
Pascal
Program Preparation Tools

-·············

Notice
Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities
Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed "as is:' The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(400) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

The wor~ Apple and the Apple logo are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0005

i i Apple III Program Preparation Tools

Acknowledgements
The Apple III Pascal system is based on UCSD Pascal .
"UCSD PASCAL" is a trademark of the Regents of the University
of California. Use thereof in conjunction with any goods or
services is authorized by specific license only and is an
indication that the associated product or service has met
quality assurance standards prescribed by the University. Any
unauthorized use thereof is contrary to the laws of the State
of California.

Contents iii

Preface vu

1 First Steps In Program Preparation 1

2 Introduction
2 Pascal System Software Tools
4 Getting Started
4 Program Preparation Diskettes
7 Startup for Program Preparation
8 A Multi-part Sample Program

10 Compiling the Host Program
11 Correcting Errors
11 Saving the Sample Program
12 Sample Assembly Language Routines
15 Linking the Sample Program

2 The Assembler 17

19 Introduction
19 Files Needed
20 Using the Assembler
25 Reference Symbol Table
26 A Sample Program
37 Assembler Information
37 Syntax of Assembler Source Files
38 Syntax of Assembly Language Statements
44 Linkage to Assembly Language Routines

iv Apple III Program Preparation Tools

3

4

50 The Assembler Directives
51 Routine-Delimiting Directives
53 Data Directives
55 Label-Definition Directives
57 Macro Directives
60 Conditional-Assembly Directives
62 Host-Communication Directives
64 External-Reference Directives
66 Listing-Control Directives
68 File Directive
69 Assembler Use Summaries
69 Assembler Command Summary
70 Assembler Directive Summary

The Linker
74 Introduction
75 Linking Using the Link Command
75 Files Needed
76 The Host File
76 The Library Files
77 The Map File
78 The Output File
78 Linking Using the Run Command
79 Files Needed
81 Linker Command Summary

The Library
84 What is a Library?
85 The System Librarian
86 Files Needed
87 Using the Librarian
92 Library napping
93 Files Needed
93 Using the Library Mapper
95 Library Map Example
97 Library Use Summaries
97 The System Librarian
98 Library Mapping

73

83

Appendices

A A Complex Sample Program
100 Introduction
102 The Host Program
103 The Regular Unit
103 The Intrinsic Units
105 The Assembly Language Routines
109 Putting the Pieces Together

B Special Memory Locations
114 Introduction
114 Apple III Hardware Control
114 Special Pages
115 Locations Defined by Pascal
115 Layout of Table Pointed to by .INTERP

C Tables
118 The Pascal System Diskettes
118 Definitions
119 The System Files
126 Pascal I/O Device Volumes
127 ASCII Character Codes

D Command Summaries
130 Assembler Commands
130 Linker Commands
131 Librarian Commands

E UserNotes
134 Making a Turnkey Diskette
135 Exec Files
135 Using Exec Files
138 A Sample Exec File

Contents v

99

113

117

129

133

vi Apple III Program Preparation Tools

F Bibliography 141

G Error Messages 143

144 Execution Error Messages
146 I/O Error Messages
148 Assembler Error Messages

Index 151

Preface vii

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Introduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer's Manual (Volumes 1 and 2)

Before using the Apple III Pascal system, or reading its
manuals, you should be familiar with starting up the Apple
III as described in the Apple III Owner's Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal Introduction, Filer, and Editor
manual. The Filer and the Editor described in this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will also
show you the differences in operation between the two systems.

Apple III Program Preparation Tools is the next manual that you
should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The
components of the Apple III Pascal system covered in this
manual include:

The Linker, used to combine separately-developed program
segments stored in libraries with your application
program;

The Apple III Pascal 6502 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files; and

viii Apple III Program Preparation Tools

The Librarian, used to put commonly-used routines into
libraries for use with application programs.

Your main source of information while developing Pascal
programs will be the two volumes of the Apple III Pascal
Programmer's Manual, which contain a complete descript~on of
the Pascal language on the Apple III and the use of the
Apple III Pascal Compiler.

The Contents of this Manual
This manual tells how to use the 6502 Assembler, the Linker,
and the Librarian in the preparation of your programs.

Chapter 1 tells you how to start using the program preparation
tools and describes the steps in preparing a short Pascal
program that includes assembly-language subroutines.

Chapter 2 tells you how to use the Apple III 6502 Assembler.
It contains a brief explanation of parameter passing between
Pascal and assembly language subroutines.

Chapter 3 tells you how to use the Linker to combine code files,
either compiled P-code or assembled machine code, into a single
code file for execution.

Chapter 4 tells you how to put separately compiled or assembled
routines into a library file. Routines that you put into the
system library or into a program library will be included
automatically when you execute your program.

Appendix A is a brief description of a complex sample program.

Appendix B describes some special memory locations that will be
useful if you are using assembly language routines.

Appendix C contains tables of the system files, the Pascal I/O
devices, and the ASCII characters .

Appendix D is a handy summary of the commands used in the
Assembler, the Linker, and the Librarian.

Appendix E contains notes on making turnkey diskettes and using
Exec files.

Preface ix

Appendix F is a short bibliography of books on 6502 assembly
language programming.

Appendix G contains lists of error messages.

Symbols Used in this Manual
The following symbols are used throughout this manual:

The pointing finger indicates an especially useful or
noteworthy piece of information.

The eye means "watch out." It indicates a warning of an
unusual situation to which you should be alert.

The stop sign warns you of a situation which might cause
a problem, such as loss of data.

x Apple III Program Preparation Tools

First Steps in Program Preparation 1

2 Introduction
2 Pascal System Software Tools
4 Getting Started
4 Program Preparation Diskettes
7 Startup for Program Preparation
8 A Multi-part Sample Program

10 Compiling the Host Program
11 Correcting Errors
11 Saving the Sample Program
12 Sample Assembly Language Routines
15 Linking the Sample Program

2 Apple III Program Preparation Tools

Introduction
This chapter uses a sample program to introduce the Apple III
Pascal System's program preparation tools . Using the sample ,
this chapter shows you the sequence of steps involved in
preparing programs to run with the Apple III Pascal System.
Only the basic procedures are demonstrated in this
introduction; once you have seen the way these procedures are
used , you should refer to the other chapters of this manual for
complete descriptions of the Assembler , the Linker , the
Librarian, and the Library Happer .

Before beginning this manual, you should be familiar with
certain basic information , including:

- how to operate the Apple III ,
- the nature of disk files ,
- how to use the Filer , and
- how to use the Editor.

An introduction to the operation of the Apple III is given in
the Apple III Owner's Guide . Information about disk files and
about the use of the Filer and the Editor is found in Apple III
Pascal: Introduction, Filer , and Editor .

The demonstration program in this chapter is written in Pascal
and assembly language . For a description of the Pascal
language and of the compiler that is used in the preparation of
Pascal programs for the Apple III , refer to the Apple III
Pascal Programmer's Manual .

This manual tells how to use parts of the Apple III
Pascal system. It is not intended to teach you how to
program in assembly language . If you are not already
familiar with 6502 assembly language , you should study
one of the books listed in the Bibliography .

Pascal System Software Tools
The Apple III Pascal System is made up of a number of programs.
These system programs are the tools you use in creating your
own pro gr ams •

First Steps in Program Preparation 3

You should already be acquainted with the two most basic tools,
the Filer and the Editor. You use the Editor to create a
textf ile that contains your program. If your program turns out
to contain errors, you also use the Editor to make the
necessary corrections.

The Apple III cannot run your program in the form you
originally wrote it with the Editor. Before you can run your
program, you must run the appropriate compiler or assembler,
which converts the program textf ile into an executable
codefile.

One way to compile and run a Pascal program is to:

(1) Use the Editor to create a textf ile
of your program,

(2) Store the program textfile as the system
workfile, then

(3) Type R for Run.

The Run command causes the system to compile the Pascal program
in the workfile into a codefile and immediately execute it.
After you have run your program, if you decide that you want to
correct errors or make changes, you simply type E to invoke the
Editor, which will automatically load your program textfile.
After you have made the desired changes, you exit from the
Editor and use the Run command again to compile and run the
modified program.

You may want to break your program up into sections that are
compiled separately and then combined. In this case, you will
not normally use the Run command, since it causes automatic
execution of the program or program section that has just been
compiled. Instead, the sequence of operations you will use is:

(1) Use the Editor to create a separate textfile
for each program section;

(2) Use the Compiler to make a codefile from each
of these program sections;

(3) Use the Linker to combine the separate
codefiles into the complete program; then

(4) Use the Execute command to run the program.

Some of your applications programs may require the use of
assembly language routines to obtain more processing speed or
to interface to custom hardware. The Apple III Pascal
Assembler is a tool for creating assembly language routines

4 Apple III Program Preparation Tools

that can be called by a Pascal host program. The Assembler
also provides a means for your assembly language routines to
access data structures that you have defined in the Pascal host
program.

Once you have assembled your assembly language routine, you
use the Linker to attach the resulting codefile to your host
program codefile.

The Pascal System includes a library of program routines
(Units, Procedures, and Functions) that can be used in many
other programs. Routines stored in this library are
automatically loaded when you run a program that uses them.
You can use the Librarian to add your own routines to this
library or you can set up a separate library for your routines.

Getting Started
To use the Apple III Pascal System to write and execute
programs, you need an Apple III with its video monitor and at
least one external disk drive, in addition to the Apple Ill's
built-in drive. The Apple III Owner's Guide tells how to
connect the monitor and the external disk drive.

Program Preparation Diskettes
Several diskettes are supplied with your Apple III Pascal
System. The programs you need for program development are on
the following system diskettes:

PASCALl
PASCAL2
PASCAL3

As supplied, these diskettes are arranged so that all of the
files needed to boot the Pascal system are on a single
diskette. If you are doing program preparation on an Apple III
with only one external Disk III drive (or Disk II for the Apple
III), you'll have to put your program files on these diskettes
along with the system files, so that you can have all the
necessary files in disk drives at one time. This can cause a
space problem, because there is not much room left on the
diskettes you will have in the drives most of the time. The
solution to this problem is to make a copy set of system
diskettes with the system files rearranged.

First Steps in Program Preparation 5

You can rearrange the system files in several different ways.
For example, if you don't mind swapping diskettes each time
you want to do a different task, you can make several system
diskettes with only a few of the system files on each one.
One of these diskettes might have only the Compiler and the
SOS files needed for booting, leaving lots of room for program
files to be compiled.

Note that you can move the system files around any way
you wish. For example, if a larger disk is available,
you might arrange the system files quite differently.
If you want to devise your own file arrangement, refer
to the TABLES appendix to find out which files are
needed for each step in program development.

Another way to get more room on the system diskettes is to move
the Apple III SOS files onto another diskette. With this
arrangement, booting the system takes two steps, as described
below and in the appendix USER NOTES. If you are just
beginning to use the Pascal system, this might be a good
arrangement for you, since it makes room on the Pascal system
diskette for the system workfile.

The workfile is used in the creation of the sample program
later in this chapter. If you want to use the sample as a
practice exercise, this would be a good time for you to make a
set of diskettes with the system files arranged this way.

Here is the procedure for rearranging the system files so that
you can use the workfile and create your program with only two
diskettes in drives at one time:

(1) Boot with the System Utilities diskette and use the
Format Diskette option to format three blank diskettes,
naming them NEWPASCALl, NEWPASCAL2, and NEWPASCAL3.

(2) Invoke the Filer from diskette PASCAL!. Once the Filer
is running, you can put different diskettes into the
drives and use the Transfer command to move files
around.

(3) Transfer files SOS.KERNEL, SOS.DRIVER, and SOS.INTERP
from PASCAL! to NEWPASCALl. Transfer files
LIBRARY. CODE, LIBHAP. CODE, SETUP. CODE, and
AIIFORHAT.CODE from PASCAL3 to NEWPASCALl.

6 Apple III Program Preparation Tools

(4) Transfer files SYSTEM.PASCAL, SYSTEM.MISCINFO,
SYSTEM.LIBRARY and SYSTEM.FILER from PASCALl to
NEWPASCAL2. Transfer file SYSTEM.EDITOR from PASCAL2
to NEWPASCAL2.

(5) Transfer all the files on diskette PASCAL2 to
NEWPASCAL3, then Remove file SYSTEM.EDITOR from
NEWPASCAL3.

Here is a list of the files on your program preparation
diskettes. The order of the files on each diskette doesn't
matter.

NEWPASCALl

SOS.KERNEL
SOS.DRIVER
SOS.INTERP
SETUP.CODE
AIIFORMAT. CODE
LIBRARY. CODE
LIBMAP. CODE

NEWPASCAL2

SYSTEM.PASCAL
SYSTEM.MISCINFO
SYSTEM.LIBRARY
SYSTEM.EDITOR
SYSTEM. FILER

NEWPASCAL3

SYSTEM.ASSMBLER
OPCODES.6502
ERRORS.6502
SYSTEM. COMPILER
SYSTEM.SYNTAX
SYSTEM. LINKER

NEWPASCALl contains the three SOS files needed for starting a
cold boot. When the first stage of the boot is finished, the
system will prompt you to remove this diskette and insert a
Pascal system diskette into the built-in drive. This diskette
also contains seldom-used system programs there isn't room for
on the other diskettes.

NEWPASCAL2 contains SYSTEM.PASCAL , so it will be your Pascal
system diskette for program development. It must be in the
built-in drive whenever the system returns to the command
level. The Filer and the Editor are both on this diskette, so
you can use it for creating files on a user diskette in the
external disk drive. If you are using the workfile, it will be
on this diskette.

NEWPASCAL3 contains the major program development tools, that is,
the Compiler, Assembler, and Linker, along with their associated
error-message files.

First Steps in Program Preparation 7

If you have only one external disk drive on your Apple III, you
can do your program development with NEWPASCAL2 in the built-in
drive and NEWPASCAL3 in the external drive. You'll either have
to use the workf ile or store your program files on one of these
diskettes for compiling, assembling, and linking.

Startup for Program Preparation
When you start up the system with the rearranged system
diskettes, you have to use a two-step bootstrap procedure
involving two diskettes, NEWPASCALl and NEWPASCAL2 • To boot
the system, put diskette NEWPASCALl in the built-in disk drive,
close the door of the drive, and press CONTROL-RESET. When the
disk drive stops spinning and the message

Put system disk in built-in drive. Press RETURN

appears on the screen, remove NEWPASCALl from the built-in drive,
insert NEWPASCAL2 , close the door of the drive, and press the
RETURN key . The bootstrap operation will finish , then the
Apple III will disp).ay the command prompt line and wait for you
to type a command.

Starting the system with the two-stage boot requires only that
you place the proper diskettes in the built-in disk drive . You
can leave the other drive empty.

Make sure you never put two diskettes with the same name
into the disk drives at the same time. Doing so may
cause the directories of those diskettes to get
scrambled, making the data they contain inaccessible.

Two disk drives are the practical minimum for doing program
development on an Apple III. If your Apple III has more than
two disk drives , you will usually find it convenient to leave
NEWPASCAL2 in its normal location in the built-in drive and do
all your file copying and transferring between diskettes in the
other drives.

8 Apple III Program Preparation Tools

A Multi-part Sample Program
The sample program that follows is deliberately trivial: it is
only used for demonstrating the steps in program development.
Here is what the program does:

(1) create an array with the integers ~ through 9,
(2) display the array on the monitor, then
(3) display the array with each of its elements

increased by one, and finally
(4) display the incremented array with each of its

elements doubled.

This sample program is simple enough that it could be written,
edited, compiled, and run as a single, simple object. Real
programs are larger and more complex, and it is often
advantageous to break them up into sections that reflect the
structure of the program. With the program in sections, you
need to edit and re-compile or re-assemble only the affected
section in order to correct an error or modify a program step.

In the Pascal system, you create your program sections in the
form of subroutines called procedures and functions. The
program section that calls the subroutines, but is not a
subroutine itself, is called the host program. A description of
the techniques used for writing Pascal programs with
subroutines is given in the chapter PROCEDURES AND FUNCTIONS in
the Apple III Pascal Programmer's Manual.

To demonstrate the difference between a procedure and a
function, the sample program includes one of each. To
demonstrate the Assembler, both the procedure and the function
are written in assembly language. The Pascal host program
shown here and the assembly language routines that follow are
discussed in more detail in Chapter 2, THE ASSEMBLER.

When writing the program, you should have a copy of your Pascal
system diskette (NEWPASCAL2) in the built-in disk drive. This
copy should not be write-protected, since you are going to
write the sample program on it as the system workfile. If you
already have a workfile on this diskette, you should make sure
you have saved a copy of it on some other diskette, then use

First Steps in Program Preparation 9

the Filer's New command to remove the old workfile and
initialize a new workfile.

For this sample program, you will be using the system
workfile for your program text and code files, but you
don't have to use the workfile for your program
development. When you are creating more complex
programs than this sample, you may prefer to ignore the
workfile and do all your program development in named
files. This approach is used with the sample program
described in the chapter THE ASSEMBLER.

With the Command prompt line showing, select the Editor, then
use the Insert command and type the sample host program below.
Be careful to type all punctuation exactly as shown.

program CALLASM;

sample Pascal host program with calls }
to an external function and procedure }

type list= packed array[0 •• 9] of 0 •• 255;

var i,k: integer; aa: list;

procedure INCARRAY(size:integer; var data: list);
external;

function TIMES2(data:integer):integer;
external;

begin
writeln('initial array:');
for i := 0 to 9 do

begin
aa[i] : = i;
write(aa[i],' ');
end;

writeln;

10 Apple III Program Preparation Tools

writeln('array, incremented:');
INCARRAY(10,aa);
for i := 0 to 9 do write(aa[i],' ');
writeln;
writeln('incremented array, times 2:');
for i := 0 to 9 do write(TIMES2(aa[i]),' ');

end.

Compiling the Host Program
Once you are satisfied that
correctly, type Q for Quit,
workfile with your program.
your Pascal system diskette

you have the sample program typed
then type U to update the system
Your program is now in a file on

called SYSTEM.WRK.TEXT •

If you were to try to use the Run command to compile and run
this program, the system would detect the external references
in it and use the Linker to try to link the external routines.
That linking can't be done, because the assembly language
external routines aren't available yet. To compile the sample
host program without attempting to link or execute it, you use
the Compile command.

With the Command prompt line present and diskette NEWPASCAL3 in
a drive, type C for Compile. The disk drive with diskette
NEWPASCAL3 in it whirrs and the message

Compiling •••

appears on the display. As the Compiler creates the codefile
version of the program, it displays messages like the ones
below to keep you informed of its progress. For a description
of these messages, refer to the appendix THE APPLE III PASCAL
COMPILER in the Apple III Pascal Programmer's Manual.

Apple ///Pascal Compiler [A3/l.0]
< 0> •••••••
INCARRAY [2009 words]
< 13) •••
TIMES2 [1980 words]
< 16) •••
CALLA SM
< 19) •••
34 lines

[1991 words]

Smallest available space 1991 words

First Steps in Program Preparation 11

Correcting Errors
If the Compiler discovers an error in the program, it will
display a message pointing out the error. For example, if , you
misspell the keyword PROGRAM, the message is:

PRORAM ««
Line 2, Error 18: <sp)(continue), <esc>(terminate), E(dit

If you get such a message, just type E for Edit. The workfile
will be automatically read back into the Editor for repairs.
The error message will appear at the top of the screen and the
cursor will indicate the location of the error. When you press
the spacebar, the error message will disappear and you can move
the cursor and correct the error. Then exit from the Editor
with the Quit command, type U to update the workfile, and type
C to compile the program again.

Saving the Sample Program
The workfile on NEWPASCAL2 now consists of the text version of
the sample host program, named SYSTEM.WRlZ.TEXT, and the
compiled codefile version of the sample program, named
SYSTEM.WRK.CODE • Once the program compiles correctly, you
should save these files.

To do this, you use the Filer's Save command. When the Command
prompt line is on the screen, type F to invoke the Filer. When
the Filer prompt line appears, type S for Save. The system
will ask

Save as what file?

You should respond by typing the pathname you want your program
saved under. For this sample program, type:

/NEWPASCAL3/CALLASM

When you press the RETURN key, the system will save both parts
of the Pascal system diskette's workfile, SYSTEM.WRK.TEXT and
SYSTEM.WRK.CODE, on NEWPASCAL3 under the local filenames
CALLASM.TEXT and CALLASM.CODE • These messages will be
displayed to tell you what has happened:

/NEWPASCAL2/SYSTEM.WRK.TEXT
/NEWPASCAL2/SYSTEH.WRK.CODE

--> /NEWPASCAL3/CALLASl1. TEXT
--> /NEWPASCAL3/CALLASM.CODE

12 Apple III Program Preparation Tools

Sample Assembly Language Routines
The assembly language part of the sample program includes the
procedure INCARRAY and the function TIMES2, which are called by
the Pascal host program given above. You can usually write all
of your program subroutines in Pascal; these routines are only
written in assembly language to demonstrate the use of the
Apple III Pascal Assembler.

Once you have saved your Pascal host program files, use the
Filer's New command to remove the workfile so you can make a
new workfile with the assembly language routines listed below.

Type Q to get out of the Filer, then use the Editor and the
Insert command to type the following assembly language sample.
Note: all text to the right of a semicolon (;) is commentary.
The remaining text--the part that is capitalized--is the actual
instructions, which must be typed exactly as shown. If some
parts of these routines don't seem to make sense, don't worry
about it now; explanations of these routines are given in the
chapter THE ASSEMBLER.

sample macro pops word from eval. stack

.MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

sample macro pushes word to eval. stack

.MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDM

First Steps in Program Preparation 13

sample function for Pascal, declared:
function TIMES2(data:integer):integer;

.FUNG
RETURN .EQU

POP
PLA
PIA
PLA
PLA

PLA
ASL
TAX
PLA
ROL
PHA

TXA
PHA

PUSH
RTS

TIMES2, 1
0

RETURN

A

A

RETURN

;one word of parameters
;temp store retn addr

;save Pascal retn addr
;discard 4 bytes
;of stack bias
;(only need to do this
;for .func)

;lsb of data
;times 2
;save in x
;msb of data
;times 2, with carry
;move msb to
;evaluation stack
;restore lsb to ace
;move lsb to
;evaluation stack

;restore Pascal ret add
;RETURN to Pascal

sample procedure for Pascal , declared:
procedure INCARRAY(size:integer; var data: list);

.PROC INCARRAY,2 ; 2 words of parameters
RETURN .EQU 0 ;temp store retn addr
SIZE .EQU 2 ;temp store SIZE para·m
PSEUDO .EQU 0E0 ;Pascal pseudo reg.

POP RETURN ;save Pascal retn addr
PIA ;lsb of addr of array
STA PSEUDO
PIA ;rnsb of addr of array
STA PSEUDO+l
PLA ;lsb of SIZE pa ram.
STA SIZE
PIA ;rnsb of SIZE--discard

14 Apple III Program Preparation Tools

LDY 110 ;initialize array index
ALOOP CLC ;clear for add

LDA @PSEUDO,Y ;load array byte
ADC ti 1 ;increment
STA @PSEUDO, Y ;store inc'd array byte
!NY ;increment array index
CPY SIZE ;test versus array SIZE
BM! ALO OP ;do while less than

PUSH RETURN ;restore Pascal rtn adr
RTS ;return to Pascal

.END ;end of assembly

Once you are sure you have typed the assembly language routines
correctly, use the Quit command to leave the Editor and type U
for Update to save this text as the system workfile.

The file that contains the Assembler is named SYSTEM.ASSMBLER
and is present along with the Pascal Compiler on diskette
NEWPASCAL3 • With this diskette in any disk drive, type A from
the Command level to start the Assembler. Messages like these
will appear on the display:

Assembling •••
6502 Assembler [A3/l.0]
Output file for Assembler listing (<CR) for none):

The system is waiting for you to tell it what to do with the
listing file the Assembler will produce. If you have a printer
connected to your Apple III, you can direct the listing to the
printer by typing .PRINTER • If you want to save the listing
as a diskette file, you should type the pathname for it now.
If you simply type a carriage return, the Assembler will not
produce a listing.

After you have typed your response to this prompt, the assembly
begins. The Assembler displays messages to keep you informed
of its progress. For an explanation of these messages, see the
chapter THE ASSEMBLER in this manual.

First Steps in Program Preparation 15

[10768]<
2 blocks
[9635]<
[9528] <

0> ••••••••••••••••••••••••
for procedure code 9642 words left

26> •••••••••••••••
50) ••••••••••

Current minimum space is 9595 words
[9616]< 60> •••••••••••••••••••••••••••••••••
Current minimum space is 9571 words
[9592] < 94)
Assembly complete: 94 lines

0 Errors flagged on this assembly

When the Assembler finds an error, it stops and displays an
error message, then gives you the option of using the Editor to
correct the error.

Once the routines have assembled correctly, you should use the
Filer's Save command to save both parts of the workfile on
NEWPASCAL3 under the local filename ASMSUBS.

Linking the Sample Program
Now that you have codefiles both for the host program and
for the external routines that it calls, you can use the Linker
to combine them into an executable codefile. From th~ Command
level, type L for Linker. The system will display

Linking •••

Apple ///Pascal Linker [A3/l.0]
Host file?

Type the pathname of the host file--in this case,
/NEWPASCAL3/CALLASM • (You need not type the suffix .CODE •)
The Linker will continue with:

Opening CALLASM.CODE
Lib file?

Lib stands for library: a codefile that contains external
routines called by the host program. You should type the
pathname of the file that contains your assembled external
routines. You saved your assembly language workfiles on
NEWPASCAL3, so type /NEWPASCAL3/ ASMSUBS • The Linker will open
this library file, then ask you for another one. Only one
library file is used in this sample, so just type a carriage
return and the Linker will continue.

16 Apple III Program Preparation Tools

Next the Linker will ask you for the name of a file to use for
the library n~p. You will find out all about maps in the
chapter THE LIBRARY; for now, just type a carriage return when
the Linker asks for l1ap file. The Linker will continue until
the display looks like this:

Lib file?/NEWPASCAL3/AS!1SUBS
Opening ASMSUBS.CODE
Lib file?
Map file?
Reading CALLASM
Reading TIMES2
Output file?

Now you should type in the pathname for the file that will
contain the complete program produced by the Linker. In this
case, type /NEWPASCAL3/SAMP2. The Linker will continue with:

Linking CALLASM ti 1
Copying func TIMES2
Copying proc INCARRAY

When the Command prompt line is displayed, linking is complete:
the codefile for the sample program is ready to execute. Type
X for Execute, and when the computer responds with

Execute what file?

type the pathname /NEWPASCAL3/SAMP2 The sample program will
be loaded and executed. If it has been compiled and linked
correctly, the sample program will display:

initial array:
~ 1 2 3 4 5 6 7 8 9
array, incremented:
1 2 3 4 5 6 7 8 9 10
incremented array, times 2:
2 4 6 8 10 12 14 16 18 20

This sample program is intended only to introduce you to the
use of the Compiler, the Assembler, and the Linker. When you
start to write real programs, you will need to learn more about
these program preparation tools. You should read the remaining
chapters of this manual and the chapters PROCEDURES AND
FUNCTIONS, LIBRARY UNITS, and PROGRAl-1 SEGMENTATION and the
appendix THE APPLE III PASCAL COMPILER in the Apple III Pascal
Programmer's Manual.

19
19
20 Using the Assembler
25 Reference Symbol Table
26 A Sample Program
26 Assembly-Language Routines
29 The Assembly Listing
34 A Pascal Host Program
35 Using the Host Program
37 Assembler Information
37 Syntax of Assembler Source Files

The Assembler 17

38 Syntax of Assembly Language Statements
39 Identifiers
39 Labels
39 Local Labels
40 Constants
40 Location Counter
41 Addressing Modes
42 Expressions
44 Linkage to Assembly Language Routines
46 Conventions
46 Enhanced Indirect Addressing
48 Pascal Memory Usage
48 Accessing Pascal Data Space
SO The Assembler Directives
51 Routine-Delimiting Directives
52 .PROC
52 .FUNC
52 .END
53
53

18 Apple III Program Preparation Tools

53 .BYTE
54 .BLOCK
54 .WORD
55 Label-Definition Directives
55 .EQU
55 .ORG
56 .ALIGN
56 .ABSOLUTE
56 .INTERP
57 Macro Directives
58 .MACRO
58 .ENDM
60 Conditional-Assembly Directives
61 .IF
61 .ELSE
61 .ENDC
62 Host-Communication Directives
62 .CONST
62 .PUBLIC
63 .PRIVATE
64 External-Reference Directives
64 .DEF
65 .REF
66 Listing-Control Directives
66 .LIST
66 .NOLIST
66 .MACROLIST
66 .NOMACROLIST
67 .PATCHLIST
67 .NOPATCHLIST
68 .PAGE
68 .TITLE
68 File Directive
68 .INCLUDE
69 Assembler Use Summaries
69 Assembler Command Summary
70 Assembler Directive Summary
70 Routine-Delimiting Directives
70 Data Directives
70 Label-Definitions Directives
71 Macro Directives

Conditional-Assembly Directives
Host-Communication Directives
External-Reference Directives
Listing-Control Directives
File Directive

The Assembler 19

Introduction
Even if you write most of your programs in Pascal, you may
occasionally need to write an assembly language routine for a
part of your program that requires critical timing or that
directly interfaces with hardware. The Apple III Pascal
Assembler converts your assembly language routine into a
codefile that can be linked with a Pascal host program. The
Apple III Pascal Assembler is a version of the UCSD Adaptable
Assembler, implemented specifically for the 6502 microprocessor
used in the Apple III computer.

This chapter tells how to use the Apple III Pascal Assembler,
but it is not a complete description of the 6502 assembly
language used on the Apple I II. For that you wi 11 need a
reference book on 6502 programming. Several good ones are
listed in the Bibliography.

Files Needed
The assembly language routine you wish to assemble should be
stored in a textfile. This file, called the source file, may
be the text part of the system workfile. If there is no
workfile currently assigned, you can specify any other
textfile. The result of assembling the source file is a
codefile called the object file.

In addition to the source textfile and disk space for the
object codefile, you will need the following files to be able
to use the Assembler:

SYSTEM.ASSMBLER
OPCODES.6502
ERRORS.6502 (optional)
SYSTEM.EDITOR (optional)

These files are supplied on the Apple III Pascal System
diskettes, labelled PASCAL! , PASCAL2 , and PASCAL3 • To gain
more room for program files on the system diskettes, you can
rearrange the system files. A convenient way to set up your
system diskettes for program preparation is given in the
section The System Diskette Files in the TABLES appendix and

20 Apple III Program Preparation Tools

is described in the chapter FIRST STEPS IN PROGRAM PREPARATION.
The rearranged diskettes are named NEWPASCALl , NEWPASCAL2 ,
and NEWPASCAL3 •

Diskette file SYSTEM.ASSMBLER contains the Assembler program.
File OPCODES.6502 contains the instruction IID:lemonics for 6502
assembly language as used in the Apple III. These files are
supplied on diskette PASCAL2 ; in the rearranged system
diskettes, the assembler files are on NEWPASCAL3 • They must
be available on some diskette in one of the system's disk
drives when you type A from the command level to invoke the
Assembler.

Diskette file ERRORS.6502, on diskette NEWPASCAL3 in the
rearranged system diskettes, contains the Assembler error
messages. This file is optional; if it is not available, the
Assembler will report errors by number and you will have to
look up the error descriptions in the ERROR MESSAGES appendix.

When the Assembler detects an error, it gives you the option of
immediately invoking the Editor to correct the problem. If you
type E for Edit from the Assembler, the file SYSTEM.EDITOR ,
which is normally found on your Pascal system diskette
NEWPASCAL2 , must be on a diskette in one of the disk drives.

With NEWPASCAL2 in the built-in drive and NEWPASCAL3 in the
first external drive, your Apple III has all the files needed
to use the Pascal Editor, Compiler, Assembler, and Linker.

If your system has only two disk drives and you wish to
assemble a textfile that is not on diskette NEWPASCAL2
or NEWPASCAL3 , you'll have to use the Filer's Transfer
command to transfer that textfile onto either NEWPASCAL2
or NEWPASCAL3 before assembling.

Using the Assembler
You invoke the Assembler by typing A for Assembler from the
Command level of the Apple III Pascal System. The screen
immediately shows the message

Assembling •••

The Assembler 21

If no workfile is available as a result of the Editor's Update
command or the Filer's Get command, the system prompts you with
the message:

Assemble what text?

You should respond by typing the pathname of the source file,
that is, the textfile that contains the routines you wish to
assemble. It is not necessary to type the suffix .TEXT ; the
suffix is automatically supplied by the Assembler if you don't
type it. If you wish to defeat this feature in order to
assemble a textfile whose pathname does not end in .TEXT , type
a period (•) after the last character of your pathname.

Next you will be asked for the name of the codef ile where you
wish to save the assembled version of your routine:

To what codef ile?

If you simply press the RETURN key the command will not be
terminated, as you might expect. Instead, the assembled
version of your routine will be saved on the Pascal system
diskette's workfile SYSTEM.WRK.CODE •

Press the ESCAPE key and then press RETURN in response to this
prompt or the previous one to abandon the assembly and return
to the Command level.

If you want your object codefile to have the same pathname as
the source textfile (with the suffix .CODE instead of .TEXT),
you should respond to this prompt by typing a dollar sign ($)
and pressing the RETURN key. This feature makes it easy to use
the same name for both versions of your routine. The dollar
sign repeats your entire source-file pathname, including the
volume identifier, so do not specify the volume before you type
the dollar sign.

If you want your codefile to be stored under some other
pathname, type that pathname in response to the prompt. It is
not necessary to type the suffix .CODE ; the suffix is
automatically supplied by the Assembler. If you wish to defeat
this feature in order to specify a pathname that does not have
a .CODE suffix, type a period (•) after the last character
of your pathname.

After the source and object files for the assembly have been
specified, the next prompt line is:

22 Apple III Program Preparation Tools

6502 Assembler [A3/1.0]
Output file for Assembler listing (<CR> for none):

Now you must specify where you want the Assembler to send the
assembly listing. The assembly listing gives the address and
the assembled object code for each statement in the source
routine. It also includes reference symbol tables, described
below. This listing is independent of the object codefile that
is saved as the final output of the assembly. See the example
later in this chapter for a sample assembly listing.

If you wish, you can have the assembly listing sent to a
diskette file, to the console, or to the printer. As usual for
a console or printer output, the word CONSOLE or PRINTER must
be preceded by a period, i.e. , • CONSOLE •

If you specify a disk file for the assembly listing, you do not
need to type the .TEXT suffix; .TEXT will be added
automatically if it is needed. Unlike many parts of the
system, ending the specified pathname with a period does not
suppress the addition of the .TEXT suffix. However, if the
pathname you type includes the string .TEXT anywhere in it, the
pathname is used exactly as typed.

If you store an assembly listing as a diskette file, you
can use the Editor to look at it, but the control
characters in the file make it very difficult to edit.
Form feeds (CONTROL-L) in the file are interpreted as
clear screen characters by the Editor. Data-link escape
commands (CONTROL-P), followed by a number, appear as
tabs, but cause the Editor to lose track of the cursor
position. You can use the Editor's Replace command to
remove the CONTROL-Ls and CONTROL-Ps when you start
editing a listing file.

Press the RETURN key if you do not want this listing. If you
wish to abandon the assembly at this point, press the
ESCAPE key and then press RETURN.

There is an additional diskette file requirement that is
not obvious. The Assembler uses a small area on the
Pascal system diskette for a temporary file containing
information that will be needed if the Linker is used.
This diskette file does not normally appear in the

The Assembler 23

diskette's directory, but space for it (usually less
than four blocks) must be available on the Pascal system
diskette after the Assembler has opened both the output
codefile and the output textfile for the listing (if
any). An attempt to assemble without space on the main
system diskette for this file causes the message IO
ERROR: NO ROOM ON VOL and a message prompting you to
press the spacebar to reinitialize the system. After
you have done this, your Pascal system diskette may
contain a new file named LINKER.INFO, of zero length and
type Datafile. You can remove this file if you wish.

If you have specified a destination for the assembly listing,
the system reports whether or not the output device is on line,
that is, connected and operating.

After you tell the Assembler what to do with the listing file,
it starts assembling the source file. If you told the
Assembler to send the assembly listing to .CONSOLE , the
listing appears on the display screen, one line at a time. If
you did not direct the assembly listing to .CONSOLE , a simple
display showing the assembly's progress appears on the screen
instead. In this I!X)de, the Assembler displays a dot for each
line of code assembled and a line counter every 50 lines. Upon
completing each procedure or function, it displays the number
of words of space available for the reference symbol table
(described below) in brackets, followed by the message

Current minimum space is XX words

If you used the INCLUDE directive in your routine, the
Assembler will display the message:

.INCLUDE <pathname)

each time it encounters the directive, to inform you that the
named file has been included in the assembly.

If the Assembler encounters an error, it displays a message
that shows the off ending text and indicates the nature of the
error. For example, you might see

$04 .EQU *
Identifier previously declared

The error message is taken from the file ERRORS.6502 • If this
file is not on a disk drive, or if there is not enough

24 Apple III Program Preparation Tools

available memory to load it, only the error message number is
given. In that case, you might see

$04
Error ti

.EQU *
9

"ERRORS. 6502" file not found

A complete list of Assembler syntax-error messages that
correspond to these error numbers appears in this manual's
appendix ERROR MESSAGES. Note that the descriptive error
message is given only at the time the error is detected, and
is not given by the Editor as it is when you use the Compiler.
After each error is found, the Assembler prompts you with the
following choice:

E(dit,<space>,<esc>

This is similar to the choice that you are given when the
Compiler encounters an error. If you wish to proceed with the
assembly, looking for more errors, press the spacebar. If you
decide to terminate the assembly and return to the outermost
Command level, press the ESCAPE key. If you wish to correct
the error, type E. The Editor will be loaded into the computer
and the workfile will be read into the Editor, ready for
editing. If the file you are assembling is not the workfile,
this prompt appears:

>Edit:
No workfile is present. File? (<ret> for no file <esc> to exit)

You should type the pathname of the source file being
assembled. If the error occurred in an include file, you
should type the name of that file, which is given in the last
include message that was displayed. The file you specified
will then be read into the Editor, the Editor will display a
general error message, and the cursor will be placed at the
point in the text where the error was detected.

The Editor does not display specific messages for errors
reported by the Assembler. Therefore you should be sure
to note which error is being reported by the Assembler
before you type E to invoke the Editor.

When the assembly is finished, the Assembler displays a message
telling you that it is finished and the number of errors that
it found.

The Assembler 25

If the Assembler found no errors, it stores the object code in
the Pascal system diskette's workfile SYSTEM.WRK.CODE or in the
codefile with the pathname that you specified earlier. The
assembled codefile cannot be executed by itself; it can only be
used by Linking it with a host program's codefile. For
information about linking, see the example later in this
chapter, and also see this manual's chapter THE LINKER. For
information about putting assembled codefiles into a library
file so that the Run command will automatically link them to a
host program, see this manual's chapter USING THE LIBRARY.

The code part of the Pascal system diskette's workfile,
SYSTEM.WRK.CODE, is automatically erased whenever you
use the Editor's Update command to update the text part
of the workfile.

Reference Symbol Table
To help you locate the symbols in the listing of your assembly
language routines, the Assembler generates Reference Symbol
Tables. A Reference Symbol Table, entitled SYMBOLTABLE DUMP,
appears in the assembly listing following the listing of each
procedure or function. Each entry in the Reference Symbol
Table contains three items. The first item is the symbol
itself--the entries are listed alphabetically by symbol. The
second item is the symbol type, using the abbreviations listed
at the top of each table. If the symbol represents a label or
an absolute, the third item is the definition address. A
label's definition address is the four-digit hexadecimal number
shown in the lef t--most column of the assembly listing for the
statement that defines the label. If the symbol represents
neither an absolute nor a label, the third item is filled in
with dashes. A vertical bar (I) ends each entry. Here is
one of the Reference Symbol Tables from the assembly listing
example given later in this chapter:

26 Apple III Program Preparation Tools

PAGE - 5 INCARRAY FILE: SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - Macro
RF - Ref DF - Def PR - Proc FC - Fune
PB - Public PV - Private cs - Cons ts

ALOOP LB 00121 INCARRAY PR ----1 POP MC ----1
PSEUDO AB 00E01 PUSH MC ----1 RETURN AB 00001
SIZE AB 0002

The first entry is for a label named ALOOP, defined at address
0012. The second entry shows that HICARRAY is the name of the
procedure. The third entry shows that POP is the name of a
macro. The fourth entry shows that PSEUDO is an absolute that
has been assigned the value 00E0 •

A Sample Program
The sample program that follows includes the following items:

1) The assembly language source text of an external
function, TIMES2, and an external procedure,
INCARRAY.

2) The assembly listings for the function and the
procedure.

3) A Pascal host program that calls the function and
the procedure.

4) Sample commands for compiling the Pascal host program.

5) Sample commands for linking the assembly language
routines to the Pascal host program.

Assembly-Language Routines
You can create your program textf ile in the system workfile and
assemble it, as described in the previous chapter. The
alternative approach is to use named files for your program
text and code. That approach is demonstrated in the sample
that follows.

First, use the Filer's New command to remove any existing
workfile. Then, using the Editor's Insert command, type the

The Assembler 27

following assembly language routine into the computer just as
it appears here. Be careful with punctuation and special
characters.

Note: The text following the semicolon (;) on each line is
a comment. You can omit the semicolon and the comment if you
wish.

sample macro POPs word from eval. stack

.MACRO POP
PLA
STA %1
PLA
STA %1+1
.ENDM

sample macro PUSHes word to eval . stack

.MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDH

sample function for Pascal, declared:
function TIMES2(data:integer):integer;

.FUNC
RETURN .EQU

POP
PLA
PLA
PLA
PLA

PLA
ASL
TAX
PLA
ROL
PHA

TIMES2, 1
0

RETURN

A

A

;one word of params
;tenp store rtn addr

;save Pascal rtn ad
;discard 4 bytes
;of stack bias
;(only need to do
;for .func)

;lsb of data
;t imes 2
;save in x
;msb of data
;times 2, with carry
;move msb to

28 Apple III Program Preparation Tools

TXA
PHA

PUSH

RTS

RETURN

;evaluation stack
;restore lsb to ace
;move lsb to
;evaluation stack

;restore Pascal
;return address
;RETURN to Pascal

sample procedure for Pascal, declared:
procedure INCARRAY(size:integer; var data: list);

.PROC INCARRAY,2 ;2 words of pa rams
RETURN .EQU 0 ;temp store rtn ad
SIZE .EQU 2 ;temp store SIZE
PSEUDO • EQU 0E0 ;Pascal pseudo-reg •

POP RETURN ;save Pascal rtn ad
PLA ;lsb of array addr
STA PSEUDO
PLA ;msb of array addr
STA PSEUDO+!
PLA ;lsb of SIZE param.
STA SIZE
PLA ;msb of SIZE discard

LDY ltr/J ;init 'ize array indx
ALOOP CLC ;clear for add

LDA @PSEUDO,Y ;load array byte
ADC ltl ;increment
STA @PSEUDO;Y ;store incd ar y byt
!NY ;incrm't array index
CPY SIZE ;test vs array SIZE
BCC ALO OP ;repeat if lt or eq

PUSH RETURN ;restore Pascal
;return address

RTS ;RETURN to Pascal

.END ;end of assembly

The Assembler 29

The Assembly Listing
After you have typed the assembly language sample with the
Editor, type Q for Quit, select the Write option, and save the
program in a diskette file named ASMSUBS • If your Apple III
has two or more external disk drives, you can keep your user
diskette in the second one (.D3). For this example, the user
diskette is named MYDISK and the assembly language text file is
named /MYDISK/ASMSUBS.TEXT • If you only have one external
drive, you'll have to keep your developing program on one of
the system diskettes. If you save your text and code files on
NEWPASCAL2 , you can put your listing files on NEWPASCAL3 •

After you have saved your textfile, and with the system at the
Command level, type A to invoke the Assembler. The system
loads the Assembler, which displays a prompt asking for the
source textfile:

Assembling •••
Assemble what text?

If your user diskette is MYDISK , you should respond with the
pathname /MYDISK/ASHSUBS • If your text file is on the system
diskette, respond with /NEWPASCAL2/ASMSUBS Next, the
Assembler asks you for the name to use for the assembled object
codefile:

To what code file?

To save the codefile with the same name as the textfile, except
for the suffix, you may either type the pathname
/MYDISK/ASMSUBS again, or simply type a dollar sign ($).
It is usually convenient to use the same pathname for both
versions of your program, and most commands can use the suffix
.TEXT or .CODE to choose the appropriate version.

Note: if the source textfile had been available in the main
system diskette's workfile SYSTEM.WRK.TEXT or some other
workfile that you designated using the Filer's Get command,
the prompting questions shown above would not have appeared.
Instead, the Assembler would have assembled the text workfile
and would have stored the object codefile as SYSTEM.WRK.CODE •

30 Apple III Program Preparation Tools

The next messages from the Assembler identify the version of
the Assembler and ask you where to send the assembly listing:

6502 Assembler [A3/l.0]
Output file for assembler listing (<CR) for none):

If you have a printer connected to your Apple III, type
.PRINTER to send the assembly listing to the printer. If you
respond to the last prompting message by typing .CONSOLE , the
assembly listing will be sent to the monitor screen in place of
the Assembler's usual screen display. If you want the listing
file to be saved, specify the pathname where you want it sent:
for example, /MYDISK/ASUBS.LST •

After you specify the disposition of the listing, the assembly
process will begin. The console screen will show the usual
Assembler display: a dot for each line of the source program,
and messages that tell you how much memory space, in 16-bit
words, is available at each stage of the assembly. The screen
display will look something like this:

[10768]<
2 blocks
[9635]<
[9528]<

0> •••••••••••••
for procedure code 9642 words left

26) •••••••••••••••••••••••••••••••••••••
50> ••••••••

Current minimum space is 9595 words
[9616]< 57) ••••••••••••••••••••••••••••••••
Current minimum space is 9571 words
[9592]< 92>
Assembly complete: 94 lines

0 Errors flagged on this Assembly

Meanwhile, the printer has been printing the assembly listing,
which looks like this:

PAGE - 0
Current memory available: 10192
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001

sample macro pops word from eval. stack

.t1AC1W POP
PLA
STA %1
PLA
STA %1+1
.ENDH

00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001 '

The Assembler 31

sample macro pushes word to eval. stack

.MACRO PUSH
LDA %1+1
PHA
LDA %1
PHA
.ENDM

sample function for Pascal, declared:
function TIMES2(data:integer):integer;

2 blocks for procedure code 9642 words left
PAGE - TIMES2 FILE :ASMSUBS

00001
Current memory
00001 0000
00001
00001
00001 68
00011 85 00
00031 68
00041 85 01
00061 68
00071 68
00081 68
00091 68
000AI
000AI 68
000BI 0A
000CI AA
000D I 68
000EI 2A
000F I 48
000FI
00101 8A
00111 48
00111
00121

available: 9603
RETURN

II
II
II
II

.FUNG TIMES2, 1

.EQU 0

POP RETURN
PLA
STA RETURN
PLA
STA RETURN+l
PLA
PLA
PLA
PLA

PLA
ASL A
TAX
PLA
ROL A
PHA

TXA
PHA

;one word of pa rams

;temp store rtn addr

;save Pascal rtn ad

;discard 4 bytes
;of staCk bias
; (only need to do
;for .func)

;lsb of data
;times 2
;save in x
;msb of data
;times 2, with carry
;move msb to
;evaluation stack
;restore lsb to ace
;move lsb to
;evaluation stack

32 Apple III Program Preparation Tools

00121
00121
00121 AS
00141 48
001SI AS
00171 48
00181 60
00191
00191
00191

01

00

II
II
II
II

PUSH RETURN

LDA RETURN+!
PHA
LDA RETURN
PHA
RTS

;restore Pascal
;return address

;RETURN to Pascal

00191 sample procedure for Pascal, declared:
00191 procedure INCARRAY(size:integer; var data: list);
00191
PAGE - 2 TIMES2 FILE:ASMSUBS SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC
RF - Ref DF - Def PR - Proc FC
PB - Public PV - Private cs - Consts

POP MC ----1 PUSH MC ----1 RETURN AB 00001
PAGE - 3 TIMES2 FILE:ASMSUBS

Current minimum space is 959S words
PAGE - 4 INCARRAY FILE:ASMSUBS

00001 .PROC INCARRAY,2
Current memory available: 9603
¢>000 I 0000 RETURN .EQU 0
00001 0002 SIZE .EQU 2
0000 I 00E0 PSEUDO .EQU 0E0
00001
00001 POP RETURN
00001 68 II PLA
00011 8S 00 II STA RETURN
00031 68 II PLA
00041 8S 01 II STA RETURN+!
00061 68 PLA
00071 8S E'/J STA PSEUDO
00091 68 PLA
000AI 8S El STA PSEUDO+!
il'/J'/JCI 68 PLA
000DI 8S 02 STA SIZE
000FI 68 PLA

- Macro
- Fune

TIMES2 FC ----1

;2 words of params

;temp store rtn ad
;temp store SIZE
;Pascal pseudo reg

;save Pascal RTN ad

;lsb of array addr

;msb of array addr

;lsb of SIZE param.

;msb of SIZE discard

00101
00101 A0 00
00121 l8 ALOOP
00131 Bl E0
001s1 69 01
00171 91 E0
00191 CB
001AI C4 02
001c1 3\JF4
001EI
001EI
00lEI
001EI AS 01 II
00201 48 II
00211 AS 00 II
00231 48 II
00241 60
002s1
002s1

LDY 110
CLC
LDA @PSEUDO,Y
ADC Ill
STA @PSEUDO,Y
INY
CPY SIZE
BMI ALOOP

PUSH RETURN

LDA RETURN+l
PHA
LDA RETURN
PHA
RTS

.END

The Assembler 33

;init'ize array indx
;clear for add
; larray byte
;increment
;store incd ar'y byt
;incrm't array index
;test vs array SIZE
;do while less than

;restore Pascal
;return address

;RETURN to Pascal

;end of assembly
PAGE - s INCARRAY FILE:ASMSUBS SYMBOL TABLE DUMP

AB - Absolute
RF - Ref
PB - Public

LB - Label UD - Undefined
DF - Def PR - Proc
PV - Private CS - Consts

ALO OP
PUSH

LB 00121 INCARRAY PR ----1 POP
HC ----1 RETURN AB 00001 SIZE

PAGE - 6 INCARRAY FILE:ASMSUBS

Current minimum space is 9571 words

Assembly complete: 94 lines
0 Errors flagged on this Assembly

MC - Macro
FC - Fune

HC ----1 PSEUDO AB 00E01
AB 0002

Only the assembled object code shown on the left side
of the assembly listing is saved in the file
/MYDISK/ASMSUBS.CODE •

34 Apple III Program Preparation Tools

Notes about the sample assembly listing:

1) The addresses given in the Symboltable dump
correspond to the addresses shown in the left-most
column of the listing.

2) Addresses in the object code appear in reverse byte
order; that is, low byte first.

3) A number-sign (# is printed at the left of all
source statements that are expanded from macros.

4) The notation used for indirect addressing with the
Apple III Pascal Assembler is not the same as the
standard notation defined by the manufacturer of the
6502 microprocessor. See the section on Addressing
Modes under Syntax of Assembly Language Statements,
later in this chapter.

A Pascal Host Program
The following sample Pascal host program calls the external
function and procedure assembled earlier. You should use the
Editor to type the program as shown, then save it under the
pathname /MYDISK/CALLASM.TEXT • Note: the first line of the
program directs the compiler to save the listing file as
/MYDISK/CALL.LST.TEXT •

{$L /MYDISK/CALL.LST.TEXT}

program CALLASM;

{ sample Pascal host program with calls
{ to an external function and procedure

type list =packed array[0 •• 9] of 0 •• 255;

var i ,k: integer; aa: list;

procedure INCARRAY(size:integer; var data: list);
external;

function TIMES2(data:integer):integer;
external;

begin
writeln('initial array:');
for i := 0 to 9 do

begin
aa[i] : = i;
write(aa[i],' ');
end;

writeln;
writeln('array, incremented:');
INCARRAY(10,aa);

The Assembler 35

for i := 0 to 9 do write(aa[i],' ');
writeln;
writeln('incremented array, times 2:');
for i := 0 to 9 do write(TIMESZ(aa[i]),' ');

end.

Using the Host Program
Before the Pascal host program you have just typed can be used,
the text version must be compiled to make an executable P-code
version. This is done from the Command level ' by typing C for
Compile. If you saved the program text in a file named
/MYDISK/CALLASM.TEXT , the first prompting messages and your
responses will look like this:

Compiling •••
Compile what text?
To what codefile?

/MYDISK/CALLASM
$

The first response tells the Compiler to compile the program in
the textfile /MYDISK/CALLASH.TEXT • The dollar sign ($)
response to the second prompt tells the Compiler to save the
resulting codefile with the same pathname as the textfile,
except for the suffix: /MYDISK/CALLASM.CODE • Just as
in the Assembler example, it is convenient to use the same name
for the textfile and codefile versions of the program.

Now the actual compilation begins. The Compiler displays a dot
for each line of the source program, and messages that tell you
how much memory space, in 16-bit words, is available at each
stage of the compilation. For a description of the Compiler
messages, refer to the Apple III Pascal Programmer's Manual.

If there are no errors in the program, the Command prompt line
will reappear. When you reach this point, compilation of

36 Apple III Program Preparation Tools

CALLASM is complete and the compiled codefile is stored as
/MYDISK/CALLASM.CODE •

However, CALLASM is still not ready to execute: the external
assembly language function and procedure in
/MYDISK/ASMSUBS.CODE still have to be linked to the Pascal
program. To do this, type an L for Link. The system's
messages and your responses will make a dialog like the one
shown below. For each prompting message from the system, the
response you should make is given below. An explanation of
each response is shown in parentheses.

Linking •••

Apple ///Pascal Linker [A3/l.0]
Host file? /MYDISK/CALLASM (Host program codefile)
Opening /MYDISK/CALLASM.CODE
Lib file? /MYDISK/ASMSUBS (Routines to link)
Opening /MYDISK/ASMSUBS.CODE
Lib file? (Press RETURN key--no more to link)
Map file? (Press RETURN key--no map file)
Reading CALLASM
Reading TIMES2
Output file? /MYDISK/SAMPL.CODE (Executable codefile;

type suffix .CODE)
Linking CALLASM # 1

Copying func TIMES2
Copying proc INCARRAY

The file SAMPL.CODE now contains your compiled Pascal host
program CALLASM linked with the assembly language routines
TIMES2 and INCARRAY. The completed program is now an
executable codefile. If you type X for Execute, the Apple III
will display:

Execute what file?

If you type /MYDISK/SAMPL, the program you just linked will be
loaded into the Apple and executed, to produce this display:

initial array:
0 1 2 3 4 5 6 7 8 9
array, incremented:
1 2 3 4 5 6 7 8 9 10
incremented array, times 2:
2 4 6 8 10 12 14 16 18 20

Assembler Information

The Assembler 37

This section defines the syntax of assembly language source
files and of the statements they contain. It does not describe
programming techniques, but only the way the program must be
written for the Apple III Pascal Assembler to assemble it.

Syntax of Assembler Source Files
The routines you assemble with the Pascal Assembler will be
external procedures and functions used with Pascal programs.
Statements that do not generate actual instruction code can
also occur outside the body of a procedure or function. These
statements can be of two kinds: (1) statements in macro
definitions, and (2) statements using any of the following
assembler directives:

.EQU

.ABSOLUTE
• INTERP

.MACRO

.ENDH
.IF
.ELSE
.ENDC

.DEF

.REF
.LIST
.NOLI ST
.PAGE
.TITLE

.MACROLIST

.NOMACROLIST

.PATCHLIST

.NOPATCHLIST

All symbols defined before the first procedure or function stay
in the symbol table throughout the assembly, so they can be
referred to from any of the routines in the source file. When
each new procedure or function begins, all symbols are removed
from the symbol table except the ones that were defined before
the first procedure or function.

The statements making up the body of a procedure or a function
are preceded by a .PROC or a .FUNC statement. Each procedure
or function ends at the occurrence of the next .PROC or .FUNC
statement, except the last one. The last procedure or function
in the source file must end with an .END statement, which
terminates the assembly. All text beyond the .END statement is
ignored by the Assembler.

38 Apple III Program Preparation Tools

Here is a general syntax diagram for assembly files:

any non-code
generating
operations

code- generating
operations and

directives

ASSEMBLY-FILE SYNTAX

Syntax of Assembly Language Statements
Each assembly language statement occupies one line and contains
four fields, arranged like this:

Label Operation Operand Comment

The fields are separated by one or more spaces or tabs. The
normal practice is to use tabs so that the fields line up as
columns on the listings, making them easier to read.

The label field can be occupied by an identifier or a lucal
label, or it can be blank. The operation field is occupied
either by an instruction mnemonic (op-code), by an assembler
directive (pseudo-op) or by a macro identifier. The operand
field is occupied by the arguments of the instruction or
directive in the operation field. These can be expressions,
identifiers, character strings, or other kinds of arguments,
depending on the operation. In some cases, the operand field
is blank.

The Assembler 39

The comment field contains text that is ignored by the
Assembler. The comment field starts with a semicolon (;).
A comment normally follows the other fields in a statement, but
if a semicolon is the first non-blank character in a statement,
the entire statement is treated as a comment.

Identifiers
An identifier is a character string starting with a letter.
The subsequent characters can be letters, numbers, or the ASCII
underline (), Only the first eight characters (not counting
any underlin-;s) are actually used by the Assembler, although
more can be typed in the identifier.

The underline character is ignored by the Pascal
Compiler and Assembler. If you declare a procedure as
EXT PROC , it is just as if you had declared it EXTPROC
or EX T PROC •

The Assembler makes only one pass through the source. On
encountering an undefined identifier in an expression, the
assembler treats the identifier as an undefined label that will
eventually be defined. Any identifier other than a label must
be defined before it is used.

Labels
A label must begin in the first column, with no preceding
spaces. A label can be followed by a colon; the colon will be
ignored.

Using the Equate directive (.EQU), a label can be defined by
an expression containing other labels or absolutes. A label
that appears as the argument of an Equate directive can be
undefined, but the undefined label cannot then be defined by a
later Equate directive.

Local Labels
A local label has a dollar sign ($) as its first character,
followed by as many as eight digits. A local label cannot be
used on the left-hand side of an equate.

Local labels are mainly used to jump around within a small
segment of code without using up space in the symbol table that
will be needed for regular labels. The Assembler's local-label

40 Apple III Program Preparation Tools

table can hold up to 21 labels. The local-label table is
emptied each time a regular label is encountered, thus making
all local labels previously defined invalid beyond that point
in the assembly. An example of the use of local labels is
shown below, where the branch to label $04 is nade invalid by
the intervening regular label REALLAB

$03

REAL LAB
$04

Constants

STA 4

BNE $03

BNE $04
LDA Ill
TAX

;LEGAL USE OF LOCAL LABEL

;ILLEGAL USE OF LOCAL LABEL

A constant must start with an integer from 0 through 9. For
example, the hexadecimal constant FF must be written 0FF

The default number base is hexadecimal. A decimal constant
consists of a number followed by a period (decimal point).

EXAMPLE: Hexadecimal:
Decimal:

13
19.

~ Remember that the default number base is hexadecimal.

Location Counter
The Assembler recognizes the asterisk (*) in the operand
field as a reference to the current value of the location
counter. For example, the statement

LOOP JMP *
would be assembled as a jump to the location of the jump
itself; in other words, an infinite loop or virtual halt.

The Assembler 41

Addressing Modes
The value of an expression appearing in the operand field of an
instruction is used either as immediate data, as an address, or
as an indirect address. The default case is to use it as an
address.

As usual with the 6502, immediate data is indicated by a number
sign (#) before an expression. For example,

LDA #5

is assembled as a load-accumulator immediate with data 05.

The notation used in the sample program for the indirect
and indexed addressing modes is not the same as the standard
notation defined by the manufacturer of the 6502
microprocessor. (The Assembler will accept the standard
notation, but note the warning below.)

An at-sign (@) before an expression appearing in the operand
field causes the value of the expression to be used as an
indirect address reference. For example, the instruction

LDA DATADDR

would be assembled as a load-accumulator absolute that would
load the byte of data at address DATADDR, but the instruction

LDA @DATADDR,Y

would be assembled as a load-accumulator indirect, indexed by
index register Y, that would use the word of data at address
DATADDR as an address. The 6502 would add the contents of the
Y index register to the contents of the word found at DATADDR
and load the accumulator with the byte of data found at the
resulting address.

Notations for indirect and indexed addressing modes are shown
in the following table:

42 Apple III Program Preparation Tools

Apple III Pascal Standard 6502
Addressing Mode Assembler Format Assembler Format

Indirect JMP @GOVE CT JMP (GOVECT)

X-indirect LDA @LOC2,X LDA (LOC2,X)

Y-indirect LDA @LOCl,Y LDA (LOCI), Y

The Apple III Pascal Assembler also accepts the standard
notation for the indirect and indexed addressing modes,
but it does not check the placement of the parentheses.
It distinguishes between indirect indexed and indexed
indirect modes by the presence of the X or the Y.

Expressions
The following operators can appear in expressions:

Unary operators:
+ positive

negative
ones complement

Binary operators:
+ addition

subtraction
* multiplication
/ truncating division (DIV)
% remainder division (MOD)
I bit-by-bit OR

bit-by-bit exclusive OR
& bit-by-bit AND

equal (valid only with .IF
<> not equal (valid only with .IF

Expressions are evaluated from left to right, and all operators
have the same precedence. To override the normal left-to-right
precedence, use angle brackets <like this> around the part of
the expression to be evaluated first. It is possible to create
bracketed expressions too complex for the Assembler to
evaluate, but most such expressions are too long to fit onto
one line anyway.

The Assembler 43

Normally, a label can be used in an address expression such as

LDA LABEL+S ; Legal expression with label

only if the expression adds or subtracts a constant value
from the address of the label. An expression such as

LDA LABEL*2 ; Illegal expression with label

will not be accepted by the Assembler unless you are assembling
using the .ABSOLUTE directive (discussed later in this chapter)
and LABEL is previously defined. Likewise, a label must not
appear in an expression used to make an absolute constant
unless the label is absolute. A statement such as

LDA llLABEL+S ; Illegal absolute constant with label

will not be accepted by the Assembler unless the .ABSOLUTE
directive is in use and LABEL is previously defined.

The following portion of an assembled listing illustrates
expression syntax as used in the Assembler. The examples are
not an actual, useful program.

PAGE - I TEMPI FILE:EXPRSYNTAX

00001 .PROC TEMPI
Current memory available: I0088
00001 CONSTANTS
00001
00001 000A com0 • EQU I0 •
00001 00BF OTH0 .EQU 0BF
00001 00F7 ONE0 .EQU 0F7
00001
00001 example EXPRESSIONS
00001
00001 AS 0S LDA s
00021 AS 4D LDA S+6*7
00041 AS 4D LDA <S+6>*7
00061 AS 0A LDA 7*6/4
00081 AS 07 LDA 7*<6/4>
000AI AS 0I LDA 6%S
000CI AS 02 LDA S+l I%S
000E I AS 07 LABEL LDA S+<lI%S>
00I01 AS 48 LDA OTH0AONE0
00I21 AS Bl LDA OTH0&0NE0
00I41 AD 0E00 LDA LABEL

44 Apple III Program Preparation Tools

00171 AD 0900
001AI AD 4000

LDA LABEL*2
ill-formed expression
E(dit,<space>,<esc>

¢>01D I
001D I A9 05
001FI A9 lC

LDA #(LABEL+5>
operand not absolute
E(dit,<space>,<esc>

00211 A9

LDA /!LABEL
operand not absolute
E(dit,<space>,<esc>

00221 A9
00231
00231

LDA LABEL-5
LDA 1ABEL+<5*CON10>

[Spacebar pressed here,
to continue assembly.]

LDA 1ABEL*2
LDA Its
LDA #5*<CON10 I 2> +3

[Spacebar pressed here,
to continue assembly.]

LDA #(LABEL+5>

[Spacebar pressed here,
to continue assembly.]

LDA #LABEL

.END

Linkage to Assembly Language Routines
A routine is declared EXTERNAL in a Pascal host program in much
the same way that a Pascal routine is declared FORWARD. The
routine is declared by a standard PROCEDURE or FUNCTION heading
followed by the keyword EXTERNAL. Calls to the external
routine use standard Pascal syntax, and the Compiler checks
that each call agrees in type and number of parameters with the
declaration for that routine. It is the programmer's
responsibility to ensure that the assembly language routine
agrees with the host program's EXTERNAL declaration. The
Linker checks only for the same number of words of parameters
in the host program's EXTERNAL declaration and in the external
routine's .PROC or .FUNG declaration. For more information on
the Linker's functions, see this manual's chapter THE LINKER.

The Assembler 45

When the host program executes a call to an external procedure
or function, parameters to be passed are pushed on the
evaluation stack in the order they are encountered in the host
program's calling statement: the first parameter is pushed on
the stack, high byte first, then the second parameter, and so
on. Long integers and sets are passed as the number of words
used in the host program. After a long integer or set, a word
indicating the number of words passed is pushed onto the stack.
Again, each word is pushed on the stack high byte first.
Strings, records, arrays, and VAR parameters are passed by
address, high byte first. The host program's EXTERNAL
declaration may declare a VAR parameter without a type. This
allows a parameter of indeterminate size to be passed by
address. When all the parameters have been passed, the host
program's return address is pushed on the stack, high byte
first, then low byte.

The assembly language routine being called must save the return
address, and then push it back on the stack just before
returning to the calling program. The passed parameters are
available on the stack in reverse order: the last one passed
is at the top of the stack.

top of stack after
Pascal calls the
assembly routine--

return addr lo byte

return addr hi byte

last pa ram lo byte

last pa ram hi byte

first pa ram lo byte

first pa ram hi byte

old data byte

Figure 2-1. The Order of Parameters on the Stack

46 Apple III Program Preparation Tools

The TIHES2 function in the assembly language example earlier in
this chapter uses parameter-passing by value. The function
first removes the return address from the stack and saves it in
location RETURN. After discarding the four extra bytes added
to the stack because the host program was calling a function,
the function then picks up the data word, one byte at a time.
When it is finished, the function pushes the result back onto
the stack, followed by the return address.

Conventions
When you write assembly language routines for the Apple III,
you must respect the SOS conventions concerning register use
and calling sequences. All the 6502 registers are available,
and zero-page hexadecimal locations 0 through 35 are available
for storing temporary variables. However, the Apple III Pascal
System also uses these locations as temporaries, so you should
not expect data to remain there from one execution of a routine
to the next. You can save variables in non-zero-page memory by
using the .BYTE or .WORD directives to reserve space in your
assembly languag,e routine.

There are two Pascal conventions that apply only to functions:

1) When a function is called, the host program pushes two
words (four bytes) of zeros on the evaluation stack
after any parameters are pushed and before the return
address is pushed.

2) When a function is finished, it must push the result
(a scalar, real, or pointer, maximum two words) on the
stack, high byte first, just before it pushes the
return address.

Enhanced Indirect Addressing
Enhanced indirect addressing is the method used in the Apple
III to extend its memory addressing beyond 64K bytes. It
involves the use of 6502 indirect-X and indirect-Y addressing
modes and depends on hardware interaction between the zero page
and its corresponding extension page (X-page).

SOS permanently assigns locations $1A00 through $1AFF as the
user zero page, and the hardware automatically associates
locations $1600 through $16FF as the X-page. Although the

The Assembler 47

zero-page data actually resides at $1A00 through $1AFF,
instructions that refer to the zero page still use address
values $00 through $FF. Host Apple III instructions behave
exactly like their 6502 counterparts, except for indirect-X
and indirect-Y instructions. Depending on the values in the
X-page, these instructions can invoke enhanced indirect
addressing.

Consider an indirect-X or indirect-Y reference through
zero-page location n. As usual for the 6502, zero-page
locations n and n+l are expected to contain the operand address
(disregarding indexing by X or Y, for the moment). Since the
zero page is mapped, this operand address is actually stored at
locations $1A00+n and $1A0l+n, with the least-significant byte
at the lower address. Location $160l+n contains the X-byte for
this addressing operation. The X-byte is interpreted as
follows:

BIT 7 6 5 4 3 2 1 0

Bit 7 is the enhanced-addressing bit, or E-bit. If it is zero,
normal 6502 addressing takes place and the rest of the X-byte
is ignored. Normal 6502 addressing means addressing in the 64K
address space consisting of a lower SK portion followed by the
currently switched-in 32K bank followed by an upper 24K
portion. Of course, the normal user should not access the
lower SK or the upper 24K, because these are occupied by the
operating system.

If bit 7 of the X-byte is a one, enhanced indirect addressing
takes place. The four-bit B field specifies a bank pair
consisting of banks B and B+l. These two banks together make
up a contiguous 64K address space. The address word stored in
zero page is taken as the address of a location in this 64K
bank pair, regardless of which bank is currently switched in.

The user should observe two warnings regarding enhanced
indirect addressing. First, locations $0000 to $00FF (the
"zeroth" page) in each bank pair are actually mapped into the
current user zero page (locations $1A00 to $1AFF, in the
portion of memory below the bank space). These locations
should be addressed using ordinary zero-page addressing.

48 Apple III Program Preparation Tools

The second warning concerns SOS calls. Parameter addresses in
SOS calls should not refer to locations $0100 through $01FF
(page 1) of bank pair 0-1.

Pascal Memory Usage
The Pascal system uses Apple III memory as follows:

(1) The areas above and below bank space are completely used
up by SOS and the Pascal interpreter.

(2) The high end of the highest-numbered bank available is
used by the interpreter, the SOS device drivers, and an
interpreter buffer.

(3) If graphics are in use, Pascal reserves either SK, 16K, or
32K in Bank 0 for graphics buffers. This space is
accessible via the graphics driver or assembly language
subroutines but not directly from Pascal programs.

(4) Of the space that remains, the Pascal system allocates the
largest available contiguous block of memory up to 64K
bytes long for use as the Pascal data space (stack/heap
space). This space must reside in a single bank pair.
All Pascal data resides in this space, and Pascal code
segments are loaded here if there is no other space for
them.

(5) If there is any memory space left over after all of the
above allocations are nade, the Pascal system uses it to
hold code segments as they are dynamically loaded. If
there is no left over space or if it has already been
filled with code segments when space is needed to load
another code segment, the new segment will be loaded in
Pascal data space (see (4), above).

Accessing Pascal Data Storage
To access Pascal data space, an assembly language routine must
perform indirect-X or indirect-Y addressing using an
appropriate X-byte value. For example, if Pascal data space is
in bank 1-2, the appropriate X-byte is $81. The high-order bit
set to one enables enhanced indirect addressing and the
low-order four bits specify the bank pair 1-2.

Since the Pascal subroutine linkage mechanism only passes
two-byte addresses (the X-byte is excluded), the assembly

The Assembler 49

language writer must make sure the X-byte is set properly. The
Pascal system presets locations $16El, $16E3, $16ES, and so on
through $16EF to the X-byte value for Pascal data space at boot
time. Thus, assembly language routines can copy parameter
addresses into locations $E0-$El, $E2-$E3, and so on through
$EE-$EF and perform indirect-X or indirect-Y addressing with
these zero-page addresses to access the parameters in Pascal
data space.

The following example shows how to access .PUBLIC data by using
this approach:

.PROC TEST
DATR .EQU 0E0 ;first Pascal pseudo-register

.PUBLIC DATA ;data belongs to the host
LDA ADATA ;move address •••
STA DATR
LDA ADATA+l
STA DATR+l ; ••• into pseudo-register

LDY 110
LDA @DATR,Y ;load the DATA into the accumulator

LDY 1110 ;if DATA= PACKED ARRAY[0 ••• 20] OF CHAR,
LDA @DATR,Y ;this loads DATA(l0]

ADATA .WORD DATA ;the host's address of DATA

Enhanced indirect addressing also occurs in the assembly
language example given earlier. The INCARRAY procedure pulls
the return address from the stack and saves it at location
RETURN. It then pulls the address of the array from the stack
and stores it in the pseudo-register at hex location 00E0.
After getting the remaining parameter from the stack, the
procedure uses enhanced indirect addressing (indirect-Y
addressing) to modify the array data where it is stored in
memory.

All parameters that are passed by address must be
accessed by means of enhanced indirect addressing.

50 Apple III Program Preparation Tools

The example given earlier in this chapter includes an external
assembly language procedure, an external assembly language
function, and a Pascal host program that calls them. The
example demonstrates the way return addresses, passed
parameters, and a function's returned value are handled in
assembly language routines. In the example, the external
routines are linked into the Pascal host program by direct user
commands. For information about installing a routine into the
system library so that it can be linked automatically, see this
manual's chapter USING THE LIBRARY .

The Assembler Directives
Assembler directives are statements you put in your program to
cause certain operations to be performed during program
assembly. Assembler directives resemble machine instructions
in appearance but, unlike instructions, they do not get
assembled into corresponding op-codes, so they are sometimes
called pseudo-ops . To make them easier to distinguish from
instructions in program listings, all assembler directives
begin with a period.

The Apple III. Pascal Assembler directives described below are
those of the UCSD Adaptable Assembler. They are different from
the directives used by the various 6502 microprocessor
manufacturers.

In the descriptions that follow, punctuation marks and items
that appear in upper case are to be typed in just as they
appear. Items that appear in lower case are the names of
element types, which you replace with the appropriate elements
when you use the directives . Items that are enclosed in angle
brackets <like this) are required elements, which you must
supply. Items enclosed in square brackets [like this] are
optional elements, which you may supply . If an element type is
not shown with a particular directive, the element type is not
used with that directive .

EXAMPLE:
[label] . ASCII "<character string>"

This notation indicates that you may supply a label, though you

The Assembler 51

don't need to, and that between the required double quotation
marks you must supply the character string . You should not
type the brackets.

Some of the common types of elements are defined in the
following table.

~:

value

valuelist

identifierlis t

expression

Definition:

Any numerical value, label,
constant , or expression.
A list of one or more values
separated by commas.
A list of one or more identifiers
separated by commas .
Any legal expression as defined
under Syntax of Assembly Language
Statements .

identifier[:integer]list A list of one or more
identifier:integer pairs
separated by commas .
The colon-integer is optional
in each pair; the default value
of integer is 1.

Examples are included after each directive definition to show
you the specific syntax and form of the directive . Also, the
example assembly language routine earlier in this chapter
includes some assembler directives in operation.

Routine-Delimiting Directives
Every assembler source textfile must include at least one . PROC
statement or . FUNC statement and one . END statement. The . PROC
and . FUNC statements declare and delimit the procedures and
functions that will be called by a Pascal host program . The
. END statement appears at the end of the last routine and
serves as the final delimiter.

The Pascal host program refers to an assembly language routine
by means of an EXTERNAL declaration. At the time a routine is
declared, the actual parameter names are given. Fo r example ,
for the assembly language procedure that begins with the
statement

52 Apple III Program Preparation Tools

.PROC FARKLE,4

the declaration in the Pascal host program might be

PROCEDURE FARKLE(X,Y:REAL);
EXTERNAL;

The use of these directives is demonstrated in the example
given earlier in this chapter •

. PROC

.FUNG

.END

Identifies a procedure, which returns no value.
A procedure is terminated by the occurrence of a new
.PROC or .FUNC statement, or by an .END statement •

FORM:

EXAMPLE:

• PROC (identifier>[,expression]

[expression] indicates the number of
words of parameters expected in calls to
this routine. The default value is 0.

.PROC DLDRIVE,2

Identifies a function, which returns a value. The
host program pushes two words onto the stack before
it pushes the return address. A function is
terminated by the occurrence of a new .PROC or .FUNC
statement, or by an .END statement •

FORM:

EXAMPLE:

• FUNC (identifier>[,expression]

[expression] indicates the number of
words of parameters expected in calls to
this routine. The default value is 0 .

• FUNC RANDOM,4

Indicates the end of the last routine in an assembly
language source file.

FORM: .END

EXAMPLE: .END

The Assembler 53

Data Directives
The next four assembler directives are for inserting data
into the stream of code being generated by the assembler. The
.BYTE , .WORD , and .BLOCK directives can also be used to
allocate space for storing variables •

. ASCII

. BYTE

Converts character values to ASCII-equivalent byte
constants and places them into the code stream. If
a label is present, its value is the address of the
first byte stored.

FORM:

EXAMPLE:

[label] .ASCII "<character string>"

where the character string is any string of
printable ASCII characters, including
spaces. The length of the string must be
less than 80 characters. The double
quotation marks are used as delimiters for
the characters to be converted. If you
want to put a double quotation mark into
the string, you must insert it separately,
using the .BYTE directive, as shown below.

.ASCII "HELLO"

For the insertion of a string containing a
double quotation mark, such as AB"CD, use
the following technique:

.ASCII

.BYTE
"AB"

22
.ASCII "CD"

An ASCII II

Note: The 22 is the hexadecimal ASCII code
for a double quotation mark •

Generates a byte of data in the code stream for each
value in the list. Only the first 7 items in the
list appear in the assembly listing, even though all
of the items are assembled into the code stream.
Each value must be between -128 and +255. If the
value is outside this range an error will be flagged.
If a label is present, its value is the address of
the first byte stored.

54 Apple III Program Preparation Tools

FORM: [label] .BYTE [valuelist]

the default for no stated value is 0.

EXAHPLE: TEMP .BYTE 4

the associated output would be: 04

. BLOCK Generates a block of repeated data in the code
stream. The length of the block is in bytes, and
each byte in the block has the same value. If no
value is specified, the default is 0. If a label is
present, its value is the address of the first byte
in the block.

FORM: [label] .BLOCK (length) [,value]

EXAMPLE: TEMP .BLOCK 4,6

the associated output would be:

06 (four bytes, each with value 06)
06
06
06

. WORD Generates a two-byte word of data in the code stream
for each value in the valuelist. Assigns the label
the value of the address of the first word.

FORM: [label] .WORD [valuelist]

EXAMPLE: TEMP .WORD 0,2,4, •••

the associated output would be:

0000
0002
0004

EXAMPLE:

The Assembler 55

Al .WORD A2

A2 .EQU * * denotes L.C. value
.WORD 5.

The statement A2 .EQU * assigns the current
value of the assembler's location counter
(L.C.) to label A2 • If the value of the
location counter is 50 at the .EQU , the
associated output would be:

0050 (assignment of the value of A2)
0005 (assignment due to .WORD 5)

Label-Definition Directives
The next four directives control the definitions of the labels
used in your program •

. EQU

. ORG

Assigns a value to a label. A label can be .equated
to an expression containing labels or absolutes, but
the labels must already be defined. A local label
can neither appear in nor be defined by an .EQU •

FORM: <label> .EQU <value>

EXAMPLE: BASE .EQU LABEL6

Sets the location counter to the value of the
operand . Words or bytes of zeros are generated in
the code stream to fill the space between the old and
new positions of the location counter. If the new
value is less than the current location counter, an
error will be generated .

FORM: . ORG <value>

EXAMPLE: .ORG

56 Apple III Program Preparation Tools

.ALIGN Sets the location counter to the next higher address
that is an even multiple of the value of the operand.

FORM: <label) .ALIGN <value>

EXAMPLE: PAGE .ALIGN 0Hl0

. ABSOLUTE This directive forces the assembler to interpret
the arguments of all .ORG directives as absolute

memory locations. Since the use of .ABSOLUTE has the
effect of cancelling the generation of relocation
information, the resulting object code cannot be
linked to a Pascal host. Such an object file must be
loaded by the user. It also makes it possible to
treat any defined (i.e., non-forward-referenced)
labels as absolute numbers. Thus such labels may be
multiplied and divided, etc. The .ABSOLUTE directive
must occur before the first .PROC or .FUNC directive
and is in effect for the entire assembly.

FORM: .ABSOLUTE

EXAMPLE: .ABSOLUTE

. /NTERP Used in expressions to specify locations relative to
the beginning of a special table in the interpreter.
Interpreter-relative labels may be defined as shown
in the example. The rules regarding the use of such
labels are the same as for any other specially
defined labels (e.g., .PUBLIC and .PRIVATE) •

EXAMPLE: STUFF .EQU • INTERP+25

Certain interpreter entry points may be accessed by
means of an instruction such as

JHP @.INTERP+n

For more information on interpreter entry points,
refer to the appendix SPECIAL MEMORY LOCATIONS.

The Assembler 57

Macro Directives
A macro is a named block of statements. After it is defined,
it can be inserted into the text wherever it is needed simply
by using its name as an operator. The text of the macro can
include parameters so that each insertion results in a
different version of the macro statements. A macro whose
definition precedes the first .PROC or .FUNC statement in an
assembly language source file can be used in any of the
procedures or functions in the file.

A macro is invoked by using its name as an operator. The
Assembler inserts the text of the macro definition into the
program immediately after the statement that invokes it. A
statement that invokes a macro can have a list of up to nine
arguments, separated by commas, in its operand field. Each
time it is invoked, the macro text is modified by substituting
the arguments for the macro parameters. If n is a single
decimal digit greater than zero, the n-th invocation argument
is substituted wherever the parameter %n occurs in the macro
definition. If a particular invocation provides fewer
arguments than there are parameters in the macro's definition,
a null string is substituted for each missing argument.

A macro definition cannot contain another macro
definition. However, a definition can include other
macro invocations. The nesting of macro invocations can
be up to five levels deep.

You can put a macro definition in either the main file
or in an INCLUDE file, but the macro definition must be
completely contained within one text file. It is
illegal to start a macro definition in the main source
file and continue it into an INCLUDE file, or to start
the definition in one INCLUDE file and continue it in
another INCLUDE file.

Each time a macro is invoked, the macro text will appear in the
listing file unless .NOMACROLIST was in effect when the macro
was defined. Macro expansion text is flagged in the listing by
a number sign (#) at the left of each macro statement.
Comments occurring in the macro definition are not repeated in
the expansion.

58 Apple III Program Preparation Tools

. MACRO Indicates the start of a macro definition and gives
it an identifier •

. ENDM Indicates the end of a macro definition.

FORM:

EXAMPLE:

.MACRO

.ENDM

.MACRO HELP
STA %1
LDA %2
.ENDM

<identifier)

; (macro body)

comment)
comment)

The assembly listing beginning at the point where
this macro is invoked might look like this:

HELP ALPHA,BETA
STA ALPHA
LDA BETA

The statement HELP invokes the defined macro using
two arguments, ALPHA and BETA. These arguments are
used in forming the macro expansion (flagged in the
listing by number signs) that follows the invoking
statement. In the expansion, the first
macro-invocation argument (variable ALPHA) is
substituted for the definition's parameter %1 , and
the second argument (variable BETA) is substituted
for parameter %2 •

The following portion of an assembly listing illustrates the
syntax used when defining and invoking macros. The procedure
itself is not meant to be an actual, useful program. Other
examples of macros occur in the program example given in the
first part of this chapter.

The Assembler 59

PAGE - 1 TEMP2 FILE:MACROCALL

00001
Current memory available:

.PROC TEMP2
10088

00001
00001
00001 000A
00001 00BF
00001 00F7
00001
00001
00001
00001
00001
00001

00001
00001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0002
0002
00021
00021
00021
00021
000s1
00071
00071
00081
000BI
00001
000FI
00111
00141
00141
00141
001s1

AS 0S

4C 0000
A9 3D

18
AD 3800
A9 SS
A9 06
AS 01
4C ****

18
AD 0S00

CON10
OTH0
ONE0

PREDEFL

II
II
II
II
II
II
II
II
II

II
II

.EQU 10.

.EQU 0BF

.EQU 0F7

.MACRO M2
CLC

CONSTANTS

MACRO DEFINITIONS

LDA PREDEFL+%1

.ENDM

.MACRO TESTl1
JMP %1
LDA /IS+%2
H2 %2 ; MACRO CALL INSIDE A MACRO DEF 'N
LDA %3
LDA %4
LDA %S
JMP %6

.ENDM

LDA s A PRE-DEFINED LABEL

MACRO CALL WITH ALL PARAMETERS
& NO LEADING OR TRAILING SPACES

TESTM PREDEFL,<S*CON10+6>, llSS ,116,l,LABEL2
JMP PREDEFL
LDA llS+<S*CON10+6>
M2 <S*CON10+6>
CLC
LDA PREDEFL+<S*CON10+6>
LDA llSS
LDA 116
LDA 1
JMP LABEL2

M2 s ; SIMPLE MACRO CALL
CLC
LDA PREDEFL+S

60 Apple III Program Preparation Tools

00181
00181
00181
00181
00181

JMP
not enough operands
E(dit,<space>,<esc>

00181
00181 A9 0F
001AI
001AI 18
001B I AD 0A00

LDA
ill formed operand
E(dit,<space>,<esc>

001EI
001E I AD ****
00211 AS F0
00231 4C 0000
00261
00261

TES TM

MACRO CALL WITH NULL PARAMS
AND LEADING & TRAILING SPACES

,CON10,, XX ,0F0, PREDEFL

[Spacebar pressed here, to continue assembly.)

II
II
II
II
II

JMP
LDA ll5+CON10
M2 CON10
CLC
LDA PREDEFL+<:ON10

[Spacebar pressed here, to continue assembly. J

II
II
II
II

LDA
LDA XX
LDA 0F0
JMP PREDEFL

.END

Conditional-Assembly Directives
Conditional-Assembly Directives are used to exclude or include
selected sections of a source file at the time it is assembled.
When the Assembler encounters an .IF directive, it evaluates
the expression in its argument. If the expression is false,
the Assembler simply discards the text until an .ENDC is
reached, unless an .ELSE is encountered. If there is an .ELSE
directive between the .IF and .ENDC directives, the text before
the .ELSE is assembled if the expression is true. If the
expression is false, the text after the .ELSE is assembled.
The unassembled section of code will not be included in any
listing. Conditional-assembly directives may be nested.

The conditional expression takes one of two forms. The first
is the normal arithmetic/logical expression used elsewhere in
the Assembler. This type of expression is considered false if
it evaluates to zero; otherwise, it is true. The second form
of conditional expression is comparison for equality, indicated

The Assembler 61

by an equal sign (=), or inequality, indicated by less-than
greater-than (<>). The objects compared may be strings,
characters, or arithmetic/logical expressions •

. IF

. ELSE

. ENDC

Identifies the beginning of the conditional text and
defines the conditional expression •

Identifies the alternate section of text, which is
used if the conditional expression is false •

Identifies the end of the conditional text.

FORM:

EXAMPLE:

[label) .IF (expression>

.ELSE

.ENDC

.IF LABEL1-LABEL2 ;Arithmetic expression.
This text assembled
only if subtraction
result is non-zero

.IF "%1" ="STUFF" ;Comparison expression.

• ENDC

This text assembled
if subtraction above
was true and if text
of first parameter
(assuming in macro)
is equal to "STUFF" •

End of nested cond.

62 Apple III Program Preparation Tools

.ELSE

.ENDC

; This text assembled
;if subtraction result

was zero .

Terminates outer
level of conditional.

Host-Communication Directives
The directives . CONST , .PUBLIC , and .PRIVATE enable an
assembly language routine to share addresses and data space
with the Pascal program that calls it . Data values and
locations are referred to by name in both the program and the
routine. The Linker picks up and transfers the address values
necessary to resolve these external references . Refer to this
manual's chapter THE LINKER for further information .

Note that the locations defined using these directives are in
the Apple III memory bank allocated to the Pascal program's
data. The assembly language routine must use indirect
addressing though one of the pseudo-registers to access this
data . Refer to the discussion of Extended Addressing in the
earlier section , Linkage to Assembly Language Routines •

. CONST Allows constants that are declared global in the
Pascal host program to be accessed by the assembly
language routine . Only 16-bit objects can be
accessed by means of the . CONST directive .

FORM : . CONST <identifierlist>

EXAMPLE: see example after . PRIVATE)

. PUBLIC Allows variables declared global by the Pascal host
program to be used by the assembly language routine
as well as the host program •

FORM: • PUBLIC <identifierlist>

EXAMPLE: see example after . PRIVATE)

The Assembler 63

. PRIVATE Allows variable data used by the assembly language
routine to be stored in the Pascal host program's

global data segment and yet be inaccessible to the
host program. These variables retain their values
for the entire execution of the program •

FORM: • PRIVATE <identifier[:integer] list>

Each identifier will be allocated the number of words
given by integer. The default is one word.

EXAMPLE: (for .CONST, .PUBLIC, and .PRIVATE

Assume that the host program is the following Pascal
program:

PROGRAM EXAMPLE;
CONST SETSIZE=S0; LENGTH=80;

VAR I,J,F,HOLD,COUNTER,LDC:INTEGER;
LSTl:ARRAY[0 •• 9] OF CHAR;

BEGIN

END.

The following statement

.CONST LENGTH

occuring in an assembly language routine called by
the Pascal host program will allow the constant
LENGTH to be used in the assembly language routine
almost as if the line

LENGTH .EQU 80.

had been written. Remember the limitation mentioned
above: .CONST identifiers can be used only for 16-bit
objects.

If the statements

.PRIVATE

.PUBLIC
PRT,LST2:9
LDC,I,J

64 Apple III Program Preparation Tools

appear in the assembly language routine, the
variables LDC, I and J can be used by both the host
program and the assembly language routine, while the
variables PRT and LST2 can be used only by the
assembly language routine. Also, the argument LST2:9
causes the variable LST2 to correspond to the
beginning of a nine-word block of space in the Pascal
host's global data segment.

External-Reference Directives
Separate assembly language routines can share data
structures and subroutines by means of the .DEF and .REF
directives. These directives cause the Assembler to generate
information that the Linker uses to resolve external references
between separate routines in the same assembly or between
routines assembled separately. For example, by using these
directives, one assembly language routine can call subroutines
defined in another assembly language routine.

Note that procedures and functions can refer to identifiers
defined before the first procedure or function in the same
source file without using .DEF and .REF

The use of the .DEF and .REF directives is similar to the use
of the .PUBLIC directive. The .DEF and .REF directives enable
you to associate labels between two assembly language routines
rather than between an assembly language routine and a Pascal
host program. Just as with .PRIVATE and .PUBLIC , these
external references must eventually be resolved by the Linker.

. DEF

The .PROC and .FUNC directives implicitly generate a
.DEF with the same name. This means that an assembly
language routine can call external procedures and
functions if they are declared with a .REF directive
in the calling assembly language routine •

Declares that a label defined in the current routine
is available for use (by means of .REF) from
procedures or functions in other assembly language
routines.

FORM: .DEF <identifierlist>

The Assembler 65

EXAMPLE: The following outline routine declares the labels
DOIT and THINK in a .DEF statement. The subroutines
labelled DOIT and THINK may then be used by other
assembly language routines (see example for .REF) •

.REF

• PROC FARKLE,3
.DEF DOIT,THINK

BNE THINK

DOIT LDA

RTS

THINK LDY

RTS

.END

Identifies a label, used in the current routine, that
is defined and declared as available (by means of a
.DEF directive) in another routine. During the
linking process, corresponding labels declared in
.DEFs and .REFs are matched.

FORM: .REF (identifierlist>

EXAMPLE: The following outline assembly language
routine defines the external label DOIT in
a .REF statement. (DOIT was declared
available for such reference by the .DEF in
the previous example). It then uses the
label DOIT just as if it referred to a
labelled subroutine within the routine
itself •

• PROC SAMPLE
.REF DOIT

66 Apple III Program Preparation Tools

JSR DOIT

.END

Listing-Control Directives
The listing-control directives determine what is sent to the
assembly listing file. This is the file that is specified
in response to the Assembler prompt

Output file for assembled listing (<CR> for none):

If the assembly listing file is omitted, all listing-control
directives are ignored •

. LIST
and
.NOL/ST

These two directives allow selective listing of
assembly language routines. Statements assembled
after a .LIST directive go to the specified listing
file. Statements assembled after a .NOLIST directive
are not listed. Listing may be turned on and off
repeatedly within an assembly. .LIST is the default
option.

FORM: .LIST
.NOLIST

.MACROLIST
and
.NOMACROLIST

Allow selective listing of macro expansions.
The textual expansion of a macro will appear
in the assembly listing if the .MACROLIST
option was in effect when the macro was

defined. The expansion text will not appear in the
listing if the .NOMACROLIST option was in effect when
the macro was defined. These options may be used
repeatedly throughout a assembly language source
file, to select those macros whose expansion text
will appear in the assembly listing. The Assembler
defaults to the .MACROLIST option.

Macro expansion text is flagged in the listing by a
number sign (#) at the left of each expanded line.
Comments in a macro's definition do not appear in the
expansion. In the example assembly listing earlier
in this chapter, the definition of macro POP appears

The Assembler 67

on PAGE-0 ; the macro's expansion text appears on
PAGE-1 and PAGE-4 •

When assembling nested macro invocations, listing of
expansion text continues until the Assembler
encounters the first macro defined with .NOMACROLIST
in effect. Listing does not resume until that macro's
invocation is complete, regardless of the listing
state of the macros invoked by the non-listing macro.

FORM:

EXAHPLE:

.MACROLIST

.NOMACROLIST

.NOMACROLIST

The .NOLIST option takes precedence over the
.MACROLIST option •

. PATCH UST
and
.NOPATCHL/ST

Allow control over listing of back-patches
made to the code file. These options may be
used repeatedly throughout an assembly.

When an undefined label is encountered, the assembled
listing shows an asterisk (*) for each hexadecimal
digit to be filled in later. For example:

00191 10** BPL DONE

When the forward reference is resolved, the
back-patch is listed in the form

0019* 05
IJ01FI A9 00 DONE LDA If 0

where the number to the left of the asterisk is the
address of the patched location and the number to the
right of the asterisk is that location's new value •

• PATCHLIST is the default state •

FORM:

EXAMPLE:

• PATCHLIST
.NOPATCHLIST

.NOPATCHLIST

68 Apple III Program Preparation Tools

.PAGE

. TITLE

Inserts a top-of-form page break in the assembly
listing.

FORM: .PAGE

EXAMPLE: .PAGE

Specifies the title to appear at the top of each page
of the assembly listing. At the beginning of each
routine the title is set to blanks and must be reset
if a title is desired for that routine. The title is
cleared at the start of the file.

In the example assembly listing earlier in this
chapter, the' title SYMBOLTABLE DU:t!P was not set by a
.TITLE directive. That title is always used on pages
containing reference symbol tables. After each
symbol table is listed, the title printed reverts to
its previous setting •

FORM: • TITLE "<title)"

where <title> is any string of printable ASCII
characters, including spaces . The string must be
less than 80 characters. The double quotes are used
to delimit the string, so a title may not include the
double quote character •

EXAMPLE: • TITLE "QRC12 INTERPRETER"

File Directive

. INCLUDE Causes the specified source file to be included in
the assembly immediately after the . INCLUDE

FORM: .INCLUDE <pathname)

where the pathname specifies an assembly language
textfile to be included.

If you don't add the suffix .TEXT , the system will
add it for you . The last character of the pathname
must be the last non-space character on that line; no
comment may follow on the same line.

The Assembler 69

CORRECT EXAMPLE:
.INCLUDE /VOLl/SHORTSTART.TEXT

CORRECT EXAMPLE:
.INCLUDE /VOLl/SHORTSTART.TEXT

; CALLS STARTER

INCORRECT EXAMPLE:
.INCLUDE /VOLl/SHORTSTART.TEXT ; CALLS STARTER

The text of any included file is treated by the
assembler just as if you had typed that text into the
original file at the position of the .INCLUDE
directive. For example, if the included file
contains an .END directive, the assembly ends there.

A file that is included in an assembly via an .INCLUDE
directive cannot itself contain .INCLUDE directives. In
other words, you can't nest .INCLUDEs.

Assembler Use Summaries
This section contains summaries of the Assembler commands and
the Assembler directives.

Assembler Command Summary

1. From Command level, select Assemble.

2. If a text workfile exists, the Assembler assembles that
file automatically. Otherwise, the assembler prompts you
to specify a source textf ile and then to specify a
destination codefile.

3. Finally, the Assembler prompts you to specify an output
textfile for the assembly listing, if you want one.

4. If the Assembler finds an error, select the Editor to
correct the source file, then assemble again.

70 Apple III Program Preparation Tools

Assembler Directive Summary

Square brackets [like this] surround optional elements, which
you may supply. Angle brackets <like this> surround required
elements, which you must supply. The brackets and the brief
definitions at the right side of the table are not to be typed.

Routine-Delimiting Directives

• PROC
• FUNG
.END

Data Directives

[label] .ASCII

[label] .BYTE

[label] .BLOCK

[label] .WORD

(identifier>[,expression]
<identifier>[,expression]

"<character string>"

[valuelist]

<length> [,value]

[valuelist]

Label-Definitions Directives

<label> .EQU <value>

• ORG <value>

.ABSOLUTE

Begins a procedure •
Begins a function •
Ends the entire
assembly.

Inserts ASCII values
of characters.
Inserts bytes of
listed values.
Inserts block of
given value and
length.
Inserts words of
listed values.

Assigns value to
label •
Location of next
byte will be
(start of assembly
file) +value.
Causes all .ORGs
to put next byte
at absolute
location = value.

.ALIGN <value)

• INTERP

Macro Directives

.MACRO (identifier>

.ENDM

Conditional-Assembly Directives

[label] .IF <expression)

[. ELSE]

.ENDC

Host-Communication Directives

.CONST (identifierlist>

• PUBLIC (identifierlist)

The Assembler 71

Increases the
location counter
to the next whole
multiple of value.
First location of
interpreter
relative location
table; used in
relative-location
expressions.

Begins a macro
definition.
Ends a macro
definition.

Begins conditional
assembly. If
true, assembles
next text
[up to .ELSE] ;
if fals.e, only
assembles text
after .ELSE •
Ends conditional
assembly.

Takes value from
global constant
in Pascal host •
Uses a global
variable from the
Pascal host.

72 Apple III Program Preparation Tools

. PRIVATE (identifier[: integer] list> Creates a global
variable not
accessible to
the Pascal host.
Default: 1 word
per identifier .

External-Reference Directives

. DEF (identifierlist>

.REF (identifierlist>

Listing-Control Directives

.LIST and . NOLIST

.MACROLIST and . NOMACROLIST

. PATCHLIST and . NOPATCHLIST

. PAGE

• TITLE "(title)"

File Directive

. INCLUDE (pathname)

Makes label
available to
other routines .
Refers to label
. DEF'd in some
other routine .

Turn assembly
listing on and off.
Turn listing of
macro expansions
on and off .
Turn listing of
back-patches on
and off.
Puts page-break
in listing •
Titles each page
of current . PROC
or . FUNG •

Includes named
text file in
the assembly.

The Linker 73

74 Introduction
75 Linking Using the Link Command
75 Files Needed
76 The Host File
76 The Library Files
77 The Map File
78 The Output File
78 Linking Using the Run Command
79 Files Needed
81 Linker Command Summary

74 Apple III Program Preparation Tools

Introduction
The Linker provides a way to incorporate separately compiled or
assembled routines into your program without having to
re-compile or re-assemble them . For example , you might have a
real-time application that requires an assembly language
routine to obtain the necessary speed . This routine could be
assembled separately and then added to your program by using
the Linker.

All compiled or assembled codefiles include data that describe
external references and entry points . The Linker uses this
data to resolve references between separate codefiles . For
details about the way Linker data is stored in the codefiles,
see the appendix FILE FORMATS in the Apple III Pascal:
Introduction, Filer , and Editor manual .

A Pascal program or Unit that calls linked subroutines is
called a host program. In order for your host program to use
linked routines, the program must declare them as external.
This notifies the Compiler that the routines may be called, but
have not yet been provided . The Compiler sets a flag in the
linker data in the codefile to indicate that linking is
required before the program can be executed . The example in
this manual's chapter THE ASSEMBLER shows a Pascal host
program, a procedure and a function, both in assembly language,
and the linking process that combines them into an executable
codefile.

You also use the Linker to link in a regular Unit, which is a
group of related routines that will be used together . You
don't need the Linker to use the Intrinsic Units that are
provided with the Apple III Pascal language, such as TRANSCEND
and APPLESTUFF ; your Pascal program picks them up directly
from SYSTEM.LIBRARY or from the program library . On the other
hand, you use the Linker to build Intrinsic Units of your own.
For information about Units and Intrinsic Units , refer to the
Apple III Pascal Programmer's Manual.

The Linker 75

Linking Using the Link Command
You invoke the Linker explicitly by typing L for Link from the
Command level. There are two situations in which this is the
only way you can use the Linker:

The host file into which Units or external routines
are to be linked is not the codefile resulting from a
successful compilation initiated by the Run command.

Any of the Units or external routines to be linked
reside in files other than the Pascal system diskette's
SYSTEM.LIBRARY

Files Needed
The following files must be present for you to use the Linker
explicitly:

SYSTEM.LINKER
the host codefile needing external routines
the library codefiles holding the external routines

Any time the Linker is invoked, SYSTEM.LINKER must be available
in some drive. This file is normally found on diskette
NEWPASCAL3 • After the Linker prompt line appears,
SYSTEM.LINKER is no longer needed, so the diskette it is on may
be removed from the system to make room for other diskettes.

On a system with three or four disk drives, diskette NEWPASCAL2
is normally your Pascal system diskette during program
preparation. If NEWPASCAL2 is in the built-in drive and
NEWPASCAL3 is in the second drive, you can put the diskette
that contains your program into the third or fourth drive and
have available all the diskette files you need to use the
Linker.

If you only have two drives, and you want to Link when the host
program file and the library file are not already on NEWPASCAL2
or NEWPASCAL3 , you can use the Filer to transfer the needed
files onto NEWPASCAL3 before linking. Alternatively, if the
Command prompt line is showing, if Linking is your only task,
and if all your host and library files are on another diskette
such as MYDISK , you can put MYDISK in the built-in drive and
NEWPASCAL3 in the external drive. When the linking process is
complete, the system will attempt to return to the Command

76 Apple III Program Preparation Tools

level. When it does not find the Pascal system diskette in the
built-in drive, the system will prompt you to put it in.

The Host File
When you type L at the Command level to invoke the Linker
explicitly, the system displays the messages:

Linking •••

Apple Ill Linker [A3ll.0]
Host file?

The host file is the Pascal program codefile into which the
external routines or Units are to be linked. Note that the
Linker will not accept an assembly routine codefile as the host
file; the host must be a Pascal program codefile.

If you respond to the prompt by pressing the RETURN key, the
Linker uses the Pascal system diskette's workfile SYSTEM.WRK.CODE
as the host file. If either the Run command or the Compile
command has just caused the Compiler to save a compiled
codefile, the Linker uses that file as the host file even if it
is not SYSTEM.WRK.CODE •

You can also respond by typing the pathname of any other Pascal
codefile. If the Linker cannot find a file with the exact
pathname you typed and that pathname does not end in .CODE or
in .LIBRARY, it adds the suffix .CODE to the pathname and tries
again. The Linker always displays the pathname of the last
file it tried to find.

The Library Files
After the Linker finds the host file, it asks for the name of
a library file that contains needed Pascal Units or external
routines. The prompt is:

Lib file?

You should respond by typing the pathname of any codefile
containing a Pascal Unit or external routine that you want
linked into the host program. This file can be either a
codefile produced by the Compiler or by the Assembler, or a
library file created by the Librarian.

The Linker 77

The Linker looks first for the exact pathname that you type,
then, if the search is unsuccessful, it adds the suffix .CODE
and looks again. In any case, it always displays the local
filename of the file actually found. When the Linker finds the
specified file, it displays the same prompt again and waits for
you to type the pathname of another file containing a needed
Unit or routine. You can include up to eight library files in
one linking operation. If you type an asterisk (*) and then
press the RETURN key, the Linker will look for Units or
external routines in the file SYSTEM.LIBRARY on the Pascal
system diskette.

EXAMPLE:

Lib file? *
Opening SYSTEM.LIBRARY

If a file you specify as a host file or a library file is not a
codefile, the system will display an error message. These
files must contain either compiled Pascal P-code or assembled
6502 assembly code. For information on library files and the
Librarian see this manual's chapter USING THE LIBRARY.

When you have supplied the names of all the library files
needed, respond to the next "Lib file?" pronpt by pressing the
RETURN key.

The Map File
When you have finished specifying library files, the Linker
will prompt with:

Map file?

The map file is a textfile produced by the Linker. It contains
a map or directory of the labels involved in the linking
process. If you respond by typing a pathname, the Linker
writes the map file with that pathname. You need not type the
suffix .TEXT ; if the pathname you type does not end with .TEXT
or a period (•), the Linker will add the suffix.

If you respond to this prompt by simply pressing the RETURN
key, no map file will be written. The map file is primarily a
diagnostic and system programming tool, and is not required for
most uses of the Linker. Note: You can get a more useful map
of a library or codefile using the Library Mapper described in
the chapter THE LIBRARY.

78 Apple III Program Preparation Tools

The Output File
After you have specified the disposition of the map file, the
Linker reads the files required to start the linking process.
Then it asks you:

Output file?

Type the pathname for the linked output codefile. This
pathname will often be the same as that of the host file, but
the Linker will not accept the dollar-sign ($) same-name
option used with the Compiler and the Assembler . You need not
type the suffix .CODE ; the Linker will supply it for you,
unless you end the pathname with a period (.) .

If you respond with no pathname, by pressing the RETURN key
only , the linked output will be saved in the Pascal system
diskette's workfile, SYSTEM . WRK.CODE •

After you type the output pathname and press the RETURN key,
the actual linking will begin .

If a specified library file is not available in any drive, this
message appears:

No file <filename>
Type <sp>(continue), <esc>(terminate)

Again , if you elect to continue linking without some needed
Units or routines , the resulting codefile cannot be executed
until you explicitly link them in .

Linking Using the Run Command
If the linking needed in your program is simple enough, you can
let the Run command invoke the Linker at the same time you
compile and execute your program . Linking is needed if your
program contains external declarations or uses Units other than
Intrinsic Units. Intrinsic Units needed at execute time are
not linked; they can be in either SYSTEM . LIBRARY or the program
library, on the same diskette as the program codefile .

If all of the regular Units and external routines to be linke d
reside in the Pascal system diskette's SYSTEM.LIBRARY , you can

The Linker 79

use the Run command to compile, link, and execute your program.
Otherwise, you'll have to use the Link command explicitly, as
described in the previous section.

Files Needed
The following diskette files must be present if the Linker is
invoked by the Run command:

SYSTEM.PASCAL ;
The host program needing external routines;
SYSTEM.LINKER ;
SYSTEM.LIBRARY containing external routines to link
and Intrinsic Units needed at execution time;
The program library containing Intrinsic Units needed
at execution time.

The following files must also be present when you use the Run
command, if the condition shown applies:

SYSTEM.COMPILER, if host program is a textfile;
SYSTEM.SYNTAX, for Compiler error messages;
SYSTEM.EDITOR, to fix errors found by Compiler.

These files are supplied on the Apple III Pascal System
diskettes labelled PASCALl , PASCAL2 , and PASCAL3 • The
examples in this section use rearranged system diskettes named
NEWPASCALl , NEWPASCAL2 , and NEWPASCAL3 • The arrangement of
the files on these diskettes is given in the TABLES appendix,
and the steps in setting them up are described in the chapter
FIRST STEPS IN PROGRAl1 PREPARATION. Remember that you can
rearrange the system files any way you wish; this arrangement
is only a suggestion.

The system returns to the Comn~nd level for an instant
between any two of the system programs invoked by the
Run command. If the Pascal system diskette is not in
the built-in drive when this happens, the system will
prompt you to put it in.

If you use the Run command with a text workfile, the Compiler
will be invoked first, so the file SYSTEM.COMPILER must be
available. It is normally found on NEWPASCAL3 , but it may be
on any diskette in any drive. If the workfile has already been
compiled into its code version, the Run command will not invoke
the Compiler, so SYSTEM.COMPILER is not needed.

80 Apple III Program Preparation Tools

If linking is needed after the program has compiled
successfully, the Linker is invoked automatically, so the file
SYSTEM.LINKER must be available in some drive. This file is
normally found on diskette NEWPASCAL3

When the Linker is invoked by the Run command, it automatically
uses the codefile that resulted from the latest successful
compilation as the host file, even if this file is not the code
workfile.

When invoked by the Run command, the Linker automatically looks
for needed Units and external routines in the file
SYSTEM.LIBRARY • File SYSTEM.LIBRARY must be on the Pascal
system diskette (NEWPASCAL2), but the diskette may be in any
disk drive. Finally, following successful compilation and
linking, the program is executed. At that time, if
SYSTEM.LIBRARY is required for execution, it must be on the
Pascal system diskette in the built-in drive.

If the file SYSTEM.LIBRARY is not available on the Pascal system
diskette, this message appears:

No file *SYSTEM.LIBRARY
Type <sp)(continue), <esc)(terminate)

When the Linker is used with the Run command, it automatically
looks for the file SYSTEM.LIBRARY on the Pascal system
diskette. When it is invoked by the Run command, the Linker
will not allow you to specify a library file other than
SYSTEM.LIBRARY; if you want to use any other library files, you
will have to invoke the Linker explicitly. If you get this
error message, press the ESC key to go back to Command level.

The Linker 81

Linker Command Summary
1. From Command level, select Run or Link .

2. Run automatically links the compiled workfile to Units and
routines found in SYSTEM.LIBRARY • Link prompts you to
specify a host codefile and then to specify as many library
codefiles as needed . Press the RETURN key when you want to
stop specifying library files .

3 . Next , the Linker prompts you to specify a map textfile for
storing Linker information . Normally, you press the
RETURN key to go on.

4 . Finally, the Linker prompts you to specify an output
codefile for the linked program .

82 Apple III Program Preparation Tools

84 What is a Library?
85 The System Librarian
86 Files Needed
87 Using the Librarian
87 The Output File
87 The Input Files
88 Moving Segments Into a Library
91 Inserting a Copyright Notice
92 Library Mapping
93 Files Needed
93 Using the Library Mapper
95 Library Map Example
97 Library Tise Summaries
97 The System Librarian
98 Library Mapping

The Library 83

84 Apple III Program Preparation Tools

What is a Library?
A library is just a codefile containing routines that are used
by your program. Intrinsic Units in a library will be picked
up automatically when your program is executed. Regular Units
and assembly language routines must be linked into your program
by using the Linker. For information on the Linker, see this
manual's chapter THE LINKER.

Whenever you execute a program that uses Intrinsic Units,
the system looks for those units in two files: the program
library and the system library. The program library file must
be on the same volume as the program codefile; the system
library must be on the Pascal system diskette. The system
first looks for the needed Units in the program library, then,
is they aren't found there, the system looks for them in
.DI/SYSTEM.LIBRARY. Thus, if there is a Unit with the same
name in both library files, the one in the program library is
used.

The program library's name is derived from the name of the
program codefile. This means that the program library is used
only with its corresponding program. The rules for deriving a
program library name from a program codefile name are:

(1) Drop the suffix .CODE, if present;
(2) Truncate the name to 11 characters, if necessary;
(3) Add the suffix .LIB at the end.

For example, if your program is named HYTHING.CODE , the
program library file will be named MYTHING.LIB •

If your program uses regular Units and assembly language
external routines, the system will not pick up the needed items
at execution time. Instead, you must use the Linker to link
the required Units and routines into your program codefile.
For information about using the Linker, see the chapter THE
LINKER in this manual.

The Library 85

The System Librarian
The Librarian is the system program that you use to combine
separately compiled or assembled codef iles into a single
library file. One way you can use it is to put all of your
Pascal Units and assembly language routines into a single
convenient library codefile for linking into your programs .

When you use the Run command , the system will automatically
find and link needed Units and assembly language routines if
they are in the file named SYSTEM . LIRRARY on the Pascal system
diskette . The system will also find needed Intrinsic Units
that are in SYSTEM.LIBRARY and use them without linking . You
use the Librarian to add, change, and delete routines in
SYSTEM. LIRRARY •

When you use the Link and Execute commands explicitly , you can
use a library file other than SYSTEM . LIBRARY . Using the
Librarian, you can set up a library file for the exclusive use
of a particular program . This file is called a program
library, and it will be used automatically if its name is the
same as that of the program except that it ends in .LIB • For
more information about Units and Intrinsic Units , see the
chapter LIBRARY UNITS in the Apple III Pascal Programmer's
Manual.

The Librarian cannot be invoked just by typing a letter from
the Command level; instead, you must use the Execute command
and specify the Librarian program codefile by name . System
programs such as this that are invoked by the Execute command
are sometimes referred to as Utility programs .

When you wish to add a new Unit or routine to a library
codefile, or to delete one, you r.lUSt first use the Librarian to
create a new, empty library file . Next , you specify each item
in the original library file that you want to keep so that the
Librarian can copy it into the new library file. You can then
add new items by having the Librarian transfer other codefiles
into the new library file . After you have creat ed a library
you want the system to use automatically, you 1'1\lSt either move
it to the Pascal system diskette and change its name to
SYSTEM.LIBRARY, or move it to the same diskette as your program
and change its name to the appropriate program library name .

86 Apple III Program Preparation Tools

Files Needed
The following files must be in some disk drives for you to use
the Librarian:

LIBRARY.CODE
Codefiles containing Units and routines to be put
into the new library
Output file (after the Librarian has started)

The file LIBRARY.CODE is normally found on diskette
NEWPASCALl , but it may be in any drive. Once the Librarian
has started, this file is no longer needed.

A file containing a Unit or routine to be put into the new
library is called an Input file. Each Input file only needs to
be available on some diskette in some drive during the time it
is being loaded. Once the Librarian prompts you for the next
Input file, you can remove the diskette containing the previous
one.

The Librarian builds the new library in a file called the
Output file. Once the Librarian has started, you must leave
the diskette containing the Output file in its drive until the
new library is complete.

If you only have two disk drives, you will still need to
have NEWPASCALl in the external drive when you execute
the Librarian codefile. After the first Librarian
prompt line appears on the screen, you can remove
NEWPASCALl and NEWPASCAL2 and put in other diskettes as
needed. Remember to leave the diskette containing the
Output file in its drive until you finish using the
Librarian.

When you finish using the Librarian, your Pascal system
diskette should be in the built-in drive. If it is not there,
the system prompts you to replace it.

The Library 87

Using the Librarian
To invoke the Librarian, the system nrust be at the Command
level and the Librarian program codefile must be in some disk
drive. Type X for Execute. The system will prompt you with:

Execute what file?

You should respond by typing the pathname of the Librarian
program codef ile:

/NEWPASCALl/LIBRARY

You do not need to type the suffix .CODE; the system will
append the .CODE suffix automatically. The system executes
LIBRARY.CODE, which displays the program identification message
and the first prompt:

Apple ///Pascal Librarian [A3/1.0]

Output file ->

At this point, you can remove diskette NEWPASCALl from its
drive if you need to.

The Output File
You should respond to the Output file prompt with the pathname
of your new library file. This pathname is used exactly as you
type it; no suffix is added by the system. If you respond to
this prompt by typing SYSTEM.LIBRARY, the system will remove
the original SYSTEM.LIBRARY file when the Librarian is
finished, and replace it with your new library file. Typing
an asterisk (*) in response to this prompt is the same as
typing SYSTEM.LIBRARY.

The Input Files
The Librarian now displays the prompt:

Input File ->

You should respond to this prompt by typing the pathname of a
library or codefile that contains Units or routines you wish
to include in your new library file. If you want to copy Units

88 Apple III Program Preparation Tools

or routines from the system library, you should type
SYSTEM.LIBRARY in response to this prompt. Typing an asterisk
(*) here is the same as typing SYSTEM.LIBRARY.

The Librarian first looks on the specified diskette for a file
whose pathname is exactly as you typed it. If there is no file
with that exact pathname and that pathname does not end in
.CODE, the suffix .CODE is added to the pathname and the search
is repeated. If the search is still unsuccessful, the
Librarian will display the message

I/O ERROR If 10 Type <space> to continue

if your file was not found, or the message

I/O ERROR If 9 Type <space> to continue

if your diskette was not found. After you type the space, the
Librarian will prompt you to try again. The only way to escape
from the program at this point is by typing a correct file
specification or by pressing the RETURN key and then typing A
for Abort.

Moving Segments into a Library
There can be up to 16 code or data segments in any Apple III
program codefile or library codefile, and the Librarian assigns
each one a numbered slot. After you have specified the name of
a codefile, the Librarian displays a table that gives the slot
number, the segment number (in parentheses), the name, and the
length in bytes of each Unit or routine in the file.

An Intrinsic Unit can occupy two slots, one for the code
segment and one for the data segment. The segment numbers will
already have been assigned: see the chapter PROGRAM
SEGMENTATION in the Apple III Pascal Programmer's Manual. The
number of bytes given for a segment is its length as stored in
the library. For Regular Units and external-procedure
segments, this length includes linker data that are not placed
in your program, so it is a little larger than the number of
bytes the segment will occupy when used in your program.

You should not put more than one Intrinsic Unit with
the same segment number into a library.

The Library 89

The slot table for the file you specify will be displayed
immediately after the Input codefile prompt. It will look
something like this:

Input File -> /NEWPASCAL2/SYSTEM.LIBRARY
0-(30) LONGINTI 2452 8-
1-(31) PASCALIO 1238 9-
2-(29) TRANSCEN 1168 10-
3-(22) APPLESTU 662 11-
4- 0 12-
5- 0 13-
6- 0 14-
7- 0 15-

When the Librarian displays a slot table, it also displays this
command line at the top of the screen:

Slot to copy and <space) , ~ for all, ? for Select, N(ew file, Q(uit, A(bort

This command line shows the ways you can specify the slot or
slots containing segments that you wish to include in the new
library you are creating. To specify a particular segment, you
refer to the table and type the appropriate slot number
followed by a space.

For each slot number you select from the table, the Librarian
will display the prompt:

Slot to copy into?

You should respond by typing the slot number that you want the
previously-specified segment to occupy when it is placed in the
new library file. After you type the slot number, press the
spacebar to terminate your entry. The Librarian will then
transfer the specified segment into the Output codefile.

Segments may be placed in any available library slot, in any
order. After each segment is transferred, the Librarian
displays a new slot table for the Output codefile, which is
your new library file.

90 Apple III Program Preparation Tools

To copy the first and third of the four segments in the Input
file whose slot table is shown above, you would type the slot
numbers as shown below. The repeated message "Slot to copy
into?" is displayed by the Librarian.

r/J <space>
Slot to copy into? 0 <space>
2 <space>
Slot to copy into? 1 <space>

If you want to include all of the segments in the Input file
in your new library, or even most of them, you can use one of
the other options given in the prompt line. If you type an
equals sign (=), the Librarian will copy every segment from
its slot in the Input file into the same slot in the Output
file. If you type a question mark (?), the Librarian
will step through the table and give you the option to select
each input segment in turn. If you type a question
mark with a table similar to the one shown above, the first
prompt will be:

Copy slot r/J?

You should type Y if you wish the segment in slot r/J of the
Input file to be copied into slot r/J of your new library file.
Type N if you do not wish to copy that segment. The Librarian
will repeat the prompting message for each occupied slot in the
Input file. When you use either of the multiple-slot options,
each segment copied from a slot in the Input file will
automatically be placed in the slot with the same number in
the Output file, which contains your new library.

If you attempt to put an input segment into an output slot that
is already occupied, this message will appear:

WARNING - Slot xx already copied. Please reconfirm (Y/N)

To abandon the current move, type N • If you type Y , the
segment you previously placed in the specified slot will be
replaced by the segment you are currently moving.

Note that the actual code for the replaced segment is not
removed from the library. The best way to avoid this unwanted
increase in the size of your library file is to start a new
library by copying only the old library segments that you want,
then adding the new ones, rather than replacing the unwanted
items.

The Library 91

When all of the segments that you want from this Input file
have been copied into the Output file, you can request a new
input file by typing N for New file. The Librarian will prompt
you again:

Input File ->

Type the name of the next Input file. The Librarian will
prompt you to copy the desired segments, as above.

Each time the Librarian puts a segment into the Output file, it
displays a new output slot table. For example, the Output file
prompt line and the display of the output library table might
look like this:

Output File -> /MYDISK/NEW.LIBRARY
File length - 29

0-(30) LONG INTI 2452 8- 0
1-(31) PASCAL IO 1238 9- 0
2-(29) TRANSCEN 1168 10- 0
3-(22) APPLES TU 662 11- 0
4- 0 12- 0
5- 0 13- 0
6- 0 14- 0
7-(25) PILFER 362 15- 0

The File length displayed with the table is the new library's
length in blocks--in this example, it is 29.

For more information about segments and Units, see the chapters
PROGRAM SEGMENTATION and LIBRARY UNITS in the Apple III Pascal
Programmer's Manual.

Remember that a library file has the same internal
format as a codefile. This means that a codefile
generated by the Compiler can be used as a library.

Inserting a Copyright Notice
Once the needed segments from all Input codefiles have
been put into your new library's Output codefile, you tell the
Librarian you are finished by typing Q for Quit. The Librarian
then displays this prompt at the bottom of the screen:

Notice?

92 Apple III Program Preparation Tools

This prompt enables you to put a copyright notice in your
library file. The notice will be displayed each time a library
map is produced for your file, as described in the next section
of this manual. For example, you might type:

Copyright (c) 1981 Apple Computer Inc.

or any other message up to one line long. If you do not want a
copyright line in your library file, simply press the RETURN
key. When the Command prompt line reappears, indicating that
the Librarian is finished, your new library is complete.

The Librarian program does not copy the copyright notice
from a Input file into the Output file. If you make a
new library file with the same name as the old one, any
previous copyright notice is lost.

Library Mapping
The Library Mapper program creates a Map textfile for a library
file, or for any codefile. The Map textfile lists information
about multi-part programs that you are creating, including:

Linker information for each segment
The interface section of each Pascal Unit
Procedures and Functions in each segment
The parameters for each Procedure and Function

See the chapters PROCEDURES and FUNCTIONS, LIBRARY UNITS, and
PROGRAM SEGMENTATION in the Apple III Pascal Programmer's
Manual for information about Procedures, Functions, Units, and
Segments.

Files Needed
The following files must be present in drives for you to use
the Library Mapper program:

LIBMAP .CODE
Library Codefiles to be mapped
Map output textfile (after the Library Mapper has
started)

The Library 93

The file LIBMAP.CODE is normally found on diskette NEWPASCALl ,
but it can be in any drive. Once the Library Mapper program
has started, you can remove the diskette with LIBMAP.CODE on it
from its drive.

The library codefiles can be in any drives. Each library
codefile only has to be present while it is being mapped. As
soon as the program prompts you for the next codefile, you can
remove the diskette with the previous file on it.

The output file for the map itself must be present throughout
the mapping process. If you don't specify a file for the map,
it will be sent to .CONSOLE •

When you terminate the library mapping utility program, your
Pascal system diskette (NEWPASCAL2) should be in the built-in
drive. If it is not there, the system will prompt you to put
it in.

Using the Library Mapper
With the Command prompt line showing, and with diskette NEWPASCALl
in any available disk drive, type X for Execute. When the
prompt

Execute what file?

appears, respond by typing

/NEWPASCALl/LIBMAP

Note that, as usual, the suffix .CODE is supplied automatically
if you don't type it. Soon this message appears

Apple ///Library Map Utility [A3/l.0]

and the program prompts you to

Enter library name:

You should respond by typing the pathname of a library file or
codefile. The program first tries to find the file exactly as
specified. If this search fails, the program adds the suffix
.CODE to the pathname and tries again. If the specified file
is not found, the following message appears:

94 Apple III Program Preparation Tools

Bad file
Enter library name:

If the file you specify is not a codefile, this message
appears:

Not a code file
Enter library name:

Typing an asterisk (*) in response to the library name prompt
is the same as typing */SYSTEM.LIBRARY • This specifies the
system library on the main system diskette as the input library
file.

The Library Mapper is normally used for listing the information
in the interfaces of the Units in a library, but the option is
also available to show unresolved symbol references. The
program will offer you the option by displaying this prompt:

List linker info table (Y/N)?

If you do not want this information, type an N or just press
RETURN. If you respond to this prompt by typing a Y , the
program will prompt further:

List referenced items (Y/N)?

Pressing the space bar or the RETURN key is considered an N.

The program now prompts you for:

Map output file nane:

You should respond by typing the pathname where you want the
program to send the map information. Note that if you don't
add the suffix .TEXT to the pathname, the system automatically
adds it for you. To override this feature, just type a period
after the pathname. If you respond by pressing only the RETURN
key, the program sends the map output to .CONSOLE •

Several codef iles can be mapped in succession. When the
program has finished mapping the current codefile, it prompts
you again:

Enter library name:

The Library 95

The Library Mapper will create a map for each library or
program codefile you specify. These maps will all be sent to
the same Map Output textfile.

To quit the Library Mapper, press the RETURN key the next time
the program prompts:

Enter library name:

When you finish using the Library Mapper, your main system
diskette should be in the built-in drive. If it is not there,
the system will prompt you to put it in.

Library Map Example
Here is an example showing the map information for the sample
program presented in the introduction to this manual and in the
chapter THE ASSEMBLER. The prompt messages are described
above; they are shown here just as they appear on the display.
Note: the lines of dashes separating map information for
different files are output by the program.

x
Execute what file? .d2/libmap
Apple /// Library Map Utility [A3/l.0)
enter library name: .d2/callasm
list linker info table (Y/N)? y
list referenced items (Y/N)? y
map output file name: { RETURN pressed to send }

{ map output to .CONSOLE }

LIBRARY MAP FOR .d2/callasm.CODE

Segment II 1:
System version = A3/l.0, code type is P-Code (least sig. 1st)
CALLASH Pascal host outer block

AA public var base 5
I public var base = 4
K public var base = 3
INCARRAY external proc P 112
TIMES2 external proc P 113

96 Apple III Program Preparation Tools

enter library name: .d2/asmsubs
list linker info table (Y/N)? y
list referenced items (Y/N)? y

LIBRARY MAP FOR .d2/asmsubs.CODE

Segment fl 1:
System version = A3/l.0, code type is 6502
TIMES2 separate procedure segment

TIMES2 separate proc P #1
TIMES2 global addr P Ill, I 110
INCARRAY separate proc P #2
INCARRAY global addr P #2, I #0

enter library name: .d2/sample
list linker info table (Y/N)? y
list references items (Y/N)? y

LIBRARY MAP FOR .d2/sample.CODE

Segment fl 1:
System version = A3/l.0, code type is P-Code (least sig. 1st)
SAMPLE completely linked segment

enter library name: { RETURN pressed to stop mapping }

The Library 97

Library Use Summaries
This section contains summaries of the operation of the system
Librarian and the Library Mapper.

The System Librarian

1. Type X from the Command level. When prompted Execute what
file? , type /NEWPASCALl/LIBRARY •

2. When prompted for an Output file, type a filename for the
new library file, e.g., /MYDISK/NEW.LIBRARY.

3. When prompted for an Input file, type the name of the file
containing the first items to put in the new library, e.g.,
/NEWPASCAL2/SYSTEM.LIBRARY •

4. To transfer an item from the Input file to the new library
Output file, type the item's Input file slot number (0 to
15) and press the spacebar. When prompted for Slot to copy
into? , type the rrumber of the slot you want the item to
occupy in the Output file and press the spacebar.

5. Type N to begin taking items from a new Input file.

6. When all desired items have been transferred to the new
library, type Q for Quit. When prompted for Notice, type
a copyright notice or other message or press RETURN.

7. To use Intrinsic Units from the new library automatically,
you must either move it to your main system diskette and
name it SYSTEM.LIBRARY or move it to the same volume as
your program codefile and make it the program library by
giving it the program name with the suffix .LIB •

98 Apple III Program Preparation Tools

Library Mapping

1. Type X from the Command level. When prompted Execute what
file? , type /NEWPASCALl/LIBMAP ,

2. When prompted Enter Library name: , type the pathname of
the library or other code file whose contents you wish to
see mapped, e.g., /NEWPASCAL2/SYSTEM.LIBRARY,

3. When prompted for Linker info table? , type Y if you want
that information, otherwise press the spacebar or RETURN
key.

4. When prompted for Map output file name: , type the
pathname of the qiskette file or other device to which you
wish the map sent. Just pressing the RETURN key sends the
map to .CONSOLE •

5. When prompted again to Enter Library name: , type the
pathname of the next library file whose contents you wish
mapped, or press the RETURN key to quit the program.

Appendix A: A Complex Sample Program 99

Introduction
102 The Host Program
103 The Regular Unit
103 The Intrinsic Units
105 The Assembly Language Routines
109 Putting the Pieces Together

100 Apple III Program Preparation Tools

Introduction
This appendix shows how a complex program is created using the
Apple III Pascal system. It shows the procedures for
compiling, assembling, linking, and using the Librarian to put
together a sample program with a regular Unit , Intrinsic Units,
and external procedures. The sample program includes the use
of .Public, .Private and .Const directives to access data
structures from assembly language routines .

In creating the sample program , you will use features of the
Pascal system described in this manual and in Apple III Pascal
Programmer's Manual. These features are not described here.
You should read the appropriate sections of the manuals and
study the other sample programs 'before you try to create the
complex sample program.

Figure A-1 illustrates the different program sections and the
sequence of operations required to put together the sample
program.

The text of each program section is given below . You should
use the Editor and type each one, then save it with the file
name given. The procedures to use in creating the program are
given in the last section of this appendix .

For this example, the system files are on two diskettes, in a
different arrangement from the one used in the rest of the
manual. Here, all program textfiles and codefiles are on a
diskette called BOOTWRK in the built-in drive . Besides the
program files mentioned below, BOOTWRK has copies of
SYSTEM.MISCINFO, SYSTEM.FILER and SYSTEM.PASCAL on it. The
Assembler, Compiler, Linker and Librarian programs are all on
another diskette in drive .D2 • The section on PROGRAM
PREPARATION DISKETTES in the chapter FIRST STEPS IN PROGRA!l
PREPARATION describes the procedure for rearranging the system
files.

MAINLIBIU
.TEXT

MAINLIBIU
.CODE

LMAIN
.LIB

REG UNIT
.TEXT

Appendix A: A Complex Sample Program 101

MAIN
.TEXT

LMAIN
.CODE

ASMPROCS
.TEXT

INTRINU
.TEXT

SYSTEM
.LIBRARY

I I
I I I
I ... I

\........................ « EXECUTE LMAIN » ·--------------------·','

Figure A-1 . Creating a Complex Program

102 Apple III Program Preparation Tools

The Host Program
Use the Editor to create a textfile named MAIN containing the
following text:

PROGRAM MAIN;

USES APPLESTUFF,
{ MAINLIBIU is first since REGUNIT uses it

{$U Ll1AIN.LIB} MAINLIBIU, {$U REGUNIT.CODE
{$U INTRINU.CODE} INTRINU;

CONST LENGTH = 80;
VAR I,RESULT,INVAL,IOR:INTEGER;

MSTR:STRING;

{ Return INT multiplied by 2 }
FUNCTION MULT2(INT:INTEGER):INTEGER; EXTERNAL;

{ Store INT in I if INT >= LENGTH }
PROCEDURE STOREI(INT:INTEGER); EXTERNAL;

BEGIN
WRITE('Starting main, enter MSTR:');
READLN(MSTR);
REGUPROC(MSTR);
MAINLIBP;
I:=VJ;

also }
REGUNIT,

{$I-} Turn off system input checking; do it ourselves }
REPEAT

WRITE('Value to multiply by 2:');
READ(INVAL);
!OR: =IORESULT;
READLN

UNTIL IOR=0;
{$!+}

RESULT: =HULT2(INVAL);
STOREI(RESULT);
WRITELN('I=' ,I,', RESULT=',RESULT);
INTRINUPROC;
WRITE('Press any key:');

{ Wait for user to press a key }
WHILE NOT KEYPRESS DO;
WRITELN('Done!')

END.

Appendix A: A Complex Sample Program 103

The Regular Unit
Use the Editor to create a textfile named REGUNIT containing
the following text:

UNIT REGUNIT;

INTERFACE

{ Regular units can use intrinsics
but intrinsics cannot use regulars

USES {$U I.MAIN.LIB} MAINLIBIU;

PROCEDURE REGUPROC(ST:STRING);

IMPLEMENTATION

External procedures are only allowed
in the implementation part of units.
Return in SUM the added ASCII values of chars in STR

PROCEDURE CHKSUM(VAR SUM: INTEGER; STR: STRING); EXTERNAL;

PROCEDURE REGUPROC;
VAR CSUM:INTEGER;

BEGIN
CSUM:=0;
CHKSU11(CSUM ,ST);
WRITELN('ST=',ST,', CHECKSUM=',CSUM)

END;

BEGIN
END.

The Intrinsic Units
Use the Editor to create a textfile named MAINLIBIU containing
the following text:

104 Apple III Program Preparation Tools

UNIT MAINLIBIU; INTRINSIC CODE 10;
INTERFACE

PROCEDURE .MAINLIBP;

IMPLEMENTATION

PROCEDURE MAINLIBP;
BEGIN

WRITELN('In mainlibp')
END;

BEGIN
END.

Use the Editor to create a textfile named INTRINU containing
the following text:

UNIT INTRINU; INTRINSIC CODE 40 DATA 41;

INTERFACE

{ Nested intrinsic units}
{ (Regular units can be nested too.) }

USES {$U il1AIN.LIB} MAINLIBIU;

This variable requires a data segment }
VAR IUSTRING:STRING;

PROCEDURE INTRINUPROC;

IMPLEMENTATION

{ Just to show that intrinsic units can
have external procedures and functions.

PROCEDURE DONOTHING; EXTERNAL;

PROCEDURE INTRINUPROC;
BEGIN

WRITELN(IUSTRING);
WRITELN('Calling DONOTHING');
DONOTHING;
WRITELN('Called DONOTHING');
MAINLIBP

END;

Appendix A: A Complex Sample Program 105

BEGIN
{ This code is only executed once }

IUSTRING:='Hi, I am an intrinsic unit! What are you?'
END,

The Assembly Language Routines
Use the Editor to create a textfile named ASMPROCS containing
the following text:

STRPTR
SUMPTR

.PROC CHKSUM,2

as defined in Host Program:
PROCEDURE CHKSUM(VAR SUM:INTEGER; STR:STRING);

EXTERNAL;

E0 •• EE are 8 byte-pairs with
pre-defined extend bytes •

• EQU 0E0 ;Byte pair E0-El
.EQU 0E2 ;Byte pair E2-E3

PLA
STA
PLA

RET

STA RET+l

;save return address

;These parameters are pointers.
;The ADDRESS of a string is always passed to
;an external procedure even if the string is
;not a VAR parameter.
;The ADDRESS of SUM is passed since it is a
; VAR parameter
PLA
STA STRPTR
PLA
STA STRPTR+l
PLA
STA
PLA
STA

SUMPTR

SUMPTR+l

;Pointer to STR

;Pointer to SUM

106 Apple III Program Preparation Tools

NXTCHAR

FINISH

SUM
RET

LDY
STY
STY
LDA

BEQ
TAY

LDA

CLC
ADC
STA
LDA
ADC
STA
DEY
BNE

lfr/J
SUM
SUM+l
@STRPTR,Y

FINISH

@STRPTR,Y

SUM
SUM
lfr/J
SUM+l
SUM+l

NXTCHAR

;Zero sum and set Y to 0.

;Get length of string.
;Y is still 0, in case
;we take the branch on
;zero length string.

;Start at last char and
;add sum of all chars.

;Add another char if
;more are left.

;We assume Y is zero on entry to FINISH
;Store the results
;low byte

LDA
STA
INY
LDA
STA

LDA
PHA
LDA
PHA
RTS

.WORD

.WORD

; .END

SUM
@SUMPTR,Y

SUM+l
@SUMPTR,Y

RET+l

RET

0
0

;high byte

;Go back to caller

Do this so all the assembly procedures
;can be assembled in one assembly •

• PROC STOREI,l

Pascal declaration is:
PROCEDURE STOREI(INT:INTEGER); EXTERNAL;

ZI
ZRET

Appendix A: A Complex Sample Program 107

.MACRO MOVADR
LDA %1
STA %2
LDA %1+1
STA %2+1
.ENDM

;As you will see,
;using these requires
.CONST LENGTH
.PUBLIC I
.PRIVATE FRET

.EQU 0E0

.EQU 0E2

MOVADR II,ZI
MOVADR RET,ZRET

LDY 110
PLA

STA @ZRET,Y
INY
PLA
STA @ZRET,Y
DEY

the utmost care!
;All 3 of these data
;are in the global data
;segment of MAIN, only
;FRET is not accessable
;by MAIN.

; See comment about E0 ••
; •• EE in CHKSUM above

;Use macro MOVADR to
;move global addresses
; into zero page

;Store return address
;in private global area.
;Low byte.

;High byte.

;If INT is >= LENGTH then store it in I
SEC
PLA
TAX ;Low byte of INT
SBC LEN ;INT - LENGTH
INY
PLA
STA TMP ;High byte of INT
SBC LEN+!
BCC RETURN ;Branch if INT < LENGTH

108 Apple III Program Preparation Tools

RETURN

™P
LEN
II
RET

;Store INT in I
DEY
TXA
STA @ZI,Y ;Low byte
LDA ™P
!NY
STA @ZI, Y ;High byte

LDA @ZRET,Y ;High byte.
PHA
DEY
LDA @ZRET,Y ;Low byte.
PHA
RTS

.BYTE 0

.WORD LENGTH

.WORD I

.WORD FRET

; .END Do this so all the assembly procedures
;can be assembled in one assembly.

.FUNC MULT2, l

;FUNCTION MULT2(INT:INTEGER):INTEGER; EXTERNAL;

PLA ;Store return address
STA RET
PLA
STA RET+l

PLA ;Pull 4 bytes Function
PLA ;filler off stack
PLA
PLA

PLA ;Low byte of INT
ASL A ;Low byte times 2 and
TAX ;high bit into carry.
PLA
ROL A ;High byte times 2 with
PHA ;low bit from carry.
TXA ;Push result. No check
PHA ;for overflow.

LDA
PHA
LDA
PHA
RTS

RET .WORD

;.END

.PROC

RTS

.END

Appendix A: A Complex Sample Program 109

RET+l

RET

0

DONOTHING

;Push return and go
;back to caller.

;This is a simple one
;just to show that
;intrinsic units can
; have EXTERNAL
;procs too!

Putting the Pieces Together
This section shows the command sequences for generating an
executable codefile named LMAIN.CODE • The messages exchanged
between you and the system are shown between lines of dashes
(----), with the responses you type shown in upper case and
the messages from the system shown in lower case. All
sequences start from the main command line of the system.

The next command sequence, with a different textfile name, is
used several times during the development of the sample
program. When the procedures below call for the compile
sequence, this is what they mean:

c
Compile what text? MAINLIBIU<RETURN)
To what codefile? $<RETURN)

Since MAINLIBIU is an Intrinsic Unit, you might as well put it
into a library. For this example, use the program library.
The executable codefile is named LMAIN.CODE , so the program
library is named LMAIN.LIB • When you have a library with only
one code file in it, you don't need to use the Librarian.
Instead, you can use the following shortcut:

110 Apple III Program Preparation Tools

F
T
Transfer what file? MAINLIBIU.CODE,LMAIN.LIB<RETURN)
Q

Next, you should perform the compile sequence shown above on
the files REGUNIT and INTRINU.

After that you should assemble the assembly procedures. For
this example, all of the assembly procedures are in one file
called ASMPROCS.

A
Assemble what text? ASMPROCS<RETURN)
To what codefile? $<RETURN)
Output file for Assembler listing (<CR) for none): <RETURN)

Now it is time to do the linking. First, link the intrinsic
unit INTRINU, as shown below. Note: the lines starting with
"Opening" and ''Reading" are output by the Linker.

L
Host file? INTRINU<RETURN)
Opening INTRINU.CODE
Lib file? ASMPROCS<RETURN)
Opening ASMPROCS.CODE
Lib file? <RETURN)
Map file? <RETURN)
Reading INTRINU
Reading CHKSUM
Output file? LINTRINU<RETURN)

The next thing to do is to put this unit into a SYSTEM.LIBRARY
along with the standard intrinsic unit APPLESTUFF. Before
doing this, you should rename the standard SYSTEM.LIBRARY as
STND.LIBRARY • It can be on any volume as it will not be
required to run the program; here, it is on BOOTWRK. Note:
the slot tables displayed by the Librarian program are not
shown here.

Appendix A: A Complex Sa~ple Program 111

x
Execute what file? .D2/LIBRARY<RETURN)
Output file -> SYSTEM.LIBRARY<RETURN>
Input file -) STND.LIBRARY<RETURN)
0<SPACE) { number of slot APPLESTUFF is in
0<RETURN) { APPLESTUFF can go into any empty slot
N
Input file -> LINTRINU<RETURN)

Q
Notice? <RETURN)

Next you should perform the Compile sequence on MAIN. Once you
have done that, you can do the final link:

L
Host file? MAIN<RETURN)
Opening MAIN.CODE
Lib file? ASMPROCS<RETURN)
Opening ASMPROCS.CODE
Lib file? REGUNIT
Opening REGUNIT.CODE
Lib file? <RETURN)
Map file? <RETURN)
Reading MAIN
Reading REGUNIT
Reading CHKSlm
Output code file? LMAIN<RETURN)
Linking REGUNIT #7

Copying proc CHKSUM
Linking MAIN #1

Copying proc STOREI
Copying proc MULT2

The file produced by the Linker is the executable codefile
LMAIN. Type X I.MAIN to execute it.

Figure A-2 is a composite picture of the operations involved in
creating any complex program . It shows the different ways you
can put a program together a piece at a time. Compare it with
Figure A-1, which shows the program files making up the complex
sample. Note that the compiler automatically picks up the
interface text for imbedded Units. This means that those Units

112 Apple III Program Preparation Tools

must be compiled first and the resulting codefiles must be in
some drive when the main program is compiled.

Intrinsic
Units

Codef iles

Assembly
Language
Routines
Source

Textfile

Assembly Code
Files Routines

Used by

Linked
Intrinsic

Unit
Codefiles

Move Intrinsic Units
into the Appropriate

Library

Units

Regular
Unit

Codefiles

Program
Library

System
Library

Interface
Text for all

Units

Assembly Code
Files Routines

Used by Main

Link Main Program
with Regular and
Assembly Routines

Program
Codefile

Main
Program
Source

Textfile

Compile
Main Program

Main
Program

Codefile

Figure A-2. Overview of Program Preparation

Appendix B: Special Memory Locations 113

Introduction
Apple III Hardware Control
Special Pages
Locations Defined by Pascal
Table Pointed to by .INTERP

114 Apple III Program Preparation Tools

Introduction
There are certain memory locations that will be useful if you
are writing assembly language subroutines for your Pascal
programs. The functions of some of these memory locations are
defined by the Apple III hardware and the functions of the
others are defined by the Apple III Pascal system.

Note that all addresses in this appendix are given in
hexadecimal, as indicated by the dollar-sign prefix ($).

Apple Ill Hardware Control

$FFD0

$FFEF

Zero Page Register. Indicates which page is the
current zero page. During execution of a Pascal
program, this location will contain the page number
defined by SOS for the zero page of a user program.
SOS itself runs using a different zero page. For
Pascal, the value in this location is $1A, indicating
that the zero page resides at physical locations
$1A00-$1AFF. The user should never change the
contents of this register.

Bank Register. The low-order four bits indicate
the currently switched-in memory bank. The upper
four bits contain additional machine state data.
Setting the lower four bits to value b switches in
bank b. User programs should not change the value of
this register.

Special Pages

$1A00 ••• User program zero page.
$1AFF

$1B00 ...
$1BFF

$1600 •••
$16FF

User program 6502 machine stack.
Pascal· "evaluation stack."

Used as the

User program address extension page corresponding to
zero page $1A00-$1AFF. Used by the Apple III
enhanced indirect addressing mechanism.

Appendix B: Special Memory Locations 115

Locations Defined by Pascal

$E0,$El
$E2 , $E3

$EE, $EF

$16El
$16E3

$16EF

$16FE

Space reserved for user to set up pointers into
Pascal data space. The user can set any of these
two-byte "pseudo registers" to point to a location
in Pascal data space and take advantage of the fact
that the Pascal system sets the corresponding address
extension page locations to the bank pair number of
the Pascal data space.

Address extension page locations corresponding to the
zero page locations above . When the Pascal system is
booted, it stores the bank pair number for the Pascal
data space into these locations . The user must not
change the contents of these locations.

Bank number of highest memory bank in the machine.
Total machine memory is 64K + 32K x <value in 16FE>.

Table Pointed to by .INTERP
When used in an expression, . INTERP is the address of a
nine-word table in the interpreter. Each word in the table
contains the address of a potentially useful part of the
interpreter. The normal user will probably not use this
feature of the assembler •

• INTERP+f'.')

. INTERP+2

• INTERP+4

Address of the interpreter's run time execution
error posting routine . The user can load the A
register with the error number and execute JSR
@. INTERP to invoke the system error message
routine.

Address of BIOS (Input/Output handling routine)
dispatching table •

Address of the location that contains the address
of SYSCOH (the area used to communicate between the
interpreter and Pascal Operating System).

116 Apple III Program Preparation Tools

.INTERP+6

• INTERP+8

.INTERP+A

Address of the location that contains the extension
byte of the address of SYSCOM •

Address of the location that contains the address
of the current global data area.

Address of the location that contains the extension
byte of the address of the current global data
area •

• INTERP+C Address of the vector of words used by the
interpreter for intermediate results of interpreter
computations •

• INTERP+E Address of the table of pointers to code segments •

• INTERP+l0 Address of the table of extension bytes
corresponding to the segment pointers of the
previous table.

Appendix C: Tables 117

118 The Pascal System Diskettes
118 Definitions
119 The System Files
119 The System Diskettes, as Supplied
120 System Diskettes for Program Development
121 The System Files: By Command
123 The System Files: By Filename
126 Pascal I/O Device Volumes
127 ASCII Character Codes

118 Apple III Program Preparation Tools

The Pascal System Diskettes
The diskettes that contain the programs making up the Apple III
Pascal System are called the system diskettes. This section
describes these program files and defines the operations
performed when starting up the Pascal system.

Definitions
When you first turn on the Apple III, there is nothing stored
in its program memory. Special circuitry inside the computer
starts loading the system software from the diskette in the
built-in drive. This initial loading of the system software is
called bootstrap loading, or just booting, because it seems as
though the system is trying to pull itself up by its own
bootstraps.

Bootstrapping the Pascal system involves loading the Apple III's
operating system (files SOS.KERNEL and SOS.DRIVER), the P-code
interpreter (SOS.INTERP), the Pascal command processor
(SYSTEM.PASCAL), and the miscellaneous-information file
(SYSTEM.MISCINFO). Booting with a diskette that contains all
five of these files in the built-in drive is called a
one-stage boot.

If space constraints make it inconvenient to have all five
of these files on a single diskette, you can have a two-stage
boot. In this case, you start the bootstrap operation by
turning on the power or pressing CONTROL-RESET with a diskette
that contains the first three files in the built-in drive.
When its part of the bootstrap operation is complete, you
remove it and insert a diskette that contains the Pascal
command processor, SYSTEM.PASCAL , and SYSTEM.MISCINFO •

A diskette that is used in a bootstrap process is called a boot
diskette. The diskette containing the file SYSTEM.PASCAL is
called the Pascal system diskette and is normally kept in the
built-in drive during operation of the Pascal system.

Starting up the system as if you had just turned on the power
is sometimes called a cold boot. This is what happens when you
press CONTROL-RESET. The second-stage boot, sometimes called a
warm boot, is the same as what happens when you invoke the Halt
command. The effects of these different kinds of re-start are
summarized in the following table.

Appendix C: Tables 119

Files Software
012eration: Loaded: Initialized: Comment:

CONTROL-RESET SOS.KERNEL This is called
SOS.INTERP (all) a cold boot.
SOS.DRIVER
SYSTEM.PASCAL
SYSTEM.MISCINFO

HALT SYSTEM.PASCAL SOS.INTERP This is called
SYSTEM.MISCINFO SYSTEM.PASCAL a warm boot.

INITIALIZE (none) SYSTEM.PASCAL Initialization
of the Pascal
system

The System Files
The following tables show the contents of each of the Pascal
system diskettes. The first table shows the contents of the
diskettes as supplied.

It is sometimes more convenient to have the system diskettes
configured differently. For program development, you can use a
two-stage boot configuration, as shown in the second table.

When one of these files is needed by the system, it usually
doesn't matter which diskette the file is on or which drive the
diskette is in. The cases when a file must be on a particular
diskette or in a particular drive are pointed out in the table
The System Diskette Files: By Command, below.

The System Diskettes, as Supplied
The files making up the Apple III Pascal System are supplied on
three diskettes. This table shows the system files that are
found on each diskette. The order of the files on any diskette
is unimportant.

120 Apple III Program Preparation Tools

PASCAL I PASCAL2 PASCAL3

SOS.KERNEL SYSTEM.EDITOR LIBMAP. CODE
SOS.DRIVER SYSTEM.SYNTAX LIBRARY.CODE
SOS.INTERP SYSTEM.COMPILER SETUP.CODE
SYSTEM.PASCAL SYSTEM.ASSMBLER AIIFORMAT.CODE
SYSTEM.MISCINFO OPCODES.6502
SYSTEM.LIBRARY ERRORS.6502
SYSTEM.FILER SYSTEM. LINKER

PASCAL! is both the boot diskette and the Pascal system diskette
for running programs created with the Apple III Pascal system.
This diskette contains all of the system files necessary for
bootstrapping the system. It also contains the Filer, so that
you can use it to move files around as soon as you boot the
system.

PASCAL2 contains the programs used in program development,
including the Editor, the Pascal Compiler, the Assembler, and
the Linker.

PASCAL3 contains utility programs used for setting up the
Pascal system, for building program libraries, and for
formatting Apple II Pascal format diskettes.

System Diskettes for Program Development
The Pascal system diskettes as supplied are configured for a
one-stage boot. You can use the Filer to make a set of system
diskettes that will be more convenient for program development.
There is a detailed description of the way this is done in the
first chapter of this manual.

By moving the Apple III system files (SOS.KERNEL, SOS.DRIVER,
and SOS.INTERP) onto a separate diskette, you can make room for
most of the Pascal system programs you need for program
development. This means you have to use a two-stage boot: the
diskette with the SOS files on it is used only for the first
stage of a cold boot.

Here is the way your program development diskettes should look,
except for the order of the files on each diskette, which
doesn't matter.

Appendix C: Tables 121

NEWPASCALl NEWPASCAL2 NEWPASCAL3

SOS.KERNEL SYSTEM.PASCAL OPCODES.6502
SOS.DRIVER SYSTEM.MISCINFO ERRORS.6502
SOS.INTERP SYSTEM.LIBRARY SYSTEM.LINKER
SETUP.CODE SYSTEM.EDITOR SYSTEM.ASSMBLER
AIIFORMATTER.CODE SYSTEM. SYNTAX SYSTEM.FILER
LIBRARY.CODE SYSTEM.COMPILER
LIBMAP.CODE

NEWPASCALl contains the three SOS files needed for starting a
cold boot. When the first stage of the boot is finished, the
system will prompt you to remove this diskette and insert a
Pascal system diskette into the built-in drive. NEWPASCALl
also contains the utility programs, which can be in any drive
when they are executed.

NEWPASCAL2 is your Pascal system diskette for program
development. It contains SYSTEM.PASCAL , so it must be in the
built-in drive whenever the system returns to the command
level. If you are using the workfile, it will also be on this
diskette.

NEWPASCAL3 contains the system programs there is no room for 01.

the Pascal system diskette. It also contains the Filer. When
you need to Get or Save a file on a user diskette, invoke the
Filer with NEWPASCAL3 in a drive. Then you can remove it if
necessary to make a drive available for your user diskette, and
move your file to or from the Pascal system diskette, which is
still in the built-in drive.

The System Files: By Command
The following table lists the files needed by each of the
command options. With a few exceptions, the required files can
be on any diskette and in any drive. Some of the commands
listed require that certain files be on the Pascal system
diskette and in the built-in drive. If you are using the
system diskettes as supplied, the Pascal system diskette
is PASCAL! • With the recommended configuration for program
development, the Pascal system diskette is NEWPASCAL2 •

122 Apple III Program Preparation Tools

Command Files Needed

File SYSTEM.FILER

Files to be
moved

Edit SYSTEM.EDITOR
Textfile to be
Edited

Compile SYSTEM.COMPILER
Textfile to be
Compiled

SYSTEM.LIBRARY

SYSTEM.EDITOR

SYSTEM.SYNTAX

Assemble SYSTEM.ASSMBLER
OPCODES.6502
ERRORS.6502

Link

Textf ile to be
Assembled

SYSTEM.EDITOR

SYSTEM.LINKER

Host codefile

Library codefile

Where Files Must Be Found

any disk, any drive; needed only
at start
any disks, any drives; Transfer
requires presence of source file;
can prompt for destination file

any disk, any drive
any disk, any drive; optional;
default is system workfile, on
Pascal system diskette

any disk, any drive
any disk, any drive; default is
Pascal system diskette's
system workfile, built-in drive
Pascal system diskette, built-in
drive; required only if program
USES Intrinsic Units
any disk, any drive; optional;
to fix errors found by Compiler
Pascal system diskette, built-in
drive; optional; provides error
messages on entering Editor

any disk, any drive
any disk, any drive; required
any disk, any drive; optional;
provides error messages in
Assembler
any disk, any drive; default is
Pascal system diskette's
system workfile
any disk, any drive; optional; to
fix errors found by Assembler

any disk, any drive; needed only
to start
any disk, any drive; default is
Pascal system diskette's
system workfile, built-in drive
any disk, any drive

Execute Codef ile to be
Executed
Program library

SYSTEM. LIBRARY

Run Text or Codefile
to be Run

SYSTEM.COMPILER

SYSTEM.EDITOR

SYSTEM.SYNTAX

SYSTEM.LINKER

SYSTEM.LIBRARY

Program library

SYSTEM.PASCAL

User restart All files
needed by
previous program

Appendix C: Tables 123

any disk, any drive; required only
when loading, if no overlays
same disk as program codefile,
any drive; required if program
needs Intrinsic Units it contains
Pascal system diskette, built-in
drive; required if the program
uses long integers, does file I/O
using reals or SEEK, or USES
Intrinsic Units that are not in
program library

any disk, any drive; default is
Pascal system diskette's
system workf ile
any disk, any drive; required only
if file being Run is a textf ile
any disk, any drive; optional; to
fix errors found by Compiler
Pascal system diskette, any drive;
optional; provides error messages
for Editor
any disk, any drive; required only
if routines need to be Linked; no
Link needed to USE Intrinsic Units
Pascal system diskette, built-in
drive; required if program uses
long integers, does file I/O using
reals or SEEK, or USES Intrinsic
Units, or if it holds needed
routines if Linking
same disk as program codefile,
any drive; required if program
needs Intrinsic Units it contains
Pascal system diskette, built-in
drive; required between Compiling,
Linking, and executing .

same setup and files required by
previous program

The System Files: By Filename
The next table gives more information about the files making up
the Apple III Pascal System.

124 Apple III Program Preparation Tools

Filename Contents of File

SOS.KERNEL Operating system,
written in 6502
machine language

SOS.DRIVER SOS I/O Drivers,
written in 6502
machine language

SOS.INTERP Interpreter,
written in 6502
machine language

SYSTEM.PASCAL Command level
portion of
software
development
system

SYSTEM.MISCINFO Information
about system
configuration

SYSTEM.EDITOR Text Editor

SYSTEM.FILER Filer

SYSTEM.LIBRARY Routines for
long integers,
trigonometric
functions,
graphics, I/O,
and optional
user-defined
Intrinsic Units

SYSTEM.SYNTAX Compiler
error
messages

Use of File

Interfaces all
other programs
to Apple III

Interfaces all
other programs
to I/O devices

Executes P-code
on Apple III' s
processor

Lets you pick
Edit, File,
Run, etc.

Tells system
about system
hardware

Lets you make
& change text
files

Lets you store,
delete & move
files

Many programs
use these
library
routines

Provides message
in Editor
after Compiler
finds an error

When Needed

Power-on,
CONTROL-RESET

Power-on,
CONTROL-RESET

Power-on,
CONTROL-RESET

Power-on,
CONTROL-RESET,
Halt, return
to command
level

Power-on,
CONTROL-RESET,
Halt

Edit, Compile
Run, Assemble

File

Run, Execute,
Link, Compile,
if program
uses library
routines

Run, Compile
followed by
Edit after
an error

SYSTEM.COMPILER Pascal
Compiler

SYSTEM.LINKER Linker

SYSTEM.ASSMBLER 6502
Assembler

OPCODES.6502 Instruction set
for Assembler

ERRORS.6502 Assembler error
messages

LIBRARY.CODE Utility program

LIBMAP.CODE Utility program

SETUP.CODE Utility program

Appendix C: Tables 125

Converts Pascal
program text
to P-code

Puts library
routines into
your program

Converts 6502
assembly text
into machine
code

Compile, Run

Link, Run

Assemble

Used by the Assemble
Assembler

Optional; Assemble
Provides message
after Assembler
finds an error

Puts routines
into library

Displays
contents of
library file

Makes new file
SYSTEM.l1ISCINFO
describing
the system
configuration

Execute
LIBRARY

Execute
LIBl1AP

Execute
SETUP

AIIFORMAT.CODE Utility program Converts a
SOS-formatted

Execute
AIIFORHAT

diskette to an
Apple II Pascal
formatted diskette

126 Apple III Program Preparation Tools

Pascal 110 Device Volumes
The Apple III Pascal System assigns volume numbers and volume
names to the various input/output devices as shown in the
following table. The SOS device names shown here are typical;
you can use the System Configuration Program to change them.

Pascal
Device
Number

llr/J:

Ill:

112:

113:

114:

115:

116:

117:

118:

119:

llHJ:

Pascal
Device
Name

sos
Device
Name

CONSOLE: .CONSOLE

SYSTERM: .CONSOLE

GRAPHIC: .GRAFIX

.Dl

.D2

PRINTER: .PRINTER

Rm1IN: .RS232

REMOUT: .RS232

.D3

.D4

sos
Volume
Name

diskette
name

diskette

Description of
Input/Output Device

(not used)

Screen & keyboard
(echo on input)

Screen & keyboard
(no echo on input)

Graphics

Built-in disk drive

1st external disk
name drive

Printer

Remote input

Remote output

diskette 2nd external disk
name drive

diskette 3rd external disk
name drive

Appendix C: Tables I27

ASCII Character Codes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL 32 20 SP 64 40 @ 96 60
I 0I SOH 33 2I 6S 4I A 97 6I a
2 02 STX 34 22 II 66 42 B 98 62 b
3 03 ETX 3S 23 II 67 43 c 99 63 c
4 04 EOT 36 24 $ 68 44 D I00 64 d
s 0S ENQ 37 2S % 69 4S E HH 6S e
6 06 ACK 38 26 & 70 46 F I02 66 f
7 07 BEL 39 27 7I 47 G I03 67 g
8 08 BS 40 28 72 48 H I04 68 h
9 09 HT 4I 29 73 49 I I0S 69 i

I0 0A LF 42 2A * 74 4A J I06 6A j
11 0B VT 43 2B + 7S 4B K I07 6B k
I2 0C FF 44 2C 76 4C L I08 6C 1
13 0D CR 4S 2D 77 4D M I09 6D m
I4 0E so 46 2E 78 4E N 110 6E n
IS 0F SI 47 2F I 79 4F 0 11 I 6F 0

I6 I0 DLE 48 30 0 80 S0 p 112 70 p
I7 11 DCI 49 3I I 8I SI Q Il3 7I q
I8 I2 DC2 S0 32 2 82 S2 R 114 72 r
I9 13 DC3 SI 33 3 83 S3 s llS 73 s
20 I4 DC4 S2 34 4 84 S4 T 116 74 t
2I IS NAK S3 3S s 8S SS u 117 7S u
22 I6 SYN S4 36 6 86 S6 v 118 76 v
23 I7 ETB SS 37 7 87 S7 w 119 77 w

24 I8 CAN S6 38 8 88 S8 x I20 78 x
2S I9 EH S7 39 9 89 S9 y 121 79 y
26 IA SUB S8 3A 90 SA z I22 7A z
27 IB ESC S9 3B ; 9I SB [I23 7B
28 IC FS 60 3C < 92 SC \ I24 7C
29 lD GS 6I 3D 93 SD l I2S 7D
30 IE RS 62 3E > 94 SE I26 7E
3I lF us 63 3F ? 9S SF 127 7F DEL

128 Apple III Program Preparation Tools

Appendix D: Command Summaries 129

130 Apple III Program Preparation Tools

Command Summaries
This appendix contains summaries of the commands used with the
system programs described in this manual: the Assembler, the
Linker, the Librarian, and the Library Mapper. For
descriptions of the commands used with the Editor and the
Filer, refer to Apple III Pascal: Introduction, Filer, and
Editor. For the commands used with the Pascal Compiler, refer
to the Apple III Pascal Programmer's Manual.

Assembler Commands
1. From Command level, select Assemble.

2. If a text workfile exists, that file is assembled
automatically. Otherwise, you are prompted to specify a
source textf ile and then to specify a destination codef ile.

3. Finally, you are prompted to specify an output textfile for
the assembly listing, if you want one.

4. If the Assembler finds an error, select the Editor to fix
it.

Linker Commands
1. From Command level, select Run or Link.

2. Run automatically links the compiled workfile to Units and
routines found in SYSTEM.LIBRARY • Link prompts you to
specify a host codefile and then to specify as many library
codefiles as needed. Press the RETURN key when you want to
stop specifying library files.

3. Next, the Linker prompts you to specify a map textfile for
storing Linker information. Normally, you press the
RETURN key to go on.

4. Finally, the Linker prompts you to specify an output
codefile for the linked program.

Appendix D: Command Summaries 131

Librarian Commands
1. From Command level, select the Execute option. When you are

prompted EXECUTE WHAT FILE?, type the name of the desired
librarian program.

There are two programs that enable you to edit library codefiles:

LIBRARY

LIBMAP

Puts Units and routines into a library file.
The Library program prompts you for the name of
the new library file and the name of the file
containing the items to put into the library.
It also enables you to install a copyright
notice.

Shows the contents of a library file or other
codef ile.

132 Apple III Program Preparation Tools

Appendix E: User Notes 133

134 Apple III Program Preparation Tools

Making a Turnkey Diskette
It is sometimes convenient to have the Apple III start running
a user program as soon as the machine is turned on . A system
that works this way is called a turnkey system, because all the
user has to do is turn power on--"turn the key"--and the system
comes up running the desired program. Using the Apple III
Pascal System, you can set up a diskette so that the Apple III
will automatically begin running your program when you insert
the turnkey diskette and turn the Apple on .

To set up a turnkey system with a program you have created on
the Pascal System, you start with a formatted blank diskette
with a name you will recognize: for example , TURNKEY • Using
the Filer's Transfer command , transfer all of the system files
on diskette PASCAL! onto TURNKEY , by typing

/PASCAL!/=, /TURNKEY/=

when the Transfer command prompts you for file names . Next,
you remove the file SYSTEM. FILER and transfer a copy of your
program codefile onto the turnkey diskette , giving this new
copy of your program the filename SYSTEM . STARTUP • If your
program uses a program library , re-name the program library
file SYSTEH . STAR. LIB • Make sure your turnkey diskette
contains the following files:

SOS.KERNEL
SOS.DRIVER (use SCP to edit as needed)
SOS.INTER?
SYSTEM.PASCAL
SYSTEl1.MISCINFO
SYSTEM.STARTUP
SYSTEM.LIBRARY
SYSTEM.STAR.LIB

(your program code file)
(if needed by your program)
(if needed by your program)

To run your turnkey program , insert the turnkey diskette into
the built-in drive and start a cold boot by pressing
CONTROL-RESET . Soon, with no further action on your part ,
SYSTEM.STARTUP is executed. Thereafter , the program file you
named SYSTEM . STARTUP will be executed each time the system is
re-booted , as long as the diskette containing your
SYSTEM.STARTUP is in the built-in drive .

Appendix E: User Notes 135

Exec Files
An exec file consists of commands stored in an ASCII file.
When an exec file is executed, each command included in the
file is executed, just as if you were typing the commands from
the keyboard. Exec files are used to store sequences of
commands that must be entered into the system over and over
again.

This section contains an explanation of exec files and an
example demonstrating how to create and execute one.

Using Exec Files
To create an exec file, Type M for Make from the main Command
level. The system will prompt you with the message

New exec name:

Type the pathname you want to give to your exec file, following
the same rules that govern the naming of other Pascal files.
Now you will see the prompt

Terminator=%, change it?

The terminator is a character that is used to signify the
beginning and end of an exec file. The terminator character
that marks the beginning of the file is automatically supplied
by the system. Two terminator characters indicate the end of
the file; these must be typed by the user. If you answer the
above prompt by typing N for No, the system will use a percent
sign as a terminator. If you type Y, meaning that you want to
change the terminator character, the system will ask for

New terminator:

The character you type becomes the terminator character for
that exec file. The system will accept any character as the
terminator character. Note that some keystrokes do not produce
characters, and thus cannot be used as the terminator
character.

136 Apple III Program Preparation Tools

The terminator character that signals the beginning of
an exec file is supplied by the system. Do not begin an
exec file by typing the terminator character. If you
do, the system-supplied terminator immediately followed
by your typed terminator will be interpreted as the
end-of-file signal and the system will close the exec
file.

Once the system knows what your terminator character is, you
can begin typing the series of commands that will make up your
exec file. Commands will be executed as you type them. To end
the exec file, type the terminator character twice.

When you are ready to execute your exec file, type X for
Execute from the main Command level. When the system prompts
with

Execute what file?

you should respond by typing

EXEC//<pathname)

The system will start performing the series of commands listed
in your exec file, flashing the prompts and your previously
entered responses as it goes.

When using an exec file, you must make sure that the system
will be able to go through EXACTLY the same sequence of events
that it went through when you created the exec file. For
example, suppose you create an exec file that enters the Filer,
transfers the file MYFILE.TEXT from diskette OLDSTUF to
diskette NEWSTUF and then returns to the main Command level.
If you later run your exec file without removing the original
diskette NEWSTUF from its disk drive, the system would find
MYFILE.TEXT already present on that diskette. Consequently,
the system will ask

Remove old /NEWSTUF/MYFILE ?

This is a question that was not asked when the exec file was
created. The system will use as its response the next
character in the exec file which, in this case, happens to be Q
for Quit. In order for the system to remove a file under these
conditions, it must receive an N for No or a Y for Yes as the

Appendix E: User Notes 137

response to the above question. Thus, the old version of
MYFILE will not be removed and the new version of MYFILE will
not be transferred. Because the Q was used to respond to this
question, the exec file never uses the Q to Quit the Filer and
the exec file closes with the system still at the Filer level.
Thus, when creating an exec file, you must make sure that the
steps the system goes through will not change from one
execution to another.

There is no way to stop the execution of an exec file part way
through except by pressing RESET. You can use the control
command CONTROL-7 to stop or freeze the output on the screen
temporarilty. The control command CONTROL-9 flushes the
output: the program continues to run but its output is not
sent to the screen.

The keyboard remains open during the execution of an exec file.
Thus characters that are entered while an exec file is running
are saved and then used as console input once the exec file is
closed.

If you use the Make command to create an exec file on a
diskette that already has a file with the name you have given
your exec file, the system will ·eliminate the original,. file
when you close the new exec file.

It is not permissible to create an exec file from within
another exec file. If you try, the system will warn you that

Nested exec commands illegal

After you see this message, you can continue entering commands
into the exec file.

If you run a Pascal program while you are making an exec file,
typed responses to any UNITREAD procedures specifying unit 1 or
unit 2 (.CONSOLE) are used by the Pascal program, but are NOT
stored in the exec file. The KEYPRESS function also will take
its input from the console and not from the exec file. READ,
READLN, and GET procedures will take their input from the exec
file, if reading from the standard FILE input.

The system error routine will close an open exec file if an
error occurs while the system is getting console input from the
exec file.

138 Apple III Program Preparation Tools

A Sample Exec File
Suppose you want to create an exec file that removes all the
files on whatever diskette is in the drive .D2 and then copies
all the files from the diskette in drive .Dl (the built-in
drive) onto the diskette in drive .D2 • To start making your
exec file, type M for Make from the Command Level. The system
will prompt you with the message

New exec name:

In response, type

/NEWSTUF/UPDATE

You have just started an exec file named UPDATE that will be
saved on diskette NEWSTUF. Next the system will ask:

Terminator=%, change it?

Respond by typing

N

Entering this response tells the system that the terminator
character used to signal the beginning and end of the exec
file will remain the percent sign.

Now you are ready to enter the list of commands that will make
up your exec file.

Keystrokes

F
R
.D2/=

RETURN
<space>
<space>
<space)
y

T
.Dl/=
RETURN

Explanation

Enter Filer
Execute Remove command
Response to prompt: Remove what file?
telling the system to remove all
files on the diskette in drive .D2
RETURN ending the previous response
To handle "Press space to continue"
prompts

Response to prompt: Update directory?
Execute Transfer command
Response to prompt: Transfer what file?
RETURN ending the previous response

.D2/=
RETURN
Q
%%

Appendix E: User Notes 139

Response to prompt: To where?
RETURN ending the previous response
Exit from the Filer
Terminator characters indicating the
end of the exec file

Note that each of these commands is executed in the normal
fashion when it is typed into the exec file. Thus, after
carrying out the above list of commands, the files on diskette
in drive .D2 will be replaced by copies of the files on the
diskette in drive .Dl.

When you are ready to execute the exec file, type X for
Execute from the Command Level, then type

EXEC///NEWSTUF/UPDATE

You then will see the system enter the Filer, Remove the files
from diskette in drive .D2, transfer all the files from the
diskette in drive .Dl to the diskette in drive .D2, and return
to the Command level.

Notice that the Exec command is followed by three
slashes: the first two delimit the command and the third
one starts the pathname. You must type all three.

140 Apple III Program Preparation Tools

Appendix F: Bibliography 141

142 Apple III Program Preparation Tools

Bibliography

There are several books on 6502 assembly language programming.
A few of them are listed here, along with the programming
reference manual published by the manufacturers of the 6502
microprocessor.

Barden, William, Jr.: How to Program Microcomputers. Howard w.
Sams, Indianapolis, Indiana, 1977.

de Jong, Marvin L.: Programming and Interfacing the 6502, with
Experiments. Howard W. Sams, Indianapolis, Indiana, 1980.

Foster, Caxton C.: Programmin!t a Micro-computer: 6502.
Addison-Wesley, Reading, Massachusetts, 1978.

Inman, Don, and Inman, Kurt: Apple Machine Language. Reston
Publishing Company, Inc., Reston, Virginia, 1981.

Leventhal, Lance A.: 6502 Assembly Language Programming.
Osborne/McGraw-Hill, Berkeley, California, 1979.

MOS Technology, Inc.: MCS6500 Microcomputer Family Programming
Manual. MOS Technology, Inc., Norristown, Pennsylvania, 1975.
(also published by: Synertek, Santa Clara, California, 1976.)

Scanlon, Leo J.: 6502 Software Design. Howard W. Sams,
Indianapolis, Indiana, 1980.

Weller, W. J.: Practical Microcomputer Programming: the 6502.
Northern Technology Books, Evanston, Illinois, 1980.

Zaks, Rodnay: Programming the 6502. Sybex, Berkeley,
California, 1980.

Programming Excercises for the 6502. Sybex, 1980.

6502 Applications Book. Sybex, 1980.

Appendix G: Error Messages 143

144 Apple III Program Preparation Tools

Execution Error Messages
When an error is detected during execution of a user program,
it is reported in one of the following forms:

By Number:

Exec err If 10
S# 1, P# 7, I# 56
Type <space> to continue

By Name:

I/O error: Vol not found
S# 1, P# 7, I# 56
Type <space) to continue

The first line of the message reports the error by number or by
a short description. The second line of the message gives the
location in the program where the error was detected. The
number after S# is the segment number, the number after P# is
the procedure number within that segment, and the number after
I# is the byte offset in that procedure. The Compiler will
list segment, procedure, and byte-offset information when you
compile a program. See the discussion of the LIST+ (compiled
listing) compiler option in the Apple III Pascal Programmer's
Manual.

In the table that follows, most of the error numbers correspond
to error-message numbers in the UCSD Pascal system on which the
Apple III Pascal System is based. Missing numbers correspond
to messages that are not used in the Apple III Pascal System.

Those errors listed as fatal either cause the system to warm
boot itself or, if the error was totally lethal to the system,
force you to cold boot the system. All other errors cause the
system to re-initialize itself by invoking the system
Initialize command. This usually happens after you respond to
a message that tells you to press the spacebar to continue.

Appendix G: Error Messages 145

Error Error Message
Number and Description

1 Invalid index, value out of range for string
or subrange. Does not occur if RANGECHECK
compiler option used.

2 No segment: bad code file. File reads
correctly from disk, but is not a valid segment.

3 Procedure not present at exit time: attempt to
EXIT from a procedure that was not previously
called or active.

4 Stack overflow: the program data space has
exceeded available user memory.

5 Integer overflow. Long integer arithmetic gave
an intermediate result greater than 36 digits or
final result was assigned to variable of
insufficient size.

6 Divide by zero.

8 User break: "break" (CONTROL-\) key pressed or
HALT instruction executed.

9 System I/O error: error in attempting to
read an operating system segment from disk.

10 User I/O error: error when user's program
attempted a blockread, blockwrite, get, or put.
If file SYSTEM.PASCAL available, this error is
further reported as an I/O ERROR (See table of
I/O Error Messages, below).

11 Unimplemented instruction: codefile has probably
been damaged.

12 Floating point math error: error in real
number format, overflow, underflow, etc.

13 String too long: attempt to store a source
string into a destination string of insufficient
size.

146 Apple III Program Preparation Tools

/JO Error Messages
This table lists all the error numbers that can be returned by
the IORESULT function described in the Apple III Pascal
Programmer's Manual chapter INTRODUCTION TO FILES AND I/O. The
notation (SOS) in the table indicates an error reported by SOS;
most of the SOS errors are extremely unlikely under the Pascal
system, and are included here for completeness only.

0
2
3
5
6
7
8
9

10
11
12
13
14
15
16
19
32
34
35
36
37
44
45
46
48 ••• 63
64
65
66
67
73
74
75
76
77
78

No error; normal I/O completion
Bad unit number
Illegal operation, e.g., read from .PRINTER
Lost unit -- no longer on line
Lost file -- file is no longer in directory
Illegal pathname
No room -- insufficient space on volume
No unit -- unit is not on line
No such file in specified directory
Duplicate pathname
Attempt to open an already open file
Attempt to access a closed file
Bad input format -- error in reading number
Ring buffer overflow -- input arriving too fast
Write-protect error -- volume is protected
Too many files open for system to handle
(SOS) Invalid request code
(SOS) Invalid control-parameter list
(S0S) Character device not open
(S0S) Device not available
(S0S) Resource not available
(S0S) Invalid byte count
(S0S) Invalid block number
(S0S) Disk switched
(S0S) Device-specific error
(S0S) Device error -- bad address or data on volume
(S0S) Too many character files open
(S0S) Too many block files open
(S0S) Invalid file reference number
(S0S) Directory full
(S0S) Incompatible file format
(S0S) Unsupported storage type
(S0S) Attempted read past end of file
(S0S) File position out of range
(S0S) Illegal access attempted

Appendix G: Error Messages 147

79 (S0S) User's buffer too small
80 (S0S) File busy
82 (S0S) Volume format is not SOS
83 (S0S) Invalid value in list parameter
84 (S0S) Out of memory for SOS system buffer
85 (S0S) Buffer table full
86 (S0S) Invalid system buffer parameter
87 (S0S) Duplicate volume error
123 ••• 127 (S0S) System call error number [error - 122]

148 Apple III Program Preparation Tools

Assembler Error Messages
When the Apple III Pascal Assembler discovers an error in your
assembly language routine, it displays an error message taken
from the file ERRORS.6502. If the file ERRORS.6502 is not
available in any drive, the Assembler will report errors by
number only.

The error message for each Assembler error number is given in
the table below. If you wish, you can gain some additional
diskette space by removing the file ERRORS.6502 and looking up
error numbers in this table.

1: Undefined label
2: Operand out of range
3: Must have procedure name
4: Number of parameters expected
5: Extra garbage on line
6: Input line over 80 characters
7: Not enough .!F's
8: Must be declared in .ASECT before used
9: Identifier previously declared

l~: Improper format
11: .EQU expected
12: Must .EQU before use if not to a label
13: Macro identifier expected
14: Word addressed machine
15: Backward .ORG currently not allowed
16: Identifier expected
17: Constant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: Variable not PC relative
22: Illegal macro parameter index
23: Not enough macro parameters
24: Operand not absolute
25: Illegal use of special symbols
26: Ill-formed expression
27: Not enough operands
28: Cannot handle this relative expression
29: Constant overflow
30: Illegal decimal constant

Appendix G: Error Messages 149

31: Illegal octal constant
32: Illegal binary constant
33: Invalid key word
34: Macro stack overflow: 5 nested limit
35: Include files may not be nested
36: Unexpected end of input
37: This is a bad place for an .INCLUDE file
38: Only labels & comments may occupy column 1
39: Expected local label
40: Local label stack overflow
41: String constant must be on one line
42: String constant exceeds 80 characters
43: Illegal use of macro parameter
44: No local labels in .ASECT
45: Expected key word
46: String expected
47: Bad block, parity error (CRC)
48: Bad unit number
49: Bad mode, illegal operation
50: Undefined hardware error
51: Lost unit, unit is no longer on-line
52: Lost file, file is no longer in directory
53: Bad title, illegal file name
54: No room, insufficient space on disk
55: No unit, no such volume on-line
56: No file, no such file on volume
57: Duplicate file
58: Not closed, attempt to open an open file
59: Not open, attempt to access a closed file
60: Bad format, error in reading real or integer
61: Nested macro definitions illegal
62: '=' or '<>' expected
63: May not .EQU to undefined labels
64: Must declare .ABSOLUTE before 1st .PROC
76: Index register required
77: 'X' or 'y' expected
78: Zero-page address required
79: Illegal use of register
80: Index register expected
81: Ill-formed operand
82: 'X' expected for indexed addressing
83: Must use 'X' index register

150 Apple III Program Preparation Tools

A

abort the Librarian 88
ABSOLUTE directive 43, 56,

70
addressing modes 41
AIIFORMAT.CODE 120, 121, 125
ALIGN directive 56, 71
Apple II Pascal format 120
Apple III hardware 114
ASCII codes 127
ASCII directive 53, 70
ASMPROCS textfile 105
Assembler 3, 4, 8, 14, 19,

20, 21, 24, 25, 29, 30,
37, 69, 100

Assembler commands 130
assembler directives 37, 50
assembler errors 148-149
assembler messages 14, 15,

30
assembler source file 37
assembly file syntax 38
assembly language 27, 29
assembly language syntax

38-45
assembly listing 14, 22, 29,

30-33, 69

8

bank pair 47, 115
bank register 114

Index 151

bank, of memory 114, 115
bibliography 142
BIOS llS
BLOCK directive 53, 70
booting ll8
bootstrap loading 118
BOOTWRK diskette 100, 110
BYTE directive 46, 53, 70

c
CALLASM files 11, 34, 35
codefile 21, 30
codefile LMAIN 109, 111
CODE suffix 21, 87, 88, 94
cold boot 6, 118, 119
comment field 38, 39
Compiler 3, 10, 11, 35, 100
compiler messages 35
complex sample program

100-101
conditional assembly 60, 71
CONSOLE 23, 24, 95, 98, 137

1S2 Apple III Program Preparation Tools

CONST directive 62, 63, 71,
100

constant 40
CONTROL-L 22
CONTROL-P 22
CONTROL-RESET 134
copyright notice, in library

91, 92, 97

D
decimal number 40
DEF directive 64, 6S, 72
diskette BOOTWRK 100

E

Editor 2, 3, 9, 11, 20, 21,
24

ELSE directive 60, 61, 71
END directive Sl, S2, 69
ENDC directive 60, 61, 71
ENDM directive S8, 71
enhanced addressing bit 47
enhanced indirect addressing

46, 47, 49
EQUATE directive 40, SS, 70
error messages 24, 143-149
ERRORS.6S02 19, 23, 122,

12S, 148
evaluation stack 114
exec file 13S-139
exec file sample 138
exec terminator 13S-136
executable codefile 109, 111
EXECUTE command 3, 16, 8S,

93
execution errors 144-14S
expression 42, 44, Sl
extension page 46, 114, llS
EXTERNAL declaration 44, Sl
external references 74

F
Filer 2, 26
FUNG directive Sl, S2, 64
function 37, S2
FUNCTION declaration 44
function TIMES2 9, 12, 13,

26, 27' 31, 46

G
GET 137
graphics 48

H

hardware 114
hexadecimal number 40
host file 76
host program 8, 34, 3S, 4S,

Sl, 74, 102

I

I/O devices 12S, 146-147
identifier 39, Sl
IF directive 60, 61, 71
immediate data 41
INCARRAY procedure 9, 12,

13, 26, 28, 32, 49
INCLUDE directive 23, 68,

69' 72
INCLUDE file S7
index register 41
indexed addressing 41
indexed-indirect addressing

42
indirect address 41, 46, 47
indirect-indexed addressing

42, 46 , 47
indirect-X addressing 42,

46, 47
indirect-Y addressing 42,

46, 47 , 49
INSERT command 26

INTERP directive S6, 71
INTERP table llS
interpreter entry points S6
interpreter llS
Intrinsic Unit 74, 84, 8S,

97' 103-104, 109
INTRINU textfile 104

J

K

KEYPRESS function 137

L
label 39, SS
label, in expression 43
LIBMAP file 93, 9S, 98
L IBMAP. CODE 93, 12S
Librarian 84, 8S, 86, 88,

89, 100
Librarian commands 130
library files, in Linker 76
library lS
library codefile 84
library map example 9S
Library Mapper 92-9S
LIBRARY.CODE 86, 87, 12S
LINK command 7S
Linker 3, 4, lS, 16, 36, 74,

Index 1S3

M

macro 27, 30, 31, S7, S8,
S9' 71

macro definition S7
MACRO directive S7, S8, 71
macro expansion S7, 72
macro invocation S7, 66
macro parameter S7, S8, S9
MACROLIST directive 66, 67,

72
MAIN program 102
MAINLIBIU textfile 103
MAKE command 13S
map file 77, 92-9S
memory bank 114, llS
mnemonic 38

N
NEW command 26
NEWPASCALl S, 6, 7, 20, 79,

86, 87' 93, 121
NEWPASCAL2 S, 6, 7, 8, 20,

7S, 79, 86, 93, 121
NEWPASCAL3 S, 6, 7, 20, 7S,

79, 80, 121
NOLIST directive 66, 72
NOl1ACROLIST directive 66,

67' 72
NOPATCHLIST directive 67, 72

7S, 76, 78, 81, 84, 100, 0
llO

Linker commands 130
linker messages 36
LINKER. INFO 23
LIST directive 66, 72
U1AIN codefile 109, 111
local label 39, 40
location counter 40, SS, S6

object code 33
object file 19, 21, 2S
one-stage boot 118, 120
op-code 38
OPCODES.6S02 19, 122, 12S
operand field 38
operation field
operator 42
ORG directive
Owner's Guide

38

SS, 70
2, 4

154 Apple III Program Preparation Tools

p R
PAGE directive 68, 72
parameter 45
parameter passing 45, 49
Pascal data space 115
Pascal device numbers 126
Pascal interpreter 115
Pascal memory usage 48
Pascal Programmer's Hanual

16, 74, 85, 88, 91, 100
Pascal system 46
Pascal system diskette 76,

86, 93, 120, 121
Pascal system 114, 115, 118,

134, 144
PASCALl 4, 19, 120, 121
PASCAL2 4, 19, 120
PASCAL3 4, 19, 120
PATCHLIST directive 67, 72
precedence 42
PRIVATE directive 62, 63,

64, 72, 100
PROC directive 51, 52, 64
procedure 37, 52
PROCEDURE declaration 44
procedure INCARRAY 9, 12,

13, 26, 28, 32, 49
program CALLASM 9, 34, 35
program library 74, 79, 84,

109, 123
program library name 84
program HAIN 102
program preparation

diskettes 4-6
program SAf1PLE 8, 16
pseudo register
pseudo-op 38
PUBLIC directive

71, 100

Q

115

62, 63, 64,

READ 137
READLN 137
REF directive 64, 65, 72
Reference Symbol Table 25,

68
Regular Unit 103
REGUNIT textfile 103
return address 45
RUN command 3, 78, 79

s
sample exec file 138
sample program 8, 16
SAVE command 11
segment 48, 88, 89, 90, 91
SETUP.CODE 125
slot table 88, 89, 90, 91
sos 114
SOS call 48
sos conventions 46
sos errors 146-147
sos files 5, 6, 120, 121
SOS.DRIVER 119, 120, 121,

124, 134
SOS.INTERP 119, 120, 121,

124, 134
SOS.KERNEL 119, 120, 121,

124, 134
source file 19, 21, 24, 37,

39
stack 45, 114
startup 7
symbol table 25, 37
SYSCOM 115, 116
system diskettes
system files 5,
SYSTEM.ASSEMBLER

122, 125

4, 118
118
14, 19,

SYSTEM.COMPILR 79, 122, 123,
125

SYSTEM.EDITOR 19, 79, 122,
123, 124

SYSTEM.FILER 100, 122, 123,
124

SYSTEM.LIBRARY 74, 7S, 77,
80, 81, 84, 8S, 87, 88,
94, 97, 98, 110, 122, 123,
124' 134

SYSTEM.LINKER 7S, 79, 80,
122, 12S

SYSTEM.MISCINFO 100, 119,
120, 121, 124, 134

SYSTEM.PASCAL 79, 100, 107,
119, 120, 121, 123, 124,
134

SYSTEM. STAR. LIB 134
SYSTEM.STARTUP 134
SYSTEM.SYNTAX 79, 122, 123 ,

124

T
temporary file 22
TEXT suffix 22
textfile ASMPROCS lOS
textfile INTRINU 104
textf ile MAINLIBIU 103
textf ile REGUNIT 103
TIMES2 function 9, 12, 13,

26, 27, 31, 46
TITLE directive 68, 72
turnkey diskette 134
two-stage boot 7, 118, 119,

120

u
UCSD Adaptable Assembler 19,

so
underline character 39
unidentified label 39
Unit 74, 81, 84, 8S, 111
UNITREAD procedure 137

v
value Sl
VAR parameter 4S
volume names 126

Index lSS

w
warm boot 118, 119
WORD directive 46, S4, 70
workfile 8, 9, 10, 2S , 29

x
X-byte 47 , 48, 49
X-indirect addressing 42,

46, 47
X-page 46, 47

y

Y-indirect addressing 42,
46, 47, 49

z
zero page 46, 47, 114
zero-page register 114

$

$ option 21

1, 2, 3,4,5,6, 7,8,9,0
6S02 microprocessor 19, 41,

46, so
6S02 registers 46

I
,I

1' :.:...
ii "t)l!.J

' F:""O ·!
I - ,I ,, -- I

t.•j

I r::"I~ •,
~

i Q)"" ~ j

:'°':"' l j

,,_ :1

I ~~ :1

Tuck end flap I 0
R'ii.i "

inside back cover ~

when using manual. Elm

~
lJ .

I .,

I ~~ ;I

-0
' Q) ,,
i ~ 'I.

I t!!I 1';

I· --. _o
-=4' I I!']

r
,I

~ ··=' • Qi
-- ~

I

•I ~ I,
1: Ci)"
!
" II

"

'
i',

'1
'1
I
I

.i
j, .,
,, • . ,G Jpfe: C! ~

...___..... ;ar I ' .!..LJU pu
·1
I !

,,
~

le .,,.,.e.wi ~l!l. u:&!i.t

" l Cu per 1no. Cl liforni1:· 95011!

;I 408) 9 ~6-101 11

!' "I ,f'
1,
'• ~

j·~,

•I 030-0239-A

	Apple III Pascal: Program Preparation Tools
	Acknowledgements
	Contents
	Preface
	Chapter 1: First Steps in Program Preparation
	Chapter 2: The Assembler
	Chapter 3: The Linker
	Chapter 4: The Library
	Appendix A: A Complex Sample Program
	Appendix B: Special Memory Locations
	Appendix C: Tables
	Appendix D: Command Summaries
	Appendix E: User Notes
	Appendix F: Bibliography
	Appendix G: Error Messages
	Index

