Introduction and Operating System Manual

COBOL

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the documentation or media at no
charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day period
after you purchased the software, Apple will replace the applicable diskettes and documentation
with the revised version at no charge to you during the six months after the date of purchase.

In some countries the replacement period may be different; check with your authorized Apple
dealer. Return any item to be replaced with proof of purchase to Apple or an authorized Apple
dealer.

Limitation on Warranties and Liability

Even though Apple has tested the software described in this manual and reviewed its contents,
neither Apple nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual or to the software described in this manual, their quality,
performance, merchantability, or fitness for any particular purpose. As aresult, this software and
manual are sold “asis”, and you the purchaser are assuming the entire risk as to their quality and
performance. In no event will Apple or its software suppliers be liable for direct, indirect, incidental,
or consequential damages resulting from any defect in the software or manual, even if they have
been advised of the possibility of such damages. In particular, they shall have no liability for any
programs or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above limitation or exclusion
may not apply to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by Apple or by
Apple’s software suppliers, with all rights reserved. Under the copyright laws, this manual or the
programs may not be copied, in whole or part, without the written consent of Apple, exceptin the
normal use of the software or to make a backup copy. This exception does not allow copies to be
made for others, whether or not sold, but all of the material purchased (with all backup copies) may
be sold, given or loaned to another person. Under the law, copying includes translating into
another language.

You may use the software on any computer owned by you but extra copies cannot be made for this
purpose. For some products, a multi-use license may be purchased to allow the software to be
used on more than one computer owned by the purchaser, including a shared-disk system.
(Contact your authorized Apple dealer for information on multi-use licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software described in this
manual, even if you have returned a registration card received with the product. You should
periodically check with your authorized Apple Dealer.

© Micro Focus, Inc. 1978, 1982 © Apple Computer, Inc. 1982
1860 Embarcadero Road 20525 Mariani Avenue
Palo Alto, CA 94303 Cupertino, California 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the U.S.A and Canada.
Reorder Apple Product #A3D0021

Apple Ill COBOL —

Introduction ==
and
Operating System Manual |

COBOL Introduction and Operating System Manual

Acknowledgements

COBOL is an industry language and is not the property of any company or group of companies, or
of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL Programming
Language Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC (Trademark for Sperry Rand Corporation) Programming for the Univac® |
and I, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand Corporation; IBM
Commercial Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT,
DSI27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

Contents iii

Preface xi
Xii Content of this Manual
xiii ~ Symbols Used in this Manual

1 Overview—Getting Started

with Apple llil COBOL 1
1 General Introduction
3 Hardware Requirements
4 Reconfiguring the System
5 COBOL Disk Contents
7 SOS Files
8 Using the Apple /il Console
10 Running the COBOL System
2 Demonstration Programs 13
13 Phone Book (FORMS2 Demonstration)
14 Initialization
17 The First Work Phase
19 The Second Work Phase

20 Running the PHONE Program

“OBOL Introduction and Operating System Manual

25 Entering a Program from the Console
28 Another Example (Calculation of PlI)
30 File Handling Example

3 The COBOL System
and Main Command Line 39

39 Running under SOS

39 Type-ahead

40 CONTROL Operations

42 File Names

42 SOS Pathnames

43 COBOL File Name Extensions
45 Run-Time System ? Wildcard

45 Turnkey Systems

46 COBOL Command Line Options

46 Animate
47 Compile
48 Forms2
48 Quit

48 Run

49 Switches
49 Utilities
50 Copy
50 Date
bil Ext-dir
51 List-dir
52 Prefix
52 Remove
52 Type
53 Quit
53 Summary

53 Command Entry
53 Control Operations
54 COBOL Command Line Summary

4 Compiler Directives

57

57
60
60
61
61
61
62
62
62
63
63
64
64
64
65
65
66
66
66
67
67
67
67
67
68

Compiler Command Format

Description of Compiler Directives

ANIM
BRIEF
COMP
COPYLIST
CRTWIDTH
DATE
ECHO
ERRLIST
FLAG
FORM
FORMFEED
IBM

INT

LIST

PRINT

REF
RESEQ

SPECIAL-NAMES Directives

FORMFEED
SYSIN
SYSOUT
TAB
Compiler Sign-Off

vi COBOL Introduction and Operating System Manual

5 Application Design

and Development 69
69 Program Editing
70 COBOL Formatting
71 A COBOL Program Template
72 Program Editing with Apple Writer /il
73 Capitalizing Lower-Case Files
74 Editing with the Apple /Il Pascal Editor
77 Setting Markers
78 Program Structure—Segmentation
79 Segments and Overlays
80 Coding for Segmentation
82 Operational Considerations
83 Program Structure—Inter-Program Communication
85 Memory Usage
86 Coding for Program Calls
87 Dynamic Program Hierarchies
89 Operational Considerations
90 Calls to the Operating System
6 Apple Ill Device Control 95

96 File Status

97 ANSI ACCEPT and DISPLAY
100 Console Control Codes
102 Apple /il Graphics Control
103 Apple /Il ADIS Features

104 General Screen Control
105 Screen-Record Definition
107 Cursor Control in ACCEPT

7 The FORMS2 Utility 109
110 FORMS2 Outputs
112 FORMS2 Tutorial
112 Running FORMS2
112 Edit Mode and Command Mode
115 Compiling and Running the Checkout Program
116 Modifying Previous FORMS2 Output
118 FORMS2 Commands
118 Initialization
123 General Commands
124 Screen Manipulation
127 Programming Commands
129 Windows
130 Indexed File Program Generation

8 Program Debugging
and the Animator 133

133 ANSI Debugging Mode

134 Animator—General Description
135 Animator Tutorial

138 Animation and ACCEPT
140 Operational Considerations
141 Animator Commands

142 Screen Manipulation Commands
142 Screen

144 Find

145 Locate

145 User Screen

146 Execution Control Commands

viii

COBOL Introduction and Operating System Manual

146 Breakpoint

147 Until

147 Execute

149 Level

150 Program Counter
150 Compile

151 Name

152 Display and Modification of Data
152 Display

153 Query

153 Monitor
Appendices

Summary of Compiler Directives 155
Compile-Time Error Messages 159
Run-Time Error Messages 165
167 File Handling Errors

FORMS2 Command Summary 171
171 Initialization

172 Work Phase Initialization
173 General Commands

E Animator Command Summary 177
F COBOL File Formats 181
181 General

182 Fixed (Literal) File Assignment
184 Run-Time File Assignment
186 Apple /Il COBOL Disk File Structures Under SOS

186 SEQUENTIAL

186 LINE SEQUENTIAL
187 RELATIVE

187 INDEX SEQUENTIAL
189 Sort-Merge Files

G Conversion
from Other COBOL Systems 191

191 Apple /Il COBOL Limits

H Transferring Files Using ACCESS lll 195

Figures and Tables 197

Index 199

X COBOL Introduction and Operating System Manual

Preface Xi

Preface

This manual, together with its companion manual, theApple Il COBOL
Language Reference Manual, contains the information you need to write
and run COBOL programs on the Apple /ll. The material in these two
manuals is presented in a condensed format in the Apple Il COBOL Quick
Reference Guide.

This manual is not a tutorial for the COBOL language; if you are unfamiliar
with COBOL, you should read a good COBOL textbook. The manual does
contain some discussion of COBOL statements, primarily where the
information is specific to the Apple /Il implementation.

If you are unfamiliar with the Apple /Il computer, we encourage you to
read the Apple Ill Owner’s Guide. However, you can start reading this
manual and just refer to the Owner’s Guide as you need it.

The parts of the Apple /Il COBOL system covered here include:
The Run-Time System, used to handle files and to control the

compilation, execution, and debugging of COBOL programs.

The COBOL Compiler, used to translate files of COBOL source
code into intermediate code for execution by the Run-Time
System.

The system interface to the console keyboard and display, and to
other peripherals available on the Apple /.

Xii COBOL Introduction and Operating System Manual

The FORMS2 utility, used to generate COBOL source code for
screen-oriented interaction between a COBOL application program
and its operators or users.

The Animator, a screen-oriented interactive debugger used to
study and debug COBOL programs during execution.

Content of this Manual

Chapter 1 is a basic orientation to the COBOL system and to the Apple /I
computer; it does not assume any knowledge of COBOL.

Chapter 2 uses the sample programs on the /DEMO disk to examine the
most basic features of the COBOL system; it is a tutorial intended to
familiarize you with the features of the system. The first example illustrates
how a non-programmer can use the system to generate simple but useful
filing programs.

Chapter 3 describes the COBOL system’s Command Line options, and
gives general instructions for running programs and setting run-time
switches. It also explains how the operator can interact with a running
program.

Chapter 4 describes Compiler directives to control listings and object
code files, and discusses other operational aspects of the Compiler.

Chapter 5 describes the program design and development process, with
special reference to program editing, the subprogram CALL facility, and
segmentation (overlays).

Chapter 6 describes Apple /il facilities for interaction with the console and
other devices attached to the computer.

Chapter 7 decribes the FORMS2 utility program, which automates the
most common programming tasks in console interaction.

Chapter 8 describes the Animator, a screen-oriented tool for run-time
debugging of COBOL programs.

Preface Xiii

Appendix A is an alphabetical list of Compiler directives available in Apple
1 COBOL.

Appendix B lists all error messages produced by the Apple /Il COBOL
Compiler.

Appendix C lists all error messages that can be signaled by the COBOL
Run-Time System during program execution.

Appendix D summarizes the use of the FORMS2 utility.
Appendix E summarizes the use of the Animator.

Appendix F describes file naming conventions and formats used by Apple
Il COBOL under SOS (the Apple /il Sophisticated Operating System).

Appendix G discusses the implementation limits of the Apple /Il COBOL
system and considerations for transferring existing COBOL programs onto
the Apple /Il system.

Appendix H gives specific information for such transfers using the
ACCESS /I utility.

Symbols Used in this Manual

Throughout this manual, you will see illustrations of the Apple /Il display as
it appears during use of the COBOL system. There are also numerous
gray boxes, showing just a few lines from the full display.

The tutorials in Chapters Two, Seven, and Eight, as well as a number of
examples elsewhere, expect you to interact with the system by typing

Xiv COBOL Introduction and Operating System Manual

commands or responding to prompts. To distinguish what you type from
the text that the system puts on the display, the examples show what you
type in boldface.

At any point in the manual, you may see one of the following symbols:

@ The helping hand indicates an especially useful or noteworthy piece of
information.

The eye means “watch out.” It warns of a potential hazard.

Overview—Getting Started with Apple /Il COBOL

Overview—Getting Started
with Apple Il COBOL

This chapter presents an overview of the Apple /Il COBOL Language
System. It tells you what you need to use the system, and points to other
places in this manual and other Apple /Il manuals where you can find
supplementary information. Even if you are familiar with the Apple /i, you
should at least skim this chapter before proceeding. Then, you can go
ahead to the tutorial and demonstration programs in Chapter 2 or to the
detailed reference material in later chapters.

General Introduction

COBOL (COmmon Business Oriented Language) is the most widely used
programming language for commercial and administrative data processing
applications. Apple /Il COBOL, ANSI standard and certified by the Federal
Compiler Testing Center at High Intermediate level, is a full-featured
implementation including the most frequently used modules.

Most COBOL programmers currently work in a large computer
(“mainframe’’) environment with a batch-oriented operating system. While
Apple /Il COBOL is compatible with traditional mainframe applications, it
also extends the language to the interactive personal computer
environment, providing COBOL programmers with immediacy not possible
on a mainframe. The FORMS2 source-code generator feature, for
example, lets you begin with a blank screen, create and edit data entry
screens, and complete your programming with a fully-operational program.
Using the Animator Option you can conveniently debug your program at

COBOL Introduction and Operating System Manual

the source level, maintaining complete control while you actually watch
execution on your monitor screen.

Most COBOL programs developed on other systems can be run on the
Apple Ill. Appendices G and H include complete information about
transporting COBOL programs to the Apple /il.

Apple /Il COBOL is based on the ANSI COBOL as specified in “American
National Standard Programming Language COBOL” (ANSI X3.23-1974),
and fully implements the following modules at Levels 1 and 2:

Nucleus

Table Handling

Sequential Input and Output
Relative Input and Output
Inter-Program Communication

Sort Merge
In addition, the following modules are fully implemented at Level 1:

Segmentation
Library
Debug

Using Apple /Il COBOL, a COBOL source file may be created with any
Apple /Il text editor that will produce ASCII or Pascal TEXT files. A
program may also be entered directly from the keyboard. The COBOL
Compiler generates an intermediate code file (more than one if the
program is segmented) and a listing file that includes any error messages.
The intermediate code is then interpreted by the Run-Time System (RTS).

The COBOL Run-Time System uses SOS, the Apple /Il Sophisticated
Operating System, to handle files and the devices (disk drives, printers,
and the keyboard and display) attached to the computer. SOS provides an
integrated and consistent way for your programs to interact with each
other and with the outside world. It also provides a common framework for
all Apple /Il language systems, such as Pascal and Business BASIC as
well as COBOL.

Overview—Getting Started with Apple /Il COBOL 3

The COBOL Run-Time System does not use the same interpreter as the
<(®>) Apple /il Pascal Language System. TEXT or ASCII files created by the
Pascal system can be read by the COBOL system, but programs
generated by the Pascal system will not run on the COBOL system. You
will need to load (“boot”) the Pascal system to run Pascal programs or

any of the utilities provided with the Pascal system. In particular, you will
need to boot another system to edit programs.

The Apple /Il COBOL System includes utilities for copying files, listing
directories, typing files to the console, deleting files, etc. For more
complex tasks (for example, formatting disks or reconfiguring the system)
you will need to use the SOS Utilities, described in Chapter 4 of the Apple
Il Owner’s Guide.

Hardware Requirements

COBOL programs can be executed on any Apple /Il computer; however,
for development work and for large programs, it is useful to have 256K of
random access memory and one or more external disk drives. The Apple
Il has one built-in disk drive and it allows multiple external drives of several
types: floppy disk drives such as the Disk Il or Disk //l and larger (hard
disk) mass storage devices such as the ProFile. The SOS operating
system can be configured to drive other devices as well. See Chapter 4
of the Apple lll Owner’s Guide for information about the System
Configuration Program utility; for details on individual devices see the
Apple Ill Standard Device Drivers Manual or the manuals that come with
the device, for example, the Apple lll ProFile Owner’s Manual.

4 COBOL Introduction and Operating System Manual

Reconfiguring the System

The COBOL Language System is initially configured to drive the console
(keyboard input and display output), the built-in disk drive, and two
external floppy disk drives. The configuration doesn’t include a driver for a
printer or for a large disk, such as a ProFile. If you have such devices,
you will want to reconfigure your SOS.DRIVER files to include them.
(Information about reconfiguring your system is included in Chapter 4 of
the Owner’s Guide and in the Standard Device Drivers Manual.)

Note to ProFile Users:
If you have a ProFile or other large disk, you should move all the COBOL

system files onto it from the release disks; this will speed up operations
and save your having to shift floppies in and out of the smaller drives.
Files that should be transferred are those in Table 1-1 that are indented
under the COBOL/ sub-directories. To copy these files, first make a sub-
directory COBOL/ on the large disk; this sub-directory should be at the
first level on the disk. Then copy the COBOL/ files from the system disks
to this new sub-directory on the larger disk. Note that the files ADIS,
ISAM and UTIL that appear on several of the disks are identical; they are
repeated as a convenience to simplify development using smaller disks.
You only need one copy of them on a large disk. For instructions on
making a sub-directory and copying files, see the Apple Il Owner’s
Guide, Chapter 5: “Operations on Files”.

Although the SOS.DRIVER file provided is configured for two external
disk drives, the examples in this manual will assume only one external
drive. In general, if you have the two external drives, you will not have to
follow the directions to swap diskettes. The Apple /Il COBOL system is

designed to find the system files it needs in any drive that has been
configured.

Overview—Getting Started with Apple /Il COBOL

COBOL Disk Contents

5

The COBOL system comes with four write-protected disks,
/COBOLBOOT, /COMPILER, /ANIMATOR, and /FORMS2. It also includes
a disk named /DEMO with several sample programs. Before you start
Apple Il COBOL for the first time, make a copy of each of these disks. In
addition, you should always keep two copies of important files: one for
everyday use and one for backup. If something happens to the working
copy, you can go to the backup, make a new working copy and proceed.
For instructions on copying a disk, see the Apple Il Owner’s Guide,
Chapter 4. Table 1-1 is a list of the files on these disks. The indentation
below COBOL/ indicates that this name stands for a sub-directory
containing the files indented below it.

The Compiler, Animator, and FORMS2 are segmented programs; that is,
they all have a “root” segment that is loaded when you invoke them by
giving a command to the Run-Time System, plus “overlay” segments that
are loaded at various times during their execution. The Run-Time System
looks for these overlays in the same directory in which it found the root;
do not move these disks during a run of the Compiler, the Animator, or
FORMS2.

The SOS files (SOS.KERNEL, SOS.DRIVER, and SOS.INTERP) don’t
need to be on-line after the system has been loaded and the COBOL

Command Line is displayed.

The /FORMS2 disk contains numerous files. Several of these are
“screens’” displayed during a run of FORMS2 (the ones ending “.101”, ...,
“W02"); these are all ASCII files and can be listed on the console or a
printer. Several others (“.CH1”, “.CH2”, “.GN1”, and “.GN2”) are
COBOL source code; they are used with FORMS2 to create complete
COBOL programs to check FORMS2 screen output or for maintaining
simple indexed files. These files are also ASCII files; COBOL programmers
may want to list these and study them as examples of Apple /I COBOL.
They are also duplicated on the /DEMO disk, for convenience in
demonstrations in this manual.

COBOL Introduction and Operating System Manual

COBOLBOOT COMPILER ANIMATOR DEMO FORMS2
SOS.KERNEL COBOL/ COBOL/ PI.CBL COBOL/
SOS.DRIVER COBOL ANIM STOCK1.CBL FORMS2
SOS.INTERP COBOL.DOO ANIM.DOO STOCK2.CBL FORMS2.ISR
CcoBOL/ COBOL.ERR ANIM.ISR DEMO.CBL FORMS2.151
ADIS COBOL.ISR ANIM.101 COBOL/ FORMS2.152
ISAM COBOL.101 ANIM.102 FORMS2.CHH1 FORMS2.153
UTIL COBOL.102 ANIM.103 FORMS2.CH2 FORMS2.CH1
COBOL.I103 ANIM.108 FORMS2.GN1 FORMS2.CH2
ADIS ANIM.109 FORMS2.GN2 FORMS2.GN1
ISAM ADIS FORMS2.GN2
UTIL ISAM FORMS2.101
FORMS2.102
FORMS2.HO1
FORMS2.H02
FORMS2.HO3
FORMS2.HO4
FORMS2.W01
FORMS2.W02
ADIS
ISAM

Note: the files ADIS, ISAM and UTIL are included on several disks. These files control certain
aspects of the COBOL Run-Time System (COBOL ACCEPT/DISPLAY extensions, Indexed
Sequential File handling, and the COBOL System Utilities). These files must be on-line (i.e.,

accessible in some disk drive) when the features they control are used.

Table 1-1. COBOL System Disk Contents

Overview—Getting Started with Apple /Il COBOL

SOS Files

Table 1-1 shows that files on the Apple /Il have a hierarchical structure;
each disk has a name (its “volume name”) and contains a set of files. The
volume name in fact refers to a “directory” on the disk that tells the
system what files the disk contains and where to find them. Some of
these files in turn can be sub-directories to other files, and so on to
arbitrary levels.

In addition, SOS thinks of each device on the system as a file and refers
to it by the name of its driver (CONSOLE, .PRINTER, .PROFILE, etc.)
You can call a disk by its volume name (for example, /COBOLBOOT) or by
the name of the drive it is in at any given time (for example, .D1 for the
built-in drive).

In general, SOS files have names composed of letters, digits and the
special characters “/” (slash) and “.” (period). As an illustration of the file
hierarchy, Figure 1-1 shows the structure SOS sees when the
/COBOLBOOT disk is in the built-in drive.

sos
.CONSOLE
(/COBOLBOOT)
SOS.KERNEL SOS.DRIVER COBOL SOS.INTERP
ADIS ISAM uTIL

Figure 1-1. SOS File Hierarchy

8 COBOL Introduction and Operating System Manual

Using the Apple Illl Console

Data and program entry on the Apple /ll is based on habits you probably
acquired from typing, keypunching, or terminal use on other systems. The
main body of the keyboard is similar to a typewriter keyboard, with a few
extra keys. To the right of the main keyboard is a “numeric keypad” like
that of a calculator. Four keys with arrows pointing up, down, left and right
form the lower right corner of the main keyboard. These are “cursor
control keys’: they control the position on the display of the solid
rectangle that marks the next expected input. The ALPHA LOCK key is in
the lower left corner. This isn’t quite the same thing as a typewriter’s shift
lock—it does shift the alphabetic keys to upper-case, but numbers and
punctuation keys still work normally. With the ALPHA LOCK key down,
you must still shift to get an “!” instead of a “1”, for example.

To enhance readability, Apple /ll COBOL recognizes lower case letters;
however, standard ANSI COBOL does not. If you want to write standard
programs (for example, for portability reasons) on the Apple /ll, you may

want to push the ALPHA LOCK key down whenever you write a COBOL
program.

SOS is responsible for handling the characters you type. It does make
some allowances for human fallibility. That is, you can correct your typing
mistakes before a program starts doing dreadful things with them. Most
programs ask the console for a line of input at a time; until you press the
RETURN key you can usually backspace and correct your errors. To
backspace over characters you've typed, press the LEFT-ARROW key
(the key to the right of the space bar) once for each character you want
to backspace over, or just hold the LEFT-ARROW key down—it will repeat
automatically. You will notice one of the following behaviors:

e Each character backed over will disappear from the screen. In
effect, you have “untyped” it; once you have untyped back to the
mistake, you can resume typing from that point. This is the normal
console input mode, observable, for example, when you give
commands to the COBOL Compiler.

e Characters backed over remain visible on the screen. In this case,
you only need to retype the mistaken characters. When you press
RETURN, the whole line is sent, just as you see it, to the
program. Of course, if you typed an extra character or omitted a

Overview—Getting Started with Apple /Il COBOL

character, you may need to retype more than one character to
correct the line. This mode is typical of the COBOL Utilities
options; you can observe it by experimenting with listing
directories or typing files. See the examples in Chapter Two or
refer to Chapter Three for details.

If you completely change your mind about what you want to type, or if
there are numerous mistakes throughout a line, you can conveniently
erase the whole line and start over at any time before you press RETURN.
To cancel a line of input, type CONTROL-X by holding down the
CONTROL key on the left of the keyboard and pressing the X key.

SOS never forces you to use upper-case letters. When choosing

commands from the COBOL command line, answering prompts at the
Utilities level, or giving directives to the Compiler, you may use either
lower-case or upper-case letters.

For more information on SOS files, specifically on console input, see
Chapter 3 in this manual, or refer to the Apple il Owner’s Guide.

10 COBOL Introduction and Operating System Manual

Running the COBOL System

This section explains how to start up Apple //l COBOL. Note that the
actual keystrokes you will need to type are shown in boldface type.

To start (“boot up”) Apple /Il COBOL, insert a copy of the disk labelled
/COBOLBOOT into the built-in drive and turn on your monitor and the
Apple /ll; or if the power is already on press the CONTROL key and the
RESET button (inset at the top of the keyboard, near the built-in drive).
The built-in drive’s red IN USE light will come on, and the drive will whir for
a bit, and give a buzz for any external drive that is empty or has its door
open. Then the screen illustrated in Figure 1-2 is displayed.

"fctompnle Florms2 Q(ut R(un S(witches Utiities [A3/1.0a i

Figure 1-2. System Startup Screen

The top line of this display lists the options available to you; this manual
refers to it as the “COBOL Command Line”. We will study the commands
in detail in Chapter Three; for now a simple example will suffice to show
how the options are invoked. The cursor is placed at the end of the
command line, waiting for you to type one of the initial letters shown:
A, C,F,QR, S, oU.

Overview—Getting Started with Apple /il COBOL 11

Type U (for Utilities). The start-up screen disappears and the top line is
replaced by the Ultilities menu:

This line lists the options available at the Utilities level; to start, type L (for
List directory). Underneath the menu for the Utilities, you will now see:

with the cursor positioned over the “/”. Just press RETURN; you should
see information about the files on the /COBOLBOOT disk. Figure 1-3
shows what the display should look like. Note that only the first level of
the file hierarchy on the disk is shown; none of the files contained in the
subdirectory COBOL appear.

Figure 1-3. /COBOLBOOQT Directory Listing (First Level)

To conclude our initial demonstration, type Q (for Quit) to exit the Utilities;
the COBOL Command Line will reappear. Type Q once more, and the
system will halt and wait for you to reinitialize it. At this stage you can try
out the demonstrations in Chapter Two, or go ahead to the detailed
discussions in the rest of the manual.

12 COBOL Introduction and Operating System Manual

Demonstration Programs 13

Demonstration Programs

This chapter is a tutorial that uses many of the commands from the
COBOL Command Line to help you become familiar with the operation of
the system. Most of the examples assume some knowledge of COBOL.
The first example does not; its purpose is to illustrate how you can use
the system even without mastering COBOL. Subsequent examples
explore the use of the COBOL Compiler and the Run-Time System
utilities.

This demonstration assumes you are using one external disk drive.

Phone Book (FORMS2 Demonstration)

This example demonstrates how the many pieces of the Apple /Il COBOL
System work together. The example is given as a step-by-step “recipe”,
with explanations postponed until subsequent examples. Because we are
anticipating information that is discussed later, some of the steps may
seem rather mysterious. Please follow the steps exactly! If things don’t
seem to be going as you expect, don’t worry; you can start over by
resetting the Apple lll—simply press the CONTROL key while holding the
RESET button.

This example uses the FORMS2 utility to create an on-line phone book
containing names, address, and telephone numbers. Similar files can be
created for other purposes; in fact you will see that an operator with no
knowledge of COBOL can follow this “recipe” to set up and maintain files,

14 COBOL Introduction and Operating System Manual

possibly translating existing paper files into computer format. Note that
only simple files can be handled this way; more complex files and
integration of files into a full application system will, of course, require
serious programming effort.

Initialization

1. Set Up. Locate your backup copies of the /DEMO,
/COBOLBOOQT, /FORMS2 and /COMPILER disks. Place the
/COBOLBOOT disk into the built-in drive, and turn on the power
or simultaneously press the CONTROL key and the RESET button
if the power is already on.

After you see the COBOL start-up screen, type U to get the
Utilities menu and then P to choose the Prefix option. You will see
the following message:

Current prefix is /COBOLBOOT
New Prefix :

Type IDEMO and RETURN; then type Q to Quit the Utilities. The
Prefix now tells SOS to look for files on the /DEMO disk unless
you specifically tell it otherwise. Now remove /COBOLBOQOT from
the built-in drive and insert the /DEMO disk. Place the /FORMS2
disk in your external drive.

2. Running FORMS2. Type F; this loads and runs the FORMS2
utility program. Note that FORMS2 is a program built on top of the
Apple Il COBOL System; you can create similar tools for your
own programs. FORMS2 then displays the screen (I01), shown in
Figure 2-1.

Demonstration Programs

FORMS2 V1.3 INITIALIZATION PHASE SCREEN 101

FORMS2 PARAMETERS:

DATA-NAME & FILE-NAME {l] (1-6 alphanumeric characters)
(1" to exit Forms2)

CRT lines [24] (22 or 23 or 24)

SPECIAL-NAMES clause:
CURRENCY SIGN [$] (ANSI currency signs only)
DECIMAL-POINT il o

Press RETURN when complete

Figure 2-1. FORMS2 Initialization; First Screen

Initialization: Step 1. The screen shows an area in which you can
type up to six characters. Type PHONE and then press RETURN;
this name will be used as the basename for the files generated
during this run. If you mistype, you can back up and retype the
line any time before you press RETURN. If you have already
pressed RETURN, don’t worry—whatever you typed is probably
an acceptable name anyway. Just use this name instead of
PHONE for the rest of the example.

16 COBOL Introduction and Operating System Manual

4. Initialization: Step 2. The next screen (102, shown in Figure 2-2)
is a “menu’”’ of options, A through G; type G (for Generate)
followed by RETURN to tell FORMS2 you want to generate a
program that creates and retrieves records. If you are redoing the
demonstration and you reached this point earlier, there may be
some old files around with names like PHONE.DDS and
PHONE.GEN; if so, you will be asked at this stage if you want to
overwrite them. Answer “yes” by typing Y and then pressing
RETURN after each such question. (The same situation may arise
at later stages of this demonstration, too; in each case, type Y
and then press RETURN to overwrite the previous file and
continue the program.)

FORMS2 V1.3 INITIALIZATION PHASE SCREEN 102

FILES TO BE CREATED:

FILE COMBINATIONS B (A = DDS)

(B = DDS & CHK)

‘ (G = DDS & CHK & Snn)
(D = DDS & Snny
(E=5m
(F = No files output)
(G = DDS & Snn & GEN)

DEVICE/DIRECTORY PREFIX (0-40 Chars) | , 1

Press RETURN when complete

Figure 2-2. FORMS?2 Initialization; Second Screen

Demonstration Programs 17

The First Work Phase

5.

Initializing the Work Screen. Now a “work screen” (W01, see
Figure 2-3) appears. This screen, like the last one, is a “menu”
from which you can select any one of the options; in this case,
however, just press RETURN to select the default option (A), the
option the system automatically chooses unless you tell it to do
otherwise. Then you can begin creating the screen image you
want to appear on the display when the PHONE program is
running.

~ FORMS2V13 WORK PHASE SCREEN W01

Fixed text on clear screen)

SCREEN TYPE i a-
(B = Fixed text on last screen)
(C = Variable data redefines last screen)
(D = Variable data without redefinition)
; {! = Complete this FORMS run)
Fixed Text allows: Al characters ‘
. “,Vgria‘hf[‘él)aiégl’lows: X or Y 1o define alphanumeric fields

9 or 8 to define numeric fields
~edit chars to define numeric edit fields

~ Press RETURN when cample\e

Figure 2-3. FORMS2 Initialization; Third Screen

18

COBOL Introduction and Operating System Manual

Labelling the Form. Now the display clears and the cursor appears
in the upper left corner. Note that the bottom line of the screen
has a line of hyphens (““-”); this area is used by the program for
messages, SO you shouldn’t use it for the form.

To create the form, you'll start on the first or second line of the
screen and type a “form” suitable for an address book. Your
completed form will look like this:

Figure 2-4. “Address Book” Form

To create this screen, simply type the information in Figure 2-4
when we tell you to. But first, here are a few things to keep in
mind:

It isn’t critical how many spaces you leave after each of the
entries.

DON'T press RETURN at the end of a line. FORMS2 uses the
DOWN-ARROW key (the lower right corner of the main keyboard)
for moving between lines, saving the RETURN key for a different
function. Press the DOWN-ARROW key twice to leave a blank line
between the name line and the address and before the telephone
number line. (The other three ARROW keys can be used to move
around the screen, too.) If you accidentally press RETURN, at the
end of a line, press RETURN again to get back to where you
were.

If you don't like the way a line looks, you can move back and type
over it until you are satisfied. You will learn about more
complicated editing commands in Chapter 7, which discusses
FORMS?2 in detail.

Now, type the information shown in Figure 2-4.

Demonstration Programs 19

Releasing the Screen. When you have finished typing the form,
press RETURN, then the space bar, and then RETURN again.
Note that although after the first RETURN the cursor will cover
any text in the upper lefthand corner (if you started typing on the
first line), or write something there (if you started typing on the
second line), no harm has been done. This completes the first
phase of work. You will see on the display the COBOL source
code created for your screen, a redisplay of the screen, and a
message telling you that FORMS2 has created a file named
PHONE.S00. When it is done, FORMS2 will ask you to press
RETURN to go on to the next step.

The Second Work Phase

8.

Reinitializing. The work screen WO1 (Figure 2-3) should now be
displayed, with a new option selected: option C. Don’t change the
option, just press RETURN.

FORMS2 now re-displays the fixed text screen you drew in the
first phase. The first phase created the headings that appear on
the screen when the program is used; the second phase defines
how the user fills in the form with data.

Variable data is defined using the standard COBOL data symbols
X and 9 to stand respectively for alphanumeric data (that is, any
key on the keyboard that produces a visible character on the
screen) and numeric data (digits O to 9).

What you must do is go through the form once more and mark
each position that the operator should be allowed to type into.
Type X’s over the name and address lines and 9’s over the phone
number and ZIP code areas. (Remember that the keys may be
held down to create a whole row of characters very quickly.)
When you are done, you should have a screen that looks like this:

20 COBOL Introduction and Operating System Manual

9. Separating Key and Data Areas. FORMS2 needs to know which
part of this screen will be the “key” that will be used to keep the
records in order, that is, what index to use for the file you are
creating.

The key must be one or more fields beginning with the first field
on the screen (in this case, last name). In this example, we’ll
designate the first and last name as the key. To do this, place the
cursor on the first X in the address field and press RETURN, then
*, then RETURN again. This three-key sequence tells FORMS2
where you want to start the (non-key) data area.

10. Completing the FORMS2 Run. To have this screen accepted, the
command is the same as in step 7: RETURN, space bar and
RETURN. Next you see a warning

while FORMS2 checks that it understands your X’s and 9’s. Then
it shows you the COBOL statements it has created and tells you
that it has written the three files PHONE.SO1, PHONE.DDS and
PHONE.GEN to the built-in drive. (Press RETURN as the system
asks you to, as this information is transmitted.) You are now
through with the FORMS2 run, and the original COBOL Command
Line reappears on the top of the screen.

Running the PHONE Program

11. Compiling the FORMS2 Output. Remove the /FORMS2 disk from
the external drive and replace it with /COMPILER. To compile the
program, type C. When the Compiler has been loaded, the cursor
will reappear on the screen; type

PHONE.GEN LIST COPYLIST

(and press RETURN). Actually, you only need the first part of this
line. Typing PHONE.GEN tells the Compiler what file to compile;
LIST directs the Compiler to list the COBOL source code on the
display as it is being compiled. Notice COPY statements in this
code for the standard pieces FORMS2.GN1 and FORMS2.GN2
as well as for PHONE.DDS, which has code specific to this

Demonstration Programs 21

particular example. Listing the code on the screen just gives you
something to watch for a few minutes while the Compiler works.
When the compilation finishes, a message appears at the end of
the listing:

12.

Some parts of this message may be different, if your form isn’t the
same as the example. In any case, there should be no errors, and
you can go on to the next stage.

Loading the PHONE program. The cursor should now be on the
top line of the screen; type R to start the program running. The
Run-Time System asks you what program you want to run,
prompting you with the message

13.

Type PHONE (and press RETURN). The program now loads and
displays your original screen, placing spaces over all the X’'s and
zeros over the 9’s you typed in during the second phase of the
FORMS?2 run. The program is now ready to accept input. You
may find it helpful to move around with the cursor keys for a bit
before you try typing a record. The cursor keys will only move in
the areas you filled in during the second work phase. Note that
the UP- and DOWN-ARROW keys move from field to field,
backwards or forwards. Don’t press RETURN; that is reserved for
when you are done with a record. Finally, note that the ESCAPE
key will move you to the start of the key area on the screen. Feel
free to experiment; even if you press RETURN, the worst that can
happen is for you to accidentally terminate the run. You can
always start over at the beginning of this step.

Creating New Records. Press ESCAPE to get to the first
character position in the Name field. Type in any last name you
want; after typing the last name, you can press the DOWN-
ARROW key to move to the First Name field. Or just type spaces
or RIGHT-ARROWSs to get there. Fill in name, address and phone
number. Try typing something other than a number in the ZIP
Code or Phone Number field; you'll hear a “beep” and nothing will
appear on the screen. Only a digit (O to 9) will be accepted in a
field you defined as numeric (with 9’s) during the FORMS2 run.

22

COBOL Introduction and Operating System Manual

When you have completed filling in the form, press RETURN. You
will see, underneath the form, the message

Insert a few more records in this way. Assuming you have
changed both the key area (the name) and some of the data
(address or phone number), a new record will be written each
time.

Note that any data left on the screen from one record is still present to
be picked up by the next. So, for example, you may be entering several
records for people at the same address; in that case it is convenient not
to have to retype the same data. But you have to be sure to blank out
(space over) anything that doesn’t belong in the new record.

If you just change the key, you can also make a new record with
the same address and phone number; for example, as we
mentioned, you may want several records for people who all live
or work at the same place. To do this, change the last name.
Then press ESCAPE to put the cursor on the first character of the
last name. Then press RETURN.

If you just change the key but fail to press ESCAPE or use the
ARROW keys to move back to the first characters before you
press RETURN, you will see instead the message

14.

and the data areas will be blanked out. The program thinks you
are looking for a record already filed under the name you just
typed; pressing ESCAPE first tells it there is no such record—go
ahead and make one. The next section explores the options for
looking up existing records and for changing or deleting them; for
now we are just interested in creating the file in the first place.

Performing Other Operations. For the address book to be useful,
you need to be able to look up a name, to “thumb through” the
book when you'’re not sure of a name, to make corrections or
changes to the entries, and to delete entries when they become
obsolete. All of this can be done by the program we have
generated. In principle, all you do to look up a record is type in
the name and RETURN, or just keep pressing RETURNs to get to

Demonstration Programs 23

any record in the file that is alphabetically later than the one you
are at. Table 2-1 shows all of the possible operations; this section
will give some brief examples.

To start with, type AAAA and press RETURN. Probably you will
get the RECORD NOT FOUND message, unless you happen to
have a record for something like the AAAA-1 Car Repair Shop. In
any case, you will now be positioned at the beginning of the file;
press RETURN a couple of times. The display will show the next
couple of records in alphabetical order after AAAA, regardless of
the order in which you created them.

Similarly, if you type N (and blanks to write over other letters in
the key area) the program will, in effect, flip to the second half of
the alphabet. The next RETURN will then bring up the first record
after N in alphabetical order. If you are looking up Rumpelstiltskin,
just type the key Rum; then a RETURN or two will probably be
enough to get to the right entry without your having to type the
whole name. For any name you type, the program will either tell
you that the file contains no such name or it will display the data
that it has stored for that name.

Key
Changed
yes

yes

yes
yes

yes
yes

no
no
no

no
no

Specified

Key
Data Already Cursor
Changed Exists* Position Result
yes no anywhere NEW RECORD WRITTEN
yes yes anywhere RECORD ALREADY EXISTS
no no start of key NEW RECORD WRITTEN
no no elsewhere RECORD NOT FOUND
no yes start of key RECORD ALREADY EXISTS
no yes elsewhere displays the record
yes no anywhere NEW RECORD WRITTEN
yes yes anywhere RECORD AMENDED
no no anywhere displays next record
no yes start of key RECORD DELETED
no yes elsewhere displays the record

* Note that if the key has been changed, this column refers to the new key.

Table 2-1. Indexed File (.GEN) Program Operations

24 COBOL Introduction and Operating System Manual

o

Press RETURN enough times, and you will “run off the end” of
the file. The program will warn you

Go ahead and press RETURN; you will be back at the COBOL
Command Line. You can rerun the PHONE program at any time;
as in step 12, just type R and PHONE. Whenever the program is
loaded, you will be positioned at the start of the file, and pressing
RETURN will show you the first record in alphabetical order.

The only way to terminate the program is to press RETURN after the final
record. However, you can get to the end quickly (without entering a lot
of RETURNS) by looking up a key like ZZZZZ; this won't be found unless
you have created it as a “sentinel” record at the end, but in any case
another couple of RETURNs will then be enough to finish the run.

Now try creating a new record for a name you already have in the
file; that is, type the name and some new data for it. The program
will not accept this new record; instead it will tell you:

This behavior prevents you from accidentally writing over an old
record. But if you want to change the old record, you can do it, in
the following way. Type the key (and RETURN) to retrieve the old
record; now with the old data showing on the display, type over it
to make any changes you want. Now when you press RETURN
you will see the message

and the new version of the record will replace the old one in the
file.

Finally, to remove an obsolete record from the file, first retrieve it
by typing its key or by stepping to it with RETURNSs, then press
ESCAPE to move the cursor to the start of the key and press
RETURN. This will delete the record from the file and confirm by
giving you the message

Demonstration Programs 25

This example has shown one way to create a COBOL program for simple
file creation and maintenance. FORMS2 actually has much more general
use, as a tool to assist a programmer in writing code for console
interaction. For a detailed look at FORMS2, see Chapter Seven.

Entering a Program from the Console

Our next example illustrates how the COBOL Compiler accepts input
directly from the console and processes it line by line as you type it.

If you haven’t done the first example, you can set up for the rest of this
chapter as described in step 1 of the previous section; that is, boot with
the /COBOLBQOT disk in the built-in drive, change the SOS prefix to
/DEMO: type U, P, IDEMO, RETURN, and Q to load the Utilities package,
change the Prefix to IDEMO and Quit the Utilities. Remove /COBOLBOOT
from the built-in drive and replace it with /DEMO; place the /COMPILER
disk in the external drive.

After you type C to load the Compiler, you will see this message at the
top of the display under the COBOL Command Line:

: AP?'?:!H’ C0BOL

The cursor is below this, waiting for your commands to the Compiler; type
.CONSOLE LIST‘‘SAMPLE.CBL”’

and press RETURN. As in the FORMS2 example, the first word on the line
is the name of the source file; .CONSOLE is the SOS name of the
console driver file. In this example, you want the Compiler listing to be
written to a file rather than sent to the display. That's why you typed
LIST“SAMPLE.CBL” and not simply LIST.

The Compiler will signify acceptance of this directive and then prompt you
for input:

*A{;U

26 COBOL Introduction and Operating System Manual

Type in the program displayed in Figure 2-5. Remember to type over to
column 8 for Area A and to column 12 for Area B. If you mistype
something, you can correct it before the end of the line by backing over it
with the LEFT-ARROW key. Then press RETURN at the end of each line.
Once you have pressed RETURN, it is too late to make a correction; the
Compiler has accepted the line and is processing it.

Figure 2-5. Console Example Listing

Whether you've made a mistake or not, press RETURN after the last line
and finish the input by typing CONTROL-C (that is, type C while holding
down the CONTROL key) and RETURN. The Compiler finishes its work
and displays the final line shown in Figure 2-5, with the total ERRORS,
DATA, and so on. The cursor then reappears at the top of the display, to
the right of the COBOL command line.

List the directory on /DEMO to see what the Compiler has done: type U to
get the Utilities, L to list, and press RETURN to accept the default /DEMO.
You should see some new files—SAMPLE.CBL and some others. The
other files all have names with the same base (CONSOL) and different
extensions; CONSOL.INT is the intermediate code for running the

Demonstration Programs 27

program. The other files are used by Animator, the Apple /Il COBOL
debugger. To examine the listing, type T; the Utilities respond by asking
you

Type what fle ?

Respond by typing SAMPLE.CBL (and pressing RETURN); Figure 2-5
should appear on your display. Now type Q to quit the Utilities level and
get back to the main command line. If there were any error messages in
your listing, start over again, entering the program exactly as in Figure
2-5.

Once you have compiled the program without error, it is time to try
running it. Type R, and answer the prompt

File to run :

by typing CONSOL and pressing RETURN, and see the result!

This example has been contrived, but it illustrates a number of points
besides the mechanics of invoking the Run-Time System and the
Compiler.

e Apple /Il COBOL extends the DISPLAY verb of COBOL to allow
full use of the display; our message was placed at column 35 of
line 7 on the screen.

e Apple /Il COBOL, like many implementations, relaxes the rules of
standard COBOL on what must be present, and in what order, to
constitute a correct program; here, for example, there is no
IDENTIFICATION or ENVIRONMENT DIVISION and an abbreviated
DATA DIVISION is allowed.

e |tis possible, if awkward, to enter a program directly from the
keyboard. However, you can’t modify a program this way.
Console input is very useful for testing one feature of a program,
or checking your understanding of some aspect of COBOL or of
the Apple /Il implementation. You can also save such a program
for later recompilation; the Compiler will read SAMPLE.CBL as a
source file, ignoring the asterisked lines added during the previous
compilation.

28 COBOL Introduction and Operating System Manual

In any case, you will want to use an editor for practical program
development. See Chapter Four of this manual for suggestions on
using Apple /Il editors to write COBOL programs.

e Apple /Il COBOL allows lower-case letters in COBOL reserved
words and data-names. Use of lower-case can be extremely
beneficial for legibility; it certainly emphasizes COBOL'’s similarity
to English sentences. Upper-case letters can be reserved for
standard usage or for emphasis, as in

Move FICA-payment to TAX-form-line-13.

Caution: While lower-case letters are much more legible than upper-case,
you may have portability problems if you have to move an Apple /Il
program to an all-upper-case system. See Chapter Five for techniques to
convert lower-case program files to upper-case.

Another Example (Calculation of Pl)

The /DEMO disk contains several files of COBOL source code. We will
use three of these (PI.CBL, STOCK1.CBL and STOCK2.CBL) to
demonstrate some of the options available to you in using the Compiler.
The cursor should be at the end of the COBOL command line. Type C
again; after the Compiler’s initial message, type

Pl LIST FLAG(LOW)

and press RETURN. The first part of this line indicates the source file is
PI.CBL; the file name extension .CBL can be typed, or it can be left to the
Compiler to supply by default, as here. The directives specify that the
Compiler will create a listing on the console and that it will “flag” (by
underlining in the listing) any line in the source code that does not conform
to the low level GSA certification of COBOL implementation. The Compiler
will signal its acceptance of these directives, and tell you it has started
working, and then list the code on your screen. The last part of this listing
is shown in Figure 2-6.

The flags appear in the left margin of the listing, with dashes continuing to
the right up to the item flagged. Thus, “H-I” in Figure 2-6 stands for the
“High-Intermediate” level of COBOL and indicates items (like the
COMPUTE verb or the “{” symbol in comparisons) which are not

Demonstration Programs 29

implemented in the low level of the COBOL Nucleus. The flags with the
“Alll” label indicate Apple /Il extensions to COBOL (like the optional THEN
in the IF sentence or the extended use of DISPLAY in our example). The

total number of flags is reported among the counters at the end of the
listing.

If you now run this program (as before, at the COBOL Command Line
level type R and then Pl in response to the prompt), you you will see the
screen updated each time around the LOOP of Figure 2-6 with a new
term to be added to the accumulating value of pi.

COBOL: A(nimate Clompile F(orms2 Q(uit R(un S{wﬁches Ultilities [A3/1.0a]
COMPU ERM - (TERM * (N 2) *% 2) / (4 * N * (N - 1))

.
. UQDOOGOGOOM THEN GOv T0 HALT.
KA eam e .
wRAL e
ADD TERM T0 Pl
COMPUTE ED = Pl * 6.
k]
MOVE ED T0 D(PI2
MOVE TERM TO ED.
MOVE ED TO DI- TERM2
L DJSPU\Y ﬁl 2 o
**A]---
ADD N
IF N € 100 GO TO LOOP.
hHL
ALT.
STOP RUN.

* Apple /// COBOL V1.0 REVISION 0 URN AA/0000/HA
* Compiler (C) 1982 Apple Computer Inc.

* ERRORS 00000 DATA 02560 CODE= 00768 BlCT 00512:09846/10358 GSA FLAGS =00010

Figure 2-6. Partial Listing of Pl Program
Notice that the listing doesn’t have sequence numbers in the left margin.
Try compiling PI.CBL once again, typing in the following line to the
Compiler after you type C:

Pl LIST RESEQ NOFORM

30 COBOL Introduction and Operating System Manual

The RESEQ directive instructs the Compiler to supply sequence numbers
in the first six columns of each line. The other new directive, NOFORM,
suppresses the page headers that otherwise appear in the listing. You can
create a sequenced copy of the source file by directing the listing to disk,
for example

Pl LIST(PI2.CBL) RESEQ NOFORM
With this command line, the Compiler will create a sequenced version of
the source file. Note that the list file must have a different name from the

source file—you can’t write the new listing file on top of the existing
source code file.

File Handling Example

Our final examples, STOCK1.CBL and STOCK2.CBL, illustrate some of
the display-handling capabilities of Apple /Il COBOL. This topic is dealt with
in detail in Chapter 6; our exploration here will be brief. Return to the top
level COBOL command line if you are still on the Utilities level. To compile
STOCK1, type C, then

STOCK1 NOLIST

NOLIST is the negative form of the LIST directive; it tells the Compiler not
to output any listing file. Wait until the compilation is finished and the
Compiler status line appears showing zero errors. Then run the stock file
program (type R and then STOCK1, followed by RETURN); you should
see Figure 2-7.

Demonstration Programs 31

Figure 2-7. Screen from STOCK1 Program

The cursor is positioned at the start of the Stock Code field (which is the
key for the index sequential file generated by this program). Type in A-01,
and you will then see the cursor move to the start of the Description field.
Type in something here, for example

Left-hand widget cleaner

After 24 characters of description, the cursor will move down to the Unit
Size field. If you have typed more than 24 characters, you can use the
LEFT-ARROW key to back up to the start of this field. In any case, the
Run-Time System will not let you type in anything but digits into Unit Size;
it will beep at you if you try. It will also prevent you from moving into the
protected areas outside the angle brackets.

Experiment with the cursor keys, the ESCAPE key, and the TAB key to
see what you can do. Getting back to the Unit Size field, type in four
digits, say 0012; then press RETURN to finish the first record and to clear
the entry fields for a new record. This time try stock code B-13, and a
short description like

Blivet: 3-pronged

32 COBOL Introduction and Operating System Manual

and then press the DOWN-ARROW key to go to the Unit Size field. Type
4 for unit size and then press RETURN. What happened? You will see the
same record still displayed; Unit Size is supposed to be four digits but
contains one digit and three blanks. Return to the Unit Size field and step
past the 4 (or type it again) and then type a period; the field will now be
“left zero-filled” and you can write the record out to the file by pressing
RETURN.

You can continue adding records with other keys; the program will close
the files and terminate whenever you press RETURN with the Key field
blank. The /DEMO disk will now contain two new files. STOCK.IT contains
the records you have generated. You can examine it by using the T(ype
command in the Utilities package: type U to get the Utilities, T to select
Type, and STOCK.IT to specify the file. Remember to type Q to exit the
Utilities.

@ Type can be used to examine any ordinary character file; that is, any file
of ASCII characters or any file in the special TEXT format used by the
Pascal System Editor. When you list a directory (L option in the Utilities),

you will see these files classified as type Asciifile and Textfile
respectively. For more information about file types, see Appendix F.

A large file will move down the display screen too fast for study. To
pause during the Type operation, hold down the CONTROL key and type
the 7 key on the numeric keypad; type 7 a second time to resume the
display output.

For the final example in this chapter, we will simulate a more realistic
COBOL application system by using a second program to interrogate the
file produced by STOCK1. Once again, from the COBOL Command Line
(which should be visible at the top of the screen after you terminate the
STOCK1 program), type C to load the Compiler. Now type only the name
of the source code file:

STOCK2

Demonstration Programs 33

This illustrates a final permutation on the LIST directive: a listing file will be
output to the /DEMO disk, with the file name STOCK2.LST. That is,
unless you tell it otherwise, the Compiler will take the source file name
STOCK2.CBL, strip off the extension .CBL, and add .LST to create a
name for a file which it uses for listing output. As the compilation
proceeds, you will see an error message on the screen. The error has no
impact on the program; it was introduced simply to show the format of
error messages. The error message will appear in the listing file directly
underneath the source code line it refers to; it will also appear on the
screen, as in Figure 2-8.

' ‘ormsz Quit R(un S(wntches Uttilities [A3/1. Ua]l
11982 Apple Qompater e

- OVE GET-INPUT TO TF-DATE.

,"**193*******«** . ' . * ok
s Operand missing or has wrong type or is undeclared or ! ! missin

~ * ERRORS=00001 DATA=01536 CODE=00768 D&CTV.OﬁOZ 09256/10358 GSA FLAGS = OFF

Figure 2-8. STOCK2 Error Message

The STOCK2 program generates a SEQUENTIAL file, STOCK.TRS, of
orders against stock items in the file STOCK.IT which you just created
with STOCK1. If you run this program, you will see another screen with

34 COBOL Introduction and Operating System Manual

fields for entering information. Type one of the stock codes you used in
the last example; then type an arbitrary order number, delivery date and
number of units. When you press RETURN, the description from the
original stock record will appear next to the stock code, and the unit size
will be multiplied by the number of units to show you the total quantity
ordered. You can then accept the order (by typing Y, RETURN) or reject it
(by typing N, RETURN) and start over. Remember that to terminate the
program, you can just press RETURN when the fields are blank.

These two stock file programs illustrate a good part of the screen and file
handling capabilities of Apple /Il COBOL. You should find it instructive to
play with the programs a bit and to read through the source code to see
how the effects are obtained. The full listing of STOCK2.LST is given in
Figure 2-9.

You can use the Utilities to type this or STOCK1.CBL onto the display.
The Utilities package also contains a Copy utility which you can use to
print out these files, if you reconfigure your SOS.DRIVER to contain the
driver (.PRINTER or .SILENTYPE) appropriate to your hardware. You will
need to refer to the Apple Il Owner’s Guide, Chapter 4, for details on
how to configure a printer into your system. Copy and other functions of
the Utilities are discussed in the next chapter.

Listing of the STOCK2 Program

* Apple /il COBOL V1.0 STOCK2.CBL PAGE: 0001

IDENTIFICATION DIVISION.
PROGRAM:-ID. GOODS:-IN.
AUTHOR. MICRO FOCUS LTD.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. APPLE-II.
OBJECT-COMPUTER. APPLE-III.
SPECIAL-NAMES. CONSOLE IS CRT.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT STOCK-FILE ASSIGN “STOCK.IT”
ORGANIZATION INDEXED
ACCESS DYNAMIC
RECORD KEY STOCK-CODE.
SELECT TRANS-FILE
ASSIGN “STOCK.TRS”
ORGANIZATION SEQUENTIAL.

Demonstration Programs 35

* Apple /I COBOL V1.0 STOCK2.CBL

/

DATA DIVISION.

FILE SECTION.

FD STOCK-FILE; RECORD 32.

01 STOCK-ITEM.
02 STOCK-CODE PIC X(4).
02 STOCK-DESCRIPT PIC X(24).
02 UNIT-SIZE PIC 9(4).

FD TRANS-FILE; RECORD 30.

01 TRANS-RECORD.
02 TRAN-NO PIC 9(4).
02 TF-STOCK-CODE PIC X(4).
02 TF-QUANTITY PIC 9(8).
02 TF-ORDER-NO PIC X(6).
02 TF-DATE PIC X(8).

WORKING-STORAGE SECTION.

01 STOCK-INWARD-FORM.
02 PRG-TITLE PIC X(20) VALUE *“ GOODS INWARD”.
02 FILLER PIC X(140).
02 CODE-HDNG PIC X(23) VALUE “STOCK CODE ¢
02 FILLER PIC X(57).
02 ORDER-NO-HDNG PIC X(23) VALUE “ORDER NO
02 FILLER PIC X(57).

€

yl

02 DATE-HDNG PIC X(24) VALUE “DELIVERY DATE MM/DD/YY”.

02 FILLER PIC X(56).
02 UNITS-HDNG PIC X(23) VALUE “NO OF UNITS (
01 STOCK-RECEIPT REDEFINES STOCK-INWARD-FORM.
02 FILLER PIC X(178).
02 SR-STOCK-CODE PIC X(4).
02 FILLER PIC X(74).
02 SR-ORDER-NO PIC X(8).
02 FILLER PIC X(73).
02 SR-DATE.
04 SR-MM PIC 99.
04 FILLER PIC X.
04 SR-DD PIC 99.
04 FILLER PIC X.
04 SR-YY PIC 99.
02 FILLER PIC X(75).
02 SR-NO-OF-UNITS PIC 9(4).
01 CONFIRM-MSG REDEFINES STOCK-INWARD-FORM.
02 FILLER PIC X(184).
02 CM-STOCK-DESCRIPT PIC X(24).
02 FILLER PIC X(352).
02 UNIT-SIZE-HDNG PIC X(18).
02 CM-UNIT-SIZE PIC 9(4).
02 FILLER PIC X(58).

s

PAGE: 0002

36 COBOL Introduction and Operating System Manual

* Apple /Il COBOL V1.0 STOCK2.CBL PAGE: 0003
/
02 QUANTITY-HDNG PIC X(14).
02 CM-QUANTITY PIC 9(8).
02 FILLER PIC X(58).
02 OK-HDNG PIC X(3).
02 CM-Y-OR-N PIC X.
PROCEDURE DIVISION.
START-PROC.
OPEN |-O STOCK-FILE.
OPEN OUTPUT TRANS-FILE.
DISPLAY SPACE.
MOVE 0 TO TRAN-NO.
DISPLAY STOCK-INWARD-FORM.
GET-INPUT.
ACCEPT STOCK-RECEIPT.
IF SR-STOCK-CODE = SPACE GO TO END-IT.
IF SR-NO-OF-UNITS NOT NUMERIC GO TO INVALID-ENTRY.
MOVE SR-STOCK-CODE TO STOCK-CODE.
READ STOCK-FILE; INVALID GO TO INVALID-CODE.
* VALID ENTRY, CALCULATE AND DISPLAY TOTAL QUANTITY IN TO CONFIRM
MOVE STOCK-DESCRIPT TO CM-STOCK-DESCRIPT.
MOVE “UNIT SIZE” TO UNIT-SIZE-HDNG.
MOVE UNIT-SIZE TO CM-UNIT-SIZE.
MOVE “QUANTITY IN” TO QUANTITY-HDNG.
MOVE UNIT-SIZE TO TF-QUANTITY.
MULTIPLY SR-NO-OF-UNITS BY TF-QUANTITY.
MOVE TF-QUANTITY TO CM-QUANTITY.
MOVE “OK?” TO OK-HDNG.
DISPLAY CONFIRM-MSG.
ACCEPT CM-Y-OR-N AT 1004.
IF CM-Y-OR-N = “Y” PERFORM WRITE-TRANS.
* CLEAR INPUT DATA ON SCREEN
MOVE SPACE TO CONFIRM-MSG.
MOVE “MM/DD/YY” TO SR-DATE.
DISPLAY STOCK-RECEIPT.
DISPLAY CONFIRM-MSG.
GO TO GET-INPUT.
WRITE-TRANS.
ADD 1 TO TRAN-NO.
MOVE STOCK-CODE TO TF-STOCK-CODE.
MOVE SR-ORDER-NO TO TF-ORDER-NO.
MOVE GET-INPUT TO TF-DATE.
KRB F AR AR AR . %
** Operand has wrong data-type or is not declared L
WRITE TRANS-RECORD.
INVALID-ENTRY.
DISPLAY “NON-NUMERIC NO OF UNITS” AT 0325.
GO TO GET-INPUT.

Demonstration Programs 37

* Apple /il COBOL V1.0 STOCK2.CBL PAGE: 0004
/
INVALID-CODE.
DISPLAY “INVALID CODE 7 AT 0325.
GO TO GET-INPUT.
END-IT.

CLOSE STOCK-FILE.

CLOSE TRANS-FILE.

DISPLAY SPACE.

DISPLAY “END OF PROGRAM”.

STOP RUN.
* Apple /il COBOL V1.0 URN AA/O00O0/HA
* Compiler ©1982 Apple Computer Inc.

*

*

ERRORS=00001 DATA=01536 CODE=00768 DICT=01102:60972/62074 GSA
FLAGS = OFF

Figure 2-9. Listing of the STOCK2 Program

38 COBOL Introduction and Operating System Manual

The COBOL System and Main Command Line 39

The COBOL System
and Main Command Line

Running under SOS

As you type commands to the Apple /Il COBOL System, your input is
handled by SOS, the Apple /Il Sophisticated Operating System. SOS
controls the Apple /I file system and all its on-line peripheral devices.
These devices are integrated into the file system by means of “driver”
files, so that a programmer or operator can refer to them and use them
much like other files. Refer to the Apple Il Standard Device Drivers Manual
for details about .CONSOLE, .PRINTER, .RS232 and other drivers.

The first chapters of this manual have already looked briefly at some of the
aspects of SOS, namely console input and output and the file hierarchy.
This chapter fills in some of the gaps left by that discussion and refers you
to appropriate places for more information.

Type-ahead

Chapter One discussed how to correct typing mistakes made at the
keyboard. Here, we take up another SOS service for console input.
Whenever you type a key while the system or a program is not expecting
input, SOS stores the key code in a type-ahead buffer. When the program
does request input from the console, the driver will first send along any
characters waiting in this buffer. At this point, the character will be
“echoed” on the screen. The character doesn’t show up while it is in the
type-ahead buffer, but it isn’t lost—just pending. Type-ahead is limited to

40 COBOL Introduction and Operating System Manual

128 characters, enough so that even a fast typist will not usually get too
far ahead of program responses. If you do fill the buffer, you will hear a
“beep” from the console when you type the next character. After the
program consumes some of the pending input, SOS will accept further
keystrokes.

The situation in which you will most likely use type-ahead is in selecting
COBOL system commands and Utility options. A single keystroke will
select the command and begin loading the appropriate code to handle it;
you need not wait for the initial message or intermediate menu to continue
your typing. If your request is simple or your typing secure, you can
complete the request without waiting for each input character to be
displayed.

If you make a typing mistake while typing ahead, there is no harm
done—ijust wait for the program to catch up with you and correct the
mistake as usual. You can also erase everything in the type-ahead buffer
by pressing the CONTROL key and the 6 on the numeric keypad at the
same time.

CONTROL Operations

Recall from Chapter One that CONTROL-X erases a whole line of input (at
any point before you press RETURN); this and the buffer erase
(CONTROL-6) operation are part of a general scheme of operations
invoked by holding down the CONTROL key and typing another key at the
same time. (We refer to this operation as CONTROL-k, where “k’” stands
for the key that is typed while CONTROL is held down.) Some of these
control operations are defined as part of the ASCII character-set used by
the Apple /il. For example, the LEFT-ARROW key is simply a convenient
substitute for the ASCII backspace character which you also get when you
type CONTROL-H.

Another ASCII definition is the CONTROL-C we used in Chapter Two for
terminating console source code input to the Compiler; the CONTROL-C is
just the ASCII End-of-Text (ETX) character. Also, the CONTROL-X used to
cancel a line of input is the ASCII CANCEL code, CAN.

The Apple /il extends this scheme in a number of ways. One use of
CONTROL special to the Apple /Il is to activate the RESET key inset in the
top of the keyboard. If you push these two keys at the same time, the

The COBOL System and Main Command Line 41

Apple /Il will reset (cold start) the system as if you had turned the power
switch off and then on again.

Another special operation is CONTROL- \ (that is, CONTROL and the
back-slash key in the top right corner of the main keyboard).
CONTROL- \ aborts any program running and returns control to the
COBOL Command Line.

Note that the COBOL Run-Time System will complete file operations and
close any open files before terminating after a CONTROL- \ . This means,
for example, that when a program reads input from the console, you will
have to press RETURN after the CONTROL- \ (in order to end the input
operation).

Also note that the CONTROL- \ operation will cause the Run-Time
System to issue a post-mortem message; for example, if you abort the PI
program of Chapter Two, you will see something like:

The first line of this message names the file running at the time of the
CONTROL- \ and the segment (program overlay) that was interrupted.
Programs without overlays will always specify the root segment; programs
like the Compiler which use overlays may name some segment other than
the root. COBOL PC refers to the Run-Time System program counter; in
this case it was interrupted at a count of DC (hexadecimal). Error number
150 signifies “Program interrupted by user” (see the list of Run-Time
Errors in Appendix C).

Finally, there are some special console controls using the numeric keypad
to the right of the main keyboard. Several of these are “toggle”
switches—you push them once to get one effect and a second time to
turn off the effect. The numeric controls are:

CONTROL-5 Video Output Switch. This toggle switch turns console
video output off (when first pushed) and back on again
(the next time), and so on. The Apple /Il runs about 25
percent faster with the video turned off; so you can
speed up programs (notably, long compiles) by using this
switch. Note that a console input request from a program
will automatically turn the video back on.

42 COBOL Introduction and Operating System Manual

CONTROL-6 Flush Type-Ahead Buffer. Typing this removes any
characters in the type-ahead buffer (anything you've
typed that hasn’t yet been sent to a program as input).

CONTROL-7 Output Pause. This toggle switch “freezes” the console
screen in its current state; if a program tries to put
something new on the screen, it will be suspended until
you toggle the switch again to unfreeze the screen.

This control is very useful. Use it to pause at some point in a compilation,
with the listing going out to the screen; or use it while using the Type
command in Utilities to examine some part of a file in detail and then let
the rest go past at top speed. Since most programs interact with the user

at the console, this switch is effectively a general purpose PAUSE
switch.

CONTROL-8 Control Character Display. This toggle switch causes
subsequent control codes to appear on the screen with
visible representations (two-character abbreviations
squeezed into one character position on the screen).

These control operations do not work with the numeric keys on the main
keyboard; you must use the keys on the separate numeric keypad. For
more information on console control operations, refer to the Apple /Il
Standard Device Drivers Manual.

File Names

SOS Pathnames

SOS files have names composed of letters, digits and the special
characters “/” (slash) and “.” (period). The letters may be typed in upper-
or lower-case, since SOS capitalizes lower-case letters internally. The full
SOS name of a file always begins either with a “/”, indicating the root
directory of a volume currently on-line, or with a “.”, indicating a device
driver. Devices may be block structured, as in the case of disk drives, or
they may be character-oriented, for example .CONSOLE or .PRINTER. A
block device may contain many files, organized in the hierarchical fashion
illustrated above in Chapter One, Figure 1-2. In the case of a chararacter
device, the device name is the full name of the file. For any file on a block
device, the full name traces out a “path” in the file hierarchy from the root

The COBOL System and Main Command Line 43

to the position of the file. Thus, the full “pathname” of the file ISAM on
/COBOLBOOQOT is:

/COBOLBOOT/COBOL/ISAM or .D1/COBOL/ISAM

Thus COBOL is a “subdirectory’ file that contains a list of other files. You
can use the device name (.D1 for the built-in drive) instead of the volume
name; but the volume name is more general. If you begin with
/COBOLBOOQOT, SOS looks for the volume in each on-line drive until it finds
it; you don’t need to remember where it is. If SOS can’t find the file (if you
mistyped the name, or if the disk is not in the device you specified, or not
in any device) you will see an error message. For example, if you are
trying to run a program, the error message is similar to that from a
CONTROL- \ abort. The Compiler and the Utilities use a message like the
following to report being unable to find a file:

It can be inconvenient to type out the full pathname of a file, especially if it
is far down in the hierarchy and if you have to keep typing it in many
times. SOS maintains a “prefix” which it will place in front of any file name
you give it that doesn’t begin with a period or a slash. That is, if you type
.CONSOLE, or .D2/PI.CBL or /DEMO/STOCK.IT, SOS assumes you have
typed a complete pathname. However, if the prefix is /VOL1/DIRA (for
example) and you type FILEX, SOS will interpret this to mean:

/VOL1/DIRA/FILEX

Whenever you start or reset the system, the prefix is initialized to the
volume name of the disk in the built-in drive. To change this value, use the
Prefix Utility as in the example in Chapter One.

COBOL File Name Extensions

The period has another use in filenames besides beginning the name of a
device. You may want to group together several files in the same directory
with related names. By using a base file name (for example, STOCK1) you
can create a cluster of related files with extensions of the
name—STOCK1.CBL for the source code, STOCK1.INT for the
intermediate code object file, etc.

44 COBOL Introduction and Operating System Manual

SOS doesn’t care about periods in the middle of file names, but the
COBOL Run-Time System commands use this method to differentiate the
functions of related files. The system also allows certain default values for
these file extensions. Thus, the Compiler expects source file input to have
the extension .CBL. It will accept any file name specified in full (for
example, XYZ.A.B.PQR), but if no extension is given, it will supply the
.CBL that it expects. The most important of the file name extensions used
in the COBOL system are:

.ACP Created by the Compiler for use by the Animator (for handling
COPY statements).

.ANM Animator file (created by Compiler directive ANIM).

.CBL COBOL source code file; default extension for the Compiler
input.
.CHK FORMS2 screen checkout program source code.

.DDS Data Description Statements; COBOL source code defining the
screens created in a FORMS2 run.

.Dnn Dictionary files used by both the Compiler and the Animator;
one per segment (number nn) in the program.

.GEN FORMS2 index file generation program source code.
.Inn Program segment intermediate code (overlays).
.IDX Index file for Index Sequential file organization (see Appendix F

for more details).

ANT Intermediate code file (root segment) output by the Compiler;
default extension for Run.

ISR Inter-segment reference file for segmented programs.

.SXn Work-files for the COBOL Sort-Merge Module (n = 1 or 2).

The COBOL System and Main Command Line

.Snn FORMS2 screen image files for each screen created in a
FORMS2 run (n = 00, 01, 02, ...).

.TMn Temporary Compiler files (n = 1 or 2).

Run-Time System ? Wildcard

If you abort the Compiler (by a CONTROL-\), the RTS Error 150
message indicates that the file name of the intermediate code file for the
Compiler was

?7/COBOL/COBOL

The Animator, FORMS2, and the Utilities all are invoked with similar names
(?/COBOL/ANIM, ?/COBOL/FORMS2, and ?/COBOL/UTIL respectively).
The “?” here is a special COBOL (not SOS) feature, telling the Run-Time
System to search for the file in all drives on-line. You may use this feature
elsewhere, for example in telling the Run command what file to execute,
or in a COBOL COPY statement like the one in PHONE.GEN from Chapter
Two:

COPY “?/COBOL/FORMS2.GN1".

Turnkey Systems

For an application that runs a single major program, it is useful to be able
to run the program in a “turnkey” mode. That is, the operator can place a
specially tailored disk in the built-in drive, turn on (or reset) the computer
and begin work immediately, without having to interact with the COBOL
Command Line. As far as such a user is concerned, the Apple /Il has
become a dedicated machine for his application.

To create a turnkey system, rename the program you want to run
COBOL.START; for a relatively small application it is convenient to place
this file on a boot disk (for example, you could copy STOCK1.INT from
/DEMO to a duplicate of your /COBOLBOOT disk, renaming it
COBOL.START by means of the copy operation). But it isn’t necessary for
the COBOL.START program to be on the boot disk. As long as it is a first-
level directory entry in any volume on-line at the time the Run-Time
System starts up (at a reset or when the power is turned on), it will be
loaded and executed. Notice that if you switch disks, the COBOL system

46 COBOL Introduction and Operating System Manual

may start running a different COBOL.START from another disk. Only if the
file COBOL.START is not found will the Run-Time System call its normal
instruction analyzer and display the COBOL Command Line.

When the COBOL.START program terminates, either normally (by
executing a COBOL STOP statement) or as a result of a CONTROL- \
the Run-Time System will start it again from the beginning as if you had
just powered up. This is convenient for a dedicated application, but it also
means that you will not be able to execute any of the normal COBOL
Command Line options from a turnkey disk. Note, however, that you can
use the cold-start assembiler call to exit your application (see Chapter
Four).

COBOL Command Line Options

Whenever you boot up the Apple /Il COBOL System, and whenever a
program finishes, either normally or by a CONTROL- \ abort from the
keyboard, you will find the cursor positioned at the end of the COBOL
Command Line, waiting for you to select one of the command options
listed there:

~ COBOL: A(nimate C(ompile F(orms2 Q(uit R(un S(witches Uftilities [A3 1.52]

The remainder of this chapter discusses these commands in detail, except
for the first three, which are given detailed treatment in later chapters and
so only briefly sketched here. Each of these commands is invoked by
typing the key labelled with the command’s initial letter (A, C, F, Q, R, S
or U); do not press RETURN after the key. If you type any other key, the
Run-Time System will “beep” at you and again wait for one of these
choices.

Animate

The A command invokes the Animator, the COBOL debugger that brings
your programs to life. After the Animator has been loaded, you will see its
initial message:

AVl Animator V1.0 (C) 1982

The cursor will reappear underneath this message, awaiting input of the
name of the program to be animated. Type the name of the intermediate

The COBOL System and Main Command Line 47

code file, usually a name like program.INT; however, any file name is
acceptable, for example COBOL.START if you are debugging a turnkey
system. If Animator cannot find the file using the name you typed, and if
the name didn’t end with .INT, the Animator will supply the extension .INT
and look again. So you can use the “basename” of the program and let
Animator add the .INT by default. If you change your mind and wish to exit
the Animator, type ! when asked for input.

Once Animator has found the intermediate code file, it looks for a source
code file and several other files that were output by the Compiler. The
Animator expects to find a dictionary (.DOO) file corresponding to the
intermediate code file; this file contains the name of the original source
code file given to the Compiler, which Animator then searches for. Other
files may also be needed, with extensions .ACP (for handling COPY
statements), or .Inn and .Dnn for handling segment number nn of a
segmented program. These files should all be on-line; usually they will be
on the same disk, and Animator will look for them on the same drive as it
found the intermediate code file on.

However, if Animator doesn’t find a file on this drive, it will let you specify
a different one. At the bottom of the display, you will see the message

FILE NOT FOUND - S(top run) C(ontinue) A(lter drive) _

with the name of the file in question below this. You can then type A,
followed by a directory name, and Animator will prefix that name to the file
name and look again.

Compile

The C command invokes the COBOL Compiler, the subject of Chapter
Four. After the Compiler has been loaded, you will see its initial message:

The cursor will reappear underneath this message, awaiting input of the
name of the source code file to be compiled plus optional Compiler
directives. If the Compiler can’t find the name of the file as you typed it,
and if the name you typed doesn’t already end with the extension .CBL,
the Compiler will append .CBL to the name and try to find it with this
extension. Note that if you entered the Compiler by accident, you may
type ! followed by RETURN to exit immediately.

48 COBOL Introduction and Operating System Manual

Forms2

The F command invokes the FORMS2 screen manipulation utility, the
subject of Chapter Seven. After FORMS2 has been loaded, you will see
the first of a series of initialization screens. See Chapter Two for an
example and Chapter Seven for detailed discussion. If you type F by
mistake, you can exit immediately from FORMS2 by typing an exclamation
point (!) followed by RETURN.

Quit

The Q command exits the Run-Time System. You will see the following
message in large letters:

~ INSERT SYSTEM DISK AND REBOOT

No further action is possible until you reset the machine. As you need a
different run time system (for example, the Apple /Il Pascal System) for
editing files, you will in fact switch from one system to another rather
frequently. This command is the cleanest way to end a session with the
COBOL Run-Time System.

Run

The R command loads and executes a program. You will see the prompt
line

File to run :

Type the pathname of the intermediate code file; after you press RETURN,
the file will be loaded and execution will begin. The command assumes
that the file name ends with the extension .INT; if the name you type
doesn’t end in .INT, the Run-Time System will supply this extension
automatically. To suppress this, you must type an extra period (.)
character at the end of the name. For example, to run a program named
EXAMPLE (not EXAMPLE.INT) you answer the prompt as follows:

File to run : EXAMPLE.

The COBOL System and Main Command Line 49

Switches

The S command displays or sets run-time switches. There are nine
switches available for use in tailoring different runs ¢f the same program.
One of these switches is the ANSI Standard Debug switch. If this switch is
turned off, then any statements in the program with the USE FOR
DEBUGGING clause are inhibited; if it is on, they come into effect. The
other eight switches, labeled with the digits O through 7, may be used for
arbitrary purposes in a program. These are tested in a program by means
of ON STATUS condition-names and OFF STATUS condition- names
defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION; see the Apple Il COBOL Language Reference Manual, Chapter
Three, for the definition of the syntax needed in this paragraph. After you
type S on the COBOL Command Line, you will see below the COBOL
Command Line the display

with digits O to 7 or a letter A showing in place of the corresponding dash
when the switch is set. Type A or a digit to toggle the switch (set it if it
was off, clear it if it was set). You can clear all the switches at once by
typing C. Press RETURN to finish your changes and return to the COBOL
Command Line. Once set, the switches remain set until they are changed
by a following S command. This facility is provided primarily for
compatibility with batch systems.

Utilities

The U command invokes the COBOL Utilities package. Once this is
loaded, the Utilities menu will appear, and you may select one of the
options. Of these, some do file handling (listing directories, deleting files,
etc.), and some deal with SOS system parameters. All the options use the
LEFT-ARROW cursor control somewhat differently than the rest of the
COBOL system. Under the control of the Utilities program the backspace
is “non-destructive”; when you back up with the LEFT-ARROW, the
characters backed over remain on the screen and they will be sent to the
utilities program when you press the RETURN key. Thus you can correct

a single letter typing error without having to retype everything past it on
the line.

50 COBOL Introduction and Operating System Manual

Note also that the Utilities program will throw away any input on the line
after its first blank. If you change a long line into a short one, it isn’t
necessary to overtype the tail end of the line with blanks—one blank at the
end of the corrected line is enough to terminate it properly.
The Utilities menu is

 Util: Clopy.Diate,L(ist-dir, E(xt-dir,P(refix,R(emove. T(ype,Q(ut

The individual options are

e Copy. This option makes a new copy (the target) of any file (the
source). After you type C to invoke the option, you will be asked:

and after typing in the SOS pathname of the source file, you will
be asked for the target:

The target file does not need to be a disk file. To get a hard-copy
listing of any ASCII or TEXT file, copy it to a printer (.SILENTYPE
or .PRINTER device file). A copy to the device .CONSOLE is
essentially the same command as the Type utility. In fact, it is
considerably faster.

e Date. This option sets Apple /Il date and time; it displays the
current date and time and prompts for your changes with the
following line below the Utilities menu:

or with the zeros and blanks filled in if you have a clock in your
system or have already set the date and time since the last time
the Apple /Il was powered up. Type over any field to change it.
The blanks above can be replaced by any of the standard three-
letter month abbreviations. You may type any combination of
lower- and upper-case: internally the field will be translated to an
initial capital and two lower-case letters. The fields for day, year,
and time will accept any digit values. Press RETURN to enter any
changes you have made, or to get back to the command level.

The COBOL System and Main Command Line 51

Note that if your Apple /il has an internal clock, the time fields will
be incremented automatically while the power is on; otherwise,
the time may be used as a simple “time-stamp” to make files of
an individual work session.

e Ext-dir

e List-dir. Both of these options list a directory on a block device.
Ext-dir gives an “extended directory listing”, by listing all levels of
the file hierarchy under the specified directory; List-dir only lists
the files that are directly below the specified directory. The format
of an Ext-dir listing is illustrated in Figure 3-1; the corresponding
List-dir listing appears in Figure 1-3.

Figure 3-1. Extended Directory Listing

The current prefix appears as the default value in the prompt line

(This example shows the prompt as it would be if you booted from
the original COBOL System boot disk and haven’t changed the
prefix since. Whenever you type E or L, you will see the current
prefix in this prompt.) If you want to list this directory, just press
RETURN. Otherwise, type over the prefix with a disk device name
or a directory and then press RETURN. As you start typing, the
default value will vanish from the prompt line.

52

COBOL Introduction and Operating System Manual

Prefix. This option displays or changes the prefix that SOS
attaches to file names not beginning with the *“/” or “.” characters.
The display resulting from this option is similar to

with a display of the current value of the prefix and the cursor
positioned to receive a new value. If you just press RETURN, the
current prefix will remain in effect. If you type a device name (for
example, .d2), SOS will read the volume name of the disk
currently on that device as the new value of the prefix string, and
you will see this volume name replace the string you typed on the
second line of the message. Also if you type a volume name in
lower-case, the Run-Time System will display the name in
capitalized form on this line. At the initial loading of the Run-Time
System, the prefix is set to the volume name of the boot disk in
the built-in drive.

Remove. This option deletes a file (only one at a time; no “wild-
card” conventions are recognized). The prompt is

Type in the pathname of the file to be deleted. You will then be
asked to confirm this:

Type Y to go ahead with the deletion; any other response returns
you to the Utilities menu.

Type. This option lists the contents of a file onto the console.
Answer the prompt

with the pathname of the file to be listed. With this option, it is
possible to use the “?” character as shorthand for “any drive” in
place of a device name. To pause at some point during the listing,
use the CONTROL-7 operation.

The COBOL System and Main Command Line 53

Quit. This option exits from the Utilities to the main COBOL
command line. It is the only way to get out of the Utilities except
for a CONTROL-\ abort.

Summary

Command Entry

Upper- and lower-case letters are equally acceptable.

Single keystrokes invoke the options at the main command level
and the Utilities level; elsewhere, an entry must be terminated by
a RETURN.

Commands may be typed ahead without waiting for the display of
intermediate prompts.

Backing up with the LEFT-ARROW key allows the correction of
typing mistakes on the current line.

Control Operations

CONTROL-C (ASCIl ETX) End of file for console input.
CONTROL-X (ASCIl CAN) Erase the current line of input.

CONTROL-\ Abort a program and return control to the COBOL
command line. May require a following RETURN if the system is
processing an ACCEPT statement.

Numeric keypad controls:

CONTROL-5 Turn CRT screen on/off; any output to the
console between CONTROL-5’s will be lost.

CONTROL-6 Erase any characters typed ahead (and not yet
processed as input by a program).

CONTROL-7 Toggle console acceptance of output; the
program halts until the next CONTROL-7 allows
output to resume from where it was stopped.

CONTROL-8 Toggle the visible representation on the display of
control characters in console output.

54

COBOL Introduction and Operating System Manual

COBOL Command Line Summary

A

Animate command. Invokes the Apple /I COBOL Animator. Type
the pathname of the intermediate code file to be animated. Type !
to exit.

Compile command. Invokes the Apple /Il COBOL Compiler. Type
the pathname of the source code file (extension .CBL assumed
by default) and Compiler directives. Type ! to exit.

Forms2 command. Invokes FORMS2 utility. Type ! to exit.

Quit command. Exits the Run-Time System. No further action is
possible until you reset the machine.

Run command. Loads and executes a program. After the prompt,
type the pathname of the intermediate code file (use an extra
period to terminate the name if the file name doesn’t end with the
extension .INT; if it does so end, you don’t need to type the
extension).

Switches command. Display or set run-time switches. Displays the
current settings, dashes when the switch is clear, a digit (O
through 7) or A when the switch is set. Type A or a digit to toggle
the switch (set it if it was off, clear it if it was set). C clears all
switches. Press RETURN to exit back to the COBOL command
line.

Utilities command. Invokes COBOL utilities. At this level, backing
over characters with the LEFT-ARROW key doesn’t erase them;
pressing RETURN sends the entire visible line to the utility.
Options are:

Copy - copies any disk file to another SOS file; the target can be
a character file (such as .PRINTER) or a disk file. The local name
may be changed in the course of the copy; it must be changed if
a second copy of the file is made to the same directory as the
original.

Date - sets Apple /il date and time. Displays the current date and
time. Type over any field to change its value.

List-dir - lists an Apple /Il disk directory.

The COBOL System and Main Command Line 55

Ext-dir - lists a disk directory and sub-directories. The prompt line
gives the current prefix directory; type over it to list a different
directory.

Prefix - sets Apple /il prefix. Displays the current prefix string;
type a new value to change the prefix.

Remove - removes a file. Type the pathname of the file to be
deleted.

Type - lists a file on the console. Answer the prompt with the
pathname of the file to be listed. To pause at some point of the
listing, use the CONTROL-7 control.

Quit - exits from the utilities to the Run-Time System.

56 COBOL Introduction and Operating System Manual

Compiler Directives 57

Compiler Dirtives

Compiler Command Format

After you have invoked the Compiler by selecting the Compile option from

the COBOL Command Line, and the Compiler has issued its initial

message, it expects you to type in a command line in the following format:
file name [directive directive ...]

where

file name is the pathname of a file containing Apple /Il COBOL
source statements. If this name doesn’t begin with a period or
a slash, it is appended to the system prefix. The Compiler
searches for this (possibly prefixed) name on-line; if it fails to
find the name, it will try again with a new name formed by
appending “.CBL” to the original name. If the name is still not
found, the Compiler will issue the error message

and return control to the main COBOL command line.

directive is one of the optional Apple /ll COBOL directives
described in this chapter. Each directive must be separated by
one or more spaces from any preceding directive or file name
and from any succeeding directive. If the list of directives is too

58 COBOL Introduction and Operating System Manual

long to fit on one line of the screen, it may be continued on a
subsequent line by typing & (ampersand) followed by RETURN.
Here is how an example might look:

IPROFILE/ICOBOL/DEVELOP/LEDGER RESEQ NOFORM & (R)

(the line ends with an ampersand and a RETURN). The system
will respond to this with

- j
and then the next line may be typed in:
DATE ““‘JULY 28, 1982 17:05’’ NOINT

whereupon the system will respond with

and begin compilation.

Directives may appear in any of the following forms:

keyword

keyword[](argument)
keyword[]“argument”
NO[]keyword

The bracketed space means that you may optionally use one or
more spaces before an argument or between the NO and the
directive it negates. In any case where an argument contains a
space, you must use the quotation mark format; otherwise you
may use either parentheses or quotation marks.

Compiler Directives

59

If you press RETURN without entering a file name (and possibly some
directives), the Compiler will assume that the source code will be entered
from the console and that default settings are to be used for the
directives. If you type in only a file name, the default directives will also be
used. Table 4-1 specifies all the directives available in the Apple /Il
COBOL Compiler; default directive settings are marked with a “*” and
have their arguments filled in with the default values.

Directive Argument
* ANIM —
BRIEF —
COMP —
COPYLIST —
* CRTWIDTH “128”
* DATE** “literal-1”
* ECHO -
ERRLIST —
FLAG “level”
* FORM “60”
IBM —
* INT “basename.INT”
* LIST “basename.LST”
* PRINT “basename.LST”
REF —
RESEQ —
FORMFEED “function-name”
SYSIN “function-name”
SYSOUT “function-name”
TAB “function-name”

Negative Directive

*

*

*

*

*

*

*

*

NO ANIM

NO BRIEF

NO COMP
NO COPYLIST
NO CRTWIDTH
NO DATE

NO ECHO

NO ERRLIST
NO FLAG

NO FORM

NO IBM

NO INT

NO LIST

NO PRINT

NO REF

NO RESEQ

*

— signifies that there is no argument (or, as in the

marks the default value of the directive

negative)

basename

case of DATE, no

is the name given for the source file (minus .CBL extension if

any)

** If literal-1 is not specified, the system date and time will be used.

Table 4-1. Compiler Directives

Some directives are mutually exclusive. When you type in a command line,
the Compiler will scan it to see whether it can accept all the directives; if it
rejects any directive (either because it can’t recognize it or because of

60 COBOL Introduction and Opérating System Manual

mutual exclusion) it will print out a message to that effect on the console
and return control to the COBOL Command Line. Table 4-2 shows the
exclusions in effect; most of these concern various listing directives.

Directive Exciudes
NO LIST COPYLIST
ERRLIST
(In cases where [NO] appears, [NO] FORM
both the positive and the LIST
negative form of the PRINT
directive are excluded.) [NO] REF
RESEQ
ERRLIST COPYLIST
[NO] REF
RESEQ
ANIM NOCRTWIDTH

Table 4-2. Excluded Combinations of Directives

Description of Compiler Directives

ANIM

Format: ANIM
NO ANIM

The ANIM directive causes the Compiler to generate files that can be
used by the Animator for program testing and debugging. If the source
code file is basename.CBL, this option produces the files basename. ANM
and basename.ACP. The Animator also uses the intermediate code files
and dictionary files that are always produced for the root, and any overlay
segments. NO ANIM will suppress the output of those files needed only
by the Animator.

Note that ANIM is mutually exclusive with the NO CRTWIDTH directive,
since the Animator makes use of the internal buffers allocated by the use
of CRTWIDTH.

The default setting of this directive is ANIM.

Compiler Directives 61

BRIEF

Format: BRIEF
NO BRIEF

BRIEF causes the Compiler to omit the explanatory text in error
messages, that is to output only the error number to the listing and to the
console. The Compiler automatically goes into BRIEF mode if it cannot find
the file COBOL.ERR. NO BRIEF causes the explanatory messages to be
output (if the Compiler can find the file COBOL.ERR on-line).

The default setting is NO BRIEF.

COMP

Format: COMP
NO COMP

This directive causes the Compiler to generate smaller and faster code for
arithmetic on PIC 99 and PIC 9(4) operands where no ON SIZE ERROR
clause is specified. In addition to the speed and smaller code size,
another advantage is that it becomes possible to do computations on
characters, for example converting lower- to upper-case. The
disadvantage of COMP is that when it is in effect, some MOVEs may give
non-ANSI standard results. PIC 99 fields will overflow at 256 rather than
100.

The default setting is NO COMP.

COPYLIST
Format: COPYLIST
NO COPYLIST

COPYLIST causes the contents of a file named in a COPY statement in
the COBOL source code to be output in the Compiler listing.

At page breaks in the listing, the page header names any COPY file open
at the break. NO COPYLIST suppresses the listing of COPY file contents.

The default setting is NO COPYLIST.

62 COBOL Introduction and Operating System Manual

CRTWIDTH
Format: CRTWIDTH *“line-size”
NO CRTWIDTH

CRTWIDTH specifies the logical line-size of the CRT screen for Format 1
(ANSI standard) DISPLAY statements. NO CRTWIDTH tells the Compiler
that no ANSI standard DISPLAY statement will be compiled. In this case,
the Compiler can use memory otherwise allocated to control tables to
increase dictionary size.

The default setting is CRTWIDTH “128” (a value chosen to match a
common limit of main-frame COBOL implementations).

DATE
Format: DATE “literal-1”

DATE causes the Compiler to replace the comment entry in the DATE-
COMPILED paragraph of the IDENTIFICATION DIVISION with the value of
literal-1. If literal-1 is not specified, then the system date and time will be
used in its place. If the NO DATE directive is issued, or there is no system
clock and the date has not been set manually, then date-time insertion into
the DATE-COMPILED paragraph is suppressed.

The default is DATE.

ECHO

Format: ECHO
NO ECHO

ECHO causes the Compiler to list error lines on the console (that is, the
source code line in error, a line with the error number underneath this,
and—unless the BRIEF directive is in effect—a final line with explanatory
text). NO ECHO turns off console listing of errors.

The default setting is ECHO.

Compiler Directives 63

ERRLIST
Format: ERRLIST
NO ERRLIST

ERRLIST causes the Compiler to limit the listing file (LIST or PRINT output)
to error lines (the same listing, in other words, that appears on the
console when ECHO is set). Only erroneous source code lines, lines with
the error numbers and (unless a BRIEF listing is selected) lines giving a
short explanation of the errors are written out to the listing file.

The default setting is NO ERRLIST, that is, a full listing file.

FLAG

Format: FLAG “level”
NO FLAG

FLAG causes the Compiler to produce General Services Administration
(GSA) Compiler validation flags as part of the compilation listing. The flags
are also listed on the console if the ECHO directive is in effect.

The parameter “level” must be one of the following:

LOW Produces validation flags for all features higher th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>