Apple I

Pascal Techmcal

Reference Manual

Pascal Technical Reference Manual |

Acknowledgements

The Apple lll Pascal system is based on UCSD Pascal. “UCSD PASCAL” is a
trademark of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific license only
and is an indication that the associated product or service has met quality
assurance standards prescribed by the University. Any unauthorized use
thereof is contrary to the laws of the State of California.

Contents i

S R R R R e e R oo S R i R

Figures and Tables Vii
Preface ix
1 Overview 1

2 The Pascal Environment

2 Codefiles 5

7 Segments
10 Segment Dictionaries

17 Segment Numbers
18 Interface Text
20 Code Parts

28 Linker Information

~.."iv Pascal Technical Reference Manual

3 P-Machine 35

36 System Memory Use
38 The P-Machine

40 The Evaluation Stack

41 Enhanced Indirect Addressing

42 Registers

43 Extra Code Space

44 The Program Stack and the Data Heap
47 Activation Records

49 Markstacks

4 Assembly-Language Programming 53

54 Calling Assembly Procedures and Functions
55 Passing Parameters to Assembly Procedures
58 Examples of Assembly-Language Procedures
60 Returning From Assembly Procedures

60 Temporary and Semipermanent Storage

60 Accessing Pascal Data Space

5 The P-Machine Instruction Set 63
64 Instruction Formats
65 Operand Formats
65 - Formats of Variables on the Stack
67 Format of Constants in P-Code
68 Conventions and Notation
68 One-Word Loads and Stores
72 Multiple-Word Loads and Stores (Sets and Reals)
72 Byte Array Handling
73 String Handling
75 Record and Array Handling
77 Dynamic Variable Allocation
78 Top-of-Stack Arithmetic
84 Records and Word Array Comparisons

85 - Jumps

Contents v

86 ProcedJre and Function Calls
89 System Support Procedures
89 Byte Array Procedures

91 Compiler Procedures

92 Miscellaneous

6 Programming Techniques 94
96 Apple Il Packing Algorithm
97 Records
99 Arrays
99 Sets
100 Files
100 Pascal Language Techniques
100 Dynamic Text Arrays
102 Segment Procedures
103 Variable Declarations
103 String and Packed Array Constants
103 Case Statements
103 Private Files
104 The IOCHECK and RANGECHECK Compiler Options
104 The Resident Compiler Option
104 Residence Chains
107 Pascal Unit Numbers and SOS Device Names and Numbers
111 Pascal Use of SOS Extended Memory
124 Assembly-Language Techniques
124 Assembly-Language Procedures
124 Macro Directives
137 Equates for SOS Call Numbers
Glossary 139

Index 151

vi Pascal Technical Reference Manual

Contents vii

Flgures and Tables J

SRR LR e

2 Codefiles 5
6 Figure 2-1 A Typical Codefile on Disk
8 Figure 2-2 A Typical Codefile
9 Figure 2-3 Correlation Between Programs and Segments in

Codefiles
13 Figure 2-4 A Segment Dictionary
18 Figure 2-5 Segment Number Assignment
19 Figure 2-6 Construction of Interface Text in a Codefile
21 Figure 2-7 The Code Part of a Code Segment
23 Figure 2-8 A Typical Procedure
24 Figure 2-9 P-Code Procedure Attribute Table
26 Figure 2-10 An Assembly-Language Procedure Attribute

Table
3 The P-Machine 35
37 Figure 3-1 Typical Memory Map of 128K Apple il Using
Apple Pascal
38 Figure 3-2 Typical Memory Map of 256K Apple Il Using
Apple Pascal

39 Figure 3-3 The P-Machine Model

40 Figure 3-4 Relationship of Words and Bytes

44 Figure 3-5 The Program Stack and Heap With Four Active
Procedures

47 Figure 3-6 The Segment Table

48 Figure 3-7 An Activation Record

49 Figure 3-8 The Order of Local Variable Allocation in an
Activation Record

viii Pascal Technical Reference Manual

4 Assembly-Language Programming 53
ASSemoiy-Langtage i fog e g

55 Figure 4-1 Order of Parameters on the Stack
56 Figure 4-2 The Order of Parameters on the Stack Just Prior
to Execution of a Function

Preface ix

B —

! Preface BB

oo . e, N S R PG O s

The Apple lll Pascal Technical Reference Manualis a technical reference for

more

advanced users of the Apple |ll Pascal system. It describes the

architecture and operation of the P-machine, operating system, and I/O of the
Apple lil Pascal system. Before you use the information it contains, you should
be familiar with these manuals:

Apple Ill SOS Reference Manual
Apple lll Pascal: Introduction, Filer, and Editor
Apple lll Pascal Programmer’s Manual, Volumes 1 and 2

Apple Ill Pascal Program Preparation Tools

Many of the concepts explained in this volume are intimately interrelated. You
should first briefly read the entire book and gain an appreciation of how the
concepts are interrelated before attempting to understand any specific
concept in detail. Here is a brief description of the contents:

Chapter 1 is an overview of the Apple lll Pascal system.
Chapter 2 describes the structure and format of codefiles on disk.

Chapter 3 describes the structure and format of code in memory, and
the operation of the P-machine.

Chapter 4 details the use of assembly-language procedures and
functions.

Chapter 5 describes the P-machine instruction set.

x Pascal Technical Reference Manual

e Chapter 6 contains useful assembly-language and Pascal
programming techniques and hints.

A glossary and an index are also included. Any item that appearsin the
Glossary is shown in boldface type at ts first occurrence in the text of this
manual.

You should be familiar with the hexadecimal numbering system. Hexadecimal
numbers in the text and tables of this manual are preceded by a dollar sign ($).
In the text or in a table or illustration, any number that is not preceded by a
dollar sign is a decimal number.

Two special symbols are used in this manual to draw your attention to
particular items of information:

The pointing hand indicates something particularly interesting or useful.
The eye indicates points you need to be cautious about.

Overview

4

1 Overvie

SR

2 The Pascal Environment

2 Pascal Technical Reference Manual

1
Overview

The Pascal Environment

The Apple lll Pascal system is a version of the UCSD Pascal system, a
psuedo-machine-based implementation of Pascal. This means that the
Compiler converts Pascal program text into compact pseudo-code or P-code
to be executed by the pseudo-machine or P-machine. The P-machine is
implemented by the Pascal interpreter—a program written in the native code
of the Apple III's 6502 microprocessor. Every host computer operating under
a version of UCSD Pascal has such an interpreter that makes the host
computer appear, from the viewpoint of a program being executed, to be a P-
machine. The interpreter is contained in the SOS.INTERP file on the

PASCAL1 disk.

The Pascal operating system and various utility programs are also written in
Pascal and run on the same interpreter. The Pascal system runs “on top of”
SOS, the Apple lll operating system. (See the Apple Il SOS Reference
Manual for a detailed explanation of this relationship.)

The Pasca! Compiler, Assembler, and Linker together produce completed
codefiles of Pascal programs. Pascal codefiles are stored on external storage
media, such as disks. The structure of codefiles is explained in Chapter 2.
When a Pascal program is to be executed, the interpreter loads the code of
the user program main segment of the codefile into memory, and then begins
executing the program code, one instruction at a time. As the interpreter finds
that additional segments of the disk codefile are needed in memory for
execution of the program, it loads the necessary segments. The structure and
execution of code in memory is described in Chapter 3. Pascal programs can

Overview 3

¢
contain assembly-language procedures and functions; these are discussed in
Chapter 4. The P-machine instruction set is described in Chapter 5. A group
of useful Pascal and assembly-language programming techniques are
discussed in Chapter 6.

4 Pascal Technical Reference Manual

Codefiles 5

7 Segments
10 Segment Dictionaries

17 Segment Numbers

18 Interface Text

20 Code Parts

22 Procedure Dictionaries

23 Procedures

23 Attribute Tables

24 P-Code Procedure Attribute Tables

25 Assembly-Language Procedure Attribute Tables
27 Relocation Tables

28 Linker Information

30 Linker Information Fields

30 Global Address Linker Information Types

31 Host-Communication Linker Information Types

33 Procedure and Function Linker Information Types

33 Miscellaneous Linker Information Types

e B, S T 8 e AN e e 2 i e e Rt

6 Pascél Technical Reference Manual

2
Codefiles

Codefiles may be (1) linked files composed of segments ready for
execution, (2) library files with units which may be used by programs in other
codefiles, or (3) unlinked files created by the Compiler or Assembler. A
typical disk codefile resulting from the compilation of a program is diagrammed
in Figure 2-1.

high disk addresses

first segment

sixteenth segment

fifteenth segment

third segment

second segment

segment dictionary

low disk addresses

Figure 2-1. A Typical Codefile on Disk

Codefiles 7

€
All codefiles (linked and unlinked) consist of a segment dictionary in block 0

of the codefile, followed by a sequence of one to 16 code segments. The
host program is compiled into one code segment, and each SEGMENT
procedure, SEGMENT function, and unit s translated into another code
segment. The ordering of code segments in the codefile (from low disk
address to high disk address) is determined by the order in which the Compiler
encounters the executable code of each SEGMENT procedure, SEGMENT
function, and unit when compiling a program. This order may be changed by
the Librarian.

Each segment begins on a boundary between disk blocks (a block is 512
contiguous bytes). Each segment may occupy up to 64 blocks.

Segments

A segment is either a code segment or a data segment. Program code is
stored in code segments. Every program consists of at least one code
segment, and some programs consist of many code segments. A code
segment may contain either P-code, native 6502 code, or a combination of
both. Code segments may have three parts: interface text, actual P-code
and/or native code, and Linker information (Figure 2-2). These parts appear
in this order on the disk, although not all types of code segments have all three
parts. For example, interface text is present only in the code segments of
units. Code segments may be either linked or unlinked.

Data segments are areas of memory that are set aside at execution time as
storage space for the local data of intrinsic units. In a disk codefile, data
segments have only an entry in the segment dictionary: they do not occupy
any blocks on the disk since they have no code part, interface text, or Linker
information associated with them.

8 Pascal Technical Reference Manual

high disk addresses
Second
Code)
Segment Block 6 interface text
Block 5 : Linker information
Block 4 code part
Block 3
Block 2 interface text
First (unit segments only)
Code
Segment Block 1
byte 511
Block @ segment dictionary
byte 0

low disk addresses

Figure 2-2. A Typical Codefile

Note that Figure 2-2 is not meant to imply that all code segments are five
blocks long; the code part of a segment can contain up to 64 blocks.

Whenever a complete program codefile is produced by the Compiler (and
Assembler and Linker, if necessary), the following occur:

The user program or unit results in one code segment in the codefile.
This includes the user program’s non-SEGMENT procedures and
functions (MULT2 and STOR in Figure 2-3), and the user program
body itself (MAIN in Figure 2-3).

Each Pascal SEGMENT procedure or function results in a another
code segment in the codefile (BYFOUR and DIVID below). .

Each regular unit that the program USES is linked with the codefile
and results in a code segment in the codefile (REGUNIT below). Each
intrinsic unit that the program USES does not produce additional code

[

o o B L T A

Codefiles 9

segments in the program’s codefile. Intrinsic units are held as
segments in program libraries, shared libraries, and the
SYSTEM.LIBRARY file, and accessed by the program at execution

time (MAINLIBIU below).

Source text files

Segments in codefile
after linking

PROGRAM MAIN;
USES MAINLIBIU, REGUNIT;
SEGMENT FUNCTION DIVID;
BEGIN

END;
SEGMENT PROCEDURE BYFOUR,;
BEGIN

END;

REGUNIT code segment

MAIN “outer” code segment
MULT2 function

STOR procedure

FUNCTION MULT2;
BEGIN

END;

BYFOUR code segment

PROCEDURE STOR,;
BEGIN

END;

DIVID code segment

BEGIN

END.

UNIT REGUNIT;
BEGIN

.

END.

UNIT MAINLIBIU; INTRINSIC
CODE 40 DATA 41,
BEGIN

.

END.

Segment in Library

MAINLIBIU code segment

Figure 2-3. Correlation Between Programs and Segments in Codefiles

10 Pascal Technical Reference Manual

3
Segments are not nested in codefiles as they are in programs. Instead every
segment is a separate contiguous area of code and does not contain any other
segments. For example, if a SEGMENT procedure contains another
SEGMENT procedure, the compiled result comprises two distinct code
segments, even though they are nested lexically in the source program.

Segmenting a program does not change the computation it performs. When a
SEGMENT procedure, SEGMENT function, or intrinsic unit is called during the
execution of a program, the interpreter checks to see if that segment is
already in memory due to a previous (and still active) invocation of the
segment. If itis, control is transferred and execution proceeds; if not, the
appropriate code segment is loaded into memory from the disk codefile before
the transfer of control takes place. When no more active invocations of a
segment exist, its code is removed from memory.

The following sections describe the portions of a code segment in greater
detail. First the segment dictionary is described. Then the parts of a code
segment are presented in the order in which they may occur in a codefile: the
interface text, the code part, and finally the Linker information. The code part
description is divided into sections describing the similarities and differences
between the code parts of P-code and assembly-language procedures.

Segment Dictionaries

Every codefile (including library files) has a segment dictionary in biock 0 that
contains information needed by the Pascal system to load and execute the
segments in that codefile. A segment dictionary has 16 slots, each of which
either contains information about one segment, or is empty. Each non-empty
slotincludes the segment’s name, kind, size (in bytes), and location in the
codefile. The location of a code segment is given as the block number of the
first block in the code part (blocks in a codefile are numbered sequentially from
zero, with block 0 as the segment dictionary). The location of a data segment
is given as zero.

The information that describes each segment is contained in five different
arrays within the segment dictionary. All information describing a segmentis
retrieved by selecting corresponding elements from each of these arrays.

Codefiles 11

Since a segment dictio‘nary has 16 slots, numbered 0 through 15, one
codefile can contain at most 16 segments. Intrinsic units used by a program
do not require entries in the segment dictionary of the program’s codefile,
because intrinsic unit code segments are in a library file, and appear in the
library file’s segment dictionary. Therefore, a program can have a maximum of
16 segments, not counting segments from intrinsic units. Counting intrinsic
units, the maximum number of segments is limited by the total number of
segment numbers in the system (64). However, the system reserves eleven
segment numbers (0, 2 through 6, and 59 through 63) for its own use. The
remaining 53 segments may appear in a program codefile, a program library
file, a SYSTEM.LIBRARY file, or library files specified in a library name file.
Each of these codefiles can contain a maximum of 16 segments.

The following Pascal-like record declaration represents a segment dictionary:

RECORD
DISKINFO: ARRAY[®..15] OF
RECORD
CODEADDR: INTEGER; {location of code part}
CODELENG: INTEGER {lLength of code part}
END;

SEGNAME: ARRAY[0..15])] OF PACKED ARRAY[®..7] OF
CHAR; {segment name!

SEGKIND: ARRAY [0..15] OF {type of segment)

(LINKED, {fully executable segment}
HOSTSEG, {user program code segment)
SEGPROC, {unused)

UNITSEG, {compiled regular unit}
SEPRTSEG, {separate procedures and

functions}
UNLINKED-INTRINS, {unlinked intrinsic unit}
LINKED-INTRINS, {linked intrinsic unit}
DATASEG); {data segment}

TEXTADDR: ARRAY[®..15] OF INTEGER; {address of the
first block of interface text, if any}

SEGINFO: PACKED ARRAY[®..15] OF PACKED RECORD

SEGNUM: ©0..255; {segment number!
MTYPE: ©0..15; {machine type}
UNUSED: ©..1; {unused}
VERSION: ©0..7 {version number}

END;

12 Pascal Technical Reference Manual

3
INTRINS-SEGS: SET OF 0..63; {intrinsic segment
numbers needed for

execution}

INT-NAM-CHECKSUM: PACKED ARRAY [0..63] OF
0..255; {checksum}

FILLER: PACKED ARRAY [1..72] OF 0.255; {72 unused
bytes filled with
zeros)

COMMENT: PACKED ARRAY [0..79] OF CHAR {comment}

END;

The following diagram (Figure 2-4) indicates the structure of a segment
dictionary:

G R - A N B T)

Codefiles 13

low disk addresses
high byte : low byte
CODEADDR (block number) word O
(segment 0)
DISK INFO CODELENG (in bytes) 1

(segments 1-15)

1st character : Othcharacter 32

SEGNAME 3rd character . 2ndcharacter 33
(seg Q)

5th character : 4thcharacter 34

7th character . 6thcharacter 35

. (segments 1-15)

SEGKIND : (segment0) 96
SEGKIND
(segments 1-15)
TEXTADDR . (segmentQ) 112
TEXTADDR
(segments 1-15)
VERSION | | MTYPE | SEGNUM (seg®) 128
SEGINFO

bit:15 14 13121110 9 8 7 6 6§ 4 3 2 1 0.

(segments 1-15)

INTRINS-SEGS bit: 15 14 13 12 11 10 9 8

76 5§ 4 3 2 10 144
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 145
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 146
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 147
CHECKSUM (unit 1) | CHECKSUM (unit 0)
INT-NAM-
CHKSUM
178
CHECKSUM (unit 63) | CHECKSUM (unit62) 178
FILLER ’ 180
1stcharacter . Othcharacter 216
COMMENT
79th character . 78thcharacter 255
high disk addresses

Figure 2-4. A Segment Dictionary

e B R B e B e e D A ey

14 Pascal Technical Reference Manual

¢

Note that the diagram in Figure 2-4 shows lower addresses at the top (in
contrast to others in this manual) to match the structure of the Pascal-like
segment dictionary declaration.

A segment dictionary is composed of five 16-element arrays (one element for
each segment slot in the segment dictionary of a codefile), information on the
intrinsic segments used by the codefile, and a comment.

Each element in the DISKINFO array consists of two words that describe the
length and location of the segment within the codefile. For code segments,
the CODEADDR field contains the block number of the start of the code part,
and the CODELENG field contains the number of bytes in the code part of the
segment. For data segments, the CODEADDR field is zero, and the
CODELENG field contains the number of bytes to be allocated for data at
execution time (the length of the data segment). Unused slots have their
CODEADDR and CODELENG fields set to zero (CODELENG =0 defines an
empty slot).

Each element of the SEGNAME array is an eight-character array which
contains the first eight characters of the user program, unit, SEGMENT
procedure, SEGMENT function, or assembly-language procedure name that
was translated into the corresponding segment. If the name is shorter than
eight characters, itis padded on the right by spaces; if the name is longer than
eight characters, itis truncated to the first eight characters. Unused segment
slots have SEGNAME fields filled with eight ASCIl space characters.

The SEGKIND array describes the type of segment. The possible values are:
0: LINKED. A fully-executable segment. Either all references to
regular or intrinsic units have been resolved by the Linker, or none

were present.

1: HOSTSEG. The mainsegmentof auser program with
unresolved external references.

2: SEGPROC. ASEGMENT procedure or function. This type is
currently not used.

3: UNITSEG. A compiled regular (as opposed to intrinsic) unit.

R e e e S T e T e

Codefiles 15

¢
4. SEPRTSEG. A separately assembled (set of) procedures or
functions, including EXTERNAL functions and procedures, and
mixed segments of linked Pascal and assembly-language code.
Assembly-language codefiles are always of this type.

5: UNLINKED-INTRINS. Anintrinsic unit containing unresolved calls
~ to assembly-language procedures or functions.

6: LINKED-INTRINS. Anintrinsic unit properly linked with its called
procedures and functions.

7: DATASEG. A datasegmentofan intrinsic unit. The segment
dictionary entry specifies the amount of data space (in bytes) to
allocate.

The TEXTADDR array of integers contains pointers to the block number of the
start of the interface text of each regular or intrinsic unit. The last block number
of the interface text can be calculated by subtracting 1 from the value in the
corresponding CODEADDR field. Interface text is described in detail below.
Only unit segments have interface text; the TEXTADDR field is zero for all
other types of segments.

The SEGINFO array contains one word of additional information about each
segment. Each word is composed of four fields:

Bits @ through 7 (the low-order byte) of each word specify the segment
number (SEGNUM,). This is the position the code segment will occupy in
the segment table at execution time. The segment table is 64 entries
long, hence valid numbers for the SEGNUM field are 0..63. (Segment
tables are described-in Chapter 3).

Bits 8 through 11 of the second byte in the SEGINFO word specify the
machine type (MTYPE) of the code in the segment. The machine types
are:

@: Unidentified code, perhaps from another Compiler.

1: P-code, most significant byte first.

e Rt e B e S e NG T e e

16 Pascal Technical Reference Manual

¢

2: P-code, least significant byte first (a stream of packed ASCII
characters fills the low byte of a word first, then the high byte).
This is the kind of P-code used by the Apple .

3through 9: Assembled native code, produced from assembly-
language text. Machine type 7 identifies native code for the
Apple lII's 6502 microprocessor.

Bit 12 of the SEGINFO word is unused.

Bits 13 through 15 of the SEGINFO word contain the version number of
the system. The current version number is 3, indicating Apple lll Pascal.

The SEGINFO array is the last of the five arrays that contain 16 elements, one
element for each slot. The remainder of the segment dictionary contains
information pertinent to the execution of the entire codefile.

The INTRINS-SEGS field consists of four words (64 bits). These four words
specify which intrinsic units are needed to execute the codefile. Each intrinsic
unitin a program library file, SYSTEM.LIBRARY file, and library file specified in
alibrary name file, is identified by a segment number (or two segment numbers
if the intrinsic unit has both a code and data segment). Each one of the 64 bits
in these words corresponds to one of the 64 possible intrinsic segment
numbers. If the nth bitis set, the codefile needs the intrinsic unit whose
segment number is nin order to execute. Bits corresponding to the segment
numbers of unused intrinsic units are zeroed.

Some intrinsic units are part of the Pascal operating system. While their use is
indicated by set bits in the INTRINS-SEGS field, they are not loaded from
either the SYSTEM.LIBRARY or the program library, but are present at
execution time. These special segments are numbered 59 through 63.

The INT-NAM-CHECKSUM array contains 64 fields of 8-bit checksums of the
names of the intrinsic units needed to execute the codefile. Each field
corresponds to one of the 64 possible intrinsic segment numbers. These
checksums are used by the Pascal operating system to ensure that two
differently-named segments with identical segment numbers are not
confused. The checksum is calculated by shifting the characters of the unit
name to uppercase and summing the resulting ASCII values of the characters
of the unitname MOD 256. The name is padded with spaces on theright if itis

Codefiles 17

¢
shorter than eight characters; itis truncated to eight characters if itis longer
than eight characters. Padding spaces are included in the checksums. Words
corresponding to the segment numbers of unused intrinsic segments are filled
with blanks.

The FILLER array contains 72 unused bytes.

The COMMENT array contains text provided by a Compiler COMMENT
option or when the Librarian is used. It starts in word 216 of the segment
dictionary.

Segment Numbers

At execution time, every segment has a segment number from @ to 63, and no
two segments in the program can have the same number. Segment numbers
are assigned as follows (Figure 2-5):

e the user program itself is segment 1.

e the segments used by the Pascal operating system are 0, 2 through
6, and 59 through 63. These numbers are never assigned to
segments of the user program.

* the segment number of an intrinsic unit segment is determined by the
unit’s heading when the unitis compiled. (These numbers can be
found by using the LIBMAP utility program to examine the segment
dictionary of the library to which the unit belongs.

e the segment numbers of regular unit segments and of SEGMENT
procedures and functions within the program are automatically
assigned by the system as the program is compiled and linked. The
segment numbers of regular units and of SEGMENT procedures and
functions begin at 7 and ascend. Note that after a regular unit is linked
with a program, it may not have the same segment number that was
shown for itin the library’s segment dictionary (when examined with
the LIBMAP utility), because the Linker may reassign segment
numbers of regular units.

18 Pascal Technical Reference Manual

¢

Segment
Number Assignment

(1) Pascal operating system

1 user program

2...6 Pascal operating system

7...29 units, SEGMENT procedures and functions
30 PASCALIO unit
31 LONGINTIO unit
32...58 units, SEGMENT procedures and functions
59...63 Pascal operating system

Figure 2-5. Segment Number Assignment

Normally, only when writing an intrinsic unit do you need to specify segment
numbers; this is explained in Chapter 14 of the Apple lll Pascal Programmer’s
Manual. The choice must avoid the Pascal system segment numbers 0
through 6 and 59 through 63, and numbers assigned to any other intrinsic unit
which may be used in the same program as the unit being written. In addition,
the standard library units PASCALIO and LONGINTIO occupy segment
numbers 30 and 31. Therefore, if you perform I/O of real numbers, long
integer operations, or use the SEEK procedure, you cannot assign your own
units segment numbers 30 and 31.

@ The PASCALIO and LONGINTIO standard library units are known to the
Compiler and do not require a USES declaration.

Intrinsic unit segment numbers must also avoid conflict with numbers which
may be assigned automatically to regular units and SEGMENT procedures and
functions. In other words, use high segment numbers for intrinsic units.
However, when unavoidable conflicts arise, the NEXTSEG Compiler option
described in the Apple Ill Pascal Programmer’s Manual can be used to set the
segment number to another value. (Segment numbers are discussed in further
detail in conjunction with the section The Segment Table in Chapter 3.)

Interface Text

Code segments of units may have interface text before their code part; host
segments, SEGMENT functions and procedures, and EXTERNAL
procedures and functions never have interface text. The interface text
contains the ASCII text of the INTERFACE section in the source text of a unit.
The construction of an interface text of a segment from its source text (by the
Compiler) is shown in Figure 2-6.

Codefiles 19

¢

Source Textfile Interface Text in Codefile
page n
Biecn : USES APPLESTUF block. m
USES REALMODES
garbage
blockn+1 | ___ . | - | block m+1
INTERFACE
USES APPLESTUF
paae i1 USES REALMODES |
block n-+2 block m+2
ockn USES TRANSCEND USES TRANSCEND ogkm
CONSTANT PI=3. CONSTANT PI=3.
CONSTANT E=2.7 CONSTANT E=2.7
TYPE ARRAYSIZE TYPE ARRAYSIZE
VAR INRECORD:| VAR INRECORD:|
[VARCURRENT:CH |— L~ VAR CURRENT:CH |—
block n+ lock m+3
ockn+3 | BROCEDURE A: PROCEDURE A: block m
PROCEDURE B PROCEDURE B:
PROCEDURE C- PROCEDURE C:
FUNCTION D (IN FUNCTION D (IN
pagen+2 | FUNCTIONE (AS FUNCTION E (AS
lock n+4 |
blockn FUNCTIONF (PA FUNCTION F (PA pRckmta
IMPLEMENTATION IMPLEMENTATION
PROCEDURE A; unit info
blockn+5 B B

Figure 2-6. Construction of Interface Text in a Codefile

The Pascal Compiler reads source text and produces interface text in two-
block pages (1024 bytes each). Interface text always starts on a page
boundary and follows all of the conventions of a textfile, with the exception
that the last page of the interface text may be either 1 or 2 blocks long. The
interface text is identical to the source text, except for the first and last pages.
The information in the first page of the source text is truncated, such that the
first character in the output page is the character following the INTERFACE
keyword in the original source text (“U” in Figure 2-6). This may leave a
considerable amount of unused space in the first page. The last page of the

20 Pascal Technical Reference Manuall

source text is truncated after the IMPLEMENTATION keyword; it is possible
that only one block of this page may be produced if the IMPLEMENTATION
keyword occurs in the first block of the page. (IMPLEMENTATION is explained
in the Apple Ill Pascal Programmer’s Manual). Valid data in each page of a
textfile end with a CR (ASCII 13) followed by at least one NULL (ASCII 0).

The ten characters immediately following the IMPLEMENTATION keyword
contain special unit info. All ten characters are ASCIl spaces, except foran £
in the ninth position, required by the Pascal Compiler and Librarian programs
to terminate the interface text. A Pmay occur, instead of a space, in the
second of the ten character positions to signify to the Pascal Compiler that the
unit requires the PASCALIO standard library unit. The fourth position will be
occupied by an L if the unit requires the LONGINTIO standard library unit.
These items—IMPLEMENTATION, P, L, and E—are all considered tokens by
the Compiler; thus, their order is significant, but their spacing and case are
not.

Interface text is not stripped of non-printing characters or comments. The
comments are not necessary for execution, but leaving the comments in the
interface text can lead to more complete internal program documentation at
the expense of increased codefile length. Note that the interface text of unit
segments is used only during compilation. Therefore, this text can be
removed from completed codefiles that will only be executed. The effectis a
reduction in codefile size.

The TEXTADDR array of the segment dictionary contains pointers to the
starting address of the interface text for each segment. The pointers specify
block numbers, relative to the start of the codefile. The field is zero for
segments that are not unit code segments, and unit segments that do not have
an interface part.

Code Parts

The code part of a code segment consists of a group of procedures, together
with descriptive information about the procedures, called the procedure
dictionary. A code segment may contain up to 160 procedures, no more than
149 of which can be P-code procedures (the remainder must be assembly-
language procedures). Figure 2-7 is a diagram of the code part of a code
segment. Each code part contains the code for the highest level procedure in

R e

Codefiles 21

: ’
the segment, as well as the code for each of the non-SEGMENT procedures

and functions within the segment. The code of the highest level procedure,
which is generated last, appears highest in the code part.

high disk or memory addresses

high byte low byte .
number of procedures segment number
in this segment of this segment
pointer to procedure #1
pointer to procedure #2 Procedure
Dictionary
pointer to procedure #n CODELENG
bytes
P .
attribute table procedure #1
code (highest procedure)

> attribute table

procedure #n
code (lowest procedure)
> attribute table
procedure #2
code

!
low disk or memory addresses

CODEADDR
block boundary

Figure 2-7. The Code Part of a Code Segment

.

22 Pascal Technical Reference Manual

(3
Each procedure in a code part is assigned a procedure number startingat 1,

for the highest level procedure or SEGMENT procedure, and ranging as high
as 149. Allreferences to a procedure are made via its segment number and
procedure number. Translation from a procedure number to the location of the
procedure code in the code segment is accomplished via the procedure
dictionary.

Below the procedure dictionary is the code for the various procedures in the
segment. The procedure dictionary grows downward toward lower disk
addresses; the code part starts at the first byte of the block specified in the
CODEADDR field of the segment dictionary and grows upward toward higher
addresses.

Procedure Dictionaries

The position of the low-order byte of the highest word in a segment’s
procedure dictionary can be calculated as:

CODEADDR * 512 + CODELENG - 2

This highest word in a procedure dictionary contains the segment number in
its low-order (even) byte, and the number of procedures in the segment in its
high-order (odd) byte. Below this word is a sequence of words that contain
self-relative pointers to the top (high address) of the code of each procedure in
the segment (Figure 2-7). (A self-relative pointer contains the absolute
distance, in bytes, between the low-order byte of the pointer and the low-
order byte of the word to'which it points. To find the address referred to by a
self-relative pointer, subtract the pointer from the address of its location to find
the byte pointed to.)

A procedure’s number is an index into the procedure dictionary: the nth word
in the dictionary (counting downward from higher addresses) contains a
pointer to the top (high address) of the code of procedure n. As zerois nota
valid procedure number, the zeroth word of the dictionary is used to store the
segment number of the code segment, and the number of procedures in that
code segment (as described above).

Codefiles 23

Procedures

Each procedure consists of two parts: the procedure code itself (in the lower
portion of the procedure growing up toward higher addresses), and an
attribute table of the procedure. Some procedures have a third part called the
jump table located at the base of the attribute table. Figure 2-8 is a diagram of
a typical procedure.

high disk or memory addresses

high byte low byte
[}
attribute table
(with optional jump table)

!

procedure

code
[

low disk or memory addresses
Figure 2-8. A Typical Procedure
ATTRIBUTE TABLES

The attribute table of a procedure provides information needed to execute
the procedure. Procedure attribute tables are pointed to by entries in the
procedure dictionary of each segment. '

The Compiler produces P-code by compiling source text, and the Assembler
produces native code by assembling assembly language. Procedures may
contain solely P-code or native code, but not a mixture of both. Itis possible to
produce segments with procedures of both code types using the Linker. In
this case the MTYPE field in the segment dictionary is set to the value for
assembled native code (7), because the code for that segment is then
machine-specific. The interpreter is able to determine the type of code ina
particular procedure via information contained in the procedure’s attribute
table. The format of the attribute table for an assembly-language procedure is
very different from that for a P-code procedure. These two formats are
described in the following sections.

R

G e BT

24 Pascal Technical Reference Manual

¢
P-Code Procedure Attribute Tables

The format of a P-code procedure attribute table is illustrated in Figure 2-9.

high disk or memory addresses

high byte low byte
LEXLEVEL PROCEDURE NUMBER
ENTERIC
EXITIC
e

PARAMETER SIZE (in bytes)

DATA SIZE (in bytes)

optional jump table

vy

self-relative
pointers to code

low disk or memory addresses

Figure 2-9. P-Code Procedure Attribute Table

The fields of a P-code procedure attribute table are:

PROCEDURE NUMBER: This field contains the procedure number.
The PROCEDURE NUMBER field is the low-order (even) byte of
the highest word in the attribute table.

LEX LEVEL: This field specifies the depth of lexical nesting of the
procedure. The lexical level of the Pascal operating systemis
—1, the lexical level of a user program is @, and that of the first
nested procedure is 1, and so forth. (See the Apple Il Pascal
Programmer’s Manual, Volume 2). The LEXLEVEL fieldis the
high-order (odd) byte of the highest word in the attribute table.

ENTER IC: This field contains a self-relative pointer (again, a positive
number, pointing back) to the first P-code instruction to be
executed in the procedure.

Codefiles 25

R ,
EXITIC: This field contains a self-relative pointer to the beginning of the

sequence of P-code instructions that must be executed to
terminate the procedure properly.

PARAMETER SIZE: This field specifies the number of bytes of
parameters passed to a procedure from its calling procedure. If the
procedure is a function, this number includes the number of bytes
to be reserved for the returned value.

DATA SIZE: This field specifies the number of bytes to be reserved for
local variables of the procedure.

Atthe base of the attribute table there may be a section called the jump table.
Jump tables are used by the P-machine to determine the locations specified
by jump instructions. Its entries are self-relative pointers to addresses within
the procedure code. During execution, the JTAB, XJTAB psuedo-register
points to the PROCEDURE NUMBER field of the attribute table of the currently
executing procedure. (See Chapter 3 for an explanation of the pseudo-
registers.)

Alljump instructions include a specified jump offset (n). In the case of short
forward jumps, the jump table is ignored, and execution jumps by n bytes. In
the case of backward or long forward jumps, the jump offset specifies a self-
relative pointer in the jump table located n bytes below the location pointed to
by the JTAB register. Execution jumps to the byte address pointed to by the
self-relative pointer.

Assembly-Language Procedure Attribute Tables
The format of an attribute table of an assembly-language procedure is very

different from that of a P-code procedure attribute table. Itis illustrated in
Figure 2-10. !

26 vPascaI Technical Reference Manual

high disk or memory addresses

high byte low byte
RELOCSEG PROCEDURE
NUMBER NUMBER (=0)
ENTERIC

number of pointers (n) l
base- n self- pointer
relative relative to start of
relocation table pointers procedure code

number of pointers (m)
segment- m self-
relative relative
relocation table pointers

number of pointers (p)
procedure- p self-
relative relative
relocation table pointers

number of pointers (q)
interpreter- q self-
relative relative
relocation table pointers

low disk or memory addresses

Figure 2-10. An Assembly-Language Procedure Attribute Table

The highest word in the attribute table of an assembly-language procedure
always has a zero in its PROCEDURE NUMBER field. When the interpreter
encounters a zero in the PROCEDURE NUMBER field as it loads the segment,
it realizes it must “fix up” references in the procedure code according to
information contained in the rest of the attribute table. The RELOCSEG
NUMBER field contains either a zero or a positive number (the significance of
which is explained below in conjunction with base-relative relocation). In the
case of intrinsic units without data segments, the number placed in this fieldis 1.
The second highest word of the attribute table is, as in P-code procedure
attribute tables, the ENTER IC field—a self-relative pointer to the first

T i LR

Codefiles 27 ‘

¢
executable instruction of the procedure. Following this are four relocation
tables used by the interpreter. From high address to low address, they are
base-relative, segment-relative, procedure-relative, and interpreter-relative
relocation tables.

Relocation Tables

Arelocation table is a sequence of records that contain information
necessary to relocate any relocatable addresses used by code within the
procedure. Relocatable addresses are relocated whenever the segment
containing the procedure is loaded into memory. Only native code procedures
use relocatable addresses; procedures that contain P-code are completely
position-independent, and no relocation list is needed.

The format of all four relocation tables is the same: the highest word of each
table specifies the number of entries (possibly zero) that follow (at lower disk
addresses) in the table. The remainder of each table comprises that number of
one-word self-relative pointers to locations in the procedure code which must
be “fixed”. The locations are fixed by the addition of the appropriate relative
relocation constant known to the interpreter when the segment is loaded.

Addresses pointed to by a base-relative relocation table are relocated
relative to the address contained in the P-machine’s BASE, XBASE psuedo-
register if the RELOCSEG NUMBER field of the procedure’s attribute table is
zero. The BASE, XBASE register is a pointer to the activation record of the
most recently invoked base procedure (lexical level @ or —1). Global (lexical
level) variables are accessed by indexing from the value of the BASE
register. If the RELOCSEG NUMBER field is non-zero, the relocations will be
relative to the lowest address of the segment whose segment number is
contained in the RELOCSEG NUMBER field. This is used by assembly
procedures that are linked with intrinsic units to access the intrinsic unit’s data
segment. .PUBLIC and .PRIVATE are the Assembler directives that generate
base-relative relocation fields.

Addresses pointed to by a segment-relative relocation table are relocated
relative to the lowest address of the segment. The value of the address of the
lowest byte in the segment is added to each of the addresses pointed to in the
relocation table. .REF and .DEF are the Assembler directives that generate
segment-relative relocation fields.

28 Pascal Technical Reference Manual

¢
Addresses pointed to by a procedure-relative relocation table are relocated
relative to the lowest address of the procedure. The value of the address of
the lowest byte in the procedure is added to each of the addresses pointed to
in the relocation table.

The interpreter-relative relocation fields point to relocatable addresses that
access Pascal interpreter procedures or variables. Addresses pointed to by
an interpreter-relative relocation table are relocated relative to a nine-word
table in the interpreter. See the explanation of the .INTERP directive in the
Apple lll Pascal Program Preparation Tools manual.

Linker Information

Following the code part of a segment there may be Linker information. Linker
information is the portion of a code segment that enables the Linker to resolve
references of variables, identifiers, and constants between separately
compiled or assembled code. Segments produced by an Assembler always
have Linker information. Segments produced by the Compiler have Linker
information only if they are segments with EXTERNAL procedures or units, or
user programs that USE regular units.

The starting location of Linker information is not included in the segment
dictionary as was the case with the starting location of the interface text and
code parts; it must be inferred. Linker information starts on the block
boundary following the last block of code for a segment, and grows toward
higher addresses. The block number of the first record of Linker information
can be calculated as:

CODEADDR + ((CODELENG + 511) DIV 512)

where CODEADDR and CODELENG are the values of fields in the segment
dictionary.

Linker information is stored as a sequence of records—one record for each
indentifier, constant, or variable which is referenced but not defined in the
source, as well as records for items defined to be accessible from other
procedures.

The following Pascal-like declaration describes one record within Linker
information:

Codefiles 29

¢

LITYPES = (EOFMARK, UNITREF, GLOBREF, PUBLREF,
PRIVREF, CONSTREF, GLOBDEF, PUBLDEF, CONSTDEF,
EXTPROC, EXTFUNC, SEPPROC, SEPFUNC, SEPPREF,
SEPFREF); {Linker information types}

OPFORMAT = (WORD,BYTE,BIG); {label size}
LCRANGE: 1..MAXLC; {currently MAXINT (32767)}
PROCRANGE: 1..MAXPROC; f{currently 160}
LIENTRY = RECORD

NAME: PACKED ARRAY[0..7] OF CHAR;
{name of unit, procedure, or variable
symbol }

CASE LITYPE: LITYPES OF

GLOBREF, {reference to a global address!}
PUBLREF, {reference to a host program
variable}
PRIVREF, {reference to private variables in a
host activation record}
CONSTREF, {reference to a global constant}
UNITREF, {reference to a regular unit}
SEPPREF, {unused}
SEPFREF: {unused}
(FORMAT: OPFORMAT;
NREFS: INTEGER;
NWORDS: LCRANGE;
POINTERLIST: ARRAY [1..C((NREFS-1) DIV 8)+1)
OF ARRAY [0..7] OF INTEGER);
{segment-relative pointers}

GLOBDEF: {global address definition}
(HOMEPROC: PROCRANGE;
ICOFFSET: LCRANGE);

PUBLDEF: {host program variable definition}
(BASEOFFSET: LCRANGE) ;

CONSTDEF: {host program constant definition}
(CONSTVAL: INTEGER);

EXTPROC, {EXTERNAL procedure declaration}
EXTFUNC, {EXTERNAL function declaration}
SEPPROC, {separate assembly procedure}
SEPFUNC: {separate assembly function)
(SRCPROC: PROCRANGE;
NPARAMS: INTEGER);

EOFMARK: {end-of-file mark}
(NEXTBASELC: LCRANGE;
PRIVDATASEG: SEGNUMBER);

END;
END;

30 Pascal Technical Reference Manual

¢
Linker Information Fields

The Linker information types GLOBREF, PUBLREF, PRIVREF, CONSTREF,
and UNITREF, all have similar fields. The FORMAT field may be BIG, BYTE or
WORD, and specifies the format of the P-machine operand that refers to the
entity given by the NAME array (see Chapter 5, Instruction Formats for a
description of these formats). The NREFS field specifies the number of
references to this entity in the code segment; there will be an equivalent
number of entries in the POINTERLIST array. The NWORDS field specifies the
amount of space, in words, to be allocated for PRIVREF Linker information
types; the NWORDS field is ignored for all other Linker information types.

The POINTERLIST array is a list of pointers into the code segment, each of
which points to a location within the code segment where there is areference
to the entity specified by the NAME array. The locations are given as absolute
byte addresses within the code segment. The POINTERLIST array is
composed of records of eight words, but only the first (NREFS—1) MOD 8) +1
words of the last record are used. All unused words in each array are

zeroed.

Global Address Linker Information Types

Separate assembly-language procedures and functions can share data
structures and subroutines by means of the .DEF, .REF, .PROC, and .FUNC
Assembler directives. These directives cause the Assembler to generate
information that the Linker uses to resolve external references between
separate procedures and functions in the same assembly or between
procedures and functions assembled separately. Each entity referenced by a
.REF Assembler directive results in a GLOBREF Linker information type entry
that designates fields to be updated by the Linker. Each entity defined by a
.DEF, .PROC, or .FUNC Assembler directive results in a GLOBDEF Linker
information type entry that provides the Linker with the values to fix the .REF
references.

The GLOBREF Linker information type is used to link addresses between
assembled procedures. The FORMAT field is always WORD. The NREFS field
specifies the number of pointers in the POINTERLIST array (each of which
points to a different reference).

Codefiles 31

f

The GLOBDEF Linker information type defines the location of an entity in an
assembled procedure. The HOMEPROC field contains the number of the
procedure that defines the entity specified by the NAME array. The ICOFFSET
field specifies the location within the named procedure where the entity is
defined. The location is given as a byte offset, relative to the start of the
procedure. There is no POINTERLIST array associated with a GLOBDEF
Linker information type.

As a program s linked, the Linker picks up each address defined explicitly by
.DEF and impilicitly by .PROC and .FUNC, and fixes up each reference toitin
other procedures. The Linker must insert the final segment offset of the
address in all words pointed to by the POINTERLIST array.

Host-Communication Linker Information Types

The Assembler directives .CONST, .PUBLIC, and .PRIVATE enable an
assembly-language procedure or function to share addresses and data space
with the host program that calls it. Data values and locations are referred to by
name in both the host program and the called procedure or function. Each
entity referenced by a .CONST, .PUBLIC, or .PRIVATE Assembler directive
results ina CONSTREF, PUBLREF, or PRIVREF Linker information type entry,
respectively, that designates fields to be fixed up by the Linker. Each entity
defined by a CONSTANT or VARIABLE declaration results ina CONSTDEF or
PUBLDEF Linker information type entry, respectively, that provides the Linker
with the values to fix references. As a program is linked, the Linker picks up
each entity defined by .CONST, .PUBLIC, and .PRIVATE, and fixes up each
reference to itin other procedures. The Linker must insert the final segment
offset of the address in all words pointed to by the POINTERLIST array.

The PUBLREF Linker information type is used to link global variables in the
activation record of a host program to assembly-language procedures or
regular units (activation records are explained in the next chapter). The
PUBLREF Linker information type results from a .PUBLIC directive in an
assembly-language procedure or from use of variables declared in the
INTERFACE of regular units. The NAME array specifies a variable that is
referenced in the segment, and defined as a global variable in the host
program. The FORMAT field is WORD for assembly-language procedures,
and BIG for regular units. The NREFS field specifies the number of pointers in
the POINTERLIST array (each of which points to a different reference). The
Linker must add the offset of the referenced identifier to all words pointed to
by the POINTERLIST array. :

32 Pascal Technical Reference Ménual

¢
The PUBLDEF Linker information type declares a global variable in the host
program. A PUBLDEF Linker information type is generated for each global
variable in the host program that appears in a VAR declaration. The
BASEOQOFFSET field specifies the location of the variable specified by the
NAME array within the activation record of the host program that contains it.
The location is given as a word offset, relative to the start of the data area.
There is no POINTERLIST array associated with a PUBLDEF Linker
information type.

The CONSTREF Linker information type is used to link constants in an
assembled procedure to a global constant in the host program. The
CONSTREF Linker information type results from a .CONST directive in an
assembly-language procedure. The NAME array specifies a constant thatis
referenced in the segment, and defined as a global constant in the host
program. The FORMAT field is WORD. The NREFS field specifies the number
" of pointers in the POINTERLIST array (each of which points to a different
reference). The Linker must place the constant value into all locations pointed
to by the POINTERLIST array.

The CONSTDEF Linker information type declares a global constant in the host
program. A CONSTDEF Linker information type is generated for each global
constant in the host program that appears ina CONSTANT declaration. The
CONSTVAL field contains the value of the declared constant. There is no
POINTERLIST array associated with a CONSTDEF Linker information type.

The PRIVREF Linker information type is used to indicate a reference to
variables of an assembly-language procedure or regular unit, to be storedin
the host program’s global data area, and yet be inaccessible to the host
program. The PRIVREF Linker information type results either from a .PRIVATE
directive in assembly language, or by the use of global variables declared in
the IMPLEMENTATION of regular units. The FORMAT field is always WORD.
The NWORDS field specifies the amount of space, in words, to be allocated.
The NREFS field specifies the number of pointers in the POINTERLIST array.
The Linker must add the offset of the start of the allocated area within the
global data area to all words pointed to by the POINTERLIST array.

The UNITREF Linker information type is used to link references between
regular units. The NAME array specifies the name of a regular unit that is

Codefiles 33

t

referenced within another regular unit. The FORMAT field is always BYTE. The
NREFS field specifies the number of pointers in the POINTERLIST array (each
of which points to a different reference). The Linker mustinsert the final
segment number of the references unit in all locations pointed to by entries in
the POINTERLIST array.

Procedure and Function Linker Information Types

Separate assembly-language procedures and functions are referenced via
EXTERNAL declarations in the calling segment. The Linker information types
EXTPROC, EXTFUNC, SEPPROC, and SEPFUNC are used to link
procedures and functions between segments. Each .PROC or .FUNC entity
referenced by a PROCEDURE...EXTERNAL declaration results in an
EXTPROC or EXTFUNC Linker information type entry, respectively, that
designates fields to be fixed up by the Linker. All procedure or function code
that begins with .PROC or .FUNC results in a SEPPROC or SEPFUNC Linker
information type entry, respectively, that provides the Linker with the values to
fix references. As each procedure or function is linked, the Linker picks up
each procedure number and parameter size declared in the separate
procedure or function, and transfers it to each external reference of that same
procedure or function.

The SRCPROC field specifies the procedure number of the referenced or
declared procedure. The NPARAMS field specifies the number of words of
parameters indicated in the .PROC or .FUNC directive. Thereis no
POINTERLIST array associated with EXTPROC, EXTFUNC, SEPPROC, or
SEPFUNC Linker information types.

Miscellaneous Linker Information Types

The EOFMARK Linker information type indicates the end of Linker information
records. Additionally, if the segment is of the host program, the NEXTBASELC
field indicates the number of words in the host program’s global data area. If
the segment is an intrinsic unit code segment, the PRIVDATASEG field
contains the segment number of the associated data segment.

34 Pascal Technical Reference Manual

e T A P TR TN RTINSO e FE R o 2 e

The P-Machine 35

The P-Macine

36 System Memory Use
38 The P-Machine

40 The Evaluation Stack

41 Enhanced Indirect Addressing

42 Registers

43 Extra Code Space

44 The Program Stack and the Data Heap
45 Syscom

46 The Segment Table

47 Activation Records

49 Markstacks

36 Pascal Technical Reference Manual

3
The P-Machine

The previous chapter discussed the static structure of program codefiles on
disk and in memory. This chapter discusses the dynamic structure of program
code as it is being executed in memory.

System Memory Use

Figures 3-1 and 3-2 are diagrams of the Apple lII's memory when running
under the Apple Pascal system. These memory maps are specific to the
Apple lll, and do not apply to any other computer. They are provided for your
information only: a primary task of the Apple Pascal system is to eliminate the
necessity for the programmer to know anything about specific memory
addresses and use.

The P-Machine

$FFFF
SOS
P-code $B7FF
interpre-
$A000
Bank 0 Bank 1 Bank 2
SYSCOM ter and $9FFF
unused BIOS
program
? stack device
drivers
heap ¢
? unused extra
graphics code
(if used) space
$2000
Note: unusedareas are $1FFF
available for stack/heap SOS
growth.
$0000

Figure 3-1. Typical Memory Map
ofa 128K Apple lll Using Apple Pascal

38 Pascal Technical Reference Mahual

$FFFF
SOS
$B800
P-code
inter-
$A000
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6
$9FFF
SYSCOM| | device preter
d drivers and
unusea 1 I program BIOS
extra extra stack :
graphics code code ¢ device
(i ! space space extra drivers
used) code
l hean unused space
$2000
Note: The interpreter and device drivers are located in the 508 $1FFF
highest bank. If the device drivers require more space
than is available in the highest bank, they “spill"” down into $0000

the next highest bank. unused areas are available for
stack/heap growth.

Figure 3-2. Typical Memory Map of a 256K Apple I
Using Apple Pascal

The P-Machine

The Apple lll Pascal pseudo-machine or P-machine, a version of the UCSD
Pascal P-machine, is the software-generated device that executes P-code as
its machine language. Every computer operating under a form of UCSD Pascal
has been programmed to “look like” this common P-machine, or arelated
variant, from the viewpoint of a program being executed. The P-machine has
an evaluation stack, several registers, and a user memory. The user memory
contains the program stack, the heap, and extra code space where program
code can be stored (Figure 3-3). Each of these structures is discussed in
detail below.

B R T L e

‘ The P-Machine

high memory addresses
Additional
Pascal Memory
extra P-machine .
pseudo-registers
code zero page . X-page
space $1A00-$1AFF $1600-$16FF

X or — SEG , XSEG

o

Pascal Memory
Stack/Heap Space

or —— JTAB , XJTAB

X Jor— IPC , XICP

/ BASE , XBASE
MP , XMP

\ STRP , XSTRP

KP, XKP

/ NP XNP

program stack

Y
$1BFF
SP—» evaluation
unused stack
$1B00
heap
low memory addresses

Figure 3-3. The P-Machine Model

Note: In Figure 3-3 pointers to P-code are shown pointing both up and down,
because P-code may be in either the stack or extra code space. Pointers to
data are shown pointing down only, because data is stored only in the
stack/heap space.

40 Pascal Technical Reference Manual

¢
The P-machine supports:

e Variable addressing, including strings, byte arrays, packed fields, and
dynamic variables

e Logical, integer, real, set, array, and string, top-of-stack arithmetic
and comparisons

o Multi-element structure comparisons
¢ Branches

¢ Procedure and function calls and returns, including overlayable
procedures

¢ Miscellaneous procedures used by system and user programs

The P-machine QSes 16-bit words, with two 8-bit bytes per word. Words
consist of two bytes, of which the lower, even-address byte is least significant
(Figure 3-4). The least significant bit of a word is bit @, the most significant is
bit 15.

higher, odd address lower, even address

] | l |] [| | 1 | I 1| 4

LA l hi h]b tel R] : Iowg) te ' '

1 | l 9 1 y | |]] | | JY | | |

T 1 1 1 1 1 1 1 1 1 T 1 1 4
bitt 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
\ \ / /

one word

Figure 3-4. Relationship of Words and Bytes

The Evaluation Stack

In the Apple lll, the evaluation stack uses a portion of the relocated 6502
hardware stack, starting at memory location $1BFF and growing downward to
location $1B00. Itis used for passing parameters, returning function values,
and as an operand source for many P-machine instructions. When an
instruction is said to push an item, that item is placed on the top of the
evaluation stack (the evaluation stack grows downward). The evaluation stack
is extended by loads and is reduced by stores and most arithmetic operations.

e e 3 e S e R e

- The P-Machine : 41

Enhanced Indirect Addressing

Enhanced indirect addressing is the method used in the Apple Il to extend
its memory addressing beyond 64K bytes. Itinvolves the use of 6502
indirect-X and indirect-Y addressing modes and depends on hardware
interaction between the zero page and its corresponding extension page (X-

page).

SOS permanently assigns locations $1A00 through $1AFF as the user zero
page, and the hardware automatically associates locations $ 1600 through
$16FF as the X-page. Although the zero-page data actually resides at
locations $1A00 through $ 1AFF, instructions that refer to the zero page still
use address values $00 through $FF. Most Apple Ill instructions behave
exactly like their 6502 counterparts, except for indirect-X and indirect-Y
instructions. Depending on the values in the X-page, these instructions can
invoke enhanced indirect addressing.

Consider an indirect-X or indirect-Y reference through zero-page location n.
As usual for the 6502, zero-page locations n and n+ 1 are expected to
contain the operand address (disregarding indexing by X or Y, for the
moment). Since the zero page is mapped, this operand address is actually
stored atlocations $1AQ00+n and $1AQ1 +n, with the least-significant byte at
the lower address. Location $1601 +n contains the X-byte for this
addressing operation. The X-byte is interpreted as follows:

bit: 7 6 543210
(- il |
1 ! 1

-0 —t—

E
| |

Bit 7 is the enhanced-addressing bit, or E-bit. If itis zero, normal 6502
addressing occurs and the rest of the X-byte is ignored. Normal 6502
addressing means addressing in the 64K address space consisting of a lower
8K portion followed by the currently switched-in 32K bank followed by an
upper 24K portion.

@ The normal user should not access the lower 8K or upper 24K, because
these are occupied by SOS.

B B G T e 0 o ST

42 Pascal Technical Reference Manual

¢
If bit 7 of the X-byte is one, enhanced indirect addressing occurs. The four-bit
field B specifies a bank pair consisting of banks B and B+ 1. These two banks
together make up a continuous 64K address space. The address word stored
in zero page is taken as the address of a location in this 64K bank pair,
regardless of which bank is currently switched in.

Locations $0000 to $OOFF (the zeroth page) in each bank pair are actually
@: mapped into the current user zero page (locations $1A00 to $1AFF). These

locations should be addressed using ordinary zero-page addressing.

Registers

The Apple lll P-machine uses eight pseudo-registers, and the hardware stack
pointer (Figure 3-3). All registers are pointers to word-aligned structures,
except the IPC register, which is a pointer to byte-aligned structures.

Because the Apple lll uses an enhanced-indirect addressing architecture,
each psuedo-register (except the SP register), consists of two parts. One part
is a 16-bit pointer on zero page, and the other is a corresponding X-byte on X-
page. Thus each register (except SP) consists of two components; for
example, IPC and XIPC. The psuedo-registers are:

SP: evaluation Stack Pointer. This register contains a pointer to the current
top of the evaluation stack (one byte below the last byte in use). Itis
actually the Apple lll hardware stack pointer.

IPC, XIPC: Interpreter Program Counter. This register contains the address
of the next instruction to be executed in the currently-executing
procedure.

SEG, XSEG: SEGment pointer. This register points to the highest word of the
procedure dictionary of the segment to which the currently-executing
procedure belongs.

JTAB, XJTAB: Jump TABIe pointer. This register contains a point to the
highest word of the attribute table in the procedure code of the currently-
executing procedure. (Attribute tables are explained in Chapter 2.)

The P-Machine 43

¢

MP, XMP: Markstack Pointer. This register contains a pointer to the MSSTAT
field, in the markstack of the currently executing procedure. Local
variables in the activation record of the current procedure are accessed
by indexing off of the location pointed to by the MP register. (Markstacks
are explained later in this chapter).

BASE, XBASE: BASE procedure pointer. This register contains a pointer to
the MSSTAT field of the activation record of the most recently invoked
base procedure (lexical level @ or 1). Global (lex level @) variables are
accessed by indexing off of the location pointed to by the BASE register.
(Activation records are explained later in this chapter.)

STRP, XSTRP: STRing Pointer. This register is a pointer to the first element of
the linked list of packed arrays of characters and strings on the stack.
Whenever the P-machine executes an LPA or LSA instruction (see
Chapter 5), and the literal packed array or string constant contained in
the instruction is not already on the program stack, the P-machine
pushes it onto the program stack and links it into the list pointed to by this
pseudo-register.

KP, XKP: program stacK Pointer. This register contains a pointer to the
lowest byte of the lowest word actually in use on the program stack. The
program stack starts in high addresses of user memory and grows
downward toward the heap.

NP, XNP: New Pointer. This register contains a pointer to the current top of
the heap (one byte above the last byte in use). The heap starts in low
addresses of user memory and grows upward toward the program
stack. It contains all dynamic variables. It is extended by the standard
Pascal procedure ' new ', andis cut back by the standard procedure

'release’.

Extra Code Space

The segments of an executing program may be loaded by the interpreter into
several different areas of memory. Segments are preferentially loaded in areas
labeled extra code space in Figures 3-1 through 3-3, so that the space in the
stack/heap area is not needlessly consumed. Only when the extra code space
areas are filled, are segments loaded onto the stack. Segments are never
loaded into the unused area between the stack and heap.

44 Pascal Technical Reference Manual

The Program Stack and the Data Heap

The operating system uses two dynamic structures called the program stack
and the heap to store memory-resident data of an executing program. The
program stack and heap reside in the same bank pair. The program stack is
used to store automatic variables, strings, packed arrays, bookkeeping
information about procedure and function calls, and code segments if there is
no available extra code space. The heap is used to store dynamic variables.

Figure 3-5 is a diagram of the Pascal program stack and heap with four active
procedures.

high memory addresses

SYSCOM

PASCALSYSTEM
activation record

-€ BASE register
markstack ’

MAINPROG
activation record

markstack

UNITPROC
activation record

markstack

ALPHAPROCDRE
activation record

markstack

-¢ MP, KP, and STRP registers
currently unused

- NP register

HEAP

low memory addresses

Figure 3-5. The Program Stack and Heap With Four Active Procedures

The P-Machine 45

SYSCOM

The operating system and the P-machine exchange information via the system
communications area (also called SYSCOM) at the bottom (high addresses) of
the stack. SYSCOM is accessible to both assembly-language procedures in
the interpreter and (as if it were part of the Pascal system global data) to
system procedures coded in Pascal. SYSCOM serves as an important
communication link between these two levels of the system. The fields in
SYSCOM relevant to communication between the operating system and the
P-machine are:

IORSLT: This field contains the error code returned by the last activated or
terminated I/O operation (see Volume 2 of the Apple /Il Pascal
Programmer’s Manual for a list of I/O Error messages).

XEQERR: This field contains the error code of the last execution error (see
Volume 2 of the Apple Il Pascal Programmer’s Manualfor a list of
execution error messages).

BOMBP: This field contains a pointer to the activation record of the procedure
that caused the execution error.

BOMBSEG, BOMBPROC, BOMBIPC: These fields contain the segment
number, procedure number, and IPC value when an execution error
occurs.

SYSUNIT: This field contains the Pascal volume number of the device from
which the operating system was booted (usually the boot disk drive,
volume 4).

GDIRP: This field contains a pointer to the most recent Apple Il format disk
directory read in, unless dynamic allocation or deallocation has taken
place since then (see the MRK, RLS, and NEW instructions in
Chapter 5). Disk directories are read into a temporary buffer directly
above the heap. (Not used for SOS-format directories.)

Segment Table: The segment table is a record that contains information
needed by the P-machine to read code segments into memory or to
allocate space for data segments.

46 Pascal Technical Reference Manual

t
THE SEGMENT TABLE

Every code segment has a name, but when a given segment references
another during the execution of a program, it refers not to the segment’s

name, but to the segment’s number. The interpreter uses the segment number
as an index into the segment table, which contains an entry for each segment
in the program (Figure 3-6). The segment table entries are indexed by
segment number; each entry contains information needed to load the

segment from the codefile on disk into memory. The segment table is a
dynamic structure of SYSCOM, but is somewhat analagous to a segment
dictionary, in that it is used to locate segments on disk.

The segment table is located in the higher addresses of the SYSCOM area, at
the bottom of the program stack. It contains entries for:

¢ the segments of the Pascal operating system itself (numbers 0, 2...6,
59...63)

¢ each segmentin the segment dictionary of the host program codefile

¢ eachintrinsic unit code and data segment in library files linked with the
host program

No two segments in an executing program can have the same number since
the numbers are used to index the segment table. The segment table has
space for up to 64 entries. Since the system can use 11, this means that
53 entries are left for the program to use.

Remember that a program codefile contains 16 or fewer segments; any
excess over 16 must be in either a program library file, a SYSTEM.LIBRARY

file, or library files specified in a library name file.

The P-Machine 47

high memory addresses

entry 63 (information about
segment number 63)

entry 62

entry 1

entry O (information about
segment number 0)

low memory addresses

Figure 3-6. The Segment Table

Activation Records

When a procedure is called, the'code segment containing that procedure
code is loaded by the interpreter if it is not already presentin memory. An
activation record for the procedure is built on top of the program stack each
time the procedure is called (Figure 3-7). Only code segments require
activation records, data segments do not. The activation record for a
procedure consists of:

the markstack, which contains addressing context information (static
links), and information on the calling procedure’s environment

space for storing the value returned by the procedure, if the
procedure is a function

space for parameters passed to the procedure when it is called

space for the local variables of the procedure

R T B T e S e e T b i P

48 Pascal Technical Reference Manual

3

high memory addresses

- local _ DATA SIZE
variables

data passed
area parameters

PARAMETER SIZE

function
value

MSXIPC MSSP

MSIPC

" MSSEG

markstack
MSJTAB

MSDYN

MSSTAT ~€¢—— MP register

MSKP

MSSTRP

low memory addresses

Figure 3-7. An Activation Record

Space is allocated in the higher addresses of the activation record for variables
local to the procedure. The variable space is allocated in the reverse order that
the variables are declared (exception: variables in a variable list are allocated
space in forward order). For example, the statements

VAR I,J: INTEGER;
BOOL: BOOLEAN;

will cause space in the activation record to be allocated as shown in
Figure 3-8.

The P-Machine 49

high memory addresses

BOOL

J

low memory addresses

Figure 3-8. The Order of Local Variable Allocation
in an Activation Record

Space for parameter passing is allocated below the local variable space. If the
procedure is a function, space is also reserved (below the parameter space)
for storing the value returned by the function. The order of passed parameters
is discussed in Chapter 4. A description of the format of variables in activation
records is given in Chapter 5.

Local variables in the activation record of an active procedure are accessed by
indexing off of the location pointed to by the MP, XMP register. Global
variables in the activation record of an active procedure are accessed by
indexing off of the location pointed to by the BASE, XBASE register.

When a procedure is terminated, its activation record is removed from the
stack.

Markstacks

The lower portion of the activation record is called a markstack. When a
procedure callis made, the current values of the system psuedo-registers that
characterize the operating environment of the calling procedure are stored in
the markstack of the called procedure. This allows the system registers to be
restored to precall conditions when control is returned to the calling
procedure.

A procedure call causes the operating environment that existed in the system
registers just at the time of the procedure call to be stored in the fields of the
called procedure’s markstack in the following manner:

50 Pascal Technical Reference Manual

System registers

SP

IPC

XIPC

SEG

JTAB

MP

KP

STRP

¢

--——-—>

Markstack fields

MSSP

MSIPC

MSXIPC

MSSEG

MSJTAB

MSDYN

MSKP

(MarkStack evaluation Stack
Pointer)

(MarkStack Interpreter
Program Counter)

(MarkStack X-byte of
Interpreter Program
Counter)

(MarkStack SEGment
pointer)

(MarkStack Jump TABle
pointer)

(MarkStack DYNamic link)

(MarkStack program stack
pointer)

MSSTRP (MarkStack STRing Pointer)

The MSDYN field of a markstack contains a pointer to the MSSTAT field in the
markstack of the procedure that called the new procedure. The combined
MSDYN fields of all markstacks form a dynamic chain of links that describe
the “route” by which the new procedure was called.

The MSSTAT field of a markstack contains a pointer to the MSSTAT field in the
most recent markstack of the procedure that is the lexical parent of the called
procedure. The interpreter “knows” which procedure is the lexical parent, by
looking up the static chain until it encounters a procedure whose lexical level
is one less than the lexical level of the current procedure. The combined
MSSTAT fields of a group of markstacks form a static chain of links that
describe the lexical nesting of the called procedure.

The P-Machine 51

¢

The values of the XSEG and XJTAB registers are not stored on the markstack
because they are equivalent to XIPC. The XKP, XMP, and NP, XNP registers
are not stored because they do not change during a procedure call. The
BASE, XBASE registers are not stored on the markstack because their values
are related only to base procedure calls.

After building the new procedure’s activation record on the program stack,
new values for the IPC, XIPC, SEG, XSEG, JTAB, XJTAB, KP, STRP, XSTRP,
and MP registers, are established. The registers are updated as follows:

* The SPregisteris unchanged, and remains pointing to the top of the
evaluation stack.

* The KP, XKP register points to the new top of the program stack, just
beyond the newly-created activation record.

¢ ThelPC, XIPC register points to the first instruction of the called
procedure.

* The SEG, XSEG register points to the procedure dictionary of the
code segment that contains the called procedure.

* The JTAB, XJTAB register points to the attribute table of the called
procedure.

¢ The MP, XMP register points to the markstack of the called
procedure.

* The STRP, XSTRP register is initialized to NIL (zero).

* Ifthe called procedure has a lexical level of —1 or 0, the contents of
the BASE register are saved on the evaluation stack, and the BASE
register is set to the value of the MP register.

Each time a procedure is called, another activation record is added to the
program stack. Once again the register values and the appropriate static link
and dynamic link are stored in the new markstack, and the system registers
are then updated. Note that the SEG register always points to the procedure
dictionary of the segment that contains the procedure (and not the segment
that called the procedure).

Once the code for a procedure has been loaded into memory, each further
invocation of the same procedure causes only an activation record to be
added to the program stack (the code is not loaded again).

52 Pascal Technical Reference Manual

[
When areturn froma procedure occurs, the information in the markstack fields
is transferred to the system registers, and the activation record of the inactive
procedure is removed from the stack.

Additional information on procedure calls, and the relation of attribute tables to
activation records, can be found in the section Procedure and Function Calls
in Chapter 5.

Assembly-Language Programming 53

54
55
58
60
60
60

onnmaty

ssemly-gage
Programmng

g ‘ f

Gk

Calling Assembly Procedures and Functions
Passing Parameters to Assembly Procedures
Examples of Assembly-Language Procedures
Returning From Assembly Procedures
Temporary and Semipermanent Storage
Accessing Pascal Data Space

54 Pascal Technical Referent:e Manual

4

Assembly-Language
Programming

Calling Assembly Procedures
and Functions

A separate procedure or function is written in assembly language as a .PROC
or .FUNC. The assembled code is assumed to be in a codefile which will be
linked into the host program before execution. Within the host program, the
EXTERNAL procedure or function must be declared by a standard
PROCEDURE or FUNCTION heading followed by the keyword EXTERNAL.
For example,

PROCEDURE MAKESCREEN (INDEX: INTEGER); EXTERNAL;

declares the procedure MAKESCREEN as an EXTERNAL assembly-language
procedure, with one parameter of type integer.

Calls to EXTERNAL procedures use standard Pascal syntax, and the Compiler
checks that each call agrees in type and number of parameters with the
declaration for that procedure. It is the programmer’s responsibility to ensure
that the assembly-language procedure is compatible with the EXTERNAL
declaration of the host program. The Linker checks only that the number of
words of parameters in the host program’s EXTERNAL declaration and in the
separate procedure’s .PROC or .FUNC declaration are the same.

Variable parameters in EXTERNAL procedures and functions can be
g} declared without any type.

FREVEE R ST OB B e R R 2 R AT 3 AR

Assembly-Language Programming 55

Passing Parameters
to Assembly Procedures

When the host program executes a call to an EXTERNAL procedure or
function, the parameters to be passed are pushed onto the evaluation stack in
the order they are encountered in the host program’s calling statement: the
first parameter is pushed onto the stack (high byte first), then the second
parameter, and so on. When all the parameters have been passed, the host
program’s return address is pushed onto the stack (high byte first)

(Figure 4-1). In addition, if the procedure is a function, the host program
pushes two words (four bytes) of zeros onto the evaluation stack after any
parameters are pushed and before the return address is pushed.

high memory addresses

old data byte

first param high byte

first param low byte

last param high byte

last param low byte

return addr high byte
top of stack as
the assembly procedure — g, return addr low byte
is called
low memory addresses

Figure 4-1. Order of Parameters on the Stack

56 Pascal Technical Reference Manual

The passed parameters are available on the stackinreverse order: the last
one passed is at the top of the stack. For example, the function call

FUNCTION MULT3(I,J,K:INTEGER); EXTERNAL;

causes | to be pushed onto the stack first, then J, then K, then four unused
bytes, and finally the return address (Figure 4-2). Then the function is called.

high memory addresses
growth I
of
the J
stack
K

4 unused bytes

return address

low memory addresses

Figure 4-2. The Order of Parameters on the Stack Just Prior to
Execution of a Function

Long integers and sets are passed as the number of words used in the host
program. Again, each word is pushed onto the stack high byte first. After a
long integer or set, a word indicating the number of words passed is pushed
onto the stack. Strings, records, arrays, and VAR parameters are passed by
address, high byte first. Recall that the host program’s EXTERNAL declaration
may declare a VAR parameter without a type, which allows a parameter of
indeterminate size to be passed by address. Below are listed the various ways
that different parameter types are represented on the stack.

Assembly-Language Programming 57

¢

Passing Mode Parameter Type Representation on Stack
Pass by refer- all types A 2-byte pointer to the
ence (VAR) value, with the high byte
pushed first
Pass by value integer, subrange, A 2-byte value, with the high
enumerated type byte pushed first
real A 4-byte value, with the high
byte pushed first
set 1 to 32 words (representing
the set value) are pushed

first. Then a word specifying
the number of words in the
setis pushed (high byte
first).

longinteger 1 to 9 words (representing
the long integer value) are
pushed first. Then a word
specifying the number of
words in the long integer
value is pushed (high byte
first).

string, A 2-byte pointer to the value,
record, with the high byte pushed
array ' first

58 Pascal Technical Reference Manual

¢

Examples of
Assembly-Language Procedures

The TIMES2 function in the assembly-language example below uses
parameter-passing by value.

;sample assembly language for
;FUNCTION TIMES2(DATA:INTEGER):
; INTEGER;

.FUNC TIMES2,1 ;one word of parameters
RETURN .EQU [} ;temp store return address
PLA ;save host segment return address
STA RETURN
PLA
STA RETURN+1
PLA ;dfscard four unused bytes
PLA ;(only necessary for functions)
PLA
PLA
PLA ;least significant byte (lsb) of data
ASL A ;times 2
TAX ;save in X
PLA ;most significant byte (msb) of data
ROL A ;times 2, with carry
PHA ;move msb to evaluation stack
TXA ;restore Lsb to accumulator
PHA ;move lsb to evaluation stack
LDA RETURN+1 ;restore host segment return address
PHA
LDA RETURN
PHA

RTS ;return to calling segment

Assembly-Language Programming 59

¢
The function first removes the return address from the stack and savesiitin the
location RETURN. After discarding the four unused bytes added to the stack
because the host program was calling a function, the function then picks up
the data word, one byte at a time. When it is finished, the function pushes the
result back onto the stack, followed by the return address.

The SETZERO procedure in the assembly-language example below uses
parameter passing by reference.

;sample assembly language for
;PROCEDURE SETZERO (VAR I:INTEGER);
; EXTERNAL;

.PROC SETZERO,1
RETURN .EQU (') ;temp store return address
DATADR .EQU PEQ

PLA ;save ho§t segment return address

STA RETURN

PLA

STA RETURN+1

PLA ;Put address of parameter

STA DATADR ;1 into locations $QE@-0E1

PLA

STA DATADR+1 1$16E1 is already set to
;Pascal data area x-value

LDA #0 ;Zero to A

TAY 7...and Y

STA @DATADR,Y ;Store @ in word pointed

INY ;to by DATADR

STA @DATADR,Y

LDA RETURN+1 ;restore host segment return

PHA ;address

LDA RETURN

PHA

RTS ;return to host segment

60 Pascal Technical Referenc»e Manual

Returning From
Assembly Procedures

Procedures and functions remove all parameters from the stack before
returning. When a procedure terminates, it pushes the return address back
onto the stack, and executes an RTS to the calling segment. When a function
terminates, it pushes the return value (a scalar, real, or pointer, maximum two
words) and the return address back onto the stack, and then executes an RTS
to the calling segment.

Temporary and Semipermanent Storage

When you write assembly-language procedures for the Apple lll, you must
respect the SOS and Pascal conventions concerning register use and calling
sequences. All of the 6502 registers are available, and zero-page

locations $0 through $35 are available for storing temporary variables.
However, the Apple lll Pascal System also uses these locations as
temporaries, so you should not expect data to remain there from one
procedure execution to the next. You can save variables in nonzero page
memory by using the .BYTE or .WORD directives to reserve space in your
assembly-language procedure.

Accessing Pascal Data Space

To access stack/heap space, an assembly-language procedure must perform
indirect-X or indirect-Y addressing using an appropriate X-byte value. For
example, if the stack/heapisin banks 1 and 2, the appropriate X-byte is $81
(the high-order bit set to one enables enhanced indirect addressing and the
low-order bits specify the bank pair 1-2).

Since the Pascal subprocedure linkage mechanism only passes two-byte
addresses (the X-byte is excluded), it is the programmer’s responsibility to
make sure the X-byte is properly set. The Pascal system presets locations
$16E1, $16E3, $16E5, and so on through $16EF to the X-byte value for
Pascal data space at boot time. Thus, assembly-language procedures can
copy parameter addresses into locations $EQ-$E1, $E2-$E3, and so on

Assembly-Language Programming 61

¢

through $EE-$EF and perform indirect-X or indirect-Y addressing with these
zero-page addresses to access the parameters in Pascal data space.

The following example shows how to access .PUBLIC data by using this
approach:

;sample assembly language for
;PROCEDURE TEST;

.PROC TEST
RETURN .EQU 0
DATR .EQU QEQ ;first pseudo-register
.PUBLIC DATA ;data belongs to the host
PLA ;save host segment return address
STA RETURN
PLA
STA RETURN+1
LDA ADATA ;move address into pseudo-
STA DATR ;register
LDA ADATA+1
STA DATR+1
LDY #0
LDA @DATR,Y ;load the DATA into the accumulator
Loy #10 ;if DATA = PACKED ARRAY[0..20] OF
LDA @DATR,Y ;CHAR, this loads DATA[10]
LDA RETURN+1 ;restore host segment return address
PHA
LDA RETURN
PHA
RTS ;return to host segment
ADATA .WORD DATA ;the host's address of DATA

Enhanced indirect addressing also occurs in the assembly-language example
below. The INCARRAY procedure pulls the return address from the stack and
saves it atlocation RETURN. It then pulls the address of the array from the
stack and stores itin the pseudo-register at location $OQEQ. After getting the
remaining parameters from the stack, the procedure uses enhanced indirect
addressing (indirect-Y addressing) to modify the array data where it is stored
in memory.

gt R
T g

ALY

62 Pascal Technical Reference Manual

RETURN
SIZE
PSUEDO

ALOOP

O

.PROC
.EQU
.EQU
.EQU

PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA
STA
PLA

LoY
cLC
LDA
ADC
STA
INY
cPY
BCC

LDA
PHA
LDA
PHA
RTS

INCARRAY,2
o

2

(1]
RETURN
RETURN+1
PSEUDO

PSEUDO+1

SIZE

#0
@PSEUDO, Y
#1

@PSEUDO,Y

SIZE
ALOOP

RETURN+1

RETURN

;sample assembly language for
;PROCEDURE INCARRAY(SIZE:INTEGER;
; VAR DATA: LIST);

;2 words of parameters
;temp store return address
stemp store SIZE
;pseudo-register

;save host segment return address

;lsb of array address

;msb of array address

slsb of SIZE parameter

;msb of SIZE discard

;initialize array index
;clear for add

;load byte array

;increment

;store incremented array byte
;increment array index

;test vs. array SIZE

;do while less than

;restore host segment return address

;return to host segment

All parameters that are passed by address must be accessed by enhanced
indirect addressing.

The P-Machine Instruction Set 63

64 Instruction Formats

65 Operand Formats

65 Formats of Variables on the Stack
67 Format of Constants in P-Code
68 Conventions and Notation

68 One-Word Loads and Stores

68 Constant

69 Local

69 Global

70 Intermediate

71 Indirect

71 Extended

72 Multiple-Word Loads and Stores (Sets and Reals)
72 Byte Array Handling

73 String Handling

75 Record and Array Handling

77 Dynamic Variable Allocation

78 Top-of-Stack Arithmetic

78 Integers

79 ~ Non-Integer Comparisons

80 Reals

82 Strings

82 Logical

83 Sets

84 Byte Arrays

84 Records and Word Array Comparisons
85 Jumps

86 Procedure and Function Calls
89 System Support Procedures
89 Byte Array Procedures

o1 Compiler Procedures

92 Miscellaneous

64 Pascal Technical Reference Manual

5
The P-Machine Instruction Set

Instruction Formats

Instructions for the P-machine consist of one or two bytes, followed by zero to
four parameters. Most parameters specify one word of information. There are
five basic types of parameters:

UB: Unsigned Byte. Represents anon-negative integer less than 256. The
high-order byte of the parameter is implicitly zero.

SB: SignedByte. Representsaninteger from —128to 127, intwo’s-
complement form. The high-order byte is a sign extension of bit 7 of the
low order byte.

DB: Don’t-care Byte. Represents anon-negative integer less than 128,
thus it can be treated as SB or UB.

B: Big. This parameteris one byte long when used to represent values in
the range 0 through 127, and is two bytes long when used to represent
values in the range 128 through 32767 . If the value representedis in
the range 0 through 127, the high-order byte of the parameter is
implicitly zero. If the value represented is in the range 128 through
32767, bit 7 of the first byte is cleared and the first byte is used as the
high order byte of the parameter. The second byte is used as the low-
order byte.

W: Word. Atwo-byte parameter, low byte first. Represents values in the
range —32768 through 32767.

Any exceptions to these formats are noted in the descriptions of the individual
instructions.

DR R 18 e PR, R S R, Dy Y TN ST P VA, 1 S A S T S e

The P-Machine Instruction Set 65

¢

Operand Formats

Although an element of a structure in memory may be as small as one bit (as in
a packed array of boolean), variables to be operated on by the P-machine are
always unpacked into full words. All top-of-stack (tos) operations expect their
operands to occupy at least one word on the evaluation stack.

Formats of Variables on the Stack

Variables are stored in activation records and on the evaluation stack in the
manner described below.

BOOLEAN: One word. Bit @ indicates the value (0=FALSE, 1 =TRUE), and
this is the only information used by boolean comparisons. However, the
boolean operators LAND, LOR, and LNOT operate on all 16 bits, ina
bitwise manner.

INTEGER: One word, two’s complement notation, capable of representing
values in the range —32768..32767.

LONGINTEGER: 3..11 words. A variable declared as INTEGER[n] is
allocated ((n+3) DIV 4) + 2 words of memory space. Regardless of
the value of along integer, its actual size remains the same as its
allocated size. Each decimal digit of along integer is stored as four bits of
binary-coded decimal. The format of long integers on the stack is as
follows:

word 0 (tos): contains the allocated length, in words.

word 1 (tos—1): low byte contains the sign (all zeros = positive,
all ones = negative); high byte not used.

word 2 (tos—2): four least significant decimal digits. The low
byte contains the two more significant decimal
digits (BCD). The high byte contains the two
less significant digits.

~ 66 Pascal Technical Reference Manual

‘

wordn (tos—n): four most significant decimal digits. The low
byte contains the two more significant decimal
digits (BCD). The high byte contains the two
less significant digits.

The format of long integers in activation records is as follows: word 0 is
not stored; word 1 is the lowest word in memory; word n is the highest
word in memory.

SCALAR (user-defined): One word, in range 0..32767.

CHAR: One word, with the low byte containing a character. The internal
character setis extended ASCII, with ©..127 representing the standard
ASCIl set, and 128..255 representing user-defined characters.

REAL: Two words, whose format is defined by the Proposed Standard for
Binary Floating-Point Arithmetic, IEEE Task P754, and described in the
Apple Il Pascal Programmer’s Manual, Volume 2. In general, the format
for 32-bit real numbers is as follows:

Bit Item Contained In
0..15 mantissa tos

15..22 mantissa

23..30 exponent tos—1

31 sign

POINTER: One orthree words, depending on the type of pointer. Pascal
pointers (internal word pointers) consist of one word that contains a
word address (the address of the low byte of the word). Internal byte
pointers consist of one word that contains a byte address. Internal
packed field pointers consist of three words:

word O (tos): right bit number of field
word 1 (tos—1): field width (in bits)
word 2 (tos—2): word pointer to the word that contains the field

The P-Machine Instruction Set 67

¢

SET: 0..31 words inan activationrecord, 1..32 words on the evaluation
stack. Sets are implemented as bit vectors, always with a lower index of
zero. A set variable declaredas SET OF m..n isallocated

(n+15) DIV 16 words of memory space. All words allocated in an
activation record for a set contain valid information (the set’s actual size
agrees with its allocated size).

A set on the evaluation stack is represented by a word (tos) specifying
the length of the set, followed by that number of words of information.
The set may be padded with extra words (to compare it with another set
of different size, say), the length word changed to indicate the number of
words in the structure when padded. Before being stored backin an
activation record, a set must be forced back to the size allocated to it, by
issuing an ADJ instruction.

RECORDS and ARRAYS: Any number of words. Arrays are storedin
forward order, with higher-indexed array elements appearing in
higher-numbered memory locations. Only the address of the
record or array is loaded onto the evaluation stack, never the
structure itself. Packed arrays must have an integral number of
elements in each word, as there is no packing across word
boundaries (it is acceptable to have unused bits in each word). The
first element in each word has bit @ as its low-order bit.

STRINGS: 1..128 words. Strings are a flexible version of packed
arrays of characters. A STRING[n] declaration occupies
(n DIV 2)41 words of memory space. Byte 0 of a string is the
current length of the string, and bytes 1..length(string) contain
valid characters.

Format of Constants in P-Code

CONSTANTS: Constant scalars, sets, and strings may be imbedded in the
instruction stream, in which case they have special formats.

e Allscalars (excluding reals) greater than 127 are represented by two
bytes, high byte first.

3

e Allstring literals occupy length(literal)+1 bytes of memory space,
and are word-aligned. The first byte is the length, the rest are the
actual characters. This format applies even if the literal should be
interpreted as a packed array of characters.

e Allreals, sets, and long integers are word-aligned and in REVERSE
word order, that is, the higher-order bits of the real or set are in lower-
numbered memory locations.

Conventions and Notation

Each operand on the evaluation stack (for example, tos or tos— 1), can contain
from one byte to 256 bytes, depending on its type and value. Unless
specifically noted to the contrary, operands used by an instruction are popped
off the evaluation stack (removed from the stack and not returned) as they are
used.

In the descriptions of the various P-machine instructions the parameters are
givenasUB, SB, DB, B, or W . The term tos means the operand on the top
of the evaluation stack, tos— 1 is the next operand, and so on. The columns of
information in the various instruction descriptions have the following meanings:

Column Column Column Column
1 2 3 4

op-code decimal instruction full name and operation
mnemonic op-code parameters of the instruction

One-Word Loads and Stores

Constant
SLDC-.0 0 Short load one-word constant. For an
SLDC -1 1 instruction SLDC —x , push the

: : opcode, x , with the high byte
SLDC_127 127 zero. Thatis, push an integer with

the value x.

LDCN

LDCI

Local

SLDL -1
SLDL.2

SLDL-16

LDL

LLA

STL

Global

SLDO -1
SLD.2

SLDO.16

159

199

216
217
231

202

198

204

232
233

247

The P-Machine Instruction Set 69

Load constant NIL. Push 0.

Load one-word constant. Push W.

Short load local word. For an instruction
SLDL_-x , fetch the word with
offset x inthe data area of the
executing procedure’s activation
record and push it.

Load local word. Fetch the word with
offset B inthe data area of the
executing procedure’s activation
record and push it.

Load local address. Fetch the address
of the word with offset B inthe
data areain the executing
procedure’s activation record and
push it.

Store local word. Store tos into word
with offset B in the data area of
the executing procedure’s
activation record.

Short load global word. For an
instruction SLDO_x , fetch the
word with offset x inthe dataarea
of the activation record of the base
procedure and push it.

70 Pascal Technical Reference Manual

LDO 169 B Load global word. Fetch the word with
offset B inthe data area of the
activation record of the base
procedure and push it.

LAO 165 B Load global address. Fetch the address
of the word with offset B in the
data area of the activation record
of the base procedure and push it.

SRO 171 B Store global word. Store tos into the
word with offset B in the data
area of the activation record of the
base procedure.

Intermediate

LOD 182 DB,B Loadintermediate word. Fetch the word
with offset B in the activation
record found by traversing DB
links in the static chain, and
push it.

LDA 178 DB,B Loadintermediate address. Fetch
address of the word with offset B
in the activation record found by
traversing DB links in the static
chain, and push it.

STR 184 DB,B Storeintermediate word. Store tos into
the word with offset B inthe
activation record found by
traversing DB links in the static
chain.

Indirect

SIND-0

SIND -1
SIND..2

SIND.7

IND

STO

Extended

LDE

LAE .

STE

248

249
250

255

163

154

167

167

209

UB,B

UB,B

UB,B

The P-Machine Instruction Set 71

Load indirect word. Fetch the word
pointed to by tos and push it (this
is a special case of SIND_x ,
described below).

Shortindex and load word. For an
instruction SIND_x , index the
word pointer tos by x words,
and push the word pointed to by
the result.

Static index and load word. Index the
word pointer tos by B words,
and push the word pointed to by
the result.

Store indirect word. Store tos into the
word pointed to by tos—1 .

Load extended word. Fetch the word
with offset B in the data segment
number UB (of anintrinsic unit)
and push it.

Load extended address. Fetch the
address of the word with offset B
in the data segment number UB
(of an intrinsic unit), and push it.

Store extended word. Store tos into
the word with offset B in the data
segment number UB (ofan
intrinsic unit).

72 Pascal Technical Reference Manual

Multiple-Word Loads and Stores (Sets and Reals)

LDC 179 UB,(data) Load multiple-word constant.
Fetch the word-aligned (data) of
UB words inreverse word order,
and push the data.

LDM 188 uUB Load multiple words. Fetch UB words
: of word-aligned data in reverse
order, whose beginning is pointed
to by tos , and push the block.

ST™M 189 uB Store multiple words. Transfer UB
words of word-aligned datain
reverse order, whose beginnings
pointed to by tos , to the location
block pointed to by tos—1 .

Byte Array Handling

LDB 190 Load byte. Index the byte pointer
tos—1 by theintegerindex tos ,
and push the byte (after zeroing
high byte) pointed to by the
resulting byte pointer.

STB 191 Store byte. Index the byte pointer

tos—2 by theintegerindex
tos—1 , and push the byte tos
into the location pointed to by the
resulting byte pointer.

The P-Machine Instruction Set 73

¥

String Handling

LSA 166 UB,{chars) Load constant string address.
Push a word pointer to the
constant character string

UB,(chars) onto the evaluation
stack. As the constant string is
contained in the code segment,
and may not be in the stack/heap
space, a copy of the string is
pushed onto the program stack. If
this string has not previously been
pushed onto the stack during the
currently-active procedure, copy
UB(chars) onto the program
stack (add one space to the end of
the stringif UB{chars) isan
even number of characters); push
a 16-bit integer onto the program
stack that points to the first byte of
the string in the procedure code;
push a 16-bit linkage pointer onto
the program stack that points to
the string or packed array most
recently pushed onto the program
stack (the linkage pointer is @ if no
other string or packed array has
yet been pushed onto the stack);
push a pointer onto the evaluation
stack that points to the string
length byte UB on the program
stack.

74 Pascal Technical Reference Manual

If UB{chars) has been pushed
onto the stack during the
currently-active procedure, push a
pointer onto the evaluation stack
that points to the string length byte
UB onthe program stack. The
contents of the program stack are
not changed, which prevents
needless, possibly stack-
overflowing entries.

In either case, advance the IPC
register past the original copy of
the string in the code space.

SAS 170 uB String assign. tos is either asource
byte pointer or a character.
(Characters always have a high
byte of zero, while pointers never
do.)tos—1 is adestination byte
pointer. UB is the declared size of
the destination string. If the
declared size is less than the
current size of the source string,
give an execution error; otherwise
transfer all bytes of source
containing valid information to the
destination string.

IXS 165 Index string array. tos—1 isabyte
pointer to a string. tos is anindex
into the string. Check to see that
the indexisinthe range 1..current
string length. If so, continue
execution; if not, give an
execution error.

The P-Machine Instruction Set 75

¢

Record and Array Handling

MOV 168 B Move words. Transfer a source block of
B words, pointed to by byte
pointer tos , to a similar
destination block pointed to by
byte pointer tos—1 .

INC 162 B Increment field pointer. Index the word .
pointer tos by B words and
push the resultant word pointer.

IXA 164 B Index array. tos is aninteger index,
tos—1 is the array base word
pointer, and B is the size (in
words) of an array element.
Compute a word pointer (tos—1)
+ (B » tos) to the indexed
element and push the pointer.

IXP 192 uB1,UB2 Index packed array. tos isan
integerindex, tos—1 isthearray
base word pointer. UB1 is the
number of elements per word, and
UB2 is the field width (in bits).
Compute a packed field pointer to
the indexed field and push the
resulting pointer.

LPA 208 UB,(chars) Load a packed array. Push aword

pointer to the packed array
{chars) onto the evaluation

stack. As the packed array is
contained in the code segment,
and may not be in the stack/heap
space, a copy of the array is
pushed onto the program stack. If
this packed array has not

76 Pascal Technical Reference Manual

previously been pushed onto the
stack during the currently-active
procedure, copy {(chars) onto
the program stack (add one space
to the end of the packed array if

{chars) has an odd number of
characters); push a 16-bitinteger
onto the program stack that points
to the first byte of the packed array
in the procedure code; push a
16-bit linkage pointer onto the
program stack that points to the
string or packed array most
recently pushed onto the program
stack (the linkage pointeris 0 if no
other string or packed array has
yet been pushed onto the stack);
push a pointer onto the evaluation
stack that points to the first byte of
the packed array on the program
stack.

If the same packed array has been
pushed onto the stack during the
currently-active procedure, push a
pointer onto the evaluation stack
that points to the first byte of the
packed array on the program
stack. The contents of the
program stack are not changed,
which prevents needless,
possibly stack-overflowing
entries.

In either case, advance the IPC
register past the original copy of
the string in the code space.

The P-Machine Instruction Set 77

LDP 186 Load a packed field. Fetch the field
indicated by the packed field
pointer tos , and push it.

STP 187 Store into a packed field. Store the data
tos into the field indicated by the
packed field pointer tos—1 .

Dynamic Variable Allocation

Note that the NP, XNP register points to the current top of the heap (one byte
beyond the last byte in use). GDIRP is a SYSCOM field that points to the top of
a temporary directory buffer above the heap.

NEW 168 1 New variable allocation. tos is the size
(in words) to allocate for the
variable, and tos—1 isaword
pointer to a pointer variable. If the
GDIRP field is non-NIL, set GDIRP
to NIL. Store the NP register into
the word pointed to by tos—1 ,
and increment the NP register by
tos words.

MRK 168 31 Mark heap. Set the GDIRP field to NIL,
then store the NP register into the
word indicated by the word pointer
tos .

RLS 168 32 Release heap. Set the GDIRP field to
NIL, then store the word indicated
by the word pointer tos into the
NP register.

78 Pascal Technical Reference Manual

Top-of-Stack Arithmetic

Integers

Note: Overflows do not cause an execution error; they are ignored and the
results are undefined.

ABI 128 Absolute value of integer. Push the
absolute value of the integer tos .
The resultis undefinedif tos is
initially —32768.

ADI 130 Add integers. Add tos and tos—1 ,
and push the resulting sum.

NGI "~ 145 Negate integer. Push the two’s
complement of tos . Theresultis
undefinedif tos isinitially
—-32768.

SBI 149 Subtractintegers. Subtracttos from
tos—1, and push the resulting
difference.

MPI 143 Multiply integers. Multiply tos and
tos—1, and push the resulting
product.

SQl 152 Square integer. Square tos , and push
' the result.

DVI 134 Divide integers. Divide tos—1 by tos
and push the resulting integer
quotient (any remainder is
discarded). Division by zero
causes an execution error.

The P-Machine Instruction Set 79

MODI 142 Modulo integers. Divide tos—1 by tos
and push the resulting remainder.

CHK 136 Check against subrange bounds. Insure
that tos—1 (= tos—2 (= tos,
leaving tos—2 on the stack. If
conditions are not satisfied, give
an execution error.

EQUI 195 tos—1 = tos .
NEQI 203 tos—1 () tos.
LEQI 200 tos—1 (= tos.
LESI 201 tos—1 (tos .
GEQI 196 tos—1)= tos.
GRTI 197 tos—1) tos

Integer comparisons. Compare tos—1
to tos and push the result, TRUE or
FALSE.

Non-Integer Comparisons

The next six instructions are non-specific non-integer comparisons.
Comparisons using specific values of UB are given in later sections.

EQU 175 UB tos—1 = tos .
NEQ 183 uB tos—1 () tos.
LEQ 180 UB tos—1 (= tos.
LES 181 uB tos—1 (tos .

GEQ 176 UB tos—1 Y= tos.

80 Pascal Technical Reference Manual

GRT 177 uB tos—1) tos .
Compare tos—1 to tos, andpush the
result, TRUE or FALSE. The type of
comparison is specified by UB :

Contents of Value of UB
tos—1 &tos for Comparison

reals

strings

booleans

sets

byte arrays 1
words ‘ 1

NS OO AN

Reals

FLT 138 Float top-of-stack. Convert the integer
tos to afloating point number, and
push the result.

FLO 137 Float next to top-of-stack. tos is areal,
tos—1 isaninteger. Convert
tos—1 toareal number, and push
the result.

TNC 158 22 Truncate real. Truncate (as defined in
Jensen and Wirth*) the real tos
and convertit to an integer, and
push the result.

RND 168 23 Round real. Round (as defined in
Jensen and Wirth*) thereal tos ,
then truncate and convertto an
integer, and finally push the resuilt.

ABR 129 Absolute value of real. Push the
absolute value of the real tos .

ADR

NGR

SBR

MPR

SQR

DVR

POT

EQUREAL
NEQREAL
LEQREAL
LESREAL

GEQREAL
GTRREAL

131

146

150

144

153

135

158

175
183
180
181
176
177

35

NI \CTE \C BN \C B O\)

i

The P-Machine Instruction Set 81

Addreals. Add tos and tos—1 , and
push the resulting sum.

Negate real. Negate thereal tos , and
push the result.

Subtractreals. Subtract tos from
tos—1 , and push the resulting
difference.

Multiply reals. Multiply tos and
tos—1 , and push the resulting
product.

Square real. Square tos , and push the
result.

Divide reals. Divide tos-1 by tos , and
push the resulting quotient.

Power of ten. If the integer tos isinthe
range @ (= tos (= 38, push
the real value 10Atos . If the
integer tos is notin this range,
give an execution error.

tos—1 = tos.

tos—1 () tos.

tos—1 (= tos.

tos—1 (tos .

tos—1)= tos.

tos—1) tos .

Real comparisons. Compare the real
tos—1 tothereal tos , and push
the result, TRUE or FALSE.

* Kathleen Jensen and Niklaus Wirth: Pascal User’s Manual and Report,
2nd ed.(New York: Springer-Verlag, 1978), p. 13

82 Pascal Technical Reference Manual

Strings

EQUSTR 175 4 tos—1 = tos.

NEQSTR 183 4 tos—1 () tos.

LEQSTR 180 4 tos—1 (= tos.

LESSTR 181 4 tos—1 « tos .

GEQSTR 176 4 tos—1)= tos.

GRTSTR 177 4 tos—1) tos .

String comparisons. Find the string
pointed to by word pointer
tos—1 , compare it alphabetically
to the string pointed to by word
pointer tos , and push the result,
TRUE or FALSE.

Logical

LAND 132 Logical AND. Push the result of
tos—1 AND tos . This is a bitwise
AND of two 16-bit words.

LOR 141 Logical OR. Push the result of
tos—1 OR tos . Thisis a bitwise
OR of two 16-bit words.

LNOT 147 Logical NOT. Push the one’s
complement of tos . Thisisa
bitwise negation of one 16-bit
word.

EQUBOOL 175 6 tos—1 = tos.

NEQBOOL 183 6 tos—1 () tos.

LEQBOOL 180 6 tos—1 (= tos.

LESBOOL 181 6 tos—1 (tos .

GEQBOOL 176 6 tos—1)= tos.

GRTBOOL 177 6 tos—1) tos .

Boolean comparisons. Compare bit 0 of
tos—1 tobit @ of tos and push
the result, TRUE or FALSE.

Sets

ADJ

SGS

SRS

INN

UNI

INT

DIF

160

151

148

139

156

140

133

uB

The P-Machine Instruction Set 83

Adjust set. Force the set tos to occupy
UB words, either by expansion
(putting zeros “between” tos and
tos—1) or by compression
(chopping high words off the set),
discard the length word, and push
the resulting set.

Build aone member set. If the integer
tos isintherange
0 (= tos (= 511 , pushthe set
[tos] . If not, give an execution
error.

Build a subrange set. If the integer tos
isintherange @ (= tos (= 511,
and theinteger tos—1 isinthe
same range, push the set
[tos—1..tos] (push the set[]if
tos—1) tos). If either integer
exceeds the range, give an
execution error.

Set membership. Ifinteger tos—1 isin
set tos , push TRUE. If not, push
FALSE.

Set union. Push the union of sets tos
and tos—1 . (tos OR tos—1)

Setintersection. Push the intersection
of sets tos and tos—1 .
(tos AND tos—1)

Set difference. Push the difference of
sets tos—1 and tos.
(tos—1 AND NOT tos).

84 Pascal Technical Reference Manual

EQUPOWR 175 8 tos—1 = tos.

NEQPOWR 183 8 tos—1 () tos.

LEQPOWR 180 8 tos—1 (= (is a subset of) tos .

GEQPOWR 176 8 tos—1)= (is a superset of) tos .

Set comparisons. Compare set tos—1

to the set tos , and push the
result, TRUE or FALSE.

Byte Arrays

EQUBYT 175 10,B tos—1 = tos.

NEQBYT 183 10,B tos—1 () tos.

LEQBYT 180 10,B tos—1 = tos.

LESBYT 181 10,B tos—1 ¢ tos .

GEQBYT 176 10,B tos—1)= tos.

GRTBYT 177 10,B tos—1) tos

Byte array comparisons. Compare byte
array tos—1 tobytearray tos,
and push the result, TRUE or
FALSE. Note: (=, (,)=, and)
must be used with packed arrays
of characters only. B specifies the
number of bytes to compare.

Records and Word Array Comparisons

EQUWORD 175 12,B tos—1 = tos.
NEQWORD 183 12,B tos—1 () tos.

Word or multiword structure
comparisons. Compare word
structure tos—1 toword
structure tos , and push the result,
TRUE or FALSE. B gives the
number of bytes to compare.

The P-Machine InstructionSet 85

Jumps

The JTAB, XJTAB register points to the highest word of the attribute table in
the currently-executing procedure. The IPC, XIPC register points to the next
instruction to be executed in the currently-activating procedure.

UJP 185 SB Unconditional jump. SB is ajump offset.
If this offset is non-negative (a
jump less than 128 bytes ,
forward), itis simply added to the
IPC register. (A value of zero for
the jump offset will make any jump
atwo-byte NOP.) If SB is
negative (a jump backward or
more than 127 bytes forward),
then SB is used as abyte offset
into the jump table within the
attribute table pointed to by the
JTAB register, and the IPC register
is set to the byte address
(JTAB[SB]) — contents of
(JTAB[SB]) .

FJP 161 SB False jump. Jump (as described for
UJP) if tos is FALSE.

XJP 172 W1,W2,{(case table) W3

Case jump. W1 is word-aligned and the
minimum case selector of the case
table. W2 is the maximum case
selector. W3 is an unconditional
jump offset past the case table.
The case table is
(W2 — W1 + 1)wordslong,
and contains self-relative pointers.

86 Pascal Technical Reference Manual

If tos , the case selector
expression, is notin the range
W1..W2 | then point the IPC
registerat W3 . Otherwise, use
(tos — W1)asanindexinto the
case table, and set the IPC
register to the byte address
(casetable[tos — W1]) minus
the contents of

(casetable[tos — W1]), and
continue execution.

Procedure and Function Calls

The general method of procedure/function invocation is:

1.
2.

Find the procedure code of the called procedure.

From the DATA SIZE and PARAMETER SIZE fields of the attribute table
of the called procedure, determine the size (in bytes) of the needed
activation record, and extend the program stack by that number of
bytes.

Copy the number of bytes specified by the PARAMETER SIZE field from
the top of the evaluation stack (tos) to the beginning of the space just
allocated on the program stack. This passes parameters to the new
procedure from its calling procedure.

Build a markstack, saving the SP, IPC, XIPC, SEG, JTAB, KP, STRP, MP,
and a static link pointer (MSSTAT) to the most recent activation record of
the procedure that is the lexical parent of the called procedure.

Calculate new values for the SP, IPC, XIPC, JTAB, XJTAB, MP, XMP, and
if necessary, the SEG, and XSEG registers. Issue an execution error if
the program stack overflows.

If the called procedure has a lexical level of —1 or 0 (in other words, itis
a base procedure) save the value of the BASE register on the evaluation
stack and then equate the BASE register with the MP register.

Save the value of the KP register on the program stack.

The P-Machine Instruction Set 87

¢

8. Save the value of the STRP register on the program stack.

9. Calculate a new value for the KP register to set it one word beyond the
value of the STRP register.

CLP 206 uUB Calllocal procedure. Call procedure
number UB , whichisan
immediate child of the currently
executing procedure and in the
same segment. The MSSTAT field
(static link) of the markstack is set
to the value of the old MP register.

CGP 207 uB Call global procedure. Call procedure
number UB , whichis at lexical
level 1 andin the same segment
as the currently executing
procedure. The MSSTAT field
(static link) of the markstack is set
to the value of the BASE register.

cipP 174 UB Call intermediate procedure. Call
procedure number UB inthe
same segment as the currently
executing procedure. The
MSSTAT field (static link) of the
markstack is set by looking up the
dynamic chain (MSDYN fields)
until an activation record is found
whose caller had a lexical level one
less than the procedure being
called. Use that activation record’s
MSSTAT field (static link) as the
static link of the new markstack.

CBP 194 UB Call base procedure. Call procedure
number UB , whichis at lexical
level —1 or @. The MSSTAT field
(static link) of the markstack is set
to the MSSTAT field in the
activation record of the procedure
pointed to by the BASE register.

88 Pascal Technical Reference Manual

The value of the BASE register is
saved on the evaluation stack,
after whichitis set to point to the
MSSTAT field of the activation
record just created.

CXP 205 uB1,UB2 Call EXTERNAL procedure. Call
procedure number UB2 ,in
segment UB1 . Used to call any
procedure notin the same
segment as the calling procedure,
including base procedures. If the
desired segment is not already in
memory, itisread from disk. Build
an activation record. Calculate the

~ static link for the markstack (if the
called procedure has alex level of
—1o0r0, setasinthe CBP
instruction; otherwise setas in the
CIP instruction).

CSP 158 UB Call standard procedure. Used to call
standard procedures built into the
P-machine.

RNP 173 DB Return from non-base procedure. DB is

the number of words that should
be returned as a function value

(@ for procedures, 1 for non-real
functions, and 2 for real
functions). Copy DB words from
the higher addresses of the
current procedure’s activation
record, and push them onto the
evaluation stack. Then copy the
information in the current
procedure’s markstack fields into
the psuedo-registers to restore
the calling procedure’s correct
environment.

The P-Machine Instruction Set 89

RBP 193 DB Return from base procedure. Move the
value of the BASE register saved
on the evaluation stack by a CBP
back into the BASE register, and
then proceed as in the RNP
instruction.

EXIT 158 4 Exit from procedure. tos is the
procedure number, tos—1 isthe
segment number. First, set the
MSIPC field to point to the exit
code of the currently executing
procedure.

If the current procedure is not the
one to exit from, change the
MSIPC field of each markstack to
point to the exit code of the
procedure that invoked it, until the
desired procedure is found. Then
continue execution.

If at any time the saved MSIPC
field of the main body of the
operating system s about to be
changed, give an execution error.

System Support Procedures

See the Apple lll Pascal Programmer’s Manual, Volume 1 for a description of
the Pascal language level interface to these functions.

Byte Array Procedures

FLC 158 10 Fillchar. tos is the source character.
tos—1 is the number of bytesin
the source character which are to
be filled. tos—2 is a byte pointer

90 Pascal Technical Reference Manual

to the first byte to be filled in the
destination. Copy the character
tos into tos—1 characters of the
destination.

SCN 158 11 Scan. tos is a two-byte quantity (usually

the default integer @) which is
pushed, but later discarded
without being used in this
implementation. tos—1 isabyte
pointer to the first character to be
scanned. tos—2 is the character
against which each scanned
character of the array is to be
checked. tos—3 is Qif the check
is for equality, or 1 if the check is
for inequality. tos—4 specifies the
maximum number of characters to
be scanned (scan to the left if
negative). If a character check
yields TRUE, push the number of
characters scanned (negative, if
scanning to the left). If tos—4
characters are scanned before
character check yields TRUE,
push tos—4 .

MVL 158 02 Moveleft. tos specifies the number of

bytes to move. tos—1 isabyte
pointer to the first destination byte.
tos—2 is abyte pointer to the first
source byte. Copy tos bytes
from the source to the destination,
proceeding from left to right
through both source and
destination.

The P-Machine Instruction Set 91

MVR 168 03 Moveright. tos specifies the number of
bytes to move. tos—1 isabyte
pointer to the first destination byte.
tos—2 is abyte pointer to the first
source byte. Copy tos bytes
from the source to the destination,
proceeding from right to left

through both source and
destination.
Compiler Procedures
BPT 213 B Breakpoint. Not used (acts as a NOP).
TRS 158 08 Treesearch. tos—2 is a byte pointer to

the root of abinary tree. tos isa
byte pointer to alocation which
contains the address of an eight-
character name to be found or
placed in the tree. Search the tree,
looking for arecord with the
required name. On completion of
the search, store the address of
the last node visited, into the
location pointed to by the byte
pointer tos—1 , and push the
result of the search:

0 if the lastnode was arecord
with the search name,

1 if the search name should be
anew record, attached to
the last tree node by the
Right Link,

—1 if the search name should be
anew record, attached to
the last tree node by the Left
Link.

92 Pascai Technical Réference Manual

This is an assembly-language
binary tree search used by the
Compiler. ltis fast, but does notdo
type checking on the parameters.
The binary tree uses nodes of type

CTP = RECORD
NAME: PACKED ARRAY [1..8]
OF CHAR;
LLINK, RLINK: ACTP;

END;

Idsearch. Used by the Compiler to parse
reserved words and identifiers.

IDS 158 07
Miscellaneous
TIM 158 09
XIT 214

NOP 215

Time. Pop two pointers to two integers,
and place zero in both integers.

Exit the operating system. Do a warm
boot of the system, as the
operating system’s H(alt
command.

No operation. Sometimes used to
reserve space in the code for later
additions.

The P-Machine Instruction Set 93

94 Pascal Technical Reference Manual

96

97

99

99
100
100
100
102
103
103
103
103
104
104
104
107
111
124
124
124
124
125
125
125
126
126
127
127
128
129

Apple lll Packing Algorithm
Records
Arrays
Sets
Files
Pascal Language Techniques
Dynamic Text Arrays
Segment Procedures
Variable Declarations
String and Packed Array Constants
Case Statements
Private Files
The IOCHECK and RANGECHECK Compiler Options
The Resident Compiler Option
Residence Chains
Pascal Unit Numbers and SOS Device Names and Numbers
Pascal Use of SOS Extended Memory
Assembly-Language Techniques
Assembly-Language Procedures
- Macro Directives
The SOS Macro
The SOSCALL Macro
The POP Macro
The PUSH Macro
The RMVBIAS Macro
The MOVE Macro
The DEBUGSTR Macro
The LOCALREG Macro
The PASCALRG Macro
The SAVEREGS Macro

130
131
132
132
133
134
135
136
137

¢

The RESTREGS Macro

The SET Macro

The RESET Macro

The SWITCH Macro

The MOVEDATA Macro

The MOVEDINC Macro

The BITBRANCH Macro

The NOBITBR Macro
Equates for SOS Call Numbers

Programming Techniques 95

96 Pascal Technical Reference Manual

6

Programming Techniques

This chapter is a collection of useful techniques and hints to use while
programming with the Apple lll Pascal system. It is divided into two parts: the
first deals with the Pascal language, and the second discusses assembly-
language techniques.

Apple Ill Packing Algorithm

Simple types (INTEGER, BOOLEAN, and so forth) in UCSD Pascal have two
standard sizes, depending on whether or not they are packed. These
standard sizes are:

Type

Integer
Real
Char
Boolean
Subrange

Scalar

Long Integer

Pointer
String

Standard Unpacked Size

one word (16 bits)
two words

one word

one word

one word

one word

For form INTEGER]I]:
(1+3) DIV 4 + 1 words
one word

For string of max length N:

(N+2) DIV 2 words

Standard Packed Size

one word

two words

one byte (8 bits)

one bit

if smallest value)= 0, then
number of bits in largest
value else one word
number of bits needed to
represent the number of
scalars in the scalar list

(1+3) DIV 4 + 1 words
one word

(N+2) DIV 2 words

Programming Techniques 97

¢

Complex types, including RECORDS, ARRAYS, FILES, and SETS, always
occupy a whole number of words whether they are packed or not. The
number of words occupied depends on the internal structure given to the

type.

Records

Each field that is a simple type is allocated a size as indicated above. If the
record is a packed record, then the packed sizes are allocated. Tag fields, if
they are associated with a named variable, occupy the same space as they
would if they were ordinary fields. (Untagged variants occupy no space.) For
example, the record below indicates the number of words allocated to each
field.

PACKED RECORD

NAME : STRING[20); {11 words}
SEX : (MALE, FEMALE); {1 bit}
10 : 0..8191; {13 bits}
MARRIED:BOOLEAN; {1 bit}
CASE HASCHILDREN:BOOLEAN OF {1 bit}
TRUE: (NUMCHILDREN:INTEGER; {1 uord}}
OLDEST:INTEGER); {1 word!} these overlay
FALSE: (STERILE:BOOLEAN; {1 bit} the same
CASE BOOLEAN OF {0 bits)} e space
TRUE: (BLOODTYPE:®..6)) {3 bits}

END;

In this case, the total record size is 14 words with the first 11 words going to
the NAME field, the next word for the SEX, ID, MARRIED and HASCHILDREN
fields, and the last two words either going to the NUMCHILDREN and OLDEST
fields or to the STERILE and BLOODTYPE fields, depending on the value of
the HASCHILDREN tagfield.

Since the allocation of fields is right to left within a word, the SEX, ID,
MARRIED and HASCHILDREN fields are allocated within word 12 as follows:

SEX : bit 0
ID : bits 1..13
MARRIED : bit 14
HASCHILDREN : bit 15

- 98 Pascal Technical Reference Manual

NUMCHILDREN and OLDEST are allocated words 13 and 14, respectively.
However, if this case variant of the record had been declared as

CASE HASCHILOREN:BOOLEAN OF
TRUE: (NUMCHILDREN, OLDEST:INTEGER);

then OLDEST would have been allocated word 13 and NUMCHILDREN
word 14, since the compiler allocates fields backwards within a such a list.
(This backwards allocation also applies to lists of variables in VAR
declarations.)

If a field is packable, but there is not enough room in a given word for that field
to fit, the entire field is moved to the beginning of the next word. This leaves
some unused space in the first word. An example is

TYPE PART = PACKED RECORD

PARTNUM:0..511; {word 1, bits ©..8}
AMOUNT: INTEGER; {word 2, all bits!
ORDERQTY: 1..99; {word 3, bits ©0..6}

END;

In this example bits 9 through 15 of the first word go unused because the
integer won't fit there. Also, note that bits 7 through 15 of the third word go
unused, but since the record size must be a whole number of words, the total
record size is exactly three words.

Accordingly, if PART is used as part of a larger record

PARTSHEET = PACKED RECORD
WHICHPART:PART; {words 1..3}
INITIAL: CHAR; {word 4, bits 0..7}

END;

the record type PART is considered to be a three-word chunk, and although
the INITIAL field would have fit into the third word of PART, it is not put there.

Programming Techniques 99

Arrays

For an array to be packed, the size of the array element must be eight bits or
less. Arrays of records or other complex types are not packed. If the element
size is eight bits or less, then each 16-bit word of the array gets the largest
possible integral number of elements. In the array

PACKED ARRAY [-10..10) OF ©..7;

each word of the array contains five three-bit elements (with bit 15 of each
word empty); the array contains a total of five words (21 divided by 5,
rounded up). Array elements are allocated in increasing word order in memory
and in increasing bit order within each word.

Note that the array declarations

PACKED ARRAY [1..10] OF PACKED ARRAY [1..2] OF BOOLEAN;
PACKED ARRAY [1..10, 1..2) OF BOOLEAN;
ARRAY [1..10) OF PACKED ARRAY [1..2] OF BOOLEAN;

are all equivalent, and that the “inner” array of booleans gets packed into one
word (14 bits unused), while the “outer” array of arrays does not get packed
(the size of its element is one word).

Sets

Packed or unpacked, a set occupies the number of bits equal to the largest
element’s ordinal value plus one and is rounded up to a whole number of
words. For example,

TYPE
A ET OF 20..63;
B ET OF 40..64;

S
S

allocates four words for A and five words for B.

100 Pascal Technical Reference Manual

Files

All files, packed or unpacked, currently occupy at least 550 words that are
distributed as follows:

256 words for the block buffer
256 words for the index block buffer

38 words for the File Information Block

Typed files occupy an additional amount of space equal to the size of the type
for the file window. Files of type TEXT or INTERACTIVE occupy 551 words.

Pascal Language Techniques

This section includes discussions of efficient use of variable references,
CASE statements, string and packed array constants, and SEGMENT
procedures. A group of useful Compiler options are also discussed.

Dynamic Text Arrays

The following fragment of Pascal-code demonstrates a method by which you
can dynamically allocate a variable-length packed array of characters (a text
array). The procedure works in the following manner:

1. Acheckis made to ensure that there is enough space for the array. If
there is not, a message is displayed, and the procedure is exited.
The number of bytes available for a dynamic buffer is calculated.

3. Thefirst block of the buffer is allocated, and a pointer to its head is
defined.

4. Otherblocks are sequentially allocated until there is not enough space
left to allocate another.

5. Allof the blocks in the buffer are transformed into a packed array of
characters.

Programming Techniques

PROCEDURE CreateArray;

CONST
FreeSpace= 2000; {Words of stack/heap space to be
reserved to prevent overflow}
BytesInBlock= 511; {Number of bytes in a block minus one}
WordsInBlock= 256; {Number of words in a block}
BytesInArray= 8000; {llaximum number of bytes in text array}
NaxArrayIndex= 7999; {Maximum index into text array}

{Note: the values assigned to BytesInArray and llaxArrayIndex can approach
32767, but are limited by program and memory size}

TYPE
BlockBuffer= PACKED ARRAY [(Q..BytesInBlock] OF CHAR;
{The block-sized input/output huffer}
TextArrav= PACKED ARRAY [0..liaxArrayIndex] OF CHAR;
{The text array, divided into BlockBuffer-
sized chunks}

VAR
Loop,
WordsInArray, {Naximum number of words in the array}
BytesCalcBuffer, {Number of bytes allowed in the buffer}
WordsCalcBuffer, {Number of words allowed in the buffer}
BytesActualBuffer : {Number of bytes currently in the buffer}

INTEGER;

PtrBuffer : “BlockBuffer; {Pointer to buffer}
PtrArray : “TextArray; {Pointer to text array}

TrixBuffer : PACKED RECORD {Record for conversion of buffer to a
text array, and for use as a temporary
buffer pointer}

CASE BOOLEAN OF
TRUE: (IB: "TextArray);
FALSE: (BB: "BlockBuffer);
END;

BEGIN

{Check to see if there is enough room to allocate the buffer
for the array. Note: MEMAVAIL returns the number of available
words. }
IF MENAVAIL < Freespace THEN BEGIN
WRITELN (‘Not enough room for text buffer.’);
READLN;
EXIT (CreateArray)
END;

102 Pascal Technical Reference Manual

[3

{Calculate the number of bytes allowed in the buffer; defined as
the smaller of "available memory" or the defined array size
(BytesInArray)}

WordsCalcBuffer := MENAVAIL - Freespace;

WordsInArray:= (BytesInArray DIV 2);

1F WordsCalcBuffer > WordsInArray THEN

RytesCalcBuffer:= BytesInArray
ELSE BytesCalcBuffer:= WordsCalcBuffer * 2;

{Allocate the space for the buffer}
NEW (TrixBuffer.BB); {Allocate the first block, with a
pointer to its head}

{Allocate the remaining blocks in the bhuffer. Since the 2nd
through nth blocks are allocated sequentially after the lst
block, their pointers are discarded.}

FOR Loop:= 1 to (BytesCalcBuffer DIV WordsInBlock - 1) DO

NEW (PtrBuffer);

{Transform the buffer into an array to enable byte-oriented procedures
and functions}

PtrArray:= TrixBuffer.IB;
BytesActualBuffer:= BytesCalcBuffer;

END;

Once the text array has been created, you are free to use byte-oriented
procedures and functions, such as SCAN and MOVELEFT, with PtrArray as a
parameter. Individual characters within the array can be referenced as

PtrArrayAnlElement]

where Elementis in the range 0..BytesCalcBuffer. If you attempt to write to
elements outside of this range, you will probably overwrite part of your
program.

Segment Procedures

There is alimit of 160 procedures per segment (no more than 149 of which
can be P-code procedures). If you require a greater number of procedures
within a segment, use nested SEGMENT procedures.

Programming Techniques 103

#

Variable Declarations

Declare the most-frequently referenced variables in the first 16 words of each
procedure’s data space. Referencing the first 16 words in the activation
record of a procedure is faster and requires less code than does referencing
other variables in the activation record, because special P-codes exist for
references to the first 16 words.

String and Packed Array Constants

String and packed array constants are stored in a linked list on the program
stack. Each time a given string or packed array constant is referenced, the
linked list must be traversed until the desired constant is located. A lengthy
linked list will decrease program performance; instead, setting variables to
constant values will improve performance.

Case Statements

Avoid using CASE statements with widely spaced case selectors. To
implement a CASE statement, the Compiler builds a table in the code with an
entry for each possible case selector from the smallest actually used to the
largest. For example,

CASE letter OF 'a','g','m','2"'

will cause a table with 26 jump vectors to be built. Consider substituting
nested IF..THEN..ELSE’s in place of such CASE statements.

Private Files

The Compiler E+ option allows declaration of file variables in the
IMPLEMENTATION part (and not just the INTERFACE part) of units. Files
declaredin the INTERFACE of a unit or in a VAR declaration of the
IMPLEMENTATION of a unit are global, and a 1K byte I/O buffer is allocated as

104 Pascal Technical Reference Manual

¢
long as the program is running. Files declared in procedure headings of the
IMPLEMENTATION of a unit are private to the unit, and their 1K byte I/O buffer
is allocated only as long as the procedure is active. Declaring files in the
procedure heading of the IMPLEMENTATION of units allows you to regain the
1K bytes of the I/O buffer when the procedure terminates.

@ Private files will only work with SOS-formatted disks, and not with Apple |l
UCSD format disks.

The IOCHECK and RANGECHECK Compiler Options

These compiler options provide runtime error checking. You can use |— and
R~ to defeat the checking, which willincrease execution speed and decrease
code size, at the expense of decreased automatic error checking.

The Resident Compiler Option

When there are no more active invocations of procedures in a segment, the
segment code is removed from memory. Loading segments requires time and
slows program execution. You can increase execution speed at the expense
of additional memory by use of the RESIDENT Compiler option, which allows
you to specify certain units and/or SEGMENT procedures to remain resident.
In a computer with a large amount of memory (for example, 256K bytes) you
can increase execution speed by keeping a large number of segments
resident.

Residence Chains

The following fragment of Pascal code demonstrates a method for controlling
the residence (and hence swapping) of segments in a Pascal program
depending on the size of the system. The procedure INITCODE, not
presented here, would presumably determine the size of available memory on
the system on which the program is running. On systems beneath a certain

Programming Techniques 105

¢

size, all segments except PERMAMENT would be swapped in and out under
system control as indicated by the NOLOAD compiler option. For mid-sized
configurations, the additional segments A, B, and C would also be
permanently resident. On the largest configurations, D, E, and Fwould also be
resident.

PROGRAM ExampleProgram;

USES {$Using SOSIO.CODE} SOSIC, {Uses SOS IO memory management procedures
in functional form to discover the memory available in the system}
Permanent, A, B, C, D, E, F, G, H;

TYPE
bbpp = PACKED RECORD {bank/page (bb:pp) from SOS find seg}
pp, bb: 0..255;
END; {Used to find memory available}
VAR
SwapAll, SwapSome : BOOLEAN;
find plist: PACKED RECORD {SCS find seg param list}
pages: integer;
base: bbpp;
limit: bbpp;

segnum: integer;
rc: integer;
END;

PROCDURE Main;
BEGIN

END;

106 Pascal Technical Reference Manual

¢

PROCEDURE InitCode;
VAR rc: Integer; {Return code from SOQ_REQ_SEG}

BEGIN

{Uses FIND_SEG in SOS_IO to determine memory availahle; sets SwapAll and
SwapSome}

SwapAll := FALSE;

SwapSome := FALSE;

WITH find plist DO
BEGIN
pages := maxint; {try to get all we can}
IF NOT sos_find_seg(2, {may cross bank boundaries}
127, { $7F, a user segment type}
find plist) THEN
BEGIN
{SOS_FIND SEG returns FALSE if the number of pages originally
requested cannot be allocated; the maximum number of pages available
is placed in the pages field of FIND PLIST in that case. We call
SO0S_FIND_SEG again to be sure we can \ get it.}
IF NOT sos _find seg(2, 127, find_plist) THEN
BEGIN
pages := 0;
END;
END;
{The pages field now contains the largest number of 256 byte pages
available on the system.}
IF pages > 10 {You must pick your own number!} THEN
SwapAll := TRUE
ELSE IF pages > O THEN
SwapSome := TRUE;
{Now release the segment}
IF NOT sos_rel seg(find plist.segnum, rc) THEN
writeln(’Could not release segment (SOS release seg error “, rc, “)’);
END;

e

END;

PROCEDURE GetRest;
BEGIN
{SRESIDENT D,RESIDENT E,RESIDENT F} {Note that G and H are swapped on
all systems.}
lain;
END;

KL i

Programming Téchniques 107

PROCEDURE GetSome;
BEGIN

{SR A,R B,R C} {Note that R is an abbreviation for RESIDENT compiler
option.}

IF SwapSome THEN
BEGIN
Main;
END

ELSE
BEGIN
GetRest;
END;

END;
BEGIN

{$R Permanent ,NOLOAD+} {Permanent is present on all systems; don’t let
anything else be loaded unless some part active}

InitCode; {Checks available memory; sets SwapAll and SwapSome.}

IF SwapAll THEN
BEGIN
Mainj
END

ELSE
BEGIN
GetSome;
END;

END.

Pascal Unit Numbers and SOS Device Names and
Numbers

The following Pascal program makes use of the functional version of SOS
device calls available through the unit SOS_IO. It translates between SOS
device names, SOS device numbers, and Pascal unit numbers.

Pkl s N Ak 3 S AT BT S M e 08

108 Paséal Technical Reference Manual

¢
{==—-- Start of Pascal lemonstration Prosram: TestDevIranslation-—-————- }

PROGRAM TestDevTranslation;

USES {$Using SOSIO.CODE} SOSIO; {Uses SOS_IO device calls in functional form}

VAR InString, {user input}
SosName: STRING; {Sos Name of device specified}
PasNum, {Pascal Unit # of device specified}
SosNum, {Sos device number of device specified}
RetCode: INTEGER; {Return code from SOS calls}
Error: BOOLEAN; {no device specified}

DevList: PACKED ARRAY [0..10] OF 0..255;
{Device information list returned by SOS}

FUNCTION GetSOSNum(PasNum:INTEGER):INTEGER;FORWARD;
FUNCTION GetPascalNum(SOSNum:INTEGER): INTEGER ;FORWARD;

PROCEDURE Introduction;
BEGIN
WRITELN('Welcome to the wonderful world of device translation!');
WRITELN('Type in a device and I will translate it.');
WRITELN('Formats are: SOS device number (e.g. 1) or Pascal unit (e.g. #4)');
WRITELN('or even a SOS device name (e.g. .rs232)');
WRITELN;
WRITELN('Type just a [RETURN] to exit');
WRITELN;
END;

FUNCTION GetSOSNum{PasNum:INTEGER): INTEGER};

{returns S0S device number of unit numbered PasNum;

0 if no such unit or no SOS device in that unit #}

TYPE Byte = 0..255;

VAR

Data: PACKED RECORD
RegularUnits: PACKED ARRAY [1..20] OF Byte;
UserUnits: PACKED ARRAY [128..147] OF Byte;
END;

Programming Techniques 109

BEGIN
UnitStatus(0,Data,0); {ask interpreter for table}
IF PasNum IN [1..20] THEN
BEGIN
GetSOSNum := Data.RegularUnits[PasNum];
END

ELSE IF PasNum in [128..147] THEN
BEGIN
GetSOSNum := Data.UserUnits[PasNum];
END

ELSE
BEGIN
GetSOSNum := O;
END;

END;

FUNCTION GetPascalNum{SOSNum:INTEGER):INTEGER};
{returns the Pascal unit number of the SOS device numbered SOSNum;

0 if none found }

TYPE Byte = 0..255;
VAR
PasNum: INTEGER;
Data: PACKED RECORD
RegularUnits: PACKED ARRAY [1..20] OF Byte;
UserUnits: PACKED ARRAY [128..147] OF Byte;

END;
BEGIN
IF SosNum = 0 THEN
BEGIN .
PasNum := 0; {avoid "holes" in Unittable}
END
ELSE
BEGIN
UnitStatus(O,Data,0); {ask interpreter for table}
PasNum := SCAN(41,=CHR(SOSNum),Data)+l; {find SOSNum in table}
IF PasNum = 42 THEN
BEGIN
{scanned off end of table}
PasNum := 0;
END
ELSE IF PasNum > 20 THEN
BEGIN
{adjust index appropriately}
PasNum := PasNum+107;
END;
END;
GetPascalNum := PasNum;

END;

110 Pascal Technical Reference Manual

]
FUNCTION Number(S:STRING;VAR n:INTEGER):BOOLEAN;
VAR 1i:INTEGER;
BEGIN
NUMBER := FALSE;
S := CONCAT(S,' ');
n := 0;
i =1
WHILE S[i] IN ['0'..'9'] DO
BEGIN
Number := TRUE;
n := n*10+ORD(S[i])-ORD('0"');
i 1= i+];
END;
END;

BEGIN
Introduction;
REPEAT

READLN(InString);
IF LENGTH(InString) >0 THEN
BEGIN
Error := FALSE;
IF InString[l] = '.' THEN
BEGIN
{must be a SOS device name}
SosName := Instring;
IF NOT SOS_Get_D_Num(InString, SosNum, RetCode) THEN
BEGIN
Writeln('SOS error #', RetCode, ' from SOS_Get D Num');
END;
PasNum := GetPascalNum(SosNum);
IF PasNum = O THEN SosName := '';
END
ELSE IF InString[l] = '#' THEN
BEGIN
{must be a Pascal unit number}
Delete(InString,1,1); {remove # sign}
IF Number(InString,PasNum) THEN
BEGIN
SosNum := GetSOSNum(PasNum);
_ IF NOT SOS_Q_Info(SosNum, SosName, DevList, RetCode) THEN
BEGIN)
Writeln('SOS error #', RetCode, ' from SOS D Info');
END; R
END

Programming Techniques 111

ELSE
BEGIN
Error := TRUE;
END;
IF SOSNum = O THEN PasNum := 0;
END
ELSE IF Number(InString,SosNum) THEN
BEGIN
{must have typed a number}
IF NOT SOS_D_Info(SosNum, SosName, DevList, RetCode) THEN
BEGIN
Writeln('SOS error #', RetCode, ' from SOS D Info');
END; .
PasNum := GetPascalNum(SosNum);
IF PasNum = O THEN SosNum := 0;
END
ELSE
BEGIN
Error := TRUE;
END;
{NOT Error => (SOSNum=0 <=> PasNum=0 <=> SosName='"') }
IF SosNum = 0 THEN Error := TRUE;
IF Error THEN WRITE(CHR(7)) {Sound a bell}
ELSE Writeln(SosName:16,' <=> ',SOSNum:2,' <=> #' PasNum);
END; .
UNTIL InString= '';
END.
{ End of TestDevTranslation }

Pascal Use of SOS Extended Memory

This section describes techniques that can be used to access extra memory
available on the larger memory configurations of the Apple lil. Before reading
further, you should review the section System Memory Use in Chapter 3.

Apple lll Pascal is upwardly compatible with Apple Il Pascal. One of the
constraints this imposes on the design of the Apple lll system is the restriction
to a data space of 64K bytes. Although the system uses memory outside this
data space for SOS, drivers, graphics space, interpreter and code segments,
this restriction still interferes with programs that handle large quantities of data.

However, by making use of SOS the Pascal programmer can gain direct
access to the extra memory. The following assembly-language procedures

112 Pascal Technical Reference Manual

¢

illustrate the techniques involved in accessing more data. These procedures
ask SOS to allocate more space to the program, to allow the transfer of data to
and from this space, and then eventually to deallocate the space. More
elaborate storage allocation schemes may be built on top of this package. In
the following simple example, after initialization a string is stored in the extra
space, retrieved, and displayed.

The routines are presented in two parts. The first is assembly language that
contains some useful macros, the procedure X-MOVELEFT (an expanded
version of the Pascal MOVELEFT procedure to move bytes no matter which
bank is the source or destination), and the function ADDRESS that returns the
address of its variable. The second part is a Pascal program that demonstrates
the required declarations and the use of the procedures.

Extra Storage Space Assembly-Language Procedures
.TITLE "X moveleft - Extended moveleft for moving bytes across banks

.NOPATCHLIST
.NOMACROLIST

<K< X _moveleft >>>

T
|

Extended version of Pascal's moveleft for moving data across banks

* *

we we we we we we we

This module is the code for the procedure x moveleft. X moveleft is a
generalized version of Pascal's moveleft procedure. Functionally, it does
the same thing, i.e., moves bytes, in ascending order, from a source to a
destination. But unlike moveleft, x moveleft can move the bytes no matter
which bank they are in. It is designed to be used in Pascal programs which
wish to use the rest of the bank space in larger machines.

we we we we we we

X moveleft has the following Pascal declaration and call:

; PROCEDURE x_moveleft(src_bank, src_addr,
dst_bank, dst_addr,
5 pages, partial: integer);

we we weo we we we we we We we we we we

e

we we we we we we

ProgrémmingTechniques 113

¢

; where: src_bank = bank number (0, 1, 2, ...) of the source. A special value

of -1 means use Pascal's bank.

src_addr = address of 256 byte page in the source bank
($0000 to $7FFF). This may be obtained using the
function ADDRESS also supplied in this module and
described below.

dst_bank = bank number of destination. A special value of -1 means
use Pascal's bank.
dst_addr = page address in the destination bank ($0000 to $7FFF). As

with src_addr, the ADDRESS function may be used to get the
address of a Pascal variable.

pages = number of whole 256-byte pages to move.

partial = number of bytes in final (or only page) to move.

X-moveleft will move pages*256+partial bytes from the source at the address
src_bank:src_addr ($bb:xxxx) to the destination at address dst_bank:dst_addr.

A -1 for a bank value means to use Pascal's bank. Thus the following two calls
are functionally equivalent:

x_moveleft(-1, address(s), -1, address(d), 0, n) <==> moveleft(s, d, n)

Segment and bank values for data may be obtained by the SOS request_seg or
find_seg calls. They return segment addresses of the form $bb:pp, where the
pp is in the range $20 to $9F for banked-switched or segment addressing.
X_movebytes uses extended indirect addressing. Thus the pp value must be
converted to a 4-byte address and offset by $2000 to produce addresses in the
range $0000 to SFFFF. This could produce an address of the form $bb:00xx,
i.e., a reference to a zero page. X movebytes checks for this case and
adjusts the bank and address values accordingly ($bb:00xx becomes $bb-1:80xx).
«PAGE

Also supplied in this module is the function ADDRESS:
FUNCTION address(VAR x): integer;

This returns the address of x as the value of the function. It is useful for
moving Pascal data with X MOVELEFT as illustrated above.

Macro to push a word on to the stack.

+MACRO PUSH
LDA %1+1
PHA

LDA * 7l
PHA

.ENDM

i R I A S R R

114 Pascal Technical Reference Manual

-
’
.
’
-
»

Macro to pop the stack into a word

«MACRO POP
PLA

STA %1
PLA

STA Z1+1
.ENDM

-PAGE

; The following macro saves SRC_BANK and DST_BANK (passed as the

; first parameter, %1, an extended address bank pointer) in SAVE_SRC_BANK
; and SAVE DST BANK, respectively, and then sets the new value from

; the stack (popping it off). It turns the high bit on to enable indirect
; addressing.

; Follows convention that value of -1 means that the Pascal bank is to

; be used. It also checks the address currently pointed to by the corresponding

; word in zero page, and modifies it and %1 (bank register), if necessary, to
; make sure that the address does not point to the zero page of the bank pair
; (to avoid the hole in the memory map). Zero page wraparound during execution

is taken care of by the main loop.

This macro is commented as a pseudo procedure with the following declaration:

PROCEDURE setbank(newbank: integer; VAR bank, temp: byte; addr: integer;);

WS we we W we we we

where: bank = extended address bank pointer (%1, "src_bank" or "dst_bank")

H newbank = new value for bank which is popped off the stack

4 (from x moveleft's call parameter list) by this macro.
H temp = place to save bank's former value before it is clobbered.
H Uses textual macro substitution to generate correct name.

3 addr = a page address (srq_addr or dsq_addr) which is always
3 $1601 below the bank register. We look at the msb here,
5 hence, we look at bank-$1601+1,

Programming Techniques 115

$

+MACRO SETBANK ; PROCEDURE setbank(newbank: integer;
3 VAR bank, temp: byte;

s VAR addr: integer);
LDA %1 3 BEGIN {setbank}
STA SAVEZ1 ; temp := bank; {save Pascal's value}
PLA H
CMP #OFF : IF newbank<>-1 THEN
BEQ $1 H bank := newbank+$80; {high bit on}
ORA #80 H
STA 21 :
$1 LDA %1-1601+1 IF addr<256 THEN {have bank:00xx}
BNE $3 s BEGIN {make bank-1:80xx}
LDA i#80 : addr := addr+$8000;
STA %21-1601+1
DEC %1 H bank := bank-1;
$3 PLA 5 END;
.ENDM 3 END; {setbank}
.PAGE

; The following macro guarantees that the base pointer %1 (an address) will not
wrap into zero page during next 256 increments of the pointer. If it would,
; then adjust the address tobe in the first bank of a bank pair and increment
the bank, i.e., bb:nnnn becomes bb+l:nnnn-$8000. Note that the corresponding
; bank register is at the address+$1601.

+MACRO CHKWRAP s PROCEDURE chkwrap(address: integer);

il
LDA %1+1 ; BEGIN {chkwrap}
CMP #OFF 3 IF address>=$FF00 THEN
BCC $1 3 BEGIN {set to next bank}
SBC #80 H address := address-$8000;
STA 7%1+1 s bank := bank+l;
INC %1+1601 H END;
$1 .ENDM : END; {chkwrap}
.PROC X _MOVELEFT, 6 ;
; PROCEDURE x moveleft(src_bank, src_addr,
H dst bank, dst . _addr,
5 pages, partial: integer);

; Move pages*256+partial bytes from the address src_bank:src_addr (extended
; indirect addressing form bb:xxxx) to address dst_] bank: dst__ addr. A bank of

; -1 means to use the Pascal bank.

page ptr to read bytes from
X-byte for src_addr

SRC_ADDR .EQU OEO
SRC_BANK .EQU 1601+SRC_ADDR

we we

DST_ADDR .EQU OE2 s page ptr to write bytes to

116 Pascal Technical Reference Manual

4

x_byte for dst_addr

return address
used to hold $16E1 across routine
used to hold $16E3 across routine

"z"-byte of number of bytes to move
"Y"~byte
"X"~-byte (keep count bytes in order)

; PROCEDURE x moveleft(src_bank,src_addr,

DST_BANK +EQU 1601+DST_ADDR
RETURN .EQU 0 H
SAVE_SRC BANK .EQU 2 ;
SAVE_DST BANK .EQU 3 H
COUNT_Z .EQU 4 H
COUNT_Y .EQU 5 H
COUNT_X .EQU 6 5
’
POP RETURN ;
POP COUNT Z
PLA R
CLC H
ADC COUNT Y ;
STA COUNT_Y ;
PLA ;
ADC #0 ;
STA COUNT_X ;
POP DST_ADDR ;
SETBANK DST BANK ;
POP SRC_ADIR ;
SETBANK SRC_BANK ;
MOVE_PAGES H
H]
CHKWRAP DST_ADDR ;
CHKWRAP SRC_ADDR ;
LDA COUNT_Y
BNE PAGE_LOOP ;
LDA COUNT X
BEQ PARTIAL ;
DEC COUNT X

dsﬁ:bank,dsﬁ:addr,
pages,partial: integer);

BEGIN {x moveleft}
{set x,y,z values to reflect the
bytes to move: x*256%256+Y*256+z}
count_z := partial MOD 256;
count_y := (pages MOD 256)+

(partial DIV 256);

count_x := pages DIV 256;

{pop rest of the parameters}
setbank(dst_addr,dst bank,save _dst_bank);
setbank(srq_pddr,srq_bank,savq_srq_bank);

FOR i:=count_x downto 1 DO

BEGIN {move count_ x*256 pages}

chkwrap(dst_addr);

chkwrap(src_addr);

FOR j:=count_y DOWNTO 1 DO
BEGIN {move count_y pages}

Bantvr

Programming Techniques 117

PAGE_LOOP LDY #0 ; {move 1 page of 256 bytes}
$1 LDA @SRC_ADDR,Y s FOR y:=0 TO 255 DO
STA @DST_ADDR,Y : dst_addr”[y] := src-addr”[y];
INY :
BNE $1 K
INC SRC_ADDR+1 ; src_addr := src_addr+256;
INC DST_ADDR+1 ; dst_addr := dst_addr+256;
DEC COUNT_Y ; END; {moving count y pages}
JMP MOVE PAGES ; count_y := 256; {count_x*256 pages}
; END; {moving count_x*256 pages}
PARTIAL LDA COUNT 2 {move remaining partial page}

! H
BEQ EXIT 3 FOR y:=0 TO count z DO
’

LDY #0 dst_addr~[y] :=—érq_addr‘[y];
$1 LDA @SRQ_ADDR,Y s
STA @DST_ADDR, Y :
INY s
CPY COUNT_zZ ;
BNE $1 H
EXIT LDA SAVE_SRC BANK ;{put things back the way they were}
STA SRC_BANK ;src_bank := save src_bank;
LDA SAVE DST BANK ;dst_bank := save dst_bank;
STA- DST_BANK H
PUSH RETURN ;
RTS) END; {x moveleft}

.FUNC ADDRESS,1 H

; FUNCTION address(VAR x): integer;

3+ Returns the address of "x".
RETURN .EQU 0 H
POP RETURN ; FUNCTION address(VAR x): integer;
3 BEGIN {address}
PLA H
PLA H {Remove the extra words on the}
PLA 3 {stack because it's a function}
PLA H
PUSH RETURN : address := tos; {param is still
; on top of stack}
RTS ; END; {address}
+END

3 End of Extra Storage Space Assembly-Language Procedures

PROGRAM uses_;_moveleft;

USES {$USING SOSIO.CODE} sosio; {This program uses the SOS_IO package in
functional form to access the SOS memory management calls}

[Rmm s s *
| Constants |
[T . *}
CONST

MaxString = 100; {Maximum number of strings which can be entered in
the sample program}

 S— *
| Types |
S *}
TYPE
bbpp =
PACKED RECORD {bank/page (bb:pp) from find seg}
pp, bb: 0..255;
END;
£ TR *
| Global Data |
Ko e i e *}
VAR
i, NumStrings: 0..MaxString;

Stringloc: array [l..MaxString] OF RECORD
bank, addr: integer;
END;

s: string[255];

Programming Techniques 119

{*- - ——— —
| Data Used for SOS Segment Manipulations |
* ———k}
find plist:
PACKED RECORD {find_seg param list}
pages: integer;
base: bbpp;

limit: bbpp;
segnum: integer;
rc: integer;

END;

base bank: integer; {segment starts in this bank}
base addr: integer; {segment starts at this address}
limit bank: integer; {segment ends in this bank}
limit_addr: integer; {segment ends at this address}
free bank: integer; {free space in this bank}
free addr: integer; {free space at this address}

{* *

| External (assembly) Procedures |

* *}

PROCEDURE x moveleft(src_bank, src_addr, dst _bank, dst_addr, pages,
partial: integer);
EXTERNAL ;*

FUNCTION address(VAR x): integer;
EXTERNAL ;

{* %

| alloc_segment - allocate a segment |
*

*}

FUNCTION alloc_segment: integer;

BEGIN {alloc_segment}
WITH find plist DO
BEGIN
pages := maxint; {try to get all we can}

IF NOT sos_find seg(2, {may cross bank boundaries}
127, { $7F, a user segment type}
find plist) THEN

120 Pascal Technical Reference Manual

BEGIN
{SOS_FIND SEG returns FALSE if the number of pages originally
requested cannot be allocated; the maximum number of pages
available is placed in the pages field of FIND PLIST in that
case. We call SOS_FIND SEG again to be sure we can get it.}
IF NOT sos_find seg(2, 127, find plist) THEN
BEGIN
writeln(
'Cannot allocate segment (SOS find seg error ', rc, ')');
pages := 0;
END;
END;

base bank := base.bb;

base_addr := (base.pp-32)*256;
limit bank := limit.bb;

limit_addr := (limit.pp-32)*256-1;

free_bank := base_bank;
free_addr := base addr;

alloc_segment := pages;
END; {WITH}
END; {alloc_segment}

{* *
| free segment - free the allocated segment |
*

*}

PROCEDURE free_segment;

VAR
rc: integer;

BEGIN {free_segment}
IF NOT sos_rel seg(find plist.segnum, rc) THEN
writeln('Could not release segment (SOS release seg error ', rc, ')');
END; {free_segment} -
{* *
| alloc - allocate space in the segment |
* —%}

PROCEDURE alloc(amount: integer {nbr of bytes to allocate} ;
VAR bank, addr: integer {location of allocated space});

VAR
remain: integer;
top_of current bank: integer;

Programming Techniques 121

¢

BEGIN {alloc - set bank to -1 if can't get the space}
bank := free_ bank;
addr := free addr;
IF free bank=limit bank THEN
BEGIN -
top of current_bank := limit_addr;
END
ELSE top_of_ current_bank := 32767;
remain := top of current bank-free_ addr+l;
IF amount>remain THEN
BEGIN
IF free bank<limit_ bank THEN
BEGIN
free bank := free bank+l;
fregzﬁddr := amount-remain;
END
ELSE
BEGIN
bank := -1;
END;
END
ELSE
BEGIN
free addr := free addr + amount;
END;
END; {alloc}

{* *
| putstring - insert string into storage |
* .|,}

PROCEDURE putstring(image: string; VAR bank, addr: integer);

VAR image addr: integer; { address(image) }
string len: integer; { number of bytes of string plus 1 }

BEGIN
image addr := address(image);

string len := length(image)+l; {include length byte}

{allocate space in the extra space for the string}
alloc(string len, bank, addr);

IF bank<0 THEN
BEGIN {no more segment space}
writeln('No space available for string');
END {no segment space}
ELSE {Move the string to the extra memory from the Pascal bank}
x moveleft(~1, image addr, bank, addr, 0, string len);

END; {putstring}

122 Pascal Technical Reference Manual

¢
{* *
| getstring - retrieve string from storage |
* *}
PROCEDURE getstring(VAR image: string; bank, addr: integer);

VAR image addr: integer; { address(image) }
BEGIN
{ Read the string back }

image addr := address(image);

x;moizleft(bank, addr, -1, image_addr, 0, 256);

{We read back 256 bytes since length byte is stored away. We thus can
read back any string.}

END; {getstring}

{* - *
| init - initialization |
* *)

PROCEDURE init;

VAR
pages: integer;

BEGIN {init}

writeln(chr(28)); {Clear viewport}
writeln; .
write('USES_X MOVELEFT');

writeln;

{Get maximum number of 256 byte pages from SOS}
pages := alloc_segment;

{Terminate if number of pages is less than 25, an arbitrary number
in this case.}
IF pages<25 THEN

BEGIN

IF pages>0 THEN free_segment;

writeln('Program terminated due to insufficient memory');

exit (PROGRAM);

END;
writeln('Maximum storage space available is ', pages, ' pages.');
writeln;

END; {init}

AT

Programming Techniques 123

{* ————————————— *

BEGIN {main program}
init;

NumStrings := 0;

REPEAT
{Read in a number of strings into the extra space; build
an array of addresses}

writeln('Enter a string. Blank line terminates.');

readln(s);

NumStrings := NumStrings+l;

putstring (s, StringLoc[NumStrings].bank, StringLoc[NumStrings].addr)

UNTIL (s='') OR (NumStrings=MaxString) OR (StringLoc[NumStrings).bank<0);
NumStrings := NumStrings - 1; {Last is invalid: blank or no more room}

writeln('Now we write them back out:');
writeln;

FOR i := 1 TO NumStrings DO
BEGIN
getstring (s, StringLoc[i).bank, Stringloc[i].addr);
writeln(s);
END;
writeln;

writeln('And that''s all of them!');
free_segment;

END {USES_X MOVELEFT} .

124 Pascal Technical Reference ManUal

Assembly-Language Techniques

This section includes a hint on memory usage by segments with assembly-
language procedures, and a list of useful assembly-language macros.

Assembly-Language Procedures

Segments with assembly-language procedures cannot be loaded across
Apple lll bank boundaries. To avoid this, the interpreter automatically selects
the load location for a segment. Therefore, you should avoid placing
assembly-language procedures in large segments. You could conceivably
lose over 15K bytes of memory if a 16K segment with an assembly-language
procedure were loaded in the stack/heap space such that it had to be pushed
up above a bank boundary in the middle of this space. Instead, assembly- '
language procedures should be placed in their own segment and be USEd by
the host program.

Macro Directives

This section consists of a group of macro directives that you may find useful in
your assembly-language programs. Note: In the Form specification of each
macro, parameters enclosed within () are required, while those enclosed
within () are optional.

The SOS Macro

“This macro calls the specified SOS service using SOSBLK, a fixed area, as the
SOS parameter buffer.

Form: SOS (service)
service: A SOS call number.

.MACRO SOS
BRK

.BYTE %1
.WORD SOSBLK
.ENDM

Programming Techniques 125

¢

The SOSCALL Macro

This macro calls the specified SOS service using a user-specified parameter
buffer.

Form: SOSCALL (service),(pointer)
service: A SOS call number.

pointer: A SOS parameter block pointer.

.MACRO SOSCALL
BRK
.BYTE %1
.WORD %2
.ENDM

The POP Macro

This macro saves the word on the top of the stack in a specified location; its
action is complementary to the PUSH macro.

Form: POP (location)

location: The address in which the word is to be stored.

.MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

The PUSH Macro

This macro pushes the word in a specified location onto the top of the stack;
its action is complementary to the POP macro.

126 Pascal Technical Reference Manual

¢

Form: PUSH (location)

location: The address from which the word is to be taken.

.MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDM

The RMVBIAS Macro

This macro removes from the evaluation stack the four zero bytes (the bias)
passed for a Pascal function.

Form: RMVBIAS

.MACRO

RMVBIAS
PLA

PLA

PLA

PLA
.ENDM

The MOVE Macro

This macro moves the word value stored at one location to another location.
Form: MOVE (from), (o)
from: The address whose value is to be moved.

to: The address to which the value is to be moved.

+MACRO MOVE
LDA %1
STA %2
LDA %1+1

STA %2+1
.ENDM

Programming Techniques 127

€

The DEBUGSTR Macro

This macro generates ASCII strings to aid debugging, if DEBUG = 1 (TRUE). If
DEBUG = 0 (FALSE), no strings are generated.

Form: DEBUGSTR (message),{jumpto)
message: The message to be inserted into the code as a .ASCII
directive. Note that four asterisks are added before and after the

message.

jumpto: The optional location to which execution should jump (to bypass
the debug message).

.MACRO DEBUGSTR
.IF DEBUG
.IF VYot () vy
JMP %2
.ENDC
.ASCII ll".t%1‘.'t|l
.ENDC
.ENDM
The LOCALREG Macro

This macro initializes (zeros) the X-bytes zero-page address-pointer registers
to access the currently switched-in memory bank. One to four zero-page
addresses may be specified. The Aregister is destroyed; X and Y remain
unchanged.

Form: PASCALRG (reg1),{reg2),{reg3),{reg4)

regl, reg2, reg3, reg4: The locations of the zero-page registers to be
initialized. Only reg1 is required.

128 . Pascal Technical Reference Manual

¢

.MACRO LOCALREG

XPGSTART .EQU 1600
LDA #0
STA XPGSTART+1+%1
BT AL LRI AA L
STA XPGSTART+1+%2
STA XPGSTART+1+%3
STA XPGSTART+1+%4
.ELSE
'IF I'%Sll()!l'l
STA XPGSTART+1+%2
STA XPGSTART+1+%3
.ELSE
.IF 'l%le()l'll
STA XPGSTART+1+%2
.ENDC
.ENDC
.ENDC
.ENDM

The PASCALRG Macro

This macro initializes the X-bytes of zero-page address-pointer registers to
access a specific memory bank (in other words, enable enhanced indirect
addressing). One to four zero-page addresses may be specified. The A
register is destroyed; X and Y remain unchanged.

Form: PASCALRG (reg1),{reg2),{reg3),{reg4)

reg1,reg2, reg3, reg4: These are the locations of the zero-page
registers to be initialized. Only reg1 is required.

INITXPG contains the value to which the registers should be initialized.

.MACRO PASCALRG
INITXPG .EQU 16EF
XPGSTART .EQU 1600
LDA INITXPG
STA XPGSTART+1+%1
JIE Tty
STA XPGSTART+1+%2
STA XPGSTART+1+%3

STA XPGSTART+1+%4

Programming Techniques 129

.ELSE

.IF ll%}ll()lll'

STA XPGSTART+1+%2
STA XPGSTART+1+%3
.ELSE

JIF l'%zll<>llll

STA XPGSTART+1+%2
.ENDC

.ENDC

.ENDC

.ENDM

The SAVEREGS Macro

This macro saves the values of specified registers starting at a specific zero-
page location. Any combination of A, X, and Y may be saved.

Form: SAVEREGS (location),{reg1),{reg2),{reg3)
location: The zero-page location at which the register values are to be
saved. If this parameter is omitted, the ZPAGE LOCATION NOT

SPECIFIED message will be displayed.

reg1,reg2,reg3: The registers from which the values are to be saved;
they are all optional.

.MACRO SAVEREGS

.IF Vi tt=tt

ZPAGE LOCATION NOT SPECIFIED

.ENDC

.IF ALY AREO R ;Check for first register
.IF AL7YARE SR S ;Accumulator?

STA %1

.ELSE

.IF AL7YARE LD &8 ;X register?

STX %1

.ELSE

IF ALY ARE LR AR ;Y register?

STY %1

.ENDC

.ENDC

.ENDC

.ENDC

.IF i3ty ;Check for second register
IF Y3t Y=t AN ;Accumulator?

STA %1+1

130 Pascal Technical Reference Manual

.ELSE
.IF T3ttty ;X register?
STX %1+1
.ELSE
.IF '3ttty ;Y register?
STY %1+1
.ENDC
.ENDC
.ENDC
.ENDC
IF T4t ()Y ;Check for third register
JIF %4 =AY sAccumulator?
STA %1+2
.ELSE
IF %4 V=t ;X register?
STX %1+2
.ELSE
.IF TT%4 M=ty ;Y register?
STY %142
.ENDC
.ENDC
.ENDC
.ENDC
.ENDM
The RESTREGS Macro

This macro restores the values of specified registers, by reading values
starting from a specific zero-page location. Any combination of A, X, and Y
may be restored.

Form: RESTREGS (location),{reg1),{reg2),{reg3)

location: The zero-page location at which the register values are
stored. If this parameter is omitted, the ZPAGE LOCATION NOT
SPECIFIED message will be displayed.

regl,reg2,reg3: The registers into which the values are to be restored:;
they are all optional.

.MACRO RESTREGS

.IF |l%1ll=lll.
ZPAGE LOCATION NOT SPECIFIED
.ENDC

.IF
.IF
LDA
.ELSE
.IF
LDX
.ELSE
.IF
LoY
.ENDC
.ENDC
.ENDC
.ENDC
JIF
.IF
LDA
.ELSE
.IF
LDX
+ELSE
.IF
LDY
.ENDC
.ENDC
.ENDC
.ENDC
LIF
JIF
LDA
.ELSE
.IF
LDX
.ELSE
.IF
LDY
.ENDC
.ENDC
.ENDC
.ENDC
.ENDM

The SET Macro

¢

l.%z'l(>ll||
ll%zll.___llAIl

%1

ll%zl
%1

IO%ZI
%1

ll%3.
Il%3l
%1+1

1o
%1+1

1o
%1+1

"%l”
IR YA
%1+2

Vg4
%1+2

ll%[.l
%1+2

tm iy

tmtryt

|()l|l'

tmtrpn

t=trye

t=tryne

ryrree
t=trpe
=ty

Tty

Programming Techniques

;Check for first register
sAccumulator?

X register?

;Y register?

;Check for second register
;Accumulator?

s X register?

;Y register?

;Check for third register
sAccumulator?

;X register?

;Y register?

This macro sets specific bits within a byte.

132 Pascal Technical Reference Manual

Form: SET (bits),(byte)
bits: The bits to be set.

byte: The address of the byte whose bits are to be set.

.MACRO SET
LDA #%1
ORA %2
STA %2
.ENDM

The RESET Macro

This macro resets specific bits within a byte.
Form: RESET (bits),(byte)
bits: The bits to be reset (set to Q).

byte: The address of the byte whose bits are to be reset.

.MACRO RESET
MASK .EQU FF
LDA #%1AMASK sA is EXCLUSIVE OR
AND %2
STA %2
.ENDM
The SWITCH Macro

This macro performs an n-way branch based on a switch index. The maximum
value of the switch index is 127 with bounds checking provided as an option.
The Aand Y registers, and the C, Z, and N status flags, are destroyed by the
macro. The X register is not modified by the macro.

Form: SWITCH (index),{bounds),(address table),{*)

index: The variable that is to be used as the switch index. If it is omitted,
the accumulator is used as the index.

Programming Techniques 133

¢
bounds: The maximum allowable value for the index. If the index
exceeds this value, the carry bitis set and execution continues. If
this parameter is omitted, then no bounds checking is performed.

address table: A table of addresses used by the switch. Note that the
address—1 is used. This is because of the RTS instruction.

*. |f the asterisk is supplied as the fourth parameter, the macro will
push the switch address but will not exit to it; execution will
continue after the macro.

.MACRO SWITCH
IF troertr oyt ;1f parami1 then
LDA %1 ;Load A with index
.ENDC
IF 7Y AR NSRRI ;1f param2 then
CMP #%2+1 ;Perform bounds check
BCS $099 ;on switch index
.ENDC
ASL A
TAY
LDA %3+1,Y ;6et switch address from the
PHA ;table and push onto stack
LDA %3,Y
PHA
LIF LAY AR NS M ;1f param& () * then
RTS ;Exit to code
.ENDC ;Else Continue
$099
.ENDM
The. MOVEDATA Macro

This macro moves up to 255 bytes within the assembly-language code/data
space, in descending order. The A and X registers are destroyed; Y is not
modified.

134 Pascal Technical Reference Manual

[

Form: MOVEDATA (from), (to), (count)
from: The byte address of the location from which the move is to occur.
to: The byte address of the location to which the move is to occur.

count: The number of bytes to move. If countis zero, the message
ZERO IS A BAD COUNT is displayed.

.MACRO MOVEDATA
.IF %3=0
ZERO IS A BAD COUNT
.ENDC

LDX #%3
$99 LDA %1-1,X
STA %2-1,X
DEX
BNE $99 ;Loop until done
.ENDM
The MOVEDINC Macro

This macro moves up to 255 bytes within the assembly-language code/data
space, in ascending order. The A and X registers are destroyed; Y is not
modified.

Form: MOVEDINC (from), (to), (count)
from: The byte address of the location from which the move is to occur.
to: The byte address of the location to which the move is to occur.

count: The number of bytes to move. If countis zero, the message
ZERO IS A BAD COUNT is displayed.

.MACRO MOVEDINC
.IF %3=0
ZERO IS A BAD COUNT
.ENDC
LDX #0

$99 LDA %1, X
STA %2, X

Programming Techniques 135

INX
CPX #%3
BCC $99 ;Loop until done
.ENDM
The BITBRANCH Macro

This macro causes a branch if specified bits within a byte are on or off. The A
register is destroyed; X and Y are unmodified.

Form: BITBRNCH (data),{bitson), {bitsoff),(branch)
data: The location of the byte whose bits are to be checked.

bitson: The bits of this optional byte specify which bits of the data byte
must be on if the branch is to occur.

bitsoff: The bits of this optional byte specify which bits of the data byte
must be off if the branch is to occur.

branch: The address to which execution should branch if the bits of the
data byte specified by bitson are on, and the bits specified by
bitsoff are off.

If the bits specified by bitson are not on, or if the bits specified by bitsoff are
not off, the specified branch is not taken. You need not specify both bitson and
bitsoff, but you must specify at least one of them, or the message NO BITS
SPECIFIED will be displayed.

.MACRO BITBRNCH

JIF g2t t=t e

JIF LA ARE AR

NO BITS SPECIFIED ;Generate an error
.ELSE

LDA #%3

AND %1

BEQ %4 ;Bits off only
.ENDC :

.ELSE

LDA #%2

AND %1

EOR #%2

.1IF P13t t=tt

BEQ %4 ;Bits on only

B —

Pascal Technical Reference Manual

.ELSE

BNE $099

LDA #%3

AND %1

BEQ %4 ;Both conditions have been met
$099

.ENDC

.ENDC

.ENDM
The NOTBITBR Macro

This macro is the converse of macro BITBRNCH. It causes a branch if
specified bits within a byte are not on or off. The A register is destroyed; X and
Y are unmodified.

Form: NOBITBR (data),{bitson),{bitsoff),(branch)
data: The location of the byte whose bits are to be checked.

bitson: The bits of this optional byte specify which bits of the data byte
must be on if the branch is not to occur.

bitsoff: The bits of this optional byte specify which bits of the data byte
must be off if the branch is not to occur.

branch: The address to which execution should branch if the bits of the
data byte specified by bitson are not all on, and the bits specified
by bitsoff are not all off.

If any one of the bits specified by bitson are not on, or if any one of the bits
specified by bitsoff are not off, the specified branch is taken. If the bits
specified by bitson are on, and the bits specified by bitsoff are off, the
specified branch is not taken, and execution continues with the next
instruction. You need not specify both bitson and bitsoff, but you must specify
at least one of them, or the message NO BITS SPECIFIED will be displayed.

.MACRO NOTBITBR
.IF Il%2|l=!0|.
'IF 'l%3ll=ill'

NO BITS SPECIFIED ;Generate an error

Programming Techniques 137

.ELSE

LDA #%3

AND %1

BNE %4 ;Bits off only
.ENDC

.ELSE

LDA #%2

AND %1

EOR #%2

.IF P13t t=tr

BNE %4 ;Bits on only
.ELSE

BNE %4

LDA #%3

AND %1

BNE %4 ;Both conditions have been met
.ENDC

.ENDC

.ENDM

Equates for SOS Call Numbers

REQUEST .SEG .EQU 040
FIND.SEG .EQU 041
CHANGE .SEG .EQU 042
GET-SEG-INFO .EQU 043
GET-SEG_-NUM .EQU 044
RELEASE.SEG .EQU 045
SET_FENCE .EQU 060
GET-FENCE EQU 061
SET.TIME .EQU 062
GET-TIME .EQU 063
GET-ANALOG .EQU 064
TERMINATE .EQU 065
D-STATUS .EQU 082
D-CONTROL .EQU 083
GET-DEV_.NUM .EQU 084
D-INFO .EQU 085
CREATE .EQU oCO
DESTROY .EQU oC1
RENAME .EQU 0C2

SET-FILE-INFO .EQU 0C3

| 138 Pascal Technical Reference Manual

GET-FILE-INFO .EQU 0C4
VOLUME .EQU oC5
SET-PREFIX .EQU 0C6
GET-PREFIX .EQU oC7
OPEN EQU oC8
NEWLINE .EQU 0C9
READ .EQU OCA
WRITE .EQU oCB
CLOSE .EQU oCC
FLUSH .EQU oCD
SET-MARK .EQU oCE
GET-MARK .EQU OCF
SET-.EOF .EQU oDO
GET-EOF .EQU oD1
SET-LEVEL .EQU oD2

GET-LEVEL .EQU 0D3

Glossary

The definitions given in this glossary are only those stated or implied in the text
of this manual. Other definitions connected with different usages of the same
terms are not given. An item appearing in the glossary is shown in boldface
type when it first occurs in the text.

activationrecord memory space on the program stack that stores the
markstack, function value, passed parameters, and local variables for an
active procedure. Activation records are created by procedure calls and
removed as a procedure is terminated.

Assembler directive statements placed in assembly-language programs
that cause certain operations to be performed during program assembly.
Assembler directives begin with a period, for example, .PROC .

attribute table atable associated with each procedure that contains
information needed to execute the procedure. Attribute tables grow toward
lower addresses.

automatic variable avariable for which space is allocated at the time the
procedure declaring the variable is called.

bank a unit of memory of 32768 contiguous bytes.
BASE BASE procedure pointer. A 16-bit pointer on zero page that points to
the MSSTAT field of the activation record of the most recently invoked base

procedure. See XBASE.

base procedure a procedure of the Pascal system at lexical level 0 or —1.

146 Pascal Technical Reference Manual

¢
base-relative relocation table atable of addresses, within an assembly-
language procedure, each address to be relocated relative to the address
contained in the BASE psuedo-register.

big aP-machine instruction parameter that is one-byte long when used to
represent values in the range @ through 127, and two-bytes long when used
to represent values in the range 128 through 32767.

BIOS the Basic I/0O System of the interpreter; it handles all low level
Pascal 1/0.

block a unit of storage of 512 contiguous bytes.

block boundary the boundary between byte 511 of one block and byte @
of the next block.

byte eight bits of data.

byte-aligned an instruction or structure starting at any byte, not necessarily
an even-numbered byte (see word-aligned).

codefile a file containing a segment dictionary and code segments.

code part aportion of a code segment that consists of a group of
procedures together with descriptive information about the procedures (the
procedure dictionary).

code segment a portion of a codefile containing P-code and/or native code.
Code segments may have three parts: interface text, code part, and Linker
information. ~

Compiler COMMENT option aCompiler option that allows you to specify a
comment to be placed in the segment dictionary of a codefile.

data area the upper addresses of an activation record that contain space for
local variables, passed parameters, and returned function value of a
procedure.

data segment a portion of memory set aside at execution time as storage
space for data of intrinsic units. In disk codefiles, data segments are simply an
entry in the segment dictionary, as they have no interface text, code part, or
Linker information.

Glossary 141

¢

declaration aPascal construct thatis used to announce the attributes of an
identifier.

device apiece of hardware used for data input or output. A disk drive, video
screen, and speaker are all commonly-used Apple Ill devices.

device driver the software interface to a device that enables the Apple Ill to
communicate with that device.

don’t-care byte Representsanon-negative integer less than 128; thus it
can be treated as SB (signed byte) or UB (unsigned byte).

dynamic chain aseries of dynamic links. The dynamic chain describes the
“route” by which a procedure was called.

dynamic link apointer in a called procedure’s markstack that points to the
markstack of the calling procedure.

dynamic variable a variable explicitly allocated by the program. Dynamic
variables are allocated on the heap. (Contrast with automatic variable).

enhanced indirect addressing an addressing method used to extend the
Apple lll memory addressing beyond 64K bytes.

evaluation stack adata structure located on the user stack page. Used to
pass parameters, to return function values, and as an operand source for
many P-machine instructions. The evaluation stack grows downward.

execution time the period of time during which a program is running.

EXTERNAL function adeclaration of a separate function. The'declaration
occurs in the calling procedure, and the actual native code occursin a
separate function.

EXTERNAL procedure adeclaration of a separate procedure. The
declaration occurs in the calling procedure, and the actual native code occurs
in a separate procedure.

extracode space the portion of memory that is not occupied by SOS, the
interpreter, BIOS, device drivers, the program stack-heap, or graphics space.
Code is automatically loaded in extra code space if any is available.

142 Pascal Technical Reference Manual

¢

function a procedure that returns a value.

global an entity accessible to all procedures within the scope of the
procedure that declares it. See the Apple lll Pascal Programmer’s Manualfor a
discussion of scope.

global procedure a procedure of lexical level 0.

heap partof the Apple lllmemory space used by the Pascal operating
system to store dynamic variables. The heap grows toward the stack.

high byte bits 8 to 15 of a word.

host program aprogram in which other units or assembly procedures may
be used.

host program global data area the dataareain the host program’s global
activation record that holds variables declared at the outermost lexical level of
the host program (level —1 or 0).

IMPLEMENTATION the portion of a unit following the INTERFACE. The
IMPLEMENTATION contains declarations of private constants, types, and
variables, private procedures, and functions, and the actual P-code of the
procedures and functions declared in the INTERFACE.

interface text the portion of a code segment that contains the ASCII text of
the INTERFACE in the source text of a unit. '

INTERFACE the portion of a unit following the unit heading. The INTERFACE
contains declarations of constants, types, variables, procedures, and
functions that are made available to programs that USE the unit.

intrinsic unit aunit whose code remains in its library codefile until the host
program is executed. The Linker is not needed for intrinsic units; they are
“prelinked.”

interpreter-relative relocation table atable of addresses, withinan
assembly-language procedure, each address to be relocated relative to a
table within the interpreter.

Glossary 143

¢

IPC Interpreter Program Counter. A pointer on zero page that contains the
address of the next instruction to be executed in the currently executing
procedure. See XIPC.

JTAB Jump TABIe pointer. A 16-bit pointer on zero page that points to the
highest word of the attribute table of the currently executing procedure. See
XJTAB.

jump table asection of self-relative pointers to addresses within the
procedure code used by jump instructions. Jump tables are located at the
bottom of attribute tables.

KP program stacK Pointer. A 16-bit pointer on zero page that points to the
bank-pair address of the current top of the program stack. See XKP.

label an identifier.

lexical level the level of procedure nesting within a program. The user
program is lexical level Q; a procedure nested n levels deep within the user
program has lexical level n.

LIBMAP utility program a Pascal program that creates a Map textfile of
Linker information, interface text, procedures, and functions for each segment
in a library.

Librarian aPascal system program used to combine separately compiled or
assembled codefiles into a single codefile or library file.

library file acodefile containing intrinsic units, regular units, and/or external
assembly-language procedures that can be used by a host program.

library name file an ASCII file that contains one to five names of library files
used by a host program.

linked file a codefile that results from linking a host program segment with
its referenced units and separate procedures and functions.

Linker asystem program used to incorporate separately compiled or
assembled procedures into a host program.

144 Pascal Technical Referenée Manual

¢
Linker information the portion of a code segment that enables the Linker
to resolve references and definitions of identifiers between separately
compiled or assembled code.

linker information type arecord within Linker information that indicates the
specific kind of reference or declaration that the Linker must resolve.

local entity an entity accessible only to the specific procedure within which
it was declared.

LONGINTIO astandard library unit that provides long integer arithmetic
operations and the built-in STR function.

low byte bits 0 to 7 of a word.
machine type the kind of microprocessor, for example, 6502.
main procedure the lowest level procedure in a segment.

markstack the lower part of an activation record that contains addressing
context information and information on a calling procedure’s environment.

MP Markstack Pointer. A 16-bit pointer on zero page that holds the address
of the MSSTAT field in the topmost markstack on the program stack. See
XMP.

native code assembled code for a microprocessor.

NEXTSEG Compiler option a Compiler option that allows you to specify
the segment number of the next regular unit, SEGMENT procedure, or
SEGMENT function encountered by the Compiler.

NP New Pointer. 16-bit pointer on zero page that points to the local bank-pair
address of the current top of the heap (one byte above the last byte in use).
See XNP.

operand asingle value, such as a constant, variable, reference, or function
call.

page a unit of storage comprising two blocks, or 1024 contiguous bytes.

Glossary 145

¢

PASCALIO astandard library unit that holds the SEEK, WRITE, WRITELN,
READ, and READLN procedures.

POINTERLIST alist of pointers in Linker information, each of which points to
a location within the code segment where there is areference to a variable,
identifier, or constant that must be fixed up by the Linker.

private an entity heldin the global data area, but not accessible to the user
program.

procedure asection of procedure code with an accompanying attribute
table. The term procedure is used to refer to the main program, any
procedure, or any function.

procedure code a sequence of native code or P-code instructions.

procedure dictionary the upper section of a segment’s code part,
containing a list of pointers to the procedures in the code part.

procedure number a number used to refer to a specific procedure.

procedure-relative relocation table atable of addresses, withinan
assembly-language procedure, each to be relocated relative to the lowest
address in the procedure.

program library a library file with intrinsic units only.

program stack aportion of memory used to store automatic variables,
bookkeeping information about procedure and function calls, and code, if
there is no available extra code space.

psuedo-code or P-code the compiled form of a Pascal program. Psuedo-
code is a machine-independent intermediate code that is interpreted by a
specific machine-dependent interpreter.

pseudo-machine or P-machine asoftware-emulated machine that
executes P-code as its native code. The P-machine has an evaluation stack,
several registers, and a user memory.

psuedo-register aP-machine pointer composed of one word on zero page,
and an X-byte on X-page (except for the SP register).

146 Pascal Technical Reference Manual

§

regular unit aunit whose code is separately compiled and combined with
the host program’s codefile by the Linker.

relocationtable asequence of records that contain information necessary
to relocate any relocatable addresses, within a native-code procedure,
whenever the segment containing the procedure is loaded into memory.

SEG SEGment pointer. A 16-bit pointer on zero page that holds the local
bank-pair address of the highest word of the procedure dictionary of the
segment to which the currently executing procedure belongs. See XSEG.

segment a section of a Pascal program that can be swapped in or out of
memory as required for operation.

segment dictionary block 0 of a codefile that contains information needed
by the Pascal system to load and execute the segments in the codefile.

SEGMENT function afunction that comprises its own unique segment. The
code of SEGMENT functions is not loaded into memory until the function is
called; as soon as it terminates, the space occupied by the code can be used
for something else.

segment number aunique number assigned to each segment. Used as an
index into the segment table.

SEGMENT procedure aprocedure that comprises its own unique segment.
The code of SEGMENT procedures is not loaded into memory until the
procedure is called; as soon as it terminates, the space occupied by the code
can be used for something else.

segment-relative relocation table atable of addresses, within an
assembly-language procedure, each to be relocated relative to the lowest
address in the segment.

segment table a section of the higher addresses of SYSCOM that
comprise a list containing information needed by the P-machine to read code
segments into memory or to allocate space for data segments.

self-relative pointer apointer that points to an address, relative to the
location of itself. To find the address referred to by a self-relative pointer,
subtract the pointer from the address of its location.

B o P e Y S i RIS A ST

Glossary 147

&

separate function aseparately-compiled assembly-language functionina
library. Separate functions must be defined as external functions in the calling

procedure.

separate procedure a separately-compiled assembly-language procedure
in alibrary. Separate procedures must be defined as external procedures in
the calling procedure.

slot one of the 16 entries in a segment dictionary. There is one slot for each
segment in the codefile.

SP evaluation Stack Pointer. An 8-bit pointer to the current top of the
evaluation stack. It is actually the Apple lll hardware stack pointer.

stack see program stack.

stack/heap space aportion of memory used exclusively by the program
stack and heap.

static chain a series of static links. A static chain describes the lexical
nesting levels of a procedure.

static link apointerin a called procedure’s markstack that points to the
markstack of the procedure’s lexical parent.

STRP STRing Pointer. A 16-bit pointer on zero page that points to the bank-
pair address of the top of the linked list of packed arrays of characters and
strings on the stack. See XSTRP.

SYSCOM asection of memory on the stack used by the operating system
and the P-machine to exchange information.

SYSTEM.LIBRARY file alibrary file that contains a group of separately-
compiled Pascal system procedures and functions.

textfile a file containing human-readable text, such as a source program.
tos the operand on the top of the evaluation stack.

unit acollection of procedures that are separately compiled into libraries and
then invoked as modular components of a user program.

148 ’Pascal Technical Reference Manual

¢

unitinfo the lastten characters in aninterface text, necessary for the
Compiler to compile a code segment that uses the interface text.

unlinked file afile that has not been linked with its calling procedure and
procedures that it calls.

user memory the portion of memory not occupied by SOS, the interpreter,
BIOS, and device drivers.

user program the main procedure of segment number 1.

user program global data area an area of memory that holds variables
declared at the outermost lexical level of the user program (level 0).

word 16 bits or two bytes, of which the lower, even-address byte is least
significant on the 6502.

word-aligned aninstruction or structure starting at an even byte (see byte-
aligned).

XBASE BASE procedure pointer. A pointer on X-page that contains the
number of the bank-pair for the MSSTAT field of the activation record of the
most recently invoked base procedure. See BASE.

X-byte abyte onX-page, used to facilitate enhanced indirect addressing.
Also termed the eXtension-byte.

XIPC Interpreter Program Counter. A pointer on X-page that contains the
- number of the bank pair for the address of the next instruction to be executed
in the currently executing procedure. See IPC.

XJTAB Jump TABIe pointer. A pointer on X-page that contains the number of
the bank pair for the highest word of the attribute table in the procedure code
of the currently executing procedure. See JTAB.

XKP program stacK Pointer. A pointer on X-page that contains the number of
the bank-pair for the current top of the program stack. See KP.

Glossary 149

¢

XMP Markstack Pointer. A pointer on X-page that contains the number of the
bank-pair for the MSSTAT field in the topmost markstack on the program stack.
See MP.

XNP New Pointer. A pointer on X-page that contains the number of the bank-
pair for the current top of the heap (one byte above the last byte in use). See
NP.

X-page locations $1600 through $16FF. Also called the extension page.
The X-bytes of the system psuedo-registers reside here.

XSEG SEGment pointer. A pointer on X-page that contains the number of the
bank-pair for the highest word of the procedure dictionary of the segment to
which the currently executing procedure belongs. See SEG.

XSTRP STRing Pointer. A pointer on X-page that contains the number of the
bank-pair for the top of the linked list of packed arrays of characters and
strings on the stack. See STRP.

zero page locations $00 through $FF. The system psuedo-registers reside
here.

150 Pas.cal Technical Reference Manual

Index 151

A addressing context

ABl 78 information 47

ABR 80 ADI 78

absolute value ADJ 67,83

of integer 78 adjustset 83

ofreal 80 . ADR 81

accessing Pascal data Apple lll operating system 2
space 60-62 array declaration(s) 99
activation record(s) 44, 47-49 array element(s) 99

BASE, XBASE registerand 27 array handling 75
in variable declarations 103 array(s) 56, 97,99

MP, XMP register and 43 COMMENT 17
PRIVREF and 29 DISKINFO 14
PUBLREF and 31 dynamictest 100
variables in 65-67 : FILLER 17
with one-word loads and in segment dictionaries 14-17
stores 68-70 INT-NAM-CHECKSUM 16
with procedure and function NAME 30, 31, 32
calls 86-88 packed 43, 44,67,75-76, 99
add integers 78 POINTERLIST 30, 33
add reals 81 | SEGINFO 15
addresses, relocatable 27 SEGKIND 14
addressing SEGNAME 14
indirect 114 string 74
enhanced 41-42 text 100,101,102
zero-page 42 TEXTADDR 15

variable-length packed 100

152 Pascal Technical Reference Manual

ARRAYS 67
ascii2
extended 66
standard 66
ascii2text 18
Assembler 2,6, 8, 23, 30, 31
segments produced by 28
Assembler directive(s) 27
assembly function(s)
calling 54
separate 30
assembly language 20, 23, 54, 124
programming techniques
124-137
assemby procedure(s) 55
calling 54
returning from 60
separate 30
assembly-language code 15
assembly-language function(s)
31
assembly-language procedure(s)
14, 20, 58-59, 124-137
attribute tables of 25-26
BITBRANCH macro 135
DEBUGSTR macro 126
enhanced indirect addressing
and 61
host-communication Linker
information and 31-32
LOCALREG macro 127
MOVE macro 126
MOVEDATA macro
MOVEDINC macro
NOTBITBR macro
PASCALRG macro
POP macro 125
PUSH macro 125
RESET macro 132
RESTREGS macro 130
RMVBIAS macro 126
SAVEREGS macro 129

133

134
136

128

SET macro 131

SOS macro 124

SOSCALL macro 125
SWITCH macro 132
SYSCOM and 45

assembly-language programming

techniques 124-137

attribute table(s) 21, 23-28, 85, 86
of assembly-language)
procedures 25-26

of P-code procedures 24-25

JTAB, XJTAB register and 42, 51

automatic variable(s) 44

B

B 64,68

bank pair(s) 42,44
BASE 27, 44,51, 86, 89
base procedure pointer 43
base procedure(s) 27,43, 51, 70,
86, 87, 89 .
BASE, XBASE 39, 43, 51
base-relative relocation table(s)
26,27

BASEOFFSET 29, 32
BIG 29, 30, 31, 64

BIOS 37,38

bit

enhanced addressing 41
least significant 40
most significant 40
BITBRANCH macro 135
block0 7,8,10

block(s) 7,10

BOMBIPC 45

BOMBP 45
BOMBPROC 45
BOMBSEG 45
BOOLEAN 65

boolean comparisons 82
boolean(s) 65, 80, 96

boot, warm 92

BPT 91

branching 135,136
breakpoint 91

build a one-member set 83
build a subrange set 83
.BYTE 60

BYTE 29, 30, 33

byte array(s) 80, 84
comparisons 84
handling 72

procedure(s) 89-91
byte(s)

high-order 22

low-order 22
byte-aligned structure(s) 42
byte-oriented function(s) 102
byte-oriented procedure(s) 102

C

call base procedure 87

call EXTERNAL procedure 88
call global procedure 87

call intermediate procedure 87
call local procedure 87

call standard procedure 88
calling assembly functions 54
calling assembly procedures 54
calling procedure(s) 25
casejump 85

CASE statement(s) 100,103
CBP 87,88, 89

CGP 87

chain(s)

dynamic 50

static 50

CHAR 66, 96

check against subrange
bounds 79

checksums 16

CHK 79

CiP 87,88

CLP 87

code

assembly-language 15
error 45

native 16, 23

native 6502 7

procedure 22,26, 47

code part(s) 20-28

lengthof 14

location of 14

of segment 8

code segement(s) 7,9, 10, 30, 73,
75

code partof 8, 20-28
DISKINFO array and 14
INTRINS-SEGS fieldand 16
program stack and 44
segment table and 45-47

code size 104

CODEADDR 11,13,14,15, 21, 22,
28

codefile size 20

codefile(s) 2-33

block0 7

library file(s) 6

linked file(s) 6

segment dictionaries 10-33
code part(s) 20-28

- interface text 18-20
Linker information 28-33
segment numbers 17-18
segment(s) 7-10

unlinked file(s) 6

CODELENG 13,14,11, 21,22, 28

COMMENT 12,13,17

comment(s) 14,20

154 Pascal Technical Reference Manual

[

Compiler 2,86, 8,19, 20, 23, 54,
103

COMMENT option 17
IOCHECK option 104
NEXTSEG option 18
procedure(s) 91-92
RANGECHECK option 104
RESIDENT option 104
segments produced by 28
Compiler option(s)
COMMENT 17
IOCHECK 104
NEXTSEG 18
RANGECHECK 104
RESIDENT 104
Compiler procedure(s)
.CONST 31,32
CONSTANT 31,32
constant definition 29
constant reference(s) 28
constant(s) 28, 32, 67-69
global 29, 32
multiple-word 72
packed array 103
CONSTANTS 67
CONSTDEF 29, 31, 32
CONSTREF 29, 31
CONSTVAL 29, 32
CSP 88

CXP 88

91-92

D

data, local 7
dataarea 32,48, 69
dataheap 44

data segment(s) 7,16, 26, 33, 71

activation records and 47
DATASEG 15
DISKINFO array and 14
DATA SIZE 24, 25, 48, 86
segment table and 45, 46

data space 31

DATASEG 11

DB 64,68

DEBUGSTR macro 127

.DEF 27, 30, 31

device driver(s) 37,38

device(s) 45

dictionaries

procedure 22,23

segment 6, 8,10-16, 46
Compiler COMMENT
array in 17
Linker information and 28
MTYPE fieldin 23

DIF 83

directories, disk 45

disk block(s) 7

disk directories 45

DISKINFO 11,13,14

divide integers 78

dividereals 81

don’t-care byte 64

driver(s), device 37, 38

DVI 78

DVR 81

dynamic chain 50, 87

dynamic link 51

dynamic test array(s) 100

dynamic variable allocation 77

dynamic variable(s) 40, 43, 44

E

E + option 103

E-bit 41

end-of-file 29

enhanced addressing bit 41

enhanced indirect
addressing 41-42, 61, 62

ENTERIC 24,26

environment
operating 49
Pascal 2
procedure’s 47
EOFMARK 3,29

EQU 79
EQUBOOL 82
EQUBYT 84
EQUI 79
EQUPOWR 84
EQUREAL 81
EQUWORD 84

error checking 104

errorcode 45

error(s)

execution 45,74,78,79, 86, 89
/O 45

evaluation stack 38-40, 51, 58,
60, 73, 76, 86, 88

operand formats and 65,67, 68
order of parameterson 55
RMVBIAS macroand 126
SP registerand 42
evaluation stack pointer 42
execution error(s) 45,74,78,79,
86, 89

execution speed 104
executiontime 9

EXIT 89,92

exit from procedure 89
EXITIC 24,25

extended address 71

extended ascii2 66

extended load(s) 71

extended store(s) 71

extended word 71
extension page 41

EXTERNAL 33, 54, 56
EXTERNAL function

declaration 29

Index 155

EXTERNAL function(s) 15,18, 54

EXTERNAL procedure
declaration 29

EXTERNAL procedure(s) 15,18,
28, 54, 88

EXTFUNC 29, 33

extra code space 37,38, 39, 43

F

false jump 85

field(s)

BASEOFFSET 32
BOMBIPC 45
BOMBP 45
BOMBPROC 45
BOMBSEG 45
DATA SIZE 24, 25, 86
ENTERIC 24,26
EXITIC 24,25
FORMAT 30, 31
GDIRP 45
INTRINS-SEGS 16
IORSLT 45
LEXLEVEL 24
Linker information 30
MSSTAT 43,50
NPARAMS 33
NREFS 30, 31, 32
NWORDS 30, 32
PARAMETER SIZE 24, 25, 86
PRIVDATASEG 33
PROCEDURE NUMBER 24,
25,26
RELOCSEG NUMBER 26
SRCPROC 33
SYSUNIT 45

tag 97

XEQERR 45

file variable(s) 103

156 Pascal Technical Reference Manual

file(s) 97,100

code 8

global 103

library 6,10,11, 46
library name 11,16, 46
linked 6

private 103-104
program library 11,16

SYSTEM.LIBRARY 11,16, 46

text 9

unlinked 6

fillchar 89

FILLER 12,13,17

FJP 85

FLC 89

FLO 80

float next to top-of-stack 80
float top-of-stack . 80

FLT 80

FORMAT 30, 31,32
format(s)

instruction 64

operand 65

variable(s) 65-67
FORMAT: OPFORMAT 29
.FUNC 30, 31, 33, 54, 58
FUNCTION 54
function call(s) 44,86
function Linker information 33
function value(s) 40, 48
function(s) 25, 33, 47,126
assembly 54
assembly-language 31
byte-oriented 102
EXTERNAL 15,18,54 .
SEGMENT 8,10,14,17-18
separate 33, 54
separate assembly 30

G

GDIRP 45,77

GEQ 79

GEQBOOL 82
GEOBYT 84

GEQI 79

GEQPOWR 84
GEQREAL 81
GEQSTR 82

global address Linker
information 30-31
global address(es) 29
global constant(s) 29, 32
global data area 33
global file(s) 103
global load(s) 69
global procedures(s) 87
global store(s) 69
global variable(s) 27, 31, 49
globalword 69, 70

GLOBDEF 29, 30, 31

GLOBREF 29

GRT 80

GRTBOOL 82

GRTBYT 84

GRTI 79

GRTSTR 82

GTRREAL 81

H(alt 92

handling arrays 75
handling records 75
handling strings 73
hardware stack pointer 42
heap 37,38, 39,77
data 44

high-order byte 22
HOMEPROC 29, 31
host program 7, 31, 33, 54
host program codefile 46

¢
host program variable(s) 29

host segment(s) 18, 58, 59, 61, 62

host-communication Linker
information 31-33
HOSTSEG 11

I

I- 104

I/0 buffer 103

I/O error 45

ICOFFSET 29, 31
identifier reference(s) 28
identifier(s) 28,92

IDS 92

idsearch 92
IF...THEN...ELSE 103
IMPLEMENTATION 19, 20, 32,
103

INC 75

increment field pointer 75
IND 71

index array 75

index packed array 75
index string array 74
indirect addressing 114
enhanced 41-42
indirect load(s) 71
indirect store(s) 71
indirect word 71
indirect-X 40, 60
indirect-Y 40, 60, 61
information, Linker 7
initializing register(s) 127
INN 83 |
instruction 40
instruction format(s) 64
INT 83
INT-NAM-CHECKSUM 12,13, 16
INTEGER 65

integer(s) 78-79, 96
long 56

Index 157

INTERFACE 18, 31,103
interface text 7, 8, 15, 18-20
intermediate address 70
intermediate load(s) 70
intermediate procedure(s) 87
intermediate store(s) 70
intermediate word 70
INTERP 28

interpreter 2,10, 23, 26, 28, 37,
38, 47

extra code space and 43
MSSTAT field and 50
segment table and 46
SYSCOM and 45
interpreter program 2
interpreter program counter
markstack X-byte of 50
interpreter-relative relocation
table(s) 26,28
INTRINS-SEGS 12,13,16
intrinsic segment(s) 14
intrinsic unit name(s) 16-17
intrinsic unit(s) 7, 8-9, 10, 11, 26,
27,33, 71

INTRINS-SEGS field and 16
name(s) 16-17

SEGKIND array and 15
segment number(s) and 17-18
segment table(s) and 46
IOCHECK 104

IORSLT 45

IPC 45,50, 51,74, 76, 86

IPC, XIPC 39, 42, 85

IXA 75

IXP 75

IXS 74

42

158 Pascal Technical Reference Manual

J
JTAB 25,50, 86

JTAB, XJTAB 39, 42, 85

jump instructions 25

jump offset 25

jump table pointer 42

jump table(s) 23, 24, 25
jump(s) 85

K
KP 44,50, 86
KP, XKP 39, 43

L

label 29

LAE 71

LAND 65, 82

LAO 70

LCRANGE 29

LDA 70

LDB 72

LDC 72

LDCI 69

LDCN 69

LDE 71

LDL 69

LDM 72

LDO 70

LDP 77

least significant bit 40
length of code part 14
length of segment 14
LEQ 79

LEQBOOL 82
LEQBYT 84

LEQI 79
LEQPOWR 84
LEQREAL 81
LEQSTR 82

LES 79

LESBOOL 82

LESBYT 84

LESI 79

LESREAL 81

LESSTR 82

LEXLEVEL 24

lexical level 24,27, 43, 50, 51, 86,
87

lexical nesting 10

lexical parent 50, 86
LIBMAP utility program 17
Librarian 7,17,20

libraries 17

shared 9

library file(s) 6,10, 11,16, 46
library name file(s) 11, 16, 46
link(s)

dynamic 51

static 51

LINKED 11

linked file(s) 6

linked list(s) 43,103
LINKED-INTRINS 11
Linker 2, 8,14, 23, 30, 31, 33, 54
Linker information 7, 28-33
field(s) 30

global address 30-31
GLOBDEF 31
host-communication 31-33
Linker information field(s) 30
Linker information location 28
Linker information type(s) 29, 30,
31-33

CONSTDEF 32
CONSTREF 29, 30, 32
EOFMARK 33
EXTFUNC 33
EXTPROC 33
GLOBREF 29, 30
miscellaneous 33
PRIVREF 29, 30, 32
PUBLDEF 32

[

PUBLREF 29,30
SEPFUNC 33
SEPPROC 33

UNITREF 29, 30, 32
list(s), linked 43

LITYPES 29

LLA 69

LNOT 65,82

load a packed array 75
load a packed field 77

load byte 72

load constant NIL 69

load constant string address 73
load extended address 71
load extended word 71

load global address 70

load global word 70

load indirect word 71

load intermediate address 70
load intermediate word 70
load local word 69

load multiple words 72

load multiple-word constant 72
load one-word constant 69
load(s)

constant 68

extended 71

global 69

indirect 71

intermediate 70
multiple-werd 72

local data 7

local load(s) 69

local procedure(s) 87

local store(s) 69

local variable(s) 25, 43, 47, 49
local word 69

LOCALREG macro 127
location

of code part 14

of segments(s) 10,14
LOD 70

logical AND 82
logical NOT 82
logical opcodes 82
logical OR 82

LONG INTEGER 65
long integer operation(s) 18
long integer(s) 56, 96
LONGINTIO unit 18, 20
LOR 65,82

low-order byte 22
LPA 43,75

LSA 43,73

M
machine language 38
machine type See MTYPE
macro(s) 113,115
BITBRANCH 135
DEBUGSTR 127
LOCALREG 127
MOVE 126
MOVEDATA 133
MOVEDINC 134
NOTBITBR 136
PASCALRG 128
PUSH 125
RESET 132
RESTREGS 130
RMVBIAS 126
SAVEREGS 129
SET 131
SOS 124
SOSCALL 125
SWITCH 132
main segment 14
mark heap 77
markstack dynamic link 50
markstack evaluation stack
pointer 50

160 Pascal Technical Reference Manual

§

markstack interpreter program
counter 50

markstack jump table pointer 50
markstack pointer 43
markstack program stack
pointer 50

markstack segment pointer 50
markstack X-byte of interpreter
program counter 50
markstack(s) 43, 44,47, 48,
49-52, 86, 87, 88

MAXLC 29

MAXPROC 29

memory management 118
memory map 37, 38
memory space 65, 67
memory use 111

MODI 79

modulo integers 79

most significant bit 40
MOV 75

MOVE macro 126

move words 75

MOVEDATA macro 133
MOVEDINC macro 134
moveleft 90,102, 112
moveright 91

moving data 133,134
MP 44, 48, 50, 86

MP, XMP 39, 43, 49, 51
MPI 78

MPR 81

MRK 45,77

MSDYN 48, 50

MSIPC 48, 50, 89
MSJTAB 48, 50

MSKP 48, 50

MSSEG 48,50

MSSP 48,50

MSSTAT 43, 48, 86, 87
MSSTRP 48

MSXIPC 48, 50
MTYPE 11,13,15,23
multiple word(s) 72
multiple-word load(s) 72
multiple-word store(s) 72
multiply integers 78
multiply reals 81 -

MVL 90

MVR 91

N

n-way branch 132
NAME 29, 30, 31, 32
native 6502 code 7
native code 2,16, 23
negate integer 78
negatereal 81

NEQ 79

NEQBOOL 82

NEQBYT 84

NEQI 79

NEQPOWR 84
NEQREAL 81

NEQSTR 82
NEQWORD 84

nested segment(s) 10
new 43,45,77

new variable allocation 77
NEXTBASELC 29, 33
NEXTSEG Compiler option 18
NGl 78

NGR 81

no operation 92
non-base procedure(s) 88
non-integer comparisons 79-80
NOP 91,92

NOTBITBR macro 136
NP 44

NP, XNP 39, 51,77
NPARAMS 29, 33

¢

NREFS 29, 30, 31, 32
number(s)

procedure 22

segment 11,12,16,17-18, 22
NWORDS 30, 32

NWORDS: LCRANGE 29

o

one-member set(s) 83

one-word load(s) 68-71
constant 68

global 69

indirect 71
intermediate 70

local 69

one-word store(s) 68-71
constant 68

global 69

indirect 71
intermediate 70

local 69

op-code 68

operand 30

operand format(s) 65

operand source 40

operand(s) 65, 68

operating environment 49

operating system 92
Applelll 2

Pascal 2,16,17-18, 24, 44, 45,
46

operation(s), long integer 18

OPFORMAT 29

overflows 78

P

P-code 2,7,16, 20, 23, 25

P-code constant(s) 67-68

P-code procedure attribute
table(s) 24

P-code procedure(s) 20, 23-25

Index 161

P-machine 2, 25, 36-51, 64, 88
activation record(s) 47-49
dataheap 44
enhanced indirect

addressing 41-42
evaluation stack 38-40
extra code space 43
markstack(s) 49-52
program stack 44
registers 42-43
system memory use 36-38

P-machine instructions 68

packed array constant(s) 100,103

packed array(s) 43, 44,67, 76,
99

packed field(s) 77

packed record(s) 97

packed size 96

packing algorithm 96-100
array(s) 99
file(s) 100
record(s) 97-98
set(s) 99

page(s) 19

PARAMETER SIZE 24, 25, 48, 86

parameter(s) 58, 60, 61 -
B 64,68
DB 64,68
passed 49
passing 55
procedure 47,49
SB 64,68
UB 64,68
W 64,68

parameter-passing 58

| Pascal data space,

accessing 60-62

Pascal environment 2

Pascal language programming
techniques 100-123

Pascal operating system 2,16,
17-18, 24, 44, 45, 46

162 Pascal Technical Reference Manual

¢

Pascal unit number(s) 107-111
PASCALIO unit 18, 20
PASCALRG macro 128
passed parameter(s) 48, 49
passing by address 62
passing by reference 57, 59
passing by value 57

passing parameters 55
POINTER 66

pointer(s) 96

base procedure 43
evaluation stack 42
hardware stack 42

jump table 42

markstack 43

markstack evaluation stack 50
markstack jump table 50
markstack program stack 50
markstack segment 50
program stack 43

segment 42

self-relative 22, 24, 26, 27
string 43

POINTERLIST 29, 30, 31, 32, 33
POP macro 125

pop the stack 114

pop top of the stack 125

POT 81

power of ten 81

.PRIVATE 27, 32

private file(s) 103-104

private variable(s) 29
PRIVDATASEG 29, 33
PRIVREF 29, 30, 31, 32
.PROC 30, 31, 33, 54, 59, 61, 62
PROCEDURE 54

procedure call 49

procedure call(s) 44, 51, 86
procedure code 22,26, 47, 86
procedure dictionaries 20-22, 23,
42, 51

procedure Linker information 33
procedure name 29
procedure number(s)

33,45
procedure parameter 47
procedure’s environment 47
procedure(s) 20-28, 33, 47-48

assembly 54

returning from 60

assembly-language 14, 20,

25-28, 58-59, 61

host-communication linker
information and 31, 32

SYSCOM and 45

attribute table 23-28

base 27,43, 51,70, 87,89

byte array 89-91

byte-oriented 102

calling 25

Compiler 91-92

EXTERNAL 15,18, 28, 54, 88

global 87

intermediate 87

local 87

non-base 88

P-code 20, 23-25

SEEK 18

SEGMENT 8,10, 14, 17-18,

22,100, 102

separate 33, 54

separate assembly 30

standard 88

system 45

system support 89-92
procedure-relative relocation

table(s) 26,28
PROCEDURE. ..

EXTERNAL 33
PROCRANGE 29
PROGRAM 9
program, user 8,14
program libraries 9,16

22,24, 25, 26,

$

program library file(s) 11,16
program stack 37, 38, 39, 44, 73,
74,75, 86

activation record(s) and 47, 49,

51

packed array constants and 103

pointer 43
segment tablein 46
string array constants and 103
program(s) 10
programming techniques 96-138
Apple lll packing
algorithm 96-100
assembly-language
techniques 124-137
Pascal language
techniques 100-123
pseudo-code See P-code

pseudo-machine See P-machine

pseudo-register(s) 39, 42, 49, 61,
88

PUBLDEF 29, 31, 32

.PUBLIC 27, 31, 61

PUBLREF 29, 31

push 40

pushaword 113

PUSH macro 125

push top of the stack 125 -

Q

R

R- 104
RANGECHECK 104
RBP 89

REAL 66

real comparisons 81
real number(s) 18
real(s) 72,80-81,96
comparisons 81
record comparisons 84

record handling 75
record size 98
record(s) 56, 97
activation 44, 47-49
BASE, XBASE register
and 27
in variable declarations 103
MP, XMP register and 43
PRIVREF and 29
PUBLREF and 31
variables in 65-67
with one-word loads and
stores 68-70
with procedure and function
calls 86-88
comparisons 84
packed 97
RECORDS 67
.REF 27,30
reference(s)
constant 28
identifier 28
variable 28
register(s) 42-43
zero-page address-
pointer 127,128
regular unit segment(s) 17-18
regular unit(s) 8, 14,15, 18, 28,
29, 31, 32
release 43
release heap 77
relocatable address(es) 27
relocation table(s) 27-28
base-relative 26, 27
interpreter-relative 26, 28
procedure-relative 26, 28
segment-relative 26, 27
RELOCSEG NUMBER 26, 27
reserved word(s) 92
RESET macro 132
resetting bits 132

residence chain(s) 105-107

164 Pascal Technical Reference Manual

¢

RESIDENT Compiler option 104

restoring registers 130
RESTREGS macro 130
return addr 55

return address(es) 55, 56, 58, 59,

61, 62

return from base procedure 89
return from non-base
procedure 88
returning from assembly
procedure(s) 60
RLS 45,77
RMVBIAS macro 126
RND 80

RNP 88, 89
roundreal 80
runtime error 104

S

SAS 74

SAVEREGS macro 129
saving registers 129
SB 64,68

SBI 78

SBR 81

SCALAR 66
scalar(s) 67,96
scan 90,102

SCN 90

SEEK procedure 18
SEG 50,51, 86
SEG, XSEG 39, 42
SEGINFO 11,13,15-16
MTYPE 11,13
SEGNUM 11,13
VERSION 11,13
SEGKIND 11,13,14-15
DATASEG 11,15
HOSTSEG 11,14
LINKED 11,14
LINKED-INTRINS 11,15

SEGPROC 11,14
SEPRTSEG 11,14-15
UNITSEG 11,14
UNLINKED-INTRINS 11,15
segment dictionaries 6-7, 8,
10-16, 23, 46

array(s) 14-17

code part(s) 20-28
COMMENT array 17
FILLER array 17
INT-NAM-CHECKSUM

array 16

interface text 18-20

Linker information 28-33
SEGINFO array 15
segment numbers 17-18
TEXTADDR array 20
SEGMENT FUNCTION 9
SEGMENT function(s) 7,8, 9,10,
14,17-18
segment length 14
segment location 10, 14
segment manipulations 119
segment number(s) 11,12, 15, 16,
17-18, 22, 45, 46
segment offset 31
segment pointer 42
SEGMENT PROCEDURE 9
SEGMENT procedure(s) 7,8, 9,
10, 14,17-18, 22,100, 102

segment table(s) 15, 45, 46-47

segment(s) 6, 7-10,11,17-18, 32

code 7,9,10,30,73,75
code partof 8, 20-28
DISKINFO array and 14
INTRINS-SEGS fieldand 16
program stack and 44
segment table and 45-47

code partof 8

data 7,16, 26, 33, 71

¢

activation records and 47
DATASEG 15
DISKINFO array and 14
DATA SIZE 24,25, 48, 86
segment table and 45, 46
host 18
intrinsic 14
lexically nested 10
linking procedures and functions
between 33
loading into memory 43
main 14
pointer 42
regular unit 17-18
unit 15,20
segment-relative relocation
table(s) 26,27
SEGNAME 11,13,14
SEGNUM 11,13,15
SEGNUMBER 29
SEGPROC 11
self-relative pointer(s) 22, 24, 26,
27
semipermanent storage 60
separate assembly function(s)
29, 30
separate assembly procedure(s)
29, 30
separate function(s) 33, 54
separate procedure(s) 33, 54
SEPFREF 29
SEPFUNC 29, 33
SEPPREF 29
SEPPROC 29, 33
SEPRTSEG 11
SET 67
set comparisons 84
set difference 83
set intersection 83
SET macro 131
set membership 83

Index 165

setunion 83

set(s) 56, 67-68, 72, 80, 83-84,
97,99

setting bits 131

SGS 83

shared libraries 9

short index and load word 71
short load global word 69
short load tocal word 69
short load one-word constant
signed byte 64

SIND 71

size of codefile(s) 20
SLDC 68

SLDL 69

SLDO 69

Slot(s) 10,11,14,16
Sophisticated Operating
System See SOS

SOS 2,37, 38, 41, 60, 111
SOS call number(s) 137
SOS calls 124,125,137
SOS device name(s) 107-111
SOS device number(s) 107
SOS extended memory 111-123
SOS macro 124

SOS service 124
SOS.INTERP file 2

SOS~-10 107,118

SOSCALL macro 125

source text 19, 23
INTERFACE section 18

SP 39, 42,50, 86

SQl 78
SQR 81
square integer

squarereal 81

SRCPROC 29,33
SRO 70

SRS 83

68

78

166 Pascal Technical Reference Manual

stack 43,113
6502 hardware 40
evaluation 38, 39, 42
program 39, 43, 44, 46
stack/heap 43,101, 37, 38

stack/heap space 39, 60, 73, 75

standard ascii2 66
standard library unit(s) 18
standard procedure(s) 88
static chain 50

static index and load word 71
static link pointer 86
static link(s) 47, 51, 87
STB 72

STE 7

STL 69

STM 72

STO 71

storage

semipermanent 60
temporary 60

store byte 72 ,
store extended word 71
store global word 70
store indirectword 71
store intermediate word 70
store into a packed field 77
store local word 69
store multiple words 72
store(s), constant 68
global 69

indirect 71
intermediate 70
multiple-word 72
STP 77

STR 70

string, pointer 43

string address 73

string array(s) 74

string assign 74

string comparisons 82

string constant(s) 100
string handling 73
string pointer 43
string(s) 43, 67-68, 73, 80, 82, 96
comparisons 82

passing 56

program stack and 44
STRINGS 67

STRP 44,86

STRP, XSTRP 39, 43, 51
structure(s)

byte-aligned 42
word-aligned 42
subrange set(s) 83
subrange(s) 96

subtract integers 78
subtract reals 81

SWITCH macro 132

SYSCOM 37, 38, 44, 45-46, 77
system communications area 45
system memory use 36-38
system procedure(s) 45
system support procedure(s)
89-92

byte array procedure(s) 89-91
Compiler procedure(s) 91-92
SYSTEM.LIBRARY file(s) 9,11,
16, 46

SYSUNIT 45

T
table(s)
attribute 27, 42, 51
relocation 27-28
base-relative 26, 27
interpreter-relative 26, 28
procedure-relative 26, 28
segment-relative 26, 27
segment 45, 46-47
tag field(s) 97
temporary storage 60

text
ascii2 18
interface 7, 8,18-20
source 23
text array(s) 100, 101, 102
text file(s) 9
TEXTADDR 11,13,15, 20
textfile(s) 19, 20
TIM 92
time 92
TNC 80
top-of-stack 40, 55,65 See
also tos
top-of-stack arithmetic 78-84
byte arrays 84
integers 78-79
non-integer
comparisons 79-80
reals 80-81
sets 83-84
strings 82
tos 74,75,77, 89, 91
in operand formats 65-66
in top-of-stack arithmetic 78-84
with one-word loads and
stores 70-71
with multiple-word loads and
stores 72
reesearch 91
TRS 91

runcatereal 80

J
JB 64,68

JJP 85
inconditional jump 85
JNI 83

initinfo 20
Initname 29

init segment(s) 15, 20

Index 167

unit(s) 6,7,8,14,17-18
intrinsic 7, 8-9, 10, 11, 26, 27,
33, 71
INTRINS-SEGS fieldand 16
name(s) 16-17
SEGKIND array and 15
segment numbers and 17-18
segment tables and 46
LONGINTIO 18
PASCALIO 18

regular 8,14,15,18, 28, 29,
31,32

standard library 18

UNITREF 29, 32

UNITSEG 11

unlinked file(s) 6

UNLINKED-INTRINS 11

unpacked size 96

unsigned byte 64

USE 28

user memory 38, 43

user program 8,14,17, 24

USES 8-9,18

4

value(s)

function 40

SEGKIND array 14
VAR 103

VAR parameter(s) 56
VARIABLE 31

variable declaration(s) 103
variable definition 29
variable format 65-67
variable reference(s) 28,100
variable symbol 29

168 Pascal Technical Reference Manual

variable(s) 28, 32
automatic 44
dynamic 40, 43, 44
file 103
format 65-67
global 27,31, 49
host program 29
local 25, 43,47, 49
private 29

variable-length packed
array(s) 100

VERSION 11,13

version number 16

volume number(s) 45

w

W 64,68

warm boot 92

WORD 60

WORD 29, 30, 31, 32

word array comparisons 84
word(s) 40, 64, 80 ‘
reserved 92
word-aligned structure(s) 42

X

X-byte(s) 41,42, 60,127,128
X-page 39, 41,42
XBASE 27
XEQERR 45
XIPC 50, 51, 86
XIT 92

XJP 85

XJTAB 25, 51, 86
XKP 51

XMP 51, 86
XSEG 51,86

XSTRP 51

Y

Y4

zero page 39, 41,42, 60,129,130

zero-page address-pointer
register(s) 127,128

zero-page addressing 42

