
1
---+----+____�~~I___f_+_~+__+_+__+___+___+_

r
l~~~----I----I~~I---+-~+--~+-~~

Apple III

~~ Sta";dard. Device·Drivers .
"L ~ -;; "---_ • ~ _ -: "_. ~_

~r"'.. - -~t

:. Mahua/ :·
,~.. . '

r
[

Contents

Preface ix

1 Introduction to Device Drivers 1

1 Why Device Drivers?
2 Drivers Are Part of SOS
3 Drivers Look Like Files
4 Communications Formats

2 The System Configuration Program 5

9 Reading a Device Driver
11 Deleting a Device Driver
13 Editing Driver Parameters
15 Device Name
15 Device Type and Subtype
16 Driver Status
16 Editing the Configuration Block
18 The Comment Field
18 Changing the System Parameters
20 Reading All Parameters
20 Number of Disk III Drives
20 Peripheral Slot Assignment
21 Standard Character Set
23 Keyboard Layout
24 Generating a New System
25 Quitting the Program
26 Using Multiple Configurations of One Driver

273 The Console Driver

28 What the Console Does
28 Screen Output
30 Keyboard Input
31 Normal Screen Output
31 Text Modes and Character Sets
32 The Viewport
33 Cursor Motion and Controls
34 Screen Control Codes
46 Keyboard Input
47 The Keyboard
49 Type-Ahead
50 Backspace, Retype, and Cancel
51 Cursor Commands: ESCAPE Mode
56 Console Control Keys
59 Advanced Techniques
60 Console Status Requests
65 Console Control Requests

4 The Graphics Driver 73

74 The Graphics Modes
75 Graphics Tools
76 The Color Operator Table
79 The Transfer Modes
80 Graphics Output
82 Screen Control Codes
90 The Limited Color Mode
93 Transfer Mode Anomalies
94 Memory Requirements
94 Reading the Screen
95 The Graphics Configuration Block
97 Advanced Techiques
97 Graphics Status Requests
98 Graphics Control Requests

5 The Printer Driver 99

99 Basic Operations
100 Printer Output
101 Changing the Configuration Block
105 Connecting the Printer

6 The RS232 Driver 107

107 Introduction
109 Setting Up for Commonly-used Devices
110 Using the RS232 Driver
110 Opening the Driver
111 Read Operations
112 Write Operations
113 Closing the Driver
113 Communications Protocols
114 No Protocol
114 The XON/XOFF Protocol
115 The ENQ/ACK (or ETX/ACK) Protocol
116 The Hardware Handshake Protocol
117 Using a Modem
118 Using a Modem Eliminator
118 Changing the Configuration Block
122 Advanced Techniques
123 RS232 Status Requests
126 RS232 Control Requests

7 The Audio Driver 129

129 Tone Parameters
131 Producing Tones
132 Count Values for Tones
133 Generating Frequencies

Appendices

A Console Quick Reference 135

135 Keyboard Codes
136 Standard Keys
137 Modifier Keys
137 Special Keys
138 Cursor Command Keys
139 Console Control Keys
140 The ASCII Character Set
141 Screen Control Codes
142 Color Codes
142 Screen Modes
143 Cursor Movement Options
144 Character Set Photo
145 NTSC Color CompatabilityTable

B Graphics Quick Reference 147

147 Screen Control Codes
149 Color Codes
149 Graphics Screen Modes
149 Transfer Modes
149 Black-and-White Transfer Tables
149 Color Transfer Tables
153 Sample Graphics Pictures

155C Printer Quick Reference

155 Printer Configuration Block
156 Printer Speed Table
156 Communications Format Table

D RS232 Quick Reference 157

157 RS232 Configuration Block
158 Mode Settings
158 Data Rates
159 Data Formats
159 DCBValues for Commonly-used Devices

E Audio Quick Reference 161

161 Data Format
161 Pascal Data Structure
162 Count and Frequency Relationship
162 CountTable
162 Duration and Time Relationship

F System Error Messages 163

163 Device System Error Codes

G Console Data Formats 165

165 Keyboard Character Formats
166 Console Character Sets
166 Character Cell Format
167 Character-set File Format

169H System Calls in Pascal

169 Making System Calls in Pascal
169 The Unitstatus Procedure
170 The Req uest Code

I Using Utilities with Pascal 173

173 Changing the Program Name
174 Configuring the Format Drivers

J Conversion Table 175

1!76 Decimal-to-hexadecimal Conversion

K Two-Stage Boot Utilities 177

177 Creating a Two-Stage Boot

Index 179

Preface

This manual describes the standard device drivers that control the
input/output devices built into your Apple,lll and some of the more
commonly attached devices. This manual will be useful if you are
writing programs that use these devices. The information about the
.PRINTER device driver will also be useful if you are using a printer
other than a Qume printer with your Apple III.

When you add a peripheral: input/output device to your Apple III, you
will need to use the System Configuration Program, which is supplied
on the Utilities diskette. This manual tells you how to use the System
Configuration Program to install or remove device drivers and to
modify the parameters in device drivers; you ' ll need to do this
whenever you install or remove a peripheral device.

If you have not already done so, you should read the Apple III Owner's
Guide. It gives an introduction to the use of the System Configuration
Program and the Utilities Filer. It also describes the way the operating
system in the Apple III uses files and devices. Once you know how
your Apple III uses devices in general, you can read this manual to
learn how to use the specific devices it describes.

The device drives described in this manual are:

• the Console driver, which controls the keyboard and the text
display;

• the Graphics driver, which controls the different modes of
graphics displays;

• the Printer driver, which controls the built-in RS-232-C serial
port for output only; for example, a printer;

• the RS-232 driver, which controls bidirectional operation of
the built-in RS-232-C serial port ; and

• the Audio driver, which controls the built-in speaker.

If you have purchased other peripheral devices or device drivers, you
should refer to the manuals accompanying those products for
information about their device drivers.

Introduction to Device Drivers

Why Device Drivers?

The Apple Ill's Sophisticated Operating System (SOS) uses special
programs called device drivers to communicate with all peripheral
devices. Whether a given device is built in or added later, SOS uses a
device driver to exchange information with it. This manual describes
the device drivers (the console, graphics, printer, 'RS-232, and alldio
drivers) that are suppllied with every Apple III computer system. It also
describes the operation of the System Configuration Program, which
is used to install and modify these and other device drivers.

Peripheral devices such as the keyboard, video screen, speaker, and
communications ports are the eyes and ears and other senses of your
computer. Device drivers connect these senses to SOS. A device
driver performs four necessary functions :

• It processes data generated by your programs and sends it to
the device as output.

• It processes data generated by the device and sends it to your
programs as input.

• It enables your programs and SOS to control the operation of
the device and of the driver itself.

• It enables your programs and SOS to read the status of the
device and of the driver itself.

Not all drivers perform all of these functions. Some drivers can
process data in only one direction, such as the printer driver, which
can only process output.

User Program

SOS

Printer Conso le Audio other
Driver Driver Driver drivers

Printer Console Speaker other
devices

Figure 1: Drivers are part of SOS

Drivers are Part of SOS
When you boot the Apple III, the operating system is loaded into
memory. When the operating system starts working, one of the first
things it does is to fetch the device drivers from the boot diskette and
store them in the Apple Ill's memory. Without these drivers, SOS is
effectively blind, deaf, and mute.

Drivers are stored in a file named SOS.DRIVER on each SOS boot
diskette. A file with this name must be present for SOS to complete
the bootstrap operation. The information in this file is called the
System Configuration. You can examine and modify this information
with the System Configuration Program, described in the next
section .

Along with SOS, the device drivers stay in the Apple's main memory
until you turn off the power or re-boot the system. All
communications between your programs and the device drivers are
handled by SOS.

Once the drivers are loaded in the App,le Ill's memory, they can't be
changed without re-booting the system (with a few exceptions, such
as parameters in the RS232 d.river). If you want to add a new device
driver, remove a driver you don 't need, or change a driver's default
parameters, you must use the System Configuration Program to
make a new SOS.DRIVER file, and then re-boot.

Devices Look Like Files
Even though the Apple III uses two kinds of perip'heral devices, block
and character, the data files your programs send to and from these
two k,inds of devices look just a'like. Device drivers for character
devices make their devices look like data files, which your program
can read and write with normal file operations. For further discussion
of files, see the Apple III Owner's Guide.

For example, a BASIC program that lists itself on the printer could be
written like this:

10 OPEN#1, " .PRINTER"
20 OUTPUT# 1
30 LIST
40 CLOSE#1

and a Pascal procedure to print a message on the printer might be
written like this:

procedure prinLmsg(msQ--text:string);
var f:text;
begin

rewrite(f,.' PRINTER');
write I n(f, mSQ--text);
close(f) ;

end;

Device files are character files . You can open, read, write, and close
device files, but you cannot read from them or write to them as
random-addressed records, and you can't create, delete, or rename
them .

Communications Formats

The basic unit of communication between your programs and a
device driver is the byte. A byte consists of eight bits, so it can have
any of 256 distinct values. Data passes between programs and drivers
as streams of bytes. The byte streams can be any length , but the
bytes themselves are usually treated as independent units.
Each byte that is sent to or received from a device driver can be
interpreted as one of four things: a text character, a command, an
argument of a command, or a byte of binary data. Drivers and
programs determine whether a given byte is a text character, a
command, an argument, or data by the value of the byte and the
context in which the byte appears.

Text is usually printed information that a person will type or read. All
of the devices that you are likely to use with your Apple III transmit
and receive text using the American Standard Code for Information
Interchange (ASCII) . This code defines a set of 128 characters with
va'lues from (/J to 127. Each of these characters can be stored in one
byte.

Commands are used to tell device drivers to perform certain
functions and to find out when something has happened to the
device or the driver. A command is a byte with a value from (/J to 31
embedded in the data stream sent to the driver. The ASCII defines
these values as control characters; they are not used for text
characters. Command bytes are also called control codes.

Arguments are additional data that some commands need in order to
function properly. An argument byte is one of a fixed number of bytes
following a command byte; the number of argument bytes is a
characteristic of each command. Even though a byte has the same
value as a command byte or a text character, it will be interpreted as
an argument if it follows a command that requires arguments.

Data bytes can have any value from (/J to 255, and, like arguments, are
identified by means of a byte count. If a driver is transferring program
code or graphics data, for example, it would first transmit an
argument telling the rece iving device exactly how many data bytes to
expect.

The System Configuration Program

The System Configuration Program is a tool for adding, removing,
and modifying device drivers so as to change the configuration of the
operating system. You will need to do this any time you add or remove
a peripheral device such as a disk drive or a printer.

The System Configuration is stored in the file SOS.DRIVER on the
boot diskette. It determines how SOS communicates with the
peripheral and mass storage devices built into or attached to your
Apple III. In addition to the device drivers themselves, the system
configuration includes four system parameters :

• the number of disk III drives you have connected to your
Apple III;

• the character set your Apple III uses to display text;

• the ASCII character codes assigned to each key on the
keyboard; and

• the location of the peripheral interface cards in the four
peripheral connectors inside the Apple III itself.

To add, remove, or change a device driver or system parameter, you
use the System Configuration Program to edit a SOS.DRIVER file,
adding drivers from other mes as appropriate. You then store this new
version of SOS.DRIVER on a SOS boot diskette and use the diskette
to boot your Apple III.

Once you have made your new configuration and verified that i,t
works properly, you should put a copy of the new SOS.DRIVER :file
into the root directories of the appropriate boot diskettes.

Every boot diskette may contain a different system configuration in
the file SOS.DRIVER. Although the system parameters for your
Apple III will probably be the same in each one, the ddvers are ,likely
to be different. Only those drivers that are in the system
configuration you boot are available for use, until you re~boot the
system with a different disk. On the other hand, the more drivers
there are in a given configuration, the more disk space and memory
the drivers will occupy. On each diskette supplied by Apple, there is a
different set of drivers, appropriate to your use of the programs on
each diskette. If you don't need some of these drivers, you may delete
them to save space. Likewise, if you need a driver, add it to the
system configuration on the appropriate boot diskette.

You must make sure that each boot diskette you create
contains the appropriate system conftguration. In particular,
any system configuration you ma'ke must support the
.CONSOLE device driver in order for your Apple III to operate.

The System Configuration Program is just a special-purpose editor
you use to create and modify SOS.DRIVER files. The System
Configuration Program is supplied on the Apple III Utilities diskette.

Boot the Utilities diskette using the standard procedure for booting
diskettes, described in the Apple III Owner's Guide. The screen will
show the Utilities menu. Select the SYSTEM CONFIGURATION
PROGRAM option {refer to the Apple III Owner's Guide for a full
description of option selection and other features of the Uti lites
Diskette}. The screen will show the Configuration menu:

Photo 1. Configuration Menu

This menu shows the SCP options. You can read in, remove, and edit
device drivers, change the system parameters, and generate a new
configuration file. After you finish using an option, the screen will
show the Configuration menu again.

Whenever you se,lect an option from the Configuration melilU,
the diskette with the System Configuration Program must be in
the drive it was in when you started using the program. This is
normal,ly the Utilities diskette in the built-in disk drive. If you
have removed this diskette when you select an option from the
configuration menu, the system will ask you to put it back.

You start creating a system configuration by reading in an existing
configuration and editing it with the SCP. As you add device drivers
and change system parameters, the program keeps this data in the
Apple Ill's memory. When you are satisfied with the configuration you
have made, the program writes all the data into a file on a diskette.

You should start by reading your current system configuration into
memory. This will give you the standard device drivers and system
parameters, which you can change as you wish.

An outline of a normal session to edit the system configuration on
one boot diskette is shown below. The following sections of the
manual explain each option in detail.

lb. To protect yourself from accidental destruction of your
valuable i:)oot diskettes, start with a copy of the boot diskette
you want to re-configure. To make the copy, use the Utilities
Filer as described 'in theApple III Owner's GUide.

1. Boot the Utilities diskette and select the SYSTEM
CONFIGURATION PROGRAM option.

2. Select the option READ A DRIVER FILE and get the current
SOS.DRIVER file from the boot diskette.

3. Select the option DELETE A DRIVER FILE to remove any
device drivers you no longer need.

4. Select the READ option again to load new drivers from other
diskettes, if necessary.

5. Select the option EDIT DRIVER PARAMETERS to configure
each driver to suit your needs. I'nstructions on special
configurations for a given driver are included in the
documentation of that driver.

6. Select the option CHANGE SYSTEM PARAMETERS to set the
number of disk drives, the character set, the keyboard layout,
and the location and function of peripheral interface cards in
the Apple Ill's four peripheral connectors.

7. Select the option GENERATE NEW SYSTEM to verify that the
changes you have made are valid and to write the new
configuration onto the copy boot diskette. You may write it to
a file with any name you wish, but typically it will be
SOS.DRIVER. If a file with the name you select already exists,
the program will give you the option of unlocking and
removing the previous file before writing the new one. You will
need to do this if there isn 't enough room on the boot
diskette for both the old file and the new one.

8. Select the QUIT option to leave the System Configuration
Program, then use the newly configured diskette to boot the
system.

9. Verify that each driver in the new configuration works
properly. If the new configuration does not work, re-boot the
Utilities diskette and use the System Configuration Program
to read the faulty configuration and repair it.

Reading a Device Driver

The READ A DRIVER FILE option enables you to read device drivers
and add them to the configmation being bum in the Apple Ill's
memory. When you select this option, the screen shows the following:

Photo 2. Read a Driver File

The top section of the screen contains a list of the names of all
device drivers cu rrently in memory. Initially this list is empty; as you
read in drivers, it will grow. The System Configuration Program can
keep track of up to 32 drivers at once, depending on the amount of
memory each driver requires.

To read a driver, insert the diskette containing the driver file and
specify the path name of the file that contains the driver. The System
Configuration Program gives you three different ways to specify the
file you want:

• Type the complete path name of the file and press RETURN;

• Use the right and left arrow keys to edit the default pathname
that appears on the screen ; or

• Type a file pattern consisting of an incomplete pathname with
the wildcard (=) in it, press down-arrow, then select a
pathname from the menu of names that appears.

The editing and menu-selection methods used here are the same as
the file-selection methods described in the chapter THE OPERATING
SYSTEM AND FILES in the Apple III Owner's Guide . You can use the
READ option to load either of the two kinds of driver files. One kind
of driver file, sometimes called a driver code file, contains only a
device driver or module in code form. A separate device driver
supplied with a peripheral is usually this code-on 'ly form of driver file.
The second kind of driver file contains system parameters in addition
to driver code. This kind of driver me is created with the System
Configuration Program; examples include SOS.DRIVER and
CONSOLE.DRIVER.

When you create a new configuration, you use the READ option to
load driver code files and driver files that include system parameters.
The system parameters are automatically loaded with the first driver
file you read that has parameters in it.

To load the current system configuration from one of your boot
diskettes, insert the diskette into a disk drive and type the path name
of the configuration file. For example, if you use the built-in drive,
type:

.D1/S0S.DRIVER

and press RETURN.

When the file has been read, the names of the device drivers the file
contains will be added to the list at the top of the screen. Because
this file was generated by the System Configuration Program and so
contains system parameter data, and no system parameter data has
yet been set, the message

System Parameters are being loaded from the file.

appears briefly at the bottom of the screen.

A group of one or more consecutive driver names each preceded by a
plus sign (+) indicates that they are part of a driver module. A driver
module is a group of related device drivers that share programming
or resources. They are grouped this way for more efficient use of the
Apple Ill's time and memory. All consecutive drivers marked with plus
signs belong to the same module as the preceding driver in the list.

Many device dnivers and driver modules can be stored in a single file.
Device drivers are created with the Apple III Pascal Assembler, part of
the Apple III Pascal System. If you wish to know more about creating
device drivers, refer to the Apple III SOS Reference Manual, the
Apple III Driver Writer's Guide, and the Apple III Pascal Program
Preparation Tools Manual.

Once the file has been read, the System Configuration Program will
ask you for another filename. If you do not want to read more device
drivers, press ESCAPE to return to the Configuration menu .

Deleting a Device Driver

The option DELETE A DRIVER allows you to remove one or more
device drivers from the current configuration. Since device drivers
are always present in the SOS.DRIVER file, and are resident in your
system's memory from the time you boot, unused device drivers may
be taking up diskette and memory space that could be put to better
use storing a program or other data. For example, if you have a text
processing program that does not use graphics, you can remove the
.GRAFIX driver from your SOS.DRIVER file in order to get more disk
and memory space.

If you choose this option when you have not read any device drivers
with the SCp, the screen will show the message

No device drivers have been read.

and the program will return to the Configuration menu. If, however,
there are device drivers that you can delete, the screen shows the
followi ng:

Photo 3. Delete a Driver

The top section of the screen contains a list of the names of all
device drivers currently in memory. The program now waits for you to
specify the driver you wish to delete. You can type the number that
appears to the left of the driver's name or use the up-arrow and
down-arrow keys to move the cursor to the name of the driver and
press RETURN. If the driver you wish to delete is part of a driver
module, you cannot delete it alone; you must remove the entire
module. The program will list the other drivers that will be deleted
when you remove the one you indicated and ask if you want to
continue. If you want to remove all of the drivers in the module, type
the letter Y (for Yes). Otherwise, none of the drivers will be deleted ,
and you will be asked again which driver to delete.

To keep you from deleting a driver inadvertently, SCP will ask you for
confirmation before deleting any driver. If you really want to delete
the specified driver, type Y (for Yes); if you have specified the wrong
driver by mistake, just type N (for No).

When the specified driver has been removed, the names of the
remaining device drivers will reappear at the top of the screen.

Once the driver has been deleted, the System Configuration Program
will ask you to select another driver. If you do not want to delete
another driver, press ESCAPE to return to the Configuration menu.

® The memory used by the System Configuration Program to
store a device driver is not recovered when you delete that
driver. Each time you add drivers and then remove them, the
amount of available memory will diminish. If you find yourself
unable to add a new device driver because of the memory lost
to deleted drivers, first save the drivers you have on a diskette,
then select the QUIT option on the Configuration menu. Next,
select the SYSTEM CONFIGURATION PROGRAM option from
the Utilities menu to restart the SCp, and reread the file you
saved. Now there will be enough memory to add the desired
driver.

Editing Driver Parameters

Each device driver has some vital pieces of data, called driver
parameters, that affect and control its operation. The option EDIT
DRIVER PARAMETERS allows you to examine and change some of
these parameters.

If you choose this option when you have not read in any device
drivers, the screen wil'l show

No device drivers have been read

and the program will return to the Configuration menu . If, however,
there are device drivers that you can edit, the screen will show the list
of the names of all device drivers currently in memory.

Now you should specify the driver whose parameters you wish to
edit. Type the number displayed at the left of the driver's name or use
the up-arrow and down-arrow keys to move the cursor to the name of
the driver and press RETURN. The System Configuration Program
will show you the parameter display for that driver:

Photo 4. Typical Parameter Display

Each driver has several parameters. Some of them can be changed;
the others are shown only for your information . The items you can
change are displayed at the top of the screen.

To change one of these parameters, type the number displayed at the
left of the parameter name or use the up-arrow and down-arrow keys
to move the cursor to the parameter name and press RETURN, then
type the new value. After you change the parameter, the program will
again ask which item to edit; if you do not wish to change any more
parameters, press ~SCAPE to return to the Configuration menu.

Device Name
The device name is the name SOS uses to gain access to each device
driver. The device name must conform to the rules for names: it can
be up to 15 characters in length, composed of numbers, letters, and
periods. A device name must begin with a period, and the next
character must be a letter.

When you select device name as the parameter to change, the
program will ask you to type the new device name. Terminate the
name by pressing RETURN. If you enter a name that is not a Ilegal
device name, the program will again ask you to type a name. When
you have typed the name, the parameter display will change to reflect
the new name, and the program will again ask you which item to edit.

You can name a device anything you want, but if a program you are
using refers to ,the device by another name, it will· not be able to use
it.

Device Type and Subtype
The parameters DEVICE TYPE and DEVICE SUBTYPE specify the
nature of the device and the way SOS interacts with it. The particular
values for the DEVICE TYPE and DEVICE SUBTYPE parameters are
important to you only if you are writing a device driver; you will not
usually need to know what these parameters do in order to use the
driver.

The values of the DEVICE TYPE and DEVICE SUBTYPE parameters
contain exactly two hexadecimal characters. Each character may be
a digit from 0 to 9 or a letter from A to F. To change one of these
parameters, type the number displayed at the left of the parameter
name or use the up-arrow and down-arrow keys to move the cursor to
the parameter you wish to change and press RETURN. The program
will ask you to specify the new value of that parameter. Type the new
value and press RETURN.

If you attempt to type a character that is not a digit or a letter from A
to F, that character will be ignored. Any lowercase letters you type
will automatically be shifted to uppercase. When you have
successfully typed the value, the parameter display will be updated to
reflect the new value, and the program will again ask which item to
edit.

Driver Status
Each device driver can be active or inactive. When SOS loads the
system con figuration from the SOS.DRIVER file during a boot
operation, it does not load any single driver into memory whose
status is inactive. If all of the drivers in a module are inactive, the
modul.e is not loaded. Even though an inactive driver remains in the
SOS.DRIVER file, and its parameters remain set, it is unusable. All
active drivers, however, are loaded into memory and can be used.

The maximum number of active drivers in the system is twenty-eight:
sixteen block-device drivers and twelve character-device drivers. The
ability to make drivers inactive is useful when you have a driver
module that contains many drivers, and you don 't want to use one or
more of the drivers. All the drivers in a module are always loaded with
the module, but you can set them inactive.

You can 't delete only those drivers you won 't be using from the
module, but you can set them inactive.

To change the activity status of a driver, select ACTIVITY STATUS and
press RETURN. You will be asked whether you want this driver to be
active or inactive. Type A to activate the driver or I to make it inactive.
The parameter display will change to reflect the new status, and the
program will again ask which item to edit .

Editing the Configuration Block
Many device drivers have a special set of parameters that control the
operation of the driver. This set of parameters is called the driver's
configuration block.

The information in the configuration block usually sets the driver's
default operation mode. By changing these parameters, you can tailor

the operatio~ of the driver to the particular device you are using. For
example, the configuration block for the .PRINTER device driver sets
the communications format and data rate the driver uses to send
information to the printer. You can change this informat,ion with the
System Configuration Program. The documentabon for each
individual driver describes the meaning of each value in the
configuration block and tells you how to set the values to perform
various functions.

To edit the configuration block for a driver, select the Configuration
Block option. The configuration block is optional ; if the driver has no
configuration block, that item will not appear in the menu. When you
select it, the program will display the configuration block:

Photo 5. Typical Configuration Block Display

The configuration block contains from 1 to 255 values, arranged in
one to 16 rows of up to 16 values each (except the last row). Square
brackets inclose the value in the upper left corner of the block; like a
cursor, they indicate where the next change will be made. The cursor
brackets can be moved to any value in the configuration block by the
four arrow keys on the Apple Ill's keyboard.

Use the arrow keys to move the brackets to a value you wish to
change and type the new value. Values consist of two hexadecimal
characters, each one a digit from rb to 9 or a letter from A to F. Type
the two characters of the new value and press RETURN. The
configuration block will be updated and the brackets will
automatically advance to the next value.

You can change this next value by typing a new value as you did
before, or you can move the brackets to another value by using the
four arrow keys. When you have set all the new values in the
configuration block, press ESCAPE to return to the parameter
display.

The Comment Field
There is an 8rb-character comment field stored along with the other
device parameters. You can edit the contents of this field in the same
way you edit pathnames, by moving the cursor and inserting
characters.

You can use this field to help identify driver files you create. For
example, you might want to include an explanatory note with an
unusual driver file, such as you might create for use with a particular
printer. The comment field is for your convenience; you may leave it
blank if you prefer.

Changing the System Parameters

Just as the parameters for each individual device driver control the
operation of that driver, the system parameters control the operation
of the entire operating system.

Four system parameters can be set with the System Configuration
Program. These parameters specify :

• the number of Disk III drives you have attached to the
Apple III,

• the character set the Apple III will use to display characters
on the screen,

• the position and arrangement of the keys on the keyboard ,
and

• the location of peripheral interface cards in the four
peripheral connectors inside the Apple III.

These system parameters are stored with the device drivers in the
SOS.DRIVER file on each boot diskette. As with the device drivers,
you use the System Configuration Program to change the system
parameters.

The first time you read a driver file that contains system
parameter information (for example, SOS.DRI'VER) , that file's
system parameters are automatically loaded into the
configuration you are making. If you then read another driver
file, its parameters will not be loaded unless you request i,t via
the ALL option, described below.

To examine or change the system parameters, select the CHANGE
SYSTEM PARAMETERS option from the Configuration menu. The
screen will show the system parameter display:

Photo 6. Typical System Parameter Display

To change the value of a parameter, first select the parameter you
want to change. Then type the new parameter value and press
RETURN; if the new value is acceptable, the program will update that
parameter in the parameter display and wait for you to select another
parameter to be changed. If there are no more changes, you can
return to the Configuration menu by pressing RETURN or ESCAPE.

Reading All Parameters
Normally, system parameters are read along with the first driver file
that includes system parameters, but you can use the ALL option to
read the parameters from any driver file.

To read an entire set of parameters, select the ALL option. The
program wiU ask you to specify the name of the driver file that
contains the parameters. If the Hie you name includes system
parameters, the program will read them and they will replace any
parameters previously read.

If you try to read system parameters from a file that doesn't have
system parameters, the program will display the message

No system parameters associated with file.

and any parameters previously read will remain unchanged.

Number of Disk III Disk Drives
This parameter allows you to set the number of Disk III disk drives you
have attached to your Apple III. This number can range from 1 to 4,
and includes the disk drive already built into the Apple III .

Peripheral Slot Assignment
Each device driver you have installed with the System Configuration
Program can be associated with a peripheral interface card plugged
into one of the four peripheral slots inside the Apple III. The
Peripheral Slot Assignment option of the system parameter display
enables you to tell each device driver the slot number into which you
have plugged its peripheral interface card.

SOS allows a peripheral interface card to be used by more than one
device driver (one at a time), but a single device driver can not be
assigned to more than one peripheral card .

When you select the PERIPHERAL SLOT ASSIGNMENTS option on
the system parameter display, you will see a list of all presently
installed device drivers and their current peripheral slot assignments:

Photo 7. Peripheral Slot Assignment Display

To the right of the name of each driver is the slot number of the
device with which that driver is currently associated. Some drivers
will have " n/a" in the place of their slot number; such drivers use only
the Apple Ill 's built-in peripherals and are not associated with a
peripheral slot.

A driver with an asterisk following its name is inactive; although the
activity status is shown in this display, you can change it only with the
EDIT DRIVER PARAMETERS option from the Configuration menu.

To change the slot number assigned to a driver, select the driver you
want to change. The program will ask you to type the number of the
slot you want to assign that driver to; type a number from 1 to 4 and
press RETURN. The program willi update the display to reflect the
change and again ask if you wish to change a slot assignment. To
return to the system parameter display, press ESCAPE.

Standard Character Set
The console and graphics drivers have the capacity to display or print
text characters. The definition of the shape and appearance of these
characters is called the system character set. The system character
set is part of the system configuration stored in the SOS.DRIVER file.
You can change the definition of the standard character set by using
the Standard Character Set option of the System Parameters display.

The Standard Character Set option allows you to load a different
character set into the current system configuration. Character sets
are supplied in diskette files: a few sets are supplied on the Business
BAS.IC and Demonstration diskettes, while others are available as
separate products. The format of a character set file is described in
Appendix G.

To load a character set, select the STANDARD CHARACTER SET
option on the system parameter display. When the program asks for
the name of the me that holds the character set, type the complete
pathname of the file and press RETURN.

If the file you specified exists and is in the proper format, the System
Configuration Program will load it and return to the system
parameter display. If the file cannot be found (perhaps you misspelled
the name) or is not a valid character set file, the program will tell you
so and again ask for a file name. like the other system parameters,
the standard character set is automatically loaded the first time you
read the SOS.DRIVER file (or any other file created by the System
Configuration Program that includes the character set data) into the
current configuration .

When you boot the system, the standard character set is loaded from
the file SOS.DRIVER along with the rest of the system configuration.
This normally determines the standard character set during all
subsequent operation of the system, but it is possible to replace all or
part of the standard character set in memory without re-booting the
system. Refer to the section on Advanced Techniques in the chapter
THE CONSOLE DRIVER.

Keyboard Layout
The Apple Ill's bu ilt-in keyboard generates all 128 ASCII codes in a
byte with the high bit set or cleared. Each standard key can generate
four different codes: one code if the key is pressed alone, another if
the key is pressed in conJunction with the SHIFT key, another if the
key is pressed with the CONTROL key, and a fourth code 'if the key is
pressed in conjunction with both the SHIFT and CONTROL keys. The
.CONSOLE device driver uses a keyboard layout table to determine
the codes that are assigned to each key in its various combinations
with SHIFTand CONTROL.

By changing the keyboard layout table, you can change the
arrangement of the keys on the keyboard to su,it your needs. For
example, you could change your keyboard to the Dvorak American
Simplified Keyboard layout or to the standard for another language,
such as French. Your Apple dealer will have information on how to
obtain different keyboard layouts for your Apple III.

The keyboard layout table, li,ke the standard character set, is loaded
into the system configuration from a file. To load a keyboard layout,
select the option on the system parameter display. The program will
ask for the name of the file that holds the keyboard layout ; type the
complete pathname of the file and press RETURN.

If the file you specified exists and is in the proper format, the System
Configuration Program will load it and return you to the system
parameter display. If the file does not exist or is not a valid keyboard
layout file, the program will tell you and again ask for a name. Like the
other system parameters, the keyboard layout is automatically loaded
when you read the SOS.DRIVER file (or any other file created by the
System Configuration Program that includes the keyboard layout
information) into the current configuration .

When you boot the system, the keyboard layout table is loaded from
the file SOS.DRIVER along with the rest of the system configuration .
This normally determines the keyboard layout during all subsequent
operation of the system, but it is possible to replace the keyboard
layout table in memory without re-booting the system. Refer to the
section on Advanced Techn'iques in the chapter THE CONSOLE
DRIVER.

Generating a New System

Once you have read in all the device drivers you need , deleted the
ones you don't need, and set all the driver and system parameters to
their proper values, you should save your new system configuration
onto a boot diskette. The GENERATE NEW SYSTEM option of the
Configuration menu enables you to do this. System generation has
two parts : validation of the configuration and the actual writing of
the configuration onto a diskette.

When you select th is option , the System Configuration Program first
examines the configuration you have created to make sure that it is
consistent. When this validity check is complete, the program asks
you to type the name of the file where you want to save the new
system configuration. You may write it to a file with any name you
wish . If a file with name you select already exists, the program will
give you the option of unlocking and removing the previous file
before writing the new one. You will need to do this if there isn't
enough room on the boot diskette for both the old file and the new
one.

In order for the system configuration to take effect, it must be
stored in a file named SOS.DRIVER on a boot diskette. But if
you save the configuration you've just created as the file
SOS.DRIVER on one of your important boot diskettes, it will
destroy the configuration that was formerly on that diskette. If
the new configuration is not usable, YOU WILL NOT BE ABLE
TO BOOT WITH THAT DISKETTE until you create a proper
configurat ion and store it on that diskette.

Normally, you will have a backup copy, so reconfiguration is not an
insurmountable problem. However, if you can 't make a backup copy
of the boot diskette you 're re-configuring , there are two other ways of
protecting the old configuration:

1. Copy the SOS.DRIVER file under another name.

2. Use the Utilities Filer to change the SOS.DRIVER file to some
other name.

If you need to restore the old configuration, just change the name of
the saved file back to SOS.DRIVER. As a general rule, you should
make sure you never destroy your original SOS.DRIVER files.

You may want to keep a diskette with a collection of system
configurations, under different names and with short
descriptions of what they do. Then rather than creating entirely
new configurations from scratch each time you change your
system, you can load one of the prepared configurations and
modify it to get the desired new configuration.

Quitting the Program

When you select the QUIT option from the Configuration menu, this
session of the System Configuration Program ends and the program
returns to the Utilities menu.

If you try to quit the System Configuration Program without saving
your configuration in a diskette file with the Generate New System
option, the Apple III will beep and display the message

-GENERATE not performed. Quit (YIN)?

If you really want to quit without saving the current configuration,
type Y (for " Yes") to leave the System Configuration Program and
return to the Utilities menu . If you have forgotten to save your
configuration, type N (for "No") and the program will display the
Configuration menu. You can then save your configuration before
quitting.

Using Multiple Configurations
of One Driver

The arrangement of the standard device drivers included with the
Apple III is fairly straightforward: one device dr,iver controls one
input/output device. But occasionally you will have the opportunity to
use more than one driver to control a single input/output device, such
as when you can have different peripheral devices that you can
connect to the same interface device. For example, if you have both a
low-speed letter-quality printer and a medium-speed line printer, both
of which you can connect to the Apple Ill's built-in serial interface
port, you might need two different versions of the .PRINTER device
d river : one to control the letter-quality printer, and one to control the
line printer.

To accomplish this, use the System Configuration Program to add the
.PRINTER driver to the current configuration, configure the driver for
the letter-quality printer, and change its name to .SLOWPRINT (or any
other appropriate name).. T'hen load the .PRINTER driver again ,
configure 'it for the medium-speed line printer, and change its name to
.FASTPRINT. Now you have two copies of the .PRINTER driver, one
configured for the letter-quality printer and named .SLOWPRINT , and
one configured for the line printer and named .FASTPRI'NT .

In actual use, you would prepare a document you wish to print,
connect the line printer to the Apple Ill's serial interface port, and
print quiCk draft copies of the document using the .FASTPRINT
driver, by specifying .FASTPRINT in the program you are using. Once
the document is ready for final printing, you would turn off the
Apple III , disconnect the line printer and connect the letter-quality
printer to the same serial interface port, then re-boot and print the
document using the .SLOWPRINT device driver, without having to
reconfigure the system.

The Console Driver

The Apple Ill's built-in keyboard and video display are controlled by
the .CONSOLE device driver. Your programs communicate with the
keyboard and text screen by means of this driver. When your program
opens and reads from .CONSOLE, it reads the data generated by
keystrokes on the keyboard ; when your program writes to the
console, the data it sends is displayed, in text characters, on the
Apple Ill's video screen.

Most language systems open the console driver for reading and
writing immediately after the system is booted, and the console
driver remains open all the time the system is running. The standard
text input and output procedures in each language (such as PRINT,
INPUT, and GET in Apple Business BASIC, and READ, READLN,
WRITE, and WRITELN in Pascal) automatically perform their
operations through the console driver, so you don't usually need to
open and operate on it yourself.

In addition to handling normal input and output, the console driver
controls the type-ahead and interrupt features of the keyboard, and
the cursor motion and text modes of the display. All of the functions
of the console are described in this chapter.

What the Console Does

The console driver has two major functions: processing text output
and displaying it on the Apple Ill 's video screen, and processing
keyboard input and passing it back to programs and language
systems.

When the system is booted , the console driver is loaded and
initialized. When a language system such as BASIC or Pascal is
loaded, it opens the console for input and output. Opening the
console for the first time resets it to its default status. Language
systems generally perform all their standard input and output
through the console.

Screen Output
The Apple III can display a text image on its video display in three
modes:

• 24 lines of 40 characters per line, black-and-white characters
only;

• 24 lines of 40 characters per line, colored characters on
colored backgrounds, 16 colors available ;

• 24 lines of 80 characters per line, black-and-white characters
only.

Each character displayed on the text screen is composed in a matrix
of 56 dots, eight dots high and seven dots wide. Ordinarily, the
character set (the design of all the individual characters) is defined at
the time the system is booted and can be changed with the System
Configuration Program. However, applications programs can replace
the character set with a new one by making the appropriate SOS
control call to the console driver, as described later in this chapter.
Apple Business Basic programs do this via an invokable module, as
described in the file DEVICE. DOC on the Business BASIC diskette.

Apple Pascal programs use the procedure UNITSTATUS, described in
Appendix H.

When the screen is in one of the black-and-white modes, each
position on the screen can display either a character formed by white
dots against a black backround , or a character formed by black dots
against a white background. When the screen is in the color text
mode, each position on the screen can display a character formed by
dots in one of 16 colors against a background of any other of the 16
colors. A black-and-white video monitor will display the 16 colors in
the color text mode as a progressive grey scale.

The function of the screen output section of the console is to control
the placement and appearance of characters on the screen in each
mode. The data the console driver uses to do this consists of :

• The viewport . The viewport is the rectangular area on the
screen where the console places text characters. The console
can place new text only in the viewport, so you can change
the viewport's size and location to protect data you 've already
placed on the screen .

• The cursor position . This is the position in the viewport where
the console will place the next character output to the display.
The cursor can be moved up, down , left, or right ; it can be
moved immediately to a specified position in the viewport ;
and it can be made visible or invisible.

• The colors in which text characters will be disp layed on the
screen. In the black and white text modes, you can define
whether characters are to be displayed as white dots on a
black background or as black dots on a white background. In
the color text mode you can define the color of the dots that
form the character and the color of the background.

You change this data by sending special sequences of characters to
the screen. Details on the control of the screen output are given in
the following sections of this manual.

Keyboard Input
Whenever you press a key on the keyboard , the console's keyboard
handler is automatically invoked to process that keystroke. The
keyboard handler translates the keystroke into the correspond ing
character code, and stores that code in the type-ahead buffer. The
type-ahead buffer can normally hold up to 128 character codes.

The keyboard handler performs the translation of keystrokes into
character codes by means of the keyboard layout table. This table
contains four numeric codes for each standard key on the keyboard:
one code for the key pressed alone; another code for the key pressed
with CONTROL held down ; a third code for the key pressed with
SHIFT held down ; and a fourth code for the key pressed with both
CONTROL and SHIFT held down. Some of these codes may be the
same; for example, the standard layout table makes no distinction
between 1 and CONTROL-1.

The layout table is loaded into memory from the SOS.DRIVER file
when the system is booted ; the System Configuration Program allows
you to use different keyboard layout tables for different keyboard
arrangements. The keyboard layout table cannot be modified once
the system is operating.

When a program requests input from the keyboard , the keyboard
handler first examines the type-ahead buffer. If there are character
codes already in the buffer, they are sent to the program that
requested input. If the program needs more character codes than this
(either in the number of characters or the lack of a terminating
character, such as RETURN) , the keyboard handler continues to
process keystrokes and send character codes until the proper
number of characters (or the terminating character) has been sent.

Each time the keyboard handler sends a character code to the
program requesting input, it can also send that character code to the
output section of the console : this procedure is called echoing .
Echoing is usually done automatically, but it can be disabled by a
program. Some language systems, such as Pascal, direct the
keyboard handler not to echo any characters, so that the language
system can control which characters appear on the screen and which
ones do not. When echoing is performed by the console, only
printable characters are echoed .

Normal Screen Output

When the console driver receives a text string to output, it looks at
each character code in the string and decides which of three
different ways to handle it.

If the character code is an ASCII control character (with a value of 31
or less), the driver performs a special control function . These control
characters and their functions are discussed in the section on Screen
Control Codes.

If the code is a valid ASCII text character code (that is, with a value
between 32 and 127), the driver places the character in the viewport
at the current cursor position.

If the character code has its high bit turned on (making its value
between 128 and 255), the driver displays it at the current cursor
position, even if it is a control character. Using the standard
character set, the driver displays a control character with its high bit
on as a two-letter abbreviation of the name of the control character.
The driver displays a printing character with its high bit turned on as
a normal text character.

After the driver places a character on the screen at the current cu rsor
position, it normally moves the cursor one space to the right. If this
would put the cursor beyond the right edge of the viewport, the
driver puts the cursor at the beginning of the next line. If the cursor
advances beyond the bottom of the viewport, the contents of the
viewport are scrolled up one line, and the cursor is placed at the
beginning of the new blank bottom line. These movements of the
cursor can be controlled individually with a special screen control
code; see CURSOR MOTION CONTROL in the section on Screen
Control Codes for details.

Text Modes and Character Sets
The size and format of the text screen are called the text mode, and
the shape and style of the characters on the screen are called the
character set. Both the text mode and the character set affect all

characters on the screen simultaneously; characters may be
displayed in only one character set and in one text mode at any given
time.

There are three text modes:

• Mode (JJ : 24 lines of 4(JJ characters per line, black-and-white
characters only (total 96(JJ characters) ;

• Mode 1: 24 lines of 4(JJ characters per line, colored characters
on colored backgrounds, 16 colors available (total 96(JJ
characters) ;

• Mode 2: 24 lines of 8(JJ characters per line, black- and-white
characters only (total 192(JJ characters) ;

The default text mode is mode 2: an eighty-character wide black-and
white screen . Programs can change this setting by sending the
proper screen control code to the console driver.

The Viewport
The viewport is the rectangular area on the text screen that is
currently being used by the console driver. The viewport can be as
small as one character wide and high, or as large as the entire
screen.

The cursor can never move outside the viewport, and the console can
never change the contents of the screen outside the viewport. By
changing the size and position of the viewport so that you print in
only a small area, you can protect anything you 've displayed on the
rest of the screen.

The viewport acts the same way in all three video modes. The normal
size of the viewport is the size of the entire screen; it can be set to
any size smaller than the current setting or reset to the size of the
screen. The viewport can never be larger than the dimensions of the
screen in the current text mode.

Each character position in the viewport can be referred to with a pair
of integers. The columns are numbered from left to right, with the
leftmost column numbered 0; the rows are numbered from top to
bottom, with the top row in the viewport numbered 0. The upper-left
corner of the viewport is always numbered 0,0 regardless of its
position or the size of the viewport; all other positions in the viewport
are numbered relative to the upper-left corner. The character
positions are the same as absolute screen positions only if the upper
left corner of the viewport is set to the upper-left corner of the
screen .

Cursor Motion and Controls
The cursor normally moves in the same way that English text is
written. As each printing character is placed on the screen, the
cursor advances to the right. If the cursor is moved past the right
edge of the viewport, it automatically moves to the left edge of the
viewport and moves down one line; this is called wraparound . If the
cu rsor is moved past the bottom of the viewport, the contents of the
viewport are scrolled up one line and the cursor moves to the
beginning of the newly blank bottom line.

When moving backwards, the cursor motion is entirely analogous to
its forward motion. If the cursor is moved past the beginning' of a line
(the left edge of the viewport), it is placed at the right edge of the
viewport and moved up one line. If the cursor is moved past the top of
the viewport, the contents of the viewport are scrolled down one line
and the cursor is placed at the end of the newly blank top line.

There are three ways to cause the cursor to move. The first is to send
a printing character to the console: the cursor will advance
automatically after the character is printed. The second way is to
send one of several screen control codes to the console to move the
cursor left, right, up, down, to the beginning of the next line, or to the
upper-left corner of the viewport. The third way to move the cursor is
to send other screen control codes followed by numerical arguments
that specify the new cursor position. A description of all screen
control codes is given in the next section.

Most programming languages on the Apple III also provide a more
convenient way to move the cursor. For example, you can use the
HPOS and VPOS reserved variables in Apple Business BASIC to set
and read the position of the cursor directly; other languages have
similar facilities. All of them operate by sending the proper screen
control codes to the console.

The automatic motions of the cursor can be enabled or disabled. You
can specify that the cursor remain fixed after printing a character on
the screen and not move one space right; you can specify that the
cursor stop at the right or left border of the viewport, and not wrap
around; you can tell the console to move the cursor down one line
automatically when it performs a carriage return, or you can tell it
just to move the cursor to the beginning of the same line it is on ; and
you can prevent the viewport from scrolling ,if the cursor is moved
beyond the bottom or top edge. AI'I of these cursor motions can be
controlled with a screen control code (see the CURSOR MOTION
CONTROLS code in the following section) .

Screen Control Codes
The ASCII control characters with values between (/J and 31 are
recognized by the console as screen control codes. When the
console receives one of these codes during output, it does not place
a character on the screen ; instead, it performs a control function that
changes the appearance or behavior of the viewport or cursor.

Some of the screen control codes require one or more arguments.
These are extra characters immediately following the control code
that do not perform their regular functions, but instead supply extra
information to a function invoked by the code. For example, the
FOREGROUND COLOR screen control code (code 19) requires one
argument whose value represents the color that is to be used to
display characters. A segment of a program to set the foreground
color to dark blue (color 2) might be written in BASIC as

3(/J SETFORE=19 : DARKBLUE=2
4(/J PRINT CHR$(SETFORE);CHR$(DARKBLUE) ;

and in Pascal might read

var :
Q-array:array[0.. 20J of 0..255;

begin
Q-array[0J:=19; g_array[1J :=2;
unitwrite(1 ,g_ array,2" 12) ;

end ;

(Note the use of the UNITWRITE procedure in the Pascal example.
You cannot use WRITE or WRITELN here, because the values being
transmitted could be one of the control-character values that Pascal
traps, that is, 13 or 16. You should limit the use of UNITWRITE to
small procesures that can be easily replaced if you wish to run the
program on another Pascal system.)

There are seven screen control codes that require one argu ment
character and one control code (ABSOLUTE CURSOR POSITION)
that requires two argument characters.

The following is a list of the 32 screen control codes and their
functions. Each code number is followed by the ASCII name and
abbreviation for that code.

Code 00, "NUL" (Null)
This character has no effect on screen output.

RESET VIEWPORT
Code 01 , "SOH" (Start Of Header)

Resets the viewport to the s,ize of the current text screen.
Leaves the cursor in the same position on the screen; its
coordinates relative to the origin of the viewport may change.
This function also saves the previous viewport setting , cursor
position , screen mode (see code 16), cursor motion controls
(see code 21), normal/inverse mode (see codes 17 and 18), and
text colors (see codes 19 and 20) so they can be restored by
the RESTORE VIEWPORT command (see below).

VIEWPORT TOP
Code 02, "STX" (Start of Text)

Sets the upper-left corner of the viewport to the current cursor
position. This position will now have coordinates (0,0) . and all
cursor movements will be made relative to those coordinates.

VIEWPORT BOTTOM
Code 03, "ETX" (End ofText)

Sets the lower-right corner of the viewport to the current
cursor position.

RESTORE VIEWPORT
Code 04, "EOT" (End ofTransmission)

Restores the viewport and cursor position to the state they
were in when the last RESETVIEWPORTcommand was issued
(above) . Also restores the screen mode, cursor motion controls,
normal/inverse mode, and text colors to their values at the time
of the last RESET VIEWPORT command . If there has been no
RESET VIEWPORT command since the console was first
opened, these parameters will be set to their default values.

CURSOR ON
Code fb5, "ENQ" (Enquiry)

Makes the cursor visible. The cursor is a character-size square
that is normally the inverse of the character it is positioned on .
The cursor is usually not displayed during output; the console
turns the cursor on whenever input is requested, then restores
it to its former state (determined by the program) when the
input request is complete.

CURSOR OFF
Code 06, "ACK" (Acknowledge)

Makes the cursor invisible (see above). All output is still
processed normally.

SOUND BELL
Code 07, " BEL" (Bell)

Sounds a short beep on the Apple Ill's built-in speaker. If a
miniature phone plug is inserted into the AUDIO OUT jack on
the back of the Apple III , no sound will be generated by the
speaker, but any device attached to that plug will receive the
audio signal of the beep. The driver resumes normal
processing immediately after the beep is started : it does not
wait until the beep is finished . If you output another BEL code
while a beep is in progress, the second code will be ignored .

MOVE CURSOR LEFT
Code 08, " BS" (Backspace)

Moves the cursor position one space to the left. Wrapping
around and scrolling are performed in accordance with the
setting of the cursor motion controls (see below) .

MOVE CURSOR RIGHT
Code 09, " HT" (Horizontal Tabulation)

Moves the cursor position one space to the right . Wrapping
and scrolling are performed in accordance with the setting of
the cursor motion controls (see below).

MOVE CURSOR DOWN
Code 10, " LF" (Line Feed)

Moves the cursor down one line. Scrolling is performed in
accordance with the setting of the cursor motion controls (see
below) .

MOVE CURSOR UP
Code 11, "VT" (Vertical Tabulation)

Moves the cursor up one line. Scrolling is performed in
accordance with the setting of the cursor motion controls (see
below).

HOME CURSOR
Code 12, "FF" (Form Feed)

Moves cursor to the upper-left corner of the viewport. Does not
clear any portion of the screen or change viewport setting .

RETURN CURSOR
Code 13, "CR" (Carriage Return)

Moves cursor to the beginning of the current line (the left edge
of the viewport). A line feed may be issued automatically after
the return, in accordance with the setting of the cursor motion
controls (see below) . If a line feed is issued, scrolling occurs
also in accordance with the cursor motion controls.

TURN SCREEN OFF
Code 14, "SO" (Shift Out)

Disables the Apple Ill 's video generator. The video monitor
shows a blank screen regardless of the contents of any text or
graphics screen, although the information on the text screen is
not lost, and new data can still be written. The image will be
restored to the screen when a TURN SCREEN ON command is
issued (see below). This command has no effect if the screen is
already off.

TURN SCREEN ON
Code 15, "SI" (Shift In)

Enables the Apple ""s video generator. The video monitor will
display text in the currently selected text mode. If one of the
graphics modes was in effect, sending the TURN SCREEN ON
command to the console will return the display to the text
mode. This command has no effect if the text screen is already
being displayed.

TEXT MODE One argument
Code 16, "OLE" (Data Link Escape)

Sets the text mode in which the console is to place and display
text information . The next character following the control code
specifies the text mode to set. These are the text modes and
their specification characters:

Mode Character

4@x24 Black-and-white
4@x24 Color
8@x24 Black-and-white

A specification character whose least significant bits have the
value 3 will select mode 2. Only the two least significant bits of
the character are used; the upper six bits are reserved in order
to assure compatability with future versions of .CONSOLE and
should be set to zero.

The TEXT MODE command takes effect immediately after the
console receives the specification character and affects the
entire screen. Any text sent to the screen after a TEXT MODE
command will always be processed in the new text mode. If,
however, the Apple Ill 's screen is in a graphics mode, the new
text mode will not be visible until a TURN SCREEN ON
command is sent to the console.

® The TEXT MODE command adjusts the setting of the
viewport only when the viewport will not fit on the new text
screen. When changing from the 80-column mode to one of
the 40-column modes, the left and right borders of the
viewport will be adjusted so that they fit into 40 columns. When
changing from one of the 4G'l-column modes to the 81b-column
mode, the viewport remains 40 columns wide. You should make
the appropriate changes to the viewport setting whenever you
change text modes.

® This command changes the way the Apple III interprets the
data that is being displayed when the command is given.
Changing text modes with text already on the screen will not
modify the data producing that text to make it appear the same
in the new mode. For example, changing from colored text
mode to 80-column mode will fill every other column on the
screen with seemingly random characters ; these characters
were the color information in the colored text mode. Similarly,
changing from 80-column mode to colored text mode will
cause every other column of characters on the screen to
vanish and affect the color settings of the remaining columns;
therefore, it is advisable to clear the screen after selecting a
new text mode.

NORMAL
Code 17, "DC1 " (Device Control 1)

Specifies that all subsequent characters will be displayed as
white characters on a black background (or, in color mode, as
characters of the foreground color on a field of the
background color). Does not affect any characters already on
the screen.

INVERSE
Code 18, "DC2" (Device Control 2)

Specifies that all subsequent characters will be displayed as
black characters on a white background (or, in color mode, as
characters of the background color on a field of the
foreground color) . Does not affect any characters already on
the screen .

FOREGROUND COLOR One argument
Code 19, "DC3" (Device Control 3)

Sets the foreground color (used only in the color text mode) to
the value specified by the next following character. All
subsequent characters will be displayed in the new color;
characters already on the screen are not affected. Only the
lower four bits of the argument character are recognized. The
upper four bits are reserved : in order to assure compatability
with future versions of .CONSOLE, they should be set to zero.

Here are the sixteen colors and their color values:

Color Value Color Value

Black 0 Brown 8
Magenta 1 Orange 9
Ok. Blue 2 Grey 2 10
Purple 3 Pink 11
Ok. Green 4 Green 12
Grey 1 5 Yellow 13
Med. Blue 6 Aqua 14
Light Blue 7 White 15

BACKGROUND COLOR One argument
Code 20, " DC4" (Device Control 4)

Sets the background color (used only in the color text mode)
to the va'lue specified by the ne,xt following character.
Characters and their associated colors are given in the table
above. All subsequent characters will be displayed in the new
color ; characters already on the screen are not affected . Only
the lower four bits of the argument character are recognized .
The upper four bits are reserved : in order to assure
compatability with future versions of .CONSOLE, they should
be set to zero.

CURSOR MOVEMENT CONTROL
Code 21, "NAK" (Negative Acknowledge)

Sets the controls that determine various movements of the
cursor according to the value of the immediately following
character. Only the lower four bits of the character are
significant. The upper four bits are reserved : in order to assure
compatability with future versions of .CONSOLE, they should
be set to zero.

The four controls are Advance, Line Feed, Wrap-around, and
Scroll. When Advance is active, the cursor moves one space to
the right after each character is placed on the screen ; when
inactive, the cursor remains at the same position. When Line
Feed is active, the cursor performs a line feed after every
return; when inactive, no automatic line feed is performed .
When Wrap is active, an attempt to move the cursor beyond the
right or left edge of the viewport causes the cursor to be
placed at the opposite edge of the next or previous line,
respectively; when inactive, the cursor remains at the edge of

the viewport. When Scroll is active, an attempt to move the
cursor beyond the top or bottom line of the viewport causes
the contents of the viewport to be scrolled down or up,
respectively, and the cursor to be placed on the new top or
bottom line ; when inactive, the cursor remains at the top or
bottom of the viewport.

The setting of the four controls is determined by the lower four
bits of the specification character :

Control Bit Default Value

Advance 0 1
Line Feed 1 0
Wrap 2 1
Scroll 3

If a given bit has a value of 1, the control associated with it is
enabled ; if its value is 0, the control is disabled. If these control
bits have not been set since the system was booted, they will
have the default values shown. A table in Appendix A gives the
16 distinct argument characters and their effects. The upper
four bits of the specification character are reserved : in order to
assure compatability with future versions of .CONSOLE, they
should be set to zero.

SCREEN SYNCHRONIZATION
Code 22, "SYN" (Synchronous idle)

Causes the console to delay further processing until the video
generator has finished displaying one complete frame on the
video display. The video generator produces 60 frames each
second ; a SYN code can thus cause a delay of up to 1/60 of a
second.

One application of this control code is in programs that erase
and redraw portions of the screen in a fixed cycle, to perform
animation or other special effects. Sometimes the difference
between the timing of the program's output and the timing of

the video generator produces a distracting flicker of the
screen. Sending a SYN code to the console as part of the
erase/redraw cycle will synchronize the program with the video
display and reduce or eliminate the flickering .

Another use of the SYN code is in timing loops. Since the
video generator always produces 60 frames per second
regardless of the screen setting , sending a string of 60 SYN
codes will cause a delay of one second. You can use this to
build fairly accurate timing loops into user programs.

HORIZONTAL SHIFT One argument
Code 23, " ETB" (End Transmission)

Shifts the text inside the viewport according to the value of the
immediately following argument character. The argument
character is interpreted as an eight-bit two 's complement
value; if it is positive, the contents of the viewport are shifted
right the number of columns equal to the value of the
character. If tile argument is negative (binary value greater
than or equal to 128), the contents of the viewport are shifted
left the number of columns equal to the negative value of the
character.

The shifted characters are moved directly to their destination
location, not scrolled one column at a time. The space vacated
by the shifted characters is set to blanks ; characters shifted
out of the viewport are removed from the screen and are not
recoverable. If the shift distance is greater than or equal to the
width of the viewport, the shift command has the effect of
cleari ng the viewport.

HORIZONTAL POSITION One argument
Code 24, "CAN" (Cancel)

Moves the cursor horizontally to the column specified by the
argument character. The c'haracter following the control code
is used to determine the new cursor position in the viewport. If
the value of the character is greater than the width of t'he
viewport, the cursor is placed at the right edge of the viewport.

VERTICAL POSITION One argument
Code 25, "EM" (End of Medium)

Moves the cursor vertically to the specified row. The following
character is used to determine the new cursor position in the
viewport. If the value of the character is greater than the
height of the viewport, the cursor is placed on the bottom line
of the viewport.

ABSOLUTE POSITION Two arguments
Code 26, "SUB" (Substitute)

Moves the cursor to the specified row and column. The first
following character is used to determine the new horizontal
position ; the second following character is used to determine
the new vertical position. If the value of the first character is
greater than the width of the viewport , the cursor is placed at
the right edge of the viewport ; if the value of the second
character is greater than the height of the viewport, the cursor
is placed on the bottom line of the viewport.

Escape
Code 27, " ESC" (Escape)

This character currently has no effect on screen output. It is
reserved for future enhancement of the system.

CLEAR VIEWPORT
Code 28, "FS" (Field Separator)

Moves the cursor to the upper-left corner of the viewport and
sets the contents of the viewport to space characters (ASCII
code 32).

CLEAR TO END OF VIEWPORT
Code 29, "GS" (Group Separator)

Clears the contents of the viewport from the cursor to the end
of the viewport: that is, from the cursor position to the end of

the line and all lines below the cursor. The cursor is not moved.

CLEAR LINE
Code 30, "RS" (Record Separator)

Moves the cursor to the left edge of the viewport and clears
the entire line the cursor is on.

CLEAR TO END OF LINE
Code 31, "US" (Unit Separator)

Clears the contents of the line the cursor is on from the cursor
position to the right edge of the viewport. The cursor is not
moved.

Since the space character usually appears as a blank
space of the background color, the screen area cleared by
each of the CLEAR commands, the SHIFT command, and the
SCROLL portion of CURSOR MOVEMENT CONTROL is
normally set to black (or the background color in color mode).
If inverse mode is in effect (see DC2, above), then all of these
commands will set the cleared screen to white (or the
foreground color) .

Keyboard Input

When a program or language system requests input from the console,
several things happen. First, the cursor is made visible at the current
cursor position; it appears as the inverse of the character at that
position. If the character is a space (a common condition), the cursor
appears as a solid white block (in the color text mode, as a block of
the foreground color) .

As you press keys on the keyboard, the console interprets the
keystrokes and generates ASCII character codes. It stores each
character code and sends it to the video screen to be displayed .
When you type the number of characters the program is expecting, or
press a special terminating character (such as RETURN or ENTER),
the console stops accepting input, turns the cursor off, and sends all
the character codes to the program that requested input.

There are, however, some exceptions to the normal input process.
Type-ahead enables you to type characters on the keyboard before
the program is ready to process them; the editing keys and escape
mode let you correct typographical errors before the characters are
sent to the program; and console control keystrokes enable you to
control many aspects of the operation of the console. All of these are
described in the following sections.

The Keyboard
There are 73 keys on the Apple Ill's keyboard. They are logically
divided into three groups : standard keys, special keys, and modifier
keys.

The standard keys are the 26 alphabetic keys, the 10 numeric keys,
and the 11 symbol keys on the main keyboard . Each of these can
generate up to four distinct ASCII codes, depending upon which
modifier keys are held down when you press the standard key. The
keyboard layout table (specified with the System Configuration
program) specifies the four codes associated with each standard key :
one for the key pressed alone, another fo r the key pressed with
CONTROL held down, a third for the key pressed with SHIFT held
down, and a fourth code for the key pressed with both SHIFTand
CONTROL held down.

7 8 9

• • &

1 2 l

-
- -- ~

Standard keys: c:J Special keys: c:J Modifier keys: CJ

The special keys are the ESCAPE, TAB, RETURN, the spacebar, and
the four arrow keys on the main keyboard, and all keys on the
numeric keypad . The special keys always generate the same ASCII
codes, regardless of the condition of the SHIFTand CONTROL keys.
The keyboard layout table does not define codes for these keys.

The modifier keys are the CONTROL key, both SHIFT keys, the
ALPHA LOCK key, and both Apple keys. The CONTROL and SHIFT
keys alter the codes produced by the standard keys as described
above. The ALPHA LOCK key (which locks in the down position) has
the same effect as the SHIFT key, but affects only the alphabetic
keys.

The Open Apple key, when held down, sets the high bit of the ASCII
codes generated by t.he keyboard . It acts independently of the SHIFT
and CONTROL keys , and affects both the standard and the special
keys. The Open Apple effectively adds 128 to the numeric code of any
keystroke.

If you press the Solid Apple key while another key is down, it acts as
a fast-repeat key. Each standard or special key, if held down for more
than half a second, will begin to repeat automatically; pressing Solid
Apple increases the rate at which the other key repeats. When used
this way, the Solid Apple key does not affect the ASCII code
generated by a key. If you press the Solid Apple key before pressing
another key, it only causes a bit to be set in the second byte of
keyboard data, and does not act as fast-repeat. Programs can use it
as a different kind of shift key.

Tables of the codes generated by each key appear in Appendix A; the
bit assignments in the two bytes of keyboard data are given in
Appendix G.

Type-ahead
The console's type-ahead abilities allow you to type information into
the Apple III before the program you are using is prepared to accept
and process that information. This means that you don 't have to wait
for the computer to finish executing one command before you can
issue the next one; you can type at your normal speed, and the
computer will catch up as soon as it can.

Each time you press a key while the console is not expecting input, it
stores that key 's character code in the type-ahead buffer. When a
program requests input from the console, the console first moves all
characters in the type-ahead buffer, one at a time, into the input
buffer. It also echoes them to the display at this time. When the type
ahead buffer has been emptied, the console resumes normal input.

If the characters in the type-ahead buffer satisfy the input request ,
any characters remaining in the type-ahead buffer will be saved and
used for the next input request.

The usual limit to the number of characters you can enter into the
type-ahead buffer is 128. If you type 128 characters without having
any processed by the computer, each subsequent character you type
will be ignored and the console will sound a short beep at each
keystroke. As soon as the computer begins processing the characters
in the type-ahead buffer, you can enter more characters.

A console control keystroke can be used to erase the contents of the
type-ahead buffer, in case you have entered information that you do
not wish the Apple III to process. See the section that describes
console control keystrokes, later in this chapter, for details.

Some programs you might use on the Apple III reduce the size of the
type-ahead buffer or disable type-ahead completely (by using the
advanced techniques described at the end of this chapter). When one
of these programs is running, any characters you type when the
Apple III is not waiting for them will be lost.

Backspace, Retype, and Cancel
At any time before you complete an input request and the console
sends the characters you 've typed back to the program that
requested input, you can edit the characters you 've typed to correct
any typographical errors you might have made. Three special
functions help you edit your input line: backspace, retype, and
cancel.

The backspace function, usually activated by the left-arrow key or
CONTROL-H keys, deletes a single character from the input buffer.
Each t ime you press the backspace key, the last character in the
input buffer is removed , and the cursor is moved back one space.
Normally this moves the cursor to the position of the character that
was just deleted. If there are no characters in the input buffer, none
can be deleted , and the cursor is not moved.

There are two kinds of backspace : destructive and nondestructive.
Both kinds remove the last character from the input buffer, but
destructive backspace erases the deleted character from the screen
as the cursor moves over it , while nondestructive backspace leaves
the character on the screen. The kind of backspace in effect depends
on the particular program or language system you are using.

The retype function , usually invoked by the right arrow key, puts
characters back into the input buffer after you have removed them
with a nondestructive backspace. When you press the retype key, the
console takes the ASCII code of the character on the screen at the
cursor position and enters that code into the buffer. It is just as if you
had typed the keystroke that generated that character.

These two functions are used in correcting simple typographical
errors. You use the backspace key to move the cursor back to the
location of the error, type the correct character, then use the retype
key to move the cursor ahead to its original position . The
backspacing operation removes the characters it passes over from
the input buffer, and the retype operation puts them back, in the
original order. A complete description of the procedure .i s given in the
Apple III Owner's Guide.

The retype key is also useful in conjunction with escape mode (see
below). Note : the retype key does not work on some programs and
language systems.

The cancel function , CONTROL-X, removes all characters from the
input buffer. Every character that has been entered (either from the
keyboard or from the type-ahead buffer) since the beginning of the
input request will be deleted. This allows you to cancel an erroneous
line and start with a fresh line, without having to backspace all the
way to the beginning of the line.

Like backspacing, cancelling can be destructive or nondestructive.
Destructive cancel issues one destructive backspace for every
character in the input buffer, thus removing all characters in the input
line from the screen. Nondestructive cancel simply prints a backslash
(\) at the end of the cancelled input line and places the cursor at the
beginning of a fresh line. As with the other keyboard features, the
kind of cancel (if any) depends on the particular program or language
system you are using , and can be changed : see the section on
Advanced Techniques.

Cursor Commands: Escape Mode
When the console is accepting input from the keyboard , you can use
the cursor commands to move the cursor around on the screen, set
or reset the viewport , and clear various portions of the screen . None
of the cursor commands you issue are placed in the input buffer, and
they are not sent as input to the program you are using.

Cursor commands are useful for data entry and program editing in
languages like BASIC. They are not used with Pascal , which disables
the escape mode and uses its own screen-editing commands.

To issue cursor commands while the console is expecting input, press
the ESCAPE key. If cursor commands are allowed, the cursor will
change into a black plus sign on a white background (or a white plus
sign on a black background, if the character the cursor is on is
inverse):

Photo 8. Normal Cursor Cursor Command

The cursor will remain like this until you turn off the cursor command
mode.

There are eleven cursor commands. Each one corresponds directly
with a screen control code (see the previous section) ; the cursor
command mode is, in fact , just a simple way to issue these eleven
screen control codes from the keyboard. To turn off cursor command
mode, press any key that is not a cursor command .

In cursor command mode, each of the four arrow keys moves the
cursor one space in the direction of the arrow. The left and right
arrows do not perform their normal functions as backspace and
retype ; that is, the input buffer is not modified by cursor commands.
The left and right arrow keys regain their backspace and retype
functions as soon as you turn off cursor command mode.

4 15 6

1 I 2 J

0

-1 ,... .

Cursor commands for moving the cursor

Typing the letter H (for Home) in cursor command mode will move the
cursor to the upper-left corner of the viewport.

You should be careful when using cursor commands in the
middle of an input line, especially when using the backspace
or cancel functions. These functions move the cursor to reflect
the changes they make in the input line; if you move the cursor
away from the input line with cursor commands, then any
subsequent backspace or cancel functions will not indicate
accurately the characters that they remove from the input
buffer.

There are three cursor commands that clear various portions of the
viewport. Pressing S (for Screen) in cursor command mode will clear
the contents of the viewport and move the cursor to the upper-left
corner. Pressing P will clear from the cursor position to the end of the
viewport without moving the cursor; pressing L (for Line) will clear
from the cursor position to the end of the line the cursor is on , again
without moving the cursor. For detailed descriptions of the operation
of the clearing commands, see the screen control codes 28, 29, and
31 in the previous section.

There are three other cursor commands that change the setting of
the viewport. This is useful mainly in program debugging: you can list
a section of the program on the screen, change the viewport to
protect the listing, then use other debugging techniques without
having the program listing scroll off the screen .

Cursor commands for clearing the screen

Pressing T (for Top) wh ile in cursor command mode sets the upper
left-hand corner of the viewport to the current cursor position. This
means that the cursor cannot move above or to the left of its current
position ; any text in those areas is now protected and cannot be
changed, cleared , or scrolled off the screen.

Pressing B (for Bottom) while in cursor command mode sets the
lower right-hand corner of the viewport to the current cursor
position. Thus, the cursor cannot move below or to the right of its
current position; any text in those areas is now protected and cannot
be changed, cleared, or scrolled off the screen .

7 8 9

I
4 5 6

, 2)

o 1 J,.". '-J

Cursor commands to set the viewport

Pressing V (for Viewport) in cursor command mode resets the
viewport to the full dimensions of the text screen, without moving the
cursor. It also saves the former viewport setting (and other important
information) so that it can be restored later by the RESTORE
VIEWPORT screen control code. The restoration function, however, is
not available in cursor command mode. See the screen control codes
Cb1, Cb2, and Cb3 in the previous section for details of the viewport
controls.

Here is a summary of the cursor commands, their functions, and their
equivalent screen control codes:

Character Function Control Code

Left Arrow Move cursor left Cb9 HT
Right Arrow Move cursor right Cb8 BS
Up Arrow Move cursor up 11 VT
Down Arrow Move cursor down 1Cb LF
H or h Home cursor 12 FF
S or s Clear viewport 28 FS
P or p Clear to end of viewport 29 GS
L or I Clear to end of line 31 US
Vor v Reset viewport Cb1 SOH
Tor t Set viewport upper-left 02 STX
B or b Set viewport lower-right Cb3 ETX

To turn off the cursor command mode, press any key that is not a
cursor command . The cursor will immediately change from the
inverse plus sign back to the inverse of the character under it, and
you can continue with normal input. Neither the initial ESCAPE
character code, the cursor commands themselves, nor the exit
character code are put into the input buf fer.

® The Apple Business BASIC Reference Manual contains a short
demonstration of the use of cursor commands with the retype
key to perform simple program or data editing. These features
are very versatile, and are a great help in the entry and
debugging of BASIC programs.

Console Control Keys
At any time that the console is open, whether or not it is actually
processing input or output, you can issue console controls to change
some aspects of the operation of the console. These console controls
take effect immediately; they are not entered into either the type
ahead buffer or the input buffer. A program cannot detect (or issue)
console control keystrokes, nor can it override their effects.

A console control is issued by holding down the CONTROL key and
pressing one of the numbers 5, 6, 7, 8, or 9 on the numeric keypad.
Using the numbers on the main keyboard will not work; you must use
the keys on the numeric keypad to issue console controls .

These functions can be performed with console control keys :

• Turn Video Output On and Off,

• Flush Type-ahead Buffer,

• Suspend Screen Output,

• Display Control Characters, and

• Flush Screen Output.

One function , Flush Type-ahead Buffer, is performed each time you
press the proper keys. The other functions are toggled: typing the
control key once t urns the function on , and typing it again turns the
function off.

Toggle Video Output, CONTROL-5 on the numeric keypad, turns the
video output on and off. You can still write data to the console when
the video output is off, but it w ill not be visible until the video is
turned on. Note that an input request or an I/O reset from a program
automatically turns the video on . The Apple III runs programs about
20 percent faster wi.th the video turned off than it does with video on.
Thus, you can manually speed up portions of your programs that do
not require video output by using this control.

Flush Type-Ahead Buffer, CONTROL-6 on the numeric keypad ,
removes all characters in the type-ahead buffer. You use this if you
have typed a lot of data into the type-ahead buffer and realize you
made an error ; pressing CONTROL-6 erases the information before
the console can put it into the input buffer and echo it to the screen.
If the characters have already been moved from the type-ahead
buffer into the input buffer, CONTROL-6 has no effect.

Suspend Screen Output , CONTROL-7 on the numeric keypad ,
suspends all screen output. When you press CONTROL-7, the console
is prevented from placing any new information on the screen. If a
program attempts to put text onto the screen, it will be stopped until
you enable screen output by pressing CONTROL-7 again . The second
time you press CONTROL-7, program output will resume from the
point where it was stopped .

Display Control Characters, CONTROL-8 on the numeric keypad,
affects the way control characters are output. ASCII control
characters sent to the console are usually interpreted as screen
control codes (see the previous section) and affect the appearance of
the screen, cursor, and viewport. After you press CONTROL-8, any
control characters sent to the screen will not be interpreted as screen
control codes, but instead will be displayed as characters on the
screen. This is sometimes useful in debugging. The appearance of
the control characters is defined by the system character set; in the
normal character set, control characters are displayed as two-letter
abbreviations of the names of the characters. To enable control
characters to perform their normal screen control functions, press
CONTROL-8 again.

All screen control codes will: have no effect after you press
CONTROL-8. This includes the screen characters issued by the
cursor command mode: in other words, ESCAPE mode isn't
useful when CONTROL-8 is in effect.

Flush Output, CONTROL-9, controls screen output, but differently
from CONTROL-7, above. When you press CONTROL-9, the console
stops processing output, but programs are not halted: any characters
sent to the console after you press CONTROL-9 are ignored. When
you press CONTROL-9 again, the console resumes processing
output. Note that an input request will automatically cancel the effect
of CONTROL-9 and cause the console to resume normal output
processing .

Here is a summary of the console control keystrokes:

Keystroke Function

CONTROL-5
CONTROL-6
CONTROL-7
CONTROL-8
CONTROL-9

Toggle Video Output (toggle)
Flush Type-ahead Buffer
Suspend Screen Output (toggle)
Display Control Characters (toggle)
Flush Output (toggle)

Advanced Techniques

Whenever you send a control character to the console driver, the
language system you are using actually transmits the character by
means of a system call. System calls are the normal method that
assembly-language programs (including interpreters and language
systems) use for communicating with files and devices on the Apple
III.

Instead of sending control characters as part of the output character
stream, you can control the operation of the console by issuing your
own system calls. The particular system calls that you use to control
device drivers are the D_STATUS and D_CONTROL calls.

Interpreters (such as BASIC) and language systems (such as Pascal)
provide more convenient ways of communicating with files and
devices, so that user pwgrams don't ordinarily need to resort to
system calls. However, some 'lan9'uage systems on the Apple III
provide ways for you to make SOS calls directly to the system. For
example, Apple III Pascal includes a procedure called UNITSTATUS
that is used for both D_STATUS and D_CONTROL system calls . The
use of this procedure is described in Appendix H.

These system calls require three parameters, like this :

D_STATUS (device number, status code, status list)

D_CONTROL (device number, control code, control list)

where device number specifies the device you want to get status
information from or send control information to; status code and
control code specify the particular information to get or to send; and
status list and control list specify the location in the program's
memory space where the information is or will be put. For more
details on using system calls from an assembly language program,
refer to the Apple III SOS Reference Manual.

Console Status Requests
The following list gives the status code and the contents of the status
list for each console driver status request. Note: status bytes are
often given as hexadecimal values, indicated here by a dollar sign ($)
prefix, e.g., $80 is hexadecimal 80, equal to decimal 128.

Status code : 0 (No Operation)
Status list: (nil)

This status request does nothing.

Status code : 1 (Preserve Status Table)
Status list: Buffer size, Buffer

Copies the status table of the console into the buffer portion of
Status list. The status table contains the current state of the console
options; once the status is preserved, you can change the console
options as much as you like and still be able to restore them by
issuing a Restore Status Table control request.

The first byte of the status list is the buffer size. You set Buffer size to
the number of bytes available in the buffer before executing the
request. For the console driver, the buffer must be at least 90 bytes
long. The driver will store the status table into the buffer and put the
number of bytes actually used into Buffer size. The contents of the
status table are for the console's use only : you should not attempt to
do anything other than preserve and restore the status table.

Status code: 2 (Termination Character)
Status list: Line status; Line character

Returns the line-termination status and character. If Line status is
equal to $80, then pressing the character given in Line character will
terminate an input request; if Line status equals $00, only satisfying
the proper character count will terminate an input.

Status code : 3 (Keyboard Mode)
Status list : Mode status

Returns the keyboard mode. If Mode status equals $OO, then a read
request to the keyboard returns a single byte of ASCII code for each
keystroke. If Mode status equals $80, a read request returns a byte of
ASCII code plus an additional byte of keyboard data. The format of
the additional data byte is given in Appendix G.

Status code : 4 (Type-ahead Buffer Size)
Status list: Buffer size

Returns the size of the type-ahead buffer as the number of
keystrokes it can store. If type-ahead is disabled, this status request
will return a buffer size of zero.

Status code: 5 (Buffered Keystroke Count)
Status list: Keystroke count

Returns the number of keystrokes currently stored as characters in
the type-ahead buffer.

Status code : 6 (Attention Event)
Status list: Priority, Event 10, Event-handler address, Attn char

Returns the current Attention Event parameters. The Attention event
monitors keystroke data and tests for the character defined as the
Attention character. When it detects the Attention character, the
console driver flushes the type·ahead buffer and, if type-ahead is
enabled, puts the character into the buffer. The console also turns off
the event so that it cannot recur until the program reactivates it. Then
the console passes control to the Event-handler address, as if it had
executed a JSR instruction . If the Any-key event happens at the same

time as the Attention event, the Any-key event takes precedence.
Refer to theApple III SOS Reference Manual for a complete
description of Events.

~	The Even t-hand le r address is a three- byte address: low byte,

high byte, and bank. The Event-handler routine must be
present at this address throughout the period when it is
possible for this event to be active. If the event occurs when
some other routine has been loaded or relocated to this
address, the system will fail : you will have to reboot it and start
your program over from the beginning. If your program cannot
guarantee that the Event-handler routine will remain in
memory, you should not use events.

Status code : 7 (Reserved)
Status list: (nil)

This request code is reserved for future assignment.

Status code : 8 (Any-Key Event)
Status list: Priority, Event 10, Event-handler address

Returns the current Any-Key Event parameters. The Any-Key Event is
triggered by the pressing of any key. When the Any-key Event detects
a character, the console driver flushes the type-ahead buffer and, if
type-ahead is enabled, puts the character into the buffer. The console
also turns off the event so that it cannot recur until the program
reactivates it. Then the console passes control to the Event-handler
address, as if it had executed a JSR instruction. If the Any-key event
happens at the same time as the Attention event, the Any-key event
takes precedence. Refer to the Apple III Technical Reference Manual
for a complete description of Events.

@ The Event-handler routine must be present throughout the
period when it is possible for this event to be active. If your
program cannot guarantee that the Event-handler routine will
remain in memory, you should not use events. See the warning
given under status code 6.

Status code: 9 (Reserved)
Status list: (nil)

This request code is reserved for future assignment.

Status code: 1~ (No Wait Input)
Status list: No-Wait status

Returns the status of the no-wait mode. If No-Wait status equals $8~ ,

then all input requests will return only characters that were in the
type-ahead buffer at the time of the input request; the console will
not wait until the user types the termination character or satisfies the
character count. If No-Wait status equals $~~, input is processed
normally.

Status code: 11 (Screen Echo)
Status list: Screen-Echo status

Returns the status of the screen-echo mode. If Screen-Echo status
equals $~~, then no keypresses will be echoed to the screen; in
addition, there will be no cursor display, no ESCAPE mode, no
character copy, and no cursor movement during backspace and
cancel. If Screen-Echo status equals $8~, input characters will be
echoed to the screen, and the other functions listed will all operate
normally. If Screen-Echo status equals $~~ or $8~, any control
characters typed on the keyboard will not be echoed to the screen. If
Screen-Echo status equals $C~, then , in addition to normal character
echoing, control characters will also be echoed to the screen.

Status code: 12 (Retype)
Status list: Retype status

Returns the status of retype mode. If Retype status equals $~~, retype
is disabled. If Retype status equals $80, retype is enabled.

Status code: 13 (Backspace)
Status list: Backspace status

Returns the status of the backspace function. If Backspace status
equals $00, the backspace function is disabled. If Backspace status
equals $80, then backspace is enabled and nondestructive; if
Backspace status equals $C0, backspace is enabled and destructive.

Status code: 14 (Cancel)
Status list: Cancel status

Returns the status of the cancel function . If Cancel status equals $00,
the cancel function is disabled. If Cancel status equals $80, then
cancel is enabled and nondestructive; if Cancel status equals $C0,
cancel is enabled and destructive.

Status code: 15 (Escape)
Status list: Escape Mode status

Returns the status of escape mode (cursor command mode). If
Escape Mode status equals $00, escape mode is disabled. If Escape
Mode status equals $80, escape mode is enabled .

Status code: 16 (Cursor Position)
Status list : Horizontal byte, Vertical byte

Returns the current position of the cursor, relative to the upper left
hand corner of the viewport. Horizontal byte will range from rb to the
viewport width ; Vertical byte will range from rb to the viewport height.

Status code: 17 (Read Text Screen)
Status list: Character byte

Retu rns the ASCII value of the character at the cu rrent cu rsor
position. Does not affect the screen or change the cursor position.

Status code : 18 (Preserve Contents of Viewport)
Status list : Viewport data

The contents of the viewport (both text and color information) are
copied to the status list. The status list must be large enough to hold
all of the data. In the 8rb-column display modes, the amount of
storage space required for the viewport data is equal to the width of
the viewport multiplied by the height, plus 3. In the 4rb-column
modes, the space required is equal to twice the width of the viewport
times the height, plus 3.

@ If you use this request under the assumption that you have
already set the viewport, beware : if CONTROL-8 (Display
Control Characters) was in effect when you tried to set the
viewport, the viewport was not set (because the request was a
control code).

Console Control Requests
The following list gives the control code and the contents of the
control list for each console-driver control request. Note that the
dollar sign ($) is used to indicate hexadecimal values.

Control code: (/J (Reset Console)
Control list: (nil)

Sets all console options to their default values.

Control code: 1 (Restore Status Table)
Control list : Buffer size, Buffer

Restores the status table of the console from the buffer. The buffer
size and the buffer should have been filled with information by a
previous Preserve Status Table status request; it is not advisable to
enter your own values into the status table.

Control code : 2 (Termination Character)
Control list: Line status ; Line character

Sets the line-termination status and character. If Line status is equal
to $8(/J, then pressing the character whose ASCII code is specified in
Line character will terminate an input request; if Line status equals
$00, only satisfying the proper character count will terminate an
input.

Control code: 3 (Keyboard Mode)
Control list: Mode status

Sets the keyboard mode. If Mode status equals $00, then a read
request to the keyboard returns a single byte of ASCII code for each
keystroke. If Mode status equals $80, a read request returns a byte of
ASCII code plus an additional byte of keyboard data. The format of
the additional data byte is given in Appendix G.

Control code: 5 (Type-ahead Buffer size)
Control list: Buffer size

Sets the size of the type-ahead buffer, in keystrokes. If Buffer size =
0, type-ahead is disabled.

Control code: 5 (Flush Typeahead Buffer)
Control list: (nil)

Removes all characters from the type-ahead buffer; performs the
same function as pressing CONTROL-6 on the numeric keypad. This
request has no effect if type-ahead is disabled or if the console has
already emptied the type-ahead buffer into the input buffer.

Control code : 6 (Attention Event)
Control list: Priority, Event ID, Event-handler address, Attn char

Sets the current Attention Event parameters. The Attention event
monitors keystroke data and tests for the particular character defined
as the Attention character. When it detects the Attention character,
the console driver flushes the type-ahead buffer and, if type-ahead is
enabled, puts the character into the buffer. The console also turns off
the event so that it cannot recur until the program reactivates it. Then
the console passes control to the Event-handler address, as if it had
executed a JSR instruction . If the Any-key event happens at the same
time as the Attention event, the Any-key event takes precedence.
Refer to the Apple III SOS Reference Manual for a complete
description of events.

The Event-handler routine must be present throughout thp.
period when it is possible for the event to be active. If your
program cannot guarantee that the Event-handler routine will
remain in memory, you should not use events.

Control code: 7 (Reserved)
Control list: (nil)

This request code is reserved for future assignment.

Control code: 8 (Any-Key Event)
Control list: Priority, Event 10, Event-handler address

Sets the current Any-Key Event parameters. The Any-Key Event is
triggered by the pressing of any key. When the Any-key Event detects
a character, the console driver flushes the type-ahead buffer and, if
type-ahead is enabled , puts the character into the buffer. The console
also turns off the event so that it cannot recur until the program
reactivates it . Then the console passes control to the Event-handler
address, as if it had executed a JSR instruction. If the Any-key event
happens at the same t ime as the Attention event, the Any-key event
takes precedence. Refer to the Apple III Technical Reference Manual
for a complete description of Events.

@ The Event-handler routine must be present throughout the
period when it is possible for the event to be active. If your
program cannot guarantee that the Event-handler routine will
remain in memory, you should not use events.

Control code: 9 (Reserved)
Control list : (nil)

This request code is reserved for future assignment.

Control code: 10 (No Wait Input)
Control list: No Wait status

Sets the status of the No Wait mode. If No Wait status equals $80, then
all input requests will return only characters that were in the type
ahead buffer at the time of the input request ; the console will not
wait unti l the user types the termination character or satisfies the
character count. If No Wait status equals $00, input is processed
normally.

Control code: 11 (Screen Echo)
Control list : Screen Echo status

Sets the status of the Screen Echo mode. Only the two high-order
bits are used . If you set Screen Echo status to $00, then no
keypresses will be echoed to the screen ; in addition, there will be no
cursor display, no ESCAPE mode, no character copy, and no cursor
movement during backspace and cancel. If you set Screen Echo
status to $80, input characters will be echoed to the screen, and the
other functions listed will all operate normally.

You can also control echoing of control characters. If Screen Echo
status is set to $00 or $80, as above, control characters typed on the
keyboard will not be echoed to the screen , but if you set Screen Echo
status to $C0, then , in addition to normal character echoing, control
characters will also be echoed to the screen .

Control code: 12 (Retype)
Control list: Retype status

Sets the status of Retype mode. If Retype status equals $OO, retype is
disabled. If Retype status equals $80, retype is enabled.

Control code: 13 (Backspace)
Control list: Backspace status

Sets the status of the backspace function. If Backspace status equals
$OO, the backspace function is disabled. If Backspace status equals
$80, then backspace is enabled and non-destructive ; if Backspace
status equals $C0, backspace is enabled and destructive.

Control code : 14 (Cancel)
Control list: Cancel status

Sets the status of the cancel function. If Cancel status equals $00, the
cancel function is disabled. If Cancel status equals $80, then cancel
is enabled and non-destructive; if Cancel status equals $C0, cancel is
enabled and destructive.

Control code: 15 (Escape)
Control list : Escape Mode status

Sets the status of escape mode (cursor command mode). If Escape
Mode status equals $00, escape mode is disabled. If Escape Mode
status equals $80, escape mode is enabled.

Control code : 16 (Download Character Set)
Control list: Character set

Starts loading Character set into the Apple Ill's video generator. The
character set occupies 1,024 consecutive bytes of memory; its format
is given in Appendix G. The entire downloading process normally
takes about a quarter of a second, but program execution resumes
immediately after the request is issued; the console does not wait for
the operation to be completed before proceeding. The new character
set takes the place of the system character set; any other drivers that
are using the system character set may be affected by the new
character set.

Control code: 17 (Load Partial Character Set)
Control list: Count, Character definition

Starts the loading of up to eight characters into the Apple's video
generator. Count is the number of characters being loaded : it can
range from 0 to 8. Each character being loaded is defined by a set of
nine bytes. The first byte in each definition contains the ASCII
character code of the character being defined, and the other eight
bytes define the appearance of the character. The format of a
character definition is given in Appendix G. The new characters are
stored in the system character set; any other device drivers using the
system character set may be affected by the changed characters.

Control code : 18 (Restore Contents of Viewport)
Control list: Viewport Contents

The contents of the viewport are restored from the control list. The
list must contain the data from a Preserve Contents of Viewport
status request. The current text mode and viewport dimensions must
be the same as the text mode and viewport dimensions at the time
the Preserve Contents of Viewport status request was issued, except
the mode can be either black and white or color.

The Graphics Driver

In addition to the three text modes, which are controlled by the
console driver, the Apple Ill's video generator can produce four
modes of graphics on a video display. These four graphics modes are
controlled by the .GRAFIX device driver.

Using the graphics driver, you can plot points , draw lines, write
characters, and place blocks of predefined shapes on a graphics
screen. You can also read the setting of any dot on a graphics screen .

The graphics device driver makes the graphics screen look like a text
file. Opening the file .GRAFIX (with either an OPEN statement from
BASIC or the REWRITE or RESET procedures from Pascal) turns on
the graphics display and sets some default values inside the driver.
Writing to the graphics driver w ill affect the appearance of the
graphics screen ; reading from the file will give you information about
the appearance of the screen .

This method of communication with the driver, however, is
inadequate for most high-level programm ing purposes. Although you
can perform almost all operations on the graphics driver by sending
and reading streams of characters, this becomes ext remely
inefficient when you attempt to do more interesting and complex
things with graphics pictures. To help you , most high level languages
have special applications packages that act as an interface between
your high-level programs and the graphics driver. For example, Pascal
uses the PGRAPH unit and Business BASIC uses the BGRAPH
module. They allow you to express graphics commands in a high-level

style, similar to that of the programming language you are using . The
commands are then converted into an output stream of characters
and sent to the graphics driver. The operations performed by the
driver are the same; only the means of invoking them has been
simplified.

This chapter explains the features of the graphics driver that are
available from all programming languages. It does not describe how
to access those features from a given language; it only describes the
driver's reaction to streams of output characters. To learn how to use
the graphics driver from a high level language, refer to the
documentation of the graphics application package for the high-level
language.

The Graphics Modes

The Apple Ill's video display, like any television set, composes its
pictures in a large rectangle of tiny dots. The size and quantity of
these dots determines the resolution of the picture: the more dots
there are in a picture, the finer (or higher) the resolution . The Apple
Ill's video generator can create a picture four different ways, called
graphics modes:

• 192 lines of 28@ dots per line, black and white dots only;

• 192 lines of 28@ dots per line, dots in any of 16 possible
colors, with limitations;

• 192 lines of 56@ dots per line, black and white dots only;

• 192 lines of 14@ dots per line, dots in any of 16 possible
colors, no limitations.

In addition, the Apple III can store two different pictures in each
graphics mode. Thus you can display a picture in a certain graphics
mode while creating another picture in the same mode, then switch
the display to show the second picture. However, due to the different
ways picture data is stored for the different graphics modes, it is
difficult to display a picture in one graphics mode while creating
another picture in a different mode.

Two kinds of manipulation can be performed on a picture: vector
manipulations and block manipulations. All functions of the graphics
driver perform in the same manner regardless of the current graphics
mode, despite the differences in screen dimensions or color
capabil ities.

Vector manipulations involve two fundamental structures: the dot and
the line. You can place a dot at any point on the screen or draw a line
between any two points. Any picture that you can define as a set of
dots and lines can be drawn using vector manipulations. You cannot,
however, control the size of the dots or the width of the lines.

Block manipulations involve defining two-dimensional arrays of bits
and transferring them as whole entities onto the screen. Block
manipulations are used for placing predefined shapes (in rectangular
blocks) at any position in the picture.

Graphics Tools
The graphics driver, like the console, maintains data about the
boundaries of its screen, its current drawing position, and the colors
in which it is drawing. These three pieces of data control the
placement and appearance of images on the graphics screen:

• The graphics viewport. This is a defined area on the screen in
which all changes to the screen take place. The graphics
driver will alter only those areas of the screen inside the
current viewport; by changing the size and position of the
viewport, you can protect images you have already placed on
other areas of the screen. The viewport may be of any size
and at any position, as long as it fits on the current graphics
screen.

• The position of the graphics pen. In effect, the pen draws on
the graphics screen, and its position at any given time is
called the pen position. All poims, lines, blocks, and
characters are drawn by the peri. The pen position has a large
range: it can be anywhere on or off the screen, inside or
outside the viewport. However, operations with the pen affect
the screen only when the pen's position is inside the
viewport.

• The pen and fill colors . The pen color is the color in which all
dots, lines, blocks, and characters are drawn. The fill color is
the color that fills the screen during a Clear Viewport
operation, and is also the color that is filled in behind blocks
and characters when you draw them on the screen .

The viewport is defined by four integers that specify the left, right,
top, and bottom borders of the graphics viewport with respect to the
resolution limits of the current graphics mode. The left and bottom
borders cannot be less than zero; the right and top borders must be
less than the number of dots in a screen row or column .

The pen position is specified relative to the graphics screen by two
integers. The lower-left corner of the screen is pen position 0,0. The
horizontal and vertical position of the pen are specified as 16-bit
signed integers, with negative numbers in two's complement form .
This is the number format used for integer variables by Apple
Business BASIC and Apple Pascal.

The pen and fill colors can be chosen from a set of sixteen colors.
Each color is specified by a number from 0 to 15 (that's hexadecimal
values $00 to $0F; binary 0000 to 1111). The value of black is 0; the
value of white is 15; and the fourteen values in between are each
assigned to a color. Tables of the colors and their values appear both
in this chapter and in the appendices. On a black and white monitor,
the colors are displayed as shades of grey, with the lighter shades
corresponding to the higher values.

You can change the viewport size and position , the pen position , the
pen and fill colors , and most other values used by the graphics driver
by sending special sequences of characters, called graphics screen
control codes , to the driver. Details on the control of graphics output
are given in the following sections of this chapter.

The Color Operator Table
In addition to enabling you to protect selected areas of the graphics
screen by setting the viewport, the graphics driver also enables you
to protect individual colored areas inside the viewport by using the
color operator table . The color operator table determines which
colors can overwrite other colors inside the viewport.

The color operator table is an array with 16 rows and 16 columns,
one of each for each color. The rows represent the pen color and the
columns represent the screen color. Normally the operator table is
set up in this manner:

Screen Color
Pen Color 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Black 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Magenta 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 Dk. Blue 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 Purple 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 Dk. Green 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 Grey 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 Md. Blue 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 Lt. Blue 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 Brown 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9 Orange 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 Grey 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
11 Pink 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 Green 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
13 Yellow 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
14 Aqua 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
15 White 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Each element at the intersection of a pen color row and a screen
color column determines the color that will be drawn when you
attempt to draw over an area of that screen color with a pen of that
pen color. In the normal table, drawing with a certain pen color
always produces that same pen color, regardless of the screen color
at that location. If you change an element of the table, the graphics
driver will change the way it draws colors on the screen according to
the position and value of the changed element.

Suppose you were drawing road maps on the graphics screen and
you had a green background, surface streets drawn in black, and
elevated freeways drawn in pink. Now suppose you wanted to draw
railroad tracks in yellow so that the tracks would always go above the
green background and black surface streets, but always below the
pink freeways. Before drawing the tracks in yellow, you would set the
element in the color operator table where the pen color is yellow and
screen color is pink to the value of the color pink, so that when you
draw your yellow tracks across the pink freeway, a pink line is drawn
that blends into the rest of the freeway.

Suppose now that you wanted to draw subway routes that do not
appear under train tracks or freeways, but appear dark !:.>Iue over the
green background and light blue over surface streets. Before
drawing the subway routes you would set the pen color to dark blue,
and set the color operator table to this:

Pen color Screen col:or Resulting color

Ok. Blue Green (background) Ok. Blue
O'k. Blue Black (streets) Lt. Blue
Ok. Blue Pink (freeways) Pink
Ok. Blue Yellow (tracks) Yellow

The color operator table has many other uses, but this is the most
common one : protecting colored items already on the screen from
being overdrawn by any or all other colors.

The table acts on the fill color in exactly the same manner it acts on
the pen color. The fill color is used only in character and block
output, and in clearing the viewport.

The table is set up and changed by two screen control codes,
discussed in a later section of this chapter.

The Transfer Modes
The transfer modes give you another degree of control over how
colors are placed on the screen. After the color operator table
determines which of the 16 colors to put at the pen position, the
transfer mode determines how it is put there.

The transfer modes operate on color data as four-bit binary
quantities, and perform binary logical operations on colors.
Thus some of the color transfers you can obtain with different
transfer modes are interesting but not really useful. When you
use different transfer modes, combined with different settings
of the color operator table, you can get intricate coloring
algorithms that are very difficult to predict. When you 're using
colors, it's advisable to use the color operator table to protect
colors on the screen, the transfer modes to obtain special
effects, and both only when you really know what's going on.

The transfer modes tell the graphics driver to take the drawing color
(from the operator table) and the current screen color and perform
one of eight binary operations on the two , then draw a dot in the
resulting color at the current pen position.

There are four basic transfer modes : STORE, OR, XOR, and BIC. In
STORE mode, the drawing color is transferred directly to the screen,
ignoring the color that's there already. In OR mode, the graphics
driver performs the logical OR of the two colors and plots the
resulting color. In XOR mode, an Exclusive-OR operation is
performed, and in BIC (Bit Clear) mode, each bit in the drawing color
that is on will force its corresponding bit in the current screen color
off.

Each of these modes has a variant in which the drawing color is
inverted, bit for bit, before the operation is performed; the inverse
(NOT) of a color is the color whose value is equal to 15 minus the
value of the original color. This gives a total of eight distinct transfer
modes:

Transfer Mode Resulting Color

STORE draw color
OR draw color OR screen color

XOR draw color XOR screen color
BIC draw color BIC screen color

INVERSE STORE (NOT draw color)
INVERSE OR (NOT draw color) OR screen color

INVERSE XOR (NOT draw color) XOR screen color
INVERSE BIC (NOT draw color) BIC screen color

These modes, especially the BIC and inverse modes, are most
useful in the black-and-white graphics modes. The screen color
will always be either black (all zeros) or white (all ones), so if
the drawing color is also all zeros or all ones, these binary
operations will perform as you would think they should: as
binary logical operators on each dot.

Tables of the resulting colors for each of these operations appear in
Appendix B of this manual.

Graphics Output

After you open the .GRAFIX driver for output, you can use any file
oriented output command (such as BASIC's PRINT# and OUTPUT#
statements or Pascal's WRITE and WRITELN) to send characters to
the graphics driver.

Pascal traps certain control characters in WRITE and WRITELN
statements. Certain graphics arguments can have the same
values as those control characters (16 or greater), so you
cannot use WRITE or WRITELN to send them to the driver. Use
UNITWRITE instead.

The graphics driver recognizes 160 distinct characters. If a character
received by the graphics driver is an ASCII control character (with a
value from 0 to 31), the driver performs a special control function.
These control characters, called screen control codes, are described
in the next section.

If the character is a standard printing character (ASCII code 32 to
127), the driver will use the current graphics character set to place
the image of that character on the current graphics screen. The
character is placed below and to the right of the pen position and the
pen is advanced to the right a distance equal to the width of the
character. Any portions of the character that are not inside the
viewport will not be drawn.

The graphics driver normally uses the system character set loaded
with the System Configuration Program; this is the same default
character set used by the console driver. Although the two drivers
use the same default character set, the graphics driver can use an
alternate character set. If you change the graphics character set, the
console's character set is unaffected ; but if you change the console
character set and the graphics driver is using the system character
set, the graphics character set will be changed along with the
console's. Any change in the graphics character set will not, however,
affect graphics characters already on the screen .

In addition to the 96 standard printing characters, the character set
allows you to define 32 additional characters, one for each ASCII
control character. If the character received by the graphics driver is
an ASCII control character with its high bit set (giving it a value
between 128 and 159), the graphics driver will clear the high bit and
handle the character as a special printing character, placing its
associated special character image on the graphics screen.

If the graphics driver receives a standard printing character with its
high bit set (that is, a value between 16@ and 255) , the graphics driver
will place a character on the screen. If the driver is using the
standard character set, the character will be displayed as the
standard character with the high bit off. If, however, the driver is
using an alternate character set, the values 16@ through 255 can be
assigned to 96 additional characters. With the 96 standard characters
and the 32 special printing characters mentioned above, this gives
the Apple III a total of 224 distinct printing characters.

Screen Control Codes
The ASCII control characters with values between 0 and 31 are
recognized by the graphics driver as graphics screen control codes.
When the driver receives one of these codes during output, it
performs a control function that changes the appearance or behavior
of the graphics screen.

Some of the screen control codes requ.ire one or more arguments.
These are extra characters immediately fOllowing the control code
that do not perform their regular function , but instead supply extra
information to a function invoked by the code. For example, the PEN
COLOR control code (code 19) requires one argument whose value
determines the color that is used to display characters. A segment of
a program to set the pen color to dark blue (color 2) might be written
in BASIC in this manner:

20 OPEN#1 , ".GRAFIX"
30SETPEN=19:DARKBLUE= 2
40 PRINT#1 ;CHR$(SETPEN);CHR$(DARKBLUE) ;

Because Pascal traps certain control characters, you must use the
UNITREAD procedure to send characters whose values could be the
same as the control characters. A Pascal example to set the pen color
to color code 2 might read :

var : g_array: packed array [0 .. 20] of 0 .. 255;
begin
g_array[0]:=19 ; g_array[1]:=2 ;
unitwrite(3,g_array,2"12);
end ;

Eleven screen control codes require arguments; the number of
arguments requ ired by a screen control code range from one to as
many as 20.

Some control codes require 16-bit signed integers as arguments. Two
characters are needed to send such an integer to the graphics driver.
In Apple Business BASIC it is difficult to send such an integer directly
to the graphics output device : you must first divide the number into
its component bytes, making sure to keep the integrity of the two 's

complement form for negative numbers. Apple recommends using
BGRAPH, the graphics application package for BASIC, when you
need to use contro'l codes that require these arguments. If you must
send the integers directly, this BASIC statement will convert an
integer value in the variable VAL% into a two-character string in the
variable VAL$ that can then be used as an argument of a control
code :

1000 VAL$=CHR$(TEN(LEFT$(HEX$(VAL%),2))) +
CHR$(TEN(RIGHT$(HEX$(VAL %),2)))

This statement will enable your BASIC programs to convert any
integer between - 32767 and + 32767 into an argument of a screen
control code.

Many control characters have no function in the graphics driver ;
such characters are ignored by the driver. The following is a list of the
18 functional screen control codes, their arguments, and their
functions:

RESET VIEWPORT
Code 01, "SOH" (Start of Header)

Resets the viewport to the size of the current graphics screen .
Does not affect the pen position.

SET VIEWPORT
Code 02, "STX" (Start of Text)

Sets the coordinates of the corners of the viewport. The eight
argument bytes comprise four 16-bit signed integers :

Left boundary (2 bytes)
Right boundary (2 bytes)
Bottom boundary (2 bytes)
Top boundary (2 bytes)

All boundaries are relative to the lower-left corner of the
screen, which is absolute position (O,O). If any boundary value
is outside the screen limits for the current graphics mode, its
value will be adjusted to fit the current graphics screen .

CHARACTER SET
Code 03, " ETX" (End ofText)

Sets the address and character size of the new character set to
be used for placing characters on the graphics screen. Its
arguments are :

Character set address (3 byte address)
Character width (1 byte integer)
Character height (1 byte integer)

As it is difficult for a user program to obtain three-byte memory
addresses of items in the system 's memory, Apple recommends
that you use the graphics applications package for your
language to perform this function . See the documentation for
the language for details.

DRAWBLOCK
Code 04, " EOT" (End ofTransmission)

Draws a predefined shape on the screen. It takes a block of
bits and transfers them to the the current graphics screen ,
placing them below and to the right of the current pen
position . Each one bit in the block will cause the pen color to
be drawn on the screen ; each zero bit will cause the fill color
to be drawn on the screen. Both the pen and fill colors are
passed through the color operator table and the transfer mode
before being placed on the screen . The arguments are:

Block address (3 byte address)
Bytes per row (2 byte integer)
Column bit displacement (2 byte integer)
Row displacement (2 byte integer)
Pixel width of block (2 byte integer)
Pixel height of block (2 byte integer)

Column displacement is measured from the right edge of the
screen; row displacement is measured from the top.

· " .,,'.' " .

Once again , this function involves the handling of two-byte
memory addresses, and Apple recommends that you use the
graphics applications package for your language to perform
this function . See the documentation for the language for
details.

PEN LINE FEED
Code Hb, "LF" (Line Feed)

Moves the pen vertically toward the origin an amount equal to
the dot height of the current character set. This is the
equivalent of a line feed in a text mode. The pen is free to move
out of the viewport: no scrolling is performed.

PEN RETURN
Code 13, "CR" (Carriage Return)

Moves the pen horizontally to the left edge of the viewport. No
vert ical pen movement occurs. This is the equivalent of a
carriage return in a text mode.

TURN OFF SCREEN
Code 14, "SO" (Shift Out)

Disables the Apple HI's video generator. The video monitor will
show a blank screen regardless of the information on any text
or graphics screen. The information on the graphics screen is
not lost; the image will be restored to the screen when a TURN
SCREEN ON command is issued (see below). When the screen
is off, the Apple Ill 's central processor operates slightly faster.
This command has no effect if the screen is already off.

TURN SCREEN ON
Code 15, "SI " (Shift In)

Enables the Apple Ill 's video generator. The video monitor Will

display graphics in the currently selected graphics mode. If one
of the text modes was in effect, sendi ng the TURN SCREEN ON
command to the graphics driver will return the display to the
graphics mode. This command has no effect if the current
graphics screen is already being displayed.

GRAPHICS MODE
CODE 16, " DLE" (DATA LINK ESCAPE)

Sets the mode used by the graphics driver to produce the
9raphics display. The next character following the code
specifies the graphics mode to set. These are the argument
characters and the graphics modes th ey specify :

Mode Character

0 280 by 192, black-and-white 0
1 280 by 192, limited color 1
2 560 by 192, black-and-white 2
3 140 by 192, full color 3
4 Mode 0, alternate screen 4
5 Mode 1, alternate screen 5
6 Mode 2, alternate screen 6
7 Mode 3, alternate screen 7

Only the three least significant bits of the character are used;
the others are ignored.

The GRAPHICS MODE command takes effect immediately, but
the chosen mode will be displayed only when a TURN SCREEN
ON code (code 15) is sent to the graphics driver. Any
commands sent to the driver after a GRAPHICS MODE
command will always be processed in the new mode.

The GRAPHICS MODE command adjusts the setting of the
viewport only when the viewport wi ll not fit on the new
graphics screen. When changing from one mode to another
mode that has smaller screen dimensions, the left and right
boundaries of the viewport will be adjusted so that they fit into
the new mode. When changing from one mode to another
mode with larger screen dimensions, the viewport remains its
smaller size. It is advisabre to make sure the viewport setting is
correct after changing graphics modes.

This command does not change the information stored on the
screen, but it does change the way the Apple III interprets that
information . Changing modes with information already on the
screen will not modify that information to make it appear the

same in the new mode. For example, when changing from
mode 0 to mode 1, though the arrangement of dots will appear
the same, the color added by the new mode will alter the
picture in unusual ways. Thus it is advisable to clear the screen
after selecting a graphics mode.

RESET COLOR OPERATOR TABLE
Code 17, "DC1" (Device Control 1)

This function sets the color operator table to its default value.
Until the operator table is changed again , it will allow any color
to overwrite any other color in the viewport ; no color has
priority.

SET COLOR OPERATOR TABLE
Code 18, " DC2" (Device Control 2)

This function allows you to change any number of elements in
the color operator table. It has five bytes of arguments:

Drawing Colors (2 byte binary mask)
Screen Colors (2 byte binary mask)
Result Color (1 byte color value)

The first two arguments specify which drawing colors (for pen
color or fill color) are being affected by the change. Each bit
position in the first two-byte value indicates one drawing color:
the most significant bit in the first byte is color 15, white; the
least significant bit in the second byte is color 0, black. Each
bit that is a 1 indicates that its associated color is being
affected .

The next two arguments form another two-byte binary mask,
select ing screen colors to be changed. The bits are arranged in
the manner described above. Every element in the color
operator table that is in both a selected pen color and a
selected screen color will be changed.

The final argument specifies the color that is to be drawn when
the selected pen (or fill) colors are used to draw over the
selected screen colors. This should be a standard color value,
from f/J to 15.

For example, if you want to change the operator table so that
when either of the greys (colors 5 and 10) is drawn over any of
the blues (colors 2,6, and 7) the resulting color should be
orange (color 9), these five bytes should be passed in order as
arguments to the SET OPERATOR TABLE code:

Argument Decimal Binary
Number Value Value Function

8 00000100 Drawing colors 10
2 32 00100000 and 5
3 0 00000000 Screen colors
4 200 11000100 7,6, and 2
5 9 00001001 Result value 9

Once you set an element in the color operator table, it remains
set that way until you reset it individually, reset the entire table,
or close and reopen the graphics driver.

PEN COLOR
Code 19, "DC3" (Device Control 3)

Sets the pen color to the value specified by the next character.
All subsequent lines, dots, blocks, and characters will be
drawn in the new color. In the black and white modes, any non
black color appears white. Only the lower four bits of the
argument are used.

Here are the sixteen colors, their values, and argument
characters commonly used to specify them:

Color Value Character Color Value Character

Black 0 0 Brown 8 8
Magenta Orange 9 9
Dark Blue 2 2 Grey 10
Lavender 3 3 Pink 11
Dark Green 4 4 Green 12 <
Grey 5 5 Yellow 13
Medium Blue 6 6 Aqua 14 >
Light Blue 7 7 White 15 ?

FILL COLOR
Code 20, "DC4" (Device Control 4)

Sets the fill color to the value specified by the next character.
Any subsequent clear viewport commands will clear the
viewport to the fill color. All characters placed on the graphics
screen and all blocks placed by DRAWBLOCK will be placed on
a background of the fill color. In the black and white modes,
any non-black fill color appears white. Only the lower four bits
of the color specification character are used. The colors and
their associated characters are given in the table above.

TRANSFER MODE
Code 21, " NAK" (negative Acknowledge)

Sets the graphics transfer mode to the value specified by the
argument character. There are eight transfer modes:

Mode Character

STORE 0
OR
XOR 2
BIC 3
INVERSE STORE 4
INVERSE OR 5
INVERSE XOR 6
INVERSE BIC 7

Only the lower three bits of the argument character are used;
the others are ignored. The transfer mode affects all items
placed on the screen, and operates on the drawing color (from
the color operator table) and the current screen color for each
point. Logical tables defining the OR, XOR, and BIC modes for
all color combinations are given in Appendix B.

DRAW LINE
Code 24, "CAN" (Cancel)

Draws a line in the current pen color from the current pen
position to the position specified by the arguments. The
arguments are :

New X-position (2 byte integer)
New V-position (2 byte integer)

The pen position remains at the new position. Any portions of
the line that are not inside the viewport will not be drawn, but
the pen position will change nonetheless. The appearance of
the line is controlled by the pen color, the color operator table,

and the transfer mode (in that order).

PLOT POINT
Code 25, "EM" (End of Medium)

Moves the pen to the given position and plots a single point.
The pen remains at the new position. The arguments are the X
position and V-position of the point to plot, in the same format
given for DRAW LINE.

If the point is not within the current viewport, it will not be
drawn. The appearance of the point is controlled by the pen
color, the color operator table, and the transfer mode.

MOVE PEN
Code 26, "SUB" (Substitute)

Moves the pen to the given position . The screen is not affected.
The arguments are the new X-position and new V-position, as
above.

CLEAR VIEWPORT
Code 28, "FS" (Field Separator)

Clears the contents of the entire viewport to the current fill
color, modified by the color operator table and the transfer
mode. The pen position is not changed .

The Limited Color Mode

Mode 1 and its alternate screen, Mode 5, were described earlier as
having limited color capabilities. This section describes those
capabilities in detail. The limited color mode has both advantages
and drawbacks : it has the highest resolution of all the color displays
on the Apple III, but there are restrictions on where and how colors
can be placed on the screen.

You can think of the limited-color screen in two parts: a 280 by 192
black-and-white display, and a 40 by 192 color overlay:

Figure 2. Limited Color Mode

The black-and-white display is just like the 280 by 192 black-and-white
display of Mode 0 and Mode 4. Each individual dot can be on or off.

The color overlay gives color to the image produced on the black
and-white display. Each line on the color overlay is made up of 40
color masks, and each mask covers a short row of seven adjacent
dots on the black-and-white display. Each color mask has two colors
associated with it: a foreground color and a background color. Any
dot that is on will be displayed in the forground color of the mask
covering that dot; any dot that is off will be displayed in the
background color of the mask covering that dot.

For example, if a certalin mask has been assigned a foreground color
of pink and a background color of orange, and four dots under that
mask are turned on, then those four dots will be displayed as pink
and the other three dots will be displayed as orange.

This is the fundamental limitation of the limited color mode: the
group of seven dots under a color mask can be displayed in only two
colors at a time. It is not possible to have dots in more than two
colors under the same color mask.

This limitation bec omes apparent when you plot in color. When you

plot a point on the screen, the graphics driver turns the dot at that
position on and sets the foreground color of the mask covering that
dot to the current pen color. The result is that the dot just plotted
appears in the current pen color; the side effect is that all other dots
that are on under that mask appear in the same color, regardless of
their previous color. Every time you plot a point or draw a line, there
is the possibility of changing the color of its neighbors.

Here is an example of the problems this could cause. The picture
below was created by drawing a solid blue box on a black
background, then drawing a diagonal green line through the box.
Where the line traverses the background, it is fine ; but where the line
goes through the blue box, it changes the color of all dots under the
color masks used by the line, This makes the line appear jagged
where it crosses the box.

Photo 9. Color Anomalies

The background color of a color mask is changed when the graphics
driver clears the viewport and during text placement and
DRAWBLOCK operations. In all three operations, the background
color of each color mask in the affected area is set to the current fill
color. To clear the viewport , the graphics driver turns all dots in the
viewport off and sets the background color of all masks in the
viewport to the current fill color.

Transfer Mode Anomalies
As you can see, plotting in the limited color modes operates in an
unusual manner. When you use the transfer modes, plotting operates
in a very unusual manner.

In the black-and-white graphics modes, the transfer modes perform
one-bit logical operations between the pen color and the dots on the
screen. The pen color and the screen color are either black or non
black, and the color that is displayed is a logical function of these
two values. In the full-color modes, the transfer modes perform four
bit logical operations on the value of the pen color and the value of
the screen color, and the resulting value is the color that gets
displayed. In the limited color modes, both of these operations take
place.

For example, if you. set the transfer mode to OR and plot a point, two
things happen. First, the pen color (black or non-black) is logically
OR-ed with the state (off or on) of the dot at the point being plotted,
and the dot is then tu rned on or off according to the result of the
logical operation . Then the four-bit value of the pen color is logically
OR-ed with the value of the foreground color of the color mask
covering that dot, and the four-bit result of that operation becomes
the new foreground color of that color mask.

The results are always logically predictable, but the process can lead
to coloring paradigms of byzantine complexity. If you decide to use
transfer modes in the limited color modes, you should have a clear
mind, a thorough grasp of the concepts involved, and a boundless
enthusiasm for the intricate and beautiful results you can obtain.

Memory Requirements

The different graphics display modes use different amounts of main
memory:

Mode Memory
Numbers Used Description

oand 4 8K bytes 280 by 192 black-and-white
1 and 5 16K bytes 280 by 192 limited color
2 and 6 16K bytes 560 by 192 black-and-white
3 and 7 16K bytes 140 by 192 full color

Most languages on the Apple III allow any memory space not used by
the graphics modes to be used for program or data storage. The
graphics driver does nothing to prevent this, but if you do this, you
must make sure that you do not put your program or data where the
driver will write graphics data.

Reading the Screen

Performing a BASIC INPUT# statement or a Pascal READ .statement
from the file .GRAFIX will return a single character or string of
characters. The value of the first character returned represents the
screen color of the current pen position. Returned values will be
alphabetic characters with values from 64 to 79; the true color value
can be obtained by subtracting 64 from the value of the first
character in the returned string. If the graphics mode is black-and
white, the values 64 (for black) or 79 (for white) are returned.

A color value is returned regardless of whether the pen is in the
viewport. If, however, the pen position is not inside the boundaries of
the current graphics screen, a character with the value of 128 will be
returned.

The Graphics Configuration Block
The chapter on the System Configuration Program describes how you
edit driver parameters. One of the items you can choose to edit with
this option is the Configuration Block data. When you select this item
in the .GRAFIX driver, you see a display similar to this. (The columns
are numbered in hexadecimal; if you replace the X in one of the
numbers down the left side with the column number of a byte you are
interested in, you get the hexadecimal value of the location of that
byte in the Configuration Block.)

SYSTEM CONFIGURATION PROGRAM
EDIT DRIVER CONFIGURATION BLOCK

~ 1 234 5 6 7 8 9 ABC D E F
~x- [~~] ~~ ~~ ~~ ~~ ~~ ~~ ~~ 17 ~1 ~~ ~~ BF ~~ ~F ~~

1x-~~ ~C ~~ ~7 ~8 ~0 ~0 00 00 00 00 00 00 00 11 11
2x- 11 11 11 11 11 11 22 22 22 22 22 22 22 22 33 33
3x- 33 33 33 33 33 33 44 44 44 44 44 44 44 44 55 55
4x- 55 55 55 55 55 55 66 66 66 66 66 66 66 66 77 77
5x- 77 77 77 77 77 77 88 88 88 88 88 88 88 88 99 99
6x- 99 99 99 99 99 99 AA AA AA AA AA AA AA AA BB BB
7x- BB BB BB BB BB BB CC CC CC CC CC CC CC CC DD DD
8x- DD DD DD DD DD DD EE EE EE EE EE EE EE EE FF FF
9x- FF FF FF FF FF FF

This configuration block data specifies the initial default conditions
for graphics each time the .GRAFIX driver is opened for use. You can
change any of these initial conditions by editing the configuration
block. The conditions set by each of the displayed configuration
block bytes is as follows:

Byte#
(hex) Default Condition Set by This Byte

00 Graphics Mode (0 to 7). Only the low-order three bits are
used.

01 Transfer Option (0 to 7).

02 Cu rsor x-position: low byte.
03 : high byte.
04 Cursor y-position: low byte.
05 : high byte.
06 Viewport left edge: low byte.
07 : high byte.
08 Viewport right edge: low byte.
09 : high byte.
0A Vi ewport bottom edge: low byte.
0B : high byte.
0C Viewport top edge: low byte.
00 : high byte.
0E Pen color (0 to F, hexadecimal)
0F Fill color (0 to F, hexadecimal)
10 Character font address: low byte.
11 : high byte.
12 : extend byte.
13 Character cell bit width.
14 Character cell bit heig ht.
15 (Not currently used.)
16 Color operator table, first two result colors in the first row.

The four high bits are the result color for source color 0 and
screen color 0, and the four low bits are the result color for
source color 0 and screen color 1.

17 Color operator table, second two result colors in first row. See
Appendix B, Graphics Quick Reference, for a diagram
showing the rows and columns of the color operator table.

18-10 Color operator table, result colors in remainder of first row.
1 E-25 Color operator table, result colors in second row.
26-20 Color operator table, result colors in third row.
2E-95 Color operator table, result colors in remaining rows.

Advanced Techniques

Whenever you send a control character to the console driver, the
language system you are using actually transmits the character by
means of a system call. System calls are the normal method that
assembly-language programs (including interpreters and language
systems) use for communicating with files and devices on the Apple
III .

Instead of sending control characters as part of the output character
stream, you can control the operation of the graphics driver by
issu ing your own system calls. The particu lar system calls that you
use to control device drivers are the D_STATUS and D_CONTROL
calls.

Interpreters (such as BASIC) and language systems (such as Pascal)
provide more convenient ways of communicating with files and
devices, so that user programs don 't ordinarily need to resort to
system calls. However, some language systems on the Apple III
provide ways for you to make SOS calls directly to the system. For
example, Apple III Pascal includes a procedure called UNITSTATUS
that is used for both D_STATUS and D_CONTROL system calls. The
use of this procedure is described in Appendix H.

These system calls require three parameters, like this:

D_ STATUS (device number, status code, status list)
D_CONTROL (device number, control code, control list)

where device number specifies the device you want to get status
information from or send control information to; status code and
control code specify the particular information to get or to send ; and
status list and control list specify the location in the program's
memory space where the information is or will be put. For more
details on using system calls from assembly language programs,
refer to the Apple III SOS Reference manual.

Graphics Status Requests
The following list gives the status code and the contents of the status
list for each graphics driver status request.

Status code: 1 (Preserve Status Table)
Status list: Buffer size, Buffer
Copies the status table of the graphics driver into the buffer portion
of the statuslist. The status table contains all of the current driver
parameters; it holds the current graphics mode, transfer mode, pen
position, viewport boundaries, pen and fill colors, character set
address, and color operator table. Once the status table is preserved,
you can change the graphics status as much as you like and still be
able to restore its original status by issuing a Restore Status Table
control request.

You must set the buffer-size byte to the number of bytes available in
the status list (in this case, 150) before executing the request; the
graphics driver will place the a0ual number of bytes used into Buffer
size and store the status information into the buffer. The internal
arrangement of this list is for the driver's use only; you should not
attempt to do anything other than preserve and restore the status
table.

Graphics Control Requests
The following list gives the control code and the contents of the
control list for each graphics driver control request.

Control code : 0 (Reset Console)
Control list: (nil)

Sets all graphics options to the default values specified in the
configuration block of the .GRAFIX driver.

Control code: 1 (Restore Status Table)
Control list: Buffer size, Buffer

Restores the status table of the graphics driver from the buffer. The
buffer should have been filled with information by a previous
Preserve Status Table status request; it is not advisable to enter your
own values into the status table.

The standard device driver .PRINTER enables your programs to send
output to a letter-quality serial printer, such as the QUME Sprint 5.
The .PRINTER driver is an output-only driver using the Apple Ill's
built-in RS-232-C serial interface; it will not allow you to read
information through the RS-232-C port. For that, you must use the
driver .RS232 described in Chapter 6.

The printer driver is configured to drive the QUME Sprint 5. To use
another serial printer, you should first examine the configuration
values given below. If changes are necessary, use the System
Configuration Program to change the printer driver's configuration
block. An explanation of this procedure appears in the section
"Changing the Configuration Block" later in this chapter.

Basic Operations

Your Apple Business BASIC programs can send characters to the
.PRINTER driver like this:

11/J OPEN#1, ".PRINTER"
12/J OUTPUT#1
13/J PRINT "This is a test."
14/J CLOSE# 1

Apple Pascal programs can use the .PRINTER driver this way:

f :text;
begin

rewrite(f,'.PRINTER') ;
writeln(f,'This is a test.') ;
close(f) ;

end;

When you open the file .PRINTER for output, the printer driver is
initialized. After the file has been opened , each PRINT# or OUTPUT#
statement from BASIC or WRITE or WRITELN statement from Pascal
puts the text into an output buffer. From there, the .PRINTER driver
transfers the data to its own buffer, then it returns control to the
program that sent the output.

The printer driver then proceeds to send characters, one at a time, to
the RS-232-C serial output port, to be accepted by a printer
connected to that port. This process continues until all text in the
buffer has been output, or the system is re-booted, or the computer
is turned off.

Instead of waiting until the printing is finished, the program that
requested output continues executing while the printing is being
done. The program executes while the driver is waiting for the printer
to print the characters it has just sent.

If for some reason the printer is unable to accept characters, the
printer driver waits until it is ready. When the printer is ready to go
again , output resumes from the same place it was stopped, just as
though the printer had never stopped at all.

Printer Output

Opening the file .PRINTER for output resets only the printer driver;
no initialization of the printer itself is done. Sending characters to the
open file will cause those characters to be queued for output. As
soon as the printer is ready to accept the characters, the characters
will be sent to the printer to be printed on the page.

The .PRINTER driver communicates with the printer via a hardware
handshake. It monitors the Data Set Ready and Data Carrier Detect
signals (pins 6 and 8, respectively, on the serial port) to verify that the
printer is ready. If for some reason the printer is unable to accept
characters, it turns off one or both of these signals, causing the
driver to wait. When the printer is ready to go again, it turns both
signals on, and the driver resumes output as if the printer has never
stopped .

If the printer is connected to the Apple- III through a modem
eliminator (see the section CONNECTING THE PRINTER), it should
provide its handshake signals on Data Terminal Ready and Request To
Send (pins 20 and 4, respectively) . If you are using a Qume printer, its
internal switch should be in the No-modem position.

Closing the printer file has no effect on the characters already sent to
the printer but as yet unprinted; the driver waits until all characters
have been transmitted. The only way to flush the printer output buffer
is by turning off the computer or re-booting the system.

The printer driver will accept all 128 ASCII characters, with or without
their high bits set. It neither interprets nor modifies the stream of
output characters : the characters you send to the printer driver are
passed on directly to the serial output port. The output port can
truncate the output characters according to the output format that
has been set; see the next sect.ion for details.

Usually, the operation of a printer is controlled by sending control
characters in the output data stream. Thus, control characters are
passed through to the printer without be·ing intercepted by printer
driver.

Changing the Configuration Block

The printer driver's configuration block contains five parameters that
control the way it communicates with a printer. The first two
parameters control the data rate and the format of the output data
sent to the printer. The last three parameters control the amount of
time the printer driver waits after it sends a line feed, carriage return,

or form feed character. These parameters are normally set to default
values appropriate for a Qume Sprint 5 printer at 1200 baud.

The first two parameters, data rate and data format , are vital to the
communication between the printer d river and the printer. If they are
not set correctly, the prin ter w ill not print characters correctly.

The other three parameters enable the driver to accommodate the
mechanism of the printer. Most printers take a certain amount of time
to move the printing carriage and the paper platen, so these three
parameters are used to tell the printer driver to wait long enough for
the printer to perform these time-consuming movements.

To examine or change the values of the configuration parameters, use
the System Configuration Program to load the current system
configuration from one of your boot diskettes, then use the EDIT
DRIVER PARAMETERS option to edit the .PRINTER driver.
Instructions for th is procedure are given in Chapter 2, The System
Configuration Program.

From the device driver's parameter display, choose the option EDIT
CONFIGURATION BLOCK. The screen will display the printer's
configuration block:

Photo 1/1. Printer Driver Configuration Block

The values of the parameter bytes appear in the upper-left corner of
the display.

Byte number 1 is the data rate. Its value (shown in hexadecimal)
determines the speed at which the Apple III communicates with the
printer. There are nine possible speeds, specified in Baud, which is
the unit of measure equal to the total number of bits transmitted per
second, including start, stop , and parity bits.

Value Speed

03 110 baud (Teletypewriter speed)
04 134.5 baud
06 300 baud (A common telecommun ications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
0A 2400 baud
0e 4800 baud
0E 9600 baud

The normal value is 08, for 1200 baud. To change the speed, use the
four arrow keys to position the indicator (a pair of square brackets)
on the first value in the configuration block. Type the two characters
in the new speed value and press RETURN. The value will change
and the indicator will move to the next value.

The second byte sets the data format. Its value determines the
arrangement of bits in the data stream that the computer sends to
the printer. There are nine standard formats:

Value Format

22 7 bits, odd parity (odd number of 1 's)
26 7 bits, even parity (even number of 1's)
2A 7 bits, mark parity (parity bit always 1)
2E 7 bits, space parity (parity bit always 0)
00 8 bits, no parity
42 6 bits, odd parity (odd number of 1's)
46 6 bits, even parity (even number of 1's)
4A 6 bits, mark parity (parity bit always 1)
4E 6 bits, space parity (parity bit always 0)

However, if you select 110 baud by setting byte number 1 to the value
03, the driver will force two stop bits regardless of the value of the
second byte.

The normal value of byte number 2 for the Qume printer is 22 : seven
data bits t ransmitte d per character, with the parity (high) bit a 1 if the

number of data bits set to 1 is odd. (The parity bit is intended to be
used for error checking .)

The next three parameters control the amount of time the driver waits
for the printer to do slow mechanical operations. These times are
specified in equivalent character times at the specified data rate. The
total number of bits per character, including non-data bits , is usually
10 or 11 , so the approximate character rate can be found by dividing
the baud rate by 10.

The third byte sets the number of character times the printer driver
waits after it sends a carriage return character (ASCII CR, value 13)
to the printer. It allows the printer this much time to return the
printing element to the left margin. The normal delay value is zero,
which produces no delay. The delay value can range from 0 to 255
and must be specified in hexadecimal. (A decimal-to-hexadecimal
conversion table is supplied in Appendice J .)

The fourth byte sets the number of character times the printer driver
waits after it sends a line feed character (ASCII LF, value 10) to the
printer. This gives the printer the time it needs to advance the paper
one line. The normal delay value is zero, which produces no delay.
The delay value can range from 0 to 255 and must be specified in
hexadecimal.

The fifth sets the number of character times the printer driver waits
after it sends a form feed character (ASCII FF, value 12) to the printer.
This gives the printer the time it needs to advance the paper to the
top of the next printing page. The normal delay value is zero, which
produces no delay. The delay value can range from 0 to 255 and must
be specified in hexadecimal.

Once you have changed all the values you wish to change, return to
the Configuration menu and choose the GENERATE NEW SYSTEM

option to save the newly modified printer driver on your boot diskette,
as described in Chapter 2.

Connecting the Printer

The standard method of connecting two devices that communicate
via the RS-232-C standard is by a cable with a 25-pin connector.The
same type of connector is used at both the computer and the printer,
but simply connecting them together won 't work. If you do this, the
pin the printer receives data on will be connected to the pin the
computer receives data on, and similarly for the pins each transmits
data on, and nothing will happen.

The convention adopted by the EIA (Electronic Industries
Association) calls for both the printer and the computer to have the
same pin connections, because each of them must be capable of
being connected to the same type of data communications
equipment, such as a modem (modulator/demodulator, used for data
transmission over telephone lines) .

To connect a modem to your Apple III, you simply plug its 25-pin
connector into the RS-232 port, but to connect a printer, you must
use ~modem eliminator. supplisd with the Apple II I. The modem
eliminator is a short cable with a 25-pin connector on each .end b., ('\
~ l"' I" ""<1il~h\-t th, o\J. ~~ you. J\ppl" \) ~ ~\e(I>y ord.{r" ~ -pt.)d,\Cl \'I 1A]\l~3t'\ ~\)\
~ Even though the standard 25-pin plug on the printer cable will

fit the RS-232 port on the Apple III , the printer will not work
when connected this way. The Apple III and the printer must
each connect either to a modem (or other piece of data
communications equipment) or to a modem eliminator.

The RS232 Driver

Introduction

The .RS232 driver makes it possible for the Apple III to exchange
information with a large variety of devices that use the RS-232-C
serial interface. With it the Apple III can talk to another Apple III, an
Apple II, a terminal, a printer, or a remote device connected through a
modem.

The chief advantage of this driver over the .PRINTER driver is that it
can perform two-way communication. Using this driver, application
programs can:

• communicate with devices other than printers (terminals,
computers, etc.)

• communicate with remote printers, terminals and computers,
etc., via a modem

• connect the Apple III with an ever-growing variety of data
banks and information services

• emulate many types of terminals

• change characteristics of the RS-232-C port using software
commands rather than physical switches

Other advantages of the .RS232 driver are:

• it can be tailored to a greater variety of printers than
.PRINTER (though .RS232 occupies more space)

• it can use anyone of several signalling procedures (called
"protocols") to control communications

In the discussion that follows, all numbers are hexadecimal
unless otherwise noted. Hexadecimal numbers are marked in
most cases by a dollar sign prefix, but you should not actually
type the dollar sign, for example, when you change the Device
Configuration Block.

. RS232 is the name of this serial driver. RS-232-C, on the other hand,
is the name of a communications standard developed by the
Electronic Industries Association. This standard defines the
characteristics of signals sent between communications equipment
(modems or their equivalent) and the computers, printers, terminals,
stock tickers or what have you that are connected via such modems.

@ You can purchase a copy of this standard by writing to: EIA
Engineering Department, Electronic Industries Association,
2001 Eye Street NIN, Washington, D.C. 20006.

The next section provides a table of Device Configuration Block
values for connecting several commonly used printers and terminals,
as well as for connecting another Apple III or an Apple II. This table
summarizes the information you need to connect the devices listed.
Subsequent sections explain how the driver works, how to control
the device from a computer program, how to select and set up a
protocol for serial devices in general, and how to use advanced
techniques to check the status of the device and change its control
parameters.

Setting Up for Commonly Used Devices

The twelve Device Configuration Block parameters used by the
.RS232 driver are explained fully in a later section of this chapter.
However, Table 6-1 is a ready-made list of DCB values for several
commonly used devices. For these devices, all you need to do is boot
the Utilities diskette, select the Edit Driver Parameters option, and
enter the Device Configuration Block parameters, following the
instructions given in Chapter 2. Then make sure the switches and
thumbwheels, etc., on the connected device are set for the
characteristics given in parentheses.

All setups shown are typical local connections, and use a modem
eliminator. Device Configuration Block parameters that have no effect
under a given protocol are shown as "xx": these parameters can be
left set to any value.

Device and characteristics Device Configuration Block byte:
(baud , bits l earit~l e rotocol ! 00 01 02 03 04 05 06 07 08 09 0A 08

Default values
(300, 7,odd ,no protocol) 06 22 00 00 00 00 13 11 DF 84 50 00

Another Apple III
(9600,7,odd,hdwr handshake) 0E 22 00 00 00 00 xx xx xx xx xx 80

Apple II
(300,7,SPACE,no protocol) 06 2E 00 00 00 00 xx xx xx xx xx 00

DEC LA120 terminal
(1200,7,SPACE,XON/XOFF) 08 2E 00 00 00 80 13 11 DF 84 xx 00

DEC VT100 terminal
(9600,7,SPACE,XON/XOFF) 0E 2E 00 00 00 80 13 11 DF 84 xx 00

SOROC 10120 terminal
(9600,7,MARK,no protocol) 0E 2A 00 00 00 00 xx xx xx xx xx 00

Oume Sprint 5 printer
(1200,7,odd,hdwr handshake) 08 22 00 00 00 00 xx xx DF 84 xx 80

Oume Sprint 5 printer
(1200,7,odd,ETXlACK) 08 22 00 00 00 40 03 06 xx xx 6E 00

HP 7225 Plotter
(2400,7,SPACE,hdwr hdshk) 0A 2E 00 00 00 00 xx xx DF 84 xx 80

Figure 6-1. DCB Values for Commonly Used Devices

Note that there are two sets of DCB values for the Qume Sprint 5
printer: one for hardware handshaking, the other for an ETX/ ACK
software protocol. Many devices, in fact, can be run using more than
one type of protocol. Note also that if you want to you can install the
.RS232 driver in the SOS.DRIVER file, leave out the .PRINTER driver,
and configure the .RS232 driver for a Qume printer or other devices
as needed.

Using the .RS232 Driver

This section discusses how to open and close the .RS232 driver's file,
and how the driver performs input and output in response to BASIC
and Pascal program instructions. For further details regarding
BASIC, Pascal, or whatever other programming language you will be
using, consult the appropriate tutorial or reference manual. This
manual gives representative examples only.

Opening the Driver's File
Before you can transfer information between the Apple III and a
device, you must first open the device's driver file from the program.
For example, issue an OPEN# statement in a BASIC program:

10 OPEN# 1, ".RS232"

In BASIC, an OPEN# ordinarily turns IS-NEWLINE ON and places a
carriage return character ($0D) in NEWLINE.

To open the device's driver file in Pascal , define the file as a variable,
and then RESET the variable's identifier as '.RS232' :

VAR IOFILE:INTERACTIVE;
(other definitions, etc.)

BEGIN
RESET (IOFILE,'.RS232');
(further program instructions)

END;

When you open the .RS232 driver, it automatically prepares for a read
operation. It resets the Device Configuration Block parameters to the

values you set using the System Configuration Program, clears both
the input and the output buffer, and prepares the RS232 port to
respond to news of incoming data (called a " receive interrupt") .

In the following three sections, there are references to control
codes and status codes. These are explained in a later part of
this chapter in the section titled Advanced Techniques.

Read Operations
Once the .RS232 driver has been opened, the input buffer (an area
set aside for temporary storage of incoming data) is active: any
characters received-up to 255 of them-are kept in this input buffer
until they are retrieved by a program instruction such as a BASIC
INPUT# or GET# statement, or a Pascal READLN or READ
procedure:

20 INPUT#1; INSTRING$ (in BASIC)

READLN(lOFILE,LlNEBUF); (in Pascal)

The .RS232 driver makes use of four items of information to control a
read operation:

• the number of characters (bytes) to read: this varies with the
application program instruction that caused the read
operation to take place

• a software "switch" called IS-NEWLINE, set using control
code 2: when this byte is set to $80 it is ON; when set to $00 it
is OFF

• a character stored in a byte called NEWLINE, also set using
control code 2: if IS-NEWLINE is ON, the driver stops
reading as soon as it reads a character that matches this
NEWLINE character; if the IS-NEWLINE switch is OFF,
NEWLINE is ignored

• a software "switch" called IMREAD, set using control code 1 :
when this byte is set to $80, it is ON; when set to $00 it is OFF

A read operation proceeds like this:

• The driver transfers characters from the input buffer of the
driver into the user program 's buffer until the requested
number of characters has been transferred ; then the driver
returns control to the user program.

• If IS-NEWLINE has been turned ON, the driver checks each
incoming character, looking for a match with the NEWLINE
character. If it finds one, the read operation ends with that
character, even if the requested character count has not yet
been reached .

• If IMREAD has been turned ON , the driver reads what is in the
input buffer at the moment, and does not delay the user
program if what is there does not fulfill the character count or
include a match with NEWLINE. The driver then returns
control to the user program immediately.

After completion of the read operation, the user program can check
whether any errors occurred (status code 1), and how many
characters were read (status code 3) .

Write Operations
When a write request is made as a result of a BASIC PRINT# or
OUTPUT# statement , or a Pascal WRITE or WRITELN procedure, the
driver transfers characters from the user program buffer to its own
output buffer and then returns control to the user program , freeing it
to perform other tasks. Meanwhile, the driver transmits the
characters from its output buffer to the device. Here are examples in
BASIC and Pascal :

3~ PRINT#1 ; OUTSTRING$ (in BASIC)
WRITELN (IOFILE ,LlNEBUF) ; (in Pascal)

If there is not enough room left in the output buffer to hold all the
characters to be transferred, the driver, and in turn the user program ,
waits until room becomes available. To avoid waiting for an indefinite
period , the user program can check for room before issuing the write

statement by incorporating a timed loop that keeps checking for
space in the output buffer (by issuing status code 3 to find out how
many bytes are in the output buffer) . If there is no room , the program
can at some point choose to abandon the attempted write operation.

Closing the Driver's File
At some point the user program must close all drivers it has opened.
In both BASIC and Pascal, this is done with a CLOSE statement:

40 CLOSE#1 (in BASIC)
CLOSE (IOFILE) ; (in Pascal)

At the moment that it is closed , the driver may be awaiting
completion of character transmission from the output buffer. The
user program in turn will also wait until all the characters have been
transmitted. Depending on the communications protocol used (see
next section) , the user program may wait indefinitely before resuming
execution (for example, if the printer is out of order).

One way to avoid this condition is to issue a status code 3, and check
to see if there are still characters in the output buffer. If there are, you
can start a timed wait and periodically recheck status. If necessary,
issue a control code 0 (Reset) to clear the buffer, and then close the
driver.

Communication Protocols

The .RS232 driver can operate in one of four modes :

• using no protocol or handshake (the default or "normal "
mode)

• using the XON/XOFF software protoco l

• using the ENOl ACK (or ETX/ ACK) software protocol

• using a hardware handshake protocol

To decide on the protocol to use, read the following four sections,
and consult the manuals describing the device you are connecting .

You can use a modem in any mode except hardware handshake
mode.

For each type of protocol explained below, you may have to change
one or more configuration block parameters. These parameters are
explained in the next major section of this chapter, Changing the
Configuration Block.

No Protocol
The RS232 configuration block is normally set up for simple serial
input and output, using no protocol. This is the preferred mode,
because of its simplicity, unless some form of control over the flow of
characters is required. If the quality of the communication lines is
very good, a software protocol (XON/XOFF or ETXlACK) may be used.
If the lines are poor and an expected control character (for example,
XON) comes through garbled, the driver will " hang " and you may
have to reboot the system to correct the problem. In such a case, you
should use a hardware handshake protocol to achieve reliable
control.

The XON/XOFF Protocol
This protocol is used with many popular terminals, as well as with
several of the larger data communication networks. Under this
protocol , the Apple III can transfer continuous strings of characters
pausing only if its own or the other device's input buffer is nearly full.
It is a full two-way protocol.

For the XON/XOFF protocol, modify the configuration block
parameters, if necessary, as follows:

• set communication protocol to $80

• set control character 1 to $13 (DC3 ; " XOFF")

• set control character 2 to $11 (DC1 ; "XON")

• set maximum buffer level to $DF (223 characters)

• set minimum buffer level to $84 (132 characters)

Input Buffer Control

As characters are received , the .RS232 driver loads them into its own
input buffer for retrieval by the user program. If character retrieval
falls behind so much that the input buffer is almost full (that is, its
character count reaches the maximum buffer level), the driver
transmits the XOFF character to the sending device, signalling that it
should suspend character transmission. When the user program has
retrieved enough characters to bring the input buffer count down to
the minimum buffer level , the driver transmits the XON character to
the sending device, signalling that it may resume transmission.

Output Buffer Control

Under this protocol , the driver sends data from the output buffer to
the receiving device at the selected baud rate. If the driver receives
an XOFF character, it suspends data transmission (usually within one
or two character times) until it receives an XON character from the
receiving device. At this point, if there are any characters still in the
output buffer, the driver resumes transmission .

The maximum and minimum buffer levels shown for the XON/XOFF
protocol are those that three out of four doctors recommend.

The ENQ/ACK (or ETX/ACKj Protocol
This protocol supports a variety of widely used terminals. Under this
protocol, the Apple III transfers characters in blocks of a fixed length,
rather than in a continuous stream. The Apple III configuration block
must specify a block length no greater than the buffer size of the
device to be attached. (Consult the documentation for the device you
are using.)

The driver implements this protocol for output only. If you want the
Apple III to emulate an ENQ/ACK (or ETX/ACK) device to receive data,
your program must include a routine that scans input characters

looking for ENQ (or ETX), and that then sends an ACK character as
soon as there is sufficient room in the input buffer for a block of data.

For this protocol, you need to set these configuration block
parameters :

• set communication protocol to $40

• set control character 1 to $05 (ENQ) or $03 (ETX)

• set control character 2 to $06 (ACK)

• set the correct data block length (default is $50; that is, 80
characters)

The sending device (normally the Apple III) first transmits an ENQ or
ETX character to the receiving device. The receiving device responds
by transmitting an ACK character only when it is ready to receive a
complete block of data. The sender then transmits a block. This
three-step protocol continues until there is no more data to send.
(The last block can of course be shorter than the specified block
length.)

The Hardware Handshake Protocol
In Hardware Handshake mode, the device driver monitors the
RS-232-C handshake lines for control signals, rather than examining
the incoming data lines for control characters. The device driver
monitors the Data Set Ready (DSR) and the Data Carrier Detect (DCD)
signals on the Apple III RS-232-C connector. If either signal goes
false, the driver suspends transmission of characters until both
signals again go true. (DSR and DCD are ignored in the other modes.)
This arrangement works very well if you want to connect one Apple III
to another local Apple III.

When the driver is initialized but not yet open , the signal RequestTo
Send (RTS) is false. When the driver is open, RTS is normally true;
however, it goes false if the character count in the input buffer
exceeds the maximum buffer level (the ninth parameter: see next
section) on input, and it then stays false until the character count
again falls below the minimum buffer level (the tenth parameter).

Because of the characteristics of the Apple III RS-232-C port, ou tput
is suspended when RTS is false.

When you close the driver, RTS goes false.

The RTS signal appears as DCD to another Apple III connected
through a modem eliminator. Thus " DCD false" signals to the
transmitting Apple III to suspend transmission until both DCD and
DSR are again true.

When the driver is open , Data Terminal Ready (DTR) is true. When the
driver is closed , or initialized (after booting) but not yet open, DTR is
false.

For this mode, modify the configuration block parameters as follows :

• set communication protocol to $00

• set hardware handshake to $80

Using a Modem
The term " modem " in this discussion means a Bell 103 or 212
modem, or any other full-duplex modem that handles the RS-232-C
signals in a similar manner.

You can use a modem in any mode except hardware handshake
mode. The state and interpretation of the signals are the same w ith a
modem as in hardware handshake mode, with the following
exceptions.

The signal Request to Send (RTS) is always true when the driver is
open . It is false when the driver is closed .

If you are using a modem connected to a sw itched telephone
system , it is a good idea for your program to check bit 5 of the
fourteenth parameter (interface status : see next section)
whenever you issue status code 1 (described under Advanced

Techn iques). If bit 5 = 0 (OFF) , DCD is present, meaning the
call is OK, and so your program can proceed to send data or
look at the input buffer. To know when the call is over, look for
bit 5 = 1 (ON) ; bit 5 ON ind icates that the carrier signal is no
longer present. This normally means that the connection has
been broken or that the other party has hung up the phone.
Your program should take appropriate action.

The interface hardware cannot transmit data while Clear to Send
(CTS) is false. If this is a potential problem, always check the input
buffer level (status code 3; seventh and eighth bytes) before
attempting to transmit data.

Using a Modem Eliminator
If you are not connect ing a modem to the RS-232-C port, but are
instead connecting a device directly to the Apple, you must connect a
Modem Eliminator (the one furnished with the Apple III or an
equivalent) to the RS-232-C port on the Apple, and then connect the
device's cable to the Modem Eliminator.

If you connect the Apple III directly to another device, use only
ONE Modem Eliminator. For example, if you connect two Apple
Ills locally, attach a Modem Eliminator to one of them, and a
cable from the Modem Eliminator directly to the other Apple III.
If you use two Modem Eliminators, they cancel each other out,
and you end up with both devices trying to send on the same
wire, receive on the same wire, and so on.

Changing the Configuration Block

The RS232 driver's configuration block has twelve parameters. The
definitions and normal values of the first five parameters are identical
to those of the five parameters in the printer driver 's configuration
block except that the default value of the first parameter, the baud
rate, is $06 (300 baud) instead of $08 (1200 baud). The general
procedure for changing the configuration block is the same as well .

The number to the left of each parameter in Figure 6-2 is in decimal
and is used in this discussion. The number to the right is the
hexadecimal number used by the System Configuration Program
(SCP).

dec SCP#

1 Baud Rate 00
2 Data Format 01
3 Carriage Return Dela:r: 02
4 Li ne Feed Dela}:: 03

5 Form Feed Dela~ 04
6 Communication Protocol 05
7 Control Character 1 06

8 Control Character 2 07

9 Maximum Buffer Level 08
10 Minimu m Buffer Level 09
11 Data Block Length 0A
12 Hardware Handshake 0B

Figure 6-2. The .RS232 Device Configuration Block

The first parameter is the baud rate. This parameter controls the
speed at which the Apple sends and receives bits of information.
There are nine possible speeds, measured in baud.

Value Sl2eed

03 110 baud (Te letypewriter speed)
04 134.5 baud
06 300 baud (A common telecommunications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
0A 2400 baud
0C 4800 baud
0E 9600 baud

The default value is $06, 300 baud. To change the speed, use the four
arrow keys to position the indicator (a pair of square brackets) on the
first value in the configuration block. Type the two characters of the
new speed and press RETURN.

The second value is the d ata format . This dete rmines the
arrangement of bits in the data stream that the computer sends to
the device. There are nine standard formats :

Value Format

22 7 bits, odd parity (odd number of 1 's)
26 7 bits, even parity (even number of 1 's)
2A 7 bits, MARK parity (parity bit always 1)
2E 7 bits, SPACE parity (parity bit always 0)
00 8 bits, no parity
42 6 bits, odd parity (odd number of 1 's)
46 6 bits, even parity (even number of 1 's)
4A 6 bits, MARK parity (parity bit always 1)
4E 6 bits, SPACE parity (parity bit always 0)

If you set the first parameter to 110 baud ($03), the driver will force
two stop bits regardless of the value of this parameter. At all other
band rates, the driver will use one stop bit.

® For ASCII input, select 7 bits plus the appropriate parity. For
binary data transfer, 8 bits is normally your best bet.

@ Warning : the driver passes ALL characters of data, including
control characters, to and from the user program 's language
buffer.

The default value is $22: seven data bits per character, with the high
bit set to 1 or 0 as necessary to make the total number of 1's in the
byte odd . The parity bit is used for error checking.

The third parameter determines the number of character-times the
RS232 driver is to wait after sending a carriage return character
(ASCII CR; value $(0). This allows the device enough time (if it needs
it) to prepare itself to receive the next line.

The default carriage return delay value is $00 (no delay). The delay
amount can range from 0 through 255, but you must specify it in
hexadecimal-that is, base 16.

The fourth parameter is similar to the third : it determines the number
of character-times the RS232 driver is to wait after sending the line
feed character (ASCII LF; value $0A). This allows the receiving device
the time it needs to advance one line. The default value is $00 (no
delay).

The fifth parameter is also similar to the third : this one determines
the number of character-times the RS232 driver is to wait after
sending a form feed character (ASCII FF; value $0C) . This allows the
receiving device time (if it needs it) to advance to the top of the next
printing page. The default value is $00 (no delay).

The sixth parameter specifies the communications protocol the driver
should use: no protocol ($00), the XON/XOFF protocol ($80), or the
ENO/ ACK protocol ($40). This parameter must be $00 if the driver is
to operate in hardware handshake mode (see parameter twelve
below).

The default value of this parameter is $00, no protocol.

The seventh parameter (;ontains control character 1: for the
XON/XOFF protocol, set this parameter to $13 (XOFF); for the
ENO/ACK protocol, set it to $05 (ENO); for the ETX/ACK protocol, set
it to $03 (ETX).

The default value of this parameter is $13, XOFF.

The eighth parameter contains control character 2: for the XON/XOFF
protocol, set this parameter to $11 (XON); for the ENO/ACK or
ETX/ACK protocol, set it to $06 (ACK).

The default value of this parameter is $11, XON.

The ninth parameter specifies the maximum buffer level for the
XON/XOFF protocol: when the input buffer has this number of
characters in it, the driver will transmit the XOFF character to the
sending device.

The default max imum buffer level is $DF (223 Characters). Since the
input buffer can hold 255 characters, this allows room for 32
additional characters, and thus enough time for the sender to
respond to the XOFF character before overflowing the driver input
buffer, even at fast transfer rates.

The tenth parameter specifies the minimum buffer level for the
XON/XOFF protocol: when the character count in the input buffer
falls below this level after transmission of an XOFF, the driver
transmits an XON to resume transmission of characters to the Apple.

The default minimum buffer level is $84 (132 characters) .

The eleventh parameter specifies the data block length for the
ENOl ACK or ETX/ ACK protocol. You can set it to any value from $01
through $FF (255 characters per block), but this value must not
exceed the buffer size of the receiving device.

The default data block length is $50 (80 characters per block).

The twelfth parameter indicates to the driver whether to operate in
hardware handshake mode ($80) or not ($00). Set the sixth parameter
to $00 if you set this one to $80.

The default value of this parameter is $00.

Advanced Techniques

System calls are the normal method that assembly-language
programs (including interpreters and language systems) use for
communicating with files and devices on the Apple III.

You can control the operation of the device connected via the RS232
driver by issuing your own system calls. The particular system calls

that you use to control device drivers are D_STATUS and
D_ CONTROL.

Interpreters (such as BASIC) and language systems (such as Pascal)
provide more convenient ways of communicat ing with files and
devices, so that user programs don't ordinarily need to resort to
system calls. However, some language systems on the Apple III
provide ways for you to make SOS calls directly to the system. For
example, Apple III Pascal includes a procedure called UNITSTATUS
that is used for both D_ STATUS and D_CONTROL system calls. The
use of this procedure is described in Appendix H.

These system calls require three parameters, like this:

D_STATUS (device number, status code, status list)

D_CONTROL (device number, control code, control list)

where device number specifies the device you want to get status
information from or send control information to; status code and
control code specify the particular information to get or to send; and
status list and control list specify the location in the program's
memory space where the information is or will be put

Status Requests
The following list gives the status code and the contents of the status
list for each RS232 driver status request

Status code: 0 (No Operation)
Status list: (nil)

This status request does nothing.

Status code: 1 (Retrieve Control Parameters)
Status list: Buffer size, Buffer

Copies the fifteen RS232 control parameters into the buffer portion
of status list. The first byte of status list (buffer size) must be greater
than or equal to 15 ($0F), the number of control parameters. At the
end of the status call, this first byte will contain the actual number of
bytes used (15).

Status list ---? Buffer size ($0F)
Buffer ---? I-----------'---'------------------{

(15 bytes of space)

The first twelve control parameters copied into the buffer are the
parameters of the RS232 driver's configuration block :

dec

,: sare as F;gure 6-2)

The thirteenth parameter, IMREAD, controls whether a read request
is simply to retrieve all characters currently in the buffer and then
continue (IMREAD=$80) or wait until the request is satisfied
(IMREAD=$00)-that is, until it has either retrieved the requested
number of characters, or detected the NEWLINE character (if
IS-NEWLlNE=$80) in the incoming stream of characters.

13 Immediate Read

The fourteenth parameter is a byte (eight bits) indicating the status of
the interface at the time of the most recent interrupt :

14 Status At Last Interrupt

7 6 5 4 3 2 0

IRQ DSR DCD Xmt Reg I Rcv Reg I Overrun I Frm Err I Par Err 1
Bit " 1" Means "@" Means

@ Parity error occurred No parity error
Framing error occurred No framing error

2 Overrun occurred No overrun
3 Receiver data register full Register not full
4 Transmitter data register empty Register not empty
5 Data Carrier Detect (DCD) false DCD true
6 Data Set Ready (DSR) false DSR true
7 Interrupt request occurred No interrupt occurred

The fifteenth parameter is a "latched status" register; that is, it
contains the accumulation of selected status bits since the most
recent status code 1 or control code @request cleared this register.
Bits 0, 1,2, 5 and 6 have the same meanings as their corresponding
bits in the status byte (the fourteenth parameter). Bit 7 equals 1 if one
or more input characters has been lost due to an input buffer
overflow ; it equals 0 of no characters were lost. Bits 3 and 4 have no
meaning .

15 Latched Status

7 6 5 4 3

O··flow DSR DCD Overrun I Frm Err I Par Err I

Once you have retrieved the control parameters, you can examine or
even change them. You can restore their original values, or change
the values in memory and then put them in the Device Control Block,
by issuing a Set Control Parameters request (control code 1).

Status code : 2 (Retrieve Newline Information)
Status list : Buffer

Places two bytes-the IS-NEWLINE flag and the actual NEWLINE
character-in the first two bytes at the location you specify in the
request. See the section of this chapter on Read Operations for an
explanation of these two bytes.

Status code: 3 (Retrieve Driver Buffer Information)
Status list : Buffer

Loads eight bytes of buffer information into the location you specify
in the request.

2

3

4

5

6

7

8

Output buffer size (low-order)

Output buffer size (high-order)

I
Number of characters in output buffer (low)

Number of characters in output buffer (high)

Input buffer size (low-order)

Input buffer size (high-order)

Number of characters in input buffer (low)

Number of characters in input buffer (high)

RS232 Control Requests
The following list gives the control code and the contents of the
control list for each RS232 driver control request.

Control code : rb (Reset RS232 Driver)
Control list: (nil)

Clears output and input buffers and resets the RS232 driver. The
current control parameters values are used for the reset. These
values are the parameters set using the System Configuration
Program (default), or those set by the most recent control code 1 call.
Any characters not yet transmitted from the output buffer or retrieved
from the input buffer are lost.

Control code: 1 (Set Control Parameters)
Control list: Buffer size, Buffer

Loads the first thirteen of the fifteen device control parameters into
the driver from the buffer indicated. The control parameters are in the
same format as described under status code 1. The interface status
byte (the fourteenth parameter) and "latched status" register (the
fifteenth parameter) are not loaded; instead, a reset (control code 0)
is automatically performed prior to completing this request.

Buffer size is the byte count returned by a status code 1 request. This
first byte must equal $0F or an error will result.

The buffer should contain the information put there by a prior
Retrieve Control Parameters Request; it is not advisable to enter your
own values into this table unless you need to change them (for
example, change the baud rate).

Control code: 2 (Set Newline Information)
Control list: Buffer

Loads the IS-NEWLINE flag byte and NEWLINE character byte from
the buffer indicated into the driver. Refer to the earlier section of this
chapter titled Read Operations for an explanation of these two bytes.

Control code: 3 (Transmit Break Signal)
Control list: Break time

This byte forces the transmit line of the RS-232-C port to go to zero
state ("SPACE") for the number of 233-millisecond intervals specified
by the break time byte. This is used by some timesharing services to
end a session.

The maximum allowable value of break time is $64 (100 in decimal, a
maximum break of 23.3 seconds). The normal value of break time is
1. The break signal will not be transmitted until after the driver output
buffer has been emptied.

The Audio Driver

The standard device driver .AUDIO enables you to produce tones from
the Apple Ill's built-in speaker. You can control three aspects of the
tones : their volume, pitch, and duration.

The audio driver is an output device only; you cannot accept input
from the .AUDIO file.

Data is sent to the driver in the form of characters. The audio driver
examines the characters for a special character that signifies the
beginning of a tone specification. It then takes the five characters
following the special character and produces a tone determined by
the values of those characters. After the tone is completed , the driver
examines the remaining characters for another special character. If
there are no more characters to process, it returns control to the
program that requested audio output.

The audio driver does not respond to any other characters, nor can it
process normal text. There are no control or status requests, and
there are no values in the audio driver's configuration block that can
be changed by the System Configuration program.

Tone Parameters

To request the audio driver to generate a tone, you send it four
parameters :

Parameter Definition

Mode Type of request

Volume Volume of the tone

Count Pitch of the tone

Time Duration of the tone

The mode parameter indicates to the audio driver that this is the
beg inning of a request, and specifies what kind of request you are
making. The audio driver supports only one mode at this time: simple
tone generation, mode 128. All requests to the audio driver should be
made with 128 as the value of the mode parameter.

The value of the volume parameter specifies how loud the tone
should be. There are 64 volume settings, ranging from fb (silent) to 63
(fairly loud).

The value of the count parameter determines the pitch of the tone.
The lower the count value is, the higher the pitch of the tone is, as
determined by this formula:

5fb9fbfb
freq =-

count

The count value can range from 16383 to 1fbfb : this gives a range of
frequencies from about 31 Hz to over 5fbfbfb Hz. In musical terms, this
is over seven octaves, from the C three octaves below middle C to the
E flat four octaves above middle C.

The value of the time parameter determines the duration of the tone,
in sixtieths of a second. The time value can range from fb to 3fbfb ; a
value of fb produces silence, while a value of 3fbfb produces a tone
lasting about five seconds, as determined by the formula:

. time
duration = -

6fb

Producing Tones
The mode, volume, count, and time of a tone are sent to the audio
driver in the form of a six-character string. The mode and volume are
each represented by one character; the count and time are each
represented by two characters in the string. The values of the
parameters are determined by the ASCII values of the characters.
This is the arrangement of the characters in the string:

Character: 2 3 4 5 6

Max. Value: 128 63 255 63

Meaning: Mode Vol. Count Time

The count and time values are two-byte integers, with the low-order
byte first. The maximum values shown for these parameters are the
two-byte values: the low-order byte of the time value can range from
(/J to 255, but the maximum time value is 3(/J(/J . This is obtained by
adding a low-order byte of 44 to the value of a high-order byte of 1,
that is, $1(/J(/J or 256.

A BASIC program using the variables MODE%, VOL %, COUNT%, and
TIME% would form a string in the above format with the statements

OPEN# 1 AS OUTPUT, ".AUDIO"
PRINT#1 ;CHR$(MODE%);CHR$(VOL %);
PRINT# 1 ;CHR$(COUNT%-256* INT
(COUNT%/256)) ;CH R$(INT(COUNT%/256));
PRINT#1 ;CHR$(TIME%-256*INT
(TIME%/256)) ;CHR$(INT(TIME%/256));

A Pascal procedure should use this data structure (see your Apple~ 111

Pascal Programmer's Manual):

var ToneSpec : packed record
Mode : 0 ..255 ;
Volume: 0 .. 255 ;

Count : integer;
Time: integer;

end ;

Unitnumber: integer;

With this data structure, a Pascal program can fill the variables
ToneSpec.Mode, ToneSpec.Volume, etc ., with the proper values, and
put the record Tone directly to the file Audiodriver, as shown below.
Unitnumber, and Length are needed for the UNITWRITE procedure.

with ToneSpec do begin
Mode :=128;
Volume : = 200;
Count: = 1946;
Time :=30;

end ;

Unitnumber: = 128;

Un itwrite(U n itn u m ber,ToneSpec,length(ToneSpec)" 12)

If a given value is greater than the maximum or less than the
minimum allowed for that value, the driver will use the closest value
allowed. (Note the value of Unitnumber. This must be the actual
Pascal unit number assigned to the Audio driver.)

Count Values for Tones

The table below gives the count values for the stand'ard musical scale
in eight octaves. The leftmost column represents the lowest octave;
the rightmost column represents the highest octave. In each octave,
the pitch of the notes goes down as you go down the column .
Remember, the higher the count, the lower the pitch.

The names of the notes appear at the left of the table; the arrow
points to the count value for middle C. The A above middle C is A 440,
the tuning A; it has a count value of 1157.

(Lowest) Octave (Highest)

8Note 2 3 4 5 6 7

B 8245 4122 2061 1031 515 258 129
A# 8735 4368 2184 1092 546 273 136
A 9255 4627 2314 1157 578 289 145
G# 9805 4902 2451 1226 613 306 153
G 10388 5194 2597 1298 649 325 162
F# 11006 5503 2751 1376 688 344 172
F 11660 5830 2915 1457 729 364 182
E 12353 6177 3088 1544 772 386 193
0# 13088 6544 3272 1636 818 409 204 102
0 13866 6933 3467 1733 867 433 217 108
C# 14691 7345 3673 1836 918 459 230 115
C 15564 7782 3891 1946 973 486 243 122

i Middle C

Generating Frequencies
The relationship between the count value and the actual frequency of
the note is:

509000 509000
count =-- freq = -

freq count

Where freq is the frequency in Hertz. This relationship is exact.

------------...........~

Keyboard Codes

This section of this appendix lists the ASCII code values and symbols
for all of the keys on the Apple III, as shown in the figure below. The
modifier keys, of course, do not have ASCII values: their functions are
described in a separate table.

1

4

I

-
0

8

5

2

9

8

:3

-.

Standard: 0 Special: I:!:SI Modifier: 0

Standard Keys
Key ASCII Codes and Symbols

Number Label Alone SHIFT CONTROL Both

1 1 ! 491 33 ! 491 33 !
2 2@ 502 64@ 502 oNUL
3 3# 51 3 35# 51 3 35#
4 4$ 524 36 $ 524 36 $
5 5% 535 37% 535 37%
6 6 " 546 94 " 546 30 RS
7 7& 557 38 & 557 38 &
8 8* 568 42 * 568 42 *
9

10
9 (
o)

579
480

40 (
41)

579
480

40 (
41)

11 45 95 45 31 US
12 =+ 61 = 43 + 61 = 43 +
13 \ 1 92 \ 1241 28 FS 127 DEL
14 Q 113 q 81 Q 17 DC1 17 DC1
15 W 119 w 87W 23 ETB 23 ETB
16 E 101 e 69 E 5 ENQ 5 ENQ
17 R 114 r 82 R 18 DC2 18 DC2
18 T 116 t 84 T 20 DC4 20 DC4
19 Y 121 Y 89Y 25 EM 25 EM
20 U 117 u 85 U 21 NAK 21 NAK
21 1 105 i 731 9 HT 9 HT
22 0 111 0 790 15 SI 15 SI
23 P 112 P 80 P 16 DLE 16 DLE
24 [{ 9"1 [123 { 27 ESC 27 ESC
25] } 931 125 } 29 GS 29GS
26 96 ' 126 96 ' 126
27 A 97 a 65A 1 SOH 1 SOH
28 S 115 s 83 S 19 DC3 19 DC3
29 D 100 d 68 D 4 EOT 4 EOT
30 F 102 f 70 F 6ACK 6ACK
31 G 103 9 71 G 7 BEL 7 BEL
32 H 104 h 72H 8 BS 8 BS
33 J 106 j 74 J 10 LF 10 LF
34 K 107 k 75 K 11 VT 11 VT
35 L 108 I 76 L 12 FF 12 FF
36 59 ; 58 : 59 ; 58 :
37 39 ' 34 " 39 ' 34 "

Key ASCII Codes and Symbols
Number Label Alone SHIFT CONTROL Born
38 Z 122 z 90 Z 26 SUB 26 SUB
39 X 120 x 88 X 24 CAN 24 CAN
40 C 99 c 67 C 3 ETX 3 ETX
41 V 118 v 86 V 22 SYN 22 SYN
42 B 98 b 66 B 2 STX 2 STX
43 N 110 n 78 N 14 SO 14 SO
44 M 109 m 77 M 13 C R 13 C R
45 , < 44 , 60 < 44 , 60 <
46 . > 46 . 62 > 46 . 62 >
47 / ? 47 / 63 ? 47 / 63 ?

Modifier Keys
Key Modifies

SHIFT Standard keys, by keyboard layout table

CONTROL Standard keys, by keyboard layout table

Open Apple Special and standard keys (sets high bit)

Solid Apple Special and standard keys (auto-repeat)

ALPHA LOCK Standard keys, alphabetic only

Special Keys
Label Code Name Label Code Name

ESCAPE 27 ESC 1 49 1
TAB 9 HT 2 50 2
RETURN 13 CR 3 51 3
ENTER 13 CR 4 52 4
spacebar 32 SPACE 5 53 5
left 8 BS 6 54 6
right 21 NAK 7 55 7
up 11 VT 8 56 8
down 10 LF 9 57 9
- (minus) 45 0 0 0

Cursor Command Keys

To enter cursor command mode, press ESCAPE once.

While the mode is active the cursor appears as an inverse-mode plus
sign.

Character Function

Left Arrow
or CONTROL-H

Right Arrow
or CONTROL-U

Up Arrow
or CONTROL-K

Down Arrow
or CONTROL-J

H or h
S or s
P or p
L or I
Vor v
Tor t
B or b

Move cursor one space left

Move cursor one space right

Move cursor one line up

Move cursor one line down

Home cursor
Clear entire viewport
Clear to end of viewport
Clear to end of line
Reset viewport to maximum size (full screen)
Set top-left corner of viewport
Set bottom-right corner of viewport

To leave cursor command mode, press any key not listed above.

Console Control Keys

A console control is issued by holding down the CONTROL key while
typing the appropriate digit on the numeric keypad . Typing the
control digit on the main keyboard will not work.

Keystroke Function

CONTROL-5 Toggle Video Output. Turns the video display off and on.
Program execution continues unaffected. If a program
requests input from the console with the video display
off, it is turned back on .

CONTROL-6 Flush type-ahead buffer. Any characters you have typed
that have not yet been transferred out of the type-ahead
buffer are discarded .

CONTROL-7 Suspend Screen Output. If you type this console control
while the Apple III is sending output to the screen,
output and program execution will stop. To continue,
type the console control again .

CONTROL-8 Display Screen Control Characters. When you type this
console control , the console driver will stop responding
to control characters in the data sent to the display, and
will instead display their abbreviations. To restore normal
operation, type the console control again.

CONTROL-9 Flush Output. All characters sent to the screen after you
type this console control will be ignored. Program
execution will continue, but no output will be displayed.
To restore normal operation, type the console control
again.

5

10

15

20

25

30

The ASCII Character Set

0 NULL 32 space 64 @ 96 '
SOH 33 ! 65 A 97 a

2 STX 34 66 B 98 b

3 ETX 35 # 67 C 99 c
4 EOT 36 $ 68 0 100 d

ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 71 G 103 9
8 BS 40 72 H 104 h
9 HT 41 73 1 105

LF 42 * 74 J 106 j
11 VT 43 + 75 K 107 k
12 FF 44 76 L 108 I
13 CR 45 - 77 M 109 m
14 SO 46 78 N 110 n

SI 47 / 79 0 111 0

16 OLE 48 0 80 P 112 P
17 OC1 49 1 81 Q 113 q
18 OC2 50 2 82 R 114 r
19 OC3 51 3 83 S 115 s

OC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 V 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 x

EM 57 9 89 Y 121 Y
26 SUB 58 90 Z 122 z
27 ESC 59 91 [123
28 FS 60 < 92 \ 124
29 GS 61 93] 125

RS 62 > 94 " 126 ~
31 US 63 ? 95 127 DEL

05

10

15

20

25

30

Screen Control Codes

Code Name Args Function

00 NUL No operation

01 SOH Save and Reset Viewport

02 STX Set Upper-Left Corner of Viewport

03 ETX Set Lower-Right Corner of Viewport

04 EOT Restore Viewport

ENQ Turn Cursor On

06 ACK Turn Cursor Off
07 BEL Sound the Bell
08 BS Move Cursor Left
09 HT Move Cursor Right

LF Move Cursor Down

11 VT Move Cursor Up
12 FF Home Cursor

13 CR Return Cursor
14 SO Turn Screen Off

SI Turn Screen On (enable Text mode)
16 OLE mode Set Text Mode
17 DC1 Set Normal Text
18 DC2 Set Inverse Text
19 DC3 color Set Foreground Color

DC4 color Set Background Color
21 NAK move Cursor Movement Controls
22 SYN Synchronize Screen
23 ETB shift Horizontal Shift

24 CAN x Horizontal Position
EM Y Vertical Position

26 SUB xy Absolute Position
27 ESC No operation ; reserved for future use
28 FS Clear Viewport

29 GS Clear to End of Viewport
RS Clear Line

31 US Clear to End of Lina

Description of Arguments : The x, y and shift arguments are single
characters with values from 0 to 255 (shift is interpreted as two's
complement : see entry HORIZONTAL SHIFT in the section SCREEN
CONTROL CODES in Chapter 3). The mode, color, and move arguments are
given on the next pages .

C%r Codes

Name Number Name Number

Black 0 Brown 8
Magenta 1 Orange 9
Dark Blue 2 Grey 10
Lavender 3 Pink 11
Dark Green 4 Green 12
Grey 5 Yellow 13
Medium Blue 6 Aqua 14
Light Blue 7 White 15

On a black-and-white monitor, the colors appear as a grey scale :
color 0 is black, color 15 is white, and the colors in between
represent progressively lighter shades of grey.

Screen Modes

ofor 40 column black and white
1 for 40 column color (or grey scale)
2 for 80 column black and white

Cursor Movement Options

Value Char Scroll Wra~ New line Advance

0 0 no no no no
1 1 no no no yes
2 2 no no yes no
3 3 no no yes yes
4 4 no yes no no
5 5 no yes no yes
6 6 no yes yes no
7 7 no yes yes yes
8 8 yes no no no
9 9 yes no no yes

10 yes no yes no
11 yes no yes yes
12 < yes yes no no
13 yes yes no yes
14 > yes yes yes no
15 ? yes yes yes yes

Character Set Photo

't 'it ~ '"
e:, ~ .. " ~ 4 "T f, '" " ;1

'I. " '"
., "4 't '" Ii; 'N r" 't t.: f$... ~ IL;

1 " It $ % I!,
,

() '* +

11 2 :3 4 5 6 7 8 9 , < ?

r~ H B C 0 E F G H J K L r'l N I]

P G R S T U lJ 101 X 'I Z []

b c: oj e f '3 h i j k fI1 n <)

D ~
,

" t 1..1 u ,J X Y :: () . (!

NTSC Color Compatability Table

The Apple Ill's NTSC color video output produces a composite video
signal that can be sent to a standard NTSC color video monitor.
However, NTSC monitors do not have high enough resolution to
display colored text properly. Many combinations of colors produce
illegible text on this kind of monitor. The following table rates each
combination of foreground and background colors for legibility on
NTSC monitors. Symbols are used to indicate good legibility,
marginal legibility, or illegibility.

o

2

3

4

5

~ 6
(J

1;)

3 7
e
~ 8
u
co
m 9

10

11

12

13

14

15

Foreground Color

~
'" ",<:- <c" '" ,,'It ,-v",, ,'" (:' <iJv

,.. ",<:- <0 <:-?i 0 . v '- <:- ~'" <:- ~ 'It '"
<iJ'It" ~'It<Y, <::?<:<- 'vii'''' <:)'It<:<- 0''''"' ~",o' 0<i; <c,o'" o,'It<:- 0''''"' <i. '<:-* 0''''0, -l,;j}0 '?-~ ~-<:-~

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V' V' V' V' • • • V' • • • V' • • •
0 V' V' V' V' V' • V' V' V' • V' 0 0 •
0 V' V' V' V' 0 • V' V' 0 • V' 0 0 --V' V' 0 V' V' V' 0 V' V' V' 0 V' V' V' 0
0 V' V' V' 0 0 V' V' V' 0 V' V' • • • -0 0 V' 0 V' 0 0 V' V' 0 V' 0 0 • I- V' V' V' 0 V' V' V' V' V' V' V' 0 0 • • • • 0 V' 0 0 0 V' 0 V' V' V' V' 0
V' V' V' V' V' 0 V' V' V' V' V' V' • • • • V' V' V' V' 0 V' V' V' V' V' V' V' V' • -V' 0 V' 0 V' V' 0 0 V' V' V' 0 0 • • • • 0 0 V' V' \l 0 V' \l V' V' V' 0
0 V' \l V' \l 0 V' V' 0 V' V' V' 0 V' 0

• \l 0 \l • \l 0 \l • 0 0 \l 0 \l 0

• 0 0 V' • 0 0 V' • \l 0 V' 0 V' 0

• • • 0 • • -0 • • • 0 0 0 0

• Good 0 Marginally Legible V' Incompatible

Graphics Quick Reference

Screen Control Codes

The following table gives the ASCII code value, arguments (if any).
and function for each of the graphics screen control codes.

Description of Arguments : The bspec and opspec arguments are
described in the section SCREEN CONTROL CODES in Chapter 4.
The x, y, I, r, t, and b arguments are all two-byte signed integers. The
mode, tmode, and color arguments are described in the tables on the
following pages.

Code Name Args Function

00 NULL None
01 SOH Reset Viewport
02 STX I r t b Set Viewport
Ql3 ETX adr w h Character Set

04 EOT bspec Drawblock
05 ENQ None
06 ACK None
07 BEL None
08 BS None
09 HT None
10 LF Move Pen Down
11 VT None
12 FF None
13 CR Return Pen
14 SO Turn Screen Off
15 SI Turn Screen On (enable Graphics Mode)
16 DLE mode Set Graphics Mode
17 DC1 Reset Color Operator Table
18 DC2 opspec Set Color Operator Table
19 DC3 color Set Pen Color
20 DC4 color Set Fill Color
21 NAK tmode Set Transfer Mode
22 SYN None
23 ETB None
24 CAN xy Draw Line To X,Y
25 EM xy Plot Point At X,Y
26 SUB xy Move Pen To X,Y
27 ESC None
28 FS Clear Viewport
29 GS None
30 RS None
31 US None

C%r Codes

Name Number Name Number

Black 0 Brown 8
Magenta 1 Orange 9
Dark Blue 2 Grey 10
Lavender 3 Pink 11
Dark Green 4 Green 12
Grey 5 Yellow 13
Medium Blue 6 Aqua 14
Light Blue 7 White 15

On a black-and-white monitor, the colors appear as a grey scale:
color 0 is black, color 15 is white, and the colors in between
represent progressively lighter shades of grey.

Graphics Screen Modes

o 280 by 192, black and white
1 280 by 192, limited color
2 560 by 192, black and white
3 140by192,fullcolor

4 280 by 192, black and white, alternate screen
5 280 by 192, limited color, alternate screen
6 560 by 192, black and white, alternate screen
7 140 by 192, full color, alternate screen

Transfer Modes

o
1
2
3
4
5
6
7

Draw Color STORE Screen Color
Draw Color OR Screen Color
Draw Color XOR Screen Color
Draw Color BIC Screen Color
(NOT Draw Color) STORE
(NOT Draw Color) OR Screen Color
(NOT Draw Color) XOR Screen Color
(NOT Draw Color) BIC Screen Color

("Draw")
("Add")
(" Invert")
(" Re move")

Black and White Transfer Tables
In the black-and-white video modes, all colors other than zero are
displayed as white. The following tables show the effects each of the
transfer modes has on data already on the screen. All colors other
than zero have an effective value of fifteen.

STORE OR

Draw Color Screen Color Draw Color Screen Color

Mode Mode Mode Mode
4 (b (b 15 5 1 (b 15

15 (b 8lB 15 (b t±8E (b 15 I 15 15 _ (b 15 15 15

XOR BIC

Draw Color Screen Color Draw Color Screen Color

Mode Mode Mode Mode
6 2 (b 15 7 3 (b 15

15 (b 8fB 15 (b 8Ej (b 15 15 (b I (b 15 (b (b

I

Color Transfer Tables
The transfer modes are not normally used with color graphics. To
control the way colors already displayed affect the colors drawn on
the screen, use the Color Operator Table. The following tables show
how to assign operator-table values to give the effect of true transfer
modes on the color screens. The normal transfer mode, STORE, is
simulated by the default values of the Color Operator Table, as
supplied in the Configuration Block of the .GRAFIX driver.

STORE

Draw Color

Mode 4 Mode 0
15 0
14
13
12
11
10

9
8
7
6
5
4
3
2
1

o

OR

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Draw Color

Mode 5 Mode 1
15 0
14 1
13 2
12 3
11 4
10 5

9 6
8 7
7 8
6 9
5 10
4 11
3 12
2 13
1 14

o 15

Screen Color

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1
222

333

1 1 1
222

333

1 1
2 2
3 3

1 1
2 2
3 3

1 1 1
222
333

1 1
2 2
3 3

1
2
3

4 4 444 4 4 4 4 4 4 4 4 4 4 4
55555 5 5 5 5 5 555 555
6 6 6 6 6 6 6 6 6 666 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 777 7
8 888 8 8 8 8 8 8 888 8 8 8
99999 9 9 9 9 9 9 9 999 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Screen Color

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 3 5 5 7 7 9 9 11 11 13 13 15 15
2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15
3 3 3 3 7 7 7 7 11 11 11 11 15 15 15 15
4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15
5 5 7 7 5 5 7 7 13 13 15 15 13 13 15 15
6 7 6 7 6 7 6 7 14 15 14 15 14 15 14 15
7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15
8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15
9 9 11 11 13 13 15 15 9 9 11 11 13 13 15 15

10 11 10 11 14 15 14 15 10 11 10 11 14 15 14 15
11 11 11 11 15 15 15 15 11 11 11 11 15 15 15 15
12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15
13 13 15 15 13 13 15 15 13 13 15 15 13 13 15 15
14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

XOR

Draw Color

Mode 6
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
o

SIC

Mode 2
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Draw Color

Mode 7
15
14
13
12
11
10

o

9
8
7
6
5
4

3
2
1

Mode 3
o
1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

Screen Color

o 234 5 678
012345678

9 10 11 12 13 14 15
9 10 11 12 13 14 15
8 11 10 13 12 15 14 1 032 5 4 7 6 9

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
10 9 8 15 14 13 12
13 14 15 8 9 10 11
12 15 14 9 8 11 10

3 2 1 0 7 6 5 4 11
4 5 6 7 0 1 2 3 12
5 4 7 6 1 0 3 2 13
6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 6 5 4 3 2 1 (j) 15 14 13 12 11 10 9 8
8 9 10 11 12 13 14 15 0 123 456 7

0325476
301 6 7 4 5
207 6 5 4
5670123
476 1 032
7 4 5 2 3 0 1

9 8 11 10 13 12 15 14 1
10 11 8 9 14 15 12 13 2
11 10 9 8 15 14 13 12 3
12 13 14 15 8 9 10 11 4
13 12 15 14 9 8 11 10 5
14 15 12 13 10 11 8 9 6
15 14 13 12 11 10 9 8 7 65432 0

Screen Color

1
o

2 3 4 5 6
5 6 2

2
o
o

3 4
2 4 4

454 1
6

o 4 4
1

o 0
o 1 230 1

4
2
2
o
o
6
6

o o 2 200
o
o

1 0 1 0
000 0

1
o

o 1

o 0
o 1

o o
o
o

1

o
o 1

o 0

2 3 4 5
2
o
o
2
2
o
o

2 4
1 4

4
5
4 o 4

301

4
4

2
2 0 0 2

010
000

1
o

7 8 9 10
7 8 9 10
6 8 8 10
5 8 9 8

8 8
8 9 10

2 8 8 10
9 8

4
3

8

1 8
088 8
7 0 1 2
6 0 0 2
501 0
4

3
o 0 ill
012

200 2

11 12 13 14 15
11 12 13 14 15
10 12 12 14 14

9 12 13 12 13
8 12 12 12 12

11 8 9 10 11
10 8 8 10 10
9 8 9 8 9
8
3

8
4

2 4
1 4

8 8
567

6 6
5

8

4

4
5 4

4
2

o 4
301
2 0 ill 2

010
000

10101
o 0 0 0 ill

4
3
2
1
o

Sample Graphics Pictures

Modes 0 or 4: Black and White

Modes 1 or 5 : Limited Color

Modes 2 or 6: Black and White

Modes 3 or 7: Full Color

Printer Quick Reference

These tables list the meanings of each of the bytes in the Printer
Configuration Block and the values normally used for the first two of
them.

Printer Configuration Block

Byte Meaning

CbCb Printer Speed
Cb1 Communications Format
Cb2 Carriage Return Delay
Cb3 Line Feed Delay
Cb4 Form Feed Delay

Printer Speed Tables

Value Speed

@3 11@ baud (Teletypewriter speed)

04 134.5 baud
06 300 baud (A common telecommunications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
0A 2400 baud
0e 4800 baud
0E 9600 baud

Communications Format Table

Value Format

22 7 bits, odd parity
26 7 bits, even parity
2A 7 bits, mark parity
2E 7 bits, space parity
00 8 bits, no parity
42 6 bits, odd parity
46 6 bits, even parity
4A 6 bits, mark parity
4E 6 bits, space parity

RS232 Quick Reference

Configuration Block

Parameter Name Byte Possible
Values Normal Mode Value*

Baud Rate 00 (see below) 06 (300 baud)
Data Format 01 (see below) 22 (7 bits, odd parity)
Carriage Return Delay 02 00-FF 00 (no delay)
Line Feed Delay 03 00-FF 00 (no delay)
Form Feed Delay 04 00-FF 00 (no delay)

Communications
Protocol 05 80,40, 00 00 (no protocol)
Control Character 1 06 00-7F 13 (DC3; "XOFF")
Control Character 2 07 00-7F 11 (DC1 ; "XON")
Maximum Buffer Level 08 01-FF DF (223 characters)
Minimum Buffer Level 09 00-FE 84 (132 characters)
Data Block Length 0A 01-FF 50 (80 characters)
Hardware Handshake 0B 00, 80 00 (mode disabled)

*default mode and values

Mode Settings

The settings shown in the right-hand column above are for Normal
Mode. The driver assigns these values unless you change them using
the System Configu ratiol1 Program; for the other modes, you must
change these settings to the values shown in the following table.

B~te : Values:

Hardware
XON/XOFF Mode ENQ/ACK Mode Handshake Mode

05* 80 (this mode) 40 (this mode) 00 (no protocol)
06 13 (OC3; XOFF) 05 (ENQ)* * (not used)
07 11 (OC1; XON) 06 (ACK) (not used)
08 01-FF (OF) (not used) 01-FF (OF)
09 00-FE (84) (not used) 00-FE (84)
0A (not used) 01-FF (not used)
08 00 00 80 (this mode)

* The values of bytes 00 to 04 do not depend on mode.
** For ETX/ACK protocol , this is 03 (ETX) .

Baud Rates

Value Speed

03 110 baud (Teletypewriter speed)
04 134.5 baud
06 300 baud (A common telecommunications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
0A 2400 baud
0C 4800 baud
0E 9600 baud

Data Formats

Value Format

22 7 bits, odd parity (odd number of 1 's)
26 7 bits, even parity (even number of 1 's)
2A 7 bits, MARK parity (parity bit always 1)
2E 7 bits, SPACE parity (parity bit always 0)
00 8 bits, no parity
42 6 bits, odd parity (odd number of 1 's)
46 6 bits, even parity (even number of 1 's)
4A 6 bits, MARK parity (parity bit always 1)
4E 6 bits, SPACE parity (parity bit always 0)

DCB Values for Commonly Used Devices

Device and characteristics Device Configuration Block
bl!e:

(baud, bits, parit y, protocol) 00 01 02 03 04 05 06 07 08 09 M 08
Default values
(300,7,odd,no protocol) 06 22 00 00 00 00 13 11 OF 84 50 00
Another Apple III
(9600,7,odd,hdwr handshake) 0E 22 00 00 00 00 xx xx xx xx xx 80
Apple II
(300,7,SPACE,no protocol) 06 2E 00 00 00 00 xx xx xx xx xx 00
DEC LA120 terminal
(1200,7,SPACE,XON/XOFF) 08 2E 00 00 00 80 13 11 OF 84 xx 00
DEC VT100 terminal
(9600,7,SPACE,XON/XOFF) 0E 2E 00 00 00 80 13 11 OF 84 xx 00
SOROC 10120 terminal
(9600,7,MARK,no protocol) 0E 2A 00 00 00 00 xx xx xx xx xx 00
Oume Sprint 5 printer
(1200,7 ,odd ,hdwr handshake) 08 22 00 00 00 00 xx xx OF 84 xx 80
Oume Sprint 5 printer
(1200,7 ,odd,ETX/ ACK) 08 22 00 00 00 40 03 06 xx xx 6E 00
HP 7225 Plotter
(2400,7,SPACE,hdwr handshake) 0A 2E 00 00 00 00 xx xx OF 84 xx 80

Audio Quick Reference

Data Format

Character: 1 2 3 4 5 6
Max. Value: 128 63 ! 255 I 63 1 44 I 1 I
Meaning: Mode Vol. Count Time

Variable

Mode
Volume
Count
Time

Range

128
o to 63
100 to 16383
o to 300

Pascal Data Structure

A Pascal procedure should use the data structure shown below. Note
that you must use the UNITWRITE procedure, as described in
Chapter 4, to send data with values the same as ASCII control codes
from a Pascal program. Also see the Apple~ 1I1 Pascal Programmer's
Guide.

var ToneSpec : packed record
Mode : 0 .. 255;
Volume : 0 .. 255;
Count : integer;
Time : integer;

end;

Count and Frequency Relationship

The relationship between the count parameter and the frequency of
the resulting tone is given by the formula :

count = 509000
freq =

509000

freq count

Count Table
Lowest Octave Highest

Pitch 1 2 3 4 5 6 7 6

B 8245 4122 2061 1031 515 258 129
A# 8735 4368 2184 1092 546 273 136
A 9255 4627 2314 1157 578 289 145
G# 9805 4902 2451 1226 613 306 153
G 10388 5194 2597 1298 649 325 162
F# 11006 5503 2751 1376 688 344 172
F 11660 5830 2915 1457 729 364 182
E 12353 6177 3088 1544 772 386 193
D# 13088 6544 3272 1636 818 409 204 102
D 13866 6933 3467 1733 867 433 217 108
C# 14691 7345 3673 1836 918 459 230 115
C 15564 7782 3891 1946 973 486 243 122

Duration and Time Relationship

The relationship between the time parameter and the duration of the
resulting tone is given by the formula:

. time Duration = _ _
60

I
1

System Error Codes

Device System Error Codes

If an error occurs during a device status or control request , one of the
error codes listed here will be returned to the program that made the
request. If the program is in assembly language, the code is returned
in the accumulator; if no errors occur, the accumulator is returned as
zero .

Each high-level language deals with system errors in its own way.
Just as special provisions are made to enable you to make system
calls from these languages, so provisions must also be made to
enable you to control what happens when an error is returned . Some
language systems do not return device-error codes to the program ;
refer to the appropriate language reference manual for information
about error trapping and error recovery.

Some of the device drivers described in this manual do not return all
of the error codes listed here. Also , other device drivers can produce
error codes not listed here; in that case, the error codes w ill be listed
in the appropriate device-driver manual.

The error codes are given in hexadecimal.

Code Meaning

11: No Device Number. There is no device presently
configured in the system that has the device number that
was passed in the request.

21: Invalid Control or Status Code. The control code in a
D_ CONTROL request or the status code in aD_STATUS
request is not supported by the device driver.

22: Invalid Contro l or Status List. The data in the control list
passed in a D_CONTROL request or in the status list
passed in a D-STATUS request is not valid for this device
driver.

23: Character Device Not Open. The device specified by the
device number has not been initialized by an OPEN call.

26: Invalid Operation Code. The status code or control code
in this req uest is not supported by the device driver.

27 : Device I/O Error. An error has occurred during input or
output to the device.

28 : Device Not Connected. The hardware required by the
device is not electrically connected to the computer.

30-3F: Device-Specific Errors. These error codes are reserved
for errors that are specific to a particu lar device.

Console Data Formats

Keyboard Character Formats

Each keystroke generates two bytes of data. The formats of these two
bytes are shown below. The first byte, labelled Byte A, consists of
standard ASCII character code in the low-order seven bits, and the
state of the Open Apple key in the high-order bit. The second byte,
labelled Byte B, contains the states of the modifier keys and a flag
that identifies the special keys. The open Apple key is indicated by
A 1, and the closed Apple key by A2. A bit value of one indicates that
the corresponding key is down or the function is active.

Bit 7

Byte A1
A Key

Bit

Byte
B I

7

Spcl
Key

6 5

6 5

Kybd A2
On Key I

4 3

ASCII
Character Code

4 3

A1 Alpha
Key

I
Lock

2

2

Crrl Shift Any
Key Key Key

Console Character Sets

The character set that is displayed by the console can be changed by
the user, as described in the section STANDARD CHARACTER SET in
the chapter on the SCP.

Character Cell Format
Each character is stored as a 7-by-8 bit array, with a one for each
foreground dot and a zero for each background dot. Each character
array is stored as eight bytes, one byte for each row of seven dots.
The display bits are the low-order seven bits; the high-order bit is
defined below.

Within the array, bit rb of each byte is the left-most dot in the display,
and bit 6 is the right-most dot, w ith the bits between in
corresponding positions. The eight bytes making up one character
display are stored consecutively, with the top row first.

Bit

2 3 4 5 6

Row rb

2

3

4

5

6

7

Format of a Character Cell

The high-order bit of each byte (bit 7) determines what happens to
the row of dots specified by the other seven bits when the character
is displayed in inverse mode. If bit 7 is a zero , the foreground and
background colors for that row of dots are interchanged when
inverse mode is on. If bit 7 is a one when the character is displayed in
inverse mode, the row of dots is displayed in flashing mode: normal,
followed by inverse, followed by normal, at about three flashes per
second.

Character-set File Format
The file that contains a character set is a 1024-byte data file. The data
bytes are arranged in successive sets of eight bytes for each of the
128 ASCII characters, in order of increasing ASCII values.

I .' .' ~ • • • 'I. _ :

System Calls in Pascal

Making System Calls in Pascal

Pascal programs usually communicate with device drivers through
the SOS file structure by means of procedures such as READ,
READLN, WRITE, WRITELN, RESET, CLOSE, and so on. For direct
communication with device drivers, there are the low-level
procedures: UNITREAD, UNITWRITE, UNITCLEAR, and UNITSTATUS.
Refer to the Apple III Pascal Programmer's Guide for information
about these procedures. For more information about system calls,
refer to the Apple III SOS Reference Manual.

All SOS D_STATUS and D_CONTROL calls can be made through
Pascal by means of the UNITSTATUS procedure, but only some of
them are useful in Pascal programs. In fact, certain calls, such as the
Event calls, should not be made from Pascal, because they could
cause the system to stop, with no means of recovery except re
booting. Refer to the Apple III SOS Reference manual for information
about Events.

The Unitstatus Procedure
The form of a UNITSTATUS request is

UNITSTATUS (UNITNUMBER, STATUS LIST, REQUESTCODE)

The UNITNUMBER parameter is an integer variable or constant that
specifies the ,logical unit to be controlled . For calls to the console
driver, set UNITNUMBER to 1; for the graphics driver, set
UNITNUMBER to 3. Refer to the Apple III Pascal Programmer's Guide
for more information on device unit numbers.

The STATUSLIST parameter must be a declared variable: it cannot be
a constant of any kind . Notice that the STATUSLIST is not a pointer,
but a variable or record containing the control or status information.
The type of the STATUSLIST parameter depends upon the kind of
status or control request you are making.

The REQUESTCODE parameter is a sixteen-bit value. It specifies
three pieces of information: the type of status or control request
being made ; whether the request is a status request or a control
request; and whether the request affects the input channel or the
output channel of the device driver.

The Request Code
The console and graphics drivers each have only one channel, so the
input/output channel specification is ignored ; the only information
you need to supply is the request number and the status/control
specificat ion . These must be packed into a Pascal data word like this :

15 14 13 12 11 1(i} 9 8 7 6 5 4 3 2 0

I I I
Reserved Request Number Channel

Status or Control

The data structure for creating a REQUESTCODE with a request
number and the status/control information is

VAR REQUESTCODE: PACKED RECORD
CHANNEL: 0 .. 1;
STAT_OFLCTRL: 0 .. 1;
REQUEST_NUM: 0 .. 255;
RESERVED: 0 .. 63;

END ;

Bits

• • ,- i'

I ' .• : - ':. '. - - .-., '" ~ .

REQUESTCODE.CHANNEL := 0;
REQUESTCODE.RESERVED : = 0;

If the STAT_OR-CTRL field is 0, the UNITSTATUS procedure will
perform a D_STATUS call to the driver, and return the selected status
information in the variable STATUSLIST. If the STAT- OR-CTRL field
is 1, the UNITSTATUS procedure will perform a D_CONTROL call to
the driver, and transmit the information in the variable STATUSLIST to
the driver.

Using Utilties with Pascal

Changing the Program Name

The System Utilities Program you have been using for creating
system configurations is written in Pascal. You can execute it from the
Apple III Pascal command level by typing X for Execute followed by
.D1/SYSTEM.STARTUP, assuming the utilities diskette is in drive 1.

If you want to move the Utilities Program to one of your Pascal
system diskettes, you probably don 't want it to run each time you
boot the diskette, so you should change its name to something other
than SYSTEM.STARTUP For example, if the util ities diskette is in
drive 2 and NEWPASCAL3, one of your Pascal system diskettes, is in
drive 3, you can invoke the Pascal Filer by typing F from the main
command line, then type

T .D2/SYSTEM.STARTUP,/NEWPASCAL3/UTIL.CODE

to transfer the Utilities Program to NEWPASCAL3 and name it
UTIL.CODE. Having done that, you can execute the Utilities program
by typing X UTIL from the main command level.

Configuring the Format Drivers

To use most of the features of the System Utilties Program with
Pascal, all you normally have to do is execute the program. The
SOS.DRIVER files supplied on the Pascal system disKettes have all
four Disk I'll drivers configured. However, if you want to use the
Utilities Program to format disks from Pascal, you ' ll also have to
configure the format drivers into the SOS.DRIVER file on the Pascal
boot diskette. Formatting diskettes in the Pascal environment is the
one thing you can't do with the Utilities Program just by executing it.

To configure the format drivers for Pascal , all you have to do is use
the System Configuration Program to read the file SOS.DRIVER from
your Pascal system diskette and then read in the formatter drivers
.FMTD1, .FMTD2, .FMTD3, and .FMTD4 from the file FMTDX.DRIVER
on the Utilities Data diskette (these drivers are normally active).
Generate the new configuration and save it as SOS.DRIVER on your
Pascal boot diskette.

Conversion Table

The table below gives hexadecimal equivalents for the numbers from
1 to 255. It will be useful when you are chang ing driver configuration
blocks. The table contains all possible values for one byte, so it can
also be used for hexadecimal-to-decimal conversion .

Decimal-fa-Hexadecimal Conversion

OEC HEX OEC HEX OEC HEX OEC HEX OEC HEX OEC HEX OEC HEX OEC HEX
0 00 32 20 64 40 96 60 128 80 160 A0 192 C0 224 E0
1 @1 33 21 65 41 97 61 129 81 161 A1 193 C1 225 E1
2 02 34 22 66 42 98 62 130 82 162 A2 194 C4 226 E2
3 03 35 23 67 43 99 63 131 83 163 A3 195 C3 227 E3
4 04 36 24 68 44 100 64 132 84 164 A4 196 C4 228 E4
5 05 37 25 69 45 101 65 133 85 165 A5 197 C5 229 E5
6 06 38 26 70 46 102 66 134 86 166 A6 198 C6 230 E6
7 07 39 27 71 47 103 67 135 87 167 A7 199 C7 231 E7
8 08 40 28 72 48 104 68 136 88 168 A8 200 C8 232 E8
9 09 41 29 73 49 105 69 137 89 169 A9 201 C9 233 E9

10 0A 42 2A 74 4A 111'6 6A 138 8A 1711' AA 202 CA 234 EA
11 0B 43 2B 75 4B 111'7 6B 139 8B 171 AB 203 CB 235 EB
1-2 0C 44 2C 76 4C 108 6 140 8C 172 AC 204 CC 236 EC
13 11'0 45 20 77 40 111'9 60 141 80 173 AO 205 CO 237 ED
14 0E 46 2E 78 4E 11 II' 6E 142 8E 174 AE 211'6 CE 238 EE
15 0F 47 2F 79 4F 111 6F 143 8F 175 AF 207 CF 239 EF
16 111' 48 30 80 50 112 70 144 90 176 B0 208 00 2411' F0
17 11 49 31 81 51 113 71 145 91 177 Bl 209 01 241 Fl
18 12 50 32 82 52 114 72 146 92 178 B2 2111' 02 242 F2
19 13 51 33 83 53 115 73 147 93 179 B3 211 03 243 F3
20 14 52 34 84 54 116 74 148 94 180 B4 212 04 244 F4
21 15 53 35 85 55 117 75 149 95 181 B5 213 05 245 F5
22 16 54 36 86 56 118 76 150 96 182 B6 214 06 246 F6
23 17 55 37 87 57 119 77 151 97 183 B7 215 07 247 F7
24 18 56 38 88 58 120 78 152 98 184 B8 216 08 248 F8
25 19 57 39 89 59 121 79 153 99 185 B9 217 09 249 F9
26 lA 58 3A 90 5A 122 7A 154 9A 186 BA 218 OA 250 FA
27 tB 59 3B 91 5B 123 7B 155 9B 187 BB 219 OB 251 FB
28 lC 60 3C 92 5C 124 7C 156 9C 188 BC 220 OC 252 FC
29 10 61 30 93 50 125 70 157 90 189 BO 221 00 253 FO
30 lE 62 3E 94 5E 126 7E 158 9E 1911' BE 222 OE 254 FE
31 IF 63 3F 95 5F 127 7F 159 9F 191 BF 223 OF 255 FF

Two-Stage Boot Utilities

Someday you may need to generate a new driver file that is too large
to fit into the space available on the Utilities diskette. The Utilities
Filer is a Pascal program , so you can make a version of the Utilities
diskette with more space available by going to a two-stage bootstrap.
With a two-stage bootstrap, some of the files you need to start up the
system are on a separate diskette that is used only for the first stage
of the bootstrap operation .

Creating a Two-Stage Boot

Here is the procedure for creating a two-stage-boot version of the
Utilities Filer. This procedure is discussed more fully in the first
chapter of Apple III Pascal: Program Preparation Tools. Using your
old UTILITIES diskette, create two freshly formatted diskettes. Name
them UTILlTY1 and UTILlTY2 . Now copy the following files from the
old UTILITIES diskette onto UTILlTY1:

SOS.KERNEL
SOS.INTERP
SOS.DRIVER

Copy the following files from the UTILITIES diskette onto UTILlTY2:

SYSTEM.MISCINFO
SYSTEM. PASCAL
SYSTEM .STARTUP

To run your new two-stage Utility Filer, first put the UTILlTY1 diskette
into the built-in drive and press CONTROL-RESET. When the disk
drive stops whirring and the message

Put system disk in built-in drive. Press RETURN.

appears, remove UTILlTY1 from the built-in drive, insert UTILlTY2,
and press RETURN. The bootstrap process will continue until the
display shows the Filer main menu. Now there is plenty of room on
UTILlTY2 for the largest SOS.DRIVER file you can put together using
the System Configuration Program.

~. 'I '..
• '. • ._.. .' .' • J -.

Index

A
ABSOLUTE POSITION code 45
ACK (see ENQI ACK)
active d river status 16
active drivers, maximum 16
activity status 16
advance, cursor 42
ALPHA LOCK key 48, 137
alternate character set 81
Any key Event 62, 68
Apple Business BASIC 27,28,

34,73,82,99
Apple Business BASIC Reference

Manual 56
Apple III DriverWriter's Guide 11
Apple III Owner's Guide 3,6,10,51
Apple III Pascal Assembler 11
Apple III Pascal: Program

Preparation Tools 11, 177
Apple III Pascal Programmer's

Guide 132,169
Apple III SOS Reference Manual
11,59,62,67,68,97,169
Apple keys 48
arguments 4,34, 82
arrow keys 10, 15, 18, 52, 138
ASCII character codes 47,71,101
ASCII character codes, table 136
ASCII characters, table 140
ASCII control character 31, 34, 58
ASCII 4, 31,48, 120
Assembler, Apple III Pascal 11
Attention Event 61, 67
audio data format, table 161
audio driver 129
audio mode 130
audio tone count table 162

- . -. .' -

B
B command, cursor 54
BACKGROUND COLOR code 42
background color 91 , 93
backspace key 51
Backspace request 64
backspace 50, 53
BASIC example 3,34,82,99,131
BASIC 28, 51, 80
Baud 103, 115, 119 120
BGRAPH module 73,83
BIC transfer mode 79, 80
black-and-white monitor 76
black-and-white transfer

tables 150
block device 3
block length, .RS232 119,122
block manipulations 75
boot diskette 2,5,6,24
boot 6,23
bootstrap 2
break time 127
buffer size 115
buffer, input 111,112,115,

116,119,122,125,126,127
buffer, output 111, 112,

115,126,127
byte 4

C
cancel function 51, 53
Cancel request 64
Cancel status 70
cancel 50
carriage return 101, 104
carriage return delay 119
carrier signal 116,117,125

changing the system
parameters 18

character 27,28
character code 30,47
character cell 96
character device 3
character defi nition 71
character-font address 96
character high bit 31
character set 28, 31 , 70, 71
character set, par tial 71
character set, default 81
character set, alternate 81
CHARACTER SET code 84
character-set photo 144
character-set file 22
character-set format 166, 167
character-set file format 167
CLEAR LINE code 46
CLEAR TO END OF VIEWPORT

code 46
CLEAR TO END OF LINE code 46
ClearTo Send 118
CLEAR VIEWPORT code 45, 90
color anomalies 92
color codes, table 142, 149
color compatability table 145
color mask 91
color-operator table 77,87,96
color overlay 91
color text mode 29
color transfer tables 151, 152
color value 94
colors 29
commands 4
comment field 18
communications format table 156
communication protocols

113, 117,119,121
Configuration Menu 7
configuration block 16, 99, 101

configuration validation 24
configuration menu 25
configuration parameters 102
configuration block, printer

driver 102
configuration block, .RS232

108,109, 114122, 124
console 49
console-control keys 47, 56
console-control keystrokes 58
console-control keys, table 139
console control requests 65
.CONSOLE device driver 6, 27
console driver 59, 81
CONSOLE. DRIVER file 10
console-status requests 60
Contents of Viewport 65
control characters 59, 80, 82,

101,114,120
contro ll codes 59, 97, 111 ,

113,123, 125127
CONTROL key 23, 30, 47, 48, 137
control list 59, 97
control req uests 125 127
CONTROL-5 key 139
CONTROL-6 key 139
CONTROL-7 key 139
CONTROL-8 key 139
CONTROL-9 key 139
CONTROL-H key 50
count table 162
CTS 118
cursor 52
cursor advance 42
cursor commands 51, 52, 53
cursor commands, summary 55
cursor command keys, table 138
cursor motion and controls 33
CURSOR MOVEMENT CONTROL

code 42
cursor-movement options,

table 143
CURSOR OFF code 36
CURSOR ON code 36
cursor position 29, 31 , 46, 65, 96

D
D-CONTROL system call

59, 97, 123, 169
D-STATUS system call

59, 97,123, 169
data 4
Data Carrier Detect signal 100
Data Carrier Detect 116, 117, 125
data format 102, 103
data format table 158
data format, .RS232 119, 120
data- rate table 158
data rate 101 , 102, 103
Data Set Ready signal 100
Data Set Ready 116, 125
Data Terminal Ready signal 101
Data Terminal Ready 117

down-arrow key 12, 15,138
Download Character Set 70
DRAW LINE code 89
DRAWBLOCK code 84
DRAWBLOCK 93
d river code file 10
d river files 10
driver module 11 , 12
driver parameters 13
driver status 16
driver status, active 16
driver status, inactive 16
drivers 9
DSR 116, 125
DTR 117
duration of tone 129,130, 131
Dvorak American Simpl ified

Keyboard 23

E
echoing 30
EDIT DRIVER PARAMETERS

DCB 99, 101 option 8, 13
DCD 116, 117,125 editing keys 47
default character set 81 editing the configuration block 16
default parameters 3 EIA 105
default text mode 32 ENOl ACK protocol 110, 113,
default, graphics 95 115 116, 121, 122
delay after special characters 121 ENTER key 137
DELETE A DRIVER FILE option 8 error codes 163, 164
DELETE A DRIVER 11 error messages 163, 164
destructive backspace 50
destructive cancel 51
device drivers 1, 2,6, 7
device name 15
device number 59, 97
device subtype 15
device type 15
DEVICE. DOC file 28
disable type ahead 50
display control characters

ESCAPE key 14,20, 22, 48, 52, 137
escape mode 47,51
Escape Mode status 70
Escape request 64
ETXI ACK protocol 109,

113116, 122
event handler 62, 63, 67
example, BASIC 3, 34, 82, 99, 131
example, graphics 78

58, 139 example, Pascal
3, 35, 82, 100,132, 161

example, road maps 78

F
.FASTPRINT driver 26
file patte rn 10
file selection 10
FILL COLOR code 89
fill color 76, 93, 96
flush output 58, 139
flush type-ahead

buffer 57,67, 139
FOREGROUND COLOR code 41
foreground color 91
form feed 102, 104
form feed delay 119
framing error 125
frequencies 133
frequency table 162

G
GENERATE NEW SYSTEM

option 8,25
generating a new system 24
GET 27
graphics configuration block 95
graphics default conditions 95
graphics display modes 94
.GRAFIX driver 11
graphics memory requirements 94
graphics modes 73,74
GRAPHICS MODE code 86
graphics mode 96
graphics screen-control

codes 76,82

hardware handshake 110, 112,
113,115,116,119121

hexadeci mal conversion table 176
high bit of character 31
HOME CURSOR code 38
HORIZONTAL SHIFT code 44
HORIZONTAL POSITION code 44
HPOS variable 34

I
IMREAD 111 , 113
inactive driver status 16
incomplete pathname 10
input buffer 111, 112, 115, 116,

119,122,125,126,127
INPUT 27
INVERSE code 41
inverted transfer modes 79, 80
invokable module 28
IRQ (interrupt request) 125
IS-NEWLINE 110, 112,

124, 125, 127

K
keyboard 27, 47
keyboard-character formats 165
keyboard codes 135
keyboard handler 30
keyboard input 30, 46
keyboard layout 23
keyboard layout table 23, 30, 47
Keyboard Mode 61,66
keystrokes 47

graphics screen-control codes, L
table 148 L command, cursor 53
graphics screen modes, table 149 latched status 124
graphics viewport 75 left-arrow key 50, 138

limited color mode 90, 92
H line feed 42, 101, 104, 119, 121
handshake 100

M
maximum active drivers 16
maximum buffer level

115,116,119
memory requirements 94
memory 13
middle C 133
minimum buffer level

115, 116, 119
modem 105,117118
modem eliminator 101 , 105, 117
modifier keys 47
modifier keys, table 137
MOVE CURSOR LEFT code 37
MOVE CURSOR RIGHT code 37
MOVE CURSOR DOWN code 37
MOVE CURSOR UP code 38
MOVE PEN code 90
multiple configurations 26

N
NEWLINE 110, 112, 124, 125,127
l\lo Operation 60
no protocol, .RS232 109, 113, 114
No Wait Input 63, 69
nondestructive backspace 50
nondestructive cancel 51
NORMAL code 40
notes 133
NTSC color compatability

table 145
number of d isk III drives 20
numeric keypad 48

o
open-Apple key 48
operating system 2, 5
option , Configuration Menu 7
OR transfer mode 79, 80
output buffer 111, 112,

115,126, 127

OUTPUT # 80, 100
overflow 125
overrun 125

p
P command, cursor 53
parameter display 14
parity error 125
parity 103, 120
partial character set 71
Pascal boot diskette 174
Pascal example 3, 35,82, 100,

132, 161
Pascal UNITSTATUS 29
Pascal UNITWRITE 35
Pascal 27,28,51,59,73, 80,

97, 169
path name 10
pathname, incomplete 10
PEN COLOR code 88
pen color 76, 96
PEN LINE FEED code 84
pen position 75, 76, 94
PEN RETURN code 85
peripheral devices 1, 3
PGRAPH Unit 73
pitch of tone 129, 130, 131
PLOT POINT code 90
Preserve Status Table 60, 98
PRINT# 80,100
PRINT 27
.PRINTER driver 26, 99,100
printer driver configuration block

102,155
pri nter speed table 156
protocol , communication 113,

117, 119,121

Q
QUIT option 9, 25
QUME printer 99, 109, 110

R
READ A DRIVER FILE option 8, 9
Read Text Screen 65
READ 27
reading all parameters 20
reading the screen 94
READLN 27
RequestTo Send signal 101
RequestTo Send 116, 117
REQUESTCODE 170
RESET COLOR OPERATOR

TABLE code 87
Reset Console 66, 98
RESETVIEWPORTcode 35,83
resolution 74
Restore Contents of Viewport 71
Restore Status Table 66 98
RESTORE VIEWPORT code 36
RETURN CURSOR code 38
RETURN key 12,14,15,

20,47,48,137
retype 50
retype function 50
Retype request 64
Retype status 69
right-arrow key 50, 138
road maps example 78
root directory 6
RS-232-C 107,108,116,118, 127
RS-232-C interface 99
RS-232-C port 100
RS-232-C standard 105
.RS232 driver 99,107, 127
RS232 configuration block 157
RS232 mode settings 157
RTS 116,117

s
S command, cursor 53
sample graphics pictures 153,154

SCP (see System Configuration
Program)

screen color 77, 94
screen control codes 33, 35,

55, 76,80,82
screen control codes, table 141
Screen Echo 63
Screen Echo status 69
screen modes 142
screen output 31
SCREEN SYNCHRONIZATION

code 43
scroll 31, 42
serial interface 99
serial output port 100
SET COLOR OPERATOR TABLE

code 87
SET VIEWPORT code 83
SHIFT key 23, 30,47,48,137
.SLOWPRINT driver 26
solid-Apple key 49
Sophisticated Operating System
(SOS) 1
SOS control call 28
SOS (Sophisticated Operating

System) 1
SOS.DRIVER file 2 5 6 8

10, 11,16,22, 24, 30:174
SOUI\lD BELL code 36
special keys 47
special keys, table 137
standard character set 22
standard keys 47
status codes 59, 97, 111,

112,113,117,123
status list 59, 97
status req uests, . RS232 123, 126
status table 98
STATUSLIST 170
stop bits 120
STORE transfer mode 79,80

summary of cursor commands 55
suspend screen output 57, 139
switched telephone system 119
system calls 59, 97
system calls in Pascal 169, 170
system character set 22, 81
system configuration 2, 5, 6,7, 23
SYSTEM CONFIGURATION
PROGRAM option 8
system parameters 5,6, 7, 10, 18
system-parameter display 19, 22
System Utilities Program, with
Pascal 173, 174
SYSTEM.STARTUP 173

T
Tcommand, cursor 54
TAB key 48, 137
Termination Character 60, 66
text 4
TEXT MODE code 39
text mode, default 32
text modes 31
toggle video output 57, 139
tone du ration 162
tones 129, 130, 131
transfer modes 79, 80
transfer modes, inverted 79, 80
TRANSFER MODE code 89
transfer modes, table 149
transfer option 96
transfer-mode anomalies 93
TURN SCREEN OFF code 38, 85
TURN SCREEN ON code 39, 85
two stage boot 177
type-ahead 47, 49
type-ahead, disable 50
type-ahead buffer 30, 49, 62
Type-ahead Buffer Size 61 , 67

U
UNITNUMBER 170
UNITREAD procedure 82
UNITSTATUS procedure 59
UNITSTATUS 29, 97, 123, 169
UNITWRITE procedure 132
UNITWRITE 35, 80
up-arrow key 12, 15,138
Utilities diskette 6, 7, 8
Utilities diskette, space on 177
Utilities Filer 8

v
V command , cursor 55
validation , configuration 24
vector manipulations 75
VERTICAL POSITION code 45
video display 28, 73, 74
video generator 43
video modes 32
video screen 27
viewport 29, 31, 32, 65,

76, 86, 93, 94
VIEWPORT BOTTOM code 36
viewport contents 71
viewport edges 96
VIEWPORT TOP code 36
volume of tone 129, 130, 131
VPOS variable 34

w
wildcard 10
wrap-around 33, 42
WRITE 27, 35, 80
WRITELN 27, 35, 80

X
XON/XOFF protocol 109, 113,

114, 115,121 , 122
XOR transfer mode 79, 80

y

z

	Table of Contents
	Appendices
	Preface
	1)Introduction to Device Drivers
	2) The System Configuration Program
	3) The Console Driver
	4)The Graphics Driver
	5) The Printer Driver
	6)The RS232 Driver
	The Audio Driver
	A) Console Quick Reference
	B)Graphics Quick Reference
	C)Printer Quick Reference
	D)RS232 Quick Reference
	E)Audio Quick Reference
	F)System Error Codes
	G)Console Data Formats
	H)System Calls in Pascal
	I)Using Utilties with Pascal
	J)Conversion Table
	K)Two-Stage Boot Utilities
	Index

