programs you may
want to mark distinctions lower than divisions, for example the FILE­
CONTROL paragraph in the ENVIRONMENT DIVISION or the LINKAGE
SECTION in the DATA DIVISION, or individual paragraphs or statements in
the PROCEDURE DIVISION. For segmented programs (seE> below) you
will probably find it helpful to mark each of the sections of the
PROCEDURE DIVISION with its segment number.

78 COBOL Introduction and Operating System Manual

Note that you can set markers as well as margins in an ASCII type file;
but the settings are lost when you quit the editor and write the file to
disk. A TEXT file has an extra two blocks (1 024 bytes) at the beginning,
used by the editor to maintain this environmental information.

Some of the programs on the /DEMO disk illustrate the placement of
markers. If you list the /DEMO directory , you will see that several of the
files have file type Textfile, while others are type Asciifile. Use the Pascal
editor to examine one of those listed as a T extfile. When you have read in
the file , issue the Set Environment command (type S and then E) ; the
markers set in the file will be named at the bottom of the Environment
display.

You can use the Jump command to move from one marker to another.
One advantage of the Pascal marker system is that an existing program
can be marked by one programmer, and another programmer can
immediately locate significant points of the program just by noticing what
the first one marked.

Program Structure-Segmentation

Recall that a COBOL PROCEDURE DIVISION consists of sentences, and
the sentences may be grouped together into larger logical units , that is,
paragraphs and sections. A paragraph is a collection of sentences given a
name for purposes of documentation or as a target for transfer of control
during program execution . A section may be one or more paragraphs, or it
may be simply a number of sentences not grouped into paragraphs. For
main-frame computers with large memories, program sections are primarily
a notational convenience for PROCEDURE DIVISION parts intermediate
between the paragraph and the program as a whole. Sometimes their only
use is to allow abbreviations such as

PERFORM PARAGRAPH-A THRU PARAGRAPH-C.

to

PERFORM SECTION-1 .

Application Design and Development 79

However, sections have a more active part in program development for
the Apple 1//. A large procedure may be too large to fit into the computer's
memory all at one time; it must be broken into several "segments" , and
each segment "overlaid" on top of the memory used by previous
segments. Consider how frequently a program has the structure

Initialize ... Process Terminate

There may be a substantial initialization phase; once it is done there is no
need to have its code sitting in memory. Similarly, the termination code
needn't be in memory until the end, and the central process can stay on
disk until the initialization is done and be deleted when the termination
code comes in. The central process might even have several independent
parts which likewise can be split into segments.

The Compiler determines the overlay structure of your program on the
basis of the sections you define in the PROCEDURE DIVISION of your
source code. If any part of your PROCEDURE DIVISION is structured as
a section , then all of it must be: every sentence and paragraph must be
part of a section.

Segments and Overlays
The ENVIRONMENT and DATA DIVISION of a COBOL program plus some
residual part of the PROCEDURE DIVISION must remain in memory at all
times; even if you specify that each section of your program is a
candidate for overlay, the Compiler will create a certain minimal amount of
code needed by all the sections. This minimum segment that must be
resident at all times is called the "root" or permanent segment of the
program. The Run-Time System always loads the root of a program when
you give it the Run command (Chapter Three) . It will then bring in the
other "independent" segments one at a time, taking no more than enough
memory to hold the largest segment of the program. Such a situation is
illustrated in Figure 5-2.

80 COBOL Introduction and Operating System Manual

Segment 1

PERMANENT (ROOT) SEGMENT Segment 2

~ ..

Segment 3

Segment 4

....._____ Environ'!'~'?t & ___.,._ ..04f---- Procedure Division ---~"'~---- Data DIVISIOn _."""" r

Figure 5-2. Segment Overlay

This figure shows a chunk of PROCEDURE DIVISION code in the root
segment. In general, you will have some bookkeeping or general purpose
routines that need to be performed by more than one segment; these
should go into the root along with the program data.

As the program executes, and control transfers out of one segment into
another, the Run-Time System checks whether the target is currently in
memory. If it isn't, it is loaded into free memory or on top of existing
overlayable segments.

Coding for Segmentation
In order to specify segmentation in a COBOL program, you must include a
segment number in the section header of some of your sections in the
PROCEDURE DIVISION. The segment number is a one or two digit
number. Segment number values from 50 to 99 refer to independent
segments, to be brought in (overlaid) as needed; values from 0 to 49 all
refer to the root segment. You may omit the segment number value; in
that case, the default value of 0 is assumed. (You might find it useful to
have different segment values in the 0 to 49 range, in order to logically

Application Design and Development 81

differentiate sections that have different functions but must all be present
in the root segment.) The following sample illustrates coding of a
PROCEDURE DIVISION for segments:

PROCEDURE DIVISION.
ROOT-X-UPD
X-UPD-A.

MOVE A TO B.
etc.

STOP RUN.
OVL Y -2-NEW-ACCOUNT

MOVE X TOY.
etc.

SECTION.

SECTION 60.

Note that when segmentation is used, the entire procedure division must
be segmented. Hence the first paragraph ("ROOT-X-UPD" here) must be
a section.

In this example, the section ROOT-X-UPD will be included in the root
segment-it will never need to be loaded when a PERFORM or other
control transfer causes it to be executed. Since no segment number is
given, the Compiler automatically places it in segment 00. The other
section shown becomes segment 60. It is apparently intended to do
special processing for a new account and will not normally be in memory
at all; it will be loaded by the Run-Time System whenever control needs to
be transferred there.

In general, root segment sections will precede overlay sections; that is,
sections numbered 0 through 49 or not numbered at all must appear
before sections numbered 50 through 99. Order within these two major
groups is not important. However, good programming practice would
suggest that the sections be numbered in increasing order and that the
section numbers have some logic to them, in order to aid program
documentation and maintenance.

82 COBOL Introduction and Operating System Manual

Any control transfer (PERFORM or GO TO) to a segment that isn't in
memory will cause the Run-Time System to load the segment on top of
the current non-root segment. You can transfer to a paragraph in the
middle of an overlay segment-it is not necessary to PERFORM or GO TO
the section from its beginning. Other technical restrictions on
segmentation are discussed in the Apple Ill COBOL Language Reference
Manual.

Operational Considerations
The Compiler creates a dictionary file and an intermediate code file for
each independent segment (that is, each section with a segment number
of 50 or more) and for the root segment. The dictionary files have
extensions .DOO (for the root) and .Dnn (for each segment number "nn"
between 50 and 99). The intermediate code files have extensions .INT
(for the root) and .Inn (for overlay segment nn) . The dictionary files aren't
needed for running the program; they are used by the Compiler and by
the Animator. If you don't want to use the Animator to debug the program,
you can delete these files after compilation.

Additionally, the Compiler generates an lntersegment Reference file
(extension .ISR) ; the total size of the root, the largest overlay segment,
and the .ISR file combined must be 64K bytes or less.

The Run-Time System thinks of any .INT file as a (potential) root of an
overlay structure . Thus you may occasionally see messages (for example,
when you abort a program with CONTROL-"-) referring to a root even
though you have no sections at all in the source code.

If you are trying to debug a large program, the Animator may be unable to
operate because there isn't enough room for the program code in memory
together with the Animator's own internal code. (This should not be a
problem unless you are working in a configuration with less than 256K
memory.) In such a case, you may find it useful to break the program into
segments (or into smaller segments if it is already segmented) . In this
case, efficiency of operation is not a major consideration, so you can be
fairly arbitrary in dividing the program into sections.

Application Design and Development 83

More generally, it requires considerable thought to use the segmentation
facility efficiently. If you are developing a program on a 256K Apple ///,
you should always be able to use the Animator to trace program behavior.
The basic idea is to consolidate into one section the sentences and
paragraphs which tend to be needed at the same time during program
execution. Most programs do have several clusters of code which act like
that, a phenomenon known as "program locality" or "working set" . The
best rule of thumb is to follow the Initiate, Process and Terminate division
illustrated above. Well-structured, modular programs usually divide into
segments following internal logic in a natural way.

Program Structure-Inter-Program
Communication

Segmentation is one means of modular decomposition of large or complex
programming tasks. As such, it has two limitations on the modular breakup
of a task: it does not provide for the modular decomposition of the Data
Division , and it allows for only a finite set of procedural units, all of which
must be present within one program source file.

Each module of a program will normally have its own "local" set of data
items in working storage; it may well have a file or set of files that is
relevant only for its task and not for the rest of the program. A
programmer can use the REDEFINES clause in the DATA DIVISION to give
different definitions for each module to a common area of memory, but
over-use of this facility is dangerous and prone to inducing error. It is safer
for each module to have its own local data items, with data and procedure
code both loaded or overlaid together; the permanently resident root
would contain only the procedures and data needed by all modules.

Furthermore, any on-going application will acquire a library of useful
programs and standard subroutines for common tasks. It is possible to
incorporate these in a new program by use of COPY statements or by use
of editor copy capabilities; however, this approach requires a great deal of
work and care to see that name conflicts are avoided, and to be sure that
the library code works the same way in its new source code context.

84 COBOL Introduction and Operating System Manual

COBOL addresses these problems by allowing separately compiled
modules to cooperate, transferring control by CALL and EXIT statements
and passing data by means of the LINKAGE SECTION. The Run-Time
System loads a module when it is CALLed (unless it is already present in
memory), bringing in its own local DATA DIVISION and PROCEDURE
DIVISION. The module will then remain in memory until the program
releases it with a CANCEL statement. By such means, the program can
have a more detailed and complex control of the computer's memory
usage than with segmentation.

The type of inter-module structuring possible using CALL is illustrated in
Figure 5-3. Each box represents a separate source file , separately
compiled and with its intermediate code available on disk. At each level,
the modules shown CALL those underneath them that are attached by
lines. None of the modules needs to know anything about any of the
others except the ones directly under it.

A

B/j~H
~I /\\ I~

D E F X y z L K

/I~
M N Q

Figure 5-3. Sample CALL Structure

Application Design and Development 85

The main program A is permanently resident in memory. It calls B, C, and
H, which are subsidiary stand-alone functions within the application. These
programs in turn CALL other lower level functions. Since the functions B,
C and H are independent, they don't need to be permanently resident in
memory together. They can therefore be called as necessary, use the
same memory, and then be CANCELed to allow room for the next function
needed. The same applies to the lower functions at their level in the tree
structure.

Memory Usage
Use of CALL and CANCEL should be planned to keep a common
subroutine (like Lin Figure 5-3) in memory to save load time. A CALLed
program should also stay in memory if it has any open files; otherwise, it
must re-open the files on every CALL.

If a file is opened during the execution of a program by means of a CALL
statement, the file will be closed by any CANCEL statement that removes
the program from memory.

Programs are loaded one after another, at the time they are called. Thus
in Figure 5-3, assuming the CALL statements occur as in the left-to-right
order of the diagram, program A will be loaded first, then B, and then D. If
Dis CANCELed, its memory then becomes available for E. However,
suppose that D stays in memory until after the CALL to E. If D is
subsequently CANCELed (but E isn't), there will be a "gap" opened with
some free memory before E and some after. At the point that B CALLs F,
F will be loaded into the larger of trese two free areas. B must CANCEL
each of D, E and F before its own EXIT, and A must CANCEL Bin order
to leave the maximum free space for loading C.

If you are not careful in CALUCANCEL sequences, you can fragment the
memory, leaving no room for a new CALL, even though the total amount
of free memory might be enough. Figure 5-4 illustrates this problem:

86 COBOL Introduction and Operating System Manual

~--------P-r-og_r_am __ A----------~------c ____ _. ___ L~~ ~•~]
H

Figure 5-4. Memory Fragmentation

H is too big to fit in the memory obtained by CANCELing C and also too
big to fit in the remaining free space after L. There are several possible
solutions; the appropriate one will depend on the structure of the
programming task. One possibility is for C to CALL L after CALLing (one
or more of) X, Y or Z but before CANCELing them; this will place K further
toward the high end of memory. Or possibly A can CALL H before C, so
that C will fit in the space vacated by CANCELing H. Finally, A might be
able to CALL L-not to do anything, but just to get it loaded.

There is one more complication to consider: any program can be
segmented. When you CALL a segmented program, the Run-Time System
allocates for it enough memory to hold the root segment and the largest
overlay.

Coding for Program Calls
The most common use of the CALL statement in COBOL programming is
the implementation of a modular hierarchy like that shown in Figure 5-3 .
Typically, the main program will have a number of statements like

CALL "B.INT".

or

CALL "C.INT" USING DATA-ITEM-1 , DATA-ITEM-2 .

where the items in the USING list of CALL to C must be 01 or 77 level
items in the OAT A DIVISION of A. These are the parameters of the CALL
to C, and descriptions of them must appear in the LINKAGE SECTION of

Application Design and Development 87

C and in a USING list for the PROCEDURE DIVISION of C. The data­
names used for these items in program C may (very likely will) be different
from those used in A. The data descriptions may also be made different,
but this is dangerous and should be done only with caution.

The object of the CALL verb may be the name of an alphanumeric data
item as well as an alphanumeric literal. In either case, it must contain a
valid SOS pathname for an intermediate code file . The name must be
given in full; the Run-Time System will not supply the .INT extension when
executing a CALL.

If the called program terminates with a STOP RUN statement or a simple
EXIT statement, control will not return to the main program. Rather, the
Run-Time System closes all files and returns to the main COBOL
command line. To return control to the caller, the CALLed program must
end with EXIT PROGRAM.

For details on CALL, CANCEL, EXIT PROGRAM and USING, refer to
Chapter 11 of the Apple Ill COBOL Language Reference Manual.

Dynamic Program Hierarchies
There are situations in which a fixed CALL structure like Figure 5-3 would
be inappropriate. For example, in a menu-based application environment,
the user might execute any one of an indefinite number of programs from
his library, or one program may need to be followed (but only in some
circumstances) by another. Hard-coding all possibilities may be wasteful or
impossible; you want instead to ACCEPT a name from the operator, or to
build a name from pieces (like a list of standard file extensions and a
basename) not necessarily known to the caller.

Fortunately, COBOL is sufficiently flexible to allow such dynamic
determination of the program to call. The basic idea is to let program
names be part of the data that is passed between programs and
subprograms in the Linkage Section. With this method, a simple overall
control loop for a main program can CALL an infinite number of other

I

, 88 COBOL Introduction and Operating System Manual

programs, determined for it by some "menu selector" . The example below
illustrates this technique.

WORKING-STORAGE SECTION.

01 NEXT-PROG
01 CURRENT­
PROG

PROCEDURE DIVISION.
LOOP.

PIC X(20) VALUE SPACES.

PIC X(20) VALUE "SELECTOR.INT".

CALL CURRENT-PROG USING NEXT-PROG.
CANCEL CURRENT-PROG.
IF NEXT-PROG = SPACES STOP RUN.
MOVE NEXT-PROG TO CURRENT PROG.
MOVE SPACES TO NEXT PROG.
GO TO LOOP.

Note that this is a complete program in Apple Ill COBOL. The actual
programs to be run can then specify their successors as follows:

LINKAGE-SECTION.
01 NEXT-PROG PIC X(20).

PROCEDURE DIVISION USING NEXT-PROG.

MOVE "SUCCESSOR.INT" TO NEXT-PROG.
EXIT PROGRAM.

In this way, each independent subprogram CANCELs itself and changes
the name in the CALL statement to CALL the next one. Note however that
if the subprograms in turn CALL other programs, this simple method does
not guarantee effective memory utilization.

There are also two other alternatives that could accomplish essentially the
same end result as our "menu selector" program.

Application Design and Development 89

First, you could just name your master menu program COBOL.START.
Then any program it called could be exited via the STOP RUN statement.
This would cause the system to reinitialize, and COBOL.START would be
run all over again. Of course, this method would not allow any information
to be conveyed from the CALLed program back to the master menu
program.

Secondly, you could use the chain facility as described in the section
"Calls to the Operating System", later in this chapter. Chaining acts as if
you had exited the calling program and typed R(un followed by the
program name to chain to from the COBOL command line.

Operational Considerations
Each program in an Apple Ill COBOL application must be written in
COBOL; that is, you cannot CALL programs written in Pascal or any other
language.

No intermediate code file may be larger than 64K bytes, includ- ing both
DATA and PROCEDURE DIVISION, and the PROCEDURE DIVISION itself
is limited to 60K bytes. If the program is segmented, the total of root plus
largest segment plus .ISR file must meet both of these limits.

A main program is invoked via the COBOL Command Line option R (or A if
the Animator is used for debugging it); a subprogram is loaded whenever
a CALL statement referring to it is executed, and it is not already present
in memory.

The CALLed intermediate code program file must be present on disk at
the time of the first CALL to the file, or fatal error 164 will result (see
Appendix C, Run-Time Errors). Disks can be shifted from drive to drive
(for example, by the operator acting upon messages displayed on the
console) while the program is running.

There must be room available in memory for the program to be loaded.
The ON OVERFLOW clause can be used to specify program action if
insufficient space is available. Otherwise the CALL statement is ignored
and the next calling program instruction is performed.

90 COBOL Introduction and Operating System Manual

Calls to the Operating System
While it is not possible to call an arbitrary non-COBOL program, you can
call several SOS routines. These routines are known to the Compiler by a
one-byte binary routine number, and you can write

CALL X"nn" USING

or

CALL data-name USING .. . , where data-name is declared as PIC X VALUE
X"nn".

The available routines and their routine numbers and parameters are as
follows:

Destroy. Routine number X"A5". This routine deletes a disk file ; that is, it
functions like the Utility Remove. There are two parameters. The first
parameter is the pathname of the file to destroy and the second is an
indication of the success of the operation. They should be declared in
WORKING-STORAGE as shown in the following example:

01 DESTROY PIC X VALUE X"A5" .
01 PATH-NAME-1 .

05 PN-LENGTH PIC 99 COMP VALUE 10.
05 PN-CHARS PIC X(1 0) VALUE "/DEMO/TEST".

01 RESULT PIC 99 COMP.

Here, PN-LENGTH holds the (binary) count of the number of characters in
the pathname, and PN-CHARS contains the characters. RESULT is a
variable that will be set on return from the CALL and is a normal SOS error
code. Its value is 0 if the file was successfully destroyed or non-zero in
case of errors.

The actual call would appear as follows:

CALL DESTROY USING PATH-NAME-1, RESULT.

Application Design and Development 91

Set-Prefix. Routine number X" AA" . This routine changes the SOS prefix
value. There are two arguments, which should be declared as shown in
the following example:

01 SET-PREFIX PIC X VALUE X"AA".
01 PATH·NAME-2 .

05 PN-LENGTH PIC 99 COMP VALUE 14.
05 PN-CHARS PIC X(14) VALUE "/PROFILE/COBOL".

01 RESULT PIC 99 COMP.

The actual call would appear as follows:

CALL SET-PREFIX USING PATH-NAME-2, RESULT.

Upon return from the call, the SOS pathname will be set to
/PROFILE/COBOL, unless RESULT contains a non-zero value . If RESULT
is non-zero, it will contain a SOS error code .

Get-Prefix. Routine number X" AB". This routine gets the value of the
current SOS prefix. There are three parameters, which might be declared
as follows :

01 PATH-NAME-2 .
05 PN-LENGTH
05 PN-CHARS

01 LENGTH-TO-RECEIVE-IN
01 RESULT

The actual call appears as follows:

PIC 99 COMP.
PIC X(99) .
PIC 99 COMP VALUE 99.
PIC 99 COMP.

CALL X"AB" USING PATH-NAME-2 , LENGTH-TO-RECEIVE-IN, RESULT.

Note that the length of the pathname received is PN-LENGTH OF PATH­
NAME-2. Meanwhile the length parameter given in the main call
designates the size of buffer waiting to receive the pathname; it should be
made amply large. RESULT is again a variable to receive a SOS error
code and will be 0 if the call was successful.

92 COBOL Introduction and Operating System Manual

Set-Time. Routine number X"AD" . This routine sets the SOS date and
time and will set the Apple Ill clock if you have one. The argument can be
declared as follows:

01 SET-TIME PIC X VALUE X"AD" .
01 THE-TIME.

02 CENTURY PIC 99 VALUE 19.
02 YEAR PIC 99 VALUE 82 .
02 MONTH PIC 99 VALUE 8.
02 DAY-OF-MONTH PIC 99 VALUE 5 .
02 FILLER PIC 9 .
02 HOUR PIC 99 VALUE 14.
02 MINUTE PIC 99 VALUE 29.
02 SECOND PIC 99 VALUE 16.
02 FILLER PIC 999 .

In this case , the actual call could be

CALL SET-TIME USING THE-TIME.

Note that in this case, we have assigned a mnemonic name to the call we
wish to make.

Chain. Routine number X"84". This routine chains to another program . It
takes one parameter which can be declared as shown below:

01 CHAIN PIC X VALUE X"84".
01 FILE-NAME-1 PIC X(30) VALUE "/P/CHAINEDTO.INT".

The actual call will be

CALL CHAIN USING FILE-NAME-1 .

Note that the entire file name must be given, including the ". I NT" suffix, if
present. The net effect of this command is as if you executed an
immediate STOP RUN in the calling program and typed R(un from the
COBOL command line. The query about what file to run is then answered
with /P/CHAINEDTO.INT. Worth noting , however, is that unless you issue
the chain command with another parameter, /P/CHAINEDTO.INT has
become analogous to COBOL.START in that it will be run again if any
program ends with a STOP RUN .

Application Design and Development 93

Cold-Start. Routine number X"A6". This routine brings the COBOL system
to an immediate halt and issues the message

INSERT SYSTEM DISKETIE & REBOOT

It requires no parameters. Cold-Start is useful for providing the user with a
clean exit from a turnkey application.

Get-Char. Routine number X"D8" . This routine allows you to read a single
character typed at the keyboard without a following carriage return. One
obvious use is for menu selection. It requires one parameter:

01 GET-CHAR
01 CHAR

PIC X
PIC X.

VALUE X"D8" .

The actual call would be given as follows:

CALL GET-CHAR USING CHAR.

On return from this call, CHAR will contain the ASCII character typed at
the keyboard by the user.

Sysv. Routine number X"AO" . This routine has two separate uses which
will be discussed here. It takes two parameters declared as follows:

01 THE-FUNCTION
01 PATH-NAME-3.

05 PN-LENGTH
05 PN-CHARS

The following call

PIC 99 COMP.

PIC 99 COMP.
PIC X(99) .

MOVE 4 TO THE-FUNCTION.
CALL X"AO" USING THE-FUNCTION, PATH-NAME-3.

will return the pathname of the directory of the main program in PATH­
NAME-3 .

94 COBOL Introduction and Operating System Manual

The call

MOVE 5 TO THE-FUNCTION .

CALL X"AO" USING THE-FUNCTION , PATH-NAME-3 .

will return the name of the currently executing program in PATH-NAME-3.
Note once again that the length of the data received is stored in PN­
LENGTH while the actual characters are stored in PN-CHARS.

Two major cautionary notes are in order here. First, please note that the
use of these calls is dangerous because no validation is performed upon
their parameters. Thus, improper use can destroy the COBOL execution
environment. Secondly, the use of these calls will lead to programs which
are non-standard and cannot be ported to other systems without
conversion . In general , use of these calls should be avoided whenever
possible.

Apple Ill Device Control 95

I.

Apple Ill Device Control

COBOL is traditionally a batch processing language. However, a dedicated
computer like the Apple Ill naturally favors a conversational or interactive
style of use. Even if a program has been moved to the Apple Ill from a
batch system, it may require some special information such as the names
of files to be accessed. In the batch system version, this information and
other run-time data tailoring would be done by some form of "Job Control
Language" (JCL); on the Apple, it is obtained directly from the operator at
the console. The COBOL Language makes special provision for console
input and output with its ACCEPT and DISPLAY verbs. In most other
regards, however, COBOL is oriented to input and output of large
SEQUENTIAL or RANDOM files.

Apple Ill disk drives are adaptable to traditional COBOL file processing.
Implementation considerations for the standard FILE ORGANIZATION
possibilities will be found in Appendix F. Here we simply note that
RANDOM (index sequential) files in the Apple Ill COBOL system are
implemented as pairs of files, with an index file used to index a data file ,
which can be independently accessed as a SEQUENTIAL file. The same
organization is used to implement work files for the SORT and MERGE
verbs.

96 COBOL Introduction and Operating System Manual

The Apple Ill supports a large number of character devices; besides the
console, there are asynchronous communications, printers, graphics
functions on the console, audio, etc. For these devices, the standard file
organizations are not entirely appropriate. Apple Ill COBOL provides a
number of extensions to permit support of these devices. There are
special variants of the ACCEPT and DISPLAY verbs; there is a special file
organization LINE SEQUENTIAL appropriate to printers and the console;
and it is possible to deal with individual bytes as hexadecimal control
codes.

LINE SEQUENTIAL file organization allows variable length records with an
ASCII CR (carriage return; X"OD") to terminate a record. Such an
organization is natural for text files. Note that both ASCII files and Pascal
TEXT files can be read using this organization. Lines of characters are
inherently of variable length; the other file organizations in Apple Ill COBOL
require fixed length records. Because of the structure of SOS, any Apple
Ill character device is, as far as a COBOL program is concerned, a file like
any other file; hence the program can READ a record from the file or
WRITE a record to it, using the LINE SEQUENTIAL organization.

File Status

The FILE CONTROL paragraph in the COBOL ENVIRONMENT DIVISION
has an implementation-defined FILE STATUS clause; in Apple Ill COBOL
the FILE STATUS data item must be declared in the DATA DIVISION to be
a PIC XX variable. The leading character of this variable is described in the
Apple Ill COBOL Language Reference Manual, in Chapters Five, Six, and
Seven (which deal with SEQUENTIAL, RELATIVE, and INDEXED input and
output respectively) . The second character is in fact a binary value. It is
significant only if the leading character is the digit 9; in this case its value
is a binary number-one of the file error values listed in Appendix C of this

Apple Ill Device Control 97

manual. In order to make use of the numeric value of this byte, the
program must move it to a computational data item; for example

FILE-CONTROL
... STATUS is FILE-STATUS.

DATA DIVISION.

01 FILE-STATUS.
02 STATUS-1
02 STATUS-2

01 BINARY-FIELD.

PIC9.
PIC X.

02 BINARY-ZERO PIC X VALUE LOW-VALUE.
02 BINARY-CHAR PIC X.

01 BINARY-NO REDEFINES BINARY-FIELD PIC 9(4) COMP.

PROCEDURE DIVISION.

CHECK-STATUS.
IF FILE-STATUS NOT = ZERO

MOVE STATUS TO BINARY-CHAR

At this stage, reference to BINARY-NO will properly handle the arithmetic
value of the STATUS-2 byte.

ANSI ACCEPT and DISPLAY

COBOL has two verbs especially designed for console handling: ACCEPT
and DISPLAY. These verbs exist in Apple/// COBOL, both in their ANSI
standard versions (which present a low-level system interface to the SOS
driver), and in a higher level extension designed for ease of use and more
legible and secure programs than are possible with the standard version .

When an ACCEPT statement is executed, or a READ from the file
.CONSOLE, the cursor appears on the screen as an invitation for the
operator to type in appropriate information. A DISPLAY or a WRITE to the
console can prompt the operator for what is wanted. The prompting can
be as elaborate as full-screen menus or as simple and unobtrusive as you
like.

'

98 COBOL Introduction and Operating System Manual

The ANSI forms of these statements are written

ACCEPT ... FROM CONSOLE. DISPLAY ... UPON CONSOLE.

with the CONSOLE phrases optional. The extended forms are

ACCEPT ... FROM CRT. DISPLAY .. UPON CRT.

with the CRT phrases required unless the program contains the entry
CONSOLE IS CRT in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. For example, in this chapter, the ANSI forms
will all omit the CONSOLE phrases, and the Apple Ill extensions will all use
the CRT phrases. For full specification of the statements and their options,
refer to Chapter Three of the Apple Ill COBOL Language Reference
Manual.

The standard ACCEPT and DISPLAY verbs allow the programmer to read
and write strings of alphanumeric data using a " logical" line length defined
by the CRTWIDTH directive to the Compiler. See Chapter Four for the use
of this directive. The logical line length is that line length after which the
COBOL system will send a carriage return. If the logical line length is
greater than the number of characters on a line of the CRT screen (40 or
80 characters). the console driver splits the logical line whenever the
physical line fills up. Logical line length can be set to any length from 0 to
255 characters; a length of 0 effectively turns off the use of the ANSI
form of ACCEPT and DISPLAY. The default setting of logical line length is
1 28 characters, a common value in other COBOL implementations and
thus relatively convenient for transporting existing programs to the Apple
Ill.

In executing an ACCEPT statement, the console displays the cursor and
gathers up all characters typed until a RETURN; then , the characters are
moved to the data item specified in the statement, dropping any
characters in excess of the logical line length.

Apple Ill Device Control 99

Typing input to an ACCEPT statement is like typing commands to the
COBOL Run-Time System: a LEFT-ARROW deletes the last character
typed and a CONTROL-X will erase the whole line for you to start over.
The other cursor motion keys (UP, DOWN and RIGHT ARROW keys) are
read by the ACCEPT statement but not echoed to the display. Any other
key can be used normally. The ENTER key on the numeric keypad works
just like RETURN to terminate the input.

The DISPLAY statement can handle any number of alphanumeric literals
and data items; it gathers the items, in the order named, character by
character into logical lines. As each logical line is filled, or for any partial
line left over, it sends the line to the console for display. No data item or
literal is truncated in this process of line-filling; if the item is longer than the
logical line length, it simply spills over onto several lines. Normally, you
should compile your programs with the logical line length (CRTWIDTH) the
same as the physical display line length (or possibly a multiple of it, such
as 160) to avoid ragged displays from mismatches of the logical and
physical lengths, for example

1 00 COBOL Introduction and Operating System Manual

Console Control Codes
Apple Ill COBOL allows you to use hexadecimal values in alphanumeric
literals and data items. Thus the full ASCII character set, control characters
as well as printable ones, is available for use in ACCEPT and DISPLAY
statements. This feature is valuable because the Apple Ill console driver
uses the ASCII control characters for many of its "special effects" such as
direct cursor positioning, inverse video, windows (viewports). color text,
etc. For example, the statement

DISPLAY X" 1 C1 A030712", "HELLO! ", X" 11 OC" UPON
CONSOLE.

uses hexadecimal control characters to

• clear the screen (1 C)

• move to column 3, row 7 (1 A with parameters 03 and 07)

• change to inverse video (12)

and, after displaying the greeting, to

•
•

return to normal video (11)

home the cursor to the upper left corner (OC) .

Note that hexadecimal values passed in ACCEPT/DISPLAY statements
must be UPON CONSOLE, not UPON CRT. Therefore, if in SPECIAL­
NAMES, you have defined CONSOLE IS CRT, you must explicitly use the
UPON CONSOLE format when passing hexadecimal values to the
console driver.

For full details on the console control characters, see the Apple Ill
Standard Device Drivers Manual, Chapter 3. The discussion there uses
decimal values for the control codes; however Appendix J to that manual
also gives a conversion table for decimal to hexadecimal. Because
hexadecimal codes are not very legible, it is useful to define data items for
the codes you will use, for example:

77 CRLF PIC XX VALUE X"ODOA".
77 BS PIC X VALUE X"08".
77 CLR PIC X VALUE X"1 C" .

Apple Ill Device Control 1 01

If you use console control codes in your DISPLAY statements, especially
those which move the cursor, you will tend to conflict with the logical line
defined by CRTWIDTH. Keep your display lists short and the line length
long (say 240) in order to minimize conflicts.

The ACCEPT statement will also read these control codes, except for
CONTROL-H (BS, X"08"), ·which is the same as the LEFT-ARROW, and
CONTROL-X, which erases the line. CONTROL-"- (which should
correspond to the "display clear" character X"1 C") can't be input because
it aborts the program after the RETURN ending the ACCEPT. Also note
that CONTROL-M (ASCII CR, X"OD") is the same as RETURN, so it
terminates the ACCEPT instead of being read into the data item. However,
if you hold down the OPEN-APPLE key to the right of ALPHA LOCK,
these keys will transmit the ASCII characters but with their high bit set;
your program can recognize this and act accordingly. It is impossible to
see these control characters as you type them-they aren't echoed on the
screen as the printable characters are (unless you toggle
CONTROL-8)-so it is hard to correct mistakes. In general, the codes are
much more useful in DISPLAY than in ACCEPT.

Most of the screen control available to you through control codes and the
ANSI standard DISPLAY statement can be done more simply and with less
chance of error by the extensions that we will deal with in the next
section. Ordinarily, you will use direct console control only when

• there is no room (on a turnkey disk for example) for the run-time
AD IS module as well as the application. (The AD IS module is the
part of the Run-Time System which handles Apple ///
ACCEPT /DISPLAY extensions.)

• you need special effects, such as color changes. In this case,
you can do most of the work through ADIS and keep the use of
control codes to a minimum.

• or when higher-level (ADIS) features prove to be a performance
bottle-neck. It is less efficient to go through ADIS than directly via
control codes to the driver. But don't blindly assume that you
need the extra efficiency; in most cases, efficiency is a result of
structure and not of implementation.

1 02 COBOL Introduction and Operating System Manual

Note that the use of console control codes in your DISPLAY or ACCEPT
statements can cause difficulties if you later wish to Animate such
programs. In general , the Animator will not handle such statements
correctly. However, the following tips may be of some help: Do not use
X or G to pass such statements but rather set a breakpoint after them ,
and Z(oom to the breakpoint. If by chance you do pass such statements
using X or G, you may still be able to recover by issuing the U command
followed by a space. However. there is no way to recover if you have
issued a RESET VIEWPORT code to the console driver.

Apple Ill Graphics Control

Graphics is not supported in this release of Apple Ill COBOL. Due to
limitations of the system, you will not be able to write to the . GRAFIX
driver. You can create some of the effects that might be obtained by using
.GRAFIX by creating alternate character sets and using them with the
.CONSOLE driver.

- -

Apple Ill Device Control 1 03

Apple Ill ADIS Features

The higher level screen control features of Apple Ill COBOL are
interpreted at run-time by the ADIS module in the subdirectory COBOU of
the /COBOLBOOT disk. These features allow you to make the Apple Ill
console into an "intelligent" terminal; that is, programs can define screen
"forms" with some fields available for user input (accepting only numeric
values in numeric fields), while the rest of the screen is protected.

Most of the ACCEPT/DISPLAY extensions are record oriented and fit quite
naturally into the structure of COBOL. The object of an ACCEPT or
DISPLAY is a record; fields in the record may be numeric, alphanumeric,
or FILLER items. Numeric fields will ACCEPT only numeric input;
alphanumeric fields will ACCEPT any printable character (but not control
codes-a user can't type these in unintentionally); and FILLER items are
ignored for both input and output (except to determine spacing between
fields) .

During data entry, the operator has full cursor control by use of the
ARROW keys. These can be moved anywhere on the screen without
erasing any protected data or current input. Pressing RETURN finishes the
ACCEPT and gives control to the next statement. Note that each
character is moved into its field of the record as it is typed, so there is no
delay at the RETURN while a whole screen is transmitted .

1 04 COBOL Introduction and Operating System Manual

General Screen Control
The most useful of the special controls to the console driver are available
in a legible and secure way using Apple Ill extensions of the ANSI
statements.

1. To clear the screen, leaving the cursor in HOME position at the
top left corner, use the statement

DISPLAY SPACE UPON CRT.

This is a special use of the COBOL reserved word SPACE; if you
write instead DISPLAY " " UPON CRT, you will get a single blank
character written out at the current location of the cursor.

2 . To move the cursor to line yy and column xx, use

DISPLAY ... AT yyxx UPON CRT.

or

ACCEPT ... AT yyxx FROM CRT.

The cursor can be positioned this way for input (ACCEPT) as
well as output (DISPLAY). The line number yy and the column
number xx are decimal numbers; they start at 01 and range to
24 (for line numbers) and 80 (for columns) . Note that each
must be two digits, written without any separating spaces.

ACCEPT statements allow another form of cursor control. It
you use the

CURSOR IS data-name

entry in the SPECIAL-NAMES paragraph, where the data-name
refers to a PIC 9(4) item, the item will be updated at the end of
each ACCEPT and the next ACCEPT will automatically show the
cursor at the next available (that is, non-FILLER) position. This
facility is useful for recording the cursor position so that it can be
restored after switching screens. For example, you might use this
to restore a user ACCEPT screen after displaying a HELP screen.

Apple Ill Device Control 1 05

3. To highlight a display in inverse video , use

DISPLAY ... UPON CRT-UNDER.

This has the effect of switching on the inverse video mode before
the display and switching it off afterwards. This can be combined
with the AT phrase to make a highlighted display anywhere on the
screen. The name CRT-UNDER is used for historical reasons; it
stands for underlining, which is an alternate form of highlighting on
some types of terminals.

Thus we can perform the same example as in the last section with

DISPLAY SPACE UPON CRT.
DISPLAY "Hello!" AT 0804 UPON CRT-UNDER.

Screen-Record Definition
Any record (01 level data description) can be displayed upon or accepted
from the CRT. Any field of the record which is named FILLER will be
ignored except for its effect on spacing between fields. Assuming an 80
character monochrome screen, the record in Figure 6-1 defines four lines
of the screen.

01 REC-1 .
05 FILLER PIC X(200) .
05 NAME PIC X(40) VALUE "NAME:".
05 FILLER PIC X(40).
05 SSN PIC X(40) VALUE "SS-N :nnn-nn-nnn".

Figure 6-1. Screen Record Description

You may define as much of the screen as you want or as little . No logical
line length is assumed; the console driver will split lines as they exceed
the line length of your screen . But you must provide enough FILLER to
make a complete CRT line for each line desired in the display. (The last
line can be left incomplete.)

1 06 COBOL Introduction and Operating System Manual

DISPLAY REC-1 UPON CRT will place NAME: followed by 35 spaces (the
rest of the X(40) of its definition) on the right half of the third line and
SS-N:nnn-nn-nnn followed by 25 spaces on the line below it. Anything
already on the screen in the FILLER areas (the top two lines and the first
half of the next two) will still be there; DISPLAY only writes over the
positions occupied by non-FILLER items. (If you want to clear the screen
before displaying this record, use DISPLAY SPACE UPON CRT.)

ACCEPT REC-1 FROM CRT will place the cursor at the start of NAME:
and will allow the operator to type in any printable characters in the right
half of this line and the next one. In order to protect the legends on our
fields, we need to redefine the record as in Figure 6-2 .

01 ACC-REC REDEFINES REC-1 .
05 FILLER PIC X(205).
05 ACC-NAME PIC X(35).
05 FILLER PIC X(45).
05 SS.

10 1ST
10 FILLER
10 2ND
10 FILLER
10 3RD

PIC 999.
PIC X.
PIC 99.
PIC X.
PIC 999.

Figure 6-2. Screen Record Redefinition

Now instead of REC-1 you can accept ACC-REC; the legends are in
FILLER areas of the redefined record and hence untouchable.
Furthermore, the console will "beep" at you if you try to put anything but
numbers in the SS subfields.

A program must still do some validation of numeric input. The operator
can't type in anything except numbers, but he might forget to type in
anything. In our example, the fields will then contain "n"s.

The general screen control phrases (AT yyxx, UPON CRT-UNDER) may
be used in connection with records. Note that when you display a record
UPON CRT-UNDER only the non-FILLER fields will be displayed in inverse
video. The control phrases and record redefinition provide a general
means for constructing menu oriented applications.

Apple Ill Device Control 1 07

Cursor Control in ACCEPT
During execution of ACCEPT statements, the cursor can be moved on the
CRT screen by the cursor control keys on the console keyboard. Table
6-1 summarizes the relevant key functions. LEFT- and RIGHT-ARROW
keys have their normal meaning, except that they skip over any protected
fields. The TAB key moves to the next tab stop column (skipping
protected fields).

The UP- and DOWN-ARROW are a bit different; UP-ARROW moves back
to the start of the previous unprotected field (or is motionless if at the start
of the first such field). and DOWN-ARROW moves forward to the start of
the next unprotected field. ESCAPE acts as a "HOME" key; type it to
return to the first input position.

Function Key

Home ESCAPE

Tab forward a field (down-arrow >

Tab backward a field (up-arrow >

Forward Space (right-arrow>

Backward Space (left-arrow>

Column Tab TAB

Left Zero Fill "." (period)

Note that when the DECIMAL-POINT IS COMMA clause is specified in
the user program, the Left Zero Fill function is performed instead by a
comma.

Table 6-1. Apple Ill Cursor Control Keys (ADIS)

The zero-fill operator (" . ") is included in the table because it does indeed
move the cursor, as a side-effect of filling in a numeric field. When typing
a small value (say 15) into a large numeric field, you can't just type the
two digits you want-that is likely to leave garbage (possibly non-numeric)
in most of the character positions of the field . If you type 15 .. the ADIS
module will automatically right-adjust the numeric digits in the field and
supply any leading zeros necessary to fill the field with a value of 15.
Zero-fill works only on pure numeric fields; in a numeric edited field, the .
is accepted as an editing character.

1 08 COBOL Introduction and Operating System Manual

The console control facilities of Apple Ill COBOL have been discussed
here at length, since they are the foundation of interactive programming in
COBOL. In particular, the FORMS2 package is built on these foundations;
that is the subject of the next chapter of this manual.

The FORMS2 Utility 1 09

The FORMS2 Utility

Record redefinition for ACCEPT and DISPLAY, with its special use of
FILLER and the provision for validating input keystrokes, is the basis for a
powerful forms-generation utility. FORMS2 is a source-code generator: the
user creates an arbitrary image on the display screen and specifies what
fields on the screen are to accept alphanumeric and numeric data;
FORMS2 then automatically generates the COBOL record descriptions for
these images. In addition, FORMS2 can create a complete COBOL
program to check that DISPLAY and ACCEPT statements work as
expected on these forms. And if the form describes the record of a simple
index sequential file , FORMS2 can generate a complete COBOL program
for creating or updating the file . Using this last feature, it is possible for a
non-programmer to sit down at the Apple Ill console , type in a standard
form (or create his own new one) , redefine some parts of the form with
X's and 9's, and get out a usable file program. (Chapter Two of this
manual has a recipe for doing just that.) A non-programmer might need
some advice and help from a programmer (especially for any fields that
need COBOL numeric editing), but the process is understandable even
without general knowledge of programming or specific training in COBOL.

FORMS2 works in a cyclical process of defining and redefining the
appearance of the screen. Normally, you will lay out the fixed contents of
the screen first, leaving spaces or prompting characters (as was done in
Figure 6-1) in the fields to be typed in. Then you redefine the record with
an X for each character of an alphanumeric field and a 9 for each digit in a
numeric field. FORMS2 keeps the first record in the "Background" (but
still displays it on the screen) while you are redefining it in the
"Foreground". When you are done, you can start over with a clear screen

11 0 COBOL Introduction and Operating System Manual

and a new record (not redefined on top of earlier ones) or you can stop
there . More complex patterns than this are possible; for now the main
point is the basic structure-the FORMS2 Background contains material
you defined earlier, while the Foreground is the material you are currently
working on.

FORMS2 presents the user with a series of menu screens to aid in the
task of creating screen forms; these menus usually have some options
selected by default. There are also four "Help" screens which you can
consult while using FORMS2 . They provide a brief reminder of the
commands available to you . There are occasions for overriding the default
options, but they work fine in normal use. While you are learning the use
of the utility , it is best to leave them in the default settings.

FORMS2 Outputs

At the beginning of a FORMS2 run , you specify certain initial information
that remains in effect for the rest of the run . In particular you tell FORMS2
the basename for the files it will produce; the initialization process will also
tell FORMS2 which of its possible outputs you want in this run . The output
files are named by adding extensions to the basename you typed in . The
possible outputs are :

base.CHK COBOL source code for a checkout program to test the
screens created by this FORMS2 run . This code uses the
COPY statement to piece together the skeletons
FORMS2.CH1 and FORMS2.CH2 and the record output file
base.DDS into a complete program.

Using this program, you can demonstrate exactly how your
screen records will work for DISPLAY and ACCEPT
statements. The program displays each record in turn, and if
it has been redefined with variable fields, you may then type
in data under actual operational conditions.

This feature provides a check for your definitions. For example, did you
forget a digit in the field SSN? It is also useful in application development;
you can realistically demonstrate proposed screen formats without having
a full system and thus can catch specification changes early .

The FORMS2 Utility 111

base.DDS This file contains the COBOL source code for the records
defined in this run . You can COPY this file into your COBOL
program, or add to it by editing it to make a complete
program. Records are similar to those shown in Figures 6-1
and 6-2 except that record and field names are formed on
the same basename as the file; the first record is base-00,
the second base-01 , etc. and field names are also generated
in sequence. Thus the record base-01 will have fields
base-01-0000, base-01-0001, etc. along with FILLERs.
(These names can be changed, not only by later editing, but
also within the FORMS2 run, by the S9 programming
command discussed below.)

base.GEN COBOL source code for index sequential file maintenance
program. Like base.CHK, this uses base.DDS and skeleton
files FORMS2.GN1 and FORMS2.GN2 as COPY files to
make a complete program.

base.Snn Screen image files, one for each record in base.DDS. The
numbering is the same as that of the records-base.SOO is
the way the (foreground) screen looked when you finished
the first record, etc.

These screen images can be read back in a later FORMS2 run in order
to change (correct, update, etc.) the original outputs. You can also
retrieve and display these later in the same run that creates them, for
comparison and reference in defining other records.

These files will all be written to the same disk drive. One of the
initialization parameters you can supply is a prefix to be used for this
purpose. In the absence of this prefix (i.e., if you don't fill it in), the SOS
prefix will determine the directory or subdirectory into which FORMS2 will
write.

112 COBOL Introduction and Operating System Manual

FORMS2 Tutorial

The best way to learn FORMS2 is to go through some examples,
illustrating its main features and showing you how to operate it, as well as
pointing out the features that can be ignored until you have acquired some
experience with it. The next few pages explore FORMS2 in action. As in
Chapter Two, we assume you have an Apple Ill with one external drive.

Running FORMS2
Begin by booting the COBOL Run-Time System; place the /FORMS2 disk
in your external drive. Change the SOS prefix to /DEMO and place the
/DEMO disk in the built-in drive. Run FORMS2 by typing F. You will go
through the same initialization sequence as in Chapter Two, first seeing
the screen in Figure 2-1 . Now type in a name you want to use for this
run. The example here uses "TEST":

DATA-NAME & FILE-NAME [TEST] (1-6 alphanumeric characters)

You can ignore the rest of the options for now; we will study them in the
next section. Press RETURN ; FORMS2 will accept your name and present
you with initialization screen 102 (Figure 2-2). Here also you can ignore
the various options for now; press RETURN again . At this point "work
screen" W01 (Figure 2-3) will appear. This also has a number of options
for special purpose FORMS2 runs. In normal use (and for this test run)
you should just press RETURN, to accept the default options. Now you
should see a blank screen, and you can begin to type in a sample form.

Edit Mode and Command Mode
Take a few minutes first to move the cursor around the screen using the
arrow keys on the lower right of the keyboard . These keys will take you to
any position on the screen for the layout of forms. One thing to notice is
that the UP- and DOWN-ARROW keys return the cursor to the start of the
line, as well as moving up or down one line. They work this way because
the RETURN key is used for a different purpose; it is a switch to go back
and forth from "edit mode" (which allows you to move around the screen
and type in your form) and "command mode".

The FORMS2 Utility 113

Command mode allows you to give FORMS2 instructions about how to
handle the form you create in edit mode. It you haven't already done so,
press RETURN now; the cursor will jump to the upper left corner, and you
won 't be able to move it away from the two positions marked by
underlines there. These two positions are there tor you to give commands
to FORMS2 . Any time they aren't visible, you can get them by pressing
RETURN ; it you pressed RETURN accidentally, you can get back to edit
mode by pressing it again.

For a quick tour of the commands available in command mode, type the
question mark command. (That is, get into command mode by pressing'
RETURN, type ?, and then press RETURN again to issue the command.
Just typing within the command area doesn't cause FORMS2 to do
anything; this prevents accidental mistypings from doing strange things to
your forms!) . The question-mark command shows you the first help
screen. Keep typing ? (and RETURN) to get the other help screens. To
return to edit mode, simply press RETURN by itself instead of another
question-mark. Now move the cursor to some suitable place , and type in
the form in Figure 7-1 .

Name:

Address:

Phone: [(nnn) nnn-nnnn Ext:

Figure 7-1. Fixed Text Screen (TEST.SOO)

The spacing is not critical in this example , nor position on the screen.
Modify it to suit yourself . When you are satisfied , get into command mode
by pressing RETURN ; then type a space and another RETURN . This tells
FORMS2 that you are done with this screen . Several things will now
happen: FORMS2 will generate COBOL statements describing your form ,
showing these on the screen as confirmation. Then you will see your form
again as FORMS2 writes it to the output tile TEST.SOO:

File created = TEST.SOO

114 COBOL Introduction and Operating System Manual

You are then told to continue by pressing RETURN . Doing this takes you
back to the WO 1 work screen. The option shown under the cursor is now
C ("Variable data redefines last screen"); last time it was A. FORMS2
follows this sequence of choices automatically, since it is the most
common and useful pattern .

You should now press RETURN; FORMS2 will once again show you the
form you created in the first phase of work. But this time, the form has
been placed in the Background; it is there for you to look at, but your
editing won't change it. What you type in now will go into the Foreground ;
its purpose is to describe what an operator can type into the form.

The name and address fields should accept any letters or digits ; the
phone number should allow only digits. Possibly you will want to reserve
the last five places in the address for ZIP code. The way you tell
FORMS2 all this is to type an X to stand for any character or a 9 to stand
for a digit at every place in the form that a user can write. The sample
above then shows up on the screen as in Figure 7-2 .

Name: [XXX]

Address : [XXX]
[XXX]
[XX 99999]

Phone: [(999) 999-9999 Ext: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX]

Figure 7-2. Variable Text Screen

When this form is used in a COBOL program, only the places you mark in
this way can be typed into; the rest of the screen is protected. You are
now done, but (in order to get some more practice with commands) press
RETURN and then F and RETURN again. This command invokes another
work screen (W02) and gives you some options for
Foreground/Background manipulation. The option is initially set to H, which
is Display Foreground. Press RETURN; you will see the X's and 9's you
just typed, but the form (now in the Background) doesn't appear. RETURN
will take you back to the W02 menu. To see the Background by itself,
type I and press RETURN to select the Display Background option .
Normally, you see displayed a merged image of both Foreground and
Background; you can use these commands to see them separately . Press
RETURN again and then option A, which is automatically selected after
you return from H or I, will take you back to the merged image.

The FORMS2 Utility 115

Once you are satisfied with the variable text entry screen, issue the
command to process it. (Just as before, you get command mode by
RETURN; press the space bar to select the "process screen" command,
and RETURN to execute it.) This time you will get the message

WORK SCREEN VALIDATION in progress

This means that FORMS2 is checking to be sure it can write correct
COBOL PICTURE descriptions of what you typed . When the validation is
done, you will again see COBOL statements for your screen, a display of
the (Foreground) screen and the name of the file it was written to
(test.S01 in this case) . Follow the instruction to press RETURN and once
again , the W01 work screen will appear.

You can continue making as many Foreground/Background pairs as you
want. To end this example, however, type an exclamation point (!) and
press RETURN . At this stage, the COBOL Data Description Statements
and the COBOL Checkout program using them will be written out to files
on your /DEMO disk, and the FORMS2 run is complete.

Compiling and Running the Checkout Program
It remains to compile the Checkout program and run that as a test of your
form. Place the /COMPILER disk in the external drive. Type C to invoke
the Compiler, and when the cursor reappears, type

TEST.CHK LIST

and the Compiler will begin working on the Checkout program. The LIST
directive lets you watch the compilation in progress. You should get a final
message from the Compiler showing that there are no errors in the
program . At that stage the COBOL Command Line will reappear.

Type Rand answer the prompting message by typing TEST and pressing
RETURN . Your form will appear on the screen, and you can try typing in a
name, address and phone number. Notice that you can only type in digits
for the phone number and in the ZIP code area; also notice that you can't
type anything except in the fields you defined in screen SO 1 . For
example, if you used the same pattern as in the sample above and left a
space between the the X's and the ZIP code 9's in the address, you will
see that there is no way of typing over this space.

116 COBOL Introduction and Operating System Manual

Assuming you used the same form as in our sample above, you will notice
that there is no underlining in the name field. FORMS2 is set up to think of
the underlines as just a convenient way of showing spacing; the actual
underlining of a paper form isn't needed to guide entry on the screen. But
if you want lines on the form, you can have them: there is a command (M,
one of the Programming Commands discussed below) that can change the
"visible space" character to anything else you prefer.

As soon as you press RETURN, the Checkout program will ask if you
want it to repeat. Type Y (and press RETURN); the data you typed before
will reappear. You can make corrections, try different entries or just
experiment with your screen. This process can help you discover errors
or problems of "human engineering" in your screens. Each time you press
RETURN, you have the chance to repeat the cycle. If you made more
than one form, the cycle will go through each of them in turn . When you
are done, give a "no" answer to the repeat question (this is supplied by
default if you just press RETURN).

Modifying Previous FORMS2 Output
If you are unsatisfied with your form after this checkout, you can go back
to FORMS2 and change it. Place /FORMS2 in the external drive and again
type F to run the utility. You will see the same sequence of initialization
screens as before. Again you should give the base name for the
files-TEST in our example-and otherwise just accept the default options
by pressing RETURN. After the second initialization screen, FORMS2 will
ask if you really want to replace the earlier files; you will see the message

File already exists: TEST.DDS

overwrite? [N] (Y =Yes)

with the cursor positioned on N. Since you do want to change the file,
type in Y instead, and then press RETURN. FORMS2 will ask the same
question about TEST.CHK, and again you should answer Y.

The work screen W01 will then appear; press RETURN to prepare for the
first work phase. Now you could just type in a complete new form, but the
point of this exercise is to make small changes in an existing form. You
need to read in the old form and place it in the Foreground so that it can
be edited. To do this, go into command mode (RETURN) and type

The FORMS2 Utility 117

command F (Foreground/Background commands). After you press
RETURN again, you will see the W02 menu. Type in option F (Merge
screen into FOREGROUND), and the cursor will drop down to the field
labeled FILE-NAME. This command will take any screen image (.Snn) file
on disk and copy it into the FORMS2 Foreground. Type TEST.SOO into
the FILE-NAME field and then press RETURN . The menu will reappear
with option H showing; YOL.t can then look at the Foreground that was
read. If for some reason you read in the wrong screen, you can clear the
Foreground (select option B) and try again. Once you have the right
screen image, press RETURN to get back to screen W02 and press
RETURN again to get into edit mode to make the changes you desire.

In our continuing example, let us add one line to the address. FORMS2
has some editing commands that will save you the work of retyping large
portions of the screen . One of these commands will duplicate any line of
your form up to nine times; we can use that to add a line to the address.
Move the cursor down to the start of the last line of the address; press
RETURN to get into command mode, and then type A1 and press
RETURN. (Be sure the cursor is at the beginning of the line; the command
won't work if it isn't.) Notice that the command writes over the blank line
between address and phone number. You can insert a new separator line
by another FORMS2 command; move the cursor down to the phone
number line and (in command mode) type 11 . This inserts one line just
before the line containing the cursor.

Make any other changes you like on the screen, then release it for
processing (press the space bar in command mode, as before) . FORMS2
will check with you before overwriting TEST.SOO; then you can go on to
process the variable screen. Here also you could use the command option
F to read back in your original screen of X's and 9's. But for a small
screen it is just as easy to fill it in again as to edit the original version.
When you are done, terminate the FORMS2 run-press RETURN to get to
command mode, press the space bar and RETURN to process the
screen, type Y and press RETURN to overwrite TEST.S01, and type !
and press RETURN to complete processing and exit FORMS2.

118 COBOL Introduction and Operating System Manual

FORMS2 Commands

After the quick tour of FORMS2 above, you should be familiar with the
main structure of the utility. FORMS2 works in phases, one screen at a
time, usually with pairs of screens-a fixed text screen defining the form
and a variable text screen redefining it with fields a user can write in on
the form . To handle pairs of screens, FORMS2 has a Background (to
show what has already been defined) and a Foreground (for the current
phase of work). In any phase, you can switch from editing the form to a
command mode for telling FORMS2 what to do with the form . This section
studies the available commands in detail , following the sequence of
screens you see during a run of FORMS2.

Initialization
The first screen that appears when you run FORMS2 (labeled 101)
requests general parameters for this run . If you accidentally typed F at the
COBOL command level, you can exit from FORMS2 by using the general
command ! ; this can be issued instead of the initializing commands and at
any time during the work phases to exit FORMS2 without further effects.
In particular, you can use ! instead of giving a data-name parameter in the
first field of the first initialization screen, or in place of output selection on
the second initialization screen. This screen is illustrated in Figure 2-1.
The entries on this screen are explained below:

DATA-NAME & FILE-NAME [] (1-6 alphanumeric characters)

Specifies the basename to be used by FORMS2 to construct
file names and COBOL data-names. The name should be a
valid COBOL data-name and a valid SOS file name; if it isn't
valid, you won't be able to continue to the next field. Instead,
the field will be filled with question-marks in inverse video to
warn you that the name is unusable. As a special case, an "!"
in the first character position will cause FORMS2 to abandon
the run .

The FORMS2 Utility 119

CRT lines [24] (22 or 23 or 24)

FORMS2 normally assumes you want to use a full 24 line
screen . If you need to reserve the last line or last two lines for
special purposes (for example, inverse video output of error
messages), this parameter can be changed to 22 or 23 .

CURRENCY SIGN [$]
DECIMAL-POINT [.]

Most COBOL programs follow the standard American
conventions for currency sign and decimal point. If you use
FORMS2 to create screens for a program with different
conventions (that is, if the program has SPECIAL-NAMES
clauses for DECIMAL-POINT or CURRENCY SIGN) you should
tell FORMS2 the values to be used for these. The characters
in these options can then be used in numeric edited variables
on your screens.

The second initialization screen (102, Figure 2-2) selects the output that
will be generated by the FORMS2 run . Given a name "base" from the 101
screen, the options are:

A (DDS) Generate base.DDS only; with this option, the only file written
by FORMS2 will be the file of COBOL Data Description Statements for
the screen records.

B (DDS & CHK) Generate base.DDS and base.CHK, the Checkout
program that cycles through DISPLAY and ACCEPT of the forms
produced in this run, for demonstration or testing .

C (DDS & CHK & Snn) Generate base.DDS, base.CHK, and one file per
screen generated. Screen files can be read in subsequent FORMS2
runs, to allow direct modification of their contents without editing the
base.DDS file. This option is selected by default.

D (DDS & Snn) Generate base.DDS and one file per screen. Use this
option to omit generation of the Checkout program.

120 COBOL Introduction and Operating System Manual

E (Snn) Generate a screen image file for each work phase in the
FORMS2 run (each screen created) . This option is useful in initial
design of an application; the screens can be shown on the CRT
screen (by using the Type option of the Run-Time System Utilities) or
transferred to a printer for hard copy samples in memos or design
documentation.

F (No files output) Use for experimentation with FORMS2.

G (DDS & Snn & GEN) Generate base.DDS, screen image files and
base.GEN, the indexed file generation program based on the form
created in this run. When this option is selected, only commands that
can be implemented in the indexed file program are allowed during the
work phases.

DEVICE/DIRECTORY PREFIX (0-40 Chars) [

This entry specifies for FORMS2 where to place the output
files; the prefix will also be used in COPY statements in the
Index (base.GEN) or Checkout (base.CHK) programs to locate
the file base.DDS; thus if you type .D2 in this field, base.CHK
will contain the COPY statement

COPY ".D2/base.DDS".

If you make no entry in this field, FORMS2 will not prefix any
file names; in that case, the SOS prefix will determine where
the files are written, and the COPY statements will also omit
prefixes.

After you press RETURN on this screen, FORMS2 will check whether you
have asked for an output file (base.DDS, base.CHK or base.GEN) which
already exists (in the directory given by the prefix). If so, you are asked
whether you really mean to overwrite the current version. If you don't
answer Y (for yes), the run will terminate.

The next screen to appear is WO 1 , the initial screen for each work phase
(that is, each screen definition). The main function of this screen is to tell
FORMS2 what type of COBOL record to producefrom the screen image
you type. The options are

The FORMS2 Utility 121

A (Fixed text on clear screen) This is the initial default as you begin
work. With this option, FORMS2 creates a new record, not
REDEFINED to overlay any previous record . It will also clear
Foreground and Background to give you a clean slate to lay out your
form . The COBOL record created by this option is a sequence of
FILLER fields and PIC X(n) fields with VALUE phrases exactly
corresponding to what you type on the screen (with the exception of a
"visible spacing" character, initially set to be the underline "_"; see
Programming Command M below) .

B (Fixed text on last screen) With this option, FORMS2 again creates a
record containing FILLERs and PIC X(n) fields that exactly reproduce
the Foreground typed in by the user. The difference from option A is
that here the record is REDEFINEd on top of the previous record. The
use of this option is in multi-stage menu processing: the application
program presents its operator with a screen and requests some input;
it then adds some further details without erasing what is already on the
screen. (The STOCK2 program on the DEMO diskette is an example
of this type of processing .) A typical sequence of work phases in
FORMS2 for this would be A, C, B, C, etc .

C (Variable data redefines last screen) This option is usually taken as
the second phase after creating a fixed text form by option A. The
record created at this stage is redefined on top of the previous one,
with the Foreground screen now defining where on the form the user
can type . Spaces in the Foreground will again generate FILLER fields;
anything else creates alphanumeric, numeric, or numeric-edited fields
in the new record. This type of record is validated when you release it
for processing. Only the following characters are allowed:

9 A sequence of consecutive 9's generates a PIC 9(n) field

8 A sequence of consecutive 8 's also generates a PIC 9(n) field .
The point of this is that a contiguous field on the screen (ZIP
code, for example) can be split into a number of sub-fields.

X Any sequence of consecutive X's (upper- or lower-case) will
generate a PIC X(n) field .

122 COBOL Introduction and Operating System Manual

Y Any sequence of consecutive Y's (upper- or lower-case)
generates a PIC X(n) field; Strings of X's and Y's can split up
contiguous user input into sub-fields as 8's and 9's do for numeric
fields.

$ CURRENCY SIGN; redefinable at initialization screen 101
DECIMAL-POINT; (also redefinable)

These and the other numeric editing characters

, + - * I 0 B Z CR and DB

may be used for numeric-edited fields; the operational characters

S, V and P

are not allowed. For a numeric-edited field, the user can type in a
value with or without editing characters; the Apple Ill ACCEPT
statement turns any valid input into a normalized form.

Non-expert users should consult with COBOL programmers before using
numeric-edited fields . FORMS2 can't fully validate these fields on output,
and there may be errors in the resulting record description that only the
Compiler will detect.

* D (Variable data without redefinition) This option works like C except that
the record does not REDEFINE the previous record. The option is
useful, for example, to display a "prompt" message at some point of
the screen which will then receive variable data. By placing the
variable data here, you can avoid wiping out the prompt at ACCEPT
time. You could also use this option to generate "templates" to reset
all user ACCEPT fields to default values in one MOVE statement.

Finally, three of the general commands (!, ?, and Q) described in the next
section are available in place of one of these options.

The FORMS2 Utility 123

General Commands
These are the commands listed on the first help screen. These
commands, and those listed on the other three help screens, are always
available in command mode, that is at any time after the W01 work phase
initialization. The first three of them (!, ?, and Q) are also usable at some
points during initialization. Commands are one or two characters long;
letter commands can be typed in either upper- or lower-case.

The general commands are:

(Terminate FORMS2 Run) This command causes FORMS2 to
stop work and return control to the Run-Time System. If you are
between work phases (that is, if screen W01 appears to ask for
a record option for your next form) the command will cause
output of DDS, CHK or GEN files that you requested at screen
102 . At any other time, the run is abandoned without writing
these files.

? (Display Help Screen) FORMS2 will display H01 as a reminder
?n of the general commands. If you press ? again, it will go on to

H02, then to H03, then to H04 and finally back to H01 again .
You can cycle around the help files as long as you like. To avoid
looking at screens you don't want, you can also type ?2 or ?3 or
?4 to get a specific one of the later screens.

Q (Quit Screen Processing) Temporarily returns to the start of
work phase; you may then change your mind about the type of
record being generated. When you return to edit mode, the
screen you typed will still be there, but will now be handled
according to the new option. You may also type Q during the
initialization phase (while selecting outputs at screen 102); in that
case you will return to screen 101 and can modify any parameter
settings you made there.

SPACE (Process Work Screen) Pressing the space bar releases the
current screen for output. Processing will depend on which types
of output you have selected and on the type of screen. Variable
data screens are validated; DDS records and a screen image
(Snn) file will be created if they have been requested. Processing
can then resume with a new work phase for a new record, or it
may terminate with the ! command.

124 COBOL Introduction and Operating System Manual

X

*

(Re-enter Edit Mode) The underline character is the command
to resume editing ; since the command mode cursor is on an
underline character when you enter edit mode, this becomes the
default command. You may also use it explicitly.

(Reposition Command Mode Cursor) If you use the upper left
corner of the screen for your form , it may be confusing to have
the command line appear there when you press RETURN. This
doesn't destroy the actual contents of the Foreground screen, as
you see when you return to edit mode; however, you may prefer
to place the command line elsewhere on the screen . To do so,
move the cursor (while in edit mode) to the position you want;
then enter command mode and type X. The next time you enter
command mode, the line will appear at the position you have
selected.

(Index Key Boundary) This command is used for index file
program generation (output option G on screen 102). It is used to
mark the separation of "key" from "data" areas in the file records
for the index program. Place the edit mode cursor on the first
data character of the variable screen and then issue * from
command mode.

Screen Manipulation
The commands summarized on help screen H02 deal with general screen
handling. Most of these commands assist in editing the Foreground
screen ; the F command invokes a subsidiary menu of commands (W02)
for Foreground/Background handling.

An Repeats the current line (the line on which the edit mode cursor
is found ; the cursor must be at the start of the line) over the next
n lines (n = 1 to 9) .

Cn Inserts n blanks on the current line (n = 1 to 9), starting at the
current edit mode cursor position. Everything to the right of the
cursor moves n positions further right; if this shift takes any
character off the screen, it is permanently lost.

The FORMS2 Utility 125

Dn Deletes n characters on the current line (n = 1 to 9), starting
with the character underneath the cursor. If the cursor is fewer
than n positions from the end of the line, the rest of the line is
deleted.

F Foreground/Background Manipulation. There are ten options,
Fx labeled A through d. If you type just F, FORMS2 will show the

options menu (work screen W02); if you type F and an option
letter (that is, FA, FB, ... , FJ), FORMS2 will act on the option
selected without going through the menu. The options are

A Return to edit mode. No operation on either Foreground or
Background.

B Clear Foreground. Erases anything already typed into the
Foreground, without affecting the Background image.

C Clear Background. Erases anything now in the
Background. Note that this doesn't affect any record
created in an earlier work phase, but the record will no
longer be visible as a template for the Foreground. If you
need to retrieve an earlier record after using option C, use
option G below.

D Overlay Background data onto Foreground. Whatever was
in the Background is placed in the Foreground, just as if you
had typed it in again. Useful for repeating all or part of a
standard template form.

E Overlay Foreground data onto Background. Foreground
contents become part of the Background template for
editing, without having gone through the process of COBOL
record generation. Useful to construct guidelines for future
editing that you don't want or need in the COBOL record
descriptions.

F Overlay Screen Image File onto Foreground. Allows you to
edit an existing form, either to modify it or as a base for
creating a new form. When you select option F, G, or J,
FORMS2 will prompt for the name of the screen image file
to be read in .

126 COBOL Introduction and Operating System Manual

G Overlay Screen Image File onto Background. As for F
except the file goes into the Background, where it remains
visible, but does not affect the current edit.

H Display Foreground. Shows exactly what the current
record contains, unconfused with any Background image.

Display Background. Shows exactly what is in the
Background. Occasionally you will type Foreground
contents directly over Background data; in this case the
original Background image will partly disappear. To see the
full Background again, use option I.

J Display Screen Image File. Shows the contents of a
screen file without placing it in either Foreground or
Background. You can browse through a library of screens
and choose the one you want to work with.

In Insert n blank lines (n = 1 to 9) before the current line. The
current line and any beneath it move down on the screen, and
any that move past the last line of the screen are permanently
lost.

Kn Delete (kill) n lines (n = 1 to 9), starting at the current line. If
there are fewer than n lines, all are deleted.

0 These commands enable you to switch the automatic screen
01 preparation of FORMS2 on and off. 0 (the letter "oh", not the

digit "zero") turns on automatic screen preparation; when it is in
effect, merging of the Foreground to the Background is done
automatically when the screen is released at the end of a work
phase. The 01 command ("oh one") turns off automatic screen
handling.

Un These commands allow the cursor to move up or down without
Vn returning to the first column as it does under control of the UP­

or DOWN-ARROW keys. Un moves it up n lines, Vn down n lines
(n = 1 to 9) . If there are fewer than n rows to move, the motion
goes as far as it can.

The FORMS2 Utility 127

Programming Commands
Help screen H03 summarizes some commands that are useful in tailoring
FORMS2 output to special programming needs. Most of these commands
are inconsistent with the index file generation program and are disallowed
in that context.

G (Generate Screen Coordinates) Changes the names of the data-
GO items in the screen records to have the form

base-rr-yyxx

for record number rr, with yy the row number and xx the column
number for the position of the item on the screen. This may be
helpful for a programmer using the Apple Ill AT yyxx extension to
the ACCEPT and DISPLAY statements. GO may be used
interchangeably with G.

G1 (Restore Default Naming) Resumes the standard naming of
fields in screen records; instead of yyxx, the terminating four
digits in the name are just the number of the field.

Jn (Multiple Space Reset) FORMS2 is initially set to create a
FILLER whenever there are two or more spaces together on
your screen. A large number of small FILLER items, however,
can degrade the performance of your program. You can reset
this parameter to prevent FORMS2 from creating FILLER items
when there are n or fewer contiguous spaces (n = 0 to 9).

The initial setting is J 1 ; with this any single space will be
combined with named items before and after it. J2 will combine
one or two spaces with the surrounding data-items, and so forth.
J or JO creates a FILLER even for a single isolated space.

Mx (Define Spacing Character) FORMS2 allows a character to be
used to make visible areas that will be spaces in the final form;
the initial character for that purpose is an underline "_ ". The Mx
command resets the "visible space" character to x, where x can
be any character on the keyboard. Note that you can press the
space bar after typing M, but this is not a good idea; it causes all
FILLER records to be suppressed.

128 COBOL Introduction and Operating System Manual

P (Show Cursor Position) Causes FORMS2 to pause and display
the current cursor position at the command line area.

Sn (Special File Control) A collection of special-purpose options
related to the output of this current work phase:

SO Cancels any other Sn (S3 or S9 below) command in effect
and resumes normal processing.

S1 Suppresses COBOL statement generation for this screen;
no data description statements will be written and no
reference will be made to this screen in the Checkout
program . The record number is still incremented for this
screen; the next screen will have the next higher number.
This option doesn't need to be cancelled by SO; generation
of COBOL text resumes with the next screen unless the
command is reissued then .

S2 Suppresses screen image generation (no file base.Snn is
written for this screen). Commonly used to eliminate screen
image files for the variable data (option C) work phase. Like
S 1 , this lasts only for the current screen; no cancelling
command is needed.

S3 Forces user to name screen image files (instead of forming
the names base.Snn). In normal processing, when the file
base.Snn already exists, you will be asked if you want to
overwrite it. If not, you can then supply any file name you
like for the new screen image. When S3 is in effect (i .e.,
until cancelled by a following SO) FORMS2 will always
request that the file name be given explicitly.

S9 Causes FORMS2 to halt after generating each COBOL data
description for you to examine it. You may then make minor
editing changes before pressing RETURN to send the
statement out to the . DDS file. This option is used primarily
to change the data-names to more mnemonic values than
base-rr-nnnn.

The FORMS2 Utility 129

Windows
The final help screen (H04) displays commands for screen window
creation. This facility allows a group of lines to be treated as an isolated
screen. At the start of processing, FORMS2 will usually generate FILLER
for lines skipped over at the top of the screen. This can be wasteful of
memory if you want a form to appear only on the lower part of the CRT
(for example, below some other screen). You can reset the top and
bottom lines handled in a work phase to eliminate the excess FILLER.
Note that a COBOL program must use the AT phrase in the DISPLAY
statement to show the screen in the correct position. To assist in coding
such DISPLAY statements, FORMS2 renames records created in
windows: if the window starts at line II, for example, the record name will
be

base-rr-11

instead of just base-rr. Windows in FORMS2 can be shown with or
without a line of delimiters just outside their boundaries. These delimiters
are simply a convenience for you while you are editing; they do not
actually go into either Foreground or Background, and they aren't written
into the record description.

Note that you can write on the screen outside the window. Such text
doesn't become part of the record, but it will be written to the screen
image file (and so may be used for documentation).

The window commands are

W (or WO) Position the cursor at the start of the window.

W1 Sets up a window starting at the current line, showing a line of
delimiters on the previous line.

W2 Defines the end line of the window at the current line; a line of
delimiters will show on the next line down.

W3 Sets up a window starting at the current line, without a line of
delimiters before it.

W4 Sets end of window without delimiters showing.

130 COBOL Introduction and Operating System Manual

W5 Shows delimiters before the start of the window.

W6 Shows delimiters after the end of the window.

W7 Erases starting delimiters (restoring work screen contents that the
delimiters obscured) .

W8 Erases end delimiters (restoring work screen contents) .

W9 Positions the cursor at the end (lower right corner) of the current
window.

Indexed File Program Generation

An indexed sequential file is a sequence of records that have a special
field, called the key, to help in finding any record quickly just by naming its
key. It is a standard mode of file organization throughout business data
processing applications. FORMS2 can generate simple programs for
creating and updating this type of file , without the operator having any
knowledge of COBOL programming. The first example in Chapter Two
gives a demonstration of this feature, and a practical guide to using it. This
feature is not a panacea, but it can cope with many practical problems,
leaving programming skills available for more complex work. Our
discussion in this section is general in nature; for a tutorial on the feature,
and for details on the use of the program once it has been generated, see
Chapter Two.

The generator option is selected from the second initialization screen
(102). Instead of the default (option C) , type G; FORMS2 will then set
itself up and prevent you from giving any commands that are inconsistent
with the job of generating the index file program. You will go through just
two work phases: one defines the way the data entry screen will look to
the user, and the other defines the data entered on the screen (and into
the file) .

The file is defined by fields in the variable text work screen; the file record
will have exactly one byte for each character typed in this screen (X, Y, 8 ,
9 or numeric editing character) . The key will be part of the record ; it must
be the first field or set of fields in the record and cannot be more than 32
characters long. Sometime during the editing of the variable screen, you

The FORMS2 Utility 131

must give FORMS2 the * command, with the cursor resting on the first
character past the key area. If you don't give a valid * command,
FORMS2 will keep returning you to the edit mode to do so.

You will not be able to use most of the Programming or Window
commands discussed above; they are incompatible with the code
produced for the Index File Program. There will be a line of delimiters
(hyphens) on the bottom of the screen, since the generated program uses
a line for a number of its own messages.

When you finish this work screen (release it for processing by entering
command mode and pressing the space bar and RETURN), FORMS2 will
automatically exit: you won't get back to the W01 menu, since only one
pair of screens can be handled in this mode.

132 COBOL Introduction and Operating System Manual

Program Debugging and the Animator 133

Program Debugging
and the Animator

Two independent types of debugging are available in Apple ///COBOL.
The first involves optional "debugging lines" that are included if the
"DEBUGGING MODE" switch is present in the "SOURCE-COMPUTER"
sentence. The second is the Animator utility, a source-level, screen­
oriented program testing and debugging tool.

Animator can in fact bring a program "alive" on the CRT screen, to allow
study and debugging at a very high logical level. The Animator needs
memory space to hold its own code and buffers as well as those of the
program you are debugging. In addition, it must read in a "dictionary" file
(name.DOO for a root segment or name.Dnn for an overlay segment) to
handle the cross-reference between the COBOL source code and the
intermediate object code. The dictionary space becomes a limiting factor
on small systems; if your configuration has only 128K of memory, you will
find it difficult to animate non-trivial programs. However, as memory
increases to 256K, it should be possible to animate any program you can
compile.

ANSI Debugging Mode

The ANSI standard for COBOL contains a number of elements to aid in
program debugging. The principal idea is that certain parts of the source
program are treated as comments unless a certain run-time switch is set; if
it is set, those parts automatically swing into action. The programmer can
place "debugging lines" of code into his program at any point, and the

134 COBOL Introduction and Operating System Manual

Compiler takes care of activating these when the run-time switch is on . To
prevent unnecessary code output, the Compiler requires a compile-time
switch (the WITH DEBUGGING MODE clause of the SOURCE­
COMPUTER paragraph) or it will ignore the ANSI debugging facilities .

The full list of COBOL language elements for debugging will be found in
Chapter Ten of the Apple Ill COBOL Language Reference Manual. Use of
these elements is not special to the Apple Ill COBOL system and will not
be dealt with here. The Apple Ill provides for level one ANSI debug with
the run-time switch "A". Refer to Chapter Three of this manual for
information on setting and clearing run-time switches. Because the
Animator is far more convenient and powerful, it is envisioned that ANSI
debug will be little used in Apple Ill COBOL, however.

Animator - General Description

The Apple Ill Animator is a COBOL-oriented debugging tool which applies
to any COBOL program compiled by the Apple Ill COBOL Compiler. No
special language elements are needed, and any part of a program can be
studied in normal operation using the Animator. It is thus a tool for
studying or maintaining a program already in use and not simply a
checkout for code under development. The Animator executes the same
intermediate code file (.INT file) that would be run in normal operation
under the Run-Time System R command. Several other files are needed
by the Animator as well, to enable it to translate back and forth between
the intermediate code and the original source code. These files are
generated automatically by the default settings of the Apple Ill Compiler.

Animator is a dynamic debugger; you can not only follow the execution of
the program, you can also change the code or the flow of control as you
interact with it. Thus you can actively check out your guesses about the
behavior of the program and make experimental corrections during a
program run .

The main aim of the Animator is to free the COBOL programmer from the
need to be aware of the internal representations of either data or
procedural code, so that his programs can effectively be debugged at the
same logical level as they were written. This is done by using the screen
as a "window" into the source program and "animating" execution by
moving the cursor from statement to statement as execution proceeds.

I
I

'

I

Program Debugging and the Animator 135

You can speed up execution or slow it down; you can switch off the
animation altogether or execute up to a "breakpoint" set at a point of
interest. You can interrupt execution at any point, without previous
preparation of breakpoints, simply by pressing the space bar on the
keyboard. While execution is suspended , you can easily examine any part
of the source code by means of simple commands acting on the screen
display. This means that it is not even necessary to have a printed
compilation listing in order to debug a program .

Various other debugging functions are available, all invoked by typing a
key. Animator keeps you informed of what you can do at any point by
using the bottom few lines of the screen for "menus" of the commands
available at that point in execution. (Only the top 20 lines of the screen
are used for the display of source code.)

Animator is "screen-oriented" in the same way that display editors
are-you move the cursor around on the screen to some part of the code
that interests you, and Animator determines from the cursor position what
reference this makes to either data items or procedural statements . Or
you can refer directly to data items or procedures by name. Where
pointing with the cursor isn't enough, you instruct Animator using normal
COBOL syntax. For instance, to change the value of a data item, you type
the new value in COBOL literal format (so non-numeric literals are
enclosed in quotes) . It is even possible to type in a complete COBOL
source statement for immediate execution.

Animator Tutorial

To gain some experience with the Animator and learn a few of its basic
facilities, let us look again at the sample programs from Chapter Two.
These should all have .ANM, .ACP and .000 files on the DEMO disk, as
well as the source and intermediate code files (extensions .CBL and .INT).
Assuming that you have one external disk drive, place the /ANIMATOR in
this and boot up the system ; as usual for our examples, reset the prefix to
/DEMO and place /DEMO in the built-in drive. Type A at the COBOL
command line to load the Animator and when the initial message

* A/// Animator V1 .0 {C) Apple Computer Inc.

136 COBOL Introduction and Operating System Manual

appears, type the name of the program to be animated; for our first
example, use the name PI, or equivalently, PI.INT -the Animator looks first
for the intermediate code file and then for the other files related to it.
When it has found the files, Animator will display on the screen the first 20
lines of the PROCEDURE DIVISION of PI.CBL; note that there are
sequence numbers on these lines supplied by Animator, whether or not
the program source code has sequence numbers. Below the delimiting
line of hyphens, you see the basic Animator menu

To get started, type E for Execute; this shows the subsidiary menu of
options in executing the program:

Type X; the cursor will move down to the second statement; type X
several more times, and watch the cursor move.

Animator is actually tracing out the execution of the program. As you type
X's, you will get to the bottom of the display. The Animator will then
replace the display with another screenful of statements from the program .
Anytime control transfers off the screen, Animator will bring up the source
code transferred to.

To liven things up a bit, you can examine what is happening to the data in
the program. Type M and you will see another subsidiary menu :

To select a data item to monitor you can either move around with the
cursor and use the Set option, or you can name the item. To watch the
variable TERM as the calculation goes on, type N for Name and type in
TERM (or term; lower-case is equivalent) and press RETURN . The current
value of TERM will be displayed on a line below the main menu line. As
you continue to type the X key, you will see at each statement that this
display is erased and then replaced with whatever is the value of TERM at
that point.

Program Debugging and the Animator 137

When you get tired of pushing X, type G instead; the menu line now reads

and the cursor will be traveling by itself over the statements of the LOOP
paragraph. You can change the speed it is moving at by typing a digit from
1 to 9. Initially, the speed setting is 4; when you change it, the new value
is reported on the menu line. Try typing in 1 and then 9 to see the
extremes of the range . Then experiment to find a speed that you find
comfortable to watch.

You can interrupt this process at any time by pressing the space bar. This
will return you to the main menu. Try typing U; this command shows you
the "user screen" buffer that Animator uses to keep track of DISPLAY
statements made by the program. Since Animator uses all of the real
display screen, it diverts a DISPLAY from the program to this buffer. It is
always available for your examination ; type U to get to it, then type any
key to get the Animator screen again.

The user screen buffer is used only for the Apple /// extensions to
COBOL ACCEPT and DISPLAY statements. Animator refers ANSI
standard ACCEPT and DISPLAY statements to the menu area below its
line of hyphens.

This is probably a good time to notice that you can move freely around the
screen using the ARROW keys, but you can't see the rest of the program
that way. Type S to get the sub-menu

Typing T, for example, will replace the screen with the starting lines of the
program. You can play around with these screen commands as you like.
Note that F(ull) undoes the effect of H(alf) . If you use a command
incorrectly, Animator will flash a line of pound signs (" # ") over the menu.
By this stage you have probably lost your place in the program; type P for
the program-counter menu

Type W, and the screen will be redrawn with the cursor at the next
statement to execute. None of the screen manipulations change your

138 COBOL Introduction and Operating System Manual

place in the program. Resume execution with G9 and let the program run
to its termination (after TERM becomes 0). Animator won't let the program
exit automatically; it gives you an opportunity to study the program first,
requiring you to ask it explicitly to stop:

If you type C, you can examine the state of the program before it stops.
For example, you can type D (for Display) and then type N; Animator will
show you the value of N (it's 0037) after the computation loop. The
cursor is underneath this displayed value . Animator gives you a chance to
change the value if you wish to; otherwise just press RETURN to get back
the main menu. Type E for Execute and X to single-step. You will get the
warning again . Type S this time to stop run; you will see the final user
screen display, and control will return to the COBOL Command Line.

Animation and ACCEPT
The PI program has no ACCEPT statements in it. To observe how the
Animator handles such statements, let us use as the next example the
stock file program of Chapter Two. Again type A to get the Animator, and
STOCK1 to name the program to animate. Type X until you come to the
ACCEPT statement; with one more X the source code screen will
disappear and the user screen will take its place. For the ACCEPT
statement to execute, it must receive some input from this screen ,
signaled by a RETURN.

Press RETURN leaving the stock code field blank; Animator will recreate
the source code screen, with the cursor positioned after the ACCEPT
statement. The next statement tests for a blank stock code field as a
signal of termination; if you type X twice more, you will see the test
succeed and program control transfer to the END-IT paragraph. This
leaves only a little more of the program to go, but you can use Animator to
reset the control flow. Use UP-ARROW to move the cursor back to the
ACCEPT statement, and use the Reset option of the Program Counter
command: type P and then R with the cursor on the ACCEPT. Now
another X will show you the screen again and you can type something
into the stock code field . Press RETURN to continue normal execution.

Program Debugging and the Animator 139

In a program like this, it is useful to have both PROCEDURE and OAT A
DIVISION code in view simultaneously. To do so, typeS to get the screen
command and take the H option. The lower half of the screen now shows
the start of the program. If you typeS and·N a few times, you can
advance this screen to show the record ENTER-IT, which is the object of
the ACCEPT statement. Note that you can type either > or . to advance
the screen, also. You can also adjust the division on the screen to show
more of the PROCEDURE DIVISION and less OAT A; place the cursor on
the mid-screen delimiter line, type S for screen and this time you have the
options U (to move the delimiters up one line) and D (to move them down
one line) . You can adjust within either half of the screen by S+n or S-n
commands (n being the number of lines up or down to scroll the screen).

With the various data-names visible on the screen, either in PROCEDURE
or in DATA DIVISION, you can examine or change data values with the
Query command. Place the cursor on the item you are interested in (use
CRT-STOCK-CODE in our example) and then type Q. As with the Display
command for a named item, the Q command will show you the current
value at the bottom of the screen and leave the cursor below it for you to
enter a new value . If you don't want to change the value, just press
RETURN . Note that if you inquire about a record or an intermediate level
data item, Animator will only show you the contents of the first elementary
item contained in it.

When you are through playing with the code, type E to get the Execute
menu and then S to stop the run. (This will be an abnormal termination of
the stock program ; if you prefer to exit normally through END-IT, go
through the ACCEPT with a blank stock code field .)

This short survey demonstrates a few of the available commands. It should
show you the approach taken by Animator to debug a program. You can
refer to data or procedure by name or you can point to them with the
cursor. You can execute statements, skip them or jump to arbitrary places
to examine what will happen. If a program seems to be going off on a
wrong track, you can look at the data, change it if necessary, and try the
logic again . In short, Animator will do for you, using the actual executable
code of your program, what you would ordinarily do laboriously with pencil
on a printed program listing.

140 COBOL Introduction and Operating System Manual

Operational Considerations

The Apple /// COBOL Compiler will produce all the files needed by the
Animator; that is , the ANIM directive is in effect by default. If you know
you are not going to use the Animator on a program, you can suppress
the production of the Animator-related output files (.ANM and .ACP) by
using the NOANIM directive. Unless you are compiling a large program
that can't be animated within the constraints of your memory, it is a good
idea to allow the default. Even established programs behave oddly at
times, and you can begin tracking problems immediately, without having to
recompile, if the Animator files are available. Compiling the program with
ANIM in effect doesn't slow down the program in normal execution, nor
does it produce a substantially larger code file .

Note that the Animator requires the source code to be available . Any
library files referred to by COPY statements in the main source file must
also be present when you run the Animator.

Program listings aren't necessary with the Animator, but they remain
useful-20 lines is not a large piece of a program. If you make compilation
listings, it is useful to give the Compiler the directives RESEQ and
COPYLIST. This will ensure that your printed listing has sequence
numbers that match the sequencing Animator supplies.

The name you supply Animator at the start of a run is the name of the
executable code file (/directory/name.INT or just name if the directory
concerned is the current prefix, since Animator will supply the default .INT
extension) . The other files do not need to be on the same disk as the .INT
file; if Animator doesn't find them where it expects to, it will prompt you
with the message

FILE BELOW NOT FOUND - S(top run) C(ontinue) A(lter drive)
< .dn/name.ext)

with the last line being what it expected. You should type A and the
device name to tell Animator where to look for the file in question.

Note that using the Utility program to set the prefix to the volume and
subdirectory containing the program to be animated will solve this problem.
Generally, it is a good idea to use the same prefix when animating that
you used to compile.

Program Debugging and the Animator 141

There is one "directive" that the Animator will accept on the command
line, after the name of the program to be animated; this is the ZOOM
directive. It you want to animate a called subprogram and don't want to
animate all the levels before the subprogram is called, type

main-program-name ZOOM(subprogram-name)

Execution will proceed without interference by the Animator until the
subprogram is reached.

Animator Commands

Commands to Animator are issued from menus appearing at the base of
the screen. Most of the commands shown on the main menu have further
sub-menus of command options. The heavily used execution commands
(options of the E command on the main menu) may also be invoked when
the main menu is showing. These options are

G (and GO speeds 1
screen commands:

In the descriptions below, any command that can be issued at the main
command level will be marked with an asterisk (" * ") . Note that some of
these commands do not appear on the main prompt line. After execution
of a sub-command, whether from a subsidiary menu or the main level, the
main menu is redisplayed.

The main command menu is too long to tit completely on one CRT line.
The rightmost listing on the first line is a question mark-it you type ? the
remainder of the main menu will appear. Thus, on initial entry to the
Animator, you see the menu

Typing ? then displays the rest of the main level commands:

142 COBOL Introduction and Operating System Manual

A second ? will switch back to the first part of the main menu. All
commands on both lines are available, whether or not the part of the menu
listing them is on the screen at any given time.

You enter commands simply by typing the appropriate key. If an invalid
entry is made at any time, Animator will signal the error by briefly replacing
the prompt line with a line of pound signs ("#") and emitting a "beep".

Some commands require you move the cursor first to point to the
appropriate place in the source code. The main menu shown above is
displayed whenever execution is suspended. Anytime it is displayed, you
can move the cursor using the normal cursor keys. UP- and DOWN­
ARROW keys and the RETURN key have their normal
meanings-RETURN moves the cursor to the start of the next line, and the
cursor keys maintain vertical alignment.

The main Animator commands fall into three broad categories: screen
manipulation (A, F, 0, Sand U); execution control commands (B, C, E, L,
N, P and T); and display and modification of data (0, M and Q) . Each of
these will now be discussed in detail.

Screen Manipulation Commands
Animator uses the screen as a window into the source code text. The
screen manipulation commands allow you to reposition the source code
window to any point within the COBOL source program. Note that moving
the cursor by itself doesn't affect the point at which execution will be
resumed.

Animator automatically displays resequenced line numbers against the
source text. These will be the same as those appearing on the compilation
listing if the directives RESEQ (and COPYLIST if appropriate) were
specified to the Compiler.

* The S(creen) Command

Type S and the following subordinate menu is displayed:

SCREEN - N(ext) P(revious) T(op) E(nd) V(iew) H(alf) F(ull) = I+ 1-

These commands reposition the window to display a different part of the
source text. The options are

Program Debugging and the Animator 143

N
*)

Displays next screen of source text; actual amount shown
depends on whether the screen is split (Half option) . The new
screen overlaps the current one by two lines. The ")" key (think
of it as an arrow pointing forward) also moves the display
forward one page; it may be typed when the main menu is
displayed. Note that you don't need to shift the key-both) and
. will display the next screen.

*

p

* <
Displays the previous screen of source text. The (key, usable
from the main menu, also displays the previous screen. Like) ,
this key doesn't need to be shifted; both < and , display the
previous screen.

*

T Displays the top screen of source text (that is, the first lines of
code) .

E Displays the screen at the end of the source text.

V Repositions the window so that the source line indicated by the
cursor is on the third line. (The cursor must be positioned first,
before typing S.)

H Splits the screen in half (two windows) with a dividing line of
hyphens. The lower window is positioned to show the top of the
source code. Subsequent screen commands operate on the
window in which the cursor is positioned.

F Restores the full screen display (single window) .

* = n Repositions the window so that the nth source line is aligned at
the third line of the window. The Animator sequence numbers
increment by ten; they are therefore ten times the line numbers.
Drop the final zero of a sequence number to get an absolute line
number for this command.

* +n Scrolls the window forward n lines.

* -n Scrolls the window back n lines.

Note: =, + , - all position the cursor for entry of a numeric
quantity followed by RETURN.

144 COBOL Introduction and Operating System Manual

There is one special case of the screen command. If the screen is split
and you position the cursor on the dividing line of hyphens, then when
you type S, the following subordinate menu is displayed:

These two options allow the relative size of the two windows to be
altered:

U Moves the screen divider Up one line.
D Moves the screen divider Down one line.

* The F(ind) Command

This command instructs the Animator to search forward from the current
cursor position through the source text for a specified string of characters.
If it is found , the screen window is positioned with the line containing this
string as the third screen line and the cursor is positioned following the
string. If it is not, the main screen display remains unchanged, but the
Animator indicates the failure by beeping and restoring the main prompt
line.

Type F and the cursor is positioned for entry of either

"string" (followed by RETURN)

or

"string"M (followed by RETURN) (to search only in main file)

where a string is any sequence of characters (including spaces) ; it needn't
be a complete word. Any character not forming part of the string can be
used in place of the quotation marks to delimit the string .

Note that the search distinguishes upper- and lower-case, so you must
type the string exactly as it appears in the source. The F operation only
examines columns 7 through 72 of the source code; the displayed line
numbers are ignored.

The optional M after the string instructs the Animator to search only the
main source file and not any library (COPY) files .

Program Debugging and the Animator 145

* The Locate Commands

The lOcAte commands (0 and A, suggested on the main menu by
capitalizing these letters in lOcAte) allow you to find the declaration of any
name in the program (either a data-name or procedure-name). They differ
only in that 0 searches for the name on which the cursor is positioned,
while A looks for a typed-out name. Either

or

position the cursor to rest on the start of any occurrence of the
name, then type 0,

type A, then type the name followed by RETURN .

The screen window will be repositioned in the source text, and the cursor
will be placed on the declaration of the specified name.

* The User Screen Command

Type U and the user screen buffer (containing the screen image from the
Apple Ill COBOL extensions of the DISPLAY statement) will appear on the
screen, replacing the source code window(s). Note that this user screen
is not used for standard ANSI DISPLAY statements; they are redirected by
Animator to its menu area on the main screen.

Inverse video effects in the animated program, achieved by use of the
DISPLAY ... UPON CRT-UNDER clause , will not be preserved in this user
screen buffer. All characters will appear in the same positions on the
display as during a normal program run, but all will be in normal video.

This display remains on the screen for examination until any other key is
typed; at that point the source code screen will be redisplayed . Note that
the user screen appears automatically during the execution of an ACCEPT
FROM CRT statement and at the end of the Animator run (that is, as a
result of the Stop Run command) .

146 COBOL Introduction and Operating System Manual

Execution Control Commands
These commands allow initiation and control of program execution. They
also control the degree of animation used.

* The B(reakpoint) Command

Type B and the following subordinate menu is displayed:

BREAK-POINTS - S(et) U(nset) C(ancel) eX(amirie} :l(f)

The options allow breakpoints to be set at which execution will halt
automatically. A breakpoint may have an associated condition . Some of
these commands require the cursor to be positioned to point to the
relevant COBOL statement. The cursor must be positioned on the first
character of the COBOL verb before you type B. Up to four breakpoints
may be set concurrently.

Type the appropriate key, where:

S Sets a breakpoint at the statement pointed to by the cursor.

U Clears (unsets) the breakpoint pointed to by the cursor.

C Cancels all breakpoints currently set.

X eXamines breakpoints by repositioning the window within the
source code and positioning the cursor at the statement of the next
breakpoint in the file . Successive calls on this function will move the
cursor to point to each breakpoint in turn.

Sets a breakpoint with an associated condition at the statement
pointed to by the cursor. The Animator positions the cursor for
entry of the required conditional expression which you write in
COBOL format, followed by a RETURN. Subsequent examination of
breakpoints (see X above) will both point to this breakpoint and
display the condition . When execution reaches this breakpoint, the
Animator will only halt if the condition is true .

Program Debugging and the Animator 147

Example: after typing

type

TRAN-NO IS EQUAL TO 0

Note that you do not need to type the word "IF".

* The un T(il) Command

This command allows specification of a conditional expression (without the
IF) which will cause execution to halt if the condition becomes true at any
point during execution . When execution halts, the condition is
automatically "switched off". Note that this facility will significantly degrade
the speed of execution, since the condition must be tested at the end of
each statement in the source program.

Type T and the following subordinate menu is displayed:

Type the appropriate key, where

S Positions the cursor for entry of a condition in COBOL format. Note
that this only sets the condition. Note: program execution must be
resumed by use of the GO or ZOOM commands.

U Cancels the previously set condition.

X Displays the previously set conditional expression.

* The E(xecute) Command

Type E and the following subordinate menu is displayed:

These options initiate execution, with or without animation, in a variety of
ways.

148 COBOL Introduction and Operating System Manual

~ Any of these commands, except for S(top run) , may also be entered V directly from the main menu line without preceding it with an E.

Type the appropriate key, where

* X eXecutes a single COBOL statement and moves the cursor to the
next statement.

* K sKips a single COBOL statement, without executing it, and moves
the cursor to the next statement.

Note: If the final statement of a PERFORMed paragraph is skipped ,
control does not exit from the PERFORM but passes to the next
statement in the source code .

* I Executes without animation up to the next IF statement; then
execution halts and the cursor is repositioned at this IF statement.

* G Initiates animated execution. After each statement is executed, the
cursor is moved to the next statement in the source code. The
speed of execution can be varied by typing a digit from 1 to 9 (1
= slowest, 9 = fastest) . The speed may also be entered before
initiating execution. Execution proceeds until halted as described
below.

* Z Initiates execution without animation (Zooms) . Upon reaching the
first DISPLAY UPON CRT or ACCEPT FROM CRT, the user screen
is displayed, replacing the source code, and remains on the screen
until execution is halted as described below.

S Stops execution after displaying the current user screen .

After initiation by one of the above commands, execution proceeds as
described above, unless it is halted in one of the following ways:

1 . The space bar is pressed.

2. A previously set breakpoint is reached .

3 . The condition specified by means of the unT(il) command
becomes satisfied.

. Program Debugging and the Animator 149

4. A STOP RUN statement is reached. In that case, Animator
displays the following prompt:

Type S to stop, or C to regain control.

5 . A run-time error occurs. In that case, Animator displays the
following prompt:

Type S to stop, or C to regain control. There is a listing of Run­
Time Errors in Appendix C.

* The L(evel) Command

Animation normally traces execution into any level of nested PERFORMs.
This command allows a "threshold" level to be set at any level of nesting,
such that any PERFORMs subordinate to this level are treated as a single
statement for animation purposes, that is, the cursor will not be moved
into PERFORMed procedures below the threshold level.

Type L and the following subordinate menu is displayed:

Note that the display indicates both the current PERFORM level and the
threshold level currently set.

Type the appropriate key, where

S Sets the threshold level at the current level.

U Clears (unsets) the threshold level, restoring animation at all levels.

E Completes execution of the current PERFORM without animation,
repositioning the cursor to the statement following the PERFORM,
and then sets the threshold level at this point.

Q Causes immediate abandonment of the current PERFORM without
executing further statements. This allows a tidy exit from a closed
loop in a PERFORMed procedure.

150 COBOL Introduction and Operating System Manual

* The P(-C) Program Counter Command

This command provides facilities to determine the point at which execution
will start (or resume), or to change this point. To change the restart point,
you must first place the cursor at the statement at which execution is to
start.

Type P and the following subordinate menu is displayed:

Type the appropriate key, where

* W Repositions the screen window if necessary and places the
cursor at the next statement to be executed . This is useful as a
check after use of the source screen manipulation commands,
but note that it is not necessary since the Animator will resume
execution at the correct position and display the screen
appropriately as it does. Note that this command may also be
entered from the main menu line (without the preceding P).

R

If the program being animated contains a DISPLAY of any console control
codes, animating the program may cause the display to become jumbled
since Animator redirects ANSI DISPLAY statements to the menu area of
its display. When animating such programs, it is useful to Zoom to a
breakpoint placed after these DISPLAY statements. In any case, you can
use the W command to clean up the display if it has become jumbled.

Resets the execution start point (program counter) to the current
cursor position. Before typing P, place the cursor on the first
character of an executable statement (COBOL verb) .

* The C(ompile) Command

This command enables immediate compilation and execution of a specified
COBOL statement (or statements).

Type C and the cursor is positioned for entry of the required COBOL
statements followed by RETURN. If you type in multiple statements, they
should not be separated by periods. A final terminating period may be
entered, but if omitted it is assumed. The statements typed aren't
retained; they will be executed once only.

Program Debugging and the Animator 151

~ Note that any statement so compiled is not placed into the source and
~ disappears after execution.

It a syntax error is found in the entered statements, the following prompt is
displayed:

Type S to stop, or C to regain control. Compiler error numbers are
detailed in Appendix B.

Certain complex statements cannot be handled (for example, INSPECT).
These will return COMPILER ERROR NO. 001, and it will be necessary
for you to type simpler statements to achieve the same effect.

* The N(ame) Command

Within a hierarchy of programs the Animator will by default animate all
programs that were compiled with the ANIM directive in effect. Any other
programs are executed normally . This command allows finer control over
which programs are animated.

Type N and the following subordinate menu is displayed:

Type the appropriate key, where

W Displays the current program name.

A Causes any program compiled for animation to be animated.
Note: this is the initial default; typing this key resumes default
behavior after a previous Tor 0 option in another N(ame)
command .

T Tells Animator to animate only the program currently executing.
Any others will be executed normally.

0 Positions the cursor for entry of the name of the next program to
be animated followed by RETURN. This must be entered as an
alphanumeric literal (within quotes) . Note: Animation of the current
program continues until termination. All others except the named

I

152 COBOL Introduction and Operating System Manual

program will be executed without animation. Animation resumes
with the named program.

If you need to start the run by executing normally until a specified
program is reached, use the following command directive after the main
program name when running the Animator:

ZOOM (program name)

Display and Modification of Data
These commands provide facilities for examining and changing the
contents of specified data items. You select the data items by either
specifying the data-name or pointing with the cursor.

* The O(isp/ay) Command

This command allows you to examine or change any data item in the
program, whether or not it currently appears on the screen, by typing the
name.

Type D and the cursor is positioned for entry of the required data-name
followed by RETURN .

The value of the item is displayed (with appropriate conversion in
accordance with its PICTURE clause.) For alphanumeric or group items,
non-ASCII characters are displayed as periods. Numeric data items display
leading or trailing signs according to their pictures, and decimal points are
inserted if used.

Following display of the data item, the cursor is positioned to the next line
for entry of a replacement value if required . If you don't want to change
the displayed value, simply press RETURN; otherwise type in the new
value in COBOL literal format (alphanumeric literals must be in quotes) .
Replacement is performed in accordance with the standard rules for the
COBOL MOVE statement.

No more than the first 80 characters will be displayed at one time. For
longer data items, the remainder of the field can be displayed by
specifying

data-name + n

Program Debugging and the Animator 153

where n is a numeric offset into the data item. Any changes will be
applied only to the part of the item currently displayed.

* The Q(uery) Command

This command allows display or modification of a data item referenced by
pointing with the cursor.

Position the cursor to the first character of any occurrence of the data­
name within the source code, then type a.

The data item is displayed and may be modified as described for the
D(isplay) command, with the exception that only the first 80 characters of
long data items can be referenced.

There are two special cases in the use of the Q)uery command. A Query
on a condition-name is allowed, but no subsequent modifications are
allowed. A Query on a file-identifier in an FD declaration or a SELECT
statement gives the file status only and allows no modification .

* The M(onitor) Command

This command enables automatically repeated display of a single specified
data item (without modification).

Type M and the following subordinate menu is displayed:

Type the appropriate key, where

S Sets the data item pointed to by the cursor to be the object of
monitoring. (The cursor must be moved to point to an occurrence
of the data-name before you press M.)

U Clears (unsets) the monitor.

N Positions the cursor for entry of a data-name followed by
RETURN. You can specify an offset into a long data item in the
same manner as for the D(isplay) command.

The monitored item is redisplayed after each animation "step" (for
example, after each statement in "GO" mode) .

154 COBOL Introduction and Operating System Manual

.Summary of Compiler Directives

This appendix describes each of the available Compiler directives, in
alphabetical order. Directives in effect by default are marked with an "* ".

Parameters to the directives may be specified as shown below (between
quotation marks or in parentheses, with optional spaces between the
directive and the parameter). The "NO" prefix to negate the effect of a
directive may be joined to the directive (as below) or separated from it by
one or more spaces.

* ANIM Files are created which are necessary for later Animation of the
program being compiled.

NOANIM Creation of the files need for Animation of a program is
suppressed.

BRIEF The text of error messages is suppressed and only the error
numbers are listed. This is assumed if the error message file COBOL.ERR
cannot be found; otherwise the default is NOBRIEF.

*NOBRIEF Explanatory error messages appear in the program listing
underneath the line of asterisks flagging each syntax error.

COMP Enables the Compiler to generate code for binary treatment of
PIC 99 and PIC 9(4) COMPUTATIONAL numeric variables; with this
directive in effect, some statements involving such variables will have
results different from the ANSI standard.

156 COBOL Introduction and Operating System Manual

*NOCOMP Forces standard ANSI treatment of PIC 99 and PIC 9(4)
COMPUTATIONAL data items.

COPYLIST The contents of any file(s) named in COPY statements are
listed; the listing file page headings will contain the name of any COPY file
open at the time a page heading is output.

* NOCOPYLIST The contents of files named in COPY statements in the
program are not listed.

CRTWIDTH "integer" Specifies the width in characters of the user
screen. This facility is used in Format 1 (ANSI standard) DISPLAY
statements to enable the user to plan the separation points in display of
data-items too long to fit on one physical CRT line.
The default is 128 character positions.

NOCRTWIDTH Specifies that Format 1 (standard ANSI) DISPLAY
statements will not be compiled, with consequent space saving in memory
due to control tables not being necessary. Any such statements will give
an "UNRECOGNIZED VERB" error message.

DATE "string" The comment-entry in the DATE-COMPILED paragraph,
if present in the program undergoing compilation, is replaced in its entirety
by the character string as entered between parentheses in the DATE
Compiler directive. This date is then printed at the top of every listing page
under the file name. Note that in the absence of a directive, the system
time and date will be used as if they had been entered as the string.

*ECHO Error lines are echoed on the console CRT. For each error, the
source line producing it, a flag line containing the error number and
(unless the BRIEF directive is in effect) an explanatory message will
appear on the screen.

NOECHO Suppresses echoing of error messages to the console.

ERRLIST The listing is limited to those COBOL lines containing any
syntax errors or flags, together with the associated error messages.

* NOERRLIST The listing contains all source code lines as well as any
syntax error or flag messages.

Appendi5< A- Summary of Compiler Directives 157

FLAG "level" This directive specifies the output of GSA Compiler
certification validation flags at compile time. The parameter "level" is one
of the character strings:

LOW Produces validation flags for all features higher than the Low
Level of Compiler certification of the General Services
Administration (GSA).

L-1 Produces validation flags for all features higher than the Low­
Intermediate Level of Compiler certification of the GSA.

H-1 Produces validation flags for all features higher than the High­
Intermediate Level of Compiler certification of the GSA.

HIGH Produces validation flags for all features higher than the the
High Level of Compiler certification of the GSA.

All/ Produces validation flags for only the Apple Ill COBOL
extensions to standard COBOL as it is specified in the ANSI
COBOL Standard.

IBM Flags the IBM-compatible options listed in Appendix J of the
Apple Ill COBOL Language Reference Manual.

*NOFLAG Suppresses generation of Compiler validation flags.

FORM "integer" Specifies the number of COBOL lines per page of
listing (minimum is five). The default is 60 lines per page.

NOFORM No form feed or page headings are to be output by the
Compiler in the list file.

FORMFEED "function-name" See below under SYSIN.

IBM Enables the extensions listed in Appendix J of the Apple Ill COBOL
Language Reference Manual.

* NOIBM Treats these extensions as syntax errors.

*INT "external-file-name" Specifies the file to which the intermediate
code is to be directed. If the file exists already it will be overwritten. If INT

158 COBOL Introduction and Operating System Manual

is specified without a file-name parameter, the Compiler appends the
extension .INT to the name of the source file; this is the extension that the
Run-Time System expects for an executable intermediate code file . INT,
without file-name parameter, is the default.

NOINT No intermediate code file is output. The Compiler is in effect
used for syntax checking only.

*LIST "external-file-name", *PRINT Specifies the file to which the
listing is to be directed; this may be a character device or a disk file . The
default is "source-file.LST" . If no file name is given, .CONSOLE is
assumed. If output is to a file that already exists, that file will be
overwritten.

NOLIST, NOPRINT No list file is produced; used for fast compilation of
"clean" programs.

REF The four-digit location addresses are included on the right hand side
of the listing file .

*NOREF Suppresses output of the four-digit location addresses on the
right hand side of the listing file .

RESEQ If this is specified, the Compiler generates COBOL sequence
numbers, renumbering each line in increments of ten.

*NORESEQ Suppresses generation of sequence numbers; columns 1
through 6 are printed on the listing just as they appear in the source file,
with no effect on the compilation .

FORMFEED "function-name", SYSIN "function-name", SYSOUT
"function-name", TAB "function-name" Changes the name
recognized by the Compiler for certain function names in the SPECIAL­
NAMES paragraph for this compilation.

Appendix 8- Compile-Time Error Messages 159

Compile-Time Error Messages

This appendix lists all error messages produced by the Compiler, along
with explanations of their meanings. You will notice that the numbers listed
are not continuous; that is, there are gaps in the numbering. The Compiler
should never have cause to generate an error message with an unlisted
number. If you ever encounter such a number, consult your Apple ///
Product Technical Support office.

Error Description

01 Compiler error; consult Technical Support
02 Illegal format : Data-name
03 Illegal format : Literal, or invalid use of ALL
04 Illegal format : Character
05 Data-name not unique
06 Too many data or procedure names declared or insufficient

memory
07 Illegal character in column 7 or continuation error
08 Nested COPY statement or unknown COPY file specified
09 '.' missing
1 0 Statement starts in wrong area of source line

21 '.' missing
22 DIVISION missing
23 SECTION missing
24 IDENTIFICATION missing
25 PROGRAM-ID missing
26 AUTHOR missing

I

I

160 COBOL Introduction and Operating System Manual

27 INSTALLATION missing
28 DATE-WRITTEN missing
29 SECURITY missing
30 ENVIRONMENT missing

31 CONFIGURATION missing
32 SOURCE-COMPUTER missing
33 OBJECT-COMPUTER/SPECIAL-NAMES clause error
34 OBJECT-COMPUTER missing
36 SPECIAL-NAMES missing
37 SWITCH clause error or system name/mnemonic name error
38 DECIMAL-POINT clause error
39 CONSOLE clause error
40 Illegal currency symbol

41 '.' missing
42 DIVISION missing
43 SECTION missing
44 INPUT-OUTPUT missing
45 FILE-CONTROL missing
46 ASSIGN missing
47 SEQUENTIAL or RELATIVE or INDEXED missing
48 ACCESS missing on indexed/relative file
49 SEQUENTIAL or DYNAMIC missing or)64 alternate keys
50 Illegal ORGANIZATION/ ACCESS/KEY combination

51 Unrecognized phrase in SELECT clause
52 RERUN clause syntax error
53 SAME AREA clause syntax error
54 Missing or illegal file-name
55 DATA DIVISION missing
56 PROCEDURE DIVISION missing or unknown statement
57 Program collating sequence not defined

61 '.' missing
62 DIVISION missing
63 SECTION missing
64 File-name not specified in SELECT statement or invalid CD

name
65 RECORD SIZE integer missing or line sequential record) 1 024

bytes

'

Appendix B- Compile-Time Error Messages 161

66 Illegal level no (01 -49).01 level required, or level hierarchy
wrong

67 FD, CD or SD qualification syntax error
68 WORKING-STORAGE missing
69 PROCEDURE DIVISION missing or unknown statement
70 Data description qualifier or '.' missing

71 Incompatible PICTURE clause and qualifiers
72 BLANK illegal with non-numeric data-item
73 PICTURE clause too long
74 VALUE with non-elementary item, wrong data-type or value

truncated
75 VALUE in error or illegal for PICTURE type
76 Non-elementary item has FILLER/SYNC/JUST/BLANK clause
7 7 Preceding item at this level has) 81 9 2 bytes or 0 bytes
78 REDEFINES of unequal fields or different levels
79 Data storage exceeds 64K bytes

81 Data description qualifier inappropriate or repeated
82 REDEFINES data-name not declared
83 USAGE must be COMP, DISPLAY or INDEX
84 SIGN must be LEADING or TRAILING
85 SYNCHRONIZED must be LEFT or RIGHT
86 JUSTIFIED must be RIGHT
87 BLANK must be ZERO
88 OCCURS must be numeric, non-zero, unsigned or DEPENDING
89 VALUE must be literal, numeric literal or figurative constant
90 PICTURE string has illegal precedence or illegal character

91 INDEXED data-name missing or already declared
92 Numeric-edited PICTURE string is too large

1 01 Verb not recognized or "." missing
102 IF ELSE mismatch
1 03 Operand missing or has wrong type or undeclared or "."

missing
1 04 Procedure name not unique or USE procedure duplicated
1 05 Procedure name same as data-name
1 06 Name required
1 07 Wrong combination of data-types
1 08 Conditional statement not allowed in this context

162 COBOL Introduction and Operating System Manual

1 09 Malformed subscript
110 ACCEPT/DISPLAY wrong or Communications syntax incorrect

111 Illegal syntax used with 1-0 verb
11 2 Invalid arithmetic statement
11 3 Invalid arithmetic expression
11 5 Invalid conditional expression
116 IF statements nested too deep, or too many AFTERs in

PERFORM statement
11 7 Incorrect structure of PROCEDURE DIVISION
11 8 Reserved word missing or incorrectly used
119 Too many subscripts in one statement
120 Too many operands in one statement

141 Inter-segment procedure name duplication
142 IF ELSE mismatch at end of source input
1 43 Operand has wrong data-type or not declared
1 44 Procedure name undeclared
145 INDEX data-name declared twice
1 46 Bad cursor control : illegal AT clause
1 4 7 KEY declaration missing or illegal
1 48 STATUS declaration missing
149 Bad STATUS record
150 Undefined inter-segment reference or error in ALTERed

paragraph

1 51 PROCEDURE DIVISION in error
1 52 USING parameter not declared in LINKAGE SECTION
153 USING parameter not level 01 or 77
1 54 USING parameter used twice in parameter list
1 55 FD missing
157 Incorrect structure of PROCEDURE DIVISION
160 Too many operands in one statement

In addition to these numbered error messages, the following message can
be displayed with subsequent termination of the compilation:

FATAL 1-0 ERROR: file name

Appendix 8- Compile-Time Error Messages 163

where file name is the erroneous file. Any intermediate code file produced
in such a case is not usable. The conditions that will cause this error are:

Disk overflow
File directory overflow
File full
Impossible 1-0 device usage

Other operating system dependent conditions may also cause this error.

164 COBOL Introduction and Operating System Manual

'
Appendix C- Run-Time Error Messages 165

Run-Time Error Messages

1 53 Subscript bounds overflow: zero or greater than the number of
occurrences of the item

1 54 PERFORMs nested too deep: usually results from using GO TO
to jump out of the range of a PERFORM instead of jumping to
an EXIT statement at the end of its range

157 Not enough program memory: may occur on initial program load
or when the Run-Time System attempts to load one of its own
modules to perform a function such as indexed 1-0,
SORT/MERGE or ACCEPT/DISPLAY on CRT-see the ON
OVERFLOW clause of the CALL statement for handling sub­
programs that can't be loaded

160 Overlay loading error: unable to load overlay or segment; for
example, file not found, too many files open, or invalid file
structure

161 Illegal intermediate code: operation not recognized by the Run­
Time System-implies bad program file

162 Perform n times nested too deep: too many levels of PERFORM
n TIMES. Error may be reported in processing a complex
arithmetic expression

163 Program counter out of range: address in GO TO, PERFORM or
ALTER lies outside the program area-implies bad program file

164 Program not found: loading error (for example, file not found,
too many files open, invalid file structure)

165 Version number error: incompatible releases of Compiler and
Run-Time System; the Compiler used may have generated code
that will not be executed correctly

166 COBOL Introduction and Operating System Manual

166 Recursive call illegal: attempt to CALL a COBOL module
recursively (i.e., when it is already active)

167 Too many USING items: the list of items supplied in a CALL ...
USING statement is longer than the Run-Time System can
handle

1 68 Linkage Error: parameter count mismatch between CALL and
PROCEDURE DIVISION USING statements, or an attempt to
access a linkage section item when a program executes directly
or when the item isn't included in the PROCEDURE DIVISION
USING list

1 7 4 ISR file loading error: lntersegment Reference File for a
segmented program cannot be loaded; for example if the file
was not found, or had an invalid file structure

176 Illegal intersegment reference: illegal use of GO TO, PERFORM
or ALTER across segment boundaries in a segmented program

177 Cancellation of"active program. Attempt to CANCEL a COBOL
module that is still active (it has been called but has not yet
executed an EXIT PROGRAM statement)

178 Error during save: unable to SAVE the program successfully; for
example, when not enough disk or directory space

200 Unclassified error condition: may be caused by a disk or
to directory structure error not checked for by the operating
255 system-consult Technical Support if the problem is

reproducible after transferring all files in use to another disk

The errors listed above are all fatal; they cause the Run-Time
System to terminate the program, displaying the error number
and naming the segment involved in the error. (The segment will
always be the "root" segment in the case of a non-segmented
program.)

File errors cause termination of program execution unless a
status field has been specified for the file concerned. If a status
field is specified, the character "9" is returned in the first byte
and the error code is returned as a binary value in the second
byte. The programmer must then check for error conditions and
take corrective action or terminate the program run. See
Chapter Six for the handling of this status byte.

Decimal
Error
Number

4

5

7

9

13

14

15

16

24

25

Appendix C- Run-Time Error Messages 167

FILE HANDLING ERRORS

Meaning

Out of Buffer space.

Insufficient memory available for operating system 1-0
buffers.

Illegal file name.

File or device name contains illegal character(s) .

No such device.

The device or disk specified cannot be found by the
system.

Out of disk space.

No space available on disk for file creation/extension.

Disk directory full .

No space available in disk directory for further entries.

File not found.

The file specified cannot be found by the system (in
attempting to open for input a non-existent file not
declared OPTIONAL) .

Too many files open.

Attempt to open more files (16) than can be catered
to by the system; note that segment changes in
segmented programs and calls to non-resident
subprograms require the Run-Time System to open a
file to satisfy the request. May mean that the Run­
Time System can't acquire the memory it needs for
1-0 buffers.

Too many open ISAM files.

Attempt to open more indexed files (8) than can be
catered to by the system.

Too many open devices.

Attempt to open more devices than can be used
simultaneously by the system.

Hardware 1-0 error.

Device or disk 1-0 error; for example, checksum error,
read after write verification failure, parity error, etc.

Operating system data error.

Bad directory entry, invalid block allocation map, etc.

File
Organization
Applicable

All

All

All

All

All

All

All

Indexed

All

All

All

'

I

168 COBOL Introduction and Operating System Manual

Decimal
Error
Number

37

38

39

41

42

43

47

129

FILE HANDLING ERRORS

Meaning

File access denied.

Access to file denied by operating system; for
example, in an attempt to read from an output device,
write to a write-protected file, etc.

Incompatible disk.

Disk created under another operating system or
operating system version, or clashes with one already
loaded (same name, etc.).

Incompatible file .

Directory entry indicates incorrect file type, device
type illegal for file organization, etc.

Bad file .

File corrupt or in unrecognized format. Possibly
caused by opening a file with a different organization
or record length from that used to create it. May
occur if the file was not properly closed after a
preceding update; for example, because of a
hardware failure .

Misformed line sequential file .

A text file was opened and found to contain)0 and
(1 024 bytes. A normal text file has 1 024 bytes of
operating system data at the beginning.

File information missing.

Indexed files-means that one file is missing
completely or that a file is shorter than indicated by its
internal control data (generally caused by a failure to
close the file after an update, for example because of
a hardware failure).

Index structure overflow.

Indexed files-means that the maximum number of
levels permitted in the index tree structure has been
exceeded: the file must be reorganized before further
data is added.

Record zero illegal.

An attempt has been made to access record zero on
a relative file.

* Means the file is bad, if reported for an indexed file.

File
Organization
Applicable

All

All

All

Relative

Line Sequential

Indexed

Indexed

*Relative

· Appendix C- Run-Time Error Messages 169

Decimal
Error
Number

139

141

142

143

146

147

148

149

FILE HANDLING ERRORS

Meaning

Record length or key data error.

Attempt to open an existing file where record length or
key data differs from that used when it was created.

File already open.

Attempt to open a file that is already open.

File not open.

Attempt to close an unopened file.

Rewrite/delete not preceded by read.

Rewrite or delete on a file in sequential access mode
was not preceded by a successful read.

No current record.

Sequential read attempted on a file in dynamic or
sequential access mode when no current record was
defined.

Wrong open mode for read/start.

Attempt to read from or start on a file that has not
been opened input or 1-0 .

Wrong open mode for write.

Attempt to write to a file in sequential access mode
that has not been opened output or extend, or attempt
to write to a file in random or dynamic access mode
that has not been opened input or 1-0.

Wrong open mode for rewrite/delete.

Attempt to rewrite or delete on a file that has not been
opened 1-0.

File
Organization
Applicable

• Line Sequential
*Relative
Indexed

All

All

Sequential
Relative
Indexed

Relative
Indexed

All

All

Sequential
Relative

• Error may not be detected at open time but gives rise to a bad file when 1-0 is attempted.

I

170 COBOL Introduction and Operating System Manual
I

I

FORMS2 Command Summary

FORMS2 operates in phases, introduced by way of menus. After the
initialization phases are complete, the user enters data on the screen in
edit mode or gives commands in command mode. Work on a form begins
in edit mode; to get into command mode, press the RETURN key .

Initialization

The following items must be determined at the initialization of any
FORMS2 run; most of these take default values if RETURN is pressed
without any data entered. Only the first item must be specified:

1. DATA-NAME & FILE-NAME. Mandatory one to six character name
to be used throughout the run as the base of all file names and
COBOL data-names.

2. CRT lines. Default value 24; may optionally be set to 22 or 23 to
assure that no records generated by FORMS2 occupy more than
this number of lines on the screen .

3. CURRENCY SIGN. Default value " $ ".

4. DECIMAL-POINT. Default value " ." .

5. Output files generated . The options are :

A DDS file of COBOL Data-Description Statements only.

B DDS file and CHK program to checkout the forms.

172 COBOL Introduction and Operating System Manual

C DDS and CHK files, and Snn screen image files .

D DDS and Snn files only.

E Snn files only.

F No files output.

G DDS and Snn files, and GEN index-file program.

6 . DEVICE/DIRECTORY PREFIX. Default is none. Zero to forty
characters, used as a prefix to the name base.DDS for COPY
statements. Used to specify a device for the output file at compile
time which may differ from its location during the FORMS2 run.

Work Phase Initialization

With the release of each screen generated by a work phase, the next
work phase is automatically initiated unless the 0 command is in effect. To
initialize a work phase, you must choose one of the screen creation
options. Initial default is A followed by C.

A Fixed Text on Clear Screen. Input defines a new COBOL record
comprised of FILLER entries in blank spaces and PIC X(n) data with
VALUE clauses defined by edit mode data.

B Fixed Text on Last Screen. Like A but the new record REDEFINES
the previous screen record.

C Variable Data on Last Screen. Input "X"s, "Y"s, "8"s, "9"s and
Numeric-editing characters against the background of the previous
screen. Output is a record which REDEFINES the last one and can
be used in ACCEPT statements protecting the rest of the screen.

D Variable Data without Redefinition. Like C, but the record is not a
redefinition of the background.

' Appendix 0- FORMS2 Command Summary 173

General Commands

Once the screen type option is set, editing can begin for the new form. At
any stage of the editing process, the general commands are made
available by pressing RETURN. Several of these commands use non­
alphabetic keys; these are listed here first and are then followed by the
other commands in alphabetic order.

(Exclamation point). Exit from FORMS2 run. Normally issued at the
reappearance of the W01 work-phase initialization screen, to
indicate that no more forms are to be generated. Used at other
times to abort the run .

? (Question mark) . Exhibit the (next in sequence of four) HELP
screen. Initially shows H01, then H02, H03 and H04 before again
showing H01 .

?n For n = 1, 2, 3 or 4 shows the corresponding HELP screen.

*

An

Cn

On

(Underline) . Resume edit mode. This is the default command.

(Asterisk) . Marks the boundary between key field and data in the
Variable Data record generated for an Index File program.

(Blank). Release the current form for processing, to end this work
phase. This command will not be accepted when the GEN option
has been selected, unless you have marked the Variable Data
record with the boundary between key field and data fields (*
command).

(n = 1 to 9) Duplicate the current line n times, below the cursor;
the cursor must be at the start of the line.

(n = 1 to 9) Insert n blank characters on the current line;
everything to the right of the cursor moves n positions to the right
(dropping characters that shift off the screen.)

(n = 1 to 9) Delete n characters on the current line: first the
character under the cursor, then the succeeding n-1; if there are
fewer than n characters past the cursor, only the rest of the current
line is deleted.

174 COBOL Introduction and Operating System Manual

F Display the Foreground/Background menu (work screen W02).
Allows selection of commands FA through FJ by pressing keys A
through J, returning to the W02 menu after each command, until
option A (return to edit-mode) is selected. All the options may be
selected without reference to the menu by the following two­
keystroke commands:

FA Return from Foreground/Background manipulation to edit­
mode.

FB Clear Foreground; erases current Foreground screen, leaving
the Background unaffected.

FC Clear Background; erases current Background screen, leaving
the Foreground and any records already generated unaffected.

FD Overlay Background data onto Foreground; places the entire
Background screen into the Foreground (as if typed in again in
edit-mode).

FE Overlay Foreground data onto Background; places Foreground
screen contents into the Background (without going through
any COBOL record generation).

FF Overlay Screen Image File onto Foreground. Requests name
of the file, then reads it into the Foreground screen. It may
then be edited further for current record generation.

FG Overlay Screen Image File onto Background. Requests name
of the file , then reads it into the Background.

FH Display Foreground; shows Foreground contents, without
merging the Background contents into it. When control returns
to edit-mode, the screens are again merged.

Fl Display Background; shows Background contents not merged
with Foreground. If the Background has been overwritten in
edit-mode, this will restore its original appearance.

FJ Display Screen Image File; requests the name of the file and
displays it on the screen without changing either Foreground
or background. Useful for "browsing" through a library of
screen images before using bp or FG.

G Generate screen coordinates names; changes the names in the
GO COBOL record outputs, so that data-items have row and

column position appended instead of sequential field number.
GO (with digit zero, not letter "oh") is synonymous with G.

G1 (digit one, not letter "L"). Restore default naming; change
names of data-items in a record to append the sequential field
count, instead of the row and column position of the item.

Appendix D- FORMS2 Command Summary 175

In (n = 1 to 9) Insert n blank lines before the current line; moves the
current line and subsequent lines down the screen, dropping any
lines that move below the pre-defined limit (CRT lines on the first
initialization screen) .

Jn (n = 0 to 9) Multiple space reset; initial setting 1. All blank areas
on a fixed screen between visible characters are replaced by
FILLER items, whenever the number of contiguous spaces is greater
than n; if n=O, all spaces become FILLER.

Kn (n = 1 to 9) Kill (delete) n lines, starting with the current line; if
there are fewer than n lines, all remaining lines are deleted.

Mx (x any printable character; initial setting "_ ") Make "x" the "visible­
space" character: use of this character in edit-mode causes creation
of a blank in the COBOL value clause describing the item.

0 (letter "oh") Turn on automatic Foreground to Background merging
(default option).

01 ("oh one") Switch off automatic screen preparation. With "01" in
effect, any Foreground/Background manipulation must be done by
using the "F" commands.

P Show current cursor position (yyxx for row yy, column xx).

Q Quit: during initialization, returns to the first screen for revision of the
parameters already selected; during a work phase, returns to the
W01 work initialization, for revision of the type of record being
generated.

SO Cancel S option (S3 or S9) in effect.
S1 Suppress COBOL statement generation for current work phase

(automatically cancelled in next work phase) .
S2 Suppress screen image generation for the current work phase;

usually used for "Variable Data" screens not needed for
documentation. (Automatically cancelled in next work phase.)

S3 Request user names for all screen image files; in normal operation, a
name like base.Snn is assumed.

S9 Edit pause for each COBOL line output; allows minor editing within
lines of the COBOL DDS records, for example, changes to the
names of data-items.

176 COBOL Introduction and Operating System Manual

Un (n = 1 to 9) Move the cursor vertically upwards n lines, leaving it
in the same column as on the starting line. If the cursor is fewer than
n lines from the top, it moves to the top line.

Vn (n = 1 to 9) Move the cursor vertically downward n lines; leaving it
in the same column as on the starting line. The "V" key is intended
to suggest an arrow pointing down. If the cursor is fewer than n
lines from the bottom limit of the screen (CRT lines parameter), it
moves to the bottom.

WO Window "home" key; positions the cursor at the start of the top line
in the current window; "W" is synonymous with "WO".

W1 Define starting line of a window at the current line; shows a line of
delimiters ("-"s) on the previous line.

W2 Define end line of window as the current line; shows a line of
delimiters on the next line.

W3 Define starting line of a window at the current line; no delimiting line
shown.

W4 Define end line of a window at the current line; no delimiting line
shown.

W5 Display delimiters on the line before the current window.
W6 Display delimiters on the line after the current window.
W7 Erase any delimiter line before the current window; restores any

work screen contents previously obscured by delimiters.
W8 Erase any delimiter line after the current window.
W9 Position cursor at the end (lower right-hand corner) of the current

window.

X Reposition the command line (the two underlines " __ " that appear
when command-mode is entered by pressing the RETURN key in
edit-mode) to appear at the current cursor position.

Appendix E- Animator Command Summary 177

1 Animator Command Summary

This appendix is a summary in alphabetic order of the commands that the
user can select from the CRT menu that is displayed when the Animator is
invoked at the COBOL command line level. A brief summary of each
command is given.

A One of the two available lOcAte commands. The A command locates
the declaration of a data-name or procedure-name in a program when
the required name is keyed in .

B The Breakpoint command allows the user to set breakpoints at which
execution will halt automatically. The Breakpoint command offers a
menu of four options :

S Set breakpoint at statement currently pointed to by the cursor.
U Unset the breakpoint currently pointed to by the cursor.
C Cancel all breakpoints .
X Examine next breakpoint. Can be used successively to examine

all set breakpoints.

C The Compile command enables immediate compilation and execution
of entered COBOL statement or statements. Any compilation error
that may result offers a S(top) or C(ontinue) selection menu.

D The Display command enables display and/or amendment of the
named data-item.

178 COBOL Introduction and Operating System Manual

E The Execute command is used to specify the way in which the user
requires execution of the program. On entry, the command displays
an option menu as follows:

X EXecutes a single COBOL statement and moves the cursor to
the next statement.

K SKips a single COBOL statement without execution and moves
the cursor to the next statement.
Executes (without the Animation Option features) to the next If
statement, halts and positions the cursor there.

G Initiates execution (GO) with the Animation Option. As each
statement is executed (at a specified speed) the cursor is
moved to the next statement in the source code. Speed of
execution is set by typing a digit 1 through 9 , where 1 is
slowest and 9 is fastest.

Z Initiates execution without Animation activated (Zooms).
S Stops execution after displaying the current user screen.

F The Find command searches from the current cursor position through
the source text for a specified string of characters.

L The Level command allows a "threshold" level to be set at any level
of nested PERFORMs such that any PERFORM subordinate to this
level is treated as a single statement for Animation purposes.

M The Monitor command enables automatic repeated display of the
value of a single specified data-item (without amendment) during
program execution.

N The Name command specifies which programs are to be executed
with the Animation Option invoked. Displays a menu with the following
options:

W Which program: displays the current program name.
A All programs: this is the default; programs compiled with the

ANIM Compiler directive set are animated.
T This program: only the current program will run under animation;

all others will execute normally.
0 Other program: the cursor is moved to type a program name

followed by RETURN; the current program will complete

Appendix E- Animator Command Summary 179

execution under animation; thereafter the named program will
execute under animation, but all other programs will execute
normally.

0 The second of the two available lOcAte commands. The 0 command
locates the declaration of the data-name or procedure-name of any
occurrence on which the cursor is positioned when 0 is entered.

P The program-counter command provides facilities to ascertain the
point at which execution will start (or resume) , or to alter this point.
On entry, the P command displays an option menu as follows:

W Where : repositions the screen window as necessary to include
the statement at the hexadecimal address given.

R Resets the execution start point to the current cursor position.

0 The Query command allows display and/or amendment of the data­
item pointed at by the cursor when 0 is entered.

S The Screen command repositions the screen window to display a
different part of the source text as follows:

N displays Next screen from source text.
P displays Previous screen from source text.
T displays screen at Top of source text
E displays screen at End of source text.
V repositions window so that the source line on which the cursor

sits is the third line. Note: the cursor must be positioned before
pressing S.

H splits the screen in half (two windows) divided by a line of
hyphens. The lower window shows the start of the program
text. Note: Subsequent screen commands operate in the
window in which the cursor is positioned.

F restores Full screen display (single window).

) same as the N screen command except you need not type "S"
first; " ." can also be used.

(same as the P command except you need not type "S" first;
" ," can also be used.

180 COBOL Introduction and Operating System Manual

= n repositions the window such that the nth source line is aligned
at the third screen line.

+n moves the window forward n lines.
- n moves the window back n lines.

Note: =, +, - all position the cursor for entry of a numeric quantity
followed by RETURN .

If there is a split screen display and the cursor is on the dividing line
of hyphens, then when S is pressed the following subordinate menu
is displayed:

SCREEN DIVIDER - U(p) D(own)

These commands allow the relative size of the two windows to be
altered:

U moves the screen divider Up one line.
D moves the screen divider Down one line.

T The unTil command allows specification of a condition which will
cause execution to halt as follows:

S Set the condition . Enter the required COBOL conditional
expression.

U Unset the previously set condition .
X Display the previously set conditional expression.

U The User command displays the current user screen until any key is
pressed.

Z The Zoom command specifies continuation of execution of the
program without further invocation of the Animation Option.

Note that the following sub-menu commands may actually be used at the
top menu level:

) . (, = + - V X G K I W, 1-9 (speeds) .

Appendix F- COBOL File Formats 181

COBOL Rle Formats

General

The disk file system used in Apple /// COBOL is the disk-based SOS
system described in the appropriate Apple /// manuals. A description of file
creation and management is available in those manuals.

Apple/// COBOL offers SEQUENTIAL, RELATIVE and INDEX
SEQUENTIAL organizations, in accordance with the ANSI COBOL
standard. This COBOL also offers a variant of SEQUENTIAL organization,
LINE SEQUENTIAL, designed for variable length line files, such as
printers, the console, and files output by text editors.

All file processing information is defined within an interactive Apple Ill
COBOL program. File organization, access method, device assignment
and allocation of disk space are defined by the SELECT statement in the
INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION and an FD
entry in the FILE SECTION of the OAT A DIVISION.

Apple Ill COBOL offers fixed (compile-time) file assignment and dynamic
(run-time) file assignment facilities.

182 COBOL Introduction and Operating System Manual

Rxed (Uteral) Rle Assignment

The SOS file name is assigned to the internal user file name at compile
time as shown in the specifications that follow.

In the FILE-CONTROL paragraph the general format of the SELECT and
ASSIGN TO statements is as follows:

SELECT file-name

ASSIGN TO external-file-name-literal
file-identifier

parameters:

file-name

file-identifier

external-file-name-literal
file-identifier

is any user-defined name

is Run-Time File Assignment: see later in this
Appendix

external-file-name-literal is a standard SOS pathname.

SOS pathnames have the following general format:

drive/

volume-id/
?/

or
device

where

drive

volume-id

[subdirectory/) .. . file-name

is the name of a disk device driver, for example .01
for the built-in drive

is the logical name assigned to a disk when it was
formatted, for example /DEMO

device

subdirectory

file-name

Appendix F- COBOL File Formats 183

is the name of a device driver

is a file which itself references files at a lower level in
the disk hierarchy

is the name of a file containing data

For the purpose of generating derivative names (required in compilation or
when handling certain types of COBOL files) , the name is considered as
being made up of two parts, a base and an extension (which may be null).
The extension is those characters which follow the last period (if any)
embedded in the file name.

If a drive or disk directory is not specified for a disk file, the pathname
specified is resolved using the prefix pathname that has been set,
according to normal SOS operating system conventions.

An Apple Ill COBOL extension allows the use of the two-character string
"?/" in place of the directory string for a disk file pathname. This is
intended primarily for handling system files and causes th~ RTS to search
all the disks configured into the system for a file of the specified name
when an OPEN is executed. The open will fail if no file is found (even on
an OPEN for output); if files having the same name exist on more than
one disk in the system, the first one found will be opened: however, the
order in which disks are searched is indeterminate.

Examples of Fixed (Literal) File Assignment:

SELECT STOCK-FILE
ASSIGN TO " . D3/INVENTORY /WAREHS. BUY".

SELECT STOCK-FILE
ASSIGN TO "/DATA/INVENTORY/WAREHS.BUY".

The file name specified as above is then used in the FILE DESCRIPTION
for that program; see The FILE DESCRIPTION -Complete Entry Skeleton
in Chapters Five, Six and Seven of the Apple Ill COBOL Language
Reference Manual.

This file name is then also used in the OPEN and CLOSE statements
when the file is required for use in the program; see THE OPEN
STATEMENT and THE CLOSE STATEMENT in Chapters Five, Six, and
Seven of the Apple Ill COBOL Language Reference Manual.

184 COBOL Introduction and Operating System Manual

Run-Time Rle Assignment

The internal user file name is assigned to a file-identifier (an alphanumeric
user-defined COBOL word) which automatically defines a PIC X(85) data
area to hold the external SOS file name. The external SOS file name can
then be stored in this data area in the Procedure Division by the user, and
can be altered during the run as required .

~ All SOS pathnames used in programs should be terminated with a space
~ to identify the end of the string . The Compiler handles this requirement

automatically in the case of a literal ASSIGN TO clause or a MOVE
statement. However, if you redeclare a file-id in WORKING-STORAGE,
this space is not automatically generated and you may get a surprising
result. For example, observe the following code:

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT FILE1 ASSIGN TO FILE-NAME.

DATA DIVISION.
FILE SECTION.

FD FILE1.
WORKING-STORAGE SECTION.
01 FILE-NAME PIC X(1 0) VALUE "ABCDEF.GHI".
01 REST-1 PIC X(3) VALUE "00 ".
* NOTE THE SPACE IN "00 " ABOVE!

PROCEDURE DIVISION.
MAIN-ROUTINE.

OPEN OUTPUT FILE1 .
CLOSE FILE1.

STOP RUN.

The result of this code is to create a file named ABCDEF.GHIOO! There
are three totally separate ways to get this program to create a file named
ABCDEF.GHI, as would be expected .

1. Change the declaration of FILE-NAME to PIC X(11).

2. Eliminate the declaration of FILE-NAME in WORKING-STORAGE
and instead, MOVE the appropriate value to it in the PROCEDURE
DIVISION.

Appendix F- COBOL File Formats 185

3. Eliminate the declaration of FILE-NAME in WORKING-STORAGE
and instead, use the statement SELECT FILE1 ASSIGN TO
" ABCDEF.GHI" in FILE-CONTROL.

In the FILE-CONTROL paragraph the general format of the SELECT and
ASSIGN TO statements for run-time assignment is as follows:

SELECT file-name
ASSIGN TO file- identifier

Parameters

file-name is any user-defined Apple Ill COBOL word.

file-identifier is any user-defined Apple Ill COBOL word.

Example of Run-Time File Assignment:

SELECT STOCK-FILE
ASSIGN STOCK-NAME.

The external SOS file name of the required file is then stored as required
in the file- identifier location specified above by the user program before an
OPEN for the file is executed; for example

MOVE" .D3/INVENTORY/WAREHS.BUY" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.

CLOSE STOCK-FILE.

MOVE ".03/INVENTORY/WAREHS.SELL" TO STOCK-NAME.
OPEN INPUT STOCK-FILE.

The SOS file name could have been entered via an ACCEPT statement by
an operator, or stored as any other variable data just as well as being
coded literally, as in this example.

186 COBOL Introduction and Operating System Manual

Apple Ill COBOL Disk Rle Structures
Under SOS

Apple Ill COBOL offers four types of file organization for use by the
COBOL programmer: SEQUENTIAL, LINE SEQUENTIAL, RELATIVE and
INDEX SEQUENTIAL (ISAM). Any file is a set of records; a record is a set
of contiguous data bytes which are mapped into hardware sectors with
which they need not coincide, that is, a record can start anywhere within
a sector and can cross hardware sector boundaries. System
considerations for the different file organizations are discussed below.

SEQUENTIAL
SEQUENTIAL files are read and written using fixed length records, the
length used being that of the longest record defined in the COBOL
program's FD.

Normally the space occupied per record is the same as the program
record length and data of any type may be held on the file. This does not
apply if a WRITE is done using BEFORE or AFTER ADVANCING, as extra
control characters are inserted and the data cannot then be read back
correctly.

The limit on file size is that imposed by SOS, which is 1 6 Mbytes.

LINE SEQUENTIAL
LINE SEQUENTIAL file format handles ASCII and TEXT files like those
generated by editors and other similar utilities. In particular, it is designed
to be compatible with both types of files handled by the Apple Ill Pascal
editor. This is the only type of Apple Ill COBOL file format in which
variable length records are supported: the single byte X"OD" (carriage
return) is used as a record delimiter. On input the CR is removed and the
record area padded out with spaces as necessary: on output any trailing
spaces in the program's record area are ignored.

Use of ADVANCING phrases other than BEFORE 1 causes the output of
additional control characters. A file created in this way can still be read by
a program, but the additional control characters are not filtered out and
they will either appear in the record area or cause the appearance of

Appendix F- COBOL File Formats 187

spurious blank records. Note also that the behavior of output devices with
files in this organization is dependent on their treatment of the ASCII CR;
this character may, or may not, cause an automatic line feed.

Note that this file organization is appropriate for reading files of type ASCII
or TEXT and for writing them to character devices such as the console or
printers. An output file of this organization will always have file type ASCII.
Apple Ill COBOL does not support the TEXT file type except to be able to
read it.

RELATIVE
RELATIVE file organization provides a means of accessing data randomly
by specifying its position in the file. Records are of fixed length, the length
used being that of the longest record defined in the program's FD. To
designate whether or not a record logically exists, two bytes are added to
the end of each record: these contain ODOAH if the record logically exists
on the file and OOOOH if it does not. The total length of a file is
determined by the highest relative record number used; the maximum file
size is 16 Mbytes. Data of any type may be held on the file; the RTS uses
information held by SOS to determine the precise position of the end of
data.

INDEX SEQUENTIAL
An INDEX SEQUENTIAL (ISAM) file occupies two files on disk: both are in
standard relative file format, one containing the data and the other all
indexing and free space information.

The name for the index file is derived from the name supplied for the data
file by substituting the extension " .I OX" in place of any supplied in the
data file name. This means that different indexed files cannot be
distinguished purely by a change in the file name extension and that it is
advisable to refrain from using the extension " .lOX" in other contexts. For
example:

"CLOCK.DAT" produces an index "CLOCK.IDX"

The index (each index in a multiple key file) is built up as an inverted tree
structure which grows in height as records are added: the number of
index file accesses required to locate a randomly selected record

188 COBOL Introduction and Operating System Manual

depends principally on the number of records on the file and the
applicable "keylengths". The number of levels in a tree (and hence the
number of disk accesses required) is approximately

index levels = logarithm (base k) of the number of records,

where k = 1 50 I (keylength + 2)

but will vary slightly depending on the order in which records are added
and deleted.

Faster response times are generally obtainable when accessing a file
sequentially, particularly when reading or when processing a single-key
file.

The size (in bytes) of an ISAM file is approximately related to the maximum
number of records it contains as follows:

data = (record length + 2) * max. no of records

index = sum over all keys of:

256 * (no. of records) I (k - 1)

where k is defined as above

Each key is restricted to a maximum of 32 bytes and a limit of 65535
records is required on both data and index files; index records are 256
bytes long. An attempt to exceed this limit will result in a boundary error
(invalid key, file status "24") being reported.

The necessity of taking regular backup copies of all types of files cannot
be emphasized too strongly; this should always be regarded as the main
safeguard. However, there are some situations with indexed files (such
as media corruption) that can lead to only one of the two files becoming
unusable. If the index file is lost in this way, it is normally possible to
recover data records from just one data file (although not in key
sequence) and cut down on the time lost due to a failure. As an aid to
this, all unused data records are deleted at the relative file level and so
the operation may be done with a simple COBOL program by defining the
data file as ORGANIZATION RELATIVE ACCESS SEQUENTIAL; READ
the records from this file and WRITE them to a new version of the
indexed file.

I

Appendix F- COBOL File Formats 189

Sort-Merge Files
Sort and Merge operations are done using work files of formats similar to
those of indexed sequential files . Their locations and names are
determined from the file name supplied in the SELECT statement, one file
being given the name supplied and the names of up to two further files
being derived by substituting the extensions " .SX1" and ".SX2" for any
supplied. The space required (in bytes) to accommodate the main workfile
is

(record length + 2) * number of data records

and to accommodate the auxiliary workfiles

up to about 80 * number of data records each,
depending on the total length of all the key fields.

There is a limit of 65535 on the number of records that can be handled
by a sort or merge (assuming that disk space is available) . There is no
restriction on key types or lengths, although the shorter and simpler these
are kept, the faster the operation will proceed.

·· .)

190 COBOL Introduction and Operating System Manual

'

Appendix G- Conversion for Other COBOL Systems 191

Conversion from Other
COBOL Systems

Apple Ill COBOL Limits

There are certain implementation limits inherent in any COBOL system.
Some of these will rarely, if ever, be encountered by practical programs;
for example, in Apple ///COBOL, PERFORM statements may not be
nested to more than 50 levels. Others have more impact on applications.
Users of Apple Ill COBOL should be aware of the following limits:

• No more than 16 files may be open at any one time. Note that
INDEX SEQUENTIAL files require an index file in addition to the
data file, so each INDEX SEQUENTIAL file counts for two files in
this limitation.

• An unsegmented program is limited to 64K bytes of memory, of
which no more than 60K bytes may be PROCEDURE DIVISION
code. For a segmented program, the root segment (code and
data) and the largest independent segment, plus the .ISR file,
must meet this 64K limit. An application exceeding this limit will
need to be rewritten with inter-program CALL statements.

• The Compiler (and the Animator) use dictionary files which are
also limited to 64K bytes in size; there will be one such file for
each independent segment of a program. If this limit is exceeded,
the Compiler will fail. Again the solution is to rewrite the
application as several CALLed programs. Also note that for an
Apple ///with less than 256K memory, it is the size of the
dictionary files that limits the use of Animator. With a 128K

192 COBOL Introduction and Operating System Manual

system, you may also notice dictionary overflow by Compiler error
06: "too many data and procedure names declared, or not
enough memory".

Apple /II COBOL follows the ANSI standard (X3.23 - 197 4) quite closely;
the Apple /II COBOL Language Reference Manual has the same
organization as the standard, to assist you in comparing Apple COBOL
and other systems.

Standard COBOL attempts to limit system dependencies to highly visible
entries in the ENVIRONMENT DIVISION; any COBOL conversion should
look to this DIVISION first for necessary changes. You should read
carefully through the ENVIRONMENT DIVISION references in the Apple /II
COBOL Language Reference Manual. Appendix F of this manual is also
useful; it deals with the interface between COBOL files and the SOS
Operating System on the Apple //1.

Although certified at the High-Intermediate Level of Compiler acceptance
by the General Services Administration, Apple /II COBOL in fact
implements many of the features of full COBOL. In particular, the full
COBOL Nucleus module is implemented; thus all aspects of the data­
manipulation and arithmetic verbs (MOVE, INSPECT, ADD, COMPUTE,
etc.) are available in Apple /II COBOL. You will find a detailed listing of
what is implemented and what is not in Appendix I of the Apple /II COBOL
Language Reference Manual; the main omissions are

• Report WriteL This module is the only module of the COBOL
standard not handled in any way by this implementation.

• Communication. This module, requiring a Message Communication
System, is not implemented. Communications statements are
checked and compiled, but they are not handled by the Run-Time
System. Attempting to run a program with such statements will
give RTS error 161-ILLEGAL INTERMEDIATE CODE.

• Tape Handling. Clauses dealing with blocking of tape records,
tape labels, and other aspects of magnetic tape storage are
accepted by the Compiler, but treated as comments. Similarly, the
RERUN clause is accepted as documentary only. All such COBOL
statements are marked by shading and an affixed "D" (for
Documentary) in the COBOL syntax summary, which is Appendix
F of the Apple /II COBOL Language Reference Manual.

Appendix G- Conversion for Other COBOL Systems 193

• The highest level of the Segmentation module, which allows
overlays in the fixed segment of a segmented program, isn't
implemented.

• The highest level of the Library module, allowing the REPLACING
phrase in a COPY statement, isn't implemented.

Most surprises in the use of Apple Ill COBOL have to do, not with partial
implementation of the standard, but with extensions to it, either in the
Apple system, or in the COBOL you are used to; for example:

• The Apple Ill file organization LINE SEQUENTIAL will, unless you
specify a WRITE AFTER ADVANCING or WRITE BEFORE
ADVANCING phrase, assume a BEFORE ADVANCING 1 default.
That is, a line normally ends with a carriage return ; for other
behavior, you must direct the Compiler to insert the necessary
control characters. A SEQUENTIAL file would assume (in
accordance with the standard) the phrase AFTER ADVANCING 1 .

• Most COBOL Compilers have a directive which will enable you to
check a code file for conformity to the ANSI standard. In the case
of Apple Ill COBOL, this is the directive

FLAG " All/"

• which reports on any features used in the source which are Apple
Ill COBOL extensions to the ANSI standard. Always make a listing
of your source files with this switch set; then when you need to
move the program to another system, you are less likely to have
surprises.

Things to look out for:

1. Operating system features. Many file handling options in
ENVIRONMENT DIVISION code are system dependent.

2 . Non-standard verbs. Sometimes the syntax of COBOL statements
is non-standard: SORT and MERGE frequently have operating
system "features" attached to them; some systems allow a non­
standard THEN in IF-ELSE sentences (IBM COBOL does this, so
does Apple Ill COBOL) . Sometimes the verb will be totally
different from anything in the standard; for example, the verb
TRANSFORM in IBM OS/VS COBOL.

194 COBOL Introduction and Operating System Manual

3. Special Compiler or listing features. Portable programs should not
depend on "optimizations" or special Compiler treatment to run
correctly. Check for MOVE statements and arithmetic that
depends on special features of internal representation. Compiler
directives can also throw you off; for example, many IBM
Compilers have an EJECT directive that forces a listing to the next
page-standard COBOL uses a slash ("/")character in the
Indicator Area (column 7) to achieve the same effect.

4. Look carefully through your old COBOL manuals; study the "gray
areas" in particular, as these will give you warning of code that is
not likely to be easy to convert. In some cases, only the heading
on a page or a section will be shaded when in fact the whole
section is non-standard.

5 . Programs containing logic depending on the EBCDIC collating
sequence will require modification. For example, a flag which
could contain either a numerical or an alphabetic result would
perform differently in the ASCII collating sequence.

6 . Apple Ill COBOL limits exponents to 9999. Although it is unlikely
that you will have a program using an exponent larger than this , if
you do, it will have to be changed.

7. Note the previously mentioned Apple Ill COBOL requirement for a
trailing space in all file names. This is explained in detail in the
section on Run-Time File Assignment in Appendix F and may
affect conversions from other systems.

8 . If you are using DECLARATIVES to handle 1-0 errors, remember
that the second byte of FILE-STATUS needs to be decoded
before you can ascertain the actual cause of the error. Please
refer back to the section on File Status in Chapter 6 for a more
complete explanation of this point.

9. In many cases where you might use SEQUENTIAL file
organization on another system, Apple Ill COBOL will more
appropriately use LINE SEQUENTIAL. As explained previously,
this is true of any file that you intend to transfer to a printer or
CRT.

Please note once again that most of the above instances result from
programming styles that people have become accustomed to on other
systems, which are in fact non-ANSI standard. Apple/// COBOL is ANSI
standard.

Appendix H- Transferring Files Using ACCESS Ill 195

1 Transferring Rles Using ACCESS Ill

Existing COBOL programs and data files can be transferred from a host
system to the Apple Ill using the ACCESS Ill utility . This is a separate
product, not part of the Apple Ill COBOL system, and it is described in
detail in its own manual, Apple Access Ill. The discussion here is intended
to point out the major operational considerations in the use of ACCESS Ill
and some potential difficulties in the use of transferred files .

You use ACCESS Ill by connecting your Apple Ill, either through a modem
link or by direct cable, to the system containing the files you want to
transfer. If possible, that system should be set up to handle XON/XOFF
protocol ; that is, it should stop sending characters to a terminal when it
receives an XOFF (CONTROL-S), and resume when it receives an XON
(CONTROL-Q) from the Apple Ill. If the system doesn't respond to this
protocol , you can still use ACCESS Ill, but you will not be able to transfer
files at more than 1 200 baud to a ProFile or other large disk, or at more
than 300 baud to a floppy-greater speeds may overflow the receive
buffers.

ACCESS Ill allows you to use the Apple just like a terminal on the other
system and in addition to record all or part of the transmission from the
host system. In operation , ACCESS Ill distinguishes its commands from
characters sent to the host by using the OPEN-APPLE key just to the right
of the ALPHA LOCK; this key sets the eighth data bit from whatever key
is typed simultaneously. One of these commands, OPEN-APPLE and R,
toggles the recording of transmission from the host computer. You type
this, then give a command to the host to list the file you want on your
terminal ; as you watch it on your display, ACCESS Ill records it for later

196 COBOL Introduction and Operating System Manual

use. When the transfer is done, type OPEN-APPLE and R again to stop
recording . At that stage, you can change recording files and transfer
another file from the host or exit from ACCESS Ill to look at the result.
use. When the transfer is done, type OPEN-APPLE and R again to stop
recording . At that stage, you can change recording files and transfer
another file from the host or exit from ACCESS Ill to look at the result .

In most cases, you will have recorded some initial dialogue with the host
system as well as the file you want. Possibly there will be some
terminating dialogue with the host as well. You should examine the file
with an editor to remove these accretions. You may also discover some
extra characters throughout the file . Each line of your file probably ends
with both carriage return and line feed characters ; the carriage return by
itself is the usual line terminator for Apple ///ASCII files . You may use the
recording filter option in ACCESS Ill to screen out superfluous control
characters . Use a global editor replace command to get rid of any
unnecessary additional controls.

Note that you can transfer non-character data files in this same way;
ACCESS Ill will intercept unprintable bytes from the host system and not
display them on the screen, but it will write them out to the recording file ,
unless the filter is on . However, you may have more difficulty in such a
case editing out extraneous bytes like the host dialogue.

7 Figure 1 -1 SOS File Hierarchy
10 Figure 1-2 System Startup Screen
11 Figure 1-3 /COBOLBOOT Directory Listing (First Level)

6 Table 1-1 COBOL System Disk Contents

15 Figure 2-1 FORMS2 Initialization; First Screen
16 Figure 2-2 FORMS2 Initialization; Second Screen
17 Figure 2-3 FORMS2 Initialization; Third Screen
18 Figure 2-4 "Address Book" Form
26 Figure 2-5 Console Example Listing
29 Figure 2-6 Partial Listing of PI Program
31 Figure 2-7 Screen from STOCK1 Program
33 Figure 2-8 STOCK2 Error Message
34 Figure 2-9 Listing of the STOCK2 Program

23 Table 2-1 Indexed File (.GEN) Program Operations

51 Figure 3-1 Extended Directory Listing

59 Table 4-1 Compiler Directives
60 Table 4-2 Excluded Combinations of Directives

198 COBOL Introduction and Operating System Manual

75 Figure 5-1 Original and Modified Environments in the
Pascal Editor

80 Figure 5-2 Segment Overlay
84 Figure 5-3 Sample CALL Structure
86 Figure 5-4 Memory Fragmentation

105 Figure 6-1 Screen Record Description
106 Figure 6-2 Screen Record Redefinition

107 Table 6-1 Apple Ill Cursor Control Keys (ADIS)

113 Figure 7-1 Fixed Text Screen (TEST.SOO)
114 Figure 7-2 Variable Text Screen

Index

A
abort 41 , 43, 45, 53, 82
ACCEPT 87, 95
ACCESS Ill 195
ADIS 4
ADVANCING 186, 193
ampersand 58
Animator 60

exit 47, 138
interrupt 137
menu 141
source code screen 138
user screen 137, 138, 145

/ANIMATOR 5
ANSI 49, 61 , 62, 63, 71 , 97, 133,

137, 181 , 192, 193, 194
ACCEPT 97, 137
debug 49, 134
DISPLAY 62, 97, 137
INDEX SEQUENTIAL 181
MOVE 61
RELATIVE 181
SEQUENTIAL 181
switch 49, 133
WITH DEBUGGING

MODE 134
X3.23-1974 63, 192

Index 199

ANSI COBOL 2
Apple Ill Pascal Language

System 3
applications 1, 32, 45, 69, 83, 85,

87, 89, 93, 101 , 110, 130
Area A 70, 75
Area B 70
ASCII 194
ASCII files 2, 5
assembler call 46
audio 96

B
Background 115, 125
backup 188
basename 15, 43, 47, 65, 111
batch 95
baud 195
boot 10
breakpoint 1 02, 135

c
CALL 84, 87, 191
CANCEL 84
chain 89

200 COBOL Introduction and Operating System Manual

character
devices 96
positions 70
set 102

clock 50, 62, 92
closed loop 149
COBOL 1
COBOL Command Line 5, 10, 45,

46, 57, 87, 89, 92
COBOL.ST ART 45, 89
/COBOLBOOT 5
code 70
color 102
columns 70, 72, 7 4
Compiler

argument 58
command line 57
commands 25
default 28, 59
directive 193
error messages 33, 61, 159
exit 47
options 28
sequence numbers 29

/COMPILER 5
console 3, 25, 96, 181, 187

driver 98, 100, 104
.CONSOLE 39, 42
control characters 40, 1 00, 1 01 ,

102, 196
CONTROL-C 26, 40
CONTROL-X 40, 99
CONTROL-"- 41, 46, 53, 82
CONTROL-? 42, 52
conversational 95
conversions 192, 194
COPY

statement 45, 83, 193
verb 69

copying a disk 5
correction 26

cursor 72, 101, 104, 107, 112,
124, 126, 135, 136, 137, 142,
143, 145, 146, 150, 153
control 49
keys 99

D
data file 95, 187, 188
date 50
debugging 60, 82, 133, 135
default 44, 51, 59
device 102
dictionary files 47, 60, 82, 133,

191
Disk II 3
Disk Ill 3
disks 5

formatting 3
DISPLAY 27, 95
documentation 71, 78, 81, 129
driver 39
dynamic call 87

E
EBCDIC 194
echo 39
efficiency 101
EJECT 194
environment 75
erase line 9
exclamation point 47, 48
EXIT 84, 87
exponent 194
extension 43, 48
external disk drives 3, 13

F
file hierarchy 51
file status 153, 166

FILE
CONTROL 96
ORGANIZATION 95

Foreground 115, 125
formatting disks 3
FORMS2

Background 114, 118, 121,
129

basename 15, 118
command mode 112, 124
cursor keys 21
DOWN-ARROW key 18
edit mode 112, 124, 131
exit 48, 118
Foreground 114, 118, 121,

129
help screen 113, 123
initialization 112, 118
key 20
phases 118
visible space 116, 127
window 129
work phase 19, 120
work screen 17, 112, 114,

130
/FORMS2 5

G
.GRAFIX 102
graphics 96
gray areas 194

H
hexadecimal 1 00

values 100
highlight 1 05
host system 195
human engineering 116

Index 201

I
implementation limits 191
independent segment 191
index

file 95, 187, 188, 191
sequential 31, 95, 109, 111,

130
Indicator Area 70, 76, 194
intelligent terminal 1 03
i.nteractive 1, 95, 181
intermediate code 2, 26, 46, 48,

60, 65, 82, 87, 89, 134, 136,
163

interpreter 3
interrupts 135
inverse video 100, 105, 145
ISAM 4, 186, 187

J
JCL 95
Job Control Language 95

K
key 31, 124, 130, 188, 189
keyboard 73, 93

ALPHA LOCK 8, 73, 195
CONTROL-X 101
CONTROL-"- 101
CONTROL-8 101
cursor control 8
DOWN-ARROW 72, 107, 112
ENTER 99
ESCAPE 107
LEFT-ARROW 73, 101, 107
numeric keypad 8, 99
OPEN-APPLE 101, 195
RIGHT-ARROW 73, 107
TAB 107
UP-ARROW 72, 107, 112,

138

202 COBOL Introduction and Operating System Manual

L
LEFT-ARROW 49, 99
library 83, 87, 126, 144
LINE SEQUENTIAL 96, 102, 181,

193, 194
LINKAGE SECTION 84, 86
lower-case 8, 28, 50, 61 , 73, 144

M
magnetic tape 192
main program 86, 87, 89
maintenance 81, 134
memory 79, 80, 82, 83, 85, 86,

88, 89, 133
fragmentation 86

menu 16, 87, 88, 93, 97, 110,
121 , 141

Merge 189
MERGE 95, 193
modular programs 83
module 83, 1 03, 192

N
nesting 149, 191
numeric keypad 8, 42

0
offset 66
overflow 61
overlay 5, 41, 79, 81 , 82, 86, 133

p
page eject 64
paragraphs 78
parameters 86, 90, 94, 102
Pascal 89

TEXT files 2
pathname 65
pause 32, 42, 52
performance 101

prefix 14, 57, 91, 135
printer 4, 34, 96, 181, 187
.PRINTER 39, 42
ProFile 3, 4
program 94

counter 66
locality 83

Protected Field 103, 1 05, 106,
114, 115
digits 31, 50, 114
FILLER 105
numeric 109

protocol 195

Q

R
RANDOM 95
READ 96
reconfigure 4, 34
reset 43, 45, 48
RESET 10, 13
root segment 5, 41 , 79, 81 , 82,

83, 86, 89, 133, 166, 191
.RS232 39
Run-Time System 2, 5, 44, 45, 79,

81 , 82, 84, 86, 87, 99, 166,
192

s
sections 78, 81, 82
sectors 186
segment 5, 41 , 79, 82, 89, 166,

191, 193
number 80, 82

segmentation 84
sentences 78
sentinel record 24
sequence numbers 66, 136, 140
SEQUENTIAL 95, 193, 194

I

skeleton 11 0
program 71

Sort 189
SORT 95, 193
sos 14, 39
SOS files 7, 42, 185

ASCII 32, 50, 7 4, 78, 96, 186,
196

base 26, 183
basename 59, 60, 65, 87, 110
device 7, 52. 182
directory 7, 42, 51, 93, 111,

120
drive 182
driver 42
extension 26, 7 4, 82, 87, 183,

189
file size 186
INDEX SEQUENTIAL 187
LINE SEQUENTIAL 186
lower-case 42
pathname 50, 57, 90, 91, 93,

182, 184
prefix 43, 51, 111, 120, 183
RELATIVE 187
SEQUENTIAL 33, 186
subdirectory 7, 43, 1 03, 111,

182
TEXT 32, 50, 7 4, 78, 96, 186
volume name 7, 43, 52, 182

SOS routines
Chain 92
Cold-Start 93
Destroy 90
Get-Char 93
Get-Prefix 91
pathname 91
Set-Prefix 91
Set-Time 92
Sysv 93

SOS.DRIVER 4, 34

Index 203

source code files 4 7
SPECIAL-NAMES 49, 64, 67, 98,

104, 119
specification 110
STATUS 96, 194
STOP RUN 87
structured code 70, 72, 76
subdirectory COBOU 4
subroutine 83, 85
System Configuration Program 3

T
tab stops 72
terminal 195
testing 27, 60, 119
text editor 70, 181

Adjust command 75, 77
Apple Writer WPL 73
auto-indentation 76
copy 83
Copy command 77
environment 7 4
find and replace 73
insert mode 75
Jump command 78
margin 7 4, 76, 77
markers 74
Pascal 74
tab stops 76

THEN 29, 193
time 50
trace 83
TRANSFORM 193
turnkey 93
typing mistakes 8, 40

u
upper-case 9, 28, 50, 61, 73, 144
USING 87
UTIL 4
Utilities 11

I

204 COBOL Introduction and Operating System Manual

v
validation 115, 122
variable length records 186
visible spacing 121

w
wildcard 45, 52
windows 100
work files 189
working set 83
WRITE 96

X
X3.23-197 4 2
XOFF 195
XON 195

y

z
zero-filled 32, 107

Symbols
! 47, 48
& 58
? 52

apple! computar .,
20525 Mariani Avenue

Cupertino, California 95014
(408) 996-1010
TLX 171-576
030-0435-A

Photographs courtesy of Vorpal Gallery, San Francisco, New York, Laguna Beach, CA.

	Apple /// COBOL: Introduction and Operating System Manual

	Contents

	Preface

	1: Overview -- Getting Started with Apple /// COBOL

	2: Demonstration Programs

	3: The COBOL System and Main Command Line

	4: Compiler Directives

	5: Application Design and Development

	6: Apple /// Device Control

	7: The FORMS2 Utility

	8: Program Debugging and the Animator

	Appendix A: Summary of Compiler Directives

	Appendix B: Compile-Tile Error Messages

	Appendix C: Run-Time Error Messages

	Appendix D: FORMS2 Command Summary

	Appendix E: Animator Command Summary

	Appendix F: COBOL File Formats

	Appendix G: Conversion from Other COBOL Systems

	Appendix H: Transferring Files Using ACCESS ///

	Figures and Tables

	Index

