
Pascal
Introduction, Filer, and Editor

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I •

®

Notice
Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities
Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed "as is:' The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(400) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

The word Apple and the Apple logo are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0004

ii Apple III Pascal: Introduction, Fi ler, and Editor

Acknowledgements

The Apple III Filer and Editor are based on the Filer and
Editor developed as part of UCSD Pascal. "UCSD PASCAL" is a
trademark of The Regents of The University of California. Use
thereof in conjunction with any goods or services is authorized
by specific license only and is an indication that the
associated product or service has met quality assurance
standards prescribed by the University. Any unauthorized use
thereof is contrary to the laws of the State of California.

Contents iii

Preface ;x

1 A Brief Overview 1

2 APPLE III Pascal: An Overview
3 Starting the System
4 Prompt Lines
5 Rearranging System Diskette Files
9 Files

11 Creating and Editing Files

2 The Command Level 13

14 Using the Command Level
15 The Command-Level Options
16 File
17 Edit
17 Compile
17 Assemble
18 Link
18 Execute
19 Run
19 User restart
19 Initialize
19 Halt
20 Options
22 Make exec
22 Commands Usable at all Levels
22 CONTROL-\
23 CONTROL-RESET

iv Apple III Pascal: Introduction, Filer, and Editor

3

23 Numeric-Keypad Commands
23 CONTROL-5
23 CONTROL-6
24 CONTROL-7
24 CONTROL-8
24 CONTROL-9
25 Summary
25 Command Options
26 System Commands

The Filer
30 Introduction
33 Diskf iles Needed by the Filer
34 Using the Filer
34 General Information
36
38
38
39

Device Names and Numbers
More About Files

Directories
Local Filenames

39 Subdirectories
40 Diskette File Types
42 Wildcards
45 The Filer Commands
46 Information Commands
46 Volumes
47 List Directory
51 Extended Directory
52 The General File-Moving Command
52 Transfer
58 Copying an Entire Disk
60 Copying a Subdirectory
62 General Diskfile Commands
62 Make
63 Change
68 Remove
70 Krunch
71 Zero
73 Prefix
75 Quit
75 Date
76 Alter
78 Workfile Commands
78 Get
79 Save

28

4

82 New
83 What
83 General Disk Upkeep Commands
83 Bad Blocks
86 Examine
8 7 Filer Command Summary

The Editor
92 Introduction
93 Diskfiles Needed
9 3 A "Window" into the File
93 The Cursor
94 The Prompt Line
94 Notation
94 A Brief Scenario
95 Starting a New File
96 Saving Your Work
96 A Little More Detail
96 Entering the Editor
98 Moving the Cursor
99 Inserting Text

101 Deleting Text
101 Leaving the Editor
104 Editing an Ascii File
104 Editing BASIC Files
105 The Editor Commands
106 The Cursor
109 Moving Commands
109 Jump
110 Find
115 Text Changing Commands
115 Insert
121 Delete
125 Zap
126 Copy
129 Exchange
130 Replace
135 Formatting Commands
135 Adjust
137 Margin
140 Miscellaneous Commands
140 Verify
140 Set

Contents v

90

vi Apple III Pascal: Introduction , Filer, and Editor

148 Quit
152 Editor Command Summary
152 Cursor Moves
152 Repeat-Factor
152 Set Direction
152 Moving Commands
152 Text Changing Commands
153 Formatting Commands
153 Miscellaneous Commands

Appendices

A File Formats
156 Text Files
156 Data Files
157 ASCII files

B SOS & Apple II Pascal File Format

155

& Pathname Compatibility 159

160 General Considerations
162 Naming Conventions
164 Apple II Pascal Filer Commands
164 List Directroy
164 Extended Directory
165 Krunch
166 Make
167 Examine

C Summaries
174 All Levels
174 Command Level
176 Filer
177 Editor

173

Contents vii

D Notes and Tables 179

180 Apple III Pascal Device Number Assignments
183 When to Use .TEXT and .CODE
184 Apple III Pascal System Diskettes
184 Definitions
185 Pascal System Diskettes
185 Making a Turnkey Diskette
186 The System Diskette Files
187 Apple III Pascal System Console Configuration
188 The SETUP Utility

E ASCII Character Codes 191

192 ASCII Character Code Table

F Transporting Programs Between
Apple Ill & Apple II Pascal Systems 193

194 General Considerations
194 Diskette Compatibility
195 Program Compatibility

Glossary 199

Index 203

viii Apple III Pascal: Introduction, Filer, and Editor

Preface ix

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Intoduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer's Manual (Volumes 1 and 2)

Before using the Apple III Pascal system, or reading its
manuals, you should be familiar with starting up the Apple
III as described in the Apple III Owner's Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal Introduction, Filer, and Editor
manual. The Filer and the Editor described in this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will also
show you the differences in operation between the two systems.

Apple III Program Preparation Tools is the next manual that you
should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The
components of the Apple III Pascal system covered in this
manual include:

The Linker, used to combine separately-developed program
segments stored in libraries with your application
program.

The Apple III Pascal 6502 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files.

x Apple III Pascal: Introduction, Filer, and Editor

The Librarian, used to put commonly-used routines into
libraries for use with application programs.

Your main source of information while developing Pascal
programs will be the two volumes of the Apple III Pascal
Programmer's Manual, which contain a complete description of
the Pascal language on the Apple III and the use of the Apple
III Pascal Compiler.

Chapter 1 presents an overview of Apple III Pascal including
how to start the system and how to read the system's prompt
messages.

Chapter 2 describes the Pascal system's Command level options
and the commands that can be used at all system levels.

Chapter 3 describes the Filer, the part of the system used for
manipulating files.

Chapter 4 tells you how to use the Editor and includes a brief
tutorial for users having little or no experience using text
editors.

Appendix A describes the internal structure of Apple III files.

Appendix B explains how to transport files and programs between
the Apple II and Apple· III Pascal systems.

Appendix C is a summary of the Command level options, the Filer
and Editor commands, and the commands usable at all levels of
the system.

Appendix D explains how Apple III Pascal assigns numbers to
device drivers that have been configured into the system.

Appendix E is a table of the ASCII character codes.

Pref ace xi

Symbols Used in this Manual
The following symbols are used throughout this manual:

The pointing finger indicates an especially useful or
noteworthy piece of information.

The eye means "watch out. " It indicates a warning of
a potential hazard to which you should be alert.

xii Apple III Pascal: Introduction, Filer, and Editor

2 APPLE III Pascal: An Overview
3 Starting the System
4 Prompt Lines

A Brief Overview l

5 Rearranging System Diskette Files
7 Text Editing Systems
9 Edit/Compile Systems
9 Turnkey Systems
9 Files

10 The Workf ile
11 Creating and Editing Files

2 Apple III Pascal: Introduction, Filer, and Editor

1
A Brief Overview

Apple III Pascal is a complete set of tools used in the
development of Pascal and Apple III Pascal Assembly Language
subroutines for the Apple III computer. These tools are used
together with SOS (the operating system used by the Apple III)
and are provided as files on the Apple III Pascal system
disks, PASCALl, PASCAL2, and PASCAL3. The major components
of Apple III Pascal include:

The Editor~for creating and modifying program files and
other text files

The Filer~for moving files from place to place, copying
disks, removing files, renaming files, and other similar
chores

The Pascal Compiler~for converting Pascal programs into
executable form

The Apple III Pascal Assembler~for converting Apple III
Pascal Assembly Language subroutines into machine language

The Linker~for combining separate sections of Pascal and
assembly-language programs

The Librarian~a utility program used for putting
frequently-used routines into system libraries.

It may be helpful to think of Apple III Pascal as a high-level
operating system using the features of SOS. Note that Apple III
Pascal is not an independent entity since its function requires
the presence of SOS. Each time you boot Apple III Pascal, SOS
is automat ically loaded into the Apple III's memory.

The most basic information needed to use Pascal on the Apple III
is found in this chapter. This information includes starting

A Brief Overview 3

the system, interpreting system prompt lines, manipulating
directories and files on system diskettes, and creating and
editing files.

To use Apple III Pascal, you need a 128K Apple III with a video
monitor and at least one external disk drive in addition to the
Apple Ill's built-in drive.

You should set up your Apple, read the Apple III Owner's Guide,
and run the programs on the Apple III Demonstration diskette
before going any farther in this chapter. The Apple III
Owner's guide contains much information related to using Apple
III Pascal.

Many programs written for the Apple II Pascal system can
be run on an Apple III Pascal system after being
recompiled. In addition, some files written on an Apple
III Pascal system can be used on an Apple II Pascal
system. Appendix B explains how to do this.

You can also use the Apple III Pascal system to edit BASIC text
files. For a complete explanation, see this manual's chapter
on the Editor.

Starting the System
The three system diskettes that come with your system, PASCALl,
PASCAI..2, and PASCAI..3, are write-protected. This means that you
won't be able to store any new information on them. Before you
try to boot Apple III Pascal for the first time, we strongly
recommend that you use the Apple III Utilities diskette to make
copies of each system diskette. If you are uncertain about how
to copy diskettes, see the Apple III Owner's Guide.

After being copied, all three system diskettes should be stored
as backups in a safe place. If something happens to the copies,
the originals can always be used to produce another set of
working diskettes. Don't take chances with your originals!

To start Apple III Pascal (also known as ''booting" the system),
insert your newly-made copy of PASCALl in the built-in drive,
close the door to the drive, turn on your monitor, and turn on
the Apple III. The built-in disk drive's IN USE light comes
on, and the disk drive emits a whirring sound that lets you

/

4 Apple III Pascal: Introduction, Filer, and Editor

know that everything is working. After a while, the disk drive
will stop whirring and the monitor screen display will look
like Figure 1-1.

Figure 1-1. System Startup Screen

If you want to begin using Apple III Pascal when your Apple III
is already turned on, just insert diskette PASCAL! in the
built-in drive, close the drive door, and then hold down the
CONTROL key while pressing the RESET button behind the keyboard.

Prompt Lines
The line of text appearing at the top of the screen when you
start up Apple III Pascal is the Command prompt line. Typing
the first letter (either upper or lower case) of a Command
prompt option on the Command prompt line immediately invokes
that option. To use the Editor, just enter an E, and so on.
Here is what the Command prompt line looks like:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssm,? [A3/l.0J

Actually, this is only the fir§t half of the Command prompt
line. To see the second half, enter a ? • The top line of the
screen now looks like this:

Command: U(ser restart, I(nitialize, O(ptions, H(alt, M(ake exec

A Brief Overview 5

Type another ? to return the first half of the Command prompt
line to the screen.

Whenever the Command prompt line is displayed, you are at the
Command level of the system. Each of the words following the
word "Command" indicates the name of an option available to you
from the Command level. Figure 1-1 shows the options displayed
at the Command level.

To use any given option, the file or files containing the
programs needed by that option must be in a disk drive
connected to the Apple III. To use the Filer, for example, the
system must have access to the program file SYSTEM.FILER ; to
use the Editor, the system must have access to the program file
SYSTEM.EDITOR • The requirements for the use of all the Apple
III Pascal system options are given in Appendix D.

Some of the command options have prompt lines of their own
similar in format to the Command prompt line. For example, the
Edit prompt line looks like this:

>Edit: A(djst C(py D(lete F(nd I(nsrt J(mp M(rgin Q(uit R(plce S(et X(chng Z(ap

Each of the words following the word Edit indicates a different
command available to you in the Editor. Thus, in the Editor
you can insert text, delete text, copy text, and so on.

Note that you always have to go back to the Command level
before going to any different Command option as found on the
Command option line. It is not possible, for example, to go
directly from the Editor to the File~ or from the Filer to the
Linker without first passing through the Command level.

Each of the options available from the Command level is
explained further in Chapter 2 of this manual.

Rearranging System Diskette Files
The arrangement of files on your system diskettes is by no means
fixed . In fact, you are encouraged to move files from one
system diskette to another until you have the file arrangement
that best suits your needs.

Table 1-1 lists the names and approximate block lengths of the
diskette files included on each system diskette. The Filer's
List-directory command will display the exact length of each
file for you.

6 Apple III Pascal: Introduction, Filer, and Editor

PASCAL! (boot diskette) PASCAL2 (editing and language
processing)

SOS.KERNEL 44 SYSTEM.EDITOR 56
SOS.DRIVER 39 SYSTEM. SYNTAX 14
SOS.INTERP 34 SYSTEM.COMPILER 80
SYSTEM.PASCAL 63 SYSTEM.ASSMBLER 49
SYSTEM.MISCINFO 1 OPCODES.6502 2
SYSTEM.LIBRARY 39 ERRORS.6502 7
SYSTEM.FILER 50 SYSTEM.LINKER 25

TOTAL 270 TOTAL 233

UNUSED BLOCKS 3 UNUSED BLOCKS 40

PASCAL3 (utilities diskette)

LIBMAP.CODE 10
LIBRARY .CODE 8
SETUP.CODE 10
AI !FORMAT. CODE 4

TOTAL 32

UNUSED BLOCKS 241

Table 1-1. Contents of System Diskettes

The following sections describe various ways of arranging
diskette files on your system diskettes to suit particular
needs. When building these diskettes, you will need to use the
Filer's Transfer command to move files from one diskette to
another, the Filer's Remove command to remove unnecessary
files, and the Filer's Change command to change the names of
files and diskettes. Filer commands are explained in Chapter 3
of this manual.

Note that SYSTEM.FILER , the file that contains the Filer
program, resides on diskette PASCAL!. SYSTEM.FILER does not,
however, need to be available to the system once the Filer
prompt line is displayed on the screen. Thus, when rearranging
diskette files, you can boot the system with diskette PASCAL!,

A Brief Overview 7

press F to enter the Filer, and then, if necessary, remove
diskette PASCALl from the built-in drive to make room for other
diskettes. When you want to return to the Command level, place
PASCALl back in the built-in drive and press Q for Quit.

Text Editing Systems
If you plan to use your system exclusively for text editing, you
can create a single boot diskette containing all of the files
needed for this purpose. This enables you to leave your other
drive(s) free for diskettes containing the files you are
currently editing. Here is all you need to do to create a
single text editing diskette:

1. Format a new disk with the SOS System Utilities disk,
naming the new disk EDITl.

2. Boot the Pascal system disk, /PASCALl, and type F to invoke
the Filer. Place /EDITl in the first external drive.

3. Transfer all files from /PASCALl to /EDITl by typing

T=,/EDITl/$

and pressing RETURN.

4. Remove the /EDITl/SYSTEM.LIBRARY file by typing

R/EDITl/SYSTEM.LIBRARY

and pressing RETURN, then pressing Y when the message

Update directory?

appears on the screen.

S. Transfer the Editor program file from the disk /PASCAL2 to
/EDITl by replacing diskette /PASCALl in the built-in drive
with diskette /PASCAL2 and typing

T/PASCAL2/SYSTEM.EDITOR,/EDIT1/$

and pressing RETURN.

Your new boot diskette, EDITl, now contains all of the files
needed to create and edit files.

8 Apple III Pascal: Introduction, Filer, and Editor

Edit/Compile Systems
If you want to create a file arrangement allowing you to place
all of the diskette files needed to edit and compile Pascal
programs on a single diskette, you will have to use a two-stage
boot. This means that two different diskettes are needed each
time you boot the system.

If you look at Table 1-2, you will see that five files are
needed to boot Apple III Pascal. These files are:

Diskette 1:

SOS.KERNEL
SOS.INTERP
SOS.DRIVER

Diskette 2:

SYSTEM.PASCAL
SYSTEM.MISCINFO

Table 1-2. Files Used with Two-Stage Boot.

Apple III Pascal refers to the diskette containing the file
SYSTEM.PASCAL as the Pascal system disk. Thus, whenever you are
prompted to insert the Pascal system disk, you should insert the
diskette containing the file SYSTEM.PASCAL This file is
needed each time the system returns to the Command level.

You can make a set of diskettes for a two-stage boot system by
using the Filer to make two copies of your new text editing
diskette named EDITl on SOS-format diskettes.

Change the name of the first copy of EDIT! to NEWPASCALl and
remove all files on it except for SOS.KERNEL, SOS.INTERP, and
SOS.DRIVER. This diskette will be your first-stage boot
diskette.

Now change the name of the second copy of EDITl to NEWPASCAL2
and remove only the files SOS.KERNEL, SOS.INTERP, and
SOS.DRIVER. This will be your second-stage boot diskette and
will remain in the built-in drive most of the time that you are
using Apple III Pascal.

A Brief Overview 9

If your Apple III is already turned on, you can do a two-stage
boot by inserting diskette NEWPASCALl in the built-in drive,
closing the drive door, and then holding down the CONTROL key
while pressing the RESET button behind the keyboard. Then,
when prompted, insert diskette NEWPASCAL2 •

More room can be provided on your system disks by removing
unnecessary drivers from the SOS.DRIVER file and by removing
seldom-used routines from the SYSTEM.LIBRARY file. See the
Apple III Standard Device Drivers Manual and the Apple III
Pascal Program Preparation Tools Manual's chapter on the
Librarian.

Turnkey Systems
Apple III Pascal allows you to set up a turnkey system that
automatically begins running a particular program each time the
system is booted. Information about how to create a turnkey
program, as well as a list of the files that should be included
on the turnkey diskette, is included in Apple III Pascal
Program Preparation Tools Manual.

Files
A file is defined as a stream of bytes. Thus, information sent
to a printer, as well as computer programs, letters, and lists
stored on diskettes, are all examples of files.

Most files used by Apple III Pascal are of either of two types:
text files that store information such as computer programs,
letters, and reports; and code files containing P-code, the
translated version of a program.

Much of this manual is devoted to a discussion of diskette
files--files stored on disks or diskettes. When a file is
created by the Editor, it is stored in the Apple's memory.
Then, when you are ready to save your file, you use one of
Apple III Pascal Editor's commands to save a copy of the file
on to a diskette. To change the content of a file already on
disk by using the Editor, you must first copy the file into
memory; then you can change the contents of the file with the
Editor, and again save the file on to diskette.

Each time a diskette file is created or modified, information
about that file, including the file's name, length, type, and
last modification date, is placed in a special diskette file

10 Apple III Pascal: Introduction, Filer, and Editor

called the diskette directory. Filer commands enable you to
display and manipulate the information contained in the
diskette directory.

The Workfile
The workfile is a special file that may aid in the development
or revision of a program. It is most useful in developing
smaller or ''beginner" programs whose source is contained in a
single text file. If you are working with something like the
Great American Novel (or Program), you will find it easier to
.££!, use the system workfile.

There are two parts to a workfile: the text portion,
containing human-readable text, and the code portion,
containing compiled P-code. The text portion of the workfile
is always listed on the Pascal system diskette's directory as
SYSTEM.WRK.TEXT while the code portion is listed on the same
diskette's directory as SYSTEM.WRK.CODE •

A workfile is usually created in the Editor. A new text file that
you create with the Editor has no name until it is saved to
disk. Saving your new file to disk with the Editor's Quit
Update command directs the system to store the workfile on the
Pascal system di.skette, under the name SYSTEM.WRK.TEXT •

If, after the workfile has been saved onto diskette, you type R
for Run, the workfile is compiled and executed (assuming the
workfile is a Pascal program). Following a successful
compilation, the compiled version of the workfile is
automatically saved on the Pascal system diskette, under the
name SYSTEM.WRK.CODE • Another way to make a workfile is to
change the name of a textfile to SYSTEM.WRK.TEXT and store it
on the Pascal system diskette.

You can edit, compile, assemble, link or run the workfile as
often as you wish without having to tell the system that the
file you want it to act on is the workfile. Each of these
operations assumes that you are ref erring to the workf ile on
the Pascal system diskette.

Suppose, for example, that you have just started up the system
and that you have both a text portion (SYSTEM.WRK.TEXT) and a
code portion (SYSTEM.WRK.CODE) of the workfile stored on the
Pascal system diskette. Then, with the Command prompt line
showing on the screen, you type E for Edit. Rather than asking
you to specify the name of the file you want to edit, the

A Brief Overview 11

system automatically gets the text portion of the workfile from
the Pascal system diskette, reads it into the Editor's
workspace and displays it on the screen.

Only one workfile may exist in the system at any one time. If a
workf ile already exists and you want to create a new workfile,
you can use the Filer's Save command. The Filer's Save command
allows you to give the workfile its own unique local filename
and then saves your file, using its new name, onto whatever
diskette you specify.

Next you can use the Filer's New command to destroy the old
workfile, thus making room for a new workfile. If you want to
designate a file that has been stored on diskette as the next
workfile, use the Filer's Get command.

The two parts of the workfile, SYSTEM.WRK.TEXT and
SYSTEM.WRK.CODE , are saved and retrieved together. Individual
commands automatically act on the appropriate part of the
workfile. The Edit command, for example, only acts on the text
portion of the workfile (SYSTEM.WRK.TEXT) while the Execute
or Run commands (commands that execute compiled P-code) act on
the code portion of the workfile (SYSTEM.WRK.CODE).

A description of the Filer commands used to manipulate workfiles
can be found in the workfile commands section of this manual's
chapter on the Filer. The Editor chapter includes a
step-by-step demonstration illustrating the use of a workfile.

Creating and Editing Files
In general, users will follow one of two procedures when
creating and editing text files.

The first method, which uses the system's workfile, is most
useful when you are using the Editor to write very small
computer programs.

The second method, which uses the Editor's Write and Save
commands, is used both for program preparation and for editing
non-program text such as letters, reports, and manuals. These
two methods are illustrated in Figure 1-2.

12 Apple III Pascal: Introduction, Filer, and Editor

Editor entered
to begin work

Creating new

Type {tame
of desired
text file

file to work ,___ ________ _..,
on: Press
RETURN key

Edit file

1 f much work done ,
take r.:!st of day off

Quit Editor
!;fpdate fi.le

guit Edi tor
§ave file

Figure 1-2 . Creating and Editing Text Files.

A more detailed description of creating and editing files is
included in this manual's chapter on the Editor . Information
about program execution is included in the Apple III Pascal
Program Preparation Tools manual.

The Command Level 13

14 Using the CoMmand Level
15 The Command-Level Options
16 File
17 Edit
17 Compile
17 Assemble
lR Link
18 Execute
19 Run
19 User restart
19 Initialize
19 Halt
2¢ Options
22 Make exec
22 Commands Usable at all Levels
22 CONTROL-\
23 CONTROL-RESET
23 NuMeric-Keypad Commands
23 CciNTROL-5
23 CONTROL-6
24 CONTROL-7
24 CONTROL-8
24 CONTROL-9
25 Summary
25 Command Options
26 System Commands

14 Apple III Pascal: Introduction, Filer, and Editor

2
The Command Level

Using the Command Level
You reach the Command level of the system whenever you boot the
system or press CONTROL-RESET, wtien the system re-initializes
itself after a run-time error, when you quit the Editor or the
Filer, and when you finish compiling, assembling, linking,
executing, or running any program. You have already seen the
Command prompt line:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, ? [A3/l.(,l]

When you type a ?, the remaining Command-level options are shown:

Command: U(ser restart, I(nitialize, H(alt, O(ptions, M(ake exec

Before you specify a particular Command-level option, you
should make sure that the diskette file(s) needed by that
option are available. In most cases, the required diskette
file may be on any of your system's disk drives. The system
just goes through the diskettes in every drive until it finds a
file with the necessary local filename.

The default workfiles (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) and
the files SYSTEM.LIBRARY , SYSTEM.PASCAL , and SYSTEM.MISCINFO
will be found by the system only if they are on the Pascal
system diskette.

Each time the system returns to the Command level following the
termination of any option or program, the diskette file
SYSTEM.PASCAL should be in the built-in drive. This file
contains the Command-level portion of the Apple III Pascal
system.

The system tries to re-enter the Command level when you exit
from any one of the command-level options, when the system

The Command Level 15

reaches the end of any program that you have executed, or when
the system encounters any non-fatal execution error. If the
system diskette is not in the built-in drive at any of these
times, the system will ask you to place it in the built-in
drive.

Most system files must be available in one of the disk drives
constantly, from the moment you select the Command option using
that file until you quit that option or until it terminates.
This is true of the Edit, Compile, and Assemble options. These
programs have been written so that different portions of the
program are called in from files as they are needed, thus
taking up a minimum of the computer's memory. If the system
needs a particular file, it will ask you to insert the
appropriate diskette.

The Filer and Linker options operate differently than the other
options. The only time SYSTEM.FILER is needed is at the moment
you select the File option. When the Filer prompt line
appears, SYSTEM.FILER is no longer necessary and the diskette
containing SYSTEM.FILER may be removed from the system to make
room for other diskettes. The only time SYSTEM.LINKER must be
available is when you type L to invoke the Linker. When the
Linker prompt line appears, SYSTEM.LINKER is no longer necessary
and the diskette containing SYSTEM.LINKER may be removed from
the system to make room for other diskettes.

The Command Level Options
The following section describes each of the Command-level
options. Many of these options are explained only briefly
below. You will find complete descriptions of the Filer and
Editor later in this manual. Apple III Pascal Program
Preparation Tools describes the Assembler and Linker in detail.
Information about the Compil er can be found in the Apple III
Pascal Programmer's Manual.

Figure 2-1 shown below illustrates the over-all relationship
between the Command level and the functions available through
it. All major system functions are reached from the Command
level, and you cannot go from any function to any other
function without passing through the Command level.

16 Apple III Pascal: Introduction, Filer, and Editor

File

COMMAND
LEVEL

Figure 2-1· The Command Level.

To invoke the Filer, type F while at the Command level. The
Filer contains commands for moving and deleting files. Other
Filer commands tell you what peripheral devices and diskettes
are currently available to the system, and what files are
stored on each diskette.

Still other Filer commands let you check diskettes for damage
or recording errors, and let you set the system's default
directory or subdirectory name and the date. For a complete
description of these commands, see the chapter The Filer in
this manual.

The Command Level 17

Edit
Typing E while at the Command level invokes the Editor program.
If SYSTEM.WRK.TEXT is on the boot volume when the Editor is
invoked, the system will load the file into memory for editing.
Otherwise, the Editor gives you the option of either editing a
textf ile already stored on disk or creating a new textf ile.

Editor commands allow you to insert and delete information,
find and replace specified character strings, change the text
format, combine files, etc. After exiting from the Editor, you
may save your edited text back to your original file or in
another specified disk file. For details, see the chapter
The Editor in this manual.

Compile
Typing C while at the Command level invokes the Pascal
Compiler. The Compiler reads a text file containing Pascal
language statements and translates this into machine code for a
so-called "P-machine". The P-machine is not hardware, but an
interpreting program that reads the P-code file and executes
the instructions given to it there.

If SYSTEM.WRK.TEXT is available on the system disk, it is
automatically read into memory and compiled. Otherwise, the
Compiler asks you to specify the name of the file to be
compiled and the name of the codef ile that will contain the
compiled program.

When the Compiler detects a syntax error during compilation,
the system asks you whether you want to enter the Editor to
correct the error, continue compiling the program, or exit from
the program. If you continue compilation after finding errors,
you won't have a usable codefile to execute, but you will be
able to see what errors have been found in your program.

After a successful compilation, the file that has been
converted into P-code is saved in the code workfile unless you
have previously specified another codefile. For more details
about the Compiler, see the chapter on the Pascal Compiler in
the Apple III Pascal Programmer's Manual.

Assemble
The Apple III Pascal Assembler is invoked by typing A from the
Command level. The Assembler translates a text file containing
assembly-language statements and converts them into 6502

18 Apple III Pascal: Introduction, Filer, and Editor

machine language to be run as a subroutine for a Pascal
program.

If SYSTEM.WRK.TEXT is available, it is automatically read into
the computer's memory for assembling. Otherwise, the Assembler
asks you to specify the name of the file to be assembled and
the name of the codefile that will contain the assembled
program.

If the Assembler detects a syntax error during assembly, it
gives you the option of calling the Editor, which points out
the error and lets you correct it. After a successful
assembly, the resulting machine code is saved in the code
workfile unless you have previously specified another codefile.
For more information, see the chapter on the Assembler in Apple
III Pascal Program Preparation Tools.

Link
Typing L from the Command level invokes the system's Linker
program. The Linker is used to combine code files containing
P-code or assembled machine code into a single codefile.

Unlike the automatic linking initiated by the Run option (see
description below), the Link option allows you to link
previously compiled or assembled routines into your program,
taking those routines from SYSTEM.LIBRARY or any other
specified library file. For more information, see the chapter
on the Linker in Apple III Pascal Program Preparation Tools.

Execute
To use the Execute option, type X from the Command level. The
function of the Execute option is to execute a previously
compiled codefile. After you invoke this option, the system
asks you to specify the compiled codefile that you want to
execute. You should respond by typing the pathname of the
compiled P-code program. Pathnames are explained in the Apple
III Owner's guide.

In most instances you will use the Execute option rather than
the Run option when you want to execute a program that has
already been compiled but is not currently in the workfile.

The Execute option is also used to invoke system utili ties such
as the system librarian, a program that allows you to combine
separately compiled or assembled codefiles to make a library
file. Information about the Execute option as well as a

The Command Level 19

complete explanation of the system librarian is included in
Apple III Pascal Program Preparation Tools.

Run
Typing R from the Command level initiates the Run sequence,
which combines the Command options Compile, Link, and Execute,
as needed. Run is one of the options of the normal
program-development process.

To successfully use the Run option, you must have a workfile
on the Pascal system diskette. If the code version of the
workfile (SYSTEM.WRK.CODE) is present, the Run option simply
executes your program. If only the text portion of the
workfile is present, the Run option compiles the workfile,
storing the result as SYSTEM.WRK.CODE and then executes the
code portion of the workfile. If the codefile requires linkage
to other routines, the Linker is automatically invoked and
looks for the specified routines in the file SYSTEM.LIBRARY on
the Pascal system diskette.

User Restart
Typing U from the Command level tells the system to begin
executing the program or option that was last used. User
restart is quicker and uses fewer keystrokes than using Execute
to rerun a program. For example, if you have just left the
Editor, the User restart option will re-invoke it; if you have
just finished executing a program, that program will be
executed again.

Initialize
Typing I from the Command level causes the system to restart
the Pascal command processor. This has the effect of
restarting the Pascal system. The Prefix directory or
subdirectory name that has been assigned by the Filer's Prefix
command does not change. See the chapter in this manual on the
Filer for more information on the Prefix command. A diskette
containing SYSTEM.PASCAL should be in the built-in drive when
this option is chosen.

Halt
Typing H from the Command level causes the P-code interpreter
to be restarted and the file containing the Pascal command

20 Apple III Pascal: Introduction, Filer, and Editor

processor (SYSTEM.PASCAL) and SYSTEM.MISCINFO to be reloaded
into the computer's memory.

A more detailed description of the operation of the Halt
command is given below.

First, the Pascal operating system (contained in the file
SYSTEM.PASCAL) terminates its operation and control is passed
to the Pascal interpreter (SOS.INTERP).

The interpreter then goes
initialization sequence.
drivers are allocated to
opened as an I/O device,
are set.

through its BIOS (Basic I/O System)
As this sequence progresses, SOS

Pascal device numbers, CONSOLE is
and a number of CONSOLE parameters

After this is completed, SYSTEM.PASCAL is read back into memory
from disk and begins execution. It then performs system
initialization tasks including reading SYSTEM.MISCINFO into
memory from disk. SYSTEM.MISCINFO is used by the Pascal system
to store information about the system configuration, the
last-set date, and so on.

After all this has been completed, the system startup display
appears and the command promptline is displayed.

Options
Typing an 0 from the Command level causes the following Options
menu to appear on the screen.

Options: A, B, C, Q(uit

A) Change Graphics space allocation
Currently 0K bytes reserved for Graphics (No Graphics)

B) Change status of Apple II disk routines
Currently Apple II disk routines are resident

C) Change file name display format
Currently file names are displayed in Apple II Pascal
format

The f i rst option pertai ns to the amount of memory the system
sets aside for the display of graphics. If, when executing a
program that uses graphics, you fail to reserve sufficient
space in memory, the program will abort.

The Command Level 21

If you select a graphics mode requiring re-configuration of the
Apple's memory, the system will reboot immediately after you
type Q to exit from the Options menu. A full discussion of
using graphics with Apple III Pascal is included in the Apple
III Pascal Programmer's Manual.

If you press A to change the system's graphics space
allocation, you are shown the graphics options menu:

Graphics Options: A, B, C, D, Q

Option Bytes reserved for Graphics

A) 0K bytes (No Graphics)
B) SK bytes
C) 16K bytes
D) 32K bytes

Currently you have option A

You can pick the amount of memory to set aside for graphics use
by typing the letter for that amount. If you change your mind,
reenter the graphics option menu by typing A again, then type
the letter of your new choice. The option you last pick before
you type Q to quit the Option menu is the one that the system
will use.

Option B allows you to choose whether Apple II disk routines
will be resident in memory or not. If you are using both
SOS-format diskettes and Apple II Pascal-format diskettes, then
the Apple II disk routines should be resident. If you are
using only SOS-format diskettes, you can save some memory space
by making the Apple II disk routines non-resident.

The final option, C, selects the format used to display
filenames, either the SOS format or the Apple II Pascal format.
You may use either format for input, but Option C defines which
one will be used by the system to display pathnames. The Apple
II Pascal filenaming convention is described in Appendix B.
Unless otherwise stated, this manual follows the SOS filename
conventions.

Since the system stores the state of all options on diskette,
rather than in memory, your selection of options is not lost
even if you reboot the Apple III. The only way to change an

22 Apple III Pascal: Introduction, Filer, and Editor

option is to recall the Options menu and then select the
desired new option.

To exit from the Options command, type Q. The system will
reboot if re-booting is necessary for reallocation of space for
graphics usage. When this occurs, the system is re-started,
and everything in memory is lost. The Pascal operating system
is re-loaded into memory, so the diskette file SYSTEM.PASCAL
must be in the built-in drive.

Make Exec
The Make exec option is used to create exec files. This option
is invoked by typing M from the Command level. A full
explanation of exec files is included in Apple III Pascal
Program Preparation Tools.

Programs that might require a change in options, such as those
using graphics, can be started by an exec file that sets the
options before starting the program.

Commands Usable at all Levels
Certain commands can be executed at any level of the system,
regardless of what the system is doing at the moment. These
commands are listed below; these commands do not appear on any
of the system's prompt lines.

CONTROL-\
Pressing the backslash (\) key while holding down the CONTROL
key interrupts the current program and issues the message

Program interrupted by user
S# 0, P# 9, I#184
Type <space> to continue

The second line of the displayed message tells where in the
program that execution was halted. Press the spacebar to
reinitialize the system. This command should be used when
you want to stop a program. Disk operations and
assembly-language routines continue to completion before the
program will stop.

The Command Level 23

CONTROL-RESET (or Power Down-and-Up)
Pressing the RESET button while holding down the CONTROL key, or
turning the Apple's power switch off and then on again, does a
cold boot of the system, just as if the system were being
turned on for the first time .

This command will stop any on-going process at the expense of
losing whatever is in the computer's memory , and possibly
damaging a disk directory . When the system hangs (stops and
does not respond to the keyboard), this command will always
re-start the system. You should use a control-reset only when
at the Command level or the system has crashed . After this
command, you will have to repeat the normal startup procedure .

Numeric-Keypad Commands
The following commands are invoked by typing a number key while
holding down the CONTROL key . For these commands , the number
keys on the numeric keypad ~ be used . Typing the numbers
from the main keyboard will not work .

Contro/-5
Pressing CONTROL-5 causes output to the display screen to be
suppressed. Pressing CONTROL-5 again resumes display updating .
This function allows compilations , assemblies , and programs to
run faster since no time is spent in updating the screen, and
processor time can be used for other tasks .

Note that any program that makes a read to the console will
turn the screen back on, just like pressing CONTROL-5 the
second time .

Contro/-6
Pressing CONTROL-6 causes the system to forget any characters
that you have typed ahead . This lets you change your mind
about any command inputs up to the point that you have actually
pressed the return key . If you hold down a key so long that
the repeat-key function creates too many commands for the
system to keep up with, typing CONTROL-6 will let the system
ignore the characters that have been typed ahead .

24 Apple III Pascal: Introduction, Filer, and Editor

Contro/-7
Pressing CONTROL-7 suspends screen output. After you issue
this command, the next time a display is sent to the screen,
all output will cease and the program halts until you issue the
same command again. Output will then continue as if there had
been no interruption.

Contro/-8
Pressing CONTROL-8 makes screen control characters visible on
the display. When you issue this command, the screen stops
recognizing screen control codes, and instead displays the
control character abbreviations of all screen control codes it
is sent. When you type another CONTROL-8, the system returns
to its normal state.

Contro/-9
Pressing CONTROL-9 causes subsequent program output to be
discarded. This means that the program continues to run, but
its output is not sent to the screen or the printer. When the
next CONTROL-9 is typed, the system returns to its usual
state.

The Command Level 25

Summary

Command Level Options
File

Edit

Compile

Assemble

Invokes the Filer, which is used to save, move,
and retrieve information stored on diskettes.

Invokes the Editor, which is used to create and
modify text. Reads the workfile or other
specified textf ile into the computer for editing.

Invokes the Pascal Compiler, which converts the
text of a program found in the workfile or
other specified textfile into executable P-code.

Invokes the Assembler, which converts the text of
an assembly-language subroutine found in the
workfile or other specified textfile into machine
language.

Link Combines external P-code and machine-language
subroutines found in SYSTEM.LIBRARY or other
specified library codef ile into a Pascal host
program found in the code workf ile or other
specified host codefile.

Execute Loads and runs the specified program codefile and
executes EXEC files.

Run Executes the current workfile, automatically
compiling and linking (from SYSTEM.LIBRARY) first,
if necessary.

User restart Attempts to execute the last program or option
that was executed.

Initialize Does a warm boot of the system.

Halt Does a luke-warm boot of the system.
Options Enables the user to set the size of the memory area

to be used for graphics, and specify the status of
the Apple II Pascal format file handlers and the
filenaming convention (SOS or Pascal) that will
be used to display pathnames.

Make exec Used to create exec files.

26 Apple III Pascal: Introduction, Filer, and Editor

System Commands
The following commands are available at all levels of the
system. All numbers used in these commands must be typed on
the numeric key pad.

CTRL-\
CTRL-5
CTRL-6

CTRL-7

CTRL-8
CTRL-9

Interrupts the current program.
Toggles display refresh on or off.
Causes the system to forget any characters that
have been typed ahead.
Temporarily stops any program or process. On the
next CTRL-7, the program continues.
Makes control-codes visible on the screen.
Stops program output to the screen or printer
until the next CTRL-9, without stopping the
program.

CONTROL-RESET Causes a cold boot.
Power off-on Causes a cold boot.

The Command Level 27

28 Apple III Pascal: Introduction, Filer, and Editor

-;:-

-1B
I

~-
I I I I

- 30 Introduction
~ 33 Diskfiles Needed by the Filer

34 Using the Filer
34 General Information 36 Device Names and Numbers
38 More About Files
38 Directories

'- 39 Local Filenames
39 Subdirectories

M
40 Diskette File Types
42 Wildcards
45 The Filer Commands

.... 46 Information Commands
46 Volumes
47 List Directory

'- 51 Extended Directory
52 The General File-Moving Command
52 Transfer

'-- 58 Copying an Entire Disk
6~ Copying a Subdirectory

~
62 General Diskfile Commands
62 Make
63 Change

I

The Filer 29

J_

+--- 68 Remove
70 Krunch
71 Zero

...... 73 Prefix
75 Quit
75 Date

..... 76 Alter
78 Workfile Commands
78 Get

,_ 79 Save
82 New
83 What ,_ 83 General Disk Upkeep Commands
83 Bad Blocks
86 Examine

..... 87 Filer Command Summary
87 File Specification
87 Information Commands - 88 General File-moving Command
88 General Diskfile Commands
89 Workfile Commands - 89 Disk Upkeep Commands

!

30 Apple III Pascal: Introduction, Filer, and Editor

3
The Filer

Introduction
The Filer manipulates files, which are the fundamental unit of
permanent storage on the Apple III. Files can contain
different kinds of information~computer programs, letters,
lists of data, directories of disk contents, and so on. Some
Filer commands pertain only to files stored on disk; others
pertain to unblocked device files such as the printer and
console.

The Filer is used in coordination with SOS, the Apple III
operating system. The underlying structure of the Apple III
file system is described in the chapter titled "The System" in
the Apple III Owner's Guid~. You should read that chapter
before going on with this discussion of the Filer.

Here is an overview of some Filer functions and the commands
performing them:

Lists the devices and volumes currently on-line

Displays detailed information about the files
stored in a directory or subdirectory.

Copies a file or volume to another volume or
sends the file to a device such as a printer.

Creates a subdirectory

Reserves space on a disk for a file to which
you later plan to add information.

Volumes

List directory
Extended-list

Transfer

Make

Make

The Filer 31

Allows you to alter three file characteristics as Alter
displayed by the Extended directory listing. The
alterable characteristics are: Write protect
status, date, and filetype.

Changes the name of a disk directory, Change
subdirectory, or other file.

Removes a subdirectory or other file from a Remove
disk

Removes all files contained in a disk Zero
directory or subdirectory

Changes the default directory name Pref ix

Sets the date and time Date

Exits from the Filer and returns the system Quit
to the Command level

Designates a specified disk file as the Get
workfile

Saves the current workfile under a given unique Save
pathname

Clears the current workf ile so that a new New
workf ile can be created

Tells the current state (saved or not) of the What
current workfile

Crunches the files on a disk to increase
available space (necessary only on Apple
II Pascal diskettes)

Tests a disk to see if it is defective

Marks defective blocks on a diskette so that
information cannot be stored on them (may
be used only with Apple II Pascal diskettes)

Krunch

Bad-blocks

Examine

32 Apple III Pascal: Introduction, Filer, and Editor

The Filer can also handle diskette files formatted for the
Apple II Pascal system. See Appendix B for a description
of using Apple II Pascal diskettes with Apple III
Pascal.

Apple III Pascal Option C allows you to choose between two
different filename display conventions: the SOS naming
convention and the Apple II Pascal convention. More
information about the Options menu is included in Chapter 2 of
this manual.

The Options command selected has no impact on the
file-naming convention that you may use when specifying a
file to the system. You may use either the SOS or Pascal
conventions: the option selected determines only which is
displayed.

The SOS file-naming convention (described in detail in the
Apple III Owner's Guide) is used for most of the examples in
this manual and in the accompanying Apple III Pascal manuals.
The Pascal file-naming convention and its use with certain
Filer commands is described in Appendix B. We encourage you to
read that section of the manual.

The overall relationship of the Filer and its commands is displayed
in Figure 3-1 below. Each command is entered from the Filer
command line, and after completing operation each command
returns to the Filer command line.

The Filer 33

Figure 3-1. The Filer.

Diskfiles Needed by the Filer
The file SYSTEM.FILER must be in a disk drive before you type F
to invoke the Filer. When the Filer prompt line appears,
SYSTEM.FILER is no longer needed and the diskette containing it
may be removed from the disk drive.

34 Apple III Pascal: Introduction, Filer, and Editor

Using the Filer
To use the Filer, type F from the Command level. The following
prompt line will appear at the top of your screen:

Filer: L(dir, E(xt-dir, R(em, T(rans, C(hng, M(ake, D(ate, P(refix, Q(uit,? [A3/l.\ll

Typing ? in response to this prompt displays more Filer
commands:

Filer: V(ols, W(hat, N(ew, S(ave, G(et, K(rnch, Z(ero, Bad-b(lks, X(amine

To invoke any Filer command, type the first letter of the
command that you want to use. For example, typing S invokes the
Save command.

Any Filer command that requests a file specification allows you
to specify as many files as you wish, by separating the file
specifications with commas, and terminating this "file list" by'
pressing the RETURN key.

Commands using single pathnames will keep reading pathnames from
the file list and using them until there are none left.
Commands using pairs of pathnames (such as Change and Transfer)
will take file specifications in pairs and operate on each pair
until only one specification or none remains. If one pathname
remains, the Filer will ask you for the second member of the
pair. If an error is detected at any point in the list, the
remainder of the list will be discarded.

If you press the RETURN key when the Filer prompts you for a
filename, the command will be terminated and the Filer command
line will be redisplayed.

To erase your response to a Filer prompt while leaving the
prompt on the screen, type CONTROL-X. To abort a Filer prompt
line and return to the Filer command line, type ESCAPE-RETURN •

General Information
This section contains basic information about the Filer's method
of storing disk files. Note that this information applies
expressly to systems using 28~-block floppy diskettes. Diskette
drives (or hard-disk devices) having greater capacity will
operate in the same general fashion, but the numbers quoted in
the descriptions below will be different for each type of drive.

The Filer 35

The Filer stores information on a diskette in 35 concentric
tracks. The disk drive's read/write head can be moved in and
out to position it over any of these 35 different tracks on the
spinning diskette.

Each track on the diskette is divided into 16 sectors. Once the
disk drive's read/write head is positioned over a given track,
that track's 16 sectors will pass under the head, one after the
other, each time the diskette spins around.

Each sector consists of an address field and a data field. The
address field identifies which sector of which track the disk
drive is about to access. The address fields are written on a
diskette just once, when the diskette is formatted. The data
field is the portion of each sector used for storing
information. Up to 256 bytes of information can be stored in
each sector's data field.

The Pascal system stores information in two-sector units called
blocks, each containing 512 (also called "1/2 K") bytes of
information. Each of a diskette's 35 tracks can thus store
eight blocks of information, for a total diskette storage
capacity of 280 blocks (140 K bytes). Although the Filer
handles all information storage automatically, low-level
routines for storing and retrieving diskette information are
also available. (See the Apple III Pascal Programmer's Manual
for details).

Not all tracks on a diskette are available for storing your
programs or files. Blocks 0 and 1 are reserved for the program
that starts up the system. In addition, every disk contains a
directory enabling the system to find information stored on
that disk. The directory begins on block 2 of the diskette.

In general, the system will begin storing a program or text file
wherever it can find an unused block on the disk. When the
block is filled, the system finds another free block, perhaps on
another track, and continues to record information there. This
process continues until the entire file has been stored.

Because files are not stored in contiguous blocks, it is not
necessary to "crunch" or consolidate the files stored on a
disk. Extensive movement of files on a disk may,
however, result in excessive file fragmentation. If this
happens, you will notice that the system is operating unusually
slowly.

36 Apple III Pascal: Introduction, Filer, and Editor

The easiest way to remedy such a situation is to use the Filer's
Transfer command to move each file individually to a relatively
empty diskette. Because each file will be transferred as a
single unit, they will not be fragmented once they have been
transferred to the new diskette. For specific information on
transferring files, see the section of this chapter on the
Transfer command.

If a file is updated (saved again under the same pathname), the
new version is saved and verified before the old version is
removed. This uses more space on the disk, but guarantees
that at least one version of your file is intact on the disk
at all times during the saving process. The only command that
does not work this way is the Editor's Save command. This
command allows you the option of removing the old version of
your file before writing the new version, in case you are short
on disk space. If you do not choose this option, the new
version of the file is written first, as described above.

Device Names and Numbers
A device is something connected to your Apple III to send and/or
receive data. A SOS device driver is a program enabling the
Apple to communicate with a device. For more information on
SOS device drivers, ref er to the Apple III Standard Device
Drivers Manual.

A device can be referred to by its device filename. A device
filename consists of a period followed by the name of the
device. Thus, a printer's device filename is .PRINTER • The
Apple's built-in disk drive has the device name .Dl ; additional
disk drives configured into the system are named .D2 , .D3 , and
.D4 respectively.

A block device, such as a diskette, may either be referred to by
its device filename or by the volume name of the diskette stored
in the appropriate drive. Volume names can be composed of up to
15 letters, numbers, and periods and may not begin with a number
or a period. Volume names are always preceded by a slash (I).
If you wanted to refer to a diskette named MOOSE in the built-in
drive, you could refer to it either as /MOOSE or as .Dl •

Apple III Pascal assigns a number to each device that has been
properly configured into the system. All devices are put into
one of two categories: standard devices (assigned numbers 1
through 12) and user devices (assigned numbers 128 through 143).

The Filer 37

The following table shows standard device numbers, device names,
and volume names used by Apple III Pascal.

Apple III
Pascal
Standard SOS
Device
Number

1
2
3
4

5

6
7
8
9

10

11

12

Device
~

.CONSOLE

.CONSOLE

.GRAFIX

.Dl

.D2

.PRINTER

.RS232

.RS232

.D3

.D4

.Ds

.D6

sos
Volume
~

*disk
name

*disk
name

*disk
name

*disk
name

diskname

diskname

* Disk.2!, diskette.

Description
of Device

Screen and keyboard
Screen and keyboard
Graphics
Built-in disk drive

with echo
without echo

2nd disk drive (external drive)

Printer
Remote input
Remote output
3rd disk drive (external drive)

4th disk drive (external drive)

Disk drive or other block-
structured device

Disk drive or other block-
structured device

Table 3-1. Device Names and Numbers, Volume Names

The assignment of device numbers to devices generally works
this way: At boot time the system checks all device drivers,
and checks to see if the associated device is a standard
device. If it is, the device is assigned the appropriate
standard device number. (The standard devices and their
associated device numbers are listed on the table above.)

If the system finds that a device is not a standard device, it
considers it a user device and assigns it a user device number.
User device numbers are assigned consecutively, beginning with
number 128, as they are encountered by the system.

38 Apple III 1;,?scal: Introduction, Filer, and Editor

A more complete discussion of the method used by Apple III
Pascal to assign device numbers is included in Appendix D.

One of the benefits of the Pascal file naming convention is
that it lets you use device numbers to specify devices. To do
this, you precede the device number with a number (#) sign and
follow the device number with a colon. For example, you can
refer to the printer as #6: or you can refer to the diskette
in the built-in drive as #4: •

More About Files
This section includes more information about files, including the
structure of directories and subdirectories and the use of
wildcard characters in specifying a set of files stored on
disk.

Directories
Every formatted disk has a root directory, starting in block 2,
that is a "table of contents" of the files on that disk. Every
disk also has a name, called a root volume name, that is the
same as the name of the root directory. A "root directory" can
contain a maximum of 51 files.

When you use the Apple III Utilities Diskette to format a disk,
the newly formatted disk is assigned a volume name that you
choose and an empty directory with that name. To change the
name of a disk's root volume name (and hence the name of the
disk directory), you can use the Filer's Change command
described later in this chapter.

Each time a file is stored on a disk, information about that
file is automatically entered into the disk directory. The
List directory and Extended directory list commands make it
possible to view the information stored in a specified volume
directory. These commands are explained later in this chapter.

Never issue commands when two disks with the same volume
name (and hence the same directory name) are available to
the system. If you do, the system may operate on the
wrong disk (usually the disk in the higher-numbered
drive). If the operation involves updating the disk's
directory, the system may store the wrong disk's directory

The Filer 39

onto your disk, making the files originally on that disk
unusable. The same problem may occur if you replace the
diskette in a drive by another diskette with the same
volume name. The exception to this rule is in certain
Filer transfer operations.

Local Filenames
Every file used by Apple III Pascal has its own name called a
local filename. The rules for forming local file names are the
same as the rules for naming volumes. (This is because a
volume name is itself a local file that refers to the root
directory file.)

A local filename can be composed of up to 15 letters, numbers,
and periods and may not begin with a number. With the
exception of a device filename, local filenames may not begin
with a period. Most local filenames used by Apple III Pascal
end with a suffix (most often .TEXT or .CODE) that specifies
the kind of information stored on the file.

You refer to a particular file on a disk by its pathname: a
I character, followed by the filename of the disk's
directory, another slash, and the local filename you are
referring to. For example, if you wanted to refer to a file
named MYFILE on disk MYDISK , the complete file specification
would be /MYDISK/MYFILE •

A file specification can also begin with the device file name of
the disk drive in which the appropriate diskette resides. Thus,
if diskette MYDISK was stored in the built-in drive, another way
of specifying file MYFILE would be .Dl/MYFILE • If you wanted
to refer to a file with the local filename AGAIN.CODE that was
stored on diskette /DO.IT , in the first external drive, you
could refer to it either as .D2/AGAIN.CODE or as
/DO.IT/AGAIN.CODE •

A complete file specification is often referred to as a pathname
because it specifies the path the system must follow to gain
access to a particular file. Refer to the Apple III Owner's
Guide for a description of pathnames.

Subdirectories
Subdirectories are used to create a hierarchical system for
storing files on disk. The Make command described later in
this chapter is used to create subdirectories.

40 Apple III Pascal: Introduction, Filer, and Editor

(

Subdirectories follow the same file-naming rules as other local
files. Suppose, for example, that you had a disk named
PROGRAMS containing both old and new versions of several program
files. You might then create one subdirectory on the disk
called OLDSTUFF that included all of your old program files and
another subdirectory on the same disk called NEWSTUFF that
included all of your revised program files. If you wanted to
refer to the old version of the file named SORT.CODE , you would
use the pathname specification /PROGRAMS/OLDSTUFF/SORT.CODE ; if
you wanted to refer to the new version of the file named
SORT.CODE , you would use the pathname specification
/PROGRAMS/NEWSTUFF/SORT.CODE •

Subdirectories are most often used on large storage media such
as hard disk drives although they also can be used on smaller
capacity diskettes. There are no rules governing the number of
subdirectories that can be created on a disk although a
pathname specification is limited to a maximum of 80
characters, a limit set by the Filer.

For example, the pathname /BIG/BIGGER/BIGGEST/BIGGERSTIL.TEXT
refers to a file whose local filename is BIGGERSTIL.TEXT •
BIGGER is a subdirectory on disk BIG ; BIGGEST is a
subdirectory that is a part of subdirectory BIGGER • The
pathname /BIG/BIGGER/BIGGEST/NOTSOBIG.TEXT refers to another
textfile in the subdirectory /BIG/BIGGER/BIGGEST ,

Subdirectories vary in size according to the number files
contained under them. The minimum size for a subdirectory is
one block, and it may contain 12 files. Each succeeding block
allows an additional 13 files to be added to the subdirectory.

Diskette File Types
The system automatically assigns a file a ~ when it is
created, based on the file's suffix (the characters following
the final period in the file's local filename). The most common
suffixes are .TEXT for files containing text (natural language,
Pascal programs or assembly-language programs) and .CODE for
files containing the compiled version of a program. A file's
type is displayed by the List directory and Extended directory
commands.

Following is a list of the f iletypes recognized by the system,
the suffix associated with that type, and the way that type is
ref erred to in the displays created by the List directory and
Extended directory commands.

The Filer 41

Suffix File Type
Extended directory listing
List directory listing

.TEXT Human-readable text

.CODE

.DATA

.ASCI

.BAD

Machine-executable code

Data

ASCII character stream

Used only with
UC SD-formatted
diskettes; see
the Xamine
command in
Appendix B.

Text file

Codefile

Datafile

Asciifile

Bad file

Table 3-2. Disk File Types

BASIC text files are listed on the disk directory as
ASCII files even though they may not always have a suffix.

Files referring to a disk directory or subdirectory are
listed by the Extended directory and List directory commands
as being of type Directory even if they have no suffix.

For more information concerning the internal format of different
types of files, see Appendix A.

The filename suffix may be omitted with some commands when
entering a file name. The explanations of individual commands
later in this chapter tell you when a suffix must be included
when specifying a pathname and when the system automatically
adds the appropriate suffix for you.

Sometimes (after using the Change command to change a file's
name, for example) a file's actual type may not agree with its
local filename suffix. The actual type of the file can always
be determined by examining the f iletype column of the List
directory and Extended directory displays.

42 Apple III Pascal: Introduction, Filer, and Editor

Wildcards
Wildcards enable you to specify a whole set of files at once.
The Filer performs the requested action on all files whose
pathnames are included in the set specified. The form
of a wildcard specification is as follows:

<stringl>•<string2> or <stringl>?<string2>

where <stringl> and <string2> are set-specifying strings.
Either string may be a null string. The set-specifying strings
indicate the portion of a pathname that may not be ignored. The
wildcard characters, equal sign (•) and question mark (1),
stand for any sequence of characters in a pathname that can be
ignored. For example, the wildcard specification

/MYDISK/DOC•TEXT

tells the Filer to perform the requested action on all files on
disk MYDISK whose local filenames begin with the string DOC
and end with the string TEXT • If a question mark is used
instead of an equals sign

/MYDISK/DOC?TEXT

the Filer pauses and requests verification before acting on each
file in the specified set. At each pause, you may type a "Y"
for Yes, "N" for No, or press the ESC key to return to the
Command level of the Filer.

Wildcards may be used only when specifying local filenames, and
are accepted only by the Alter, List, Extended-directory,
Transfer, Change, and Remove commands. A command requiring two
filenames demands that both use wildcards if one of the
filenames does, except when you are transferring the file or
files to a non-block-structured device.

EXAMPLE:

Suppose the disk directory for the disk
named MYDISK contains the following files:

NEW
MEADOW.TEXT
USELESS.CODE
MEADOW .CODE
NEVERMORE. TEXT
GURUS

The Filer 43

After typing R for Remove, you will see this message:

Remove what file ?

Response 1: /MYDISK/N=

Typing this response generates the message:

Volume /MYDISK
file NEW removed
file NEVERMORE.TEXT removed
Update directory ?

At this point you can type Y to remove all the files listed, or
you can type N , in which case the Remove command will abort
and the files will not be removed from the disk directory.
This gives you one last chance to change your mind before
removing the files permanently from your directory.

Response 2: /MYDISK/N?

Typing this response generates the message:

Volume /MYDISK
Remove NEW ?

After you type a response (Y or N), the Filer asks:

Remove NEVERMORE.TEXT ?

44 Apple III Pascal: Introduction, Filer, and Editor

Again you may type a response (Y or N), and if you have given
any Y responses, the Filer asks:

Update directory ?

As with the previous pattern, this gives you one last chance to
change your mind before the files are finally removed.

EXAMPLE:

Again, suppose you have a disk MYDISK with the same directory
as in the previous example. After typing L for L(dir (meaning
List the disk's directory), you will see this message:

Directory listing of what volume ?

Response: /MYDISK/=TEXT

Typing this response causes the Filer to list the files
MEADOW.TEXT and NEVERMORE.TEXT since these are the only files on
the disk ending in TEXT •

~ Wildcards cannot be used to refer to directory or
~ subdirectory names.

Only one wildcard may be used in a pathname specification.
The specifications:

/MYDISK/DO?TE?T or Dl/=TEm

results in the message:

Illegal wildcard

The Filer commands Transfer and Change both require two file
specifications. If the first specification contains a wildcard
the second specification must also contain a wildcard. If you
forget, you will be given the message

Wildcard not allowed

The only legal exception to this rule occurs when the Transfer
command is given the character $ as its second pathname
specification.

Either or both of the set-specifying strings may be omitted.
For example, a local filename set specification such as =TEXT or

The Filer 45

DOC= or even just = is valid. This last case, where both
set-specifying strings are omitted, causes the Filer to perform
the requested action on 'E!v:ery file in the specified disk's
directory.

This feature can sometimes be used to act on a file whose
local filename is not "recognized" by Filer commands
because of illegal characters in the filename, or a
slightly damaged directory.

Set-specifying strings may not "overlap". If a character
appears in the set-specifying string, that same character must
appear in the target string in the same relative position, or
no match occurs. The = or ? characters allow any character or
sequence of characters to be considered a valid match. For
example, the specification GOON•NS would not include the local
(pointless) specification for the file GOONS • The
specification GOON•NS contains an explicit (non-wildcard)
character, in this case an extra ''N", that does not occur in
the filename GOONS.

The $ character saves the most recently-entered local filename
for use as a wildcard, and can be used as part of a longer
pathname.

Suppose you want to transfer a file from one directory to
another. Using the Filer's Transfer command (described later
in this chapter), you could transfer the file named SALAMI from
the directory /LUNCHMEATS to the subdirectory
/SANDWICH/FILLINGS by typing

/LUNCHMEATS/SALAMI,/SANDWICH/FILLINGS/$

rather than the longer

/LUNCHMEATS/SALAMI,/SANDWICH/FILLINGS/SALAMI

The Filer Commands
The rest of this chapter includes detailed descriptions of each
of the Filer' s commands listed by function. The section on
Information Commands describes those Filer commands allowing
you to see what peripherals are connected to your system and to

46 Apple III Pascal: Introduction, Filer, and Editor

examine the contents of directories. The section on the
Transfer command explains how to move files from one part of
the system to another. The section on General Disk File
Commands includes a discussion on creating and removing files.
The final sections describe commands used to manipulate
workfiles and to chec:k--diskettes for damage.

Filer commands requiring you to enter a pathname or some other
information can be aborted by pressing RETURN instead of the
requested information. If you have started entry of the
information called for by the command, you can still abort the
command by pressing the ESCAPE key. (An exception to this is
the Remove command when used with a wildcard.)

Information Commands

Volumes
The Volumes command lists the volume names, device names and
device numbers of all input and output devices whose drivers
have been configured into the system. This command is invoked
by typing V from the Filer command line.

The naming convention used by the Volume command depends
on the setting of option C you have chosen from the
Command level Options command. If the SOS convention is
used, all device and volume names are shown according to
the SOS filename convention, if the Apple II Pascal
convention is chosen, it will be used. For information
about interpreting the Volumes command's display see
Appendix B.

The Filer 47

A four-drive system, with a QJIME-type printer, a SILENTYPE
printer, and an RS232 driver for communicating over telephone
lines, would give a Volumes display like this:

Volumes and devices on-line:
1 .CONSOLE
2 .CONSOLE
4 .Dl (/PASCALl)
5 .D2 (/PASCAL2)
6 .QUME
7 .RS232
8 .RS232
9 .D3 (/MEMOS)

10 .D4 (/ACCNTINGPROG)
128 .SILENTYPE
System volume is /PASCAL!
Prefix is /ACCNTINGPROG/REVISIONl

In this example, the Pascal system diskette is PASCALl , in
device .Dl • Usually the pref ix will be the name of the Pascal
system diskette. In this example, the prefix has been changed
by the Prefix command to /ACCNTINGPROG/REVISIONl , the name of
a subdirectory on the diskette ACCNTINGPROG located
on device .D4 • Block-structured devices such as diskette
drives are indicated by a root volume name in parentheses.

The first two devices listed are controlled by the .CONSOLE
device driver. When the system reads from Device #1, characters
are echoed on the screen as they are read. When the system
reads from Device #2, characters are not echoed. More
information on reading from the console is included in the Apple
III Pascal Programmer's Manual.

List Directory
The List directory command gives detailed information
specified directory or subdirectory and its contents.
command is invoked by typing L from the command level
Filer.

about a
The

of the

The list created by the List directory command includes the
local filenames of each file that is a part of the listing as
well as (in this order) the number of logical blocks each file
contains, the date the file was most recently modified, the
time the file was most recently modified (if available), the
file type, the number of bytes in the last block of the file,
and the number of physical blocks used by the file. The last
line of the List directory display contains the number of files

48 Apple III Pascal: Introduction, Filer, and Editor

included in the directory or subdirectory listed and the number
of free blocks available on the disk.

Write-protected
local filename.
by the Apple II
the volume name.

files are indJkated by an asterisk preceding the
Listings of directories on diskettes formatted

Pascal formatter say "AppleII" immediately after

A directory listing stops when it has filled the screen. Press
the spacebar to continue the listing, or press the ESC key to
abandon the listing and return to the Filer command line.

The information displayed by the List directory command
differs depending upon which file display convention you
have chosen with the Op~ion command's option C: the Apple
II Pascal or SOS filename convention. All examples in
this section assume that you have selected the SOS
convention. For information about interpreting the List
directory command's display if you have chosen the Apple
II Pascal format, see Appendix B on Pascal format
filenames.

The listing generated by the List directory command also changes
slightly when an Apple II Pascal diskette is accessed. For
a full explanation, see Appendix B.

The List command is often used to list the contents of a
diskette directory on the screen. The following display shows
a directory listing for a disk named RECORDS •

Prompt: Directory listing of what volume ?

Response: /RECORDS

/RECORDS Size Modified Time File type Eof Phys
LETTERS.TEXT 32 4-May-81 5:55 Text file 512 33
BILLING 2 6-May-81 2:15 Directory 512 3

*ACCOUNTS.DATA 36 14-May-81 2:15 Datafile 512 37
WAREHOUSE 2 4-Jun-81 4:41 Directory 512 3
MINUTES.TEXT 34 28-Jun-81 8:15 Textfile 512 35

5 files listed, 128 blocks available

The List directory command only displays the level of files one
level below the directory or subdirectory specified. Thus,
based on the listing shown above, we know that the top level of
files included in the directory RECORDS contains two text files
(LETTERS.TEXT and MINUTES.TEXT), one data file (ACCOUNTS.DATA)

The Filer 49

and two subdirectories, BILLING and WAREHOUSE • The asterisk
next to ACCOUNTS.DATA indicates that that file is
write-protected which means that the file can't be overwritten,
removed or destroyed by any Filer operation, except copying an
entire volume.

Notice that the listed number of available blocks is based on
the number of blocks occupied by all the files contained on the
disk and not just on the number of blocks used by the files
included in the directory listing.

Usually, the number of logical blocks that a file occupies will
be different from the number of physical blocks the file
occupies (e.g. /RECORDS/ACCOUNTS.DATA). This occurs because
more space is allocated for the file when it is created than
the file actually uses. Some of the physical space taken up by
the file is used to hold file structure information in addition
to the data held by the file.

Now suppose you want to find out what files are contained in the
subdirectory WAREHOUSE of the diskette shown above.

Prompt: Directory listing of what volume ?

Response: /RECORDS/WAREHOUSE

/RECORDS/WAREHOUSE Size Modified Time File type
INVENTORY.TEXT 18 4-Jun-81 4:41 Text file
INVENTORY.CODE 5 14-Jun-81 5:12 Code file
PRODUCTS 2 6-Jun-81 4:41 Directory

3 Files listed, 128 blocks available

If you wanted to list the contents of the subdirectory
/RECORDS/WAREHOUSE/PRODUCTS the transaction would go as
follows:

Prompt: Directory listing of what volume ?

Response: /RECORDS/WAREHOUSE/PRODUCTS

/RECORDS/WAREHOUSE/PRODUCTS
Size Modified Time File type

NUTS.DATA 18 4-Jun-81 4:41 Datafile
BOLTS.DATA 5 14-Jun-81 5:12 Datafile
SCREWS.DATA 2 6-Jun-81 4:41 Datafile

3 Files listed, 128 blocks available

Eof Phys
512 19
512 6
512 3

Eof Phys
512 19
512 6
512 3

50 Apple III Pascal: Introduction, Filer, and Editor

You can list any portion of a directory or subdirectory with
the "wildcard" option. For example, suppose that you want to
list all of the textfiles included in the directory RECORDS.

Prompt: Directory listing of what volume ?

Response: /RECORDS/z.TEXT:

Typing this response would generate the following display:

/RECORDS Size Modified Time
LETTERS.TEXT 32 4-May-81 5:55
MINUTES.TEXT 33 28-Jun-81 8:15

2 files listed, 128 blocks available

File type
Text file
Text file

Eof Phys
512 33
512 34

Notice that because the List directory command displays only
one level of a directory, files ending in .TEXT that are
contained within subdirectories are not displayed.

When you use the List directory command, the system sends the
listing to the console. You can, however, write the directory
or subdirectory (or any portion of it) to a device other than
.CONSOLE by giving both a source directory pathname (the name
of the directorj or subdirectory to be listed) and a
destination pathname (where you want the directory listing
sent). For example:

This List directory transaction sends a subset of a directory to
a printer.

Prompt: Directory listing of what volume ?

Response: /RECORDS/WAREHOUSE/PRODUCTS,.QUME

Typing this response causes this display

/RECORDS/WAREHOUSE/PRODUCTS
Size Modified Time File type Eof Phys

NUTS.DATA 32 6-Jun-81 5:17 Datafile 512 33
BOLTS.DATA 24 9-Jun-81 5:38 Datafile 512 25
SCREWS.DATA 21 22-Jun-81 4:17 Datafile 512 22

3 files listed, 128 blocks available

to appear on the printer (assuming that you have a printer whose
driver has been properly configured into the system and that the
printer is turned on and ready to get data).

The Filer 51

A source file specification consists of a directory or
subdirectory name and optional subset-specifying strings
containing wildcards. A destination file specification
consists of a device or file name. If the volume is a
disk, you must include a local filename. The source file
specification must be separated from the destination file
specification by a comma an<j,the destination file specifi
cation cannot include a wildcard.

This List directory example involves writing the directory
to a diskette fi l e:

Prompt: Directory listing of what volume ?

Response: .D2,.Dl/DIRECTORY.TEXT

After typing this response, you will see the message

WRITING •••••••••

as the Filer lists the directory of the disk in disk drive .D2
onto a file called DIRECTORY.TEXT on the diskette in the
built-in drive.

Extended Directory
The Extended directory command provides detailed information about
each file stored on the specified directory or subdirectory.
This command is invoked by typing E from the command level of
the Filer.

The only difference between the List directory and Extended
directory commands is that the List directory command displays
only one level of files beneath the specified directory or
subdirectory while the Extended directory command displays all
files that are a part of the specified directory or
subdirectory.

The information displayed by the Extended Directory
command depends on your choice of filenaming convention
chosen with the Option command's option c. For more
information on filenaming conventions used with Apple III
Pascal, see Appendix B in this manual.

52 Apple III Pascal: Introduction, Filer, and Editor

The EJ~tended directory display changes slightly when an Apple
II-format diskette is accessed. See Appendix B for information
about the Extended directory list generated for an Apple
II-format diskette.

The most frequent use of the Extended directory command is to
list an entire diskette directory. The following example
refers to the same diskette directory that was used in the
List directory examples in the previous section.

Prompt: Directory listing of what volume ?

Response: /RECORDS

/RECORDS Size Modified Time File type Eof Phys
LETTERS. TEXT 32 4-May-81 11:23 Text file 512
BILLING 2 6-May-81 7:23 Directory 512

ACCOUNTS.TEXT 38 6-May-81 10:56 Textf ile 512
ACCOUNTS.CODE 6 6-May-81 1:15 Codef ile 512

*ACCOUNTS. DATA 36 14-May-81 1:03 Datafile 248
WAREHOUSE 2 4-Jun-81 12:38 Directory 512

INVENTORY.TEXT 18 4-Jun-81 3:15 Textfile 512
INVENTORY.CODE 5 4-Jun-81 Codefile 512
PRODUCTS 2 4-Jun-81 Directory 248

NUTS.DATA 32 9-Jun-81 4:07 Datafile 512
BOLTS.DATA 24 9-Jun-81 9:56 Datafile 512
SCREWS.DATA 21 22-Jun-81 Datafile 512

MINUTES.TEXT 33 28-Jun-81 2:04 Text file 512
13 files listed, 128 blocks available

The prompt lines, syntax, and wildcard options are exactly the
same for the Extended directory command as for the List
directory command discussed previously. For more details and
examples, see the description of the List directory command.

General File-Moving Command
All file moving is accompli shed by one Filer command . Note
that the file itself is never actually moved from the disk: a
copy of the contents of the file is moved, either to another
part of the disk or another volume in the system.

Transfer
The Transfer command is used to copy the contents of one disk
or one or more files from one disk to another. To use the
Transfer command, type T from the command level of the Filer.

33
3

39
7

37
3

19
6
3

33
25
22
34

The Filer 53

The Transfer command can be used for many purposes including:

copying individual files from one diskette to another

copying the contents of a subdirectory

copying the contents of an entire disk or diskette

copying files to and/or from a device such as a printer
or the console

The Transfer command requires you to supply two file
specifications, one for the source file (the file being copied)
and one for the destination file, (the place the file is being
copied to) separated by either a comma or a RETURN • Wildcards
are permitted.

You should avoid having two disks on the system at the same
time with the same volume name. The most common exception to
this rule is made when you want to back up a disk's files.

The Filer's Transfer command does allow the source and
destination volumes to have the same name, but resticts this
use to transfers of an entire disk, transfers to and from an
Apple II Pascal-format disk, or when the file being transferred
is small enough to fit entirely in the Filer's buffer space.

The idea of making back up copies of all your work can hardly
be over-emphasized: It should never be necessary for you to
have to spend hours or weeks recreating some piece of work that
was lost to spilled coffee on a diskette. The Filer's Transfer
command make backing up disks too easy for you to be able to
afford the luxury of no backups. An example of making a backup
file is given below.

EXAMPLE:

Suppose you want to transfer the file STARGAZER.TEXT from diskette
MYDISK to diskette BACKUP •

Prompt: Transfer what file ?

Response: /MYDISK/STARGAZER.TEXT

54 Apple III Pascal: Introduction, Filer, and Editor

When you press the RETURN key, the system checks to be sure that
the specified source diskette is in one of the disk drives. If
MYDISK is not in any drive, you will see the message

/MYDISK - Volume not found

If the source diskette is found in a drive, the system then
checks to be sure the specified file is on that diskette. If
the diskette MYDISK contains no file named STARGAZER.TEXT , you
will see the message

File not found

In either case, you will be returned to the outer Filer level.
Just insert the correct source diskette in any drive and type T
again.

Let's assume the system succeeds in finding the source
diskette and file. The dialogue continues, asking you to specify
the destination for the transfer:

Prompt: To what file ?

Response: /BACKUP/TEMP.TEXT

You could also have given both source and destination
specifications in the first response, separated by a comma.

When you press the RETURN key, the system checks to be sure the
destination diskette is in a disk drive. If it is, the transfer
begins. If it is not, there is a pause; then you are prompted:

Insert destination disk
Type <space> to continue

Put the correct destination diskette in any available drive and
press the spacebar. If , at this or any other point in the
Transfer process, you want to return to the Filer command line,
press ESCAPE.

When the transfer is complete, the Filer gives you the message

/MYDISK/STARGAZER.TEXT ---> /BACKUP/TEMP.TEXT

The Filer has made a copy of STARGAZER.TEXT as found on the
diskette named MYDISK , and has stored that copy on the
diskette BACKUP under the local filename TEMP.TEXT •

The Filer 55

If, in the above example, you had wanted to save the file
STARGAZER.TEXT on diskette BACKUP under the same local filename
STARGAZER.TEXT, you could have done the following:

Prompt: Transfer what file

Response: /MYDISK/STARGAZER.TEXT,/BACKUP/$

Once the Filer has been summoned, it resides entirely in the
computer's memory. Thus, you can summon the Filer, and then
remove all system diskettes from the drives in order to use both
drives for source and destination diskettes during a transfer.
Just remember to replace the Pascal system diskette in the
built-in drive when using the Quit command to exit from the
Filer.

If you give the same block device name for both source and
destination file specifications, the system assumes you are
doing a single-drive transfer and are going to change diskettes
in that drive. You will see the message

Insert destination disk
Type <space> to continue

Files may be transferred to a device other than a disk by
specifying a device such as .CONSOLE (for a quick screen
listing of a file) or .PRINTER (to print a file) as the
destination file.

EXAMPLE:

Prompt: Transfer what file ?

Response .DZ/STARGAZER.TEXT

Prompt: To where ?

Response: .PRINTER

Typing this response causes the file STARGAZER.TEXT , on the
diskette in disk drive .D2 to be sent to the printer (assuming a
printer is properly connected and the printer driver has been
properly configured to your system).

You can also transfer from an input device other than a
diskette, such as the keyboard. A local filename accompanying
a non-disk volume name or number is ignored.

56 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

Prompt: Transfer what file ?

Response: .CONSOLE

Prompt: To where ?

Response: .PRINTER

After these responses, you can use your keyboard as a
typewriter. Nothing will appear on the printer until you type
the "End-Of-File" character, CONTROL-C (Note that some printers may
accept a CONTROL-C as a command; if yours does, you will have to
press the RETURN key before pressing CONTROL-C). Then all you
have typed will be sent to the printer.

The wildcard specification is allowed in the Transfer command.
When using wildcards, the set-specifying strings in the source
pathnames will be replaced by the respective strings (called
"replacement strings") in the destination pathnames. The
portion of each source pathname accounted for by the = or ?
wildcard character is reproduced unchanged in the corresponding
destination filename. Remember that the Filer considers the
one-character, wildcard-alone file specification (= or ?) to
be equivalent to specifying all files in the directory.

EXAMPLE:

Suppose the Prefix directory MYDISK contains these files:

PAUCITY
PARITY
PENALTY

Further, suppose the destination diskette is named ODDNAMES

Prompt: Transfer what file ?

Response: P=TY,/ODDNAMES/V=S

Typing this response would cause the Filer to reply

/MYDISK/PAUCITY ---> /ODDNAMES/VAUCIS
/MYDISK/PARITY ---> /ODDNAMES/VARIS
/MYDISK/PENALTY ---> /ODDNAMES/VENALS

The Filer 57

EXAMPLE:

Suppose the Prefix directory MYDISK contains these files:

CHAPll.TEXT
CHAP12.TEXT
CHAPTER I 3, TEXT
CHAP14.TEXT

Prompt: Transfer what file ?

Response: C=XT

Prompt: To where ?

Response: /BACKUP/OLDC=XT

Typing these responses would cause the Filer to reply:

/MYDISK/CHAPll.TEXT ---> /BACKUP/OLDCHAPll.TEXT
/MYDISK/CHAP12.TEXT ---> /BACKUP/OLDCHAP12.TEXT
/MYDISK/CHAPTER13.TEXT ---> not processed
/MYDISK/CHAP14.TEXT ---> /BACKUP/OLDCHAP14.TEXT

On the third attempted transfer, the destination filename would
have been OLDCHAPTER13.TEXT, which exceeds the IS-character
limit for local filenames. Therefore, that file was "not
processed".

Using the single character = as the destination pathname
specification has the effect of replacing any set-specifying
strings in the source specification with nothing.

A brief reminder: in any wildcard specification, the single
character ? may be used in place of = • The only difference is
that a ? in either specification (or both) causes the Filer to
ask you for verification before each file is transferred.

A source or a destination file specification may contain only
one wildcard character. A specification such as

/MYDISK/ ?UGH?

is not a legal specifica tion. An attempt to use such a
specification as either the source or the destination of a
transfer will cause the message

/MYDISK/?UGH? - Illegal wildcard

58 Apple III Pascal: Introduction, Filer, and Editor

If the source file specification contains a wildcard character,
and the destination device is a diskette, then the destination file
specification must also contain a wildcard character.

EXAMPLE:

Suppose the diskette MYDISK contains the following files:

CHAPTER!. TEXT
CHAPTER14B.TEXT
INTRO.TEXT

Further, suppose you want to transfer the files CHAPTERl.TEXT
and INTRO.TEXT to the diskette BACKUP , retaining the same file
names on the backup diskette.

Prompt: Transfer ?

Response: /MYDISK/?.TEXT,/BACKUP/$

Typing this response would cause the screen to clear, and then
the following message would appear:

Transfer CHAPTERl.TEXT ?

Since you want to transfer CHAPTERl.TEXT , type a Y for "Yes".
A copy of the file CHAPTERl.TEXT is then transferred from
MYDISK to BACKUP • The Filer then proceeds to ask if you
want to transfer the next file whose name ends in .TEXT • The
complete dialogue might appear as follows:

Transfer CHAPTERl,TEXT ? Y
/MYDISK/CHAPTERl.TEXT ---> /BACKUP/CHAPTERl.TEXT
Transfer CHAPTER14B.TEXT ? N
Transfer INTRO.TEXT ? Y
/MYDISK/INTRO.TEXT ---> /BACKUP/INTRO.TEXT

Instead of a "Y" or "N" response, you may press the ESC key.
This will return you to the command level of the Filer.

Copying an Entire Disk
You can use the Transfer command to copy the contents of an
entire disk. When using the Transfer command in this way,
you will respond to the Transfer command's prompts with either a
volume name or a block device name. This operation erases
the previous contents of the destination disk. After

The Filer 59

copying, the destination disk becomes an exact, literal copy
of the source disk and has the same directory name as the
source disk.

EXAMPLE:

Suppose you want an extra copy of the diskette MYDISK and you
are no longer interested in keeping the contents of diskette
EXTRA •

Prompt: Transfer what file ?

Response: /MYDISK,/EXTRA

Prompt: Transfer 280 blocks ? (Y/N)

Response: Y

Each diskette used by the system contains at least 280 blocks.
(Some diskette drives, as well as hard disks, can store more
information. Check to see what your system is configured for.)
To copy an entire diskette you will always type the response Y.
If your system ever gives a message other than 280 blocks, the
diskette's directory is either damaged or missing or you have a
higher-capacity diskette or hard disk.

Prompt: Destroy /EXTRA ?

If you type Y , the directory, and therefore your access to the
contents of EXTRA , will be destroyed. The diskette named EXTRA
will then become an exact copy of MYDISK , even having the same
volume name. If you do not wish to destroy the contents of
EXTRA type N and you will return to the command level of the
Filer.

To copy a diskette using a two-drive system, you should invoke
the Filer and then remove all system diskettes from the disk
drives. This will enable you to use one drive for the source
diskette and one drive for the destination diskette.

When the Transfer command is used to copy the contents of an
entire diskette, the Filer transfers each block of information
on the source diskette to the same location on the destination
diskette. Thus, if files are fragmented on the source diskette,
they will remain fragmented on the destination diskette.

60 Apple III Pascal: Introduction, Filer, and Editor

If you transfer the contents of the Pascal system diskette
to another volume the new volume will be invisible to the
system, since it has the same name as the system disk. To
copy the Pascal system diskette, always use the wildcard
method described below.

A second method of transferring the contents of an entire
diskette is to use the 11 = 11 wildcard option to transfer each
file on the diskette. With this method, each file will be
moved as a unit, thus eliminating any fragmentation of files
which may be present on the source diskette.

Notice that this method does not destroy the contents of
the destination diskette. Before executing this command,
you may want to check the destination diskette to make
sure that there is adequate space to copy the contents of
the source diskette. Note that the transfer of files
continues until there is no room on the destination
diskette. When this occurs, the message

No room on volume

appears next to the name of the file that was
unsuccessfully transferred.

EXAMPLE:

Suppose you want to transfer all of the files on diskette
THIS to diskette THAT •

Prompt: Transfer what file ?

Response: /THIS/=, /THAT/=

Messages will then appear, listing the files that have been
copied.

Copying a Subdirectory
The Transfer command can also be used to transfer the contents
of a subdirectory. Like the full diskette transfer using
wildcards described above, the transfer of a subdirectory from
one disk to another eliminates file fragmentation at the
destination.

The Filer 61

When copying a subdirectory, the Filer first creates a new
subdirectory on the destination disk and then transfers each of
the files listed in the original subdirectory to corresponding
files in the new subdirectory. This same process is applied to
files within a subdirectory that are themselves subdirectories.

Two types of transfers are prohibited when dealing with
subdirectories: Subdirectories cannot be copied over as a root
volume directory, and root directories may not be copied to
another volume as a subdirectory.

EXAMPLE:

Suppose the diskette MYDISK contained these files:

BALLOON.TEXT
BUBBLE

TEMP.TEXT
TEMP.CODE
TEMP.DATA

TUBA.TEXT

and that you want to transfer the subdirectory BUBBLE to the
diskette YOURDISK

Prompt: Transfer what file ?

Response: /MYDISK/BUBBLE

Prompt: To where?

Response: /YOURDISK/BUBBLE

You could have achieved the same result (and saved some typing)
by using the dollar sign ($) as the destination filename.

"Data" diskettes, which are formatted but have no directory,
may also be copied with the Transfer command, but ope.rations
with data diskettes involve only copies of the entire diskette
contents.

When a file is opened to a data disk, transfer of information
begins at block zero and continues to the last block of the
disk. The sequential nature of data transfer to or from a data
disk gives an operational resemblance to a file transfer to a
device such as a printer.

62 Apple III Pascal: Introduction, Filer, and Editor

General Disk File Commands
The following sections describe several commands that can be
invoked from the Filer's command level.

Make
The Make command is invoked by typing M from the Filer's command
level and is used to create subdirectories. It can also be used
to reserve an area on a disk for a text or code file.

The Make command requires you to type a file name specification
and gives you the option of typing a file size specification.
The file size is specified by following the pathname with the
number of blocks that the file will occupy enclosed in square
brackets ([and]), The subdirectory will be assigned one
block of space unless you specify a file size.

There are two default file size specifiers, [0] and [*]. Their
meaning is different, according to the disk format being used.
On SOS-format disks, both specifiers imply an initial file size
of ~ blocks. On Apple II Pascal-format disks, [0] says the
file is to occupy all of the largest unused contiguous area on
the disk, while [*] means that the file is to occupy either the
second-largest contiguous area or half of the largest area,
whichever is larger. The difference in usage is explained by
the fact that SOS-format files take up space on the disk only
as required by their growth, instead of having to allocate
contiguous blocks of space on the disk.

When using the Make command to create a subdirectory, you must
follow the specified pathname with the directory-specifier
character, which is an exclamation mark. This is the only place
where the Filer recognizes the directory-specifier character.

The Make command can also be used to reserve an area on the
disk for some future use. It also prevents use of that area by
other files.

When a file other than a subdirectory file is created using
the Make command and no file size is specified, the file is
allocated zero logical blocks.

Files with filenames endi ng in .TEXT must occupy at least four
blocks, and must occupy an even number of blocks (see this
manual's appendix FILE FORMATS for details). An attempt to use
the Make command to create a .TEXT file with fewer than four
blocks results in the message "No room on vol". If you use Make

The Filer 63

to create a .TEXT file specifying an odd number of blocks, the
file will actually be made with one fewer block.

The Make command behaves somewhat differently depending
upon whether the file you are creating is on a
SOS-formatted or an Apple II Pascal diskette. For
information about these differences, refer to Appendix B.

EXAMPLE:

Prompt: Make what file?

Response: /MYDISK/DAFFODIL.TEXT[28]

This response reserves 28 blocks on the volume MYDISK for the
dummy file DAFFODIL.TEXT •

EXAMPLE:

Prompt: Make what file?

Response: /MYDISK/MYDIRECTORY! [2]

This response creates the empty subdirectory MYDIRECTORY on the
diskette MYDISK • The subdirectory will be two blocks long;
if no length were specified, the length would be one block.

Apple III Pascal places no limit on the number of diskette
subdirectories. If, for example, you had a diskette
subdirectory whose pathname was /A/AA/AAA/AAAA , you could
create a new subdirectory within that subdirectory this way:

Prompt: Make what file?

Response: /A/AA/AAA/AAAA/AAAAA!

Note that the longest pathname that can be specified to the
Filer is 8~ characters.

Change
The Change command is used to change the name of any file
including a directory or subdirectory.

64 Apple III Pascal: Introduction, Filer, and Editor

Changing the name of a diskette directory has the same
effect as changing the diskette's volume name. You cannot
change /PASCAL!, SYSTEM.PASCAL, or SYSTEM.FILER with the
Change command. Also, changing a volume name to /PASCAL!
makes that volume invisible to the system.

This command requires two file specifications. The first
specifies the name of the file whose name you want to change;
the second specifies the file's new name. The first
specification is separated from the second specification either
by a comma or by pressing RETURN.

If you change the name of the Prefix directory or subdirectory,
the directory or subdirectory name that the system supplies as
the Pref ix is also changed.

EXAMPLE:

The file MICKEY.TEXT is stored on diskette PLUTO •

Prompt: Change what file ?

Response: /PLUTO/MICKEY.TEXT

When you press the RETURN key, the dialogue continues:

Prompt: To what file ?

Response: MINNIE.TEXT

Typing this response changes the name of the file in the
directory of diskette PLUTO from MICKEY.TEXT to MINNIE.TEXT •
Note that you only have to include the local filename, as
opposed to the complete pathname, in the second file
specification.

Filetypes (such as TEXTFILE or CODEFILE) are originally
determined by the local filename's suffix (such as .TEXT or
.CODE). The Change command does not affect the filetype, but

The Filer 65

it also does not automatically place any suffix after the new
local filename. Consider the following example:

Prompt: Change what file ?

Response: /PLUTO/MICKEY.TEXT

Prompt: To what file ?

Response: MINNIE

In this case, the file is still present and now named
/PLUTO/MINNIE , and MINNIE would still be listed as being of
type TEXTFILE in an Extended directory list. Note, however,
that the Get command (described later in this chapter) searches
for the suffix .TEXT in order to identify a textfile as the
workf ile. Thus in order to successfully use the Get command to
access the file MINNIE as the next workf ile, you would have to
change the name of the file from MINNIE to MINNIE.TEXT ,

Wildcard specifications are legal in the Change command. If a
wildcard character is used in the first file specification, then
a wildcard must be used in the second file specification. The
set-specifying strings in the first file specification are
replaced by the analogous strings (referred to here as
replacement strings) given in the second file specification.
The Filer will not change the local filename if the change will
result in the creation of a file whose name is too long (more
than 15 characters).

EXAMPLE:

The diskette MYDISK contains these files:

CHAP14.TEXT
CHAP12.TEXT
CHAPTER13.TEXT
CHAP14.TEXT
APPNDX.TEXT

Prompt: Change what file ?

Response: /MYDISK/C•XT,/OLDCnXT

After you type this response (the two parts of the response were
separated by a comma this time, but you could also press the
RETURN key to separate the responses), the Filer indicates the

66 Apple III Pascal: Introduction, Filer, and Editor

following name changes. Only the filenames are changed; the
contents of the files themselves are left unchanged.

/MYDISK/CHAPll.TEXT ---> /OLDCHAPll.TEXT
/MYDISK/CHAP12.TEXT ---> /OLDCHAP12.TEXT
/MYDISK/CHAPTER13.TEXT ---> not processed
/MYDISK/CHAP14.TEXT ---> /OLDCHAP14.TEXT

In the third attempted name change, the "destination" filename
would have been OLDCHAPTER13.TEXT, which exceeds the
15-character limit for filenames. Therefore, that file was "not
processed". If all the destination filenames exceed 15
characters, none of the files will be processed.

The set-specifying strings may be empty, as may the replacement
strings. The Filer considers the one-character file
specification = (where both set-specifying strings are empty) to
specify every file on the diskette.

EXAMPLE:

Prompt: Change what file ?

Response #1: /PLUTO/=,Z=Z

Typing this response causes every local filename on diskette
PLUTO to have a Z added before the first character and after the
last character unless the local filename was longer than 15
characters in length.

Response #2: /PLUTO/Z=Z,=

Typing this response causes the initial and terminal Z to be
removed from each filename on diskette PLUTO that contains both
an initial and a terminal z.

A disk's volume name may be changed by specifying the current
disk volume name or device name followed, after a comma or
RETURN, by a new volume name.

The Filer 67

EXAMPLE:

Prompt: Change what file ?

Response: /CENTIPEDE,/MILLIPEDE

Typing this response causes the system to give this message:

/CENTIPEDE ---> /MILLIPEDE

showing that the diskette named CENTIPEDE has been renamed
MILLIPEDE • Note that what actually is happening here is that the
diskette's directory name is being changed from CENTIPEDE to
MILLIPEDE •

Similarly, the names of subdirectories can be changed by
specifying an existing subdirectory name and (after a comma or
RETURN) a new subdirectory name.

EXAMPLE:

Prompt: Change what file ?

Response: /FUNNY/FUNNIER,FUNNIEST

Typing this response would cause the system to give this message:

/FUNNY/FUNNIER ---> /FUNNY/FUNNIEST

showing that the subdirectory named /FUNNIER has been renamed
/FUNNIEST •

The Change command ignores destination directory and
subdirectory names if they are supplied. Thus FUNNIER is
changed on volume /FUNNY even if the prefix is not set to
/FUNNY •

EXAMPLE:

Prompt: Change what file ?

Response: /ALPHA/FUN,/BETA/NOFUN

68 Apple III Pascal: Introduction, Filer, and Editor

This will not result in any change to the contents of the volume
named BETA if it is on the system. In the same vein,

/ALPHA/FILE,/ALPHA/BETA/PRODUCE

ignores the fact that /BETA was even included in the
specification.

Remove
The Remove command is used to remove file entries from a
directory or subdirectory or to remove empty subdirectories.
This command is invoked by typing R when the Filer prompt line
is at the top of the screen.

Once files have been removed, they are no longer accessible to
the user. While a removed file's contents are still stored on
disk, the system acts as if the file has been erased from the
disk and considers the area of the disk where the file was
stored to be free for other files to write to.

The Remove command requires one file specification for each
diskette file that you wish to remove. Wildcards are legal.

The Remove command should not be used to remove the
current workfile. Instead, use the Filer's New command
described later in this chapter.

You cannot remove a subdirectory until all of the files
that are a part of that subdirectory have been removed.

EXAMPLE:

Suppose the Prefix diskette contains these files:

AARDVARK.TEXT
ANDROID.CODE
QUINT.TEXT
AMAZING.CODE

Prompt: Remove what file ?

Response: AMAZING.CODE

The Filer 69

Typing this response tells the system to remove the file
AMAZING.CODE from the Prefix diskette's directory.

Before actually removing the filenames of any files specified by
the Remove command, the Filer asks if you want to

Update directory ?

Typing N aborts the command: You are returned to
the Filer command level and no files are removed from the
disk.

EXAMPLE:

Suppose your Prefix diskette contains the files shown in the
previous example.

Prompt: Remove what file ?

Response: A=CODE

Typing this response causes the Filer to remove AMAZING.CODE and
ANDROID.CODE from the Prefix diskette directory.

EXAMPLE:

Wildcards also can be used with the Remove command to banish
some, or all, of the files in a given subdirectory. Suppose
you have a diskette, MYDISK , that includes a subdirectory
MEMOS • A listing of the subdirectory MYDISK/MEMOS looks like
this:

/MYDISK
MEMOS

PETER.TEXT
PAUL.TEXT
MARY.TEXT

Let's say that you want to get rid of the files containing Peter
and Paul's memos but that you want to leave the file containing
Mary's memos where it is. After typing R for Remove, you will
see thi s message:

Prompt: Remove what file ?

Response: /MYDISK/MEMOS/P=

70 Apple III Pascal: Introduction, Filer, and Editor

Typing the above response generates the message:

Volume /MYDISK/MEMOS
File PETER.TEXT removed
File PAUL.TEXT
Update directory ?

removed

Typing Y will remove the files containing Peter and Paul's memos
but will leave the files containing Mary's memos, as well as
the subdirectory MEMOS , intact. If you had wanted to get rid of
all of the files in the subdirectory you could have done the
following:

Prompt: Remove what file ?

Response: /MYDISK/MEMOS/=

Once this transaction was complete you could go on to remove
the subdirectory MEMOS

Prompt: Remove what file ?

Response: /MYDISK/MEMOS

If the ? wildcard character is used, the systems checks with you
before removing each file. A response of N causes the system to
pass on to the next filename in the directory without acting on
the previous one. A response of ESC causes the system to pass
directly to the "Update Directory?" prompt.

Krunch
Krunch is only usable on Apple II-formatted disks.

The Krunch command consolidates unused space on a diskette.
Because SOS stores text or programs in whatever empty blocks
are available on a diskette regardless of whether the blocks
are contiguous, it is not necessary to use the Krunch command
with SOS-formatted diskettes. If you type K for Krunch and
then, when prompted, type in the name of a SOS-formatted
diskette, the system will respond with the message

Command not allowed on SOS format disk

For information about using Krunch with Apple II Pascal
diskettes, see Appendix B.

The Filer 71

Zero
The Zero command "erases" a specified directory or subdirectory
by removing all files contained in it. This command is
frequently used to remove all files contained in a hierarchy of
subdirectories. The Zero command can also be used to "recycle"
an entire diskette; the system forgets anything previously
stored on the diskette and the diskette is ready to be used
again.

To invoke the Zero command, type Z from the Filer command level.

This command is not the same as the Apple II Pascal Zero
command.

EXAMPLE:

Suppose you want to forget all information stored on a diskette
named OLOOISK, in drive .02 so that you can re-use it as a
clean, blank diskette.

Prompt: Zero what volume ?

Response: .02

Prompt: Remove all files on /OLOOISK ? (Y/N)

Response: Y

Typing a Y response to this prompt causes the Filer to respond
with the message:

/OLOOISK zeroed

A subdirectory also can be Zeroed. This has the effect of
erasing all files in a subdirectory, including any subdirectory
files. As stated previously, a subdirectory can only be
removed if the subdirectory contains no files. Thus an easy
way to eliminate a subdirectory is first to use the Zero
command to eliminate the files in the subdirectory and then to
use the Remove command to eliminate the subdirectory itself.

EXAMPLE:

Imagine that you want to remove a subdirectory called JELLY
that is stored on the Pref ix diskette PORRAGE. A listing of

72 Apple III Pascal: Introduction, Filer, and Editor

the files on diskette PORRAGE along with their file types is
shown below:

/PORRAGE directory
PRUNES. TEXT text file
JELLY directory

PEACHJELLY.CODE codefile
PLUMJELLY.CODE code file
PLUM directory

PLUMJAM.TEXT textfile
PLUMJELLY.CODE codefile

JUICE directory
APPLEPLUM datafile
PLUMAPPLE datafile

Prompt: Zero what volume ?

Response: JELLY

Prompt: Remove all files on /PORRAGE/JELLY ? (Y/N)

Response: Y

The Filer will then respond with the message

/PORRAGE/JELLY zeroed

The files contained on diskette PORRAGE now include the following:

/PORRAGE
PRUNES. TEXT
JELLY
JUICE

APPLEPLUM
PLUMAPPLE

directory
textfile
directory
directory
datafile
datafile

JELLY now has no files in it. Assuming that you next want to
eliminate subdirectory JELLY, you will now type R for Remove.

Prompt: Remove what file ?

Response: JELLY

Typing this response tells the system to remove the subdirectory
JELLY from the diskette directory.

The Filer 73

Prefix
The Prefix command changes the current default prefix directory
or subdirectory name to the directory or subdirectory name
specified.

Basically the prefix is a time-saver; it prevents your having to
type in a complete pathname specification each time you refer to
a particular file. This section will tell you how prefixes can be
used with the Apple III Pascal Filer.

When the system is booted, the prefix is set to the name of the
Pascal system diskette in the built-in drive. To find out what
the Prefix is currently set to, type P. You will be prompted

New prefix :

If you type a RETURN or ESCAPE, the current prefix is retained.

To change the prefix, type P from the Filer command level.
When you are prompted,you should respond with the directory
name and any subdirectory names that you want the system to
place before each local filename that is specified. Each
filename listed must be preceded by a slash. It is not
necessary to put a directory (i.e., volume) or subdirectory on
line before setting the prefix to it.

Setting the prefix to the device name of a diskette drive
causes that drive to become the prefix disk drive, no matter
what diskette is in the drive.

When you specify a pathname for some operation (such as a
Transfer or Remove), the prefix is attached to the pathname you
have entered, unless it is a full pathname. When you enter a
local filename, the Filer attaches the prefix to that local
filename before acting on it.

The only time that the pref ix is ignored is when you specify a
pathname beginning with a device name or slash.

74 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

An Extended directory listing of the diskette NOVEL reveals
the following:

/NOVEL Size Modified Time File type Eof Phys
INTRO.TEXT 6 22-Nov-81 3:22 Text file 512
CHAPl 2 20-Jan-81 2:03 Directory 512

PARTl.TEXT 22 20-Jan-81 6:42 Text file 512
PART2.TEXT 16 6-Mar-81 4:30 Text file 512
PART3.TEXT 14 19-Mar-81 1:32 Text file 512

CHAP2 2 2-May-81 9:32 Directory 512
PARTl.TEXT 12 2-May-81 3:11 Textfile 512

You are planning to do a lot of editing on Chapter 1 and so
decide to set the pref ix to the subdirectory CHAPl on the
diskette NOVEL •

Prompt: New prefix ?

Response: /NOVEL/CHAP!

Suppose you now want to change the name of

/NOVEL/CHAPl/PARTl.TEXT

to

/NOVEL/CHAPl/FLIMFLAM.TEXT

7
3

23
17
15

3
13

Since the prefix already has been set to /NOVEL/CHAP! , you
don't have to type the complete pathname. Instead, the command
is pleasingly brief:

PROMPT: Change what file ?

RESPONSE: PARTl.TEXT

PROMPT: To what file ?

RESPONSE: FLIMFLAM.TEXT

The system ignores the Prefix whenever it sees a root volume
name in a file specification. Suppose that the Pref ix is still
set to /NOVEL/CHAP! and that you want to remove file
/NOVEL/CHAP2/PART1.TEXT • Instead of changing the Prefix you

The Filer 75

can cause the system to ignore it simply by giving the complete
pathname of the file you want to access.

PROMPT: Remove what file?

RESPONSE: /NOVEL/CHAP2/PART1.TEXT

If you did not specify the complete pathname, but instead only
specified CHAP2/PART1.TEXT, the system would automatically add
the Pref ix and assume that you were looking for file
/NOVEL/CHAPl/CHAP2/PARTl.TEXT. Since this file does not exist,
you would get the message

File not found

Quit
The Quit command, which in invoked by typing Q from the Filer,
causes the system to exit from the Filer and return to the main
Command level. Remember to have your Pascal system diskette in
the built-in drive when you issue this command.

Date
The Date command allows you to set the correct date each day so
that a record may be kept of work performed on the system. Each
time a volume, directory, subdirectory, or local file is created
or updated, the date of creation is included in the directory.

When you invoke the Date command by typing D, you are shown the
prompt

Today is 27-Apr-83 Time 0:00
Change date or time? (Y/N)

If you respond with Y , the next prompt is added to the screen:

Date format: dd-mmm-yy (month, year optional)
New date :

Pressing RETURN leaves the date unchanged, otherwise entering
the new day, day and month, or full date changes the system's
stored date. The month and year are optional, and only have to
be changed at need.

76 Apple III Pascal: Introduction, Filer, and Editor

After entering the new date, the time prompt appears on the
screen:

Time format: hh:mm:ss (minutes, seconds optional)
New time :

Pressing RETURN leaves the time unchanged, otherwise entering
the new time changes the system's stored time.

On systems with an installed clock, this operation updates the
clock. On systems having no clock installed, a disk-resident
"time stamp" is updated.

In either case, the new time is used when updating directory
entries of files being changed, thus pinpointing the most
recent update time of the file.

On systems without a clock, updating the time stamp can help
you distinguish between files produced in the morning from
those produced later in the day. You have to update the time
to make this work properly, however.

After entering the time, or pressing RETURN if you have no
clock installed, the newly set date (and time, if available) is
displayed. If the new date or time is incorrect, type D to
invoke the Date command again and reenter them.

Alter
The Alter command allows you to change some file characteristics
as displayed by the Extended directory command. The
characteristics that can be changed are write-protect status,
date of most-recent change, and the filetype.

If you enter a wildcard specifier of s in the file name, all
files operated on by Alter will be listed.

You will find the Alter command easier to use if you list
the affected directory just before invoking Alter.

When you invoke the Alter command from the Filer, you are shown
the prompt

Alter dir info of what file?

The Filer 77

Entering a pathname gives you the prompt

Change write-protect status? (Y/N)

A reply of Y brings yet another prompt, continuing on the same
line, unless the disk referenced is in Apple II Pascal format:

Write-protect? (Y/N)

Your response is followed by the prompt

Change last-modification date? (Y/N)

If you reply Y, the prompt

is added to the prompt line. Here you may enter the date in the
format: dd-mmm-yy (day, month, and year) followed by a return.
If the change does not affect the entire date, enter the entire
date anyway ••• it won't be happy until you do.

The final prompt appears next:

Change file type? (Y/N)

The file types that may be used are:

*Asciif ile
*Badfile
Basicdata
Basicprog

*Codefile
*Datafile
*Directory
*Text file

*(Only the first four character must be entered.)

While you can change the file type listed in the directory,
you might not be able to use the file under its new file type.

Responding to any of the Alter prompts with an N or a RETURN
results in that operation being skipped and the next promptline
being displayed. Entering an ESCAPE aborts Alter and returns
operation to the Filer command line.

78 Apple III Pascal: Introduction, Filer, and Editor

Workfile Commands
The following commands are used with the workfile. More
information about using workfiles is included in Chapter 1
(Introduction) and Chapter 4 (The Editor) of this manual.

Get
The Get command, which is invoked by typing G from the Filer,
identifies the designated diskette file for later use as the
workfile. The next time you attempt to Edit, Compile, or Run,
the designated file will be used.

When using the Get command, although you are told that the
specified file has been "loaded", the Get command does not
actually transfer the specified file to any other file, it just
notes that a workfile has been specified and saves the name of
the new workfile.

If there is already a workfile present on the Pascal system
diskette when you issue the Get command, you are prompted:

Throw away current workfile ?

Typing Y for yes will clear the workfile, removing all files
SYSTEM.WRK from the Pascal system diskette (if they exist),
while N for no returns you to the outer level of the Filer.

Typing the filename's suffix in the file specification is not
necessary. Wildcards are not allowed, and the size
specification option is ignored.

EXAMPLE:

Suppose the Prefix diskette contains the following files:

FILERDOC2.TEXT
ABSURD.CODE
HYTYPER.CODE
FL IM.TEXT
ALPHA

SORT.TEXT
SORT.CODE

FILER.DOC.TEXT
FL IM.CODE

Prompt: Get what file ?

Response: FLIM

The Filer 79

The Filer responds with the message

Text & code file loaded

since both text and code file exist. Had you typed FLIM.TEXT or
FLIM.CODE , the result would have been the same: both text and
code versions would have been identified for later use as the
workfile. If only one of the versions exists, as in the case of
ABSURD.CODE, then that version is identified for later workfile
use, regardless of whether text or code was requested. Typing
ABSURD.TEXT in response to the prompt would generate the
message: "Code file loaded".

Save

The text and code files themselves are not actually loaded
at this time; the system loads their pathnames into memory
for use when the files themselves have to be loaded.

This command saves both components of the Pascal system
diskette's workfile (both .TEXT and .CODE, if both exist) under
the filename originally specified with Get or under a different
filename if you so specify. This command is invoked by typing S
from the Filer command prompt line.

If a file already exists with the specified filename, the
workfile is saved under the specified name after removing the
old file.

If you are saving the workfile as a file on the root directory
of the Pascal system diskette, the workfile (which is already
on that diskette) is simply renamed. When you save the
workf ile on a diskette other than the Pascal system diskette or
on a subdirectory of the Pascal system diskette, the system is
actually performing a Transfer of the workf ile. Thus the
workfile is unchanged after the Save is completed.

If saved to the root directory of the same disk, files
beginning with SYSTEM.WRK disappear when the Filer's Save
command is used to save the contents of the workf ile under an
original filename or under a new filename. If the system is
rebooted before the Filer's Save command is used, the original
name of the workfile's contents (as specified by the Get
command) will be forgotten, but the file itself will not be
affected.

80 Apple III Pascal: Introduction, Filer, and Editor

You do not need to include a .TEXT or .CODE suffix when
specifying the filename to be used when you save your
workfile; the system will add the appropriate suffix for you.
The system ignores the .TEXT or .CODE suffix if you do type it.

The Save command cannot be used to create a subdirectory. If,
therefore, you want to save a file into a subdirectory that has
not yet been created, you first must use the Make command to
create the subdirectory.

If the diskette volume name or number is not given, the Prefix
diskette is assumed. Wildcards are not allowed, and the size
specification option is ignored.

The Apple III Pascal systQm has two Save commands: one at
the Filer level and one at the Editor level. These two
commands serve totally different functions.

EXAMPLE:

Suppose that you used the Get command to access the file OLDFILE
on diskette MYDISK. After editing and recompiling this file,
you decide to save it under the local filename NEWFILE • After
typing S you will be prompted

Prompt: Save as /MYDISK/OLDFILE ?

Response: N

Prompt: Save as what file ?

Response: /MYDISK/NEWFILE

This causes the Filer to remove, after asking you for
verification, any old file named /MYDISK/NEWFILE and then to
save the workfile under that name.

EXAMPLE:

Prompt: Save as what file ?

Response: /RED/EYE

/RED/EYE constitutes a file specification, and this response
will tell the Filer to attempt to transfer the workfile to the
specified volume and file (see the Transfer command). If you

The Filer 81

accidentely specified diskette RED , press the ESCAPE key. The
command will be terminated.

If one of your disk drives contains a diskette named /RED , you
will soon see the message

/PASCALl/SYSTEM.WRK.TEXT ---> /RED/EYE.TEXT

This message tells you that the workfile named SYSTEM.WRK.TEXT ,
on the Pascal system diskette named /PASCALl , has been
successfully transferred to the file named EYE.TEXT , on the
diskette named /RED • If there is no diskette named /RED in
any disk drive, you will see the message

Put in /RED
Type <space> to continue

This gives you the chance to insert a diskette named /RED , if
you have one, into a disk drive.

EXAMPLE:

Suppose you earlier used the Get command to designate the file
/MYDISK/LETTER as the next workfile. You then quit the Filer
and entered the Editor, causing /MYDISK/LETTER.TEXT to be read
into the computer. Finally, you added some new material to the
file, and then used the Editor's Quit and Save commands to store
the new version of the file under its old name and on the
original diskette.

Now, back in the Filer again, you type S for Save and receive
this prompt:

Save as /MYDISK/LETTER ?

If you type a Y , the Filer first asks

Remove old /MYDISK/LETTER.TEXT ?

Typing another Y causes your previous version of LETTER.TEXT to
be removed from MYDISK , and then causes the new version to be
saved on MYDISK. The following message will then appear:

/PASCALl/SYSTEM.WRK.TEXT ---> /MYDISK/LETTER.TEXT

82 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

This example will show you how to use the Make command to create
a subdirectory and then save a file into that subdirectory.

Suppose you earlier used the Get command to designate the file
/TIC/TOE as the next workfile. You then exited from the Filer
and entered the Editor, causing /TIC/TOE.TEXT to be read into the
computer. After you add some material you use the Editor's Quit
and Update commands to store the new version on the Pascal
system diskette as SYSTEM.WRK.TEXT. Back in the Filer, you
decide that, because you are going to create several files which
are similar in content to TOE.TEXT, it would be helpful to
create a subdirectory, TAC, to store those files in. You
cannot, however, save your file as /TIC/TAC/TOE because the
subdirectory TAC has not yet been created. Instead you must use
the Make command to create the subdirectory TAC • Then you can
~ave your file into that subdirectory.

Prompt: Make what file?

Response: /TIC/TAC!

This response creates a one-block subdirectory TAC on the
diskette TIC. Now you are ready to save your file. Typing S from
the Filer you will be prompted:

Prompt: Save as /TIC/TOE ?

Response: N

Prompt: Save as what file ?

Response: /TIC/TAC/TOE

New
The New command, invoked by typing N from the Filer command
level, clears the workfile, so that there is no default file to
be used automatically by Edit, Compile, Assemble, and Run. The
last file specified as the workfile by the Filer's Get command
is no longer so designated. All versions of the workfile saved
on the Pascal system diskette are removed from the directory.
There will be no workf ile on the Pascal system diskette until a
workfile is created with the Editor's Update command.

The Filer 83

If there is already a workfile SYSTEM.WRK present on the Pascal
system diskette when you issue the New command, you are
prompted:

Throw away current workf ile ?

Response: Y will clear the workf ile, removing all files
SYSTEM.WRK from the Pascal system diskette, while N returns you
to the outer level of the Filer.

Typing Y destroys the temporary workfile (SYSTEM.WRK) and
it cannot be retrieved. This command reads from the
typeahead buffer, so while it can make work go faster,
sloppy typing can result in inadvertantly-destroyed
files.

Use the New command to clear away the automatically-loaded
workfile before you try to create a new tile in the Editor or
Compile any file other than the workfile.

What
This command identifies the name and state (saved or not) of the
workfile. It is invoked by typing W from the Filer.

If the workfile has been saved onto any disk other than the
Pascal system disk, the What command continues to report the
workfile as not saved. This is because the workfile still
exists on the main system disk. The message

Workfile is not named (not saved)

only indicates that there is no specified workf ile on the
Pascal system disk.

General Disk Upkeep Commands

Bad Blocks
This command identifies damaged blocks on a disk. To invoke
this command, type B from the Filer.

The Bad-blocks command requires that you type a block device or
volume name. The specified disk volume must be on-line

84 Apple III Pascal: Introduction, Filer, and Editor

(currently available to the system). If the disk drive or
disk is not there, the message

Volume not found

will appear.

EXAMPLE:

Prompt: Bad block scan of what vol ?

Response: /PASCAL3

Prompt: Scan 280 blocks ? (Y/N)

In response you will normally type Y for "Yes", telling the
Filer you want to scan the entire disk. If you wish to
check only a smaller portion of the disk (a very unusual
case), type N and you will be asked to type the number of blocks
you want the Filer to scan. Since the number of blocks to scan
depends on the type of storage device in use, check the number
of blocks available on your disk.

Once the system knows how many blocks to check, it goes ahead
and checks each block on the indicated disk volume for
errors, and lists the block number of each bad block. In most
instances you will see the message:

0 bad block(s)

after the bad blocks scan has been completed. If the disk has
bad blocks the disk drive will buzz and clatter, and you will
see a message similar to this:

Scan for 280 blocks ? (Y/N) Y
Block 23 is bad
Block 24 is bad
Block 25 is bad

After the system has encountered three bad blocks it asks you

Continue scan ? (Y/N)

The Filer 85

If you want to continue the scan, type Y. If you type N, a
message like this is displayed:

File(s) endangered:
/THISFILE.TEXT
/THATFILE.CODE

The last two lines tell you that the three bad blocks are
contained partly in the file THISFILE.TEXT and partly in the file
THATFILE. CODE •

The system always asks you if you want to continue the scan
after it has found three bad blocks. Then, it asks you if you
want to continue after every 9th bad block (e.g. after the 9th
bad block, the 18th, the 27th, etc).

If you see that one of your disks contains bad blocks, your
safest move is to use the Transfer command to copy each of the
files that do not contain any bad blocks to a healthy disk,
then reformat the disk by using the SOS Utility disk.

The most common cause of reported bad blocks on a disk is
caused by bad data written to the disk. Over-writing the
information on the block usually cures the problem. If the
bad-block error is caused by actual, physical damage or other
problems with the disk's recording surface, that particular
data is usually unrecoverable.

Dirt and fingerprints are also common culprits. An attempt to
store information in such a bad block may result in the loss of
that information, and may render the entire file unreadable.
To guard against this kind of problem, you should always do the
following:

1) Handle your diskettes very carefully, and keep them clean;

2) Do a Bad-blocks scan of every disk whenever you use the Zero
command to erase its root directory to re-use it, and at any
other times when you have suspicions about the disk.

A less common cause of bad blocks is opening the disk drive door
or otherwise disturbing the recording process while the system
is trying to store information on the disk in that drive.
This will sometimes create an error in the data field of a
disk sector.

Occasionally, the address field of a disk sector may be
rendered unreadable by something you or the system does. This

86 Apple III Pascal: Introduction, Filer, and Editor

problem is reported as a bad block by the Bad-blocks command.
This problem must be corrected by reformatting the disk.
Reformatting the diskette will erase everything on the disk,
so be sure to save the undamaged files, first.

If a directory or subdirectory contains a bad block, the Filer
cannot report on the validity of the files contained in it.

Exam me
This command cannot be used with SOS-formatted diskettes. See
Appendix B for details about how to use this command with Apple
II Pascal diskettes.

The Filer 87

'"

Filer Command Summary

File Specification
.D2 or /MYDISK Typical volume specification. See Table 3-1,

Device Volume Names and Numbers •

• D2/MYFILE.TEXT Typical file specification. Unless otherwise
or noted, Filer commands require complete file

MYDISK:MYFILE.TEXT specifications, including the suffix.

/MYDISK/MYDIR/MYFILE.TEXT Typical filename that includes
subdirectory.

* Specifies the built-in disk volume name.

Volume name with

Specifies the prefix volume name.
Creates a subdirectory

no filename Specifies the entire named disk.

Filename with no
volume name

?

$

Specifies the named file on the pref ix
directory or subdirectory

Wildcard used in specifying a subset of
filenames to be acted on. For example,
BR=XT specifies all filenames beginning with
BR and ending with XT •

Specifies use of last-entered filename.
Example: BR?XT

Specifies a repeat use of the most-previous
local filename used.

Separates any number of Filer command response
fields. Some commands use response fields in
pairs.

Information Commands
Volumes: Shows the devices and diskettes currently in the system,

by volume number and by volume name.

List-directory: Shows what files are on the specified disk.
If desired, list is sent to a second specified file or
device.

88 Apple III Pascal: Introduction, Filer, and Editor

Extended-directory-list: Shows what files are on specified
disk, including the subdirectory structure. The
list can be sent to a second specified file or device.

General File-Moving Command
Transfer: Transfers information from the first specified volume

or file to the second specified volume or file. Used
to move or save disk files, copy entire diskettes,
or send files to a printer or other device.

General Diskfile Commands
Make: Creates a disk directory entry with the specified

filename and [size}. Primarily used to create
subdirectories.

Change: Renames the specified disk or disk file to the
second specified name. If second specification is a
filename, it need not include the volume.

Remove: Removes the specified file from a disk's directory
or subdirectory.

Krunch: Packs all files together on a disk

Zero:

(Can be used only on Apple II Pascal diskettes; see
Appendix B)

Removes the directory and subdirectories of the
specified disk.

Prefix: Changes the current default directory or subdirectory
name to the directory or subdirectory name specified.
Response of : shows current Prefix name.

Date: Tells the current date and time last set for the system
and allows them to be updated.

Quit: Leaves the Filer and returns to the outermost Command
level.

Alter: Allows you change some file characteristics displayed by
the List and Extended-list commands.

The Filer 89

Workfile Commands
Get: Designates a specified disk file as the next workfile

Save:

New:

What:

(no suffix needed: .TEXT and .CODE are supplied
automatically). The next Edit, Compile or Run will use
this file.

Saves all components of the workfile SYSTEM.WRK under the
specified filename (do not specify a suffix: .TEXT and
.CODE are supplied automatically).

Clears the workfile, removing all SYSTEM.WRK files from
the main system disk.

Tells the name and state (saved or not) of the workfile.

Disk Upkeep Commands
Bad-blocks: Tests all blocks on the specified disk to see that

information has been recorded consistently. Any bad
blocks found are reported.

Examine: Attempts to fix disk blocks reported as bad by the
Bad-blocks command. Allows you to mark blocks that
can't be fixed. (Used only on Apple II Pascal diskettes;
see Appendix B)

90 Apple III Pascal: Introduction, Filer, and Editor

92 Introduction
93 Diskfiles Needed
93 A "Window" into the File
93 The Cursor
94 The Prompt Line
94 Notation
94 A Brief Scenario
95 Starting a New File
96 Saving Your Work
96 A Little More Detail
96 Entering the Editor
98 Moving the Cursor
99 Inserting Text

101 Deleting Text
101 Leaving the Editor
104 Editing an Ascii File
104 Editing BASIC Files
105 The Editor Commands
106 The Cursor
106 Cursor Movement
107 Repeat-factors
108 The Direction Indicator
108 Cursor Moves
109 Moving Commands
109 Jump
U0 Find
110 Direction
111 Repeat-factor
111 Target String and Delimiters
112 ·Unease Option
112 Literal or Token Search
113 ESC Option
113 Same-string Option
115 Text Changing Commands
115 Insert

The Editor 91

117 Text Formats
117 Inserting in Programming Mode
119 Inserting in Document Mode
120 Inserting with Auto-indent and Filling both True
120 Inserting with Auto-indent and Filling both False
121 Delete
125 Zap
126 Copy
126 Copying from a File
128 Copying from the Copy Buffer
129 Exchange
130 Replace
130 Set Direction
131 Repeat-factor
131 Literal or Token Search
131 Target String and Delimiters
132 Verify Option
133 Literal or Token Search
133 ESCAPE Option
133 Same-string Option
135 Formatting Commands
135 Adjust
137 Margin
140 Miscellaneous Commands
140 Verify
140 Set
141 Point
141 Marker
142 Environment
144 Indent-auto
145 Filling
145 Left Margin
145 Right Margin
145 Paragraph Margin
146 Command Character
146 Token Default
147 Ascii File
147 Name of File
148 Number of Characters
148 Quit
148 Update
149 Exit
149 Return
149 Change
150 Write
150 Save
152 Editor Command Summary
152 Cursor Moves
152 Repeat-Factor
152 Set Direction
152 Moving Commands
152 Text Changing Commands
153 Formatting Commands
153 Miscellaneous Commands

92 Apple III Pascal: Introduction, Filer, and Editor

4
The Editor

Introduction
The Apple III Pascal Editor aids you in preparing programs and
text, by providing the following functions:

Inserting and deleting text.

Moving part of a document from one position in the text
file to another.

Merging all or part of one file into another text file .

Moving the cursor to a specified point in the file.

Finding or replacing strings of text throughout the text
file.

Adjusting the margins and indentation of paragraphs of
text thoughout the file.

The first part of this chapter describes some of the general
characteristics of the Editor such as which disk files are
needed to use the Editor, how to read the Editor's prompt line,
and how the cursor move·s. Next is a brief scenario that
introduces the Editor, followed by a more detailed description
of the Editor's modes of operation. The next section provides
a brief explanation of how to use the Editor to edit BASIC text
files. The remainder of the chapter consists of a detailed
description of each of the Editor'~ commands.

The Editor 93

Diskfiles Needed
To use the Editor, the disk file SYSTEM.EDITOR must be available
to the system. SYSTEM.EDITOR is normally provided on diskette
/PASCAL2 •

Files that are being edited may be on any diskette in
any drive.

A "Window" Into the File
The Apple III Editor is designed for use with the Apple's video
display. After a file has been read into the Editor, the
Editor displays the beginning of the file on the second line of
the screen. If the file is too long for the screen, only the
first portion of the file is displayed. The displayed portion
is a "window" into your file.

Figure 4-1. Editor "Scroll Window".

Although the whole file is accessible to you through the Editor,
only part of the file can be seen through the "window" of the
screen. When any Editor command takes you to a position in a
file that is not displayed, the "window" is moved to show that
portion of the file.

The Cursor
The cursor marks the position in the file where actions
performed by the Editor have their effect. The window shows a
part of the file near the cursor and moves whenever you move
the cursor out of the window through the file.

While the cursor appears to move over characters on the screen,
it is actually between the character that appears to its right
and the character that the cursor seems to be on. (Don't
forget that a space is a character, too.)

94 Apple III Pascal: Introduction, Filer, and Editor

Some of the Editor's commands permit additions, changes, or
deletions of such length that the screen cannot display all of
the text that has been changed. In those cases, the screen
shows the portion of the file where the cursor was positioned
after the change.

The Prompt Line
The Editor's prompt line lets you know that you are in the
Editor rather than in some other part of the system. The
language system is complex and these signposts indicate where
you are in the system. Secondly, the prompt line reminds you
of the commands you can use.

Here is the complete Editor prompt line:

>Edit: A(djst C(py D(lete F(nd I(nsrt J(mp M(rgin Q(uit R(plce S(et X(chng Z(ap

Notation
The notation used in this chapter is borrowed from the notation
used in the Editor prompt lines. In the Editor prompt lines, a
word enclosed between angle-brackets <like this> indicates that
you can press a particular key. <ret> means that you can press
the RETURN, <esc> means that you can press the ESC key, and
<ctrlC> means that you can press CTRL-C. You can use either
lowercase or uppercase characters when typing Editor commands.

A Brief Scenario
This scenario demonstrates the use of the Editor, with only a
brief explanation of the terms and concepts used. The section
called A LITTLE MORE DETAIL is a more complete description of
the same concepts. Following that section is a full discussion
of all Editor commands.

If a workfile is present, you can clear it by using the Filer
(see Chapter 3).

The Editor 95

Starting a New File
Now that the workfile has been cleared, press E for Edit from
the Command level. Soon, this prompt appears:

>Edit:
No workfile is present. File? (<ret> for no file, <esc> to exit editor)

To start a new file, instead of reading an existing file from
disk, press the RETURN key and this prompt appears at the top
of the screen:

· >Edit: A(djst C(py D(lete F(nd I(nsrt J(mp M(rgin Q(uit R(plce S(et X(chng Z(ap

You can now press I for Insert. The following prompt line then
appears at the top of the screen:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

The prompt tells you what you can do while typing in text in
insert mode. If you type in a wrong character, backspacing
over the character with the left-arrow key will remove it.
After removing the offending character, continue typing again
wih your text. If an entire line offends you, typing
CONTROL-X will remove that line. The cursor will then appear
at the end of the preceding line.

If you decide it was all hopeless anyway, press the ESCAPE key
to throw out all the text that you have typed since last entering
insert mode. Otherwise, after you have entered all the text you
want, type CONTROL-C to save the text and leave insert mode.

When you wish to add more text, press I again and the Insert
prompt line reappears. Further typing inserts text at the
cursor position, until you terminate the latest insertion by
pressing CONTROL-C.

For example, you might press I for Insert, and then type

PROGRAM EXAMP;
BEGIN

WRITE(' AN APPLE A DAY')
END.

ending each line by typing RETURN. Accept this insertion by
pressing CTRL-C.

96 Apple III Pascal: Introduction, Filer, and Editor

Saving Your Work
Finally, when the text is the way you want it, press Q for Quit
and then press W for Write . The system prompts you for a
pathanme for your new file to be stored in on disk. For
example, you could name your new file

/MYFIRST/PROGRAM

and your file would be saved on the disk named /MYFIRST in a
file name PROGRAM.TEXT •

If you wish to leave the Editor, press E to exit and return to
the Command line. If your file is a Pascal program, you can
now press R for Run, and the system will ask you for a
pathname. Enter /MYFIRST/PROGRAM and press RETURN. The system
will then ask for the pathname o~ the codef ile to be created.
Enter a $, followed by RETURN, and the system will then attempt
to compile and run the file, storing the compiled version of
your program (if compilation is successful) as PROGRAM. CODE •

To successfully compile your program, the Compiler must be
in one of the system's drives.

If you wish to change your file for any reason, simply press E to
Edit again. Now the system will ask you for a pathname: Type

/MYFIRST'/PROGRAM

and the Editor will read in the file PROGRAM.TEXT from your
disk named /MYFIRST , ready for more editing.

A Little More Detail
The first part of this chapter gave a superficial description of
the steps required to edit a text file. This section continues
the chapter with a detailed description of the Editor's
operation and commands.

Entering the Editor
When the Command prompt line is on the screen and your Pascal
system diskette is in the built-in drive (device .Dl), press E
for Edit. If the system already has a text workfile (see the

The Editor 97

section on workfiles in Chapter 1), that file is automatically
read into the Editor, ready for work. If the system does not
have a workfile yet or if only a code workfile exists, this
prompt line appears when you first enter the Editor:

>Edit:
No workfile is present. File? (<ret> for no file, <esc> to exit editor)

There are three ways to answer this opening prompt line's
question:

1. You can answer by entering the pathname of any
text file that already exists on diskette.

For example, you might enter

/HOHUMM/PROGRAMl

When you press the RETURN key, the file named PROGRAMl.TEXT
is retrieved from diskette /HOHUMM , and the text of that
file appears on the screen. Note that you do not need to
enter the .TEXT at the end of any of your text files.
However, be sure to enter a period (•) at the end of any
files whose pathnames don't end in .TEXT •

2. You can answer by pressing the RETURN key.

This tells the system that you are starting a new file.
The only thing visible on the screen after doing this is the
normal Edit prompt line:

>Edit: A(djst C(py D(lete F(ind I(nsrt J(mp M(rgin Q(uit R(plce S(et X(chng Z(ap

A new file has been started and currently has nothing in
it. Type I for Insert to begin inserting your program. No
permanent version of this new file exists until you use the
Quit command to exit from the Editor and the Write command
or the Update command.

3. You can answer by pressing the ESC key:

This causes the Editor to return you to the system Command
level, a useful option when you didn't mean to press E to
Edit.

98 Apple III Pascal: Introduction, Filer, and Editor

Moving the Cursor
To edit, you must move the cursor. There are four "arrow-keys"
on the keyboard that move the cursor up and down, left and
right. You can move the cursor only when one of these prompt
lines is at the top of the screen: Edit, Delete, or Adjust.

Vertical motion of the cursor is made without regard to the
text on the page, otherwise the cursor will remain in the text
of the program. For example, suppose the cursor appears after
the "N" in "BEGIN" :

PROGRAM EXAMP;
BEGIN@\j

WRITE('AN APPLE A DAY')
END.

(Actually, the cursor is "between" the invisible RETURN character
that ends every line and the ''N" in BEGIN.) If you press the
right-arrow key, the cursor moves to the "W" in "WRITE" :

PROGRAM EXAMP;
BEGIN

IRITE('AN APPLE A DAY')
END.

Similarly, pressing the left-arrow key now moves the cursor back
after the "N" in "BEGIN".

If it is necessary to change the third line, "WRITE(' AN APPLE A
DAY')", to "WRITE(' AN ORANGE A DAY')", you must first move the
cursor to the correct spot.

For example, if the cursor is on the "P" in "PROGRAM EXAMP;",
move down two lines by pressing the down-arrow twice. After you
press the down-arrow once, the cursor is on the "B" in "BEGIN";
after you press the down-arrow key a second time, the cursor is
in front of the "W" in "WRITE".

PROGRAM EXAMP;
BEGIN
~ WRITE('AN APPLE A DAY')
END.

Now, using the right-arrow key, move the cursor until it appears
on the "A" in "APPLE".

The Editor 99

Note that the cursor may at times appear to be outside the
text when moved with downward and upward cursor moves. In
the last illustration, the cursor appears to be in the
blank space before the ''W" in "WRITE". As far as the
Editor knows, however, the cursor is actually immediately
before the "W" in "WRITE". So do not be surprised when
you first press the right-arrow key and the cursor jumps
to the "R" in "WRITE". When the cursor appears to be
outside the text, from the Editor's viewpoint it is
actually adjacent to the character nearest the cursor.

Inserting Text
The Edit prompt line shows the command option I(nsrt. To
insert text, first move the cursor to the correct position, and
then press I. Always move the cursor to the correct position
BEFORE pressing I. Earlier, you moved the cursor to the A in
APPLE. Now, when you press I , an insertion will be made just
to the left of the A. The rest of the line, starting with the
A, will be moved to the righthand side of the screen.

If the insertion is lengthy, the righthand portion of the line
(beginning with "A") will be moved down to allow room on the
screen for more inserted text to appear. After you have
pressed I, the following prompt line should be displayed on the
screen:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

If that prompt line did not appear at the top of the screen, you
could not insert characters. You might have pressed a wrong
character. If so, press ESCAPE to bring up the Edit line
prompt, then type I for Insert.

If the cursor was at the A in APPLE when you pressed I , the
Insert prompt line appeared and the remaining portion of that
line (beginning with "A") was pushed to the righthand edge of
the screen. You can insert ORANGE by entering those six
letters. They will appear on the screen as they are pressed.

There remains one more step: Accepting or rejecting the final
result of your editing. The choice at the end of the prompt
line indicates that pressing CONTROL-C accepts the insertion
while pressing ESCAPE rejects the insertion, leaving the text as
it was before you began the insertion.

100 Apple III Pascal: Introduction, Filer, and Editor

(Portion of screen before typing I)

PROGRAM EXAMP;
BEGIN

WRITE(' AN IPPLE A DAY')
END.

(Portion of screen after typing I for Insert)

PROGRAM EXAMP;
BEGIN

WRITE(' AN &5
END.

APPLE A DAY')

(Portion of screen after typing "ORANGE")

PROGRAM EXAMP;
BEGIN

WRITE ('AN ORANGE}l
END. -

APPLE A DAY')

(Portion of screen after insertion followed by CONTROL-C)

PROGRAM EXAMP;
BEGIN

WRITE(' AN ORANGElePLE A DAY')
END.

(Portion of screen after insertion followed by ESCAPE)

PROGRAM EXAMP;
BEGIN

WRITE(' AN IPPLE A DAY')
END.

It is legal to insert a carriage return. This is done by
pressing the RETURN key while the Insert prompt line is at the
top of the screen.

The Editor 101

Deleting Text
Making deletions is similar to making insertions. Now that you
have inserted the word ORANGE into the EXAMP program and have
pressed CTRL-C, you must now delete APPLE. Move the cursor so
that it is placed directly on the first character that you wish
to delete. Then press D for Delete. The following prompt line
appears:

>Delete: <Moving keys>, <ctrlC> accepts, <esc> escapes

Each time you press the right-arrow key, the character on which
the cursor is positioned disappears. Pressing the left-arrow
key erases the next character to the left of the cursor. In
this example, pressing the right-arrow key five times causes the
word APPLE to disappear. To terminate the deletion, you have
the same choice you had with Insert. Press CONTROL-C to make the
proposed deletion permanent. Press the ESCAPE key to cancel the
proposed deletion and restore the original text.

It is legal to delete a carriage return. When the cursor is at
the end of the line, press D for Delete. Then press the
right-arrow key until the cursor moves to the beginning of the
next line. After completing the deletion by pressing
CONTROL-C, you may find that the line extends beyond the end of
screen with a "!" at the rightmost position in the line. The
text is not lost, but is not displayed. The ! indicates that
there are characters remaining in the line beyond the 80th
position.

Leaving the Editor
It is a good idea to exit temporarily from the Editor and then
use either the Update or Save commands about every 15 minutes
or so. This way, in case of accident (such as the power going
out or your mistakenly deleting an important part of your
file), you won't lose more than 15 minutes worth of text entry.

102 Apple III Pascal: Introduction, Filer, and Editor

To leave the Editor, press Q for Quit. The following prompt
appears:

>Quit:
To leave Editor, type

E(xit to main command line

To store text file on disk, type
W(rite to a new file name
U(pdate /NEWPASCAL2/SYSTEM.WRK.TEXT
S(ave /MYFIRST/PROGRAM.TEXT

To continue editing, type
R(eturn to same file
C(hange to another file

If you choose the E(xit option, any changes you have made to the
file since the last time it was saved to a disk file will be
thrown away forever. The Editor courteously asks if you wish to

Are you sure you want to throw awa y changes since l as t upda te?

if any such changes exist. You have the option of either
saving changes made since the last time you saved the file
(type N for no), or of not saving them and exiting to the
Command level (type Y for yes).

One way to save a copy of your present file is to press U for
Update. This saves your file on the Pasca l system diskette
under the filename SYSTEM.WRK.TEXT.

If you use Update, you should also use the Filer's Save option
to save the default system workfile under its own filename
before using the Editor to modify or create another file.

Remember that the Filer's New command will erase the workfile
SYSTEM.WRK.TEXT any time it is used, and that the Editor's
Update command always stores the just-edited file under the
same filename SYSTEM.WRK.TEXT. You will not want
SYSTEM.WRK.TEXT to be your only copy of a file once you are
through working on it.

Another method of saving your present file onto diskette is to
use the Editor's Write command. Assume that you have created a
file in the Editor that you want to save. After pressing Q to
Quit the Editor, you press W for Write. When the filename
prompt appears, you enter the file's pathname, which, of course,
includes the name of the diskette on which the file will be

The Editor 103

stored (for example, as /MYDISK/PROGRAM2). If you currently
have no file by that name on the designated diskette, the file
is stored as whatever filename you enter. However, if you have
a file by the designated same name on that diskette, you see the
prompt:

/MYDISK/PROGRAM2.TEXT already exists. Delete before Write?-->
Y(es to delete old file before starting new one.
N(o to delete old file after new one is complete.
<esc> to cancel W(rite.

Entering Y deletes the old version of the file stored on disk
before writing the new version to the disk. The only time that
this is necessary is when there is too little free space on the
diskette to fit both the old and new versions of the file.

Entering N deletes the old file only after the newest version
has been stored on the disk. This is a little safer than using
the Y(es option, but will only work when there is sufficient
room on the disk for both files. You should use the N(o option
whenever possible, especially on dark and stormy nights: a
black-out while your file is being saved when you have
specified the Y option may leave you with no file at all, not
just part of the new one.

If you change your mind, and don't want to save the file now,
you can press ESCAPE to return to the Quit menu.

The Q(uit prompt line reappears after the Write finishes. You
can then enter E to Exit entirely from the Editor to the
Command level, R to Return to the Editor to continue editing
the same file, or C to Change to another file. This last
choice allows you to begin working on another file.

Note that when the Quit prompt line appears after you have
specified the name of the current file, the Save option
appears in the second set of options headed

To store file on disk, type

You now can press S to Save your current file under the same
name during each editing session. This saves you the trouble
of having to enter the entire pathname every time you want to
store more information in the same file.

The Save command operates like the Write command, except that
you don't need to specify the pathname each time you write to
disk.

104 Apple III Pascal: Introduction, Filer, and Editor

Editing an ASCII File
The Ed i tor normally deals with Pascal textfiles having the
special format described in Appendix B. However, it can also
be used to edit a file without this format, called an
asciifile. This ability is useful when editing a file
transported from a non-Pascal system such as Apple III
Business Basic, or Visicalc III.

To edit an asciifile, just give the editor the correct pathname
when entering the Editor. The name of most asciifiles do not
end in .TEXT so you will have to add a period at the end of the
pathname. Now edit the file as you would a regular Pascal
textfile.

When you are finished editing the file, the normal Quit process
will create an asciifile as output; here, however, the Editor
knows it will be creating an asciifile and so will not
automatically append a .TEXT to the file's pathname with the
Quit Write command.

The Quit Update command should not be used as the workfile
should not be an asciif ile. Also, the Assembler and
Compiler cannot handle an asciifile correctly.

All Visicalc III files, including templates and sheets, are
asciifiles and may be read and manipulated by the Editor. For
more information, see the Apple III Visicalc Users Guide.

To convert an asciifile to a textfile, read it in to the
Editor; type

Set Environment Asciif ile False (SEAF) CONTROL-C

to change the type of file, then Write it out in the normal
fashion to a new text file. Similarly, to convert a textfile
to an asciif ile, read it in, set Asciifile to True and Write it
out.

Editing BASIC Files
A Business BASIC text file corresponds to a Pascal asciif ile.
Thus any BASIC text files your program creates can be edited

The Editor 105

with the Pascal Editor. In particular, you can create an BASIC
text file version of a BASIC program using the LIST command
with output directed to a file, use the Editor to edit that
file, then EXEC it back into BASIC and save it as a BASIC
program file. An example follows using the READCRT program
included on your Apple III Business BASIC Disk.

In BASIC type:

)LOAD .dl/readcrt
)OPEN #1, .d2/readcrt: OUTPUT #1: LIST: CLOSE #1
)

Now boot the Pascal system, go into the Editor and in response
to the File? prompt type:

>Edit:
No workfile is present. File? (<ret> for no file, <esc> to exit editor)
: .d2/readcrt.

Do any editing you wish to do, then type Quit Save No to write
the file back. Finally, boot BASIC again and type

)EXEC .d2/readcrt

After you have done this, one) character will appear on the
screen for each line of your file.

The Editor Commands
The following sections describe, in detail, each of the commands
used by the Editor.

The relationship of all the Editor commands to each other and
the Editor command level is show in Figure 4-2 below.

106 Apple III Pascal: Introduction, Filer, and Editor

Figure 4-2. The Editor.

The Cursor
You spend
directing
rectangle
the file.

almost all of your editing time either following or
the movement of the cursor. The cursor is the white
displayed on the screen to indicate your position in

How to make the cursor do what you want it to do is
described here.

Cursor Movement
In general, special cursor moves (see below) are used in the
Editor to move the cursor through the text and place it just
where you want the next command to have its effect.

Notice that not all commands affect the character on which the
cursor actually appears to be placed.

The Editor 107

As you can see below in Figure 4-3, the actual position of the
cursor is between the character is appears to be on and the
next character to its left. If the cursor movement (see
Direction Indicators) is toward the end of the file, which is
toward the lower-right corner of the screen, most Editor
commands can act on characters following the character the
cursor appears to be on as well as the character it appears on.
If the cursor direction is set toward the beginning of the
file, commands will act on characters to the left and above
the character the cursor appears on.

~ cursor appears

Figure 4-3. Cursor Positioning and Action.

Repeat-factors
Some of the command options (and the cursor moves) allow you to
use repeat-factors. A repeat-factor is a number that is
entered immediately before issuing a cursor move or command
that causes the cursor move or the command option to repeat for
the number of times indicated by the repeat-factor.

For example, pressing 2 and then pressing the down-arrow key
causes the cursor move to be ~xecuted twice, moving the cursor
down two lines. Cursor moves and commands allowing a

108 Apple III Pascal: Introduction, Filer, and Editor

repeat-factor assume the repeat-factor to be 1 if no number is
typed.

Explicit repeat-factors may range from 0 to 9999. Typing a
slash (/) before a cursor move or a command indicates an
"infinite" repeat-factor, and causes the move or command to be
repeated as many times as possible in the file.

The Direction Indicator
The first character displayed on most Editor prompt lines is a
direction indicator showing the set direction. A greater than
(>) character indicates forward direction. A less than (<)
character indicates backward (or reverse) direction. When the
Adjust, Edit, or Delete prompt lines are showing, you can type
the > or the < key (with or without the SHIFT key) to change
the direction that the cursor moves.

Forward operations begin at the current cursor position and
proceed toward the end of the file. When the set direction i s
set to the reverse_ direction, operations begin at the current
cursor position and proceed toward the beginning of the file.
Commands whose operation is affected by the set direction are
noted as such in the detailed command description.

The set direction does not affect the operation of the
cursor-moving up-, down-, right-, and left-arrow keys.

Cursor Moves
Repeat-factors are allowed with all cursor moves. The cursor
moves are outlined below.

If you press

up-arrow key
down-arrow key
right-arrow key
left-arrow key
space
TAB key

RETURN key

P(age

The cursor moves

up by lines.
down by lines.
right by characters.
left by characters.
in the set direction by characters.
in the set direction, to the next
tab-stop (tab-stops are set every
eight spaces across the screen).
in the set direction, to the
beginning of the next line.
in the set direction, one full screen.

The Editor 109

If the cursor appears to the right of a line of text, the
Editor acts as though the cursor is positioned immediately
after the last character in the line.

If the cursor appears to the left of a line of text, the Editor
acts as though the cursor were immediately before the first
character in the line. When any action is taken, the cursor
immediately moves over to the character at the nearest end of
the line and begins performing the operation.

Be careful if you are using the fast-repeat feature with a
cursor move: When you press firmly on the repeat key, the
repeat function speeds up and cursor moves will then occur
faster than they can be updated to the screen. This causes
you to overshoot your intended destination. If this
begins to happen, press CONTROL-6 on the numeric keypad to
cancel the rest of a runaway cursor move.

Moving Commands
The commands described below, Jump and Find, allow you to go to
a particular point in the file, defined either by markers placed
in the file or by particular words or character strings found in
the file.

Jump
The Jump command moves the cursor to the beginning of the file,
to the end of the file, to a marker that you have placed
in the file, or to a point.

To use the Jump command, press J for Jump while at the Edit
level. The following prompt line then appears:

>Jump: B(eginning, E(nd, M(arker, P(oint, <esc> escapes

Typing B for Beginning moves the cursor to the beginning of
the file, displays the Edit prompt line and the first page of
the file. Typing E for End (after you have again pressed J
for Jump) moves the cursor to the end of the file, displays the
Edit prompt line and the last page of the file. Typing M for
Marker causes the Editor to display the prompt line:

Jump to what marker?

110 Apple III Pascal: Introduction, Filer, and Editor

If you respond by typing the name of a marker (described under
Set Marker in this chapter) that exists in the file, when you
press the RETURN key, the cursor moves to the marker position
in the text. Pressing the ESCAPE key instead of RETURN aborts
the jump. If you press a marker name that does not exist in
the file, you see this message:

ERROR: Marker not there. Please press <space> to continue.

and the cursor does not move. Placing markers in the text is
explained under Set Marker in the section on Miscellaneous
Commands.

Typing J for Jump and P for Point moves the cursor to the last
point designated by a Find, Replace, Insert, or Set Point
command in your file. The point and cursor are simultaneously
exchanged so that typing J for Jump and P for Point again
returns the cursor and Point to where they were positioned just
before you first pressed Jump Point.

Find
The Find command searches through a file for a specified string
of characters (target string), finds the specified number of
occurrences of that string, and places the cursor at the end of
the string.

To use the Find command, press F for Find while at the Edit
level. One of the following prompt lines then appears, depending
on the setting of the Environment's Token default option (see
the Set Environment section under Miscellaneous Commands):

>Find[l]: L(it <target> =>

if the Environment's Token default option is set to True, or

>Find[!]: T(ok <target> =>

if the Environment's T(oken default option is set to False.

Direction
The Find command searches for the specified occurrence of the
target string, starting at the present cursor position and
scanning through the text in the set direction (indicated by
the arrow at the beginning of the prompt line).

The Editor 111

A target string can be found only if it appears in the text
between the cursor and the end of the file toward which the
search is progressing.

If you wish to search in the reverse direction, you must set
the direction indicator before typing F to find something. See
the section on the direction indicator (under Cursor Movement
in this chapter) for information about setting the direction.
If the required occurrence of the target string i s not found by
searching through the text in the set direction, this message
appears:

ERROR: Pattern not in rest of the f ile Please press <space> t o continue .

Notice that the search does not "wrap around". There is no
search in the portion of the file between the cursor and the
end of the file in the direction OPPOSITE the set direction.

Repeat-factor
You may specify a repeat-factor just before typing the F for
Find. It appears on the prompt line in square brackets: [1) ,
for example. If you enter a repeat-factor of 6, the cursor
appears after the 6th occurrence of the target string. If
there are only four occurrances of the target string in the
file,

ERROR : Pattern not i n rest of file . Please press <space> to cont i nue.

is displayed. If you don't enter a repeat-factor, a
repeat-factor of one is assumed. A repeat factor of I finds,
and stops after, the last occurrance of the target.

Target String and_ Delimiters
You can search for strings containing any characters including
control characters. The target string must be set off by
delimiters. Attempting to use a delimiter that occurs in the
target string causes the Find to execute immediately. This
means that you will search for only part of your intended
target string.

The Editor allows you to choose any character that is not a
letter or a number to be a delimiter so long as the character
is not in the target string. The most common choice is the
slash (I) because it is a character that is not

112 Apple III Pascal: Introduction, Filer, and Editor

often searched for in the text, and is easy to type. Examples
of delimiter usage are given below.

/UNLIKELY/
/An honest man/

or

!2/3!

Multi-line targets and targets containing control characters
are allowed, except for the control characters NULL, BS,
CONTROL-X, and ESCAPE.

If you forget to precede the target string with a correct
delimiter character, you see the message:

ERROR: Inva l id de limiter for Find. Please press <space> t o continue.

Just try again, this time beginning with a correct delimiter.

Unease Option
Normally, Find will only count target string matches as good of
the potential target is all lowercase. Obviously, this will
miss any occuring at the beginning of sentences or as part of a
proper noun.

Unease allows you to match any string having the proper
sequence of characters, regardless of their case.

If you press a "U" immediately after bringing up the Find
command line, all occurances of the target string will be
found, regardless of case.

Literal or Token Search
The target string is treated differently, depending on whether
you select Literal search or Token search. When you select
Literal search, the Editor looks for the occurrences of a string
of characters that exactly match the target string, even if it
occurs within a word. When you select Token search, the Editor
looks for occurrences of the target string using rules similar
to the Compiler's to match a string.

The default setting of the search option is set in the
Environment. The Find prompt line displays the alternative
search mode; either L(it or T(ok. If you do not specify a

The Editor 113

search option, the default search option (the one NOT mentioned
on the prompt line) is used.

To use Token search when the default is Literal search (prompt
line says T(ok), press T after the prompt line and before the
target string. To use Literal search when the default is Token
search (prompt line says L(it), press L before typing the
target string. Note: nothing appears to happen when you press
L or T ; the letter just appears where you are about to press
the target string. See Set Environment in Miscellaneous
Commands for more information about Literal and Token search
options.

ESC Option
At any point during your response to the Find prompt, you can
abandon this command and return to the Edit level by pressing
the ESC key.

Same-string Option
Pressing S instead of typing a delimited target string tells
the Editor to use the same string last specified for the target
string (the target string may have been specified either in Find
mode or in Replace mode). From the Editor, entering the command

FS

causes the previously specified target string to be used again
and is displayed at the top of the screen when you type the s.

Note: The Environment displays the current <target> string
that will be invoked by pressing S as a string response if you
have forgotten what would be used (see Set Environment under
Miscellaneous Commands).

114 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

Suppose you are editing, with Token Search selected, a file
containing the following text:

PROGRAM STRINGl;
BEGIN

WRITE('TOO WISE ');
WRITE('YOU ARE');
WRITELN(',');
WRITE('TOO WISE');
WRITELN('YOU BE.')

END.

In the STRINGl program, with the cursor at the P in the line

PROGRAM STRINGl;

enter F to select Find. When the Find prompt line appears,
enter

/WRITE/

You MUST enter the two slashes (or two of some other
delimiter). The prompt line should now appear as:

>Find[l]: L)it <target> •>/WRITE/

until you press the last slash; the cursor then jumps
immediately to the first character following the E in the first
occurrence of the Token target string

WRITE

EXAMPLE:

Again in the STRINGl program, with the cursor at the E of END.
enter:

<2F

This prepares the system to find the second pattern (you entered
a repeat-factor of 2) in the reverse direction (you changed the
set direction by entering<). When the prompt line appears,
enter

/WRITELN/

The Editor 115

The prompt line should read:

<Find[2]: L)it <target> =>/WRITELN/

When you press the last I , the cursor moves immediately to the
W in the second nearest occurrence (searching backward through
the file) of the Token string WRITELN • (The fifth line of the
program).

After typing JB to Jump to the Beginning of the file, enter

F/WRITE/

This locates the first occurrance of the Token string WRITE ,
searching forward (to the third line). Now, typing

>FS

makes the prompt line flash:

>Find[l]: L(it <target> =>/WRITE/

and the cursor appears at the next occurrance of WRITE.

Text-Changing Commands
The commands listed in this section (Insert, Delete, Zap, Copy,
Exchange, and Replace) enable you to change the content of the
text that you are working on.

Insert
The Insert command allows you to put new information into the
text you are creating or editing.

To insert text, position the cursor where you want to insert and
enter I for Insert while at the Edit level. The following prompt
line appears:

>Insert: <Text>, <bs> a char, a line, <ctrlC> accepts, <esc> escapes

When the Insert prompt line appears at the top of the screen,
the characters that you enter are inserted between the
character on which you placed the cursor and the character that
was immediately to the cursor's left.

The Insert prompt line also reminds you how to correct errors
while you are entering text: The <bs> stands for the

116 Apple III Pascal: Introduction, Filer, and Editor

left-arrow key (BACK SPACE), used to delete text a character at
a time, and stands for CONTROL-X , used to delete text back
to the most recent RETURN character.

To save time, the Editor does not constantly re-write the entire
screen as you insert each new character. Instead, it makes a gap
in the text, just where your insertion will appear, and then
waits for you to enter.

If you want to see exactly how the insertion will look in its
final form, you can accept your insertion by pressing CONTROL-C •

If you make a mistake while inserting, just use the left-arrow
key to backspace over your inserted characters. To delete the
entire line that you are in the process of inserting, back to
and including the previous RETURN character, enter a CONTROL-X •
You can erase only the text that you have added during the
current insertion.

The set direction does not affect the Insert command.

At any time during an insertion, you can cause the Editor to
accept the insertion as it stands (making it a part of your
file) by pressing CONTROL-C • Until you press that CONTROL-C ,
you can cause the Editor to discard everything you have entered
since beginning the insertion by pressing the ESC key.

Whether the insertion is made and accepted (using CONTROL-C) or
made and rejected (by pressing the ESCAPE key), that insert i on
is still available, in the Copy buffer, until the next
insertion or deletion, for use by the Copy command. You can
use this to duplicate your last insertion as many times as you
wish. Remember that all of the text may not be available if
there is not enough room in memory for all of it.

I f you have mistakenly rejected the insertion by pressing
ESCAPE, you can still recover the text using the Copy
Buff er command.

The maximum size of a file that you can edit on a 128K Apple III
is approximately 28,000 characters, or about 54 diskette blocks.
When your file can hold only about a thousand more characters,
you will recei ve thi s warning as you begin entering more text:

ERROR: Pl ease finish up the ins e r t i on. Please press <space> t .o cont inue .

The Editor 117

When you respond by pressing the space bar, the Insert prompt
line will still be at the top of the screen. You can continue
your insertion, but you have been warned that your file is
almost full. You should start a new file right away or split the
present file into two parts. If you continue inserting, you will
eventually receive this more urgent message, when your file has
exceeded the amount of text it can hold:

ERROR: Buffer overflow!!!! Please press <space> to continue.

The Editor accepts your insertion, and any further attempts to
insert text cause this message:

ERROR: No room to insert. Please press <space> to continue.

The Edit prompt line reappears on the top of the screen, and you
are not able to add any more text to your file.

Text Formats
There are two basic ways that text can be formatted as you
insert it; programming mode and document mode. The formatting
mode is basically determined by the settings of two options
in the Environment; Indent-auto and Filling (see Set
Environment under Miscellaneous Commands).

You select programming mode by setting Indent-auto to True and
Filling to False. You select document mode by setting
Indent-auto to False and Filling to True. For example, this
manual was written in document mode, and the programming
examples found in the Apple III Pascal system manuals were
written using programming mode.

Inserting in Programming Mode
This is the usual setting of the Environment when you are
writing computer programs, building tables, writing outlines,
or writing poetry. During an insertion, the margins set in the
Environment are ignored. Instead, you must terminate each line
yourself, and start a new line, by pressing the RETURN key.
Each new line automatically starts at the same indentation as
the first non-space character of the preceding text line.

When you first create a document in the Editor, the Environment
for that document is set for programming mode. If the document
Environment settings have been changed to document mode and you

118 Apple III Pascal: Introduction, Filer, and Editor

I ii fifri*fii*

wish to set it back to programming mode, you can set the
programming mode by typing

SEFFIT

followed by RETURN. SE allows you to set the Environment
options, FF selects Filling and sets it to false, and IT
selects Indent-auto and sets it to true.

You can change indentation of a line by typing spaces or tabs
(to indent farther) or by pressing the left-arrow key as the
first character in a line (to indent less). Pressing CONTROL-Q
as the first character of any new line sets the indentation of
that line to zero, or type CONTROL-X to discard a line and
return to the end of the previous line. You can also use the
Adjust command to create a new indentation for a line after you
leave Insert mode. (Adjust is described in the section
entitled Formatting Commands.)

The Editor allows you to insert new lines of text into a file
without disturbing the indentation of existing lines.
Beginning an insertion at the start of a line and ending with a
RETURN CONTROL-C will not change the indentation of that line.

If you try entering text beyond position 71, your Apple III
beeps to warn you that you are approaching your right margin.
If you enter text beyond position 80, an exclamation mark (!)
appears at the rightmost position on the screen. This
character at the end of any line indicates that the line
contains more than the 80 characters that can appear on the
screen. Additional characters entered into that line are not
lost, but they are not displayed.

To see the hidden characters, you can insert a RETURN character
anywhere in the visible portion of the line; or use the Margin
command. The Margin command will ask for confirmation of your
intent, since Filling has been set to false.

EXAMPLE:

In Programming mode, type I for Insert and then type the
following sequence of keys:

ONE<return>
<space><space><space>TWO<return>
THREE<return>
<left-arrow>FOUR<return>

The Editor 119

This should create the indentations shown at the left below:

ONE Original indentation
TWO
THREE

FOUR

Indentation changed by <space><space><space>
<return> causes indentation to level of line above
<left-arrow> changes indentation from level of line above

Inserting in Document Mode
This is the normal setting of the Environment when you are
writing text such as letters, user manuals, or other documents.
The Editor forces all insertion to be between the margins set
in the Environment. The instant a new word (as you are
entering it) exceeds the right margin, a RETURN character is
automatically inserted before the word, and the entire word (or
as much of it as you have entered at that point) is placed
beginning at the left margin defined in the Environment.

In the Editor, a word is any text character or characters
bounded by any tw~rd delimiters, where a word delimiter is a
space, a RETURN character, the beginning or end of the file, or
the beginning or end of the current insertion (before you press
CONTROL-C). The hyphen is not a recognized word delimiter. If
you enter two or more RETURN characters in succession, the next
text begins at the set Paragraph margin.

This setting of the Environment also causes the Editor to adjust
the margins on the portion of the paragraph following an
insertion (but not the paragraph portion preceding the
insertion). The Editor considers a paragraph to be any text
bounded by any two paragraph delimiters, where a paragraph
delimiter is a blank line (created by two RETURN characters), a
line beginning with the Command character (set in the
Environment), or the beginning or end of the file.

The automatic re-margining following an insertion can
sometimes cause you much grief. If you are editing in or
near a diagram, table, or other carefully formatted
portion of text, it is a good precaution to set Filling
temporarily to False (just enter SEFF<ctrlC>). This
prevents an insertion from scrambling your beautiful
diagram into a paragraph of meaningless text.

120 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

In document mode, the Left margin at 0, and Right margin at 13,
enter I for Insert and then enter the following:

WISH I WEREN'T A WASH-AND-WEAR WARRIOR

This should create the text format shown at the left, below:

WISH I
WEREN'T A
WASH-AND-WEAR
WARRIOR

Auto-returned when next word would exceed margin
Auto-returned when next word would exceed margin
Auto-returned at first possible break, even though
beyond margin

Inserting with Indent-auto and Filling both True
With this setting of the Environment, Indent-auto controls the
left margin, ignoring the settings of the Left margin and
Paragraph margin. Filling inserts RETURN characters as
before, to keep lines from exceeding the set Right margin.

However, Filling operates only to keep the CURRENT insertion
from exceeding the Right margin. Any text on the same line, but
to the right of the cursor, may extend beyond the Right margin
or even beyond the 80 characters visible on the Apple's display.
The existence of characters beyond position 80 is indicated by
an exclamation mark (!) displayed at the rightmost position on
the screen. To see the hidden characters, insert a RETURN
character anywhere in the visible portion of the line, or
Margin the paragraph.

Changing the indentation can be done as before, by entering a
space or left-arrow, but only as the FIRST character in
a new line (not likely, since Filling generally begins a line
with the last entered word). You can delete a line and indent
to the left margin by using CONTROL-Q. This setting of the
Environment is not usually very helpful, as its effects can be
better obtained in other ways.

Inserting with Indent-auto and Filling both False
With this setting of the Environment, the Editor ignores the
margins set in the Environment. You must enter into the text
all margins, indentations, and RETURN characters.

As in Programming Mode, if you attempt to enter text beyond
position 71, the computer beeps to warn you. If you attempt to
enter text beyond position 80, an exclamation mark (!) appears

The Editor 121

at the rightmost position on the screen. This character at the
end of any line indicates that the line contains more than the
80 characters that can be displayed on the screen. Additional
characters entered into that line are not lost, but they are
not displayed.

To see the hidden characters, you can insert a RETURN character
anywhere in the visible portion of the line; or you can use the
Margin command.

Delete
The Delete command removes text from the file.

To delete text, enter D for Delete while at the Edit level.
After you enter D, the following prompt line appears:

>Delete: <Moving keys>, <ctrlC> accepts, <esc> escapes

Prior to entering D, make sure that the cursor is in the
correct position to begin the deletion. Editor commands begin
their action immediately to the left of where the cursor appears
to be positioned. (See Figure 4-5 below.)

122 Apple III Pascal: Introduction, Filer, and Editor

set Delete mode
and move cursor

Figure 4-4. Cursor Action with Delete Command.

If you position the cursor at the middle of a line of text,
moving the cursor to the right will delete characters beginning
with the first character that the cursor appeared on. Moving
the cursor to the left will begin deleting text with the first
character to the~ of the cursor.

Remember, the cursor is always between the character it appears
to be on and the next character toward the beginning of the
file.

The Editor remembers where the cursor is when you enter D for
Delete. This position is called the anchor. As the cursor
moves away from the anchor in any direction, using the normal
cursor moves, all text between the cursor and the anchor
disappears. When you move the cursor toward the anchor, the
erased characters reappear. The repeat-factor can also be used
to delete or undelete several lines at once, by prefacing a
RETURN or any other cursor move with a repeat-factor while the
Delete prompt line is showing.

The Editor 123

To accept the deletion at any point, press CONTROL-C. To undo
the entire deletion at any time before pressing CONTROL-C,
press the ESCAPE key.

Unlike inserting text, deleting text does NOT cause
re-margining of the portion of the paragraph following the
deletion, even if the Environment's Filling option is set to
True and Auto-indent is set to False.

After a deletion that included a RETURN character, the line
containing the cursor may extend beyond the 8~-character limit
of the system's display. The invisible portion of the line is
indicated by an exclamation mark (!) in the last visible
chara,cter-position of the line. To see the rest of the line,
insert a RETURN character anywhere in the visible portion of
the line, or use the Margin command to reformat the entire
paragraph.

All the text between the cursor and the anchor position is
stored in the Copy buffer, ready for use by the Copy command,
not only after you accept the deletion with CTRL-C, but also
after you reject the deletion by pressing the ESCAPE key. This
last fact is useful when you want to duplicate some text in
another location, or when you are moving some text to another
location but wish to keep a backup copy of the text until the
move is successfully completed. If you mistakenly press D to
delete, press ESCAPE. The copy buffer will not be changed.

The Copy buffer may be unable to hold all the deleted text if
you attempt to delete too much text at one time. The maximum
amount of room in memory for the Copy buffer varies somewhat,
depending on how large your file is at the moment. If you try
to delete more text than will fit in the Copy buffer, this
message appears:

There is no r oom to copy the deletion. Do you wish to delete anyway? (y/n)

If you enter Y for "Yes", the text between the cursor and the
anchor position is deleted, but that text does not go into the
Copy buffer. If you enter N for "No", the deletion is not
performed, and the text is not placed in the Copy buffer. After
a response of either Y or N , the Copy buffer remains with the
same text it contained before you initiated the Delete command.

124 Apple III Pascal: Introduction, Filer, and Editor

EXAMPLE:

Suppose you are editing the following text:

PROGRAM STRING2;
BEGIN

WRITE('TOO WISE');
WRITELN('TO BE.')

END.

1) Move the cursor onto the E in END.
2) Type D for Delete.
3) Type < • This changes the set direction to backward.
4) Press the RETURN key twice. After the first RETURN

the line ''WRITELN('TO BE.')" disappears.
After the second RETURN, the line "WRITE('TOO WISE')";
disappears.

5) Now press CTRL-C. The program after deletion appears as
shown:

PROGRAM STRING2;
BEGIN
END.

The two deleted lines have been stored in the Copy buffer, and
the cursor has returned to the anchor position. Now type CB to
place the contents of the Copy buffer back in the file, then
type CB again several times to write multiple copies of the
deleted lines to the file:

PROGRAM STRING2;
BEGIN

WRITE('TOO WISE ');
WRITELN('TO BE.')
WRITE('TOO WISE');
WRITELN('TO BE.')
WRITE('TOO WISE ');
WRITELN('TO BE.')
WRITE('TOO WISE');
WRITELN('TO BE.')

END.

This leaves you with something like the example above,
depending on how far you get carried away with the command.

The Editor 125

Note: after pressing CTRL-C, if you immediately copy the
deletion without moving the cursor, the deleted material is just
replaced. This gives you one more chance to recover from a
mistaken deletion.

Zap
The Zap command deletes all text between the current cursor
position and the point. The point is the text position of the
first character of the most recent Find, Replace, Insert, or
Set Point command.

You execute the Zap command by typing Z for Zap while at the
Edit level. Because several different commands can move the
point, you ~an check the beginning and end of the text to be
Zapped by t!Jping JPJP for Jump Point Jump Point.

If you Zap more than 80 characters, the Editor asks for
verification:

WARNI NG! You are about t o zap mor e than 80 char s , do you wish t o zap? (y/n)

Repeat-factors and Zap: If the Find or Replace command is used
with a repeat-factor, only the last string found or replaced
will be deleted by Zap. All the other strings remain as found
or replaced.

All the text that is deleted by using the Zap command goes i nto
the Copy buff er, where it is available for use with the Copy
command (until the next insertion or deletion).

If you attempt to use Zap to delete too much text at one time
(the maximum amount varies somewhat, depending on how large your
file is at the moment), the Copy buffer may be unable to hold
all the deleted text. In that case, when you enter Z to Zap a
very large block of text, first this message appea rs:

WARNING! You are about to zap mor e than 8~ chars , do you wi s h to zap? (y/n)

and then, if you enter Y for "Yes", this message appears:

There i s no room t o copy the deletion. Do you wi sh t o delet e anyway ? (y/n)

If you enter Y for "Yes", the text between the curs or and t he
point is deleted, but that text is not pla ced in the Copy
buffer. If you enter N for "No", the deletion is not
performed, and the text is not placed in the Copy buffer.

126 Apple III Pascal: Introduction, Filer, and Editor

Copy
This command copies text from the Copy buffer or from a
diskette file. To use the Copy command, enter C for Copy at
any time the Edit prompt line is showing. When you enter Copy
mode, the following prompt line appears:

>Copy: B(uffer, F(ile portion, M(arkers, <esc> escapes

Copying From a Fife
Enter C for Copy and then F for File portion, to copy text
stored in a file (including the one you are working in) and
insert it in your file. When you do this another prompt line
appears:

>Copy: From what file?

Any on-line file may now be specified. Use of the Copy command
does not"--ehange the contents of the file from which you are
copying. You may enter the filename's .TEXT suffix or not, as
you wish, since .TEXT is automatically supplied if you do not
enter it into your pathname. To suppress this feature (when
copying from a file whose name does not end in .TEXT), enter a
period following the complete pathname.

To copy only part of a file, two markers must have been set
(from the Editor) to bracket the desired text. (See the
section titled Set Marker under Miscellaneous Commands.) After
you enter F for File pathname, you see the prompt:

>From what marker?

Enter the name of the first marker that you had set in that
other file during an earlier editing session.

If your response to the prompt line above is just a <return>
character, the copy will start with the beginning of the file.
You then see the following prompt:

>To what marker?

Enter the terminal marker of the information you wish to copy
into your current file. Entering RETURN now will copy all the
file from the previously-specified point to the end of the
file. You can abort the Copy operation by pressing ESCAPE at
any time before the final RETURN is typed.

The Editor 127

If you have not placed the markers that you thought you had, you
see the following message:

ERROR: Marker not there. Please press <space> to continue.

Pressing the space bar returns you to the Edit level.

On the completion of the Copy command, after text has been
copied from the specified file, the Editor places the cursor
before the first character of the text that you copied.

If your present file cannot contain all the additional text
that you are attempting to copy into it (maximum size of a file
on a 128K Apple III is about 54 diskette blocks), the Editor
copies in as much of the additional text as it can. Then it
gives this message:

ERROR: Buffer overflow. Please press <space> to continue.

When you press the space bar, the copy is complete, and your
file now contains as much of the additional text as the Editor
could fit into your file. Remember that none of the target
file's Environment information is brought over with the copied
text.

You can copy from an asciif ile regardless of the type of file
being edited. There will be no requests for markers since an
ascii file has no markers. The Copy command will copy the
entire asciifile in to your file currently being edited.

EXAMPLE:

Suppose the diskette named /MYDISK/ contains a file named
SUPERMART.TEXT , which has two markers placed in its text:
ALPHA and BETA • Further suppose that you are now i n the
Editor, editing a file, and you wish to insert the text of
SUPERMART.TEXT , bounded by markers ALPHA and BETA, at the
current cursor position.

128 Apple III Pascal: Introduction, Filer, and Editor

In response to the Editor prompt line, you first enter C to
enter Copy mode, and then enter an F to select copying from a
File portion. This prompt line then appears:

>Copy: From what file?

To cause the planned insertion, enter

/MYDISK/SUPERMART<return>
ALPHA<return>
BETA<return>

Copying From the Copy Buffer
Each time you insert or delete text, you are also storing that
text in the Copy buffer, sometimes called the insert-delete

~uffer. To use the text in the Copy buffer, enter C to enter
Copy mode and then enter B for Buffer. The Editor immediately
copies the contents of the Copy buffer into the file at the
current location of the cursor (that is, between the character
on which the cursor sits and the first character to the
cursor's left). Use of the Copy command does not change the
contents of the Copy buffer.

Upon completion of the Copy command, after text has been copied
from the Copy buffer, the cursor is placed before the first
character of the text that you copied.

Unlike inserting text, copying text does NOT cause re-margining
of the portion of the paragraph following the Copy, even in
document mode. After copying, some lines may extend beyond the
80-character limit of the Apple III's display.

After an insertion has been made, you can use the Copy command
to duplicate the section of text just inserted as many times as
desired. Use the Copy command, too, to move text from one
location in the file to another. Delete the text from its
present location, then move the cursor, and copy the deleted
text into its new location.

The contents of the Copy buffer are affected by the following
commands:

1) Delete: When you accept a deletion (with CONTROL-C), the Copy
buffer is loaded with the deleted text. When you reject a
deletion (by pressing the ESCAPE key), the Copy buffer is
loaded anyway, with the text that would have been deleted
had you accepted the deletion. However, if you enter D to

The Editor 129

Delete some information but then enter the ESCAPE key before
moving the cursor over any characters, there will be no
effect on the Copy buffer. It will retain the information
from your previous insertion, deletion, or zap. Similarly,
if you enter D to Delete and actually move the cursor
through several characters but then backspace to your point
of origin and press ESCAPE, your Copy buffer will not be
affected.

If there is not enough room in memory, the Copy buffer will
not be loaded by pressing ESCAPE and you will lose the
deleted text forever.

2) Insert: When you accept an insertion with CONTROL-C, or
reject it with ESCAPE, the Copy buff er is loaded with the
inserted text. If there is not enough room in memory, the
copy buffer may not be loaded after pressing ESCAPE.

3) Zap: When you delete text using the Zap command, the Copy
buffer is loaded with the deleted text.

4) Margin: Using the Margin command destroys the contents of
the Copy buffer.

If you have used most or all of the available file workspace
(about 54 blocks with a 128K Apple III), if an attempted Copy
causes either

ERROR: Invalid copy. Please press <space> to continue.
or

ERROR: No room to copy. Please press <space> to continue.

to be displayed, it is probably time to either begin a new file
or to split the file you are working on into two parts.

Exchange
You use the Exchange command to replace characters in a line
by entering new characters.

Press X to use the Exchange command. After doing this, the
following prompt is displayed:

>eXchange : <t ext >, <bs> a char , <r ight a rrow> copies , <ctrlC> , <esc>

As you enter characters from the keyboard, the cursor moves to
the right along the line of text and replaces existing
characters with the characters you are entering. After

130 Apple III Pascal: Introduction, Filer, and Editor

finishing your change to a line of text, you can accept the
changes by pressing CONTROL-C or reject them by pressing
ESCAPE.

You can use the right-arrow key to copy over existing text
without changing it, and use the left-arrow key to back up and
restore old characters one by one. Exchange is not affected by
the set direction, and can be used for only one line at a time.

Replace
The Replace command replaces a specified string with a
specified substitute string. Its operation is very similar to
Find, except that the target string can be replaced with a
substitute string after being found.

To use the Replace command enter R for Replace while at the Edit
level. One of the following two prompt lines will then appear,
dependi~ on the setting of Token default in the Environment
(see Set Environment in the Miscellaneous Commands section):

>Replace[l]: L(it V(fy <targ> <sub> =>

if the Environment's Token default is set to True, or

>Replace[l]: T(ok V(fy <targ> <sub> =>

if the Environment's Token default is set to False.

The Replace command searches through a file in the set direction
to find the specified number of occurrences of the specified
target string of characters, and replaces each of those
occurrences (after verification, if that option is chosen) with
the specified substitute string of characters. When finished,
it places the cursor at the end of the last string found and/or
substituted.

Set Direction
The Replace command searches for a specified number of
occurrences of the target string beginning at the present cursor
position and scanning through the text in the set direction
(indicated by the arrow at the beginning of the prompt line).
The number of occurrences searched for is determined by the
repeat factor that you specify. An occurrence of the target
string will be found only if it appears in that portion of the
text which lies between the cursor and the end of the file
toward which the search is progressing. See the section on the

The Editor 131

set direction (in this chapter, under General Information) in
order to change the set direction arrow. If the end of the file
is reached before the specified replacement can be carried out,
this message appears:

ERROR: Pattern not in rest of the file. Please press <spacebar> to continue.

Notice, however, that the search does not "wrap around". That
portion of the file between the cursor and the end of the file
in the direction OPPOSITE the set direction is not searched.

Repeat-factor
The repeat-factor is allowed when using the Replace function.

Literal or Token Search
The target string is treated differently, depending on whether
Literal search or Token search is selected. When you select
Literal search, the Editor will replace any occurrence of a
string of characters that exactly matches the specified target
string. If Token search is selected, the Editor looks for
isolated occurrences of the target string, ignoring spacing.
See Set EnvirObment in Miscellaneous Commands for more details
about the difference between Literal and Token search.

The default setting of the search option is set in the
Environment. The Replace prompt line indicates only the
alternate choice of search mode. If you do not specify a
search option, the default search option (the one which is NOT
mentioned on the prompt line) is used. To use Token search
when the default is Literal search (prompt line says T(ok),
enter T after the prompt line and before the target string. To
use Literal search when the default is Token search (prompt
line says L(it), enter L before entering the target string.

Note: Nothing appears to happen when you enter L or T ; the
letter just appears where you are about to enter the target
string.

Target Strings and Delimiters
The Editor has two string storage variables. The first string
variable, called <target> or <targ> by the prompt line, contains
the "target" string, and is used both by the Find command and
by the Replace command. The target string is the sequence of
characters which will be searched for by the Find command, or
searched for and replaced by the Replace command. The second

132 Apple III Pascal: Introduction, Filer, and Editor

string, used only by the Replace command, is called <sub> by the
Replace prompt line and is the "substitute" string. In the
Replace command only, the substitute string is the sequence of
characters that will replace the target string when the target
string is found.

To allow the target and substitute strings to contain almost
any characters (including RETURN characters), each string must
be entered using special rules. In particular, each string
must be set off by characters called "delimiters". Both
delimiters of a string must be the same character. One
delimiter must precede the first character of the string, and
the same delimiter must follow the last character of the
string.

The Editor allows almost any normal printing character that is
not a letter or a number to be a delimiter as long as it does
not occur in the string delimited. This lets you choose the
delimiter. The most common choice is the slash (I) because it
is a lower-case character that is not commonly found in text,
and it is easy to enter.

Once you have entered the initial delimiter character for either
the target or the substitute string, you cannot backspace (using
the left- arrow key)~o erase that character or any of the
preceding characters in your response. If you forget to precede
either the target string or the substitute string by a correct
delimiter character, you will be told.

Error: Invalid delimiter. Please press <spacebar> to continue.

You will get the same message if you try to backspace (by
pressing the left-arrow key) immediately after entering the
target string's final delimiter. Just try the whole command
again, and this time use correct delimiters.

Verify Option
The Verify option (shown as V(fy on the Replace prompt line)
permits examination of each target string as it is found, before
the replacement is carried out. You can then decide whether
this occurrence of the target string is to be replaced or not.
To select the Verify option when using Replace, enter V before
entering the target string. Nothing will appear to happen when
you enter V, but the Verify option will be selected anyway. The
following prompt line appears whenever the Replace command has

The Editor 133

found an occurrence of the target string in the file and Verify
has been requested:

>Replace: <esc> aborts, 'R' replaces, ' ' doesn't

Typing an R at this point will cause the .specified replacement
to be carried out, while pressing the spacebar will cause the
system to search for the next occurrence of the target string,
provided the specified repeat-factor (or the end of the file)
has not been reached. Entering <esc> aborts the Replace
operation. The repeat-factor specifies the number of times an
occurrence of the target string will be found, not the number of
times you actually cause its replacement. Use I as the
repeat-factor to examine every occurrence of the target string
in the set direction.

Literal or Token Search
Replace uses the Literal and Token search modes exactly as does
the Find command.

ESCAPE Option
At any time during your response to the Replace prompt, you can
abandon this command and return to the Edit level by pressing
the ESCAPE key.

Same-string Option
Typing S in place of the delimited target string tells the
Replace command to use the target string that was last
specified. The target string may have been specified either by
the Find command or by a previous use of the Replace command.
Similarly, entering S in the place of the delimited substitute
string tells the Replace command to use the same substitute
string that was last specified by a previous use of the Replace
command. For example, with the Replace prompt line at the top
of the screen, entering

Sf <any-string>/

causes the Replace command to use the previous target string
(and a new substitute string), while entering

/<any-string>/S

134 Apple III Pascal: Introduction, Filer, and Editor

causes the previous substitute string to be used (and a new
target string). From the Editor, entering the command

RVSS

says "Do it again": it causes the next occurrence of the
previously specified target string to be replaced (after
verification) with the previously specified substitute string.

If you have not previously specified a substitute (or target)
string, you will be informed

'no old target'

or

'no old substitute'

Note: The Environment (see Set Environment, in Miscellaneous
Commands) shows you the current <target> and <subst> strings
which will be invoked by entering S as a string response.

EXAMPLE:

Suppose you wish to replace the next three occurrences of the
target string APPLE with the substitute string BANANA, assuming
that the set direction is >, and Literal search is true :

With the Edit prompt line showing, you would enter

3R

to indicate a repeat-factor of 3 and then to select the Replace
command. In response to the Replace prompt line:

>Replace[3]: T(ok V(fy <targ> <sub> =>

you could enter

/APPLE/)BANANA)

In this example, first the character I is used as the beginning
and ending delimiter for the target string, and then the
character) is used as the beginning and ending delimiter for
the substitute string. In the example, two different delimiters

The Editor 135

were used for pedagogical purposes. In practice you would be
more likely to use

/APPLE//BANANA/

If you now wish to Replace five more occurrences of the target
string APPLE, but this time with the substitute string PAPAYA ,
just enter, with the Edit prompt line showing,

SRS?PAPAYA?

After a brief flash of this prompt line

>Replace[S): T(ok V(fy <targ> <sub> =>/APPLE/?PAPAYA?

the requested replacements will be carried out.

EXAMPLE:

Now assume that Token mode is true; if you enter

RL/QX//YZ/

when the Edit prompt line is showing, this prompt line should
appear:

>Replace[l): L(it V(fy <targ> <sub> =>L/QX//YZ/

If the cursor is before the V in VAR, this command will change
the program ltne

VAR SIZEQX:INTEGER;

to

VAR SIZEYZ:INTEGER;

You must select the non-default Literal search option (by entering
L before entering the target string) because the string QX is not
a Token but is part of the Token SIZEQX.

Formatting Commands

Adjust
The Adjust command adjusts the indentation of a line or a whole
group of lines.

136 Apple III Pascal: Introduction, Filer, and Editor

To use the Adjust command enter A for Adjust while at the Edit
level. The following prompt line will then appear:

>Adjust: L(jus t R(just C(enter <moving keys>, <ctrl C) accepts , <esc) escape s

The right-arrow and the left-arrow keys can be used to push the
line right and left, or you can adjust the line to the Left
margin, the Right margin, or the Center. Moving the cursor up
or down makes the same adjustment to lines above or below. Use
of a repeat-factor is valid with all cursor moves.

Each time the right-arrow key is pressed when the Adjust prompt
line is at the top of the screen, the line the cursor is
sitting on moves one space to the right. The line can be moved
beyond the Right margin set in the Environment. Characters moved
beyond the 80-th character position are not displayed, but their
existence is indicated by an exclamation mark (!) in the 80-th
character position of the line.

Each time the left-arrow key is entered, the whole line moves one
position to the left. The line can be moved beyond the Left
margin set in the Environment, but the leftmost character cannot
be moved beyond the left edge of the screen display character
position zero.

When the line is adjusted to the desired indentation press
CONTROL-C •

Note: ESCAPE can be used to cancel the adjustment of the current
line. You accept the adjustment by pressing CONTROL-C or by
moving to anotner line.

In order to adjust a whole sequence of lines, first adjust the
top or the bottom line, then BEFORE entering (CONTROL-C) use the up
or down arrow keys. The line above or below will automatically
be adjusted by the same amount when the cursor jumps to that
line. Finally, when the entire sequence has been adjusted, enter
CONTROL-C.

Repeat-factors, including I , are valid when used before any of
the cursor moves while in Adjust mode.

The Adjust command can also be used to center text on the page
and to left-justify or right-justify text (force all the lines
to make a smooth left margin, like this page, or a smooth right
margin). Entering L for L(just while the Adjust prompt
line is showing causes the line containing the cursor to be

The Editor 137

left-justified by moving the leftmost non-space character to
the Left margin set in the Environment.

Similarly, entering R for R(just right-justifies the line by
moving the rightmost text character to the set Right margin.
Entering C for Center causes the line to be centered between
the set Left and Right margins. Entering the up-arrow or
down-arrow key before CONTROL-C is entered will cause the line
above or below to be adjusted to the same specification
(left-justified, right-justified or centered) as the previously
adjusted line.

EXAMPLE:
Now insert a line to practice shoving it around with the Adjust
command:

My name is Caspar Milquetoast.

After you have typed CONTROL-C to accept the insertion, type
AL<CONTROL-C>, moving your line to the left margin:

My name is Caspar Milquetoast.

Now type AR<CONTROL-C> to shove the line to the right margin:

My name is Caspar Milquetoast!

Now type AC<CONTROL-C> to center the line:

My name is Caspar Milquetoast.

Now type AL<lef t-arrow><lef t-arrow><lef t-arrow><CONTROL-C> to
drag the line to the fourth column from the left margin:

My name is Caspar Milquetoast.

Now that you've satisfied the brute within you, let us continue
on.

~~
The Margin command adjusts a paragraph by expanding it as much
as possible without exceeding the the margins set in the
Environment. You execute Margin by entering M for Margin while
at the Edit level.

Margin is an Environment-dependent command that has three
parameters, all set in the Environment: Right margin, Left

138 Apple III Pascal: Introduction, Filer, and Editor

margin and Paragraph margin. See Set Environment under
Miscellaneous Commands for how to set the margin values.

In addition to this, Margin assumes that if you have Filling
set to false, or Indent-auto set to true, that you won't want
to remargin a paragraph by accident. If you press M for Margin
while not in document mode, the Editor will display:

Inappropriate environment. Margin this paragraph anyway? (y/n)

You would find this most useful while you are creating a
document with diagrams or tables (which don't need or even want
to be margined!) included with normal text.

The Margin command affects only the paragraph containing the
cursor. A paragraph is defined to be any text bounded above
and below by paragraph delimiters, where a paragraph delimiter
is a blank line (created by two consecutive RETURN characters),
the beginning of the file, the end of the file, or a line which
starts with the Command character that is currently set in the
Environment. Unless you change it (see Set Environment), the
Command character is by default the carat(~),

To margin a paragraph, move the cursor to anywhere in that
paragraph and enter M • The screen blanks while the Margin
command is busy shuffling the paragraph. When doing an
exceptionally long paragraph, it may take several seconds
before the routine is ready to redisplay the screen. When
breaking lines to avoid exceeding the right margin, the Margin
command recognizes all spaces as possible points to break the
line. All other characters in sequence are considered words,
and will not be-bt'oken.

The Margin command does not recognize hyphens as possible line
break points, nor does it know how to correctly introduce
hyphens into words that do not already contain them.

The following characters: period, question mark, colon,
exclamation point, or any of those characters immediately
followed by a close-parenthesis or double quote, will be
followed by exactly two spaces after a Margin command.
This might cause some inconvenience with abbreviations.

The Margin command will compress all groups of spaces
between words into single spaces.

The Editor 139

EXAMPLE:

The paragraph below has been typed with these Environment
parameters set:

Left margin 0
Right margin 64
Paragraph margin 8

When you operate a skateboard in excess of 150 miles
per hour, certain problems are encountered. First of
all, the number of traffic citations becomes
excessive, unless your skateboard is equipped with
either a working radar detector or set of flashing
red lights. Secondly, goggles and knee protectors
of ten blow away and skateboards have been known to
become airborne. Lastly, you may have to endure the
ire of Porsche and Ferrari drivers, since they become
depressed, angered, and sometimes say uncomplimentary
things when passed by a person on a skateboard.

Next, the same paragraph is shown after being margined with these
parameters set in the Environment:

Left margin 10
Right margin 50
Paragraph margin 0

140 Apple III Pascal: Introduction, Filer, and Editor

When you operate a skateboard in excess of 150
miles per hour, certain problems are
encountered. First of all, the number
of traffic citations received gets out
of hand, unless your skateboard is
equipped with either a working radar
detector or set of flashing red lights.
Secondly, goggles and knee protectors
often blow away and skateboards have
been known to become airborne. Lastly,
you have to endure the ire of Porsche
and Ferrari drivers, since they become
depressed, angered, and sometimes say
uncomplimentary things when passed by a
person on a skateboard.

Miscellaneous Commands

Verify
The Verify command verifies the contents of the Editor
by redisplaying the screen.

The Verify command is executed by entering V for Verify while
at the Edit level. There is no indication of the Verify
command on the Edit prompt line. The status of the Editor is
verified by redisplaying the screen. The Editor attempts to
adjust the window so that the cursor is at the center of the
screen. This command canralso be psychologically helpful.
Enter it whenever you are unsure that the screen really
corresponds to what is in your file. After entering V the
screen reflects what is really in your file.

Set
The Set command is used to either access the Environment or to
set a marker in the text.

The Editor 141

To use the Set command enter S for Set while at the Edit level.
The following prompt line will appear:

>Set: E(nvironment, M(arker, P(oint, <esc> escapes

Note that there is no indication of the Set command on the Edit
prompt line.

Set Point
Set Point allows you to position the marker called Point
anywhere in the file that you want to place it. Point is used
or modified by the Insert, Find, Zap, or Replace commands.

Set Marker
When you are editing a large file, it is particularly
convenient to be able to jump directly to certain places in the
file by using markers that have been set in the desired places.
Once set, it is possible to jump to these markers at any time,
by using the Marker option with the Jump command (see Moving
Commands).

The Copy File portion and Copy Marker commands can also make
use of markers that have been placed in the text of a file.
When you are editing one file, the marked portion of a second
file that is stored on diskette may be copied into the file you
are editing (see Text Changing Commands).

Move the cursor to any spot in the text where you want to place
a marker. When the cursor is in the desired spot, type SM for
Set Marker. The following prompt line appears:

Set what marker?

Now type the name of the marker (up to eight characters) that
you want placed at the current cursor position, terminated by
pressing the RETURN key. Any printable character except a
carriage return may be used in a marker name, but all lower
case letters are converted to upper-case letters.

If you have already placed a marker with the specified name in
the file at an earlier time, the old marker is moved to the
current cursor position without comment, and the old position
is lost.

142 Apple III Pascal: Introduction, Filer, and Editor

Only ten markers are allowed in a file at any one time. If you
attempt to place an eleventh marker, the following message
appears:

Marker overflow. Which one to replace?
0) namel
1) name2

9) name10

You must eliminate one of your existing markers before you can
place the new one. Choose a number from 0 through 9, enter
that number and its place in the list will now be available for
your new marker name. You can use this method to rename or
re-place an existing marker, but you can never simply remove a
marker from your file, even if you delete all the text that
contained the marker.

Set Environment
The Editor lets you set various aspects of the editing
"environment" to suit the task at hand. From the Edit level,
enter S for Set and then enter E for Environment. The screen

The Editor 143

display is replaced with a prompt similar to the one shown
below:

>Environment: <options>,<ctrlC> accepts, <esc> escapes
I(ndent auto True
F(illing False
L(eft margin 0
R(ight margin 79
P(ara margin 5
C(ommand ch
T(oken def True
A(scii file False
N(ame of file /GNUDISK/ANTELOPE.TEXT

File is 488 characters long with 26647 more available.
Currently at character position 50.

Patterns:
<target>= /APPLE/, <substitute>= /BANANA/

Markers:
START
INTRO
ACKNOWL

PART3
MAINPARA
PART 5

SUMMARY
BIBLIOG
INDEX

Date Created: 4-01-84 Last used: 7-28-85

By entering the appropriate first letter, any or all of the
options listed in the upper portion of the display may be
changed.

The portion of the display showing the Patterns: <target> and
<subst> will not appear unless you have used the Find or
Replace commands since entering the Editor this time. The
portion of the display showing the markers currently in the
file will not appear unless you have at some time used the Set
Marker command to place a marker in the text.

The information stored in the Environment (with the exception
of the <ykrget> and <subst> strings) is saved in the file
header each time you save the file on diskette, so the system
can "remember" that environment each time you work on that file
again.

The Editor will not accept Environment option choices having an
improper format.

144 Apple III Pascal: Introduction, Filer, and Editor

If you enter a non-numeric choice for L(eft. R(ight, or
P(aragraph margins the Apple will beep and the message

Digit, <bs>, <ret>, or <esc>

is displayed. You can then press either RETURN or Left-arrow
to clear the error and try again or press ESCAPE to leave the
option at its original value.

If you give any answer to I(ndent auto, F(illing, T(oken
search, or A(scii file, except T (for true) or F (for false),
the message

T, F, or <esc>

show you your operating choices. Enter the correct response or
press ESCAPE to leave the option in its original state.

Do as the prompt suggests, and either exit the Environment
menu, or type correct values and then exit by typing CONTROL-C
to accept the changes you have made, or by typing ESCAPE to
reject the changes.

Each of the following options must be accessed from the
Editor's Environment. To enter the Environment, enter S for
Set and then E for Environment.

Indent-auto
Indent-auto affects only the Editor commands Insert (under Text
Changing Commands) and Margin (under Formatting Commands). See
the discussions of those commands for more details and
examples.

The Indent-auto option is set to True (each new line is
automatically started at the same indentation as the first
non-space character of the previous line) by your entering AT •

The Indent7 auto option is set to False (new lines begin at the
screen's left edge or at the set Left margin and Paragraph
margin) by your entering AF • Unless Indent-auto is False (and
Filling is True), the Insert command will not cause
re-margining of the portion of a paragraph following an
insertion.

Indent-auto should generally be True for writing and editing
programs, and False for writing and editing natural language
text.

The Editor 145

Filling
Filling affects the Editor's Insert command (under Text
Changing Commands).

When the Filling option is set to True lines are automatically
broken between words -- at spaces -- when they are
entered in. This prevents lines from exceeding the right
margin. To set Filling to True, enter FT. Unless Filling is
True (and Indent-auto is False), the Insert command will not
cause re-margining of the portion of a paragraph following an
insertion.

The Filling option is set to False (the set margins are
ignored; you must end each line yourself) by entering FF.

Filling should generally be False for writing or editing
programs, and True for writing or editing natural language
text. However, if you are editing a table, diagram, or other
carefully formatted portion of text, it is a very good safety
precaution to set Filling to False (from the Edit level, just
enter SEFF<ctrlC>). This will save you the frustration of
having your text completely re-formatted following an
insertion.

Left margin
Right margin
Paragraph margin

In Document Mode, the margins set in the Environment are the
margins which are used by the Insert command (see description
under Text Changing Commands) and the Margin command (see
description under Formatting Commands). These margins also
affect the Center, Left, and Right justifying commands in the
Adjust command (see description under Formatting Commands).
See the discussions of those commands for more details and
examples.

To change the value for the Left margin option, enter L
followed by an unsigned integer, and then press RETURN. The
value that you enter replaces the old value for the Left margin
in the prompt display shown at the beginning of this section.

To change the value for the Right margin option, enter R
followed by an unsigned integer, and then press RETURN.
Similarly, you can change the value of the Para margin option
by entering P followed by an unsigned integer, and then press
RETURN.

146 Apple III Pascal: Introduction, Filer, and Editor

All unsigned integers with four or fewer digits are valid
margin values. If you attempt to assign a margin value of more
than four digits, the value will be truncated to the first four
digits entered. To create normal text displays whose
characters are all visible on the screen, you should use margin
values from ~ through 79, and the Left and Paragraph margin
values should be less than the value of the Right margin.

Command character
The Command character affects the Margin command (under
Formatting Commands) and re-margining in the Insert mode
(under Text Changing Commands). See the discussions of those
commands for more details.

To change the setting of the Command ch option, enter C
followed by any printing character. For example, entering C*
will change the set Command character to * . This change will
be reflected in the Environment screen.

If the Command Character appears as the first non-blank
character in a line of text, then that line is protected from
the Margin command, and from re-margining following an
insertion. That line is also treated as a paragraph delimiter
for margining purposes. The normal Command character is the
caret or circumflex accent (-). Unless you have some special
use for the caret character in your text, you should generally
leave it as the set Command character.

Token default
Token default affects the search option used by the commands
Find and Replace (under Text Changing Commands). See the
discussions of those commands for more details and examples.

In the Environment, Token def is set to True (the default
search option is Token search) by entering TT, and to False
(the defaul~earch option is Literal search) by entering TF.

When the Literal search option has been selected, the Editor
will look for ANY occurrence of a string of characters that
exactly matches the <target> string. When the Token search
option has been selected, the Editor will look for ISOLATED
occurrences of the <target> string. The Editor considers a
string isolated if it is surrounded by any combination of
delimiters, where a delimiter is any character that is not a
number or letter.

For example, in the sentence "Put the book in the bookcase.",
using the <target> string "book", the Literal search option

The Editor 147

will find two occurrences of "book" while Token search option
will find only one, the word "book" isolated by the delimiters
<space> <space>.

When the Token search option has been chosen, you can find an
occurrence of the <target> string, even if the occurrence has
more spaces or fewer spaces (including zero) corresponding to
each space in the specified <target> string. For example,
suppose you are searching the following text, which contains
four slightly different occurrences of the words "APPLE PIE":

I'LL HAVE SOME A PPLEPIE, SOME APPLE
PIE, SOME APPLEPIE, AND THEN
SOME AP PLE PIE, TOO.

If you use the <target> string "APPLEPIE", a Token search will
find only the third occurrence. With the <target> string
"APPLE PIE" , a Token search will find both the second
occurrence (which has more spaces, but at the right place in
the string) and the third occurrence (which has fewer spaces,
and none in the wrong place). With the <target> string "APP
L E P I E" , a Token search will find all four occurrences.

However, only a Literal search would find an occurrence of
"APPLE PIE" that was buried in the word "CRABAPPLE PIE".
That's because the "B" would not constitute a proper isolating
delimiter.

When editing natural language text, it is a good idea to use
Literal search (set Token default to False). When editing
programs, it is usually more useful to use Token search (leave
Token def set to True).

Ascii File
BASIC programs can be edited, but the
standard text files, but Ascii files.
editing BASIC files and editing Ascii
chapter.

Name of File

files used are not
See the description of

files earlier in this

You can change the name of the file you want to save your
current editing session under. The name of the file shown in
the Set Environment display was set either by the Filer's Get
command, the Editor's Quit Update command (as SYSTEM.WRK.TEXT),
or declared by you when you started the edit session with no
file specified for Get. If you change the file name here, the
file name used by the Save option of the Quit command will be

148 Apple III Pascal: Introduction, Filer, and Editor

changed to the new file name. If you are in textfile mode,
.TEXT will be appended to the name, but if you are in asciifile
mode, the name will remain as entered.

Number of Characters
This line tells you how long your file currently is and how
much space remains in the Editor's file space. The current
position of the cursor is also displayed, giving you an idea of
where you are in the file.

Quit
The Quit command is used to exit from the system's Edit level.

To use the Quit command type Q for Quit while at the Edit
level. The following message will then appear:

>Quit:
To leave Editor, type

E(xit to main command line

To store text file on disk, type
W(rite to a new file name
U(pdate /NEWPASCAL2/SYSTEM.WRK.TEXT

To continue editing, type
R(eturn to same file
C(hange to another file

You select the desired option by entering the first letter of
the option as given in the display. Another option, Save
becomes available after you have once written a file to a
pathname or if you have set a file in the Environment to write
to.

Update
This tells the Editor to erase all previous versions of the
main system diskette's workfile (SYSTEM.WRK.CODE as well as
SYSTEM.WRK.TEXT). Then it saves on the main system diskette,
under the filename SYSTEM.WRK.TEXT, a backup copy of the file
curr-ehtly in memory.

If you are using SYSTEM.WRK.TEXT as your text file, the Update
command should be used at least every 15 minutes, in order to
prevent accidental loss of your efforts. From the Editor,
every so often, just type QUR. In a few seconds, the main
system diskette's file SYSTEM.WRK.TEXT will contain the latest

The Editor 149

version of your file, and you will again be in the Editor,
ready to continue working on your backed-up workfile.

Exit
This causes the system to leave the Editor without saving the
file in memory that is currently being worked on. This means
that any modifications made since last writing to the file are
irretrievably lost. After answering Y, or if there have been
no changes, the system returns to the Command level.

Return
This option lets you return directly to the Editor without
updating. The cursor is returned to the exact place in the
file it occupied when Q was typed. Usually this command is
used after unintentionally typing Q, or when saving changes
made to the file to disk.

Change
This lets you switch from the file you are presently working on
to another file without leaving the Editor. After typing C for
change, this prompt appears:

>Edit:
File? (<ret> for no file, <esc> to exit editor)

If you want to start a brand new file, press RETURN. Otherwise
type the pathname of the file that you want to begin working
on, and continue as if you had entered the Editor from the main
Command level.

If you change your mind, press ESCAPE to leave the Editor and
return to the Command level.

When you bring up a new file to edit, the Find command and
Replace command's buffers are retained. This allows you to go
through a series of related files and search for some particular
item by using FS, or replace it with RSS. (See the Find and
Replace commands in this chapter.)

Depending on the amount of memory used by the new file, the
Copy buffer will con;.a_in all or most of what it held when you
left the previous file.

150 Apple III Pascal: Introduction, Filer, and Editor

Write
The Write command saves the file presently in memory to the
pathname specified.

Selecting this option causes a further prompt to be displayed if
a file with the same pathname already exists:

/MYDISK/PROGRAM.TEXT already exists. Delete before W(rite?-->
Y(es to delete old file before starting new one.
N(o to delete old file after new one is complete.
<esc> to cancel W(rite.

The file in memory may now be saved under any pathname. You do
not need to specify the .TEXT suffix; it will be supplied
automatically. If you want to suppress the suffix, end the
pathname with a period.

If you change your mind and wish to return directly to editing
the file currently in memory, without saving it, just press the
RETURN key instead of typing a pathname.

Type "Y" to continue. After your file has been saved on
diskette, the Editor displays a message similar to this:

Writing to /MYDISK/PROGRAM.TEXT •••••
Your file is 1984 bytes long.

After writing to the file, the system displays the Quit menu
and gives you your choice of action.

You may also write to unblocked files, such as to .QUME or
.SILENTYPE to print a copy of your file.

Save
When you choose this option, your new file will have the
same name as the file that was most recently called by the
Editor. If you are unsure of the name of your file, you can
check on it by either typing SE or Q.

After you invoke the Save option, you will be asked if you want
to purge your original file. For example, if you use the Get
command to access MYDISK:MYFILE from the Filer, edit the file,
quit the Edit.or_ and then save the updated text with the
Editor's Save command, the following message will appear:

The Editor 151

/MYDISK/PROGRAM.TEXT already exists. Delete before S(ave?-->
Y(es to delete old file before starting new one.

N(o to delete old file after new one is complete.
<esc> to cancel S(ave.

If you type Y the old file will be removed from the disk
before the new file is written out. This may cause the new
file to overwrite the old file. If you have no backup of the
original file and it is a large file, it would be safer to type
N. When you type N the old file will not be overwritten
and only will be removed when the new file is successfully
written to the disk. If there is not room to copy the new file
before destroying the old one, or if an error occurs while
writing to the disk, the message

ERROR: Writing out the file. Please press <spacebar> to continue

will appear. Pressing the spacebar will return you to the
Quit menu.

Do not press RESET after you have given the system
permission to purge your original file; doing so may
destroy both the old and new versions of your file. Also
remember that if a power failure occurs while writing to
the file, the file being written to may be lost, as well.
If you have room on the disk, it is always safer to use
the N option.

After your file has been saved on diskette, the Editor displays
a message similar to this:

Writing to /MYDISK/PROGRAM.TEXT
Your file is 1984 bytes long.

152 Apple III Pascal: Introduction, Filer, and Editor

Editor Command Summary

Cursor Moves
right-arrow key
left-arrow key
up-arrow key
down-arrow key
spacebar
TAB key

RETURN key

P(age

Repeat-Factor

Moves repeat-factor spaces right.
Moves repeat-factor spaces left.
Moves repeat-factor lines up.
Moves repeat-factor lines down.
Moves repeat-factor spaces in set direction.
Moves repeat-factor tab positions in set
direction.
Moves to start of line that is repeat-factor
lines away, in set direction.
Moves repeat-factor screens-full in set
direction.

An integer from ~ through 9999 typed before a move or command.
If repeat-factor is I the move or command is repeated as many
times as possible in the file.

Set Direction
<
> +

Change set direction to backward
Change set direction to forward

Moving Commands

Jump: Jumps to file's Beginning, Point, or End, or to a
previously-set Marker.

Find: Looks in the set direction for the number of Literal or
Token occurrences of the <target> string set by the
repeat-factor. Must be typed with delimiters. S means
use the · same string as before.

Text-Changing Commands

Insert: Inserts text. Use left-arrow key to backspace over
insertion. CTRL-Q deletes back to the most recent RETURN
character in the current insertion. CTRL-X acts like
CTRL-Q except that it also deletes the RETURN character.

154 Apple III Pascal: Introduction, Filer, and Editor

Quit: Leaves the Editor. You may Update the workfile, Save a
current copy of the file being edited, Exit without
updating, Return to the Editor, or Write to any diskette
file.

156 Text Files
156 Data Files
157 ASCII files

File Formats 155

156 Apple III Pascal: Introduction, Filer, and Editor

A
File Formats

Text Files
Diskette text files begin with a two-block (1024-byte) header
page, reserved for the sole use of the Editor. The Pascal I/O
subsystem creates the header page each time a user program opens
a TEXT file, and REWRITEs or RESETs the file with a name ending
in .TEXT to ease editing of input and output data. The file
handler transfers the header page only during disk-to-disk
transfers; all transfers to non-block devices, such as those to
.CONSOLE or .QUME always omit the header page.

Following the initial header page, the text appears in 1024-byte
text pages (two blocks each) on the diskette, where a text page
is defined:

[DLE] [indent] [text] [CR] [DLE] [indent] [text] [CR] ••• [nulls]

Each DLE (Data Link Escape) is followed by an indent-code, a
byte containing the value 32+(number of spaces to indent). The
nulls at the end of the page always follow a CR (return
character) and fill any remainder of a 1024-byte page (because
the compiler wants integral numbers of lines on a page). The
Data Link Escape and corresponding indentation code are
optional. In a given text file, some lines will have the codes ,
and some will not.

Data Files
The system does not "know" anything about the internal format of
data files. The formats for data files are up to the user and
must be defined in the user's program.

File Formats 157

ASCII Files
ASCII files have no internal format. Like data files, they are
streams of bytes known to contain ASCII characters and therefore
readable by the Editor. BASIC text files are listed as ASCII
files in the Filer's Extended directory listing.

158 Apple III Pascal: Introduction, Filer, and Editor

SOS and Apple II File Compatibility 159

General Considerations
Naming conventions

Apple II Pascal Filer Commands
List Directroy
Extended Directory
Krunch
Make
Examine

160 Apple III Pascal: Introduction, Filer, and Editor

B
SOS & Apple II Pascal File Format
& Pathname Compatibility

This appendix tells you how to use Apple II Pascal diskettes
with the Apple III Pascal system. It also includes a
discussion of the Filer commands that operate differently
depending upon whether SOS or Apple II Pascal diskettes are
being used, and Apple II Pascal pathname conventions.

A full explanation of the Compiler option allowing you to use
your Apple III Pascal system to write programs to run on an
Apple II Pascal system is included in the Apple III Pascal
Programmer's Manual.

A SOS diskette is any diskette formatted by the formatter on the
Apple III Utilities Diskette. An Apple II Pascal diskette is
any diskette formatted by the Apple II Pascal formatter on an
Apple II or an Apple III. If you are formatting Apple II Pascal
diskettes using an Apple II, use the formatter program that
comes with Apple II Pascal. If you want to use an Apple III to
format Apple II Pascal diskettes, you should use the AIIFORMAT
program supplied on PASCAL3.

You cannot boot Apple III Pascal with an Apple II Pascal
boot diskette. The Apple III files SOS.KERNEL,
SOS.DRIVER, SOS.INTERP, SYSTEM.PASCAL, and SYSTEM.MISCINFO
may not be used on Apple II Pascal-format disks. Other
system files may be used on disks of either system.

SOS and Apple II File Compatibility 161

General Considerations
Most software written for the Apple II Pascal system can be run
on the Apple III Pascal system after being recompiled. If you
want to run an Apple II program on an Apple III pascal system,
you should keep in mind the following points:

Apple II Pascal disketts may be used freely in the Apple
III Pascal system with the exception of system diskettes.

Apple III Pascal diskettes cannot be used on the Apple II.

Apple II programs may be run on the Apple III after being
recompiled, possibly with some changes in specialized areas
such as graphics.

Apple III codefiles may be executed directly on an Apple
II. They will have improved memory use if they are either
recompiled on an Apple II or recompiled on an -Apple III
with the compiler's A2 option set. -

Make su,re that you keep Apple II disk routines resident by
setting option B of the Options menu before you use an
Apple II Pascal diskette with Apple III Pascal.

Be careful when editing text files on an Apple II which
were originally created on an Apple III . The Apple III
Pascal Editor can handle text files which are too large to
fit in the Apple II Pascal Editor's workspace. When this
happens, you will fill the Apple II Editor's workspace
with the first part of the file, and the rest of the file
will be lost when you write it back to disk after
editing. Setting the Apple II Pascal system's swapping
option to ON will give you some additional room to reduce
this problem somewhat.

One advantage of writing programs on SOS diskettes is that it
enables you t o use features of Apple III Pascal, such as
subdirectories, that are not available when Apple II Pascal

162 Apple III Pascal: Introduction, Filer, and Editor

diskettes are used. You should note, however, that files
written on SOS diskettes use one more block of space than files
written on Apple II Pascal diskettes.

The following table provides a general outline of the
differences between the way files behave when SOS and Apple II
Pascal diskettes are used.

file storage
(See Filer command
Krunch)

directory structure
(See Filer commands
List direcory and
Extended directory
below)

Bad blocks
(See Filer command
Examine described
below)

Disk space overhead

files are stored on
whatever blocks are
available on the
diskette

supports subdirectories

Does not mark blocks
reported as bad
by the Bad-blocks
Filer command

Uses "overhead"
blocks for house
keeping

APPLE II
PASCAL

files must be
stored in
contiguous
blocks

does not
support
subdirectories

Uses Xamine
command to
mark blocks
reported as
bad by the
Bad-blocks
command

No extra
blocks used
per file

Table B-1. File Differences: SOS vs Apple II Pascal

The Apple II Pascal system is unable to read SOS files.
Thus, you cannot use an Apple II to transfer a file from a
SOS diskette to an Apple II Pascal diskette.

SOS and Apple II File Compatibility 163

Note also that Apple II Pascal and Apple III Pascal have
different rules regarding legal characters in local filenames.
Apple II Pascal permits most characters in local filenames.
Apple III Pascal stipulates that the only characters that may
be contained in local filenames are letters, numbers, and
periods and that local filenames may not begin with a period.

If you attempt to transfer an Apple II Pascal file whose name
contains an "illegal" character to a SOS diskette, Apple III
Pascal displays an error message. Apple III Pascal also will
not let you edit such a file. Thus, before attempting to use
an Apple II Pascal file that contains an illegal character for
the Apple III SOS pathname, you must use an Apple II to change
the file's name.

Naming Conventions
The naming convention used throughout this manual has been that
of Apple III SOS. It is described in detail in the Apple III
Owner's Guide.

Since both the SOS convention and the Apple II Pascal file
naming convention are supported with Apple III Pascal, a
description of the Apple II Pascal convention's differences is
included here.

Pathl}ames in the Apple II Pascal convention provide for a
volume directory name and a filename, with a colon (:) used
as a separator character. For example,

/PASCAL2/SYSTEM.EDITOR

and

PASCAL2:SYSTEM.EDITOR

are specifications in both conventions for the same file.

The Apple II convention on the Apple III Pascal system is
extended to support subdirectories. The SOS pathname

/FARMING/FRUIT/BERRIES

would be given in the Apple II convention as

FARMING: FRUIT/BERRIES

164 Apple III Pascal: Introduction, Filer, and Editor

Where the slash character is used as in the SOS format to
separate subdirectories and local file names. Volume names
under the Apple II Pascal convention are given as the volume
name followed by a colon, as in MYDISK: •

The Apple II Pascal use of the characters * and : are also
supported as root directory names. Both of them may be used
as substitute references to the built-in drive's root name,
unless another volume has been defined by the Filer's Prefix
command, in which case the colon (:) will refer to the newly
defined prefix name.

Volume device numbers in the two naming conventions are as
follows:

~ sos AJ212le II

Console (echo) .CONSOLE Ill: (or CONSOLE:)

Console (no echo) .CONSOLE lf2: (or SYSTERM:)

Built-in drive .Dl lf4 :

First external drive .D2 115:

Second II II .D3 119:

Third II II .D4 1110:

Printer .PRINTER* 116: (or PRINTER:)

Remote Input .RS232 117: (or REMIN:)

Remote Output .RS232 11 8: (or REMOUT:)

*Note: You can always r efer to the system printer as 116: or
PRINTER:, but its name in the SOS system may be .PRINTER,
.QUME, or .SILENTYPE •

If you are making extensive use of Apple II Pascal format
disks, and are using Apple !I's extensively, see the Apple II
Pascal Operating System Reference Manual for a fuller
description of the Apple II Pascal file naming convention .

If you are making only occasional use of Apple II Pascal
formatted disks, you can use the SOS filename convention, and
system display all the time.

SOS and Apple II File Compatibility 165

Apple II Pascal Filer Commands
Following is a description of Filer commands that treat Apple II
Pascal-format or SOS-format diskettes differently, or else can
be used only with Apple II Pascal-format diskettes.

List Directory, Extended Directory
The List directory and Extended directory displays differ
depending upon whether the specified directory belongs to a SOS
or an Apple II Pascal diskette. This difference is a result of
the systems' methods of storing files. Apple III Pascal begins
storing a file wherever it can find an unused block on the
diskette. When a block is filled with its 512 bytes of
information, the system finds another free block, perhaps on
another track, and continues to record information there. Files
stored on Apple II Pascal diskettes are always stored in
contiguous blocks, so if there are too few contiguous blocks on a
diskette on which to save a particular file, an error message is
given and the file is not saved.

Here is an example of an Extended directory list for a Apple II
Pascal diskette, PEARTRE •

/PEARTRE (AppleII) Size Modified Loe File type Eof
PARTRIDGE 16 4-May-81 6 Datafile 512
TURTLE.DOVE 10 4-May-81 22 Datafile 512
< Unused > 10 32
CALLINGBIRD 6 22-Jun-81 42 Datafile 512
FRENCH.HEN 8 14-Jun-81 48 Datafile 512
GEESE.TEXT 4 18-Apr-81 56 Text file 512
MAIDS.MILK 18 8-Jul-81 68 Datafile 512
< Unused > 4 78
DUCKS.TEXT 4 17-Jul-81 82 Text file 512
SWANS.CODE 6 17-Jul-81 86 Code file 512
< Unused > 198 92
8 files listed, 212 blocks available, 198 in largest

The empty or unused blocks scattered throughout the diskette are
marked as < Unused >.

The information contained on the List directory and Extended
directory lists of Apple II Pascal diskettes includes, from left
to right, the file name, file block length, last modification
date, starting block address, file type and number of blocks
used in the last block of each file.

166 Apple III Pascal: Introduction, Filer, and Editor

The last line on the directory listing tells the number of files
contained in the directory, the total .number of free blocks
available on the diskette, and the number of blocks in the
largest unused area of the diskette.

The word AppleII appears after the volume name, thus indicating
that the diskette is an Apple II Pascal diskette.

Note that because Apple II Pascal diskettes cannot contain
subdirectories, the List directory and Extended directory
command displays are the same whenever they refer to Apple II
Pascal diskettes.

You can either use SOS- or Apple II Pascal-format filenames
when referring to files on Apple II Pascal diskettes. In the
above example Option C had been set to display SOS-format
filenames; thus, files were displayed using the SOS format.

Krunch
The Krunch command consolidates all unused space on an Apple II
diskette, and is used by typing K from the Filer.

Before using the Krunch command, you may want to use the List
directory or Extended directory command to see the unused areas
of the diskette that need to be consolidated.

The Krunch command requires that you type a diskette volume
name, block-device name, or device number. The specified
diskette volume must be on-line (currently available to the
system). If you suspect that your diskette is damaged, you may
want to perform a bad block scan of the volume before using the
Krunch command. This will prevent your writing files over bad
areas of the diskette. IT bad blocks are found, they should be
marked using the Examine command described later in this
section.

Do not touch the disk, the power switch or the
disk-drive door until Krunch tells you it has completed
its task. If you do, you may make the information on
your diskette unreadable.

SOS and Apple II File Compatibility 167

EXAMPLE:

Suppose you wish to crunch diskette TOYBEAR •

Prompt: Crunch what vol ?

Response: /TOYBEAR

Prompt: From end of disk, block 280 ? (Y/N)

Typing the response Y initiates the normal Krunch. Typing an N
will cause the prompt:

Prompt: Starting at block # ?

If you type a block number in response to this prompt, the Filer
attempts to make room for new files in the area surrounding the
block number that you specified. It does this by moving files
which are below the specified block forward (toward lower block
numbers), and moving files which are above the specified block
backward (towa rd higher block numbers). This feature allows you
to re-arrange files by placing them at diskette locations other
than the end of the diskette.

Note: If you specify a Krunch starting block that is within an
existing file, the Filer assumes that you want to move files
away from the block immediately preceeding that file.

l\Aake
The Make command creates a diskette directory entry with the
specified pathname. Because Apple II Pascal does not support
subdirectories, you cannot use Make with Apple II Pascal
diskettes to create subdirectories.

Regardless of the type of diskette used, the Make command
permits you to specify the number of blocks you want the file
being created to occupy. When SOS diskettes are used, if the
file being created is not a subdirectory, and no file size is
specified, the new file is allocated zero logical blocks. When
Apple II-formatted diskettes are used, the following file size
specifications can be used:

(0] - Equivalent to omitting the size specification. The
file is created using all of the largest unused area.

[*] - The file is created using all of the second largest
area, or half of the largest~area, whichever is
larger.

168 Apple III Pascal: Introduction, Filer, and Editor

If you know enough information about the location of a
file before it was removed, and if nothing has been
written over that area of the diskette since the removal,
you can use the Make command to recover a removed file.

When you make a file, you create a diskette directory entry,
without in any way changing the actual information stored on
the portion of the diskette to which that directory entry
refers. If you forget that the file is a "dummy" file, you can
attempt to read into the Editor whatever information may have
been stored on the diskette in that location.

Suppose, for example, that you have just used the Remove command
to eliminate a 19 block file, which started at block 134. An
Extended directory list of the diskette may show the "hole"
where that file used to be, as a 19 block <unused> area starting
at block 134. If you now use the Make command to create a file
(of any name) that exactly occupies the blocks the removed file
occupied, the new file will contain exactly the same information
the removed file contained.

Because files on Apple II Pascal diskettes are stored in
contiguous blocks and files on SOS diskettes are not, this
method of retrieving files is far more likely to be successful
with Apple II Pascal diskettes than with SOS diskettes.

Examine
The Examine command is invoked by typing an X from the Filer,
and attempts to "fix" suspected bad blocks on a Apple II Pascal
diskette. (Bad blocks are found by using the Bad-blocks
command.)

This command requires that you type a diskette volume name,
block-device name, or device number. The specified diskette
volume must be on-line (currently available to the system) and
one using the Apple II Pascal format.

SOS and Apple II File Compatibility 169

EXAMPLE:

Suppose you have just done a Bad-blks scan of the diskette named
MYDISK, and the Filer has given you the following message:

Scan for 280 blocks ? (Y/N) Y
Block 23 is bad
Block 24 is bad
Block 25 is bad
3 bad blocks
File(s) endangered:
THIS FILE.TEXT 18 24
THATFILE.CODE 25 29

Now you have typed X to initiate the Examine command.

Prompt: Examine blocks on what volume ?

Response: /MYDISK

Prompt: Block-range ?

At this point, you should enter the block number
returned by the bad block scan. If more than one bad block was
reported, type the number of the first bad block, followed by a
minus sign, followed by the number of the last bad block.

Response: 23-25

If any files are stored on the area of the diskette occupied by
the blocks you are about to examine, you will be told the name
of each such file and its beginning and ending block numbers:

Prompt: File(s) endangered:
THISFILE.TEXT 18 24
THATFILE.CODE 25 29
Try to fix them ?

Note: The files shown are endangered merely by containing bad
blocks, NOT by the Examine process. Also, the question "Try to
fix them ?" refers to the specified bad blocks, not to the
files.

An N response to this prompt returns you to the outer level of the
Filer. If you type a Y in response to the above prompt, you will

170 Apple III Pascal: Introduction, Filer, and Editor

cause the Filer to examine the blocks in the range you specified.
The Filer will then usually return a message like this:

Block 23 may be ok
Block 24 may be ok
Block 25 may be ok

in which case the bad blocks have probably been fixed. The
Examine process attempts to fix the block-sector track data on
the disk as well as the data in the file. Usually the file
data will be unrecoverable.

Block 23 may be ok
Block 24 is bad
Block 25 is bad
File(s) endangered:
THISFILE.TEXT 18 24

25 29 THATFILE.CODE
Mark bad blocks ? (Files will be removed !) (Y/N)

in which case the Filer is offering you the option of marking the
block(s) which it could not fix. If you type a Y response to
this prompt, the Filer first removes all files containing those
bad blocks that could not be fixed. It then creates a special
file on the diskette, named BAD , which exactly covers the bad
blocks (or more than one such file, if the bad blocks are not
contiguous). This message then appears:

Bad blocks marked

and you are returned to the outer Filer level. On the diskette, there
is now a new directory entry saying

BAD.00024.BAD

Blocks in a file marked .BAD will not be used to store any of your
files, and ,will not be shifted during a Krunch. These dangerous
areas of your diskette are thus rendered effectively harmless.

SOS and Apple II File Compatibility 171

A block that has been "fixed" may still contain useless
garbage. The message "May be ok" should be translated as
"is probably physically ok". Fixing a block means that
the information stored in the block is read into the
computer, is stored again at the same spot on the
diskette, and is then read again. If the same information
is read from the block both times, that spot on the
diskette is probably not physically damaged (some kinds of
damage cause inconsistent recordings). In that event, the
message "May be ok" is given. However, if the two
readings are different, the block is declared bad and may
be marked as such to protect you from using that spot on
your diskette.

Since disk drives are mechanical devices, they tend to have a
range of actual adjustment values. Sometimes a diskette
recorded on one drive will be unreadable on another, or may be
readable with only certain others. Before giving up
completely, try reading your "bad" diskette on several drives.

172 Apple III Pascal: Introduction, Filer, and Editor

174 All Levels
174 Command Level
176 Filer
177 Editor

Summaries 173

174 Apple III Pascal: Introduction, Filer, and Editor

c
Summaries

All Levels
The following commands are available at all levels of the
system:

CTRL-\
CTRL-9

CTRL-8
CTRL-7

CTRL-6

CTRL-5

CTRL-RESET
Power off-on

Break signal; does a warm boot.
Stops program output to the screen or printer
until the next CTRL-9, without stopping the
program.
Makes Control-codes visible on the display.
Temporarily stops any program or process. On the
next CTRL-7, the program continues.
Flushes data or commands out of the type-ahead
buffer.
Toggles video display on or off. When the display
is off, programs run faster since no time is used
on updating the display. The next CTRL-5 switches
the display back on.
Does a cold boot.
Does a cold boot.

Command Level
1. The Command level is reached automatically each time the

system is booted, RESET, or initialized. It is also reached
when any program, including any part of the operating
system, finishes executing.

2. Use the Command level options to select any of the main
subdivisions of the language system.

Summaries 175

These are the Command level options:

File
Edit
Compile

Assemble

Link

Execute

Run

User-restart

Initialize
Halt
Options

Make exec

Deals with the disks and disk files.
Helps you create and change text files.
Converts Pascal program text into executable
P-code.
Converts 6502 assembly text into 6502 machine
code.
Combines external routines into a
program.
Loads and runs a utility program or other
P-code file.
Executes the workfile, automatically compiling
and linking first, if necessary.
Re-executes the last program or option
executed.
Re-initializes the system.
Does a warm boot of the system.
Lets you set aside space for graphics. Also
lets you control whether displays will use
SOS or Apple II Pascal filenaming conventions
and whether the system will accept Apple II Pascal
files.
Used to create exec files.

176 Apple III Pascal: Introduction, Filer, and Editor

The Filer
These are the Filer commands:

Volumes

List-dir

Ext-dir

Transfer

Make
Change
Remove

Krunch

Zero
Prefix
Date
Quit

Get
Save
New
What
Bad-blks
Examine

Alter

Shows which devices and diskettes are connected
to the system.
Shows what files are in the top most layer of a
a directory or subdirectory.
Shows all files contained in a directory or
subdirectory.
Copies a file or entire diskette to another
diskette or device . Source diskette must be in a
drive to begin.
Creates a subdirectory .
Renames a file or diskette.
Erases a file from a diskette directory or
subdirectory.
Compacts an Apple II Pascal format diskette.
(Not used with SOS diskettes .)
Removes directory or subdirectories from a disk.
Sets the default directory or subdirectory name.
Sets and reports the current date.
Leaves the Filer and returns to Command level. Be
sure your main system diskette is in the built-in
drive.
Designates a file to be used as the next workfile.
Saves the workf ile on diskette.
Clears the workf ile.
Tells the original name of the current workfile.
Tests diskette information for correct recording.
Attempts to fix bad blocks on Apple II Pascal-format
diskettes . (Not used with SOS diskettes.)
Used to change the write-protect state, date, or
file type as displayed by the directory commands.

Summaries 177

Editor
These are the Editor commands:

Jump

Page
Find /x/
Insert
Delete
Zap

Copy

Moves cursor to file's Beginning, End, Point, or
preset Marker.
Moves cursor one page.
Moves cursor to next "x".
Inserts typed text at cursor.
Moving cursor erases text.
Erases all text from cursor to start of last Find,
Replace, or Insert.
Inserts buff er (last insert or deletion) or marked
text at cursor.

Exchange Replaces character at cursor by typed character.
Replace /x/ /y / Replaces next "x" by "y".
Adjust Moves line at cursor right and left.
Margin Formats all text between two blank lines (one

Set

Verify
Quit

paragraph).
Places a Marker at cursor, or sets Environment
options for Indent-auto, Filling, Point, margins,
Redisplays screen.

etc.

Leaves the Editor. You may Update the workfile,
Exit without updating, Write to any diskette file
before returning to Command level or Save to your
original file.

178 Apple III Pascal: Introduction, Filer, and Editor

180
183
184
184
185
185
186
186
187
188

User Notes and Tables 179

Apple III Pascal Device Number Assignments
When to Use .TEXT and .CODE
Apple III Pascal System Diskettes

Definitions
Pascal System Diskettes

Making a Turnkey Diskette
The System Diskette Files

The System Diskette Files:
Apple III Pascal System Console

The SETUP Utility

By Diskette
Configuration

180 Apple III Pascal: Introduction, Filer, and Editor

D
Notes and Tables

Apple Ill Pascal Device Number Assignments

Apple III Pascal assigns a device number to every device driver
configured into the system. When using Apple II Pascal format
filenames, you can refer to a device by its device number.
More complete information about device drivers is included in
Apple III Standard Device Drivers.

SOS, the operating system used by Apple III Pascal, uses a set
of special programs called device drivers, stored in the file
SOS.DRIVER , to comnrunicate with all peripheral devices. Each
time you add, remove, or change a device driver, you must change
the system configuration information in the SOS.DRIVER file by
using the System Configuration Program contained on the Apple
III Utilities diskette.

Each time Apple III Pascal is booted, the system examines the
SOS.DRIVER file and assigns each driver contained in it either a
standard or a user device number. Standard <levice numbers range
from 1 to 12; user device numbers from 128 to 143.

Device number assignment is a two-pass process:

In the first pass, the system attempts to match each device
driver with a SOS standard device driver name. If a match is
made, the device driver is assigned the standard device number
associated with the appropriate device driver name. Table D-1
lists SOS standard device driver names and their associated
Apple III Pascal standard device numbers.

User Notes and Tables 181

Some devices may be unassigned after the first pass. In the
second pass, the system first checks an unassigned driver's
device type value. (The device type value is part of the
system configuration included in. the SOS.DRIVER file.) Tf the
device type value is one of the values listed on Tahle D-2 and
the standard device associated with that value is unassigned,
the system assigns that device to that standard device number.
User device numbers begin at 128 and are assigned
consecutively.

A device whose device type value is not one of the values
listed in Table D-2 is automatically assigned a user device
number. Any remaining devices are consecutively assigned the
remaining user device numbers.

Here's an example. Suppose that the System Configuration
Program indicates that the following drivers have been added to
your system:

1 •• CONSOLE
2 •• PRINTER
3. . S ILENTYPE
4 •• AUDIO

When making its first pass, the system finds two device drivers
that have SOS standard device driver names: .CONSOLE and
.PRINTER Based on the information in Table D-1, .CONSOLE is
assigned Apple III Pascal standard device numhers 1 and 2 and
.PRINTER is subsequently assigned Apple III Pascal standard
device number 6 •

The first device that is encountered in the second pass is
.SILENTYPE This device was not assigned a device number
during the first pass because there is no standard device named
.SILENTYPE • In the second pass, the system checks the
standard device type value of .SILENTYPE and finds that it is
41. Next it checks to see if a device has already been
assigned the associated standard device number (6). Since a
device already has been assigned this number, the system must
instead assign .SILENTYPE a user device number. Because no
user device numbers have been assigned, .SILENTYPE is assigned
user device number 128. If standard device number 6 had heen
unassigned, SILENTYPE would have been assigned that number
instead.

182 Apple III Pascal: Introduction, Filer, and Editor

Note that SILENTYPE can always be referred to by its device
name, .SILENTYPE, regardless of whether it is assigned a
standard device number or a user device number.

Finally the system encounters the AUDIO driver. The driver
remains unassigned during the first pass because there is no SOS
standard device named .AUDIO • In the second pass the system
checks to see if the device has one of the device type values
listed on Table D-2. Because it does not, the AUDIO driver gets
assigned the next available user device number which, in this
case, is 129.

If the system encounters two devices with the same standard
device type and the appropriate standard device number is
unassigned after the first pass, Pass 2 will assign the first
driver it encounters to the appropriate standard device number
and subsequent drivers to available user device numbers.
Devices are encountered in the order in which they appear in the
System Configuration Program menu.

sos
Standard
Device Standard
Driver Device
Name Number

.CONSOLE l

.CONSOLE 2

.GRAFIX 3

.Dl 4

.D2 5

.PRINTER 6

.RS232 7

.RS232 8

.D3 9

.D4 1~

.Ds 11

.D6 12

Table D-1. SOS Standard Device Names and the Associated
Apple III Pascal Standard Device Numbers

Device Type
Value (Hex)

61
62
41
Cl, El

Kind of Device
Associated With
Device Type Value

console
graphics
printer
disk

User Notes and Tables 183

Standard
Device Number

1 and 2
3
6

lowest available among
4,5,9, 10, 11, 12

Table D-2. Device Type Values, Their Associated Devices,
and Apple III Pascal Standard Device Numbers

When to Use . TEXT and .CODE
A filename normally ends with a suffix that tells the system
what type of data is stored in the file. The most common
suffixes are .TEXT , for files that contain natural-language
text, Pascal program text, or 6502 assembly-language text, and
.CODE , for files containing compiled P-code or assembled 6502
machine code.

Many commands require you to specify a file by typing its
filename. When the file being acted on can he of only one type
(.TEXT , .CODE , etc.), the system allows you to type the
filename either with or without the suffix: If you omit the
suffix, the system will add it for you. If you want to
override this feature, type a period at the end of the
filename. When a command may apply to files of more than one
file type, the following rules apply:

1. All Filer commands except Get and Save must have
complete filenames, including the .TEXT and .CODE
suffix, and use the filename exactly as you type it,
without adding any suffix

2. The Get and Save commands automatically supply the
correct suffix (.TEXT or .CODE) to the part of the
workfile acted. Therefore, when using these
commands, you must not specify a suffix.

3. The Librarian does not specify a suffix for its
output file. When you specify one of these files,
you must type the suffix .

184 Apple III Pascal: Introduction, Filer, and Editor

Apple Ill Pascal System Diskettes

Definitions
The first stage of a bootstrap operation is the loading of the
operating system (files SOS.KERNEL and SOS.DRIVER) and the P-code
interpreter (SOS.INTERP). The second stage loads the Pascal
command processor (SYSTEM.PASCAL and SYSTEM.MISCINFO).

Any diskette used in a bootstrap process may be called a boot
diskette. A diskette containing the Pascal command processor is
normally kept in the built-in drive during Pascal system
operations and is called the main system diskette.

A cold boot occurs when you press CONTROL-RESET and operates as
if you had just turned on the power. The second-stage boot,
sometimes called a luke-warm boot, is the same as what happens
when you invoke the Halt command. The effect of the Init
command (warm boot) is to initialize system variables and to
reload SYSTEM.MISCINFO. The effects of these three commands
are summarized in the following table.

Command

I nit

Halt

CONTROL-RESET

Files Reloaded

SYSTEM.MISCINFO

SYSTEM.PASCAL
SOS.MISCINFO

SYSTEM.PASCAL
SOS.INTERP
SOS.KERNEL
SOS.DRIVER
SOS. MISCINFO

Table D-3. SOS/Pascal Boot Levels

User Notes and Tables 185

Pascal System Diskettes
/PASCALl is both the boot diskette and the main system diskette
for running Pascal applications programs. This diskette
contains all of the system files necessary for a bootstrap load
of the Pascal system. Since there are very few blocks
available on this diskette for the application code and for
data, a diskette in an external drive must be used if more
diskette space is needed.

/PASCAI..2 is the program development diskette.

/PASCAI..3 is the diskette containing the Apple II-diskette
formatter utility, Library, Libmap, and Setup files.

In general, it is easiest to cold-boot the system with diskette
/PASCALl in the built-in drive, since it contains both the SOS
files and the Pascal interpreter. For program development,
see the recommended diskette configurations given in the Apple III
Program Preparation Tools manual.

Making a Turnkey Diskette
The Apple Pascal system allows you to set up a turnkey system.
This means the Apple will automatically begin running a
particular program when you insert the turnkey diskette and
turn the Apple on.

To set up a turnkey system based on a Pascal program, first
make a copy of diskette /PASCALl with the SOS Utilities
diskette's copy utility and change the copy's name to something
you will recognize. For example, you might name this diskette
TURNKEY • Now Transfer a copy of your Pascal program codefile
onto the turnkey diskette, giving this new copy of your program
the filename SYSTEM.STARTUP • Make sure your turnkey diskette
contains the following files:

SOS.KERNEL
SOS.DRIVER
SOS.INTERP
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.CHARSET
SYSTEM.STARTUP

(only drivers needed by SYSTEM.STARTUP)

(Apple II drivers resident if needed)

(containing needed intrinsics only)
(if needed by your STARTUP program)

To run your turnkey program, put the turnkey diskette in the
built-in drive and start a cold boot by pressing CONTROL-RESET.

186 Apple III Pascal: Introduction, Filer, and Editor

Soon, with no further action on your part, SYSTEM.STARTUP is
executed. Thereafter, SYSTEM.STARTUP will be executed each time
the system is re-booted, as long as this disk is in the built-in
drive.

The System Diskette Files
The following tables list the files that are normally found on
each of the system diskettes needed for program development on
the Apple III. The order of the files on any diskette is
unimportant. When most files are needed by the system, it is
only necessary that the file be present on any diskette in any
drive. For exceptions to this rule, see table, The System
Diskette Files: By Command, below.

The System Diskette Files: By Diskette
The files making up the Apple III system reside on four
diskettes. The following table lists the system files that are
found on each diskette.

/PASCALl

SOS.KERNEL
SOS.DRIVER
SOS.INTERP
SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.FILER

/PASCAL2

SYSTEM.EDITOR
SYSTEM. SYNTAX
SYSTEM.COMPILER
SYSTEM.ASSMBLER
OPCODES.6502
ERRORS.6502
SYSTEM.LINKER

/PASCAL3

AIIFORMAT. CODE
LIBRARY .CODE
LIBMAP.CODE
SETUP.CODE

Table D-4. Apple III Pascal System Diskette Files

User Notes and Tables 187

Apple Ill Pascal System Console Configuration
At boot time, the Pascal system establishes the console
configuration by setting the Apple III system console options
as follows:

New Line -- Disabled -- Read requests do not terminate
when they encounter the new-line character.

New-Line Character -- Carriage Return (ASCII $0D).

Keyboard Mode -- Console

Buffer Size -- 128-byte typeahead buffer

Attention Event -- Generates an interrupt on receiving
the character CONTROL-\ • The Pascal system uses
this interrupt to stop execution of the currently
executing program.

Any Key Event disabled

No Wait Input disabled. Read operation terminates
only when specified number of characters have been
read.

Screen Echo
echoing.

disabled. Pascal perf orms its own

Character Copy disabled. Inhibits character copy
capability of right-arrow key.

Character Delete -- disabled. Console driver treats
backspace as any other character. Pascal handles the
char acter delete function implied by backspace.

Line De l e t e -- disabled . The line dele tion function
implied by CONTROL-X is ignored by the console.
Pascal handles this function itself.

Escape Functions -- All escape functions of the console
are disabled.

188 Apple III Pascal: Introduction, Filer, and Editor

Text Options --

Auto Advance enabled. Console advances cursor one
position to the right after displaying each
character.

Auto Line Feed -- disabled. Console does not
automatically line feed after a carriage return.

Auto Return -- enabled. Console moves the cursor to
the beginning of the next line or end of the previous
line whenever it is advanced past the right or left
edge of the viewport.

Scroll -- enabled. Data in the viewport is scrolled
whenever the cursor is moved past the bottom of the
viewport.

A console "Restore Environment" call is made each time a
program ends execution on the Apple III Pascal system.

The SETUP Utility
The Setup utility is provided to allow you to set certain
system configuration options such as graphics space allocation,
Apple II disk routine residency, file name display format, and
some Editor key assignment .

You run the Setup utility by typing X from the command level,
and when prompted

Execute what file?

respond by typing

/Pascal3/SETUP

The menu display that SETUP produces is almost exactly the same
as that of the Option command. (See the description of the
Option command in the chapter The Command Level in this
manual.) Operation of SETUP is identical to the Option command
with the exception noted below.

User Notes and Tables 189

Option D of SETUP allows you to change Editor key assignments.
When you press D, the display will read

Key Options: A, B, C, D, <esc>, Q(uit

Option Character function Current Value

A) Accept key 003 => <ctrl>-C
B) Escape key 027 => escape
C) Delete Line key 023 => <ctrl>-W
D) End of File key 033 => <ctrl>-C

If you should want to change any of these key assignments,
press the appropriate key and then enter the new value that you
want, from 000 to 127. If you enter a number greater than 127,
it is evaluated Modulo 128, and assigns the result to that key.

After making your new assignment(s), or if you don't want to
change anything, type Q to return to the main SETUP menu. When
you have completed any changes there that you might want, type
Q again to return to the Command level menu. If any changes
to system configurations have been made by your choices, they
are accomplished at this time.

As with the Option command, changes to graphics allocation
cause the system to be rebooted. All other changes are saved
in memory and SYSTEM.MISCINFO so that when you reboot the
system, the configuration you have chosen will be the new
system configuration.

190 Apple III Pascal: Introduction, Filer, and Editor

ASCII Character Codes 191

192 Apple III Pascal: Introduction, Filer, and Editor

E
ASCII Character Codes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60
1 01 SOR 33 21 ! 6S 41 A 97 61 a
2 02 STX 34 22 II 66 42 B 98 62 b
3 03 ETX 3S 23 fl 67 43 c 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
s 0S ENQ 37 25 % 69 4S E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 !Ile FF 44 2C 76 4C L 108 6C 1
13 0D CR 45 2D 77 4D M 109 6D m
14 0E so 46 2E . 78 4E N 110 6E n
lS 0F SI 47 2F I 79 4F 0 111 6F 0

16 10 DLE 48 30 !1l 80 S!ll p 112 70 p
17 11 DCl 49 31 1 81 51 Q 113 71 q
18 12 DC2 S!ll 32 2 82 S2 R 114 72 r
19 13 DC3 Sl 33 3 83 S3 s 115 73 s
2!11 14 DC4 S2 34 4 84 S4 T 116 74 t
21 lS NAK 53 3S s 8S SS u 117 75 u
22 16 SYN S4 36 6 86 S6 v 118 76 v
23 17 ETB SS 37 7 87 S7 w 119 77 w
24 18 CAN S6 38 8 88 S8 x 120 78 x
2S 19 EM S7 39 9 89 S9 y 121 79 y
26 lA SUB S8 3A 90 SA z 122 7A z
27 lB ESC S9 3B 91 SB [123 7B {

28 lC FS 6!11 3C < 92 SC \ 124 7C I
29 lD GS 61 3D 93 SD l 12S 7D }
30 1E RS 62 3E > 94 SE 126 7E
31 lF us 63 3F ? 9S SF 127 7F DEL

Table E-1. ASCII Character Codes

Transporting Programs 193

194 General Considerations
194 Diskette Compatiblity
195 Program Compatibility
195 Common Factors to Consider
196 Occasional Factors to Consider

194 Apple III Pascal: Introduction, Filer, and Editor

F
Transporting Programs Between Apple Ill and

Apple II Pascal Systems

This appendix tells you how to transport (or "port") Pascal
programs between the Apple III and Apple II Pascal systems.

A full explanation of the Compiler option allowing you to use
your Apple III Pascal system to write programs to run on an
Apple II Pascal system is included in the Apple III Pascal
Programmer's Manual.

General Considerations
Many Pascal programs developed by either the Apple III or Apple
II Pascal systems are interchangeable. Their similarities and
differences are described in the rest of this appendix .

Diskette Compatability
The Apple III Pascal system will happily accept any diskette
from an Apple II Pascal system with the exception of system
diskettes: You can't boot an Apple III with Apple II diskettes.

The reverse is not true. Apple III diskettes, which use the
SOS directory and file structure, cannot be read by the Apple
II Pascal system.

Disk read/write routines that handle the Apple II Pascal format
are supplied with the Apple III Pascal system. If you are
going to use Apple II Pascal diskett es on your Apple III
system , you will find that disk access is much faster if you
make sure, by setting Option B as described in chapter 2 of
this manual , that the Apple II disk routines are resident in

Transporting Programs 195

memory. If the Apple II disk routines are not resident the
system will operate noticeably slower.

Textfiles can be transported between systems with the
restriction that some Apple III textfiles may be too big to fit
in the Apple II Pascal Editor's workspace.

Program Compatability
Apple II Pascal programs may be run on the Apple III after they
have been recompiled on the Apple III Pascal system. Some
parts of some programs may need to be change4 slightly to run
on the Apple III as described later in this section.

Apple III programs may be run directly on the Apple II, with
some exceptions, but they will run more efficiently if they are
either recompiled on the Apple III using the compiler's "A2"
option or recompiled on an Apple II.

The Apple III compiler's "A2" option causes the compiler to
generate the same codefile that would be generated by the Apple
II's compiler. An Apple III Pascal codefile has some
additional information in it that does not presently affect
execution on an Apple II system, but future versions of the
Apple II Pascal system may not be so accomodating.

The syntax of the Apple III and Apple II versions of Pascal are
almost identical except for the BYTESTREAM, WORDSTREAM, and
OTHERWISE enhancements to Apple III Pascal. The compiled code
from these enhancements will execute on an Apple II system
(assuming that you have compiled programs using those
constructs on an Apple III using the "A2" compiler option.

Common Factors to Consider
You will need to consider the factors described below on many
programs transported between the Apple III and the Apple II
Pascal systems:

l· Since your Apple III will generally have more memory
available than an Apple II, not all programs that run on an
Apple III can be guaranteed to run on an Apple II.

If this problem appears, try recompiling the program on an
Apple II or on your Apple III with the A2 option set for
the compiler.

196 Apple III Pascal: Introduction, Filer, and Editor

2. The Apple III PGRAF graphics unit is not supported by the
Apple II. Graphics in an Apple III program will have to be
converted to equivalent TURTLEGRAPHICS functions and
recompiled. Remember that not all the functions of the
Apple II TURTLEGRAPHICS unit are supported by Apple III
Pascal.

3. Assembly-language procedures will not work the same on both
machines. This is primarily due to the banked memory
features of the Apple III . In particular, parameter
passing should be closely checked for compatibility.

4. The TRANSCEND unit requires the REALMODES unit on the Apple
III, but is not required on the Apple II. Note that the
results of real arithmetic may be different, this is due to
the increased accuracy of the Apple III real number
routines. Added features of the REALMODES unit are not
available on the Apple II.

5. Compiler options that work on the Apple III may have to be
changed: The Apple II compiler will not allow options to
be written out in full, unlike the Apple III compiler. For
instance, {$RANGECHECK} as well as the Apple II's {$R}
options may be used on the Apple III.

6. When you present more than one identifier in an option
statement, the Apple III requires that the identifier be
r epeated. The Apple II compiler opt i on {$R SEGl, SEG2}
would have to be rewritten as {$R SEGl, R SEG2} for the
Apple III compiler .

] . Conditional compile options are not available on the Apple
Ir.

8. The Apple III CLOSE procedure options WPROTECT and
UNPROTECT are not availa ble on the Apple II .

9 . Apple III Pascal programs are not limited to the 26
segment maximum of Apple II Pascal . Also, the program
library concept is not supported by Apple II Pascal.

Occasional Program Transport Factors
Some programs that you want to transport between the Apple III
and Apple II will require attention to the factors given below,
but most don't.

Transporting Programs 197

1. The use of UNITREAD and UNITWRITE for disk access may have
to be altered to conform to either Apple II- or SOS-format
disks.

2. The MEMAVAIL function works differently on the Apple III
than the same-named function on the Apple II Pascal system.
This is because the Apple III Pascal system sets aside a
part of memory as code space, while the Apple II Pascal
system assumes that all unused space is available memory.

3. Device contentions can occur on the Apple III if two
devices try to use the same hardware elements. Apple III
driver documentation points out potential problem areas for
specific drivers.

4. The console device works differently on the two machines.
Programs using information from SYSTEM.MISCINFO (which is
the same format for both machines) to format their display
screens will have no problems. Programs depending on
either an 80- or 40-column screen must be changed to
accomodate the screen width of the target machine. Special
characters and features of the Apple III console driver are
not available to the Apple II.

S. Apple III programs that depend on the non-contiguous format
of SOS-format disks may have to be modified to work on the
Apple II.

6. Apple II programs tha t have been cleverly written to handle
diskette free space collection ("krunching") can have that
feature removed since it is not needed on the Apple III
when using SOS-format diskettes.

198 Apple III Pascal: Introduction, Filer, and Editor

Glossary 199

block: Unit of storage on a disk or diskette. A block
contains 512 bytes. A standard Apple mini-floppy diskette can
store 280 blocks.

block device: A device that stores and retrieves blocks of
data. A disk drive is a block device.

byte: Eight bits of data. The main unit of information
storage of the Apple III computer.

character device: A device that sends or receives a stream
of single characters (as opposed to sending and receiving a
block of characters at a time as a block device does). The
console and printer are both character devices.

codefile: A file containing P-code, the compiled version of
a Pascal program, or 6502 machine code, the assembled version
of an assembly-language program.

device: A piece of hardware used for data input or output. A
disk drive, video screen, and speaker are all commonly-used
Apple III devices.

device driver: Software interface to a device that enables the
Apple to communicate with that device. Before your Apple III
can carry on such communication, you must use the System
Configuration Program to configure the appropriate device
driver into your system.

device file: The data stream being sent to or from a character
device.

200 Apple III Pascal: Introduction, Filer, and Editor

device filename: The name used to refer to a device file.
A device filename always begins with a period •• PRINTER and
.CONSOLE, for example, are legal device filenames.

device number: A number assigned by the
system to each I/O device on the system.
conflicts in I/O processing.

Apple III Pascal
Used to avoid

directory: A file containing information about the files
stored on a disk. A directory includes the local filename of
each file that is on the disk as well as each file's length,
last modification date, and file type. Each time a file is
created or modified, information about the file is recorded in
the diskette directory. The Filer's Extended directory and
List directory commands display the information in a disk
directory.

disk: A generic term for mass storage devices using rotating
magnetic storage media. This includes diskettes and fixed disk
storage.

file: A stream of bytes. A file may contain text
(information, such as documents or computer programs), compiled
P-code, assembled 6502 machine-code, or any other data that can
be used by the Apple.

local filename: The name given to a file. Local fi1enames may
be composed of up to 15 letters, numbers, and periods and may
not begin with a number. Files other than device files may not
begin with a period.

P-code: (Also known as Pseudo-code) The compiled form of a
Pascal program. Pseudo code is a machine-independent
intermediate code that is interpreted by a specific
machine-dependent interpreter at execution time.

Pascal system disk: A diskette that contains the file
SYSTEM.PASCAL • The same Pascal system disk should be in the
built-in drive each time the system returns to the main Command
level.

pathname: A series of local filenames, each beginning with a
slash, and all joined together, that specifies the path you take
from directory to subdirectory to gain access to a certain file.
/FEE/FI/FO is an example of a legal Apple III Pascal pathname.

prefix: A shorthand specification for a series of directories
and subdirectories. Prefixes are used to prevent your having

Glossary 201

to specify a complete pathname each time you want to ref er to a
file that is part of a complex subdirectory structure. The
prefix is set with the Filer's Prefix command.

pseudo-code: See P-code.

root directory: The highest-level directory on a diskette. A
standard Apple III mini-floppy diskette may only have one root
directory. A diskette's root directory name is the same as the
diskette's volume name.

segment: 1. A unit of a Pascal program that can be swapped in
or out of memory as required for operation. This allows larger
applications to be run with limited available memory. 2.
(biol.) The basic unit of organization of the phylum Annelida,
which contains earthworms, leeches, etc.

Sophisticated Operating System: See SOS.

~: The operating system used by the Apple III.

subdirectory: A file containing a listing of files that have
been grouped together because of similarity of function. A
subdirectory includes the local filename of each file that is a
part of the subdirectory as well as each file's length, last
modification date, and file type. The Filer's Make command is
used to create subdirectories. The Filer's List Directory
command lets you examine a subdirectory.

textfile: A file containing human-readable text such as
documents or source programs.

volume: A unit of storage on a block device. A block device
may contain more than one volume, or it may contain different
volumes at different times. The volume name of a standard
280-block floppy disk is the name of the diskette's root
directory.

workfile: A file that can be easily modified.
be identified by the local filename SYSTEM.WRK
given its own local filename.

A workf ile may
or it may be

202 Apple III Pascal: Introduction, Filer, and Editor

t

A

Address field, sector 35,
Adjust, Editor command

13 5-13 7, 15 3,
AIIFORMAT Utility 160,
Alter, Filer command 31,

76-77, 88,
Apple II disk routines 161,

Pascal 3, 32,
Programs on Apple II! 161
Swapping option 161
Disk routines 20

Apple II-format diskette 160
With Extended-directory
command 52

Apple III,
Business BASIC, textfiles

3
Codefiles 161
Console configuration 187
Pascal system diskette

184
Programs on Apple II 161

Apple III/Apple II,
Diskette compatibility 194
Program compatibility 195

ASCII
Character codes
File 157

Editing
With Set
With Copy

104
147

127

192

Index 203

ASSEMBLE, Command-level
option 17

Assembler 2, 15, 17,
Assembly-language 17

Subroutines 2

B

Backup
Copies, making of 53
Diskettes 3

Bad blocks,
Causes 85
Recovery 85-86

Bad-blocks, Filer command
83-86, 89

BASIC files, editing 104
BASIC text file 157
BIOS (Basic I/O System) 20
Block device 36
Block-device name 166
Blocks , diskette 35
Boot diskette 7
Booting the system 3, 14

c
Change , Filer command 6, 31 ,

63-68 , 88
Change , with Quit 149
CLOSE procedure options 196

204 Apple III Pascal: Introduction, Filer and Editor

Code files 9
.CODE suffix 183
.CONSOLE, with Transfer

command 55
Command

Character, with Set 146
Level 5, 14, 174

Options 4, 15, 25
Prompt line 4

Compatibility, Apple III and
Apple II 160-164

Compile, Command-level option
17

Compiler 2, 15
Compiler A2 option 195
CONSOLE 20

Configuration 179
CONTROL-\ 22
CONTROL-5 23
CONTROL-6 23
CONTROL-7 24
CONTROL-8 24
CONTROL-9 24
CONTROL-C

With Exchange 130
As end-of-file character

56
With Editor
With Adjust
With Insert

CONTROL-RESET
CONTROL-X 34

With Editor
With Insert

95
136
116
4,

95
116

Copy buffer
With Copy 126
With Zap 125

14,

With Delete 123-124
With Insert 116
With Quit 149

23,

Copy, Editor command 126-130,
153

Copying
Diskettes 3
From a fi le 126-128
From the Copy buffer 128
Entire disk 53, 58
Individual files 53
Subdirectory 60

Subdirectory contents 53
To or from printer or

console 53
Cursor

Movement 106-107, 108-109
Movement with Delete 122
Movement in Editor 98
Operation in Editor 93-94

D

.Dl 36
,D2 36
.D3 36
.D4 36
Data

Diskette 61
Field, sector 35
File 156

Date, Filer command 31,
75-76, 88

Date, setting with Date
command 75

Delete, Editor command
121-125, 153

Deleting text
With Editor 101
With Zap 125

Delimiters
With Find 111-112
With Replace 131

Destination filename
Device

Driver, SOS 36
File name 36, 39
Name prefix 73
Names 36
Number assignment
Number, standard
Number, user 37
Numbers 166,36
Standard 36
User 36

Direction indicators
Directory 38

Bad blocks 86
Disk 10, 35
Root 38

66

180-183
37

108

Disk
Directory 35
Formats on Apple II 162
Formats on Apple III 162
Formatting 38

Diskette
Blocks 35
File types 40
Volume 166
Write-protect, changing

with Alter 77
Data 61
Apple II-format 160
Apple III Demonstration 3
Apple III Utilities 3
Boot 7
First-stage boot 8
Second-stage boot 8
Sector 35
sos 160
Track 35
Backup 3
Copying 3
Write-protected 3

Display convention, filenames
32

DLE 165
Document mode, with Insert

119-120

E
Edit command 11, 17
Edit/Compile systems 8
EDITl 7
Editing ASCII f ile 104
Editing BASIC files 104
Editor 2, 5

Prompt line 5, 95
Entering 96
Functions of 92
Summary 177

End-of-file character 56
Environment parameters, with

Margin 139
ESCAPE

Option, with Find 113
During Editor entry 97

Index 205

With Adjust 136
With Replace 133

ESCAPE-RETURN 34
Examine, Filer command 31,

86, 89
With Apple II diskettes 168

Exchange, Editor command
129-130, 153

Execute 18
Exit , with Editor Quit 149
Extended-list

F

Filer command 51-52, 88
With Apple II diskettes

165

File
Fragmentation 59
Naming convention , setting

46
Specification
Suffix 40
Text page 156
Types, diskette 40
Types, with Alter command

77
Abp
Workspace in Editor 129
ASCII 157
BASIC 157
Command-level option 16
Copying from 126-128
Format of data file 156
Maximum size 116
Starting a new one 95

File-size specification, with
Apple II 176

File-size specifier 62
Filename

"Destination" 66
Display conventions 32
Legal characters 163
Local 39

Filenaming conventions
Apple III SOS 163
Apple II Pascal 163-164

Filer 2, 5, 15

206 Apple Ill Pascal: Introduction, Filer and Editor

Command summary 87-89
Diskfiles needed 33
Summary 176
Using 34

Files 9
Changing 9
Creating and editing 11
Display format 20
Editor 9
Exec 22
Header page 156
Moving and deleting 16
Saving 9

Filling, with Insert 117-121
Filling, with Set 145
Find, Editor command 110-115,

152
First-stage boot diskette 8
Formatting a disk 38

G
Get, Filer command 11, 31,

78-79, 89
Graphics, memory allocation

20

H

Halt, Command-level option 19
Header page, file 156

I
Indent-auto, with Insert

117-121
Indent-auto, with Set 144
Indent-code 156
Initialize, Command-level

option 19
Insert, Editor command

115-121, 152
Prompt line 95

Inserting text with Editor 99

J

Jump, Editor command 109-110,
152

K

Krunch, Filer command 31, 70,
88

Krunch, with Apple II
diskettes 166

L
Last-modification date,

changing with Alter 77
Left margin , with Set 145
Left-arrow key, with Dele te

101
Legal characters in filenames

163
Librarian 2
Link, Command-level option 18
Linker 2 , 15, 18
List-directory command 5, 30,

47-51, 87
List-directory, with Apple II

diskettes 165
Literal search, with Find

112-113
Literal search, with Replace

131
Local filenames 39

M
Make Exec, Command-level

option 22
Make , Filer command 30, 39,

62-63, 88
Make, with Apple II diskettes

167
Margin, Editor command

137-140, 153
MEHAVAIL function 197

Memory allocation, graphics
20

Moving the cursor 98

N

Name of file, with Set
147-148

Names, device 36
Naming conventions

Apple II Pascal 163-164
Apple III SOS 163

New, Filer command 11, 31,
82-83, 89

Number of characters, with
Set 148

Numbers, device 36

0
Options, Command level 4 , S,

lS
Options, Command-level

command 20

p

P-code 17
P-machine 17
Paragraph margin, with Set

14S
PASCALl 2, 18S
PASCAI..2 2, 18S
PASCAI..3 2, 18S
Pathname 18 , 39
Pathname compatibility 160
PGRAF Unit 196
Prefix

And partial pathname 73
Directory 73
Subdirectory 73
Filer command 31
Filer command 73-7S
Function of 88

.PRINTER, with Transfer
command SS

Index 207

Program execution 12
Programming Mode, with Insert

117-119, 120
Prompt line, in Editor 94
Prompt lines 4

Q

Quit, Editor command 102,
148-lSl , 1S4

Quit, Filer command 31, 7S, 88

R

Re-margining, with Insert 119
Remove, Filer command 6, 31,

68-70, 88
Repeat-factors

With Replace
With Zap 12S

Replace , Editor
130-13S, 1S3

RETURN 34

107-108
131

command

When entering Editor 97
With Quit 149

Right margin, with Set 14S
Right-arrow key, with Delete

101
Root directory 38

Name 164
Root volume name 38, 74
Run, Command-level option 19

s
Same-string option

With Find 113
With Replace 133-134

Save , Filer command 11, 31,
79-82 , 89

Save, with Editor Quit lSO
Saving work in Editor 96
Scroll window 93
Second-stage boot diskette 8

208 Apple III Pascal: Introduction, Filer and Editor

Sector
Address field 3S
Data field 35
Diskette 3S

Set
Direction 108

With Insert 116
With Replace 130

Environment 142-144
Harker 141-142
Point 141
As Editor command 1S3

Set-specifying string 4S
SETUP Utility 188
Single-drive transfer SS
sos 2
SOS device driver 36
SOS diskette 160
SOS.INTERP 20
Source-file specification Sl
Special characters

? , Command level 4
!, in Editor display 101
? , in Filer 34
$, in Filer 4S

Standard device number 37
Standard devices 36
Starting block 167
Starting the system 3
Subdirectories 39

Size 40
Subdirectory

Bad blocks 86
Names 67
Removing with Zero 71

System
Disk 8
Diskettes S
Workfile 10

SYSTEM.EDITOR S
SYSTEM.FILER 5, 6, lS, 33
SYSTEM.LIBRARY 14, 19
SYSTEM.LINKER lS
SYSTEM.MISCINFO 14, 20, 189,

197
SYSTEM . PASCAL
SYSTEM.STARTUP
SYSTEM.WRK.CODE
SYSTEM.WRK.TEXT

8, 14, 20
18S

10
10

T
Target string

With Find 111-112
With Replace 131

.TEXT suffix 183
Text

Editing systems 7
Files 9, 1S6
Formats 117
Page, file 156

Time, setting with Date
command 7S

Token
Default, with Set 146-147
Search, with Find 112-113
Search, with Replace 131

Track, diskette 3S
TRANSCEND Unit 196
Transfer, Filer command 6,

30, S2-62 , 88
Transfer,single drive SS
Transporting programs between

Apple III and Apple II 193
Turnkey diskette 18S
Turnkey systems 9
TURTLEGRAPHICS 196

u
Unease, with Find
Update, with Quit
User device number
User devices 36

112
148-149
37

User Restart , Command-level
option 19

v
Verify, Editor command 1S3
Verify, with Replace 132-133
Visicalc III, editing 104
Volume

Device numbers 164
Name 36
Name, root 38

Volumes, Filer command 30,
46-47. 87

w
What, Filer command 31, 83, 89
Wildcard specification 42
Wild cards

42
? 42
Commands using 42
In Alter 76
In Change command 65
In List-directory command

50
In Remove 69
In Transfer command 53
In Transfer command 56

Window, in Editor 93
Word 119
Word delimiter 119
Workfile 10
Workfiles, default 14
Workspace , in Editor 129
Write, with Quit 150
Write-pr~tected Diskettes 3

x
y

z
Zap, Editor command 125, 153
Zero, Filer command 31,

71-72, 88

Iridex 209

Tuck end flap
inside back cover
when using manual.

~

I
/

d / ,'
/

--'=
~

-

I -··········

I

•:

I j,
I•

"
,11

I

I

I

I ..
:
I

I

I

I
··'
I

'I

I

ii
1'!

ii
1f

11

I'
. J

..
__ :t:i.. ;

'
i:so....::...< iJ

•I

CS- ·'
II ' -- i: l;':"I_

Q)
ti) .,

Q i'

\'. :-:-
~-

,1!1
fl~

l:::!l l -...... ,1

0 'iii

~ 'l
s:::: 11,
() - ··~ -. ;j 0
~:J .,., 7J -. w
~- i
~ ~ 'J

;il
Q)

,,
.......

~o.. Ill' l· .!
r.;i " \
0.. i ~' -. I

r.i-
I

......
'.1,

~'"

:,\
:~
~

"~
1111
:(..
·l
,I
" ti
',.l

·1,
I
I
I

~~

~i

... ... ilPll JIC!c ~Ow
U!! ~ ~~

Cupe lino. ~ aliforn1
(408) 1196-10

030·0238-A

JPl! ~ar
~

il 9501 :I
0

.

•1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

	Apple III Pascal: Introduction, Filer, and Editor
	Acknowledgements
	Contents
	Preface
	Chapter 1: A Brief Overview
	Chapter 2: The Command Level
	Chapter 3: The Filer
	Chapter 4: The Editor
	Appendix A: File Formats
	Appendix B: SOS and Apple II Pascal File Format and Pathname Compatibility
	Appendix C: Summaries
	Appendix D: Notes and Tables
	Appendix E: ASCII Character Codes
	Appendix F: Transporting Program Between Apple /// and Apple II Pascal Systems
	Glossary
	Index

