S
55

2
~
tos

5

%
o
o
Lot
50
R
020K

%
2
o

e

%
%
5

£

25
e

bl

5%
o3
%

l"'
2

“t‘t'
5%
-

2%

e

ol

s
553
o
o
(vt

R
?5:"&“
R

s <
o
o
:‘:":; s

s

2

et

2
&

o5

o
%

3ot

o

o

ot

5

8

S
%

£
¥

]

%
%
ao
&2
s
S

5

o

0

o
A

;

i

oo}
o
2
2

3
5
5
5
S
%5

e

o
‘o)
fols

(o

2
%
’;
%
X

%
s
U"

2k

S

.
()
b
=
O
-
m
=
=
©
=
)
L.
)
g
E
©
o
(@)}
O
1
Q

Pascal

e
s
S etetatel

A5
o

25

e
5
Bz
ity tete!
e

A
et
R E
S :
RO
LS

S
R
RS
RS
i

o

S
e

o

&
gt
SRR
RIS
s

Soe:

oo,

%,

000
Q255
o:

Sk
LI
SRR
RN
%

o

Fatetetete®

SRR
SRR
X

S0

e

e

-
o

&
e
o

X

8
3%

e

s
s
2

A
BT sl teseTese e e et

R AR e
SRR RRRXRS
R E o
et
IR
RS
i

£

R
RS REI
KRRRAIERR

2%

otiete
ot

e
oo

et

et

bateteter ittt
B

.
58

‘...,n.aau.}
:.‘_.tno
f..-.-;_w*o.fw-
e SRS
I O AR)
R
R 3
o 0
ORISR
et
CRSIRARE,
BRI KLIHER .

Testerite
Ty et
et
RS
(Sersietety!

RRLRL
s
RRILER
RS
R
2

o
0

o

L%

oo

folotetite:
250
esieatets

BABSS
LI
ORI,

Notice

Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities

Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its

quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed “as is” The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

Written by David Casseres

The word Apple and the Apple logo are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0003

Apple lll Pascal

=

ii Apple III Pascal

Acknowledgements

The Apple III Pascal system is based on UCSD Pascal.

"UCSD PASCAL" is a trademark of the Regents of the University
of California. Use thereof in conjunction with any goods or
services is authorized by specific license only and is an
indication that the associated product or service has met
quality assurance standards prescribed by the University. Any

unauthorized use thereof is contrary to the laws of the State
of California.

Contents iii

Contents

Volume |—Chapters

Preface

Xiii

What is Apple Il Pascal?

uunn S~ W N

Introduction
Pascal vs. BASIC
Pascal vs. FORTRAN

Structure of a Pascal Program
A Sample Program

2 Overview of Pascal

8

9
12
13
18
22
24
25
26
26
3¢

Pascal Source Text
Symbols
Declarations

Data Types
Statements
Expressions
Procedures
Functions

Built-In Procedures and Functions

Pascal Program Structure
Sample Program

iv Apple III Pascal

3 Simple Data Types 33

34 Introduction

35 Declarations

38 The Real Type

4@ Scalar Types

4@ The Integer Type

42 The Long Integer Type

43 The Char Type

45 The Boolean Type

45 Defining New Scalar Types
46 Subrange Types

47 Built-In Functions For Scalar Types
49 Numeric Functions

4 Expressions and Assignments 51

52 Introduction

53 Precedence of Operators

56 The Arithmetic Operators

60 The Relational Operators

62 Logical Operators

63 Relational Operators with Boolean Operands
63 Result Types

64 Assignments

5 The Flow of Control 65

66 Introduction

67 The Compound Statement

68 The Procedure Call

69 The Repetition Statements

73 The Conditional Statements
8¢ The EXIT and HALT Procedures
81 The GOTO Statement

Contents v

6 Procedures and Functions 83

84 Introduction

85 Defining a Procedure

87 Value Parameters

89 Variable Parameters

9¢ Defining a Function

92 Calling a Function

92 Recursion

96 Rules of Scope

99 Segment Procedures and Functions
1¢¢ External Procedures and Functions
11 Size and Complexity Limits

/ Arrays, Sets, and Strings 103

1#4 Introduction

1¢4 Array Variables
115 Sets

12¢ Strings

124 String Built-Ins

8 Records 129

13¢ Record Variables
135 The WITH Statement

138 Comparisons and Assignments
139 Packed Records

9 Pointers and Dynamic Variables 141

142 Concepts

144 Pointer Values

144 Declaring Pointer Variables
145 Using Pointers

147 The NEW Procedure

15¢ MEMAVAIL

151 MARK and RELEASE

vi Apple III Pascal

10 Introduction To Files and I/O 155

156 Files

161 Overview of Apple III Pascal I/0 Facilities

162 Typed File I/0

175 Random Access

178 Special Handling of Control Characters With GET and PUT

11 Text /O 181

182 1Introduction

182 Character Files

184 Using the Procedures and Functions
185 The EOLN Function

186 The READ Procedure

199 The READLN Procedure

191 The WRITE Procedure

194 The WRITELN Procedure

197 The PAGE Procedure

197 Additional Details

12 Block File I/0 and Device I/O 201

232 Introduction

202 Block File I/O

26 Device I/0

213 Textfiles and Asciifiles

13 Special-Purpose Built-Ins 217

218 Introduction
218 Byte-Oriented Features
224 Miscellaneous Procedures

Contents vii

14 Library Units 231

232 Introduction

233 Regular Units

234 Intrinsic Units

236 Writing a Unit

243 An Example Unit

245 Using the Example Unit

246 VWesting Units

25@ Program Libraries and SYSTEM.LIBRARY
25¢ Changing a Unit or its Host Program

15 Program Segmentation 253

254 Program Segments
255 The Segment Dictionary

255 The Run-Time Segment Table
258 Loading of Segment Procedures and Functions

259 Loading of Unit Segments
261 The RESIDENT Option

Figures and Tables 265

Index 273

Volume lI—Appendices

Preface ix

A The TRANSCEND and
REALMODES Units 1

Introduction

The Units

The Functions

The Remainder (REM) Function

[N

viii Apple III Pascal

B The PGRAF Unit 1

13

18
19
19
2¢
20
21
21
22
23
23
24
24
25
25
26
29
31
33
34
35

36
37

Overview

Memory Usage

Saving and Loading Display Buffers
Summary of PGRAF Routines
Initial Conditions
GRAPHIXMODFE

GRAPHIXON and TEXTON
PENCOLOR and FILLCOLOR
VIEWPORT

INITGRAFIX

MOVETO, LINETO, and DOTAT
MOVEREL, LINEREL, and DOTREL
FILLPORT

XYCOLOR, XLOC, and YLOC

Text in Graphics

DRAWIMAGE
The Color Table

The Transfer Option
NEWFONT and SYSFONT
GSAVE and GLOAD

The CP28@ Mode

Reading From the Graphics Driver
The PGRAF Interface

The CHAINSTUFF Unit 39

49
41
41
42

The SETCHAIN Procedure
The SETCVAL Procedure
The GETCVAL Prodecure
An Example of Chaining

The APPLESTUFF Unit 45

46
48
48
49
49
5¢
52

The RANDOM Function

The RANDOMIZE Procedure
The KEYPRESS Function

The JOYSTICK Procedure

The SOUND Procedure

The Internal Date and Time
PADDLE, BUTTON, and NOTE

Contents ix

E Floating-Point Arithmetic 55

56 Introduction

59 Exceptions

62 Floating-Point Format

64 Arithmetic with Denormalized Numbers
65 Infinity Arithmetic and Comparisons
69 NaNs

71 Accuracy

76 Real Arithmetic Environments

77 Exception Handling

78 Arithmetic Modes

83 Summary of the Floating—Point System
85 Bibliography

F The Apple lll Pascal Compiler 87

88 Introduction

88 Diskette Files Needed

89 Using the Compiler

93 Compiler Option Syntax

94 Options that Do Not Affect Program Code
98 FError Checking Options

16¢ Control of Segments and Libraries
12 The USING Option

102 The INCLUDE Option

103 Special Compilation Mode

14 Conditional Compilation

169 Compiling Apple II Code

114 Compiler Option Summary

G Special Techniques 113

114 Introduction

114 Representation of Scalar Values
116 Implications

119 Representation of Arrays

120 Representation of Real Values

12¢ Free Union Variants

124 Byte-Oriented Built-Ins Revisited
125 Special Uses of UNITSTATUS

X Apple III Pascal

H Comparison To Apple Il Pascal 127

128 OTHERWISE Clause in CASE Statement
128 SOS Pathnames

128 SOS Device Driver Support
128 Graphics

129 New Procedures

129 New Data Types

129 Real Arithmetic

129 Library Files and Units
13¢ Memory Organization

13¢ The UNITSTATUS Procedure
13¢ Runtime Segment Table

13¢ Conditional Compilation
131 The CHAINSTUFF Unit

131 Compiling Apple II Code
131 File Variable Size.

131 Compiler Options

131 Procedure Complexity

131 System Globals

/ Syntax Diagrams 133

134 Compilation

134 Program

135 Unit

135 Intrinsic Unit heading
135 Regular Unit heading
136 Interface

136 Implementation

137 Block

137 Uses Declarations

138 Label Declarations
138 Constant Declarations
138 Constant

138 Type Declarations

139 Type

139 Simple Type

139 User-defined Scalar Type
140 Subrange Type

140 Pointer Type

140 Set Type

140 String Type

140 Array Type

141 Record Type

Contents xi

141 Field List

141 Variant Part

142 File Type

142 Variable Declarations

142 Procedure Definition

143 Function Definition

143 Parameter List

143 Parameter Declaration

143 Compound Statement

144 Statement

144 Assignment Statement

144 Procedure Call

145 With Statement

145 Goto Statement

145 For Statement

145 Repeat Statement

146 While Statement

146 1If Statement

146 Case Statement

146 Case Clause

147 Otherwise Clause

147 Expression

147 Simple Expression

148 Term

148 Factor

149 Variable reference

149 Function Call

149 Set Constructor

150 Unsigned Constant

150 Unsigned Number

150 Unsigned Integer

151 Identifier

Tables 153
154 Table 1: Execution Errors

155 Table 2: 1/0 Errors

157 Table 3: Reserved Words

158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/0 Devices
166 Table 8: Size Limitations

xii Apple III Pascal

K The TURTLEGRAPHICS Unit 167

168 Using Apple II TURTLEGRAPHICS with the Apple III

Figures and Tables 169

Index 177

Preface xiii

 Preface

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Intoduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer”s Manual (Volumes 1 and 2)

Before using the Apple III Pascal system or reading its manuals,
you should be familiar with starting up the Apple III as
described in the Apple III Owner”s Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal: Introduction, Filer, and Editor
manual. The Filer and the Editor described in this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will show
you the differences in operation between the two systems.

Apple III Pascal Program Preparation Tools is the next manual
that you should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The
components of the Apple III Pascal system covered in this manual
include

- The Linker, used to combine separately developed
program segments stored in libraries with your
application program.

- The Apple III Pascal 6532 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files.

~ The Librarian, used to put commonly used routines into
libraries for use with application programs.

xiv Apple III Pascal

Your main source of information while developing Pascal programs
will be the two volumes of the Apple III Pascal Programmer”s

Manual, which contain a complete description of the Pascal
language on the Apple III and the use of the Apple III Pascal
Compiler.

The Contents of This Manual

This manual describes the complete Apple III Pascal language.
Except for the introductory material in Chapters 1 and 2, this is
an explanatory reference manual rather than a textbook; it does
not assume that you know anything about Pascal, but it does
assume that you are familiar with computer programming in some
language.

Please note that a large and detailed index is provided at the
end of this manual; you will probably need it when you are using
the manual for reference purposes. The index does not point to
every occurrence of a word or phrase in the manual; instead it
points to the pages that have significant information about the
topic associated with the word or phrase.

Volume 1 of this manual contains the chapters; Volume 2 contains

the appendices and the index. Here is a brief description of the
contents:

- Chapter 1 is an introduction to the Pascal language,
comparing it with other well-known languages and giving

a very simple program as an example.

— Chapter 2 is an extensive overview of Pascal. Every
ma jor concept and construction in the language is
introduced here at an intuitive level.

- Chapters 3 through 11 provide complete, detailed
information about every major feature of the language.

- Chapters 12 through 15 provide complete, detailed
information about the more specialized features of the
language. These features are needed for certain large
or specialized programs.

- Appendices A through E describe the standard library
facilities of Apple III Pascal. These are sets of
procedures and functions for special purposes such as
graphics, audio, joystick inputs, and special
arithmetic features.

Preface .44

R

~ Appendix F is a complete reference manual for the Apple
III Pascal Compiler, including details of operation and
all of the Compiler options.

- Appendices G through J are supplementary information on
various topics. In particular, Appendix J is a
collection of useful tables.

- Appendix K provides information on the use of Apple IT
TURTLEGRAPHICS on the Apple III.

Two special symbols are used throughout this manual to draw your
attention to particular items of information.

The pointing hand indicates something particularly
interesting or useful.

The eye is used for points you need to be cautious about.

Syntax Diagrams

Throughout this manual, the syntax of the Pascal language is
indicated by means of syntax diagrams, also known as "rallroad
tracks.” These diagrams are easy to follow once you are used to
them: begin at the upper left and follow the arrows. Every
possible path through the diagram represents a valid construction
in Pascal. For example:

while statement

—{while)—b expressionl—b(DO H statement J—Pp

This diagram tells us that a "while statement” consists of the
word WHILE, followed by an expression, followed by the word DO,
followed by a statement.

The words WHILE and DO are enclosed in rounded "bubbles;" this
means that they are reserved words or symbols of the language, to
be typed as shown. The words expression and statement are in
boxes with square corners; this means that they are higher-level

constructions, which have their own syntax diagrams.

xvi Apple III Pascal

Here is an example where there is more than one path through the

diagram:

identifier

—p letter

letter

digit

underscore

_ Y,

This tells us that an identifier begins with a letter, and this
letter may be followed by a letter, a digit, an underscore, or
nothing. From here, there is the possibility of looping back to
add another letter, digit, underscore, or nothing. This can be
repeated indefinitely (in principle), so the syntax says that an
identifier can be of any length. 1In practice, of course, there
is a 1limit which the syntax does not show.

Note that Appendix I contains a full set of syntax

diagrams.

Syntax of Procedure and Function Calls

Pascal provides a number of bullt-in procedures and functions
which are activated by means of "calls.” Most of these use a
simple kind of syntax in which there is only one path through the
diagram, and in these cases a diagram is not shown. Instead, a
"form" is given; for example, the form of the REWRITE procedure
is

REWRITE (FILEID, PATHNAME)

Preface xvii

The word REWRITE is the name of the procedure, and is to be typed
as shown; all words in parentheses are names for "parameters," to
be replaced with actual expressions or variable identifiers as
explained in the text. 1In this example, FILEID is to be replaced
by the identifier of a "file variable” and PATHNAME is to be
replaced by a string of characters that is the pathname of a
file.

A few procedures have a more complex form of syntax, and syntax
diagrams are used for these.

xviii Apple III Pascal

What is Apple III Pascal? 1

What is Apple Ill Pascal?

2 Apple III Pascal

Introduction

Apple III Pascal is an implementation of the Pascal language for
the Apple III computer. It is based on UCSD Pascal, which in
turn is based on the original definition of Pascal by Kathleen
Jensen and Niklaus Wirth in the Pascal User Manual and Report
(Springer-Verlag, 1974). Chapter 2 is a comprehensive overview
of the language. This chapter is a brief description to give the
flavor of Pascal, especially in comparison to two other popular
general-purpose languages, BASIC and FORTRAN.

Pascal is a modern high—-level programming language that belongs
to the family of Algol-like languages; that is, it is descended

from the Algol language which introduced many of the fundamental
ideas of modern high-level programming. Like Algol, Pascal is
written free-form and is block-structured. It goes beyond Algol
in several ways; the most important is that Pascal has a great
variety of different data types and allows the programmer to
define new data types.

An Apple III Pascal program is first written as a text file,
using the system’s Editor; this text is called the source of the
program. Next it is compiled by the Pascal Compiler. The
Compiler produces a file of P-code, a special code that resembles
machine language.

The P-code can then be "executed" by an interpreter program,
which interprets the P-code instructions and executes them
immediately. The interpreter program is known as the P-machine,
and is an integral part of the software system. The use of
P-code and an interpreter provides an important benefit: with a
few limitations, the P-code of an Apple III Pascal program can
also be executed by a different P-machine on a different
computer.

An important part of the philosophy of high—level languages is to
separate the programmer from the details of the computer
hardware. In Pascal, for instance, there is no need to refer to
specific physical addresses in memory. The system takes care of
all memory management, without any intervention from the Pascal
program. The system also provides control of all special machine
features via Pascal statements; in most cases, this eliminates
the need for writing machine-language routines for detailed

What is Apple III Pascal?

control of the hardware. However, there is a way to link
machine-language routines into a Pascal program.

Pascal vs. BASIC

If you are a BASIC programmer, you will find that Pascal is
different in some very fundamental ways:

- LINE NUMBERS: Pascal has no line numbers. In fact,
line breaks mean nothing in a Pascal program. You can
break up a statement into several lines or put several
statements on one line. Statements are separated from
each other by semicolons. You will find that the
mechanics of writing, editing, or modifying a Pascal
program are easier than with BASIC because you don’t
need to maintain line numbers.

- VARIABLES: All variables in a Pascal program must be
declared before they can be used. A variable
declaration associates an identifier (variable name)
with one of the many data types of Pascal. (In BASIC,
only arrays need to be declared, via the DIM
statement.)

— FLOW OF CONTROL: Pascal has several methods for
controlling the sequence in which statements are
processed. These methods go beyond the IF, FOR, GOTO,
and GOSUB/RETURN of BASIC. As a result, most Pascal
programs are easier to read and understand than
comparable BASIC programs. Pascal has a GOTO
statement, but it is much less important than the other
methods.

- PROCEDURES: 1In Pascal you can write a procedure, which
is simply a subprogram. The main program can execute
the subprogram by mentioning its name. This replaces
the GOSUB/RETURN mechanism of BASIC and is more
powerful, since the main program can supply parameter
values to the procedure when it executes it.

- FUNCTIONS: A Pascal function is just a procedure that
returns a value, in the same way as a BASIC
user—defined function. A Pascal function definition
can contain any number of statements, where a BASIC

4

Apple III Pascal

user—-defined function is usually severely limited in
the number of statements it can contain.

BLOCK STRUCTURE: Block structure means that a
procedure or function can have its own variables which
are independent of the main program. A procedure or
function can even have a variable of its own which has
the same name as a variable in the main program.
Because of this, a Pascal programmer can use a kind of
discipline that is not possible in BASIC; the result is
cleaner, more comprehensible programs.

PHYSICAL ADDRESSES: There are no POKE, PEEK, or CALL
statements in Pascal. A Pascal program doesn’t use
physical addresses; various mechanisms in Pascal make
them unnecessary.

Pascal vs. FORTRAN

If you are a FORTRAN programmer, these differences will be
particularly noticeable:

There are no line numbers.

Identifiers (names) are less restricted.

The format of the program text is less restricted.
The program control structures are more constrained.

Procedures and functions can be recursive: that is,

they can call themselves either directly or
indirectly.

Block structure (see above) allows better program
organization and eliminates the need for common

blocks. Subprograms (procedures and functions) are
written within the main program, and automatically have
access to the main program’s data.

There is no equivalencing of variables.

Variables can be created dynamically as the program
runs, and referenced through pointers.

What is Apple III Pascal? 5

- There is no implicit typing. The type of every
variable is explicitly declared.

- There are no OWN (SAVE) variables.

- I/0 formatting facilities are simpler.

Structure of a Pascal Program

Every Pascal program has the following outline (words in capital
letters are "reserved words" of Pascal):

program heading,
containing the word PROGRAM and the program’s name;

declarations of any user-defined data types,
variables, etc.

definitions of any procedures and functions
the word BEGIN
any number of statements, separated by semicolons

the word END, followed by a period

A Sample Program

Here is a very simple Pascal program, which displays 11 lines of
text on the screen. Each line displayed contains a different
number, counting from @ to 1f. The program is presented here
without explanation, just to show you what Pascal source text
looks like. The words between starred parentheses are
Pascal-language comments. At the end of the next chapter, we
will see this program again with an explanation.

6 Apple III Pascal

PROGRAM FIRSTEXAMPLE; { program heading }

VAR I:INTEGER; { declaration of
a variable }

PROCEDURE DISPLAY (J:INTEGER); { procedure definition }

BEGIN
WRITELN;
WRITELN('The number is “, J)
END; { end procedure
definition }
BEGIN { begin program body }
FOR I:=@ TO 1§ DO DISPLAY(I) { statement }
END. { end of program }

The output from this program appears on the screen as follows:
The number is @
The number is 1
The number is 2
The number is 3
The number is 4
The number is 5
The number is 6
The number is 7
The number is 8
The number is 9

The number is 10

Overview of Pascal

7

Overview of Pascal

8 Apple III Pascal

This chapter gives a brief account of each major feature of Apple

III Pascal, and tells you where to find further information in
this manual.

Pascal Source Text

The source text of a Pascal program is a sequence of symbols.
Symbols are like the words, spaces, and punctuation marks that

make up a paragraph of English sentences. The kinds of symbols
that make up Pascal programs are

- Reserved words (the fixed vocabulary of Pascal)

- Identifiers (names: some made up by the programmer,
and others built into the language)

- Numeric constants (numbers written in the program to be
used as data)

- Character and string constants (characters written in
the program to be used as data)

- Delimiters (special characters and punctuation)

These different kinds of symbols are described further under
"Elements of the Language" below.

A Pascal program can also contain comments. A comment is text
that is totally ignored by the Compiler; it serves to make the
program more comprehensible to a human reader. Anything enclosed
within the special symbols { and } is a comment; also, anything
enclosed within the special symbols (* and *) is a comment. For
example:

{This is a comment}
(*This is another comment¥*)

A comment formed with the {} delimiters can include the (* %)
delimiters, and vice versa.

The source text of a Pascal program is written free-form: that
is, you can break the text into lines in any way you like, you
can indent the lines in any way you like, and you can insert
spaces freely between symbols. For example, the Pascal statement

Overview of Pascal 9

FOR I:= ¢ TO N DO BEGIN A:=I; B:=2*I+l END

can also be written as follows:

FOR I :=) TO N DO BEGIN
A = T
B := 2*%I + 1
END

or in many other ways. All that matters is the sequence of
symbols. It is customary to break the text into lines which are
meaningful, and to use indentation (as above) to improve
clarity. There are no specific rules for this; as you learn the
language you will understand the way indentation is used in the
examples and develop your own style.

Another way to write our sample Pascal statement is
For i := @ to n do Begin a:=i; b:=2%i 4+ 1 End

In this manual, most Pascal program text is shown in capitals,
simply to set it off from other text. However, the
capitalization of letters is not significant in Pascal (except
within constants, as we will see).

Symbols

Symbols are the smallest meaningful elements in Pascal,
corresponding to the words, spaces, and punctuation in an English

sentence. Everything else in the language is built up out of
symbols.

Reserved Words

These symbols are words such as FOR, WHILE, AND, DO, and BEGIN.
They make up the essential vocabulary of Pascal and have fixed
meanings. A complete table of reserved words is given in
Appendix J.

Identifiers

These symbols are names for things such as variables, data types,
and procedures. Most identifiers are made up by the programmer

10 Apple III Pascal

and given meanings in declarations; other identifiers are names
of variables, data types, procedures, etc., that are built into
the language and don’t need to be declared. The syntax for an
identifier is

identifier

| letter

letter

digit

underscore

N J

Thus an identifier must begin with a letter, and this letter may
be followed by any number of letters, digits, or underscores.
The Compiler ignores the case of letters; ‘A’ and “a’ are
equivalent. Underscore characters in an identifier are ignored;
their only purpose is to make an identifier more legible. Also,
only the first eight characters (not counting underscores) are
significant. For example, the following six identifiers are
equivalent and interchangeable:

MYNUMBER mynumber
MY NUMBER My Number
MY NUMBER VALUE MY _NUMBER SYMROL

There is an important restriction on identifiers: an identifier
must not be the same as any reserved word.

Numeric Constants

Numeric constants are signed decimal integer or floating-point
values that are written into the program to be treated as data.
In Pascal there are two kinds of numeric data called integer and
real. Integer constants must fall in the range -32767 to 32767.
The following are valid integer constants:

-1 2 865 16383 ~2p0¢ ¢ 1949

Overview of Pascal 11

A real constant contains a decimal point (period) and may contain
an "exponent part.'" The exponent part consists of the letter "E"
and a number, and indicates multiplication by a power of ten.

The following are valid real constants, and all represent the
same numerical value:

3.14159 @.314159E1 3141.59E-3

Character Constants

These are single characters written into the program to be
treated as data. The apostrophe or "single quote" is used to set
off character constants. The following are examples:

4 ’ 4 ’, 4 ’ . 4 ’ 22
a A 0 +

The first two constants, ‘a’ and “A’, are not equivalent.
Capital letters are distinguished from lower case in constants.
The last example shows how to represent a single quote as a
character constant. By the way, don’t confuse two single quotes
with the double-quote character ("), which has no meaning in
Pascal.

String Constants

These are character sequences written into the program to be
treated as data. Like character constants, they are set off by
apostrophes. Examples:

‘Smith’ ‘$408.23° ’‘Type your name: ‘DON’’T WORRY’ ‘'

Capital letters are distinguished from lower case. The
next—to-last example shows how to use an apostrophe as a
character within a string constant. The last example shows how
to represent a string consisting of no characters.

Delimiters

Delimiters have the effect of separating other symbols from each
other, which is why they are called delimiters. When two symbols
are not separated by a delimiter, they must be separated by a
space or a line break.

These special characters (and a few two-character combinations)
also have various special meanings such as arithmetic operations,
array indexing, setting off comments. etc. The one-character

12 Apple III Pascal

delimiters are

and the two-character delimiters are

= .. (X %) &= d>= O

Declarations

You can think of a Pascal program as being made up of two kinds
of "sentences'--statements, which generally cause some kind of
action to occur when the program is executed, and declarations.

Use declarations to announce the nature of an identifier.

Variable Declarations

All variables must be declared (except dynamic variables, which
are discussed later). The effect of a variable declaration is to
create an identifier, associate it with a data type, and allocate

memory space for it. Variable declarations are introduced by the
reserved word VAR. Example:

VAR NEWVALUE : INTEGER;
RESULT: REAL;

These two declarations create an identifier NEWVALUE which is the
name of an integer variable, and an identifer RESULT which is the
name of a real variable.

Constant Declarations

Identifiers may also be declared for numeric and character
constants. A constant identifier can then be used in the program
instead of the constant itself. Constant declarations are
introduced by the reserved word CONST. Example:

CONST PI=3.14159;
ROWSIZE=64;
COLUMNSIZE=2048;

These three declarations create the identifiers PI, ROWSIZE, and
COLUMNSIZE, with the values indicated. In a program that uses
the value of pi in many different statements, it is more

Overview of Pascal 13

convenient to declare PI as shown and use it in the statements
instead of having to write 3.14159 repeatedly. Another advantage
of declared constants is that if a program is first developed
with ROWSIZE and COLUMNSIZE as shown above, and later you want to
change these values, you need only change the declarations rather

than searching through all the statements for the values 64 and
2048.

Type Declarations

Pascal allows you to declare your own data types, as described in
the next section. Type declarations are introduced by the
reserved word TYPE.

Data Types

Pascal has a great variety of data types. They are described
very briefly here, and several chapters are devoted to describing
them in detail. The data types are broken into two broad
categories called "simple" and "structured" types; a simple data
type represents just one value, while a structured type
represents a collection of values.

Most of the simple types are "scalar" types. This important term
is defined in Chapter 3.

The Real Type

Real values are signed, 32-bit floating-point numbers in the
proposed IEEE format with a precision of about seven decimal
places (depending on the actual value). The range of real values
is from plus or minus 1.401298464E-45 to plus or minus

3.4P2823466E38; also, P.f is a real value. (See Appendix E for
complete details.)

The Integer Type

Integer values are signed whole numbers in the range -32768 to
32767. There are also '"long integers" which are BCD-coded and
can represent values up to 36 decimal digits.

14 Apple III Pascal

The Char Type

A value of type char is a character: that is, any member of the
extended 8-bit ASCII character set used on the Apple III,

The Boolean Type

A boolean value is either TRUE or FALSE. Such values result from
various kinds of expressions (such as comparisons), can be used
with the logical operators NOT, AND, and OR to result in new
boolean values, and are used in some of the control statements of
Pascal. Note that TRUE and FALSE are not numerical values.

User-Defined Scalar Types

In Pascal, a scalar data type is one that has a fixed number of
possible values which form a fixed sequence. The integer, char,
and boolean types are scalar types (the sequence for char values
is the sequence of the ASCII table, and the sequence for booleans
is FALSE, TRUE).

You can also define your own scalar types. For example, the
declaration

VAR DAY:(SUN, MON, TUES, WED, THURS, FRI, SAT);

creates a variable called DAY. The possible values of DAY are
represented by the identifiers SUN, MON, etc. The actual values
are internal bit patterns, of course, but you don’t need to know
what they are because you have the identifiers for them. The
values have the ordering indicated in the declaration.

Subrange Types

Subrange types are variations on the scalar types described
above. For example, the declaration

VAR DAYNUM:1l..7;

creates an integer subrange variable whose values cannot be less
than 1 or greater than 7. If the program tries to give DAYNUM a
value outside this range, tlLe interpreter will halt the program

with an error message. Subrange types can also be based on the
char type and on user-defined scalar types, as shown in the
following declarations:

Overview of Pascal 15

VAR CAPITALS:’A’..°Z’;
DAY: (SUN, MON, TUES, WED, THURS, FRI, SAT);
WEEKDAY :MON. .FRI;

Subrange types are particularly useful for array indices.

The String Type

The value of a string variable is a sequence of char values.
Besides the value, a string variable also has a length attribute
which is automatically maintained by the system when the value of
the string changes during program execution. The declaration

VAR LASTNAME: STRING;

creates a variable LASTNAME of type string. The maximum length
for a string is 255 characters. Apple III Pascal has a powerful
set of built-in procedures and functions for manipulating string
values.

Array Types

An array is a collection of values, all of the same type. The
values are called array elements. A particular element of an
array can be referenced by writing the name of the array followed
by one or more indices enclosed in square brackets []. The array
is said to have one dimension for each of its indices.

Pascal arrays are very flexible. They can have any number of
dimensions (subject to space restrictions). The elements of an
array can be of any type except file types. The indices of an
array can be of any subrange type (including integer subranges),
or any scalar type except integer. The declaration

VAR NUMS: ARRAY[{..511] OF REAL;

creates a one-dimensional array named NUMS, with 512 elements.
Each element is a real value. The first element in the array is
NUMS[@] and the last is NUMS[511]. The declaration

VAR MATRIX: ARRAY[1l..255, 1..64] OF BOOLEAN;
creates a two-dimensional 255x64 array of boolean values. Note

that this time, the indices start at 1 instead of (). Finally,
the declaration

16 Apple III Pascal

VAR CHARCODE: ARRAY[CHAR] OF f..255;

creates a one-dimensional array which contains values in the

range @ to 255. The array is indexed by characters. For
example, CHARCODE[’A’] refers to the 66th element of the array,
since the character A is the 66th character in the ASCII set.

Record Types

Like an array, a record variable is a collection of values; but
the values belonging to a record need not all be of the same
type. Each element of a record variable has its own identifier.
The declaration

VAR PERSON: RECORD
FIRSTNAME: STRING;
INITIAL: CHAR;
LASTNAME: STRING;
AGE: INTEGER
END;

creates a record variable PERSON which contains four values; two
of the values are strings, one is a char, and one is an integer.
The elements of PERSON are referred to in the program as

PERSON.FIRSTNAME, PERSON.INITIAL, PERSON.LASTNAME, and
PERSON.AGE.

Set Types

The declaration
VAR SPECIALCHARS: SET OF CHAR;

creates a set variable SPECIALCHARS which is a set of

characters. We say that the type char is the base type of the
set SPECIALCHARS. During program execution, the actual value of
SPECIALCHARS is a bit pattern which reflects the presence or
absence of each character in the ASCII character set; to make use
of this value, Pascal provides a notation for writing a set value
as in the following assignment statement:

SPECIALCHARS := [‘.”, “:/, “;’]

This statement assigns to SPECIALCHARS the set of characters
consisting of the period, colon, and semicolon characters.
Pascal also provides operations for adding a new member to a set,

Overview of Pascal 17

testing to see if a particular value is a member of the set,
forming the union, intersection, or difference of two sets, and
comparing sets. The base type of a set can be any subrange type
(including integer subranges), or any scalar type except
integer. The base type cannot have more than 512 possible
values; this means that a set cannot have more than 512 members.

Dynamic Variables and Pointers

Pascal provides a mechanism for using variables that are created
during program execution, using unallocated memory space; these
are called dynamic variables. A dynamic variable can be of any
data type (except a file type, which is discussed in the next
section). A dynamic variable is not declared; instead, a pointer
variable is declared. During program execution, the pointer is

used to create one or more dynamic variables. For example,
consider the following declarations:

TYPE PREC=RECORD
FIRSTNAME: STRING;
INITIAL: CHAR;
LASTNAME: STRING;
AGE: INTEGER
END;

VAR PPTR: “PREC;

The type PREC is equivalent to the type of the PERSON variable in
the example for record types (see above). The pointer variable
PPTR is defined as a pointer to a dynamic variable of type PREC.
The program can then contain the statement

NEW(PPTR)

which creates a new dynamic variable of type PREC. This variable
can be referred to in the program as PPTR", and its elements as
PPTR".FIRSTNAME, PPTR".INITIAL, etc.

File Types

In Pascal, files are considered to be program variables. A file
is considered to be a sequence of an indefinite number of data
elements, all of the same type. The elements can be of any type
except a file type. The declaration

VAR OUT: FILE OF INTEGER;

18 Apple III Pascal

creates a file variable OUT whose elements are of type integer.

Physically, a file in the Apple III system is either a diskette

file or some device or device driver attached to the system; so

Apple III Pascal has mechanisms for associating a file variable

with an external file. A powerful set of built-in procedures is
provided for doing file I/O.

Statements

Pascal statements do the work of a Pascal program. There are ten
distinct kinds of statement in Pascal; they are described here

very briefly. A distinctive feature of Pascal is that some kinds
of statements can contain other statements.

Pascal uses the semicolon character in two ways. In the
preceding sections we have seen semicolons used to
terminate declarations. In the body of a program or
procedure, Pascal uses semicolons to separate statements.
When a semicolon appears at the end of a statement, it is
not part of the statement: it stands alone and separates
the statement from the next statement. If the next thing
in the text is not a statement (for example, the word
END), no semicolon is required. The examples in this book
use semicolons only where they are actually required.

The Assignment Statement

An assignment statement gives a value to a variable. An example
is

MEANVAL := (LEFTVAL + RIGHTVAL) / 2

where MEANVAL, LEFTVAL, and RIGHTVAL are variables of type real.
The effect of this assignment statement is to calculate the sum
of the current values of LEFTVAL and RIGHTVAL, divide by 2, and
make the resulting value the new value of MEANVAL.

The Procedure Call Statement

Procedures are discussed further on; they can be thought of as
subprograms that are embedded in the main program. The statement

WRITE("ABCD")

Overview of Pascal 19

is a procedure call statement that activates the WRITE

procedure. WRITE is a built-in procedure; that is, it is
automatically available to all Apple III Pascal programs. In the
example, the procedure call statement passes the string ABCD to

the WRITE procedure as a parameter; WRITE will display the string
on the screen.

The Compound Statement

In some ways this is the most important kind of statement in
Pascal. It consists of the reserved word BEGIN, followed by any
number of Pascal statements, followed by the reserved word END.
This allows you to put any number of statements in a place where
only one statement is allowed, since the compound statement is
just one statement. You will see many examples of this

practice. Also, the body of every program and of every procedure
and function definition is a single compound statement.

The IF Statement

The IF statement provides conditional execution of a statement
which is contained in the IF statement. The condition is the

value of an expression, which has a boolean value (TRUE or
FALSE). An example:

IF A< B THEN C :=D

In this example, the assignment statement C := D will be executed
only if the expression A < B has the value TRUE--that is, if the
value of A is less than the value of B. Another example:

IF X = Y THEN BEGIN
MATCHCNT := MATCHCNT + 1;
WRITELN('X is equal to Y’)
END

This shows the use of a compound statement, which will be
executed only if X and Y have equal values. Inside the compound
statement are two statements—an assignment statement and a
procedure call. Note the use of a semicolon to separate the two
statements. Also, note that just as the compound statement is a
single statement containing two other statements, the entire IF
statement is a single statement containing the compound
statement.

20 Apple III Pascal

An IF statement can also have an ELSE part, which is executed
only if the condition is FALSE; for example,

IF M = () THEN ZEROCNT := ZEROCNT + 1
ELSE NONZEROCNT := NONZEROCNT + 1

Here either ZEROCNT or NONZEROCNT will be incremented, depending
on whether or not M is equal to @.

The CASE Statement

The CASE statement lets a program select and execute one

statement from a set of statements. The CASE statement contains
an expression, and the statements inside the CASE statement are
labeled with possible values of the expression; thus the value of
the expression selects one statement to be executed. An

example:

CASE COMMCH OF
‘A’: APPEND;
‘R’: REORDER;

‘F’: FORGET;
‘X’: BEGIN
WRITELN(Exiting from program’);
EXIT(PROGRAM)
END
END

where the controlling expression is COMMCH (a char variable) and
APPEND, REORDER, FORGET, and EXIT are procedures. If COMMCH is
‘A’, the first statement is executed, calling the APPEND
procedure. If COMMCH is ‘R’, the second statement is executed to
call the REORDER procedure, and so forth. Note the use of a
compound statement to do two things in the ‘X’ case. If COMMCH
does not match any of the labels in the CASE statement, none of
the statements within the CASE statement are executed; the
program proceeds to the next statement after the CASE statement.

The REPEAT and WHILE Statements

These statements, like the IF statement, contain an expression
whose value is boolean (TRUE or FALSE). A REPEAT statement
contains one or more statements which are executed once, and then
repeated if the expression’s value is FALSE. Repetition
continues until the expression’s value is TRUE. The following
example prompts the user to type the word "cat" and repeats until

Overview of Pascal 21

the user does so:

REPEAT
WRITE('Type the word "cat" ’);
READLN(INSTRING)

UNTIL INSTRING = ‘cat’

In this example, the built-in procedure READLN reads whatever the
user types (terminated with the RETURN key) and puts the
characters in INSTRING.

The WHILE statement executes a single (possibly compound)
statement repeatedly, as long as the value of the controlling
expression is TRUE. This value is tested before anything is
executed; thus in some cases the statement within the WHILE
statement may not be executed at all. The following example is a
variation on the previous one; note that the symbol <> means 'not
equal to":

WRITE('Type the word "cat" ’);
READLN(INSTRING);
WHILE INSTRING <> ‘cat’ DO
BEGIN
WRITELN(You typed “, INSTRING);
WRITELN('Try again:’);
WRITE('Type the word "cat" ‘);
READLN(INSTRING)
END

The compound statement in the WHILE statement is executed only if
the user fails to type '"cat" on the first try; but in this event
the compound statement is executed until the word "cat" is

typed.

The FOR Statement

The FOR statement controls repetition of a single (possibly
compound) statement by counting. For example, the following
statement will list the integers from 1 to 1f on the screen:

FOR NUMBER := 1 TO 1§ DO WRITELN(NUMBER)

where NUMBER is an integer variable which is used as the control
variable of the FOR statement. First the value 1 is assigned to
it. Then the WRITELN statement is executed (using the current
value of NUMBER). Then the value of NUMBER is changed to the

22 Apple III Pascal

next integer in sequence, and the WRITELN is executed again. The
process is repeated until the value of NUMBER exceeds the value
of the limit expression, which is 1§ in this case. Thus the last

number written on the screen is 10.

The FOR statement can also count in reverse, by using the word

DOWNTO instead of TO. The following will list the letters in
reverse order from Z to A:

FOR CHARACTER := ‘Z’ DOWNTO ‘A’ DO WRITELN(CHARACTER)

Notice that in this example character values are used instead of
integer values. In fact, any scalar type can be used to control
a FOR statement.

The WITH Statement

The WITH statement is a convenience for referring to the fields

within a record variable without having to write the identifier
of the record repeatedly.

The GOTO Statement

The GOTO statement causes an unconditional "jump" to a specific
statement. There are some important restrictions on the use of
GOTO in Apple III Pascal; see Chapter 5 for details.

Expressions

Pascal expressions are "algebraic" in form. An expression can
contain just a single value, such as a variable identifier or a
constant, or it can be a complex combination of various operands
and operators.

Arithmetic Operators

For arithmetic operations with real and integer operands, the
operators are

Overview of Pascal

23

O~ % | 4+

v

MOD

addition

subtraction or negation

multiplication

division with real result

division of integers with integer result
rounded toward zero

remainder of

integer division

In Apple III Pascal, all arithmetic operations on real

values conform to the proposed IEEE floating-point
See Appendix E for complete details.

standard.

Comparison Operators

Comparisons between scalar or real operands, yielding boolean
results, are performed by the operators

>

>=
=
<O

greater than
greater than
equal to

less than or
not equal to

Logical Operators

Logical operations with boolean operands and boolean results are
performed by the operators

NOT
AND
OR

or equal to

equal to

boolean negation
boolean conjunction
boolean disjunction

Set Operations

Set operations with set results are performed by the operators

-+

*

union
difference
intersection

Set comparisons, with boolean results, are performed by the

operators

24 Apple III Pascal

= equal to

<> not equal to

>= includes or is equal to

<= is included by or equal to
IN is a member of

Notice that some of the operator symbols are used in more than
one way: for example, the + symbol can be the numeric addition
operator or the set union operator. In such a case, the meaning

of the operator symbol depends on the operands.

Procedures

A procedure can be thought of as a "subprogram,'" which is defined
(that is, written) inside the main program (before the main
program’s body of executable statements) and can then be executed
by the main program, using a procedure call statement.

An example of a procedure definition:

PROCEDURE TWOLINES;
BEGIN

WRITELN;
WRITELN;
END;

This procedure does nothing but call the WRITELN procedure twice;
this displays two blank lines on the screen. A more useful
procedure would be

PROCEDURE NLINES (NUMBER: INTEGER);

VAR COUNTER: INTEGER;
BEGIN
FOR COUNTER:=1 TO NUMBER DO WRITELN

END;
This procedure has a parameter: an integer value which is called
NUMBER within the procedure definition. The value of NUMBER is
determined when NLINES is called by a statement such as
NLINES(5)

which gives the value 5 for the parameter. NLINES uses the value
of NUMBER as the limit value in a FOR statement; the procedure

Overview of Pascal 25

call statement NLINES(5) would cause NLINE to put five blank
lines on the screen.

Notice that in order to use the FOR statement, NLINES needs an
integer variable to control it. Therefore NLINES contains a
declaration of the integer variable COUNTER. This variable
belongs to NLINES and is unknown to the rest of the program. In
fact, the main program could have another variable with the same
name, COUNTER, and this would not cause any problems.

Every procedure has the following general outline:

procedure heading,
consisting of the word PROCEDURE, the procedure’s name,
and a list of any parameters;

declarations of any user-defined data types,
constants, variables, etc.

definitions of any procedures and functions
the word BEGIN

any number of statements, separated by semicolons
the word END, followed by a semicolon

Compare this to the structure of a program shown in the previous
chapter. The underlines indicate the only differences between a
procedure definition and a program. Note that procedure
definitions can be written inside other procedure definitions;
when this is done, the inner procedure belongs to the outer one,
and is unknown to the rest of the program.

For more about procedures, see Chapter 6.

Functions

A function is a procedure that returns a value. While a
procedure call is a statement, a function call is an operand in
an expression. The function calculates a value, and this value
becomes the value of the operand in the expression. The
following function calculates the cube of a real value:

26 Apple III Pascal

FUNCTION CUBE (V: REAL): REAL;
BEGIN

CUBE :=V * V %V
END;

Note that the function heading includes the type of the value

calculated by the function. Within the function, the function
name appears on the left side of an assignment statement; this
establishes the value that the function returns. The CUBE

function could be used in an expression as follows:

CUBE(5.7*Y) + 2.3

In evaluating this expression, the value of Y is first multiplied
by 5.7. The result is the parameter value to be passed to CUBE.
The CUBE function is then executed, and it calculates the cube of
the parameter value. This value then becomes the first operand
in the expression; 2.3 is added to it to get the value of the
expression.

For more about functions, see Chapter 6.

Built-in Procedures and Functions

Pascal has a large set of procedures and functions built into
it. These procedures and functions do not have to be defined;
they do not reside in a library; they are part of the language
itself and are automatically available to all programs. They
serve such purposes as control of input and output, various
mathematical functions, manipulation of strings, use of dynamic
variables, and various special purposes. Further information on
the built-in procedures and functions is in various chapters,

along with the topics that the procedures and functions relate
to.

Pascal Program Structure

Chapter 1 gives an outline of the structure of a Pascal program.
We can now show the structure in a slightly more sophisticated
way. First we define something called a block.

Overview of Pascal 27

Every block has the following outline:

optional label declarations—the word LABEL followed by
declaration of labels

optional constant declarations—the word CONST followed by
declarations of identifiers for constants

optional type declarations—the word TYPE followed by
declarations of user-defined data types

optional variable declarations—the word VAR followed by
declarations of variables

optional definitions of procedures and functions
one compound statement

The LABEL declaration has been mentioned briefly; it is only
needed in a block that uses GOTO statements.

The idea of a block is important in Pascal. For one thing, we
can now say that the outline of every program is

program heading

optional USES declaration
block

period

(The USES declaration is explained below.) Similarly, the
outline of every procedure definition is

procedure heading
block
semicolon

and the outline of every function definition is

28 Apple III Pascal

function heading

block

semicolon

The Scope of Identifiers

The scope of an identifier is simply the part of the program in

which it is known. Here are the rules about the scope of
identifiers:

- An identifier that is declared in a procedure or
function is not known outside of that procedure or
function. This includes the identifiers of parameters
in the procedure or function heading.

- A procedure or function can re-declare an identifier
which was already declared outside the procedure or
function. In this case there are two different things
that happen to have the same identifier, but there is

no problem: the "outer" identifier is unknown inside
the procedure or function, and vice versa.

- The identifier of a procedure or function is considered
to be declared both inside and outside the procedure or
function. That is, the identifier is known both inside
and outside and you cannot re-declare it.

To see how this works, consider the following fragment of a
program:

Overview of Pascal 29

PROGRAM SAMPLE;
CONST MSG = ‘Limit exceeded.’;
VAR LIMIT:REAL;

PROCEDURE TSTLIM (X: INTEGER);
CONST LIMIT=3;
BEGIN
IF X > LIMIT THEN WRITELN(MSG)
END;

BEGIN

The string constant MSG is known throughout the program,
including the procedure TSTLIM. We say that MSG is local to the
program and global to TSTLIM.

The integer variable X, declared in the procedure heading of
TSTLIM, is known only inside TSTLIM. We say that X is local to
TSTLIM and unknown to the program.

The real variable LIMIT is known throughout the program, except
inside TSTLIM, because the integer constant LIMIT is declared
within TSTLIM. The integer constant LIMIT is local to TSTLIM and

unknown to the program—while the real variable LIMIT is local to
the program and unknown to TSTLIM.

The example shows a procedure within a program, but exactly the
same rules apply when a procedure or function is nested within
another procedure or function.

This scoping of identifiers becomes a real advantage when a
program is large or complex. It means that you (or some other
programmer) can develop a procedure without worrying about
whether the procedure’s variables will conflict with the main
program’s variables.

Library Units

A library unit is a package of "public" procedures, functions,
variables, etc. that has been compiled separately and placed in a
library file. A file named SYSTEM.LIBRARY is an integral part of

30 Apple III Pascal

the system and contains a number of standard packages. These
packages provide such things as transcendental functions,
graphics functions, and access to special Apple III machine
features.

A program that uses a library unit has access to all the public

features of that unit, just as if they were declared at the
beginning of the program. To use a unit, the program merely
gives the name of the unit in a USES declaration immediately

after the program heading. For example, two of the standard
units are called TRANSCEND and APPLESTUFF. To use both of them,
a program would have the declaration

USES TRANSCEND, APPLESTUFF;

immediately after the program heading.

Sample Program

At the end of Chapter 1, a sample program was given without
explanation. Now we can explain how the program works.

PROGRAM FIRSTEXAMPLE; { program heading }

VAR I:INTEGER; { declaration of
a variable }

PROCEDURE DISPLAY (J:INTEGER); { procedure definition }

BEGIN
WRITELN;
WRITELN(’The number is *, J)
END; { end procedure
definition }
BEGIN { begin program body }
FOR I:=(TO 1§ DO DISPLAY(I) { statement }
END. { end of program }

One procedure, DISPLAY, is declared. DISPLAY accepts one

parameter, an integer value which is known within the procedure
as J.

Notice that the program body contains just one statement: a FOR
statement that repeats for values from @ through 1¢#. The FOR

Overview of Pascal 31

statement is controlled by the integer variable I, declared in
the VAR declaration at the beginning of the program.

Each time the FOR statement executes, it executes a procedure
call to the DISPLAY procedure. The procedure call passes the
current value of I to DISPLAY. DISPLAY assigns this value to its
own variable J. DISPLAY then executes two statements:

- First it calls the built-in procedure WRITELN with no

parameters. This causes a blank line to be displayed
on the screen.

~ Then it calls WRITELN again with two parameters

(separated by the comma). The first parameter is the

string constant ‘The number is ’, and the second is the

integer value J. WRITELN displays these values on one

line on the screen.
Each time DISPLAY is called, the value of I is passed to it as
the value for J. Since I is the control variable of the FOR
statement, it takes on the values @ through 1§ in sequence.
Therefore, the output from the program is

The number is @

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

32 Apple III Pascal

Simple Data Types 33

34 Apple III Pascal

Introduction

Every piece of data used or created by a Pascal program has an
attribute called its type. The type tells the program and the
system how to interpret the piece of data. For example, one of
the fundamental types is the integer type; another distinct type
is the real type. An integer value is a signed whole number,
while a real value is a signed floating-point number. You can
think of a data type as a definition of the set of possible
values that the data can have.

If the piece of data is the value of a named constant or
variable, its type is assigned when the constant or variable is
declared. Otherwise, the type of the data depends on how the
program inputs or creates the data.

Pascal offers an especially wide range of built-in types, each
with its own identifier. Pascal also allows you to define your
own types within a program. A user—defined type can be a
composite of built-in types, for example, or it can be a subrange
of a built-in type. In this chapter, we cover the simple data
types—i.e. the types that a single value can have. These are

The type REAL

The scalar types:
INTEGER and LONG INTEGER
CHAR
BOOLEAN
User-defined scalar types
Subrange types

Other chapters will cover the structured data types, where a
typed piece of data can be a collection of various single
values.

Jensen and Wirth, in their definition of Pascal, define

the type REAL to be a scalar type. Most books on Pascal
follow Jensen and Wirth on this point. But REAL values
are not handled in the same way as values of other scalar
types, and are an exception to most of the rules about
scalars; therefore, this book considers reals to be a
separate category.

Simple Data Types 35

Declarations

As described in the previous chapter, the structure of a Pascal
program includes sections for several different kinds of

declarations. Here is a sample program that uses two kinds of
declarations:

PROGRAM XYZ;

CONST MAXA = 24; {An integer constant}
MAXB = 31; {Another integer constant}
COEFFICIENT = 17.3; {A real constant}
VAR A : INTEGER; {An integer variable}
B : INTEGER; {Another integer variable}
X : REAL; {A real variable}
BEGIN
FOR A := () TO MAXA DO
FOR B := () TO MAXB DO
BEGIN
X := A + B*COEFFICIENT;
WRITELN(X)
END
END.

Note that different kinds of declarations must be placed

in a specific order in the program. Variables are always
declared last, and constants are always declared before
variables. There are also several other kinds of
declarations; further on in this chapter we will see type
declarations.

Declaring Constants

Generally, constants do not have to be declared; however, it is
often a convenience to do so. When you declare a constant, you
are creating an identifier and associating it with a specific,
unchanging value. All constant declarations are grouped together
and introduced by the reserved word CONST.

36 Apple III Pascal

The syntax diagram for constant declarations is

constant declarations

. new
CONST identifier cons tant

Note the use of the "='" symbol, and note that each declaration
ends with a semicolon. In this diagram, '"constant" can be any of
the following:

A signed or unsigned whole number representing a value

of type INTEGER. (See section further on for LONG
INTEGER numbers).

A signed or unsigned floating-point number representing
a value of type REAL.

- A character or string of characters enclosed in
apostrophes, representing a value of type CHAR or type
STRING. A single character string constant is
identical to a constant of type CHAR. Strings are
explained in Chapter 7.

- The identifier of a previously declared constant (to
create a new constant with the same value and a
different identifier).

The following example declares two constants:

CONST PI = 3.14159;
MAXITERATIONS = 1§;

The first constant, PI, has the value 3.14159, and the second,
MAXITERATIONS, has the value 1#. PI is a constant of type real

and MAXITERATIONS is a constant of type integer.

You can use the constant PI wherever a real value is allowed; for
example, in the expression

2 * PI * RADIUS

where RADIUS is a variable. 1In this expression, 2 is an example
of an integer constant that has not been declared. Incidentally,
the integer value 2 is automatically converted to the real value

Simple Data Types 37

2.0 before the multiplication takes place (for details, see
Chapter 4).

Declaring a constant such as PI is a convenience, not a
necessity; you could write

2 * 3,14159 * RADIUS

and it would mean exactly the same thing.

Declaring Variables

All variables must be declared. When you declare a variable, you

are creating an identifier and associating it with a specific
data type; when the program is executed, the variable can take on

any of a set of values depending on the type. All variable
declarations are grouped together and introduced by the reserved
word VAR.

The following example declares two variables:

VAR RATIO: REAL;
ITERATION: INTEGER;

Again, each declaration ends with a semicolon. The first

variable, RATIO, is of type real, and the second, ITERATION, is
of type integer. When two or more variables of the same type are
declared, you can combine the declarations:

VAR I, J, K: INTEGER;
X, Y, Z: REAL;

This declares three integer variables, I, J, and K, and three
real variables, X, Y, and Z.

In the remainder of this chapter, you will see many examples of
variable declarations, using many different data types. However,
all of them follow the general form of the examples just given.
The syntax diagram for variable declarations is

38 Apple III Pascal

variable declarations

new

| identifier type

Note the use of the '":" symbol, and note that each declaration
ends with a semicolon. The word "type" in the diagram stands for
any of a wide range of possibilities. In this chapter we are
concerned with certain predefined types, which are represented by
identifiers such as INTEGER and REAL; we will also introduce two
of the ways in which you can define new data types.

The Real Type

A value of type real is a signed floating—point number. It is
stored as a 32-bit number following the IEEE format. Real values
can be combined with each other by means of the arithmetic
operators +, —, *, and / to yield real results. A real value can
also be combined arithmetically with an integer value; when this
happens, the integer value is first automatically converted to a
real value, and the result is real.

An integer value is also automatically converted to a real value
when it is assigned to a real variable. A real value can be
converted to an integer value in either of two ways: the TRUNC
function and the ROUND function. These built-in functions are
described in the last section of this chapter.

A real value can be compared arithmetically with another real
value or with an integer value by means of the <, <=, =, >=, >,
and <> operators, to yield boolean results.

The range of real values is from plus or minus 1.4%1298464E-45 to
3.402823466E38; P.® is also a real value. Each real value is
represented in 32 bits (two 16-bit words, or four 8-bit bytes).
This gives a precision of about 7 significant digits (depending
on the actual value).

Simple Data Types 39

Warning: do not confuse the Pascal type real with the
mathematical idea of a real number. The Pascal type is a
floating-point bit pattern or code which can be used to
represent a number in the computer. These codes and the
operations on them do not always correspond exactly to

their mathematical counterparts.

For example, if the exact result of an operation on reals
can’t be represented in the 32-bit format, it is
automatically rounded to fit. Subsequent calculation with

this rounded value may make later results approximate as
well. It is a wise precaution to analyze your program
carefully, anticipating errors from this cause. See

Appendix E for further information.

Declaring Real Variables

As shown in the examples above, real variables are declared by
using the word REAL to the right of the colon in the

declaration.

Declaring Real Constants
A constant of type real can be declared in a constant declaration
with a literal floating-point number to the right of the equal

sign (read on for examples). The syntax for a floating-point
number is

floating-point number

exponent

and the syntax for an "exponent" is

40 Apple III Pascal

exEonent

digit

Examples are
3.14159 2.6 -3.5 12.6E3 7.8236E-12 -83769E-3

The "E" notation indicates a power of ten; for example, 12.6E3
and 1260@.0 mean the same thing. Note that the last example has
no decimal point; this shows that if a numeric constant has
either a decimal point or an "E" in it, it is considered to be a
real constant. Finally, note that if there is a decimal point,
it must have at least one numeric digit on either side of it.

Scalar Types

A scalar data type has a distinct set of possible values, which
are considered to be ordered in a specific way: they can be put
in one-to-one correspondence with some sequence of possible
values of type integer. There are three built-in scalar types,

namely integer, char, and boolean; these are described bhelow.
Also, you can create your own scalar types.

In Apple III Pascal, the type real is not a scalar type by this

definition; the reason is that there are not enough integer
values to match up with all the possible real values.

The Integer Type

Integer values are whole numbers in the range from -32768 through
32767. Integer values can be combined with each other by means
of the arithmetic operators +, -, *, DIV, and MOD to yield
integer results, or by means of the / operator to yield a real

Simple Data Types 41

result. An integer value can also be combined arithmetically
with a real value; when this happens, the integer value is first
automatically converted to a real value, and the result is real.

An integer value can be compared arithmetically with another
integer value or with a real value by means of the <, <=, =, >=,
>, and <> operators, to yield boolean results.

An integer value is automatically converted to a real value when
it is assigned to a real variable.

Declaring Integer Variables

As shown in the examples above, integer variables are declared by
using the reserved word INTEGER to the right of the colon in the
declaration.

Declaring Integer Constants

A constant of type integer can be an identifier previously
declared in a constant declaration or a non-floating-point

number. The syntax for a non-floating-point number is

non-floating-point number

digit

Examples are
1 ¢ -3 23583 -4532

Note that a non-floating-point number is one that contains

neither a decimal point nor the letter "E". Note also that
-32768 cannot appear as an integer constant in a program.

42 Apple III Pascal

MAXINT

MAXINT is the identifier of a built-in constant whose value is
the largest possible integer, 32767.

The Long Integer Type

This is a special-purpose type. A long integer variable contains
a signed whole number represented internally as a sequence of up
to 36 binary-coded decimal (BCD) digits. The maximum number of
digits is specified by a length attribute in the declaration of
the variable. For example, the declaration

VAR CENTS: INTEGER[9];

creates a long integer variable named CENTS which can represent a
value of up to 9 decimal digits. You can specify a length
attribute up to and including 36. (The actual limit, at run
time, may be greater than the number you specify.)

There are also long integer constants; any constant whose value
is a non-floating—point number greater than 32767 (the largest
integer) or less than -32768 (the least integer) is a long
integer constant.

An integer value can be assigned to a long integer variable; it
is automatically converted to a long integer value. A long
integer value cannot be directly assigned to an integer variable;
however, if it is not greater than 32767 or less than -32768 it
can be converted to an integer value by means of the TRUNC
function described further on in this chapter.

Long integers cannot be used as freely as integers. Long
integers can be combined with each other by means of the +, -, *,
and DIV operators (but not the / and MOD operators), to give long
integer results. With the same operators, a long integer value
can be combined with an integer value; the integer value is
automatically converted to a long integer and the result is of

type long integer.

In long integer arithmetic, overflow occurs if any
intermediate or final result would exceed 36 digits. This

causes a run—time error halt.

Simple Data Types 43

Note that long integer is not a scalar type, for the same reason
that real is not a scalar type-—there are more possible long
integer values than there are integer values. Long integers are
mentioned here simply because they are conceptually related to
integers.

The standard system library file, SYSTEM.LIBRARY, contains

a library unit called LONGINTIO. Long integer operations

cannot be executed unless this unit is available to the
program at start of execution.

The Char Type

A char value is any character from the 8-bit ASCII character set
used on the Apple III. Thus the char values correspond to the
integers from @ to 255; the integer associated with each char
value is called its ASCII code. The first 128 char values (ASCII
@ through ASCII 127) have standard interpretations as printing
characters and control characters, as shown in the ASCII code
table in Appendix J. The remaining char values can also be used
as explained below in the section on the CHR function.

A char variable is declared by using the reserved word CHAR in
the declaration. For example, the declaration

VAR CURRENT CH, LAST CH: CHAR;
declares two variables (CURRENT CH and LAST CH) of type char.

A character constant is formed by placing the character between
apostrophes (single quotes), as in the following examples:

v’ /51 IR s d

a >

Note that the value of the third constant is the apostrophe
character; this is a special notation. The value of the last
constant is the space character.

44 Apple III Pascal

A character constant can be declared, as in the following
example:

CONST FLAG CH = “~";

The CHR Function

In the 8-bit ASCII set there are numerous character values that
cannot be represented as char constants, since they cannot be
entered from the keyboard when you are using the Editor. To
represent such char values (and for other purposes), Pascal has a
built-in function, CHR. To use this function, the form is

CHR (expression)

where the expression can be any expression with an integer value
in the range from @ to 255. 'Note that this can be just an
integer constant, namely the ASCII code for the desired
character. For instance, the value of

CHR(®)

is the "NUL" (null) character, whose ASCII code number is .

The ASCII codes in the range 128 through 255 are not

assigned to specific characters, but are nevertheless
usable as ASCII code values; thus CHR(20@) is a valid
function call and returns "the character whose ASCII code
is 209" even though this does not have a standard
interpretation. These characters can be generated on the
keyboard by holding down the Open Apple key and typing a
character. The Open Apple key sets the high bit of the
8-bit ASCII code to 1, which has the effect of adding 128
to the code shown in the ASCII code table in Appendix J.

The CHR function does not check its parameter value to

make sure it is in the range @ through 255. If the
parameter value is outside this range, CHR will return an
undefined character value.

Simple Data Types 45

The Boolean Type

By definition, there are only two boolean values, represented by
the words FALSE and TRUE. These words are actually identifiers
for built-in constants, whose values represent a logical "false"
result and a logical "true" result, respectively. These are not
numerical values (though of course they are represented
internally as binary numbers). FALSE is less than TRUE.

Boolean values are created in various ways; in particular, the
results of comparison operations are boolean values. For
example, the value of the expression

LEGAL AGE > AGE

(where LEGAL AGE and AGE are integer variables) is either TRUE or
FALSE. An important use for boolean values is in controlling the
program. For example, a boolean value can be used to control an
IF statement:

IF LEGAL AGE > AGE THEN WRITE(’Below legal age.”’)

The WRITE statement is executed if and only if the boolean value
of LEGAL AGE > AGE is TRUE.

Boolean variables are declared by using the reserved word BOOLEAN
in the declaration. For example, the declaration

VAR FLAGl, FLAG2: BOOLEAN;
creates two boolean variables, FLAGl and FLAG2.

You can also declare boolean constants, by giving FALSE or TRUE
as the value.

Defining New Scalar Types

The boolean type is an example of a data type where the values
are represented by identifiers. The "meaning' of these values is
in the way they are used. You can define a new scalar type by
listing the identifiers for its values. For example, the

46 Apple III Pascal

declaration

VAR FIDDLE: (BASS, CELLO, VIOLA, VIOLIN);

creates a variable, FIDDLE, whose possible values are the listed
identifiers from BASS to VIOLIN. These four identifiers are
constants. They correspond to the integers @, 1, 2, 3, so that

they are strictly ordered; for example, the value CELLO is less
than the value VIOLA.

The syntax diagram for a declaration of a user-defined scalar
type is

user—defined scalar type

new
identifier

Like boolean values, these user—defined scalar types are useful
for control purposes; examples will be found in Chapter 5.

It is often useful to declare a new type explicitly. For
example, instead of declaring FIDDLE in the manner shown above,
you could first declare the type as follows:

TYPE STRING_INSTRUMENT = (BASS, CELLO, VIOLA, VIOLIN);
and then declare

VAR FIDDLE: STRING INSTRUMENT;

Subrange Types

Subrange types are used to provide automatic run-time range
checking. A subrange type is based upon some scalar type which
is called the '"base type." The subrange type is exactly like the
base type, except that its possible values are a subset of the
possible values of the base type. For example, the declaration

Simple Data Types 47

VAR X: §..255;

creates a variable X which is exactly like an integer variable

except that it can only have values from @ to 255. If the
program attempts to give X a value less than @ or greater than
255, it will be halted with an error message. Another example:

TYPE CAPITAL LETTER = ‘A" .. “Z°;

This creates the new type CAPITAL LETTER, whose possible values
are the capital letters from ‘A’ through “Z’.

You can create a subrange type based on any scalar type,
including user-defined scalars. For example,

TYPE LOW_STRING = BASS .. VIOLA;
creates the type LOW _STRING, which is a subrange of the type

STRING_INSTRUMENT in a previous example. The syntax for a
subrange type is

subrange type

—pf constant —bO——-ﬂ constant f—p

where the two constants must be of the same type (the base
type).

A subrange type is a scalar type. The possible values of a

subrange type cannot be distinguished from the values of the base
type that fall in the same range.

Built-In Functions For Scalar Types

To make good use of the properties of scalar types, Pascal
provides a special set of built-in functions. (Recall that a
function is a subroutine that accepts one or more values as
parameters, and returns one value as a result.) We have already
seen the CHR function, which takes an integer as its parameter
and returns the corresponding character as its result. The other

48 Apple III Pascal

special functions for scalars are ORD, PRED, and SUCC.

The ORD Function

For any scalar type, each possible value corresponds to a unique
integer. This integer is called the ordinality of the scalar
value. For values of type integer, the ordinality of each value
is the same as the value itself. For all other scalar types, the
ordinalities begin at @ for the first value and count up as far
as necessary.

The ORD function accepts any scalar value as its parameter, and
returns the ordinality of that value. The ORD of any single
character is its ASCII code. Examples:

ORD(-5) is =5

ORD(’A’) is 65 (the ASCII code for ‘A’)

ORD(FALSE) is @

ORD(TRUE) is 1

ORD(VIOLA) is 2 (given the declaration shown above)

ORD of a boolean value may in some cases return a value
other than @ or 1, and should be avoided.

The SUCC and PRED Functions

Within any scalar type, each possible value except the last has a
successor. The successor is simply the next value in sequence,
according to the ordering of the type. Also, each possible value
except the first has a predecessor, which is the value that
precedes it. The SUCC function takes any scalar value and
returns its successor (if it has one). The PRED function takes
any scalar value and returns its predecessor (if it has one).

For example:

SUCC(=5) is =4
PRED(’c’) is ‘b’
SUCC(CELLO) is VIOLA (given the declaration shown above)

Simple Data Types 49

SUCC of the last possible value of a scalar type, or PRED

of the first possible value, will return an undefined
value. This can cause program bugs. It is up to the
program to avoid this situation by checking parameters for
SUCC and PRED to make sure that the successor or
predecessor exists.

Numeric Functions

A set of simple numeric functions is built into Pascal. Each
takes a single numeric value as its parameter, and returns a
single value. The first two functions, ROUND and TRUNC, convert
real values to integer values. Note that there is no need for a
function to convert integer values to real values; they are

automatically converted whenever necessary.

The ROUND Function

The ROUND function takes a real value as its parameter and
returns an integer value, which is obtained by rounding the real
value to the nearest integer. If the parameter is halfway
between two integers, then it is rounded away from zero.
(Rounding algorithms are discussed in detail in Appendix E.) For
example,

ROUND(723.3) is 723
ROUND(-5.7) is =6
ROUND(7.7E3) is 77¢¢
ROUND(43.5) is 44
ROUND(-43.5) is -44

The TRUNC Function

Like the ROUND function, TRUNC takes a real parameter and returns
an integer value; however, the integer is obtained by dropping
(truncating) the fractional part of the real value. For example,

TRUNC(723.3) is 723
TRUNC(-5.7) is =5
TRUNC(7.7E3) is 7709

50 Apple III Pascal

TRUNC can also accept a long integer value and convert it to an
integer value. However, the long integer parameter must not be
greater than 32767 or less than -32768.

The ABS Function

The ABS function takes either a real value or an integer value as
its parameter, and returns a value of the same type. The value
returned is the absolute value of the parameter--that is, if the
parameter is negative the sign is changed to positive. For
example,

ABS(3.6545) is 3.6545
ABS(-3.6545) is 3.6545
ABS(-512) is 512

The SQR Function

The SQR function takes either a real value or an integer value as
its parameter, and returns a value of the same type. The value
returned is the square of the parameter.

The ODD Function

The ODD function takes an integer value as its argument, and
returns a boolean value. The value returned is TRUE if the
integer is odd and FALSE if the integer is even.

Library Functions

A set of trigonometric and exponential functions and a
square-root function are provided as a library unit called
TRANSCEND. This is described in Appendix A.

Expressions and Assignments 51

Expressions and Assignments

52 Apple III Pascal

Introduction

In Pascal the value of a variable is changed by the assignment
statement. The syntax of an assignment statement is

assignment statement

—J variable | expression f—p

reference

A variable reference is a reference to a specific, previously
declared variable of any type. The syntax is

variable reference

variable

. - expression |
identifier P

A
o _J

In other words, a variable reference is an identifier which may
have a number of '"qualifications" appended to it. Each
"qualification" is either an array subscript notation in square
brackets, a record field identifier set off by a period, or the
symbol to indicate the object of a pointer. Arrays, records, and
pointers are fully explained in other chapters.

field /
identifier
0O

-

The symbol := is known as the assignment operator. It means that
the expression on the right-hand side of the assignment operator
is to be evaluated, and the result is to become the new value of
the variable that is referred to on the left-hand side.

In its simplest form, an expression may be a constant, a variable
reference, or a function call. More generally, an expression is
a combination of operands and operators.

Expressions and Assignments 53

An operand is a single value, such as a constant, variable
reference, or function call. Two operands can be combined by
means of an operator, such as *, +, —, or <=. Examples:

X <= XLIMIT
RAINFALL.OLDVAL + INCREMENT

MARGIN[INDEX] - 3

There are also operators that take only one operand: the NOT
operator takes a single operand, and the + and - operators may
take a single operand. Examples:

-X
NOT TSTRESULT

The simplest form of an operand is a variable reference or a

constant. Examples of assignments which use operators that take
two operands are:

RESULT := ONEOPERAND * ANOTHEROPERAND;
TRUTH := BIGINTEGER >= LITTLEINTEGER;
FALSITY := MYDOG > YOURDOG;

The operands in an expression can be much more complex than this;
in fact, an operand itself can be an expression (which may be
enclosed in parentheses, depending on context). Notice that this
allows expressions to be complicated nestings of operations.

Some slightly more sophisticated assignment statements are:

CHAMBER.PRESSURE := N * R * CHAMBER.TEMP / CHAMBER.VOL;
FINISHED := (TEST = TRUE) AND (ERROR = FALSE);
ANSWER[K] := TRUNC(SQR(COS(THETA[K])));

Precedence of Operators

Pascal expressions often contain more than one operator. The
rules of precedence determine the way in which the operations
within the expression are grouped. If there were no precedence,
the expression:

A-B*C/D+E

would be evaluated from left to right as if it read:

54 Apple III Pascal

(((A-B) *C) /D) +E

But the operators do have precedence. For example, the * and /
operators are always applied before the + and - operators,
regardless of the sequence in the expression (unless parentheses
are used to overrule the precedence). The above example is
actually evaluated as if it read:

(A- ((B*C) /D)) +E

The operations are grouped this way because * and / have higher
precedence while + and - have lower precedence.

Pascal has four different levels of operator precedence, as shown
in the following table:

ORDER OF
PRECEDENCE OPERATORS DESCRIPTION
1 NOT NOT operator
2 % / DIV MOD AND Multiplying operators
3 + = OR Adding operators
4 = < < <= >= > 1IN Relational operators

In this table, each line contains operators of equal precedence.
The NOT operator has the highest precedence.

In an expression all of the operators of the highest level are
applied before any of the operators of the next level are
applied. If an expression contains more than one operator of the
same precedence they are applied from left to right.

The precedence table is one of the significant differences
between Pascal and many other languages. For example, in
many languages AND and OR have the same precedence. Also,
in Pascal each operator symbol always has the same
precedence even if it has two possible meanings; e.g. the
+ operator can mean arithmetic addition or set union
(depending on its operands) but it has the same precedence
in either case. The virtue of Pascal’s precedence tahle
is that it is extremely easy to remember.

A portion of an expression that is enclosed in parentheses is
called a subexpression. A subexpression is evaluated as if it
were an independent expression, before it is combined with any
other parts of the expression. If there are nested parentheses

Expressions and Assignments 35

(parentheses within parentheses) in the expression, the innermost
subexpression is evaluated first. Parentheses can be used, as in
ordinary algebra, to override the precedence of operators.

Here are a few examples of how expressions are evaluated:

EXPRESSION EVALUATED AS RESULT
1. 4+3 %2 -1 (4 +(@3*%2)) -1 9
2. 8*2>5+6 (8 % 2) > (5+6) TRUE
3. 2>1AND 4 <5 (2 > (1 AND 4)) < 5 illegal!
4. 5MOD 4 + 3 (5 MOD 4) + 3 4

In expression 1, the multiplying operator * is applied first, as
if the expression were written 4 + (3 *# 2) - 1. Since + and -
are both of the same precedence, the remaining expression is
evaluated from left to right, giving 9 as result.

Expression 2 is a relational operation between two arithmetic
operations. The * operator is applied first, then the +
operator, then the > operator. Because 8 * 2 is greater than
5 + 6, the result of the entire expression is TRUE.

Expression 3 appears to be a boolean operation between the

results of two relational operations. The highest
precedence operator, however, is AND which is applied to 1
and 4. Because AND requires boolean operands, this
expression is ILLEGAL. It could be properly written as

(2 > 1) AND (4 < 5).

Expression 4 is evaluated exactly as it is written.

If a function call appears in an expression, the function is
called, and a value is returned, before that value is used as an
operand of some operator.

The precedence rules specify the order of performance of

operations. However, do NOT make any assumptions about
the order of evaluation of operands.

56 Apple III Pascal

The Arithmetic Operators

The arithmetic operators, used with operands of type integer,
long integer, and real, are:

* multiplication

/ division with real result

DIV division of integers with integer result
MOD remainder of integer division

o addition

- subtraction or negation

Each operator has specific rules concerning what type of operands
it may take, and what type of results are produced. A universal

rule is that no arithmetic operator may be used to combine a real
operand with a long integer operand.

In Apple III Pascal, the arithmetic operations on real

values conform to the proposed IEEE floating-point
standard. Under default conditions, these operations
behave in ways that are familiar to most programmers.
However, some subtle variations in the execution of
operations on real values are available by methods
described in Appendix E.

Remember that each type of result has size constraints.

An integer result must fall within the range -32768 to
32767 while a long integer result cannot exceed 36 decimal
digits (not including sign). A real result must have an
absolute value in the range 1.401298464E-45 to
3.402823466E38, or (.0.

Integer arithmetic overflow occurs when an integer
arithmetic operation results in a final or intermediate
result outside the limits given above. This does not
cause an error halt; instead it produces an undefined
integer result. It is up to the programmer to be sure
that integer arithmetic will not overflow.

Real arithmetic overflow occurs when a real arithmetic
operation would result in a final or intermediate result

Expressions and Assignments 57
B o e

with an absolute value greater than the upper limit given
above. This causes an error halt under default
conditions; see Appendix E for details. A real result
with an absolute value less than the lower limit does not
cause an error; it produces a result of §.f.

The * Operator

Multiplication is done with the * operator. The results of
multiplication operations are as follows:

MULTIPLICAND MULTIPLIER RESULT TYPE

integer integer integer

long integer long integer long integer
real real real

integer long integer long integer
integer real real

real long integer not allowed

Two examples of multiplication in expressions are:
writeln(’two cubed = ‘, 2%2%2);
A :=C*D

The / Operator

The / operator is used for division and it always gives real
results. The results of division operations are:

DIVIDEND DIVISOR RESULT TYPE
integer integer real
real real real
integer real real
real integer real
long integer anything not allowed
anything long integer not allowed
Example:

APPROXPI := 355 / 113; { APPROXPI is real }

The DIV Operator

DIV is the integer division operator. It is used with integer
and long integer operands with the following results:

58 Apple III Pascal

DIVIDEND DIVISOR RESULT TYPE
integer integer integer

long integer long integer long integer
integer long integer long integer
long integer integer long integer
real anything not allowed
anything real not allowed

The DIV operation produces a result that is truncated toward $:
the remainder of the division is lost. The expression

A DIV B

(where A and B are integer values) is equivalent to
TRUNC(A / B)

This shows the relationship between DIV and /.

The MOD Operator

MOD takes two integer operands and returns an integer value that
is the remainder of the absolute value of the first operand
divided by the absolute value of the second operand.
A typical application of the MOD function is

AMOD B =0

which is TRUE if B is a factor of A.

This implementation of the MOD operator does not
correspond to the definition of MOD given by Jensen and

Wirth.

The + Operator

The + operator is used for addition of integers, long integers
and reals. Results of addition operations are:

Expressions and Assignments 59

OPERAND TYPES RESULT TYPE
integer integer integer
long integer long integer long integer
real real real
integer long integer long integer
integer real real
real long integer not allowed

Example:

XREAL := AINTEG + XREAL + 2;

The + operator can be used with a single operand as a sign

indicator.
its operand.

This use of + produces a result that is identical to

The — Operator

The - operator is used for subtractions of integer, long integer
and real operands. Operations using the — operator give these

results:
MINUEND SUBTRAHEND RESULT TYPE
integer integer integer
long integer long integer long integer
real real real
integer long integer long integer
long integer integer long integer
integer real real
real integer real
real long integer not allowed

long integer

Example:

real

FRACTION := A / B - A DIV B;

not allowed

{A,B:integer, FRACTION:real}

The -~ operator can also be used with a single operand (integer,
long integer, or real) to perform arithmetic negation, i.e. to

change the sign of the operand.

-3

~A
~TRUNC(A)
-(3 + 2)
-(-2)

Examples of negation are:

60 Apple III Pascal

If a negated operand is used after one of the arithmetic
multiplying operators (*, /, DIV, or MOD) the operand must be
enclosed in parentheses. Two examples are:

-A * (-B)
4 * (-OFFSET) MOD (-(3 + 2))

The Relational Operators

The relational operators are used to make comparisons between
scalar and/or real operands. They are especially useful with the
flow of control statements which are explained in the next
chapter. The relational operators are:

> greater than

>= greater or equal to

= equal to

< less than

<= less than or equal to

<O less than or greater than

Another relational operator, IN, is used with set values. It is
explained in Chapter 7.

Comparisons are always made between two values of the same scalar
or numeric type, and yield boolean results. If an integer is
compared with a real, the integer is first converted to a real,
and then a real-to-real comparison is done. Likewise, a
conparison between an integer and a long integer will convert the
integer to a long integer before invoking a long integer
comparison. No other implicit type conversions are done by these
operators; in general, a comparison that mixes types will be
flagged by the Compiler. Boolean and user defined scalars may
only be compared with values of the same type. Of course
expressions may also be compared, provided that the comparison
follows the rules described above. Here are some examples of
properly used relational operators:

IF SCORES[I] > MAXSCORE THEN MAXSCORE := SCORES[I];
WHILE ANGLE < CIRCUMFERENCE / ARCLENGTH * 36@ DO...;
REPEAT

UNTIL INDEX > LIMIT

Expressions and Assignments 61

Notice that relational operators, because they give boolean
results, are a primary tool used to control program flow. The
use of boolean values in IF, WHILE and REPEAT statements is
explained in the next chapter.

User-defined scalars can be compared using any of the relational
operators. The ordinality of a value of a user-defined scalar

type is determined by its position in the type’s declaration.
Thus, with the declaration

VAR PAINT: (NONE, RED, ORANGE, YELLOW);
the statement

IF PAINT > NONE THEN PAINTPICTURE;

will cause the procedure PAINTPICTURE to be executed if the value
of PAINT is RED, ORANGE, or YELLOW.

The result of comparing two real values will be exactly one of
four possible relations:

(1) equal,

(2) less than,

(3) greater than, or
(4) unordered.

We are used to thinking that if two numbers are unequal, then one
must be larger than the other. But the real type includes, in
addition to numeric values, special diagnostic values that result
from invalid operations and other special events (like division
by zero). These diagnostic values may compare '"unordered" with
numeric values, and such comparisons may even cause runtime
halts. See Appendix E for details; for ordinary programming just
remember that, for real comparisons,

- "a <> b" [that is, a less than or greater than b] is
not synonymous with "not (a = b)", and

- if "a < b" is false, you don’t automatically know that

"a >= b", because a and b may be unordered with respect
to one another.

62 Apple III Pascal

The relational operators can also be used to compare structured
types. The operations permitted between operands of the
structured types (arrays, sets, strings and records) are
explained as each structured type is explained.

Logical Operators

Sometimes you need to find a result that is dependent on more
than one boolean value. In Pascal this capability is provided hy
the logical operators which, in order of precedence, are:

NOT boolean negation
AND boolean conjunction
OR boolean disjunction

Logical operators take boolean operands and produce boolean
results according to the following rules:

A B A AND B A OR B NOT B
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

As you can see the operator NOT takes a single boolean operand
whereas the operators AND and OR both require two boolean
operands.

Examples of correctly used logical operators are:
(A > B) AND (C < SQR(D)) {SQR(D) returns square of D}

A AND B AND NOT(A AND B) {result is always false}
(COUNT <= 1¢@) OR ERROR {ERROR is a boolean variable}

Although it is not always necessary to evaluate both
operands of a boolean expression in order to determine the
result, a program may nevertheless evaluate both
operands.

Expressions and Assignments 63

Relational Operators with Boolean Operands

Each of the relational operators (=, <>, <=, <, >, >=, IN) yields
a boolean value. Furthermore, the type boolean is defined such

that FALSE < TRUE. Therefore, it is possible to define each of
the 16 boolean operations using logical and relational

operators. If p and q are boolean values, one can express

implication as p <= q
equivalence as P =q
exclusive OR as p g

Note that without the use of relational operators you would have
to express the exclusive OR function as

(p AND NOT q) OR (NOT p AND q)

Result Types

The result types for all combinations of operator and operands

are described in full detail in the preceding sections. This
section summarizes those descriptions.

In the table of results below, the column on the right lists the
operators that may not be used with the pair of operands in that
row.

OPERAND TYPES RESULT TYPE ILLEGAL OPERATORS

integer integer integer

(real for

/ operator)
long integer long integer long integer /, MOD
real real real DIV, MOD
integer real real DIV, MOD
integer long integer long integer /
real long integer not allowed ALL

The logical operators NOT, AND and OR all take boolean operands
and give boolean results. NOT precedes its single operand; AND
and OR each take two operands.

64 Apple III Pascal

The relational operators >, >=, =, <=, < and <> can be used to
compare two boolean values, two user defined scalar values of the
same type, or two numeric values. The only numeric values that
cannot be compared are a real with a long integer. All
relational operations yield boolean results.

Assignments

There are also restrictions concerning what types of values may
be assigned to what types of variables. The legal assignments
for non-structured variables are:

VARIABLE TYPE EXPRESSION TYPE
integer = integer
long integer integer or long integer

real = integer or real
boolean = boolean
char = char

To do assignments that are not shown in this table, use type
conversion functions. These are described in Chapter 3.

The Flow of Control 65

The Flow of Control

W v .

66 Apple III Pascal

Introduction

We begin with a brief digression on Pascal statements in general,
since this chapter describes most of the types of statements.
There are ten kinds of statements in Pascal; all are introduced
in Chapter 2. Thus we have

statement

assignment statement

compound statement

procedure call

for statement

repeat statement

while statement

if statement

case statement

goto statement

with statement

SEY RS TR SN

b
L

The assignment statement is described in Chapter 4. The WITH
statement is described in Chapter 8.

The Flow of Control 67

Notice that technically, there is an eleventh type of
statement which consists of nothing; this is called a
"null statement." It simply means that whenever Pascal
syntax calls for a statement, you can omit it.

It also means that when a program contains an unnecessary
semicolon, the Pascal Compiler considers the semicolon to
be separating a null statement from another statement.

The result is two statements where you intend to have only
one. Most of the time this is harmless, but occasionally
it causes a compilation error because only one statement
is allowed.

Except for the WITH and assignment statements, all the statements
shown in the diagram are statements that determine the flow of
control in a Pascal program; that is, they determine the order in
which other statements are executed. There are "flow of control"
statements that repetitively or conditionally execute other
statements, and there are statements that transfer control to
another portion of the program.

The flow of control statements can be subdivided into groups.

- The compound statement groups several statements into
one.

- The procedure call statement causes execution of a
procedure.

- The repetition statements (FOR, REPEAT and WHILE) allow
a sequence of statements to be executed repeatedly.

- The conditional statements (IF and CASE) permit
conditional execution of statements.

- The GOTO statement permits unconditional transfer of
control from one part of the program to another.

The Compound Statement

The compound statement is one of the most useful statements in
Pascal. The syntax is

68 Apple III Pascal

compound statement

BEGIN | statement

)
A compound statement can contain any number of statements of any
type, separated by semicolons. Note that the word BEGIN does not
have a semicolon after it, since it is not a statement; likewise,

there is no semicolon just before the word END because END is not
a statement.

The compound statement is always considered as a single
statement, even though it may contain more than one statement.
Keep this in mind since most of the other flow of control
statements act on single statements. Whenever you want a
sequence of statements to be treated as a single statement,
simply delimit it with BEGIN and END.

The Procedure Call

A procedure is called by merely mentioning its name, with
whatever parameters the procedure may require. The syntax for a
procedure call is

procedure call

procedure

. e expression
identifier P

The procedure identifier is the name of the procedure to be
called. The list of expressions in parentheses is called the
parameter list of the procedure call. The number of parameters
in the list depends on the procedure being called.

The Flow of Control 69

The effect of a procedure call is to execute the procedure
immediately (passing the specified parameters, if any). When the
procedure terminates, control is transferred to the statement
following the procedure call. See Chapter 6 for complete
information on procedures.

The Repetition Statements

Pascal has three statements that can repeatedly execute a
statement or sequence of statements. Termination of the
repetition is determined by the state of control variables or

expressions. The repetition statements are the FOR, REPEAT and
WHILE statements.

The FOR Statement

The FOR statement is used to execute a statement a specific
number of times. This is done by executing the statement once
for each value of a control variable between an initial value and
a limit value. The syntax of the FOR statement is

for statement

FOR identifier expression

expression

DOWNTO

where the identifier is the identifier of a variable called the
control variable. The control variable may be of any scalar
type. The two expressions must be of the same scalar type as the
control variable.

@ statement f—p

70 Apple III Pascal

The control variable must be a simple variable; it cannot

be an array element, a record field, or a dynamic
variable.

The value of the "initial" expression is called the initial
value, and the value of the "limit" expression is called the
limit value.

For example, suppose that we have an array of 24 integer values
and an integer value that can be used to index it:

VAR VAL: ARRAY [1..24] OF INTEGER;
IX: INTEGER;

Now suppose that we want to multiply each value in the array by
2. We can do this with a FOR statement:

FOR IX := 1 TO 24 DO VAL[IX] := 2*VAL[IX]

Note that the control variable is available within the FOR
statement. (Remember that the control variable, like any other
variable, must be declared.) However, the value of the control
variable should not be changed within the FOR statement.

If the value of the control variable is changed within the

FOR statement, the results are unspecified as this is a
violation of the rules of Standard Pascal.

In the above example, the embedded assignment statement is
executed 24 times. Each time, the control variable (IX) takes on

a new value; this value is 1 the first time and 24 the last
time.

If we want to write out each value after multiplying by 2, we can
use a compound statement inside the FOR statement:

FOR IX := 1 TO 24 DO BEGIN
VAL[IX] := 2*VAL[IX];
WRITELN(VAL[IX])
END

Processing of the FOR statement (using TO instead of DOWNTO) is
as follows:

The Flow of Control 71

- First, the initial value is calculated (just once) and
assigned to the control variable.

— Then, the limit value is calculated (just once).

- If the initial value is greater than the limit value,
the remainder of the FOR statement is skipped.
Otherwise, the following steps are taken:

1. The statement following the word DO is executed.

2. The control variable is assigned the value of its
OWn Successor.

3. If the new value of the control variable is not
greater than the limit value, go back to Step 1l and
repeat. Repetition continues until the value of
the control variable is greater than the limit
value.

After the FOR statement has finished executing, the value

of the control variable is unspecified.

The DOWNTO option of the FOR statement sets the control variable

to its own predecessor after each iteration, stopping when the
value of the control variable is less than the limit value.

Some points to remember about Pascal FOR statements:

- A variable of any scalar type (integer, char, boolean,
user-defined, or subrange) may be used as a control

variable. However, a control variable of type real is
not allowed.

- If the value of the control variable is changed within
the FOR statement, the results are unspecified.

- Use of the control variable in either limit expression
produces undefined results.

The REPEAT Statement

The REPEAT statemen., itike the FOR statement, is used to control
repetition in a program. The syntax is

72 Apple III Pascal

repeat statement

REPEAT statement

UNTII)—> expression f—p

Note the differences from the FOR statement. The sequence of
statements in a REPEAT statement doesn’t need to be delimited by
a BEGIN and an END; the REPEAT and UNTIL do this. The expression
after UNTIL must have a boolean result. It is evaluated after
each execution of the enclosed statements; hence the statements
are always executed at least once. Notice that if the expression
is never TRUE, the statements will be repeated forever.

A typical application of the REPEAT statement is

REPEAT
WRITE(ENTER A NUMBER BETWEEN @ AND 1p¢ -> °);
READLN(INTVAR) ;
WRITELN(’2 times ’, INTVAR, ‘ is ‘, 2*INTVAR)
UNTIL (INTVAR < @) OR (INTVAR > 1¢¢)

This REPEAT statement executes the contained statements until the
user types a number less than @} or greater than 10@.

The WHILE Statement

The WHILE statement is similar to the REPEAT statement. The
syntax is

while statement

—’G;hi@-—b‘ expressionl——b(DO H statement I——P

Unlike the REPEAT statement, the WHILE statement evaluates the
controlling expression before each repetition of its statement.

The Flow of Control 73

If the expression, which must have a boolean result, is initially
false, the statement will not be executed.

The WHILE statement acts on a single statement; thus a compound
statement must be used if more than one statement is to be
executed following the word DO.

For example, suppose that a program requires the user to type a
number from 1 to 8. If the user does this, the program can
continue. But if the user types a number that is out of range,
the program must display an error message and give the user
another chance; and this should be repeated until the user types
a number in the required range. This is a natural application
for the WHILE statement:

WRITE('Type a number from 1 to 8: ’);

READLN(NUMBER) ;

WHILE (NUMBER < 1) OR (NUMBER > 8) DO BEGIN
WRITELN(’Number must not be less than 1 or more than 8!”);
WRITE('Try again. Type a number from 1 to 8: ’);
READLN(NUMBER)

END

If the user gives a correct response the first time, the WHILE
statement is never executed. But if the user’s response is out
of range, the WHILE statement executes repeatedly until the user
responds correctly. In either case, the value of NUMBER is
guaranteed to be in the range 1..8 at the end of this sequence.

The Conditional Statements

The IF statement and the CASE statement are used to execute a
statement if a variable or expression has a desired value.

The IF Statement

The IF statement contains a boolean expression, a statement to be
executed if the value of the expression is TRUE, and (optionally)
another statement to be executed if the value of the expression
is FALSE. The syntax of the IF statement is

74 Apple III Pascal

if statement

expression

statement

When an IF statement is executed, the following sequence of
events takes place.

- The boolean expression is evaluated.
- If the boolean expression is TRUE:
— The statement following THEN is executed.
- If the boolean expression is FALSE:
- If there is an ELSE, the statement following
ELSE is executed.
- If there is no ELSE, the IF statement has no
effect.

Note that just one statement is allowed after the word THEN; it
may be a compound statement. Likewise, just one statement
(possibly compound) is allowed after the word ELSE. Here is an
example of an IF statement without an ELSE part:

IF TOTAL > 1¢® THEN BEGIN
WRITELN(‘Error: Total too big’);
TOTAL := TOTAL - CRNT
END

If the value of the variable TOTAL is greater than 10§, the
compound statement is executed to display the message

"Error: Total too big" and adjust the value of TOTAL; otherwise
the compound statement is not executed.

The ELSE part of an IF statement is only executed if the result
of the boolean expression is false. For example, the statement

IF TOTAL > 1$¢ THEN BEGIN
WRITELN(Error: Total too big’);
TOTAL := TOTAL - CRNT
END
ELSE WRITELN(Total is ‘, TOTAL)

The Flow of Control 75

will execute the compound statement if the value of TOTAL is
greater than 10@ (just as in the previous example); but if the
value of TOTAL is not greater than 1@, then the WRITELN
statement following the word ELSE is executed to display the
message ""Total is " followed by the value of TOTAL.

It is important to be careful of semicolon placement in IF

statements. For example

IF A = B THEN BEGIN
WRITELN(’A equals B’);
EQCOUNT := EQCOUNT + 1
END
ELSE WRITELN(’A not equal to B’)

is correct: there is no semicolon after the END because
the ELSE does not start a new statement--it is a
continuation of the same IF statement. A common mistake
is to put a semicolon before the ELSE, which causes a
compilation error because there is no Pascal statement
that begins with the word ELSE.

Nested IF Statements

The statement following the word ELSE can be an IF statement, and
can contain its own ELSE clause. Thus a statement can be written
to take different actions for each of several mutually exclusive
conditions.

REPEAT

WRITE(‘Enter command S,D,P,Q,E => ’);

READLN(COMM) ;

IF COMM = ‘S’ THEN SHUFFLEDECK

ELSE IF COMM = ‘D’ THEN DEALCARDS
ELSE IF COMM = ‘P’ THEN DISPLAYPOINTS
ELSE IF (COMM = ‘Q’) OR (COMM = ‘E’) THEN QUIT

UNTIL (COMM='Q’) OR (COMM=’E’)

Conditions will only be checked until a true one is found. The
greatest efficiency is achieved if the most probable conditions
are checked first.

The statement following the word THEN can also be a nested IF
statement, but this construction is less useful and can lead to a
confusing program. Be careful with the following type of

76 Apple III Pascal

construction:

IF A=B THEN IF C=D THEN WRITELN(’A=B and C=D")
ELSE WRITELN(A=B but C<>D’)

The ELSE matches the last preceding THEN, as indicated by the

indentation. If you add another ELSE it will match the first
THEN:

IF A=B THEN IF C=D THEN WRITELN(’A=B and C=D")
ELSE WRITELN(A=B but C<>D’)
ELSE WRITELN(’A<>B’)

The above statement can be clarified, without changing its
meaning, by making the nested statement a compound statement:

IF A=B THEN BEGIN
IF C=D THEN WRITELN(’A=B and C=D’)
ELSE WRITELN(’A=B but C<>D’)
END
ELSE WRITELN(’A<>B’)

Now it is obvious which ELSE matches which THEN.

The CASE Statement

The CASE statement uses the value of an expression to select and
execute one statement from a list of statements. The controlling
expression and the list of statements are contained within the
CASE statements, and each statement in the list is "labeled" with
one or more constants called case selectors which are possible
values of the controlling expression. An OTHERWISE clause is
optional; if present, it contains a statement which is executed
if the controlling expression’s value does not match any of the
case selectors.

The syntax is

The Flow of Control 77

e

.

case statement

—PGASE)—PI expression @

| caseclause

P » t{ END ’

Kf“

otherwiseclause

caseclause

constant | statement fF——p

78 Apple III Pascal

otherwiseclause

7‘{ OTHERWISE H statement f—P

where the expression must give a result of a scalar type, and the
constants in each caseclause must be of the same type. The
expression is evaluated and the result is sequentially compared
with the constants in each caseclause. If the result matches one

of the constants, only the statement in that caseclause is
executed.

If no match is found and there is an OTHERWISE clause, the
statement in the OTHERWISE clause is executed. If no match is

found and there is no OTHERWISE clause, then the CASE statement
has no effect.

In discussing nested IF statements above, we gave the following
example:

REPEAT

WRITE('Enter command S,D,P,Q,E => “);

READLN(COMM) ;

IF COMM = ‘S’ THEN SHUFFLEDECK

ELSE IF COMM = ‘D’ THEN DEALCARDS
ELSE IF COMM = ‘P’ THEN DISPLAYPOINTS
ELSE IF (COMM = ‘Q’) OR (COMM = ‘E’) THEN QUIT

UNTIL (COMM="Q’) OR (COMM='E’)

Exactly the same effect can be achieved more naturally with a
CASE statement:

The Flow of Control 79

REPEAT

WRITE(Enter command S,D,P,Q,E =>);
READLN(COMM) ;
CASE COMM OF
’S’: SHUFFLEDECK;
‘D’: DEALCARDS;
‘P’: DISPLAYPOINTS;
‘Q’, ‘E’: QUIT
END
UNTIL (COMM=’Q’) OR (COMM=’E’)

If we used the nested IF statement and tried to allow for the
possibility of lower-case letters, the resulting nest would be
unwieldy. With a CASE statement, however, the enhancement is
easy. We also add an OTHERWISE clause to handle invalid command
input by calling a procedure named HELP.

REPEAT
WRITE(‘Enter command S,D,P,Q,E -> “);
READLN(COMM)
CASE COMM OF
‘S’, ’‘s’: SHUFFLEDECK;
‘D’, “d’: DEALCARDS;
‘P’, 'p't DISPLAYPOINTS;
’QI, IE” ’q" 'e': QUIT
OTHERWISE HELP
END
UNTIL (COMM="Q’) OR (COMM="E’) OR (COMM="q’) OR (COMM='e’)

As in all other cases where only a single statement is allowed,
each statement within a caseclause or OTHERWISE clause can be a
compound statement.

Caution is required if you use integer constants as case
selectors in a CASE statement. If the difference between
the largest and the smallest case selector in a CASE
statement is too great, the Compiler will be unahle to
compile it. The limit depends on the statements within
the CASE statement, but as a rule of thumb do not use any
integer case selectors that differ by more than 1#@.

The reason for this is that to implement a CASE statement,
the Compiler builds a table in the code with an entry for
each possible case selector from the smallest actually
used to the largest.

80 Apple III Pascal

The EXIT and HALT Procedures

The Pascal statements already described should be adequate for

controlling the flow of almost all programs. In some cases, it
is convenient to be able to exit immediately. The EXIT procedure

allows this; the syntax for calling EXIT is

identifier

where the identifier is the name of a procedure, a function, or
the program. The most common use of EXIT is with either the word
PROGRAM or the program name as the parameter; EXIT then
terminates the program in an orderly manner: all open files are
closed (see Chapter 1f), and control returns to the command level
of the system just as if the program had reached its END.

When a procedure or function identifier is used in calling EXIT,
the specified procedure or function is exited.

Do not use this technique unless you are sure you

understand what you are doing (Chapter 6 covers procedures
and functions).

Control returns to the point where the procedure or function was
called, just as if the procedure or function had reached its END;
however, if a function is exited without an assignment being made
to the function identifier, the function will return an
unpredictable value.

Note that the specified procedure or function need not be the one
in which the EXIT procedure is called. EXIT follows the trail of
procedure calls back to the procedure or function specified; each
procedure or function in the trail is exited (whether or not it
has completed its execution). If the specified procedure or

The Flow of Control 81

function is recursive (see Chapter 6), then the most recent
incarnation is exited; earlier incarnations will complete their
executions normally.

The HALT procedure takes no parameters. It brings the program to
an immediate halt with a non-fatal run-time error.

The GOTO Statement

Some programming situations demand an instant transfer of control
in a manner that is not easy to achieve using the repetition or
conditional statements. To handle these situations Pascal has
the GOTO statement. The GOTO statement should be used only in
those unusual cases that cannot be handled easily by the other
control statements. By default, the Compiler does not allow GOTO
statements. If your program uses GOTO statements you must
include the Compiler option

{$GOTO+}

This option must precede the first GOTO statement in the
program. Please see Appendix F for more information about
Compiler options.

The GOTO statement causes a direct transfer of control to a
labeled statement that is in the same procedure or function as
the GOTO statement (considering the main program to be a
procedure). The extremely uncomplicated syntax of GOTO is

gOtO statement

. unsigned
@ integer

where the label is an unsigned integer of not more than four
digits. The label must first be declared. Label declarations
come immediately after the heading of a program, procedure, or
function, before any other declarations. The following program,
which loops infinitely, shows legal use of label declarations and

82 Apple III Pascal

the GOTO statement. It also shows some of the problems of the
GOTO statement.

{$GOTO+}
PROGRAM JUMP;
LABEL 1, 5326, 42, 999;
BEGIN
1: GOTO 5326;
999: GOTO 42;
5326: GOTO 999;
42: GOTO 1
END.

Note that you cannot jump out of a block with a GOTO

statement.

Passing control to a statement that is inside a structured
statement from a point outside the structured statement by
means of a GOTO has undefined effects, although the
Compiler will not indicate an error. All of the GOTO
statements in the following example are wrong for this
reason.

IF TRUE THEN
123: GOTO 6;
FOR INDEX := 1 TO 1§ DO
6: GOTO 123;
BEGIN
1: WRITELN(’GOTO ANOTHER PROCEDURE’);
GOTO 6
END;
GOTO 1

Procedures and Functions 83

84 Apple III Pascal

Introduction

Procedures and functions are the subroutines of Pascal. Each
procedure or function is a distinct section of code, contained
within a program, that is executed when the program calls it. In
many cases the program calls it more than once.

A procedure can be thought of as a subprogram nested in the main
program (or within another procedure, or within a function).

Just as you define a Pascal program by writing it in text form,
you define a procedure by writing a procedure definition into the
text of the program. If you study the syntax diagrams further on
in this chapter you can see that a procedure definition, like a
program, contains one block. The block may contain other
procedure definitions. Thus procedures (and functions) can be
freely nested within each other. Indeed, for purposes of program
execution the system considers the program itself to be just the
outermost procedure of a nested structure of procedures and
functions.

A procedure is called by means of a procedure call statement,
which refers to the procedure by name and supplies values for any
parameters belonging to the procedure. Parameters are a special
kind of variable used to pass information to the procedure when
it is called; they are discussed in detail below.

A function is similar to a procedure except that it is called by
means of a function reference instead of a call statement. The
function reference appears in an expression; it references the
function by name and supplies any parameters required by the
function. The function returns a value; that is, it computes a
value, and this value replaces the function reference when the
expression is evaluated.

Procedures and functions are defined (written) after the variable
declarations, if any, and before the compound statement that
contains the statements of the program.

Procedures and Functions 85

Defining a Procedure

A procedure definition consists of a procedure heading, a block,
and a terminating semicolon:

procedure definition

PROCEDURE =
identifier

parameter
list

block —b@—}

The first part of the procedure definition--the word PROCEDURE,
the identifier, the parameter list, and the semicolon--are called
the procedure heading. The remaining part-—-the block and the
final semicolon--are called the procedure body. The syntax for a
parameter list is

parameter list

| parameter
declaration

-

The parameter list declares the procedure’s parameters, if any.
It consists of an opening parenthesis, one or more parameter
declarations separated by semicolons, and a closing parenthesis.
The syntax for each parameter declaration is

86 Apple III Pascal

parameter declaration

> [new type
identifier identifier

If the word VAR is used, this declaration declares one or more
variable parameters; otherwise it declares one or more value
parameters. The distinction is explained below. Each
declaration can declare any number of parameters, all of the same
type. Note that the type must be given as a single identifier
such as REAL, CHAR, or the identifier of type that has been
declared in the program. This is one of the reasons for
declaring types.

Here is an example of a simple procedure heading that declares
three value parameters:

PROCEDURE ALPHA (INITIAL, LIMIT: REAL; COUNT: INTEGER);
INITIAL and LIMIT are real parameters, and COUNT is an integer
parameter. The following example declares a variable parameter
and a value parameter:

PROCEDURE BETA (VAR ERRFLAG: BOOLEAN; N: INTEGER);

ERRFLAG is a variable parameter of type boolean, and N is a value
parameter of type integer.

The rest of a procedure definition consists of one block. The
syntax for a block is

Procedures and Functions 87

block

label declarations

1

P

constant declarations

.

(T IMOTO0

type declarations

variable declarations

<

a

procedure definition

function definition

b TN AR

compound statement

In other words, a block consists of optional declarations,
optional procedure and function definitions, and one compound
statement. Further on in this chapter we will see a special case
where the block is replaced by the word FORWARD.

Value Parameters

There are two kinds of parameters: value parameters and variable
parameters. Every parameter is a value parameter unless it is
explicitly declared as a variable parameter (see next section).
Value parameters are used to pass values (of expressions or
variables) to a procedure or function at the time it is called.

88 Apple III Pascal

The following example shows how value parameters can be used:

PROCEDURE WRITEMEAN (A, B: REAL);
{Display the mean of two real values}
VAR SUM: REAL;
BEGIN
SUM := A + B;
WRITELN(SUM/2) {Display the value on the screen}
END;

WRITEMEAN has two formal parameters, A and B; both are value
parameters of type real. A and B are, in effect, real variables
belonging to the WRITEMEAN procedure; but they have the special
property that each time the procedure is called, A and B are
initialized with the values of actual parameters contained in the
call statement. The call statement must provide an actual
parameter for each formal parameter.

The actual parameters are expressions. Each expression is
evaluated and the result is assigned to the corresponding formal
parameter before the statements of WRITEMEAN are executed.

All of the following are valid calls to WRITEMEAN (with different
results):

WRITEMEAN (4.3, X);
WRITEMEAN (X, Y);
WRITEMEAN(Z + 2.3%Y, X);
WRITEMEAN (25, Z)

In these procedure calls, assume that X, Y, and Z are variables
or constants of type real. Note that each actual parameter in
the procedure call is an expression; the expression is evaluated
and the value is passed to the procedure. The fourth example
shows that an integer value may be supplied for a real parameter;
the integer value is converted to a real value just as if it were
being assigned to a real variable.

The type of a value parameter can be any Pascal data type

except a file type. To pass a file to a procedure or
function, you must use a variable parameter (see next
section).

Procedures and Functions 89

Variable Parameters

A value parameter, as we have seen, provides one-way
communicat ion between the calling program and the procedure or
function: the call supplies a value, and this value is used
inside the procedure or function. A variable parameter provides
two-way communication.

With a variable parameter, the actual parameter is not an
expression but a variable reference, and the information passed
to the procedure or function is not the value of the variable but
the variable itself. Note that this variable is one declared
outside the procedure or function.

(At run time, what is passed is the address of the actual
parameter, so that the code of the procedure or function can
access it.)

If the value of the formal parameter is changed inside the
procedure or function, the effect is to change the value of the
actual parameter variable (outside the procedure or function).
The declaration of the formal parameter is preceded by the
reserved word VAR, as in the following example:

PROCEDURE MOVIT (RHO, THETA: REAL; VAR X, Y: REAL);
{Update rectangular coordinates X and Y for motion
through distance RHO at angle THETA (in degrees).}
CONST PI = 3.14159;

BEGIN
THETA := THETA*PI1/18(; {Convert to radians}
X := X + (RHO * COS(THETA));
Y :=Y + (RHO * SIN(THETA))

END;

COS and SIN are trig functions contained in the system library
(see Appendix A). They assume that angles are given in radians.
The MOVIT procedure has two value parameters, RHO and THETA, and
two variable parameters, X and Y. Suppose that MOVIT is called
by the statement

MOVIT (RADIUS, ANGLE, HORIZ, VERT)

where RADIUS, ANGLE, HORIZ, and VERT are real variables. MOVIT

90 Apple III Pascal

assigns the current values of RADIUS and ANGLE to its own value
parameters RHO and THETA, respectively. It also assigns the
current values of HORIZ and VERT to X and Y respectively.

When MOVIT executes, it converts the value of THETA to radians
without affecting the variable ANGLE. But when it changes the
values of X and Y, it changes the values of HORIZ and VERT.
Because MOVIT was called with HORIZ and VERT as actual parameters
for the formal variable parameters X and Y, each reference to X
during this execution of MOVIT is in effect a reference to HORIZ;
and each reference to Y is in effect a reference to VERT.

0Of course, MOVIT could have been written with direct reference to
HORIZ and VERT, instead of X and Y. But that would make it less
flexible; by using variable parameters, MOVIT is able to update
any two real variables that are passed to it.

The type of a variable parameter can be any data type, including
file types. If you have a formal parameter that is a string, you
can pass any string variable to it, even if the declared length
is not the same. However, if the length of the source parameter
is less than the length of the formal parameter, you must use the
VARSTRING Compiler option, which is described in Appendix F.

However, an individual element of a packed variable cannot

be supplied as the actual parameter (see Chapters 7 and 8
for discussion of packed variables).

For special purposes, there are two data types called
BYTESTREAM and WORDSTREAM which are used for variable

parameters. Chapter 13 describes these types.

Defining a Function

Syntactically, a function definition is very similar to a
procedure definition. The heading has the word FUNCTION instead
of PROCEDURE, and it specifies a type, which is the type of the
value returned by the function.

Procedures and Functions 91

function definition

new N parameter
FUNCTION identifier [N list

(type () ()
identifier ’ block |

The type of the function must be a simple type (real, scalar,
subrange, or pointer).

Within the function, there should be an assignment statement that
has the function identifier on the left-hand side. This is how
the function returns a value. For example, consider the
WRITEMEAN procedure shown earlier. It displays a result on the
screen. For some programs, it would be more useful to define a
function which would perform the same calculation and return the
result:

FUNCTION MEAN (A, B: REAL): REAL;
{Return the mean of two real values}
VAR SUM: REAL;

BEGIN
SUM := A + B;
MEAN := SUM/2
END;

If no value is assigned to the function identifier, an undefined
value will be returned. If there are two or more assignment
statements with the function identifier on the left-hand side,
the last value assigned as the function executes is the value
returned.

Normally the function identifier should be used within the

function only as shown in the example above: on the left
side of an assignment statement, for the purpose of
returning a value. Do not use the function identifier on
the right-hand side of an assignment statement within the
function, unless the function is designed to be
recursive. Recursive functions and procedures are

discussed further on.

92 Apple III Pascal

Calling a Function

As mentioned in Chapter 2, a function is activated by a function
call, which appears as an operand in an expression. When the
operand is evaluated at run time, the function is executed. The
value returned by the function becomes the value of the operand.
The syntax of a function call is

function call

> 1§§3§§%32r expression
Recursion

A recursive procedure or function is one that calls itself; this
is permitted in all Pascal procedures and functions. A full
discussion of the idea of recursion is beyond the scope of this
manual ; instead a single example is offered as an illustration.

Consider the following situation: A 3(¢x5(array of boolean
values is used to represent a graphic picture 30 dots high and 50
dots wide. Each boolean value represents a dot in the
picture--TRUE for a white dot and FALSE for a black dot. The
array is declared as follows:

VAR PIC: ARRAY[l..3@, 1..50] OF BOOLEAN;
Now suppose that the picture contains several '"images," each of

which consists of a group of white dots that are connected to
each other--that is, every dot in an image is a neighbor of at

Procedures and Functions 93

least one other dot in the image (horizontally, vertically, or
diagonally). In terms of the array, this means that an image is
a collection of TRUE elements, and each of these elements is a
neighbor of at least one other element in the image. One array
element is a neighbor of another if their indices differ by 1 or
@, and both have the value TRUE.

The problem is this: we want to write a procedure called ZAP
that will erase all the dots in one image, if we give it the
coordinates (indices) of any one dot in the image--without
affecting any other image in the picture. This is an unwieldy
problem if ZAP has to find all the dots in the image in a single
pass; but if ZAP can call itself, the problem becomes simple. 1In
English, the ZAP procedure is

"IF the specified dot is in the array AND it is white,
THEN erase it and ZAP each of its neighbors in turn.
ELSE do nothing and return immediately."

When ZAP is called once with the indices of a dot in an image, it
will eventually call itself for every other dot in the image. To
write ZAP in Pascal, we first write a convenient function for
checking that a pair of indices is valid--i.e., that both indices
are within the bounds of the array PIC:

FUNCTION INARRAY(I, J: INTEGER): BOOLEAN;

BEGIN
INARRAY := (I IN [l..3¢])
AND
(J IN [1l..501)
END;

The reference INARRAY(A, B), where A and B are integer values,
will return TRUE if A and B are both valid indices for PIC. Now
we can write ZAP as follows:

94 Apple III Pascal

PROCEDURE ZAP(X,Y: INTEGER);
{Two variables to be used as coordinates of neighbors: }
VAR XN, YN: INTEGER;
BEGIN
{If X,Y is in the array and is a white dot... }
IF INARRAY(X,Y) THEN IF PIC[X,Y] THEN BEGIN
{...then erase it... }
PIC[X,Y] := FALSE;
{...and ZAP all its neighbors: }
FOR XN := X-1 TO X+1 DO
FOR YN := Y-1 TO Y+1 DO
ZAP (XN, YN)
END
END;

(Notice that in the process of ZAPping all the neighbors, ZAP
will also ZAP the dot that it started with. This is harmless,
because the dot is no longer white; this particul ar recursive
call will do nothing and return immediately.)

Each time a recursive routine calls itself, a new "incarnation"
of the routine is created--that is, all the data belonging to the
current incarnation has to be saved and new space allocated for
the data belonging to the new incarnation. Eventually, if the
rout ine is written correctly, the recursion terminates; the last
incarnation does not call itself, but simply returns to the
previous incarnation, which returns to the one before it, and so
forth. Finally the first incarnation returns, and the execution
of the recursive routine is finished.

In the case of ZAP, each incarnation makes 9 recursive calls in
sequence. Each of these calls starts a new chain of
incarnations. Each chain terminates when the dot that it is
supposed to ZAP turns out not to be in the array, or not to be a
white dot. When all the dots in the image have been erased, then
all the chains have terminated and all the incarnations have
returned; the original incarnation returns to the point in the
program where ZAP was called non-recursively.

Termination

In order to make sense, a recursive function or procedure has to
be written so that it will always terminate. This means that
there is some condition under which it will not call itself;
furthermore, if it calls itself enough times, it will always
arrive at that condition. Otherwise, it may keep calling itself

Procedures and Functions 95

unt il the system runs out of space to keep track of all the
recursive calls, and halts the program with a "Stack overflow"
error message. Actually this can happen even if the recursive
procedure or function is correctly written, because of the space
required by the numerous incarnations. When this happens, some
sort of rewriting is required. A full discussion of space-saving
techniques is beyond the scope of this manual, but the following
suggest ions may prove helpful:

- Eliminate the recursion, or find a way to make it
terminate sooner.

- Reduce the amount of storage used for variables inside
the recursive routine, since this storage has to be
replicated for each recursive call.

- Segment your program to increase the amount of space
available at the point where the recursive routine is
called (see Chapters 14 and 15).

- If the program uses dynamic variables, use the MARK and
RELEASE procedures to increase the amount of space
available at the point where the recursive routine is
called (see Chapter 9).

- Use files to store large data structures on diskette
instead of in memory (see Chapters 1¢, 11, and 12).

Indirect Recursion

The above discussion describes direct recursion; there is also
such a thing as indirect recursion. Suppose that a program
contains three or more procedures or functions called A, B, C,
and so forth. If A calls B and B calls A, that is indirect
recursion. Likewise, if A calls B, B calls C, and C calls A, we
have indirect recursion. The most general definition of
recursion is that it occurs whenever a procedure or function is
called (by itself or by another procedure or function) before it
completes its execution and returns.

Like direct recursion, indirect recursion requires that there be
a condition that will terminate the recursion, and the procedures
must be designed to guarantee that the termination condition will
be reached.

96 Apple III Pascal

When you write indirectly recursive procedures or functions, one
procedure or function must call another before it is defined.
This is impossible using normal procedure or function
definitions, so Pascal provides a special form of definition
called the forward definition. In a forward definition the block
is replaced by the word FORWARD. The forward definition suffices
to declare the identifier and parameters, and the type in the
case of a function definition. The forward-defined procedure or
function can then be called in a following procedure or function,
and then the remainder of the forward definition can be given as

in the following example (where function F calls procedure P and
vice versa):

{Forward definition of F, to allow it to be referenced
within P:}

FUNCTION F (X, Y: REAL; COUNT: INTEGER): REAL;
FORWARD;

{Normal definition of P, which calls F:}
PROCEDURE P (N: INTEGER);
VAR A, B, C: REAL;

BEGIN
oy {Various statements}
C:=2% F(A, B, N) {This calls F}
aae {Various statements}
END;

{Continued definition of F; parameters and type omitted
since they are already declared:}
FUNCTION F;

VAR TMP, DL, DX, DY: REAL;

BEGIN
e {Various statements}
P(TRUNC(X)) {This calls P}
e d {Various statements}
END;

Rules of Scope

Up to this point we have informally talked about a variable
"belonging to" a particular procedure or function, or to the main
program. What this means is that the procedure, function, or

program knows what the identifier means because it contains the
declaration.

Procedures and Functions 97

Now we will give the formal rules for the scope of any object
that has an identifier. The scope of an object is that part of
the total program in which the object is known by its
identifier. The rules of scope are simple, and they apply
universally to declared constants, declared types, variables,
procedures, and functions.

In this section the word "procedure" will be used loosely, to
mean any procedure, any function, or the main program. Also the
word "declaration'" will be used to include procedure and function
definitions. We can then view any program as a structure of
nested procedures. The main program itself is the outermost
procedure, and may have procedures nesting within it; these
nested procedures may have other procedures nested within them.
The "extent" of a procedure is the entire procedure, including
the heading and any procedures nested within it.

The rules of scope are:

- An identifier that has been used in a declaration in a
particular procedure can be redeclared in any other
procedure, including procedures nested within the first
procedure.

- The scope of a declared object is the entire extent of
the procedure in which it is declared, minus the entire

extent of any nested procedure in which the same
identifier is redeclared.

- The above rules apply to formal parameters, just as
they apply to other variables declared in a procedure.

98 Apple III Pascal

To see how this works, consider the program structure shown
below, where Procedures A and B are nested within Program P, and
Procedure Z is nested within Procedure B:

PROCEDURE Z;
VAR FOO: INTEGER;
BAR: CHAR;
BEGIN
... {Statements of Procedure Z}
END;

The identifiers FOO and BAR are declared and redeclared at
various points in the program. What is the scope of each
variable shown in the diagram?

- The real variable FOO declared in the main program is

known throughout the main program, except that it is
not known anywhere within Procedure A or Procedure B

Procedures and Functions 99

since the identifier FOO is redeclared in those
procedures.

- The integer variable BAR declared in the main program
is known throughout the main program, except that it is
not known anywhere within Procedure Z since the
identifier BAR is redeclared in that procedure.

- The real variable FOO declared in Procedure A is known
throughout Procedure A.

- The boolean variable FOO declared in Procedure B is
known throughout Procedure B, except that it is not
known anywhere within Procedure Z since the identifier
FOO is redeclared in that procedure.

- The integer variable FOO and the char variable BAR
declared in Procedure Z are known throughout Procedure
Ze

A declared object is said to be local to the procedure in which
it is declared, and global to any nested procedure that is within
its scope. Thus each procedure knows about its own local
objects, and also about global objects. The nested structure of
Pascal, and the rules. of scope, are what make it a block-
structured language. The virtues of block structure, and the
techniques for taking advantage of it, are beyond the scope of
this manual; however, any good tutorial on Pascal goes into this
topic at some length.

Built—in objects (the built—in types, procedures, functions,
etc.) act as if they were declared in a procedure that the main
program is nested in. Thus they are global to the main program,
unless they are redeclared. Values of variables local to a
procedure are lost upon exit from the procedure.

Segment Procedures and Functions

A segment procedure or function is declared by placing the word
SEGMENT at the beginning of the heading. For example,

SEGMENT FUNCTION CALCULATE (X, Y, Z: REAL): REAL;

100 Apple III Pascal

is a function heading for a segment function named CALCULATE.

The rest of the definition is conventional. The effect of making
the function a segment is that at run time, the code of the
function is not loaded into memory until the function is called;
as soon as it terminates, the space occupied by the code is
released and can be used for something else—such as the code of
another segment function or procedure. This is helpful with
programs that contain large procedures or functions; see Chapter
15 for more information.

Segment procedures and functions are called in the same way as
ordinary procedures and functions.

External Procedures and Functions

An external procedure or function is written in assembly 1language
as a .PROC or .FUNC. The assembled code is assumed to be in a
library file, which will be linked into the compiled Pascal
program before execution; the Program Preparation Tools manual
describes the use of the Assembler and Linker. Within the Pascal
program, the external procedure or function must still be defined
so that it can be called. The external procedure or function
definition consists of a conventional heading, with the word
EXTERNAL instead of a block. For example,

PROCEDURE MAKESCREEN (INDEX: INTEGER);
EXTERNAL;

This means that the procedure MAKESCREEN is an external
assembly-language procedure, with one parameter of type integer.
It is the user’s responsibility to make sure that the assembly-
language procedure or function is compatible with the external
declaration in the Pascal program; the Linker checks only that
the parameters occupy the correct number of bytes.

There is a special rule for external procedures and
functions: a variable parameter can be declared without

any type.

Procedures and Functions 101

Size and Complexity Limits

The Compiler imposes limits on the size and complexity of
procedures. Here the term "procedure" includes functions and the
main program. The "size" is the number of bytes of memory
required for the compiled code of the procedure; "complexity" has
to do with the number of backward jumps in the compiled code.

The Compiler error message '"Procedure too long" means either that
the procedure’s code exceeds the limit of about 12¢¢ bytes, or
that the procedure has too much complexity. In either case, the
remedy is simple: move some statements from the offending
procedure into one or more new procedures, and call the new
procedure(s) at the point where the statements originally
appeared. The new procedure(s) may be nested within the original
procedure, so that the essential structure of the procedure is
not changed.

By examining the source text of a procedure you cannot tell
whether it will violate the limits, since the limits apply to the
code created by the Compiler, not to the source text. But as a
rule of thumb, a procedure whose body can be printed on one page
will compile successfully. (Nested procedures don’t count.) In
any case it is good programming practice to keep procedures
short; it makes the program much easier to understand and
maintaine.

102 Apple III Pascal

Arrays, Sets, and Strings 103

i

i i

i |

| i .
| : i

i 1

: | :

104 Apple III Pascal

Introduction

Up to this point, all the data types discussed have been simple

data types, which have single values. Pascal also has a variety
of structured data types, which can be thought of as collections
of values. This chapter covers only the three simplest kinds:

arrays, sets, and strings. Subsequent chapters cover records and
files.

An array variable is a collection of variables called elements;
all the elements of an array are of the same type. A single
element of the array is referenced by using the array identifier
with an index value (sometimes called a subscript). The index
value selects the desired element from among the other elements
of the array.

A set is a collection of values which are called members of the
set. Set operations in Pascal are fast, and allow very
straightforward coding of routines which would be much more
complicated without the use of sets.

A string is a sequence of characters, normally treated as a
single entity. Apple III Pascal provides a set of built-in
procedures and functions for manipul ating strings.

Array Variables

An array variable is an ordered collection of elements, all of
the same type. Each element in an array can be considered as a
variable in its own right. A particular element is distinguished
from other elements by means of an index value enclosed in square
brackets. For example, you can declare an array called XYZ,
consisting of three elements of type real numbered 1, 2, and 3,
as follows:

VAR XYZ: ARRAY [l..3] OF REAL;

Then these elements can be referred to individually as XYZ[1],
XYZ[2], and XYZ[3]. Each of them is a variable of type real.

Arrays, Sets, and Strings 105

Pascal arrays differ from arrays in other languages in several
ways:

- Pascal arrays can have any number of dimensions.

- The elements of a Pascal array can be of any type
except a file type. In particular, the elements can be
arrays or records.

- The values used to index elements of a Pascal array can
be of any scalar or subrange type except integer.
(They can be a subrange of integer.) This means that
the first element of an array is not necessarily
element @, or element 1; it depends on how the array is
declared.

An array can be treated as a unit, without indexing, in three
ways:

- It can be passed to a procedure or function as an
actual parameter, if its type is "congruent" to the
type of the formal parameter (this term is explained in
Congruent Array Types later in this chapter).

- It can be assigned to another array of congruent type.

- It can be compared to another array of congruent type.

The syntax of an array type is:

array_ tzge
element
ARRAY type —>

Note that there can be more than one index type: one for each

dimension of the array type. First we will consider
one-dimensional arrays.

106 Apple III Pascal

One-Dimensional Arrays

An array type can be used in a type declaration as follows:
TYPE VALS = ARRAY [#..99] OF REAL;
or in a variable declaration as follows:

VAR VALUES: ARRAY [@..99] OF REAL;

The index type is usually a subrange of type integer, but it can
also be any scalar or subrange type except the integer type. The
element type can be any type except a file type.

The index type determines the number of elements in the array:
there is one element for each possible value of the index. For
example, consider the following declaration:

VAR TENREALS: ARRAY [@..9] OF REAL;

The index type is the subrange #..9, so the array TENREALS will
have 10 elements, each one of which is of type real. The first
element is TENREALS[@], the next is TENREALS[1l], etc.; the last
element is TENREALS[9].

The reason that the type integer is not allowed for array indices
is simply that the array would have more elements than could be
stored in memory.

Multidimensional Arrays

Since the type of the elements can be anything except a file
type, you can declare an array of arrays. For example, here is a
declaration of an array whose elements are arrays 1like the one
declared above:

VAR SQUARE: ARRAY [@..9] OF ARRAY [@..9] OF REAL;

SQUARE has ten elements, each of which is an array of ten real
values. The variable SQUARE[3] is an array variable, and you can
think of SQUARE as a 10x1@ matrix of real values; SQUARE[3] can
be thought of as a row, and its real elements can be thought of
as the column elements of the row. To select one of the real
values from the matrix, you need two indices; for example,
SQUARE[6][5] refers to row 6, column 5.

Arrays, Sets, and Strings 107

Thinking of the first index as a row index and the second as a
column index is a matter of choice; you could just as well think
of the first index as a column index and the second as a row
index.

Instead of writing SQUARE[6][5], you can write both indices in
one pair of brackets, with a comma to separate them:
SQUARE([6,5]. The two notations are equivalent and
interchangeable. Similarly, you can condense the declaration of
SQUARE by writing

VAR SQUARE: ARRAY [@..9, #..9] OF REAL;

This declaration means exactly the same thing as the previous
one, and has the advantage of being more explicit to the human
reader. It obviously declares a two-dimensional array of reals.
Here is a declaration of a three-dimensional array:

VAR SPACE: ARRAY [@..MAXX, f..MAXY, 0..MAXZ] OF REAL;

where MAXX, MAXY, and MAXZ are previously declared integer
constants. A Pascal array can have as many dimensions as
desired.

Other Index Types

So far, all the examples have shown integer subranges as index
types, since this is the most common usage. However, remember
that an index type can be any scalar type except integer. For
example, it can be char, or a subrange of char. The declaration

VAR CRYPT: ARRAY [CHAR] OF CHAR;

creates an array of characters which is indexed by character
values. It has one element for each possible character value, or
256 elements in all. Such an array could be useful for a
cryptography routine.

The indices of a multidimensional array can be of different
types. For a more complicated cryptographic scheme, you might

declare

VAR CRYPTARR: ARRAY [CHAR, 1..KEYMAX] OF CHAR;

108 Apple III Pascal

where KEYMAX is a previously declared constant. CRYPTARR
contains one element for each possible combination of a character
value and an integer value from 1 to KEYMAX.

Index Values

In a reference to a specific element of an array, each index
value is given as an expression. For example, the following is a
valid assignment statement:

SPACE([X,Y,Z] := SPACE[X-DX, Y-DY, Kl;

The only restriction on an expression used as an index value is
that the type of the expression’s value must be compatible with
the index type in the array declaration; if the index type is a
subrange, the index value must be within the subrange.

Congruent Array Types

In the following sections the term 'congruent type" is used. To
say that two array types are congruent means that they have
elements of the same type, the same dimensionality, and the same
number of elements in each dimension. However, the index type in
a particular dimension does not have to be identical for the two
arrays, as long as the number of elements in the dimension is the
same. For example, these three array types are congruent even
though they are not identical:

TYPE A = ARRAY [@..25, §..18] OF INTEGER;
C = ARRAY [1(¢..35, 1¢..28] OF INTEGER;
D = ARRAY [’A’.."Z’, P..18] OF INTEGER;

Each of these types is a 26-by-19 array of integers, and so they
are congruent types even though the index types are different.
The two array types

TYPE E = ARRAY [l..5, 1..1¢)] OF REAL;
F = ARRAY [l..5¢] OF REAL;

are not congruent, even though both contain 5@ real elements.
Type E is a two-dimensional 5-by-1¢) array and type F is one-
dimensional.

Arrays, Sets, and Strings 109

Passing Arrays

A procedure or function parameter (either value or variable) can
be declared to be an array; then when the procedure or function
is called, an array of congruent type can be passed as the actual
parameter.

The following example shows a way to use this technique:
PROGRAM X;

CONST MINX = -1¢¢; MINY = -32; MINZ =
MAXX = 1¢@; MAXY = 156; MAXZ = 96;

TYPE XINDEX = MINX..MAXX;
YINDEX = MINY..MAXY;
ZINDEX = MINZ..MAXZ;
THREESPACE = ARRAY [XINDEX, YINDEX, ZINDEX] OF REAL;

VAR MAINSPACE, BUFFERSPACE, SCRATCHSPACE: THREESPACE;
NOMINAL, STRENGTH: REAL;

PROCEDURE INITSPACE (VAR S: THREESPACE; VALUE: REAL);
{Set all elements of specified array to specified
value.}
VAR X: XINDEX; Y: YINDEX; Z: ZINDEX;
BEGIN
FOR X := MINX TO MAXX DO
FOR Y := MINY TO MAXY DO

FOR Z := MINZ TO MAXZ DO S[X,Y,Z] := VALUE

END;

FUNCTION MEAN (A: THREESPACE): REAL;
{Return the mean of all elements in array.}
VAR X: XINDEX; Y: YINDEX; Z: ZINDEX; SUM: REAL;

BEGIN
SUM := (.0;
FOR X := MINX TO MAXX DO
FOR Y := MINY TO MAXY DO

FOR Z := MINZ TO MAXZ DO SUM := SUM + A[X,Y,Z];
MEAN := SUM / ((MAXX-MINX+1)*(MAXY-MINY+1)*
(MAXZ-MINZ+1))

END;

110 Apple III Pascal

oo e

BEGIN
INITSPACE (MAINSPACE, NOMINAL);
STRENGTH := MEAN(MAINSPACE);

DY

END.

The INITSPACE procedure has a variable parameter, S, which is an
array of type THREESPACE. In the main program, INITSPACE is
called with the array MAINSPACE as actual parameter; this is
legal because MAINSPACE is also of type THREESPACE. When
INITSPACE assigns the value of NOMINAL to each element of S, the

effect is to assign the value of NOMINAL to each element of
MAINSPACE.

The MEAN function has a value parameter, A, which is an array of
type THREESPACE. It returns the mean of the values of the

elements of the array. In the main program, MEAN is called with
MAINSPACE as its actual parameter; it therefore returns the mean
of all the element values of MAINSPACE.

Array Assignments

An array can be assigned to another array of congruent type. For
example, if we have the declarations

VAR AAA, BBB: ARRAY [1..255] OF INTEGER;

then we can assign all the values of BBB to the corresponding
elements of AAA as follows:

AAA := BBB

Array Comparisons

An array can be compared with another array of congruent type.
The only comparison operators allowed for arrays are the = and <>
operators (except as noted below under '"Packed Character
Arrays"). For example, if we have the declarations

VAR CCC, DDD: ARRAY [@..99] OF REAL;

Arrays, Sets, and Strings 111

then we can compare CCC to DDD as follows:
CCC = DDD

The result of this expression is TRUE if every element of CCC has

the same value as the corresponding element of DDD. The other
possible comparison is

CCC <> DDD

which is TRUE if any element of CCC has a different value from
the corresponding element of DDD.

Two packed arrays can be compared successfully only if all
16 bits in each word of each array have been defined. See
the following section.

Packed Arrays

Any array can be declared as a packed array by inserting the word
PACKED in the declaration as shown below.

Ordinarily, every scalar value or variable in Apple III Pascal
occupies one 16-bit word (two 8-bit bytes) of memory. This
includes scalar types such as boolean values, which can logically
be represented by a single bit, or char values which can
logically be represented in only eight bits. Obviously the use
of a whole word to store such a value is a waste of memory, but
not a significant waste in the case of single values.

If you have a large array with elements that can logically be
represented in less than one word, the waste of memory becomes
more significant. The most obvious example is large arrays of
characters, where the waste is 5% if each char value occupies a
word. The declaration

VAR CHBUF: ARRAY [(..2047] OF CHAR;

creates an array that occupies 2048 words of memory, or 4996
bytes. To avoid the waste, you can instead declare

VAR CHBUF: PACKED ARRAY [@..2047] OF CHAR;

112 Apple III Pascal

This causes the char elements of the array to be packed, two in
each word. The packed array occupies only 124 words or 2048
bytes.

When the program accesses an element of a packed array, a value
must be either unpacked from the array or packed into it. This
is done automatically, but requires some extra time for
execution. Thus the saving in storage space is a tradeoff
against execution speed and extra code space.

As will be seen in the next chapter, record types can also be
packed. In fact, you can insert the word PACKED into the
definition of any structured type, including sets and files.
However it has no effect except with arrays and records.

There is one restriction on the use of packed values: an element
of a packed array or record cannot be passed to a procedure or
function as an actual variable parameter.

In a packed array (or record), 16-bit words are still the unit of
storage; the difference is that one word may contain more than
one value. Values are never packed across a word boundary; for
example, consider this array:

VAR XXX: PACKED ARRAY ([1..3] OF @..127;

To store a value in the range @..127 requires just 7 bits,
logically. Thus two such values can be stored in one 16-bit
word, with two bits left over. The array XXX occupies two words
of memory: one word contains the elements XXX[1] and XXX[2], and
the second word contains the element XXX[3].

It is easy to be mistaken about how a particul ar array
will be packed. When in doubt, you can use the built-in
procedure SIZEOF to find out the actual number of bytes
occupied by any data type as explained in Chapter 13. The

following points about packing should be kept in mind if
you are trying to solve a critical space problem.

Since the word is the basic unit of storage, the minimum size for
any packed array is one word. Consider the array type

TYPE EIGHTBITS = PACKED ARRAY [@..7] OF BOOLEAN;

Arrays, Sets, and Strings 113

Logically, this array type only requires one byte, since each of
its 8 elements only requires one bit. However a variable of type
EIGHTBITS actually occupies one word or 16 bits, since that is
the minimum. Now consider

VAR BATS: PACKED ARRAY [@..3] OF EIGHTBITS;
or its exact equivalent
VAR BATS: PACKED ARRAY [@..3, f..7] OF BOOLEAN;

BATS consists of four packed arrays, each containing eight
booleans. You might expect BATS to occupy a total of 32 bits, or
two words; but as we have just seen, a packed array of eight
booleans takes a whole word. Therefore BATS occupies four words,
not two. Furthermore, note that

VAR FATS: PACKED ARRAY [@..7, @..3] OF BOOLEAN;
occupies eight words!

In general, elements are packed only if each element can be
represented in eight bits or less——in other words, only if two or
more elements can be packed into a word. As the previous
examples show, if the "elements'" under consideration are arrays,
they always require one or more words and can never be packed.

This leads to the fact that the word PACKED, in an array
declaration, has an effect only when it appears just before the
last occurrence of the word ARRAY. 1In other words, only the last
dimension of an array can actually be packed. For example, the
following two declarations are not equivalent:

VAR E: PACKED ARRAY [@..9] OF ARRAY [@..3] OF CHAR;
VAR F: PACKED ARRAY [@..9, @..3] OF CHAR;

The array E is not packed, because the word PACKED is not just
before the last occurrence of the word ARRAY. The array F is
packed, however.

Packed Character Arrays

One-dimensional packed arrays of characters have some special
properties that go beyond what is allowed with other array
types.

114 Apple III Pascal

A string constant can be assigned to a one-dimensional packed
array of characters, if the number of elements in the array is
exactly the same as the number of characters in the string

constant. (See next section for details of string constants.)

Two one-dimensional packed arrays of char that have the same
number of elements can be compared using the >, <, <=, and >=
operators. The comparison is done as if the arrays were being
put in "alphabetical order" according to the ordering of the
ASCII character set. For example, if arrays A and B are declared
as follows:

VAR A, B: PACKED ARRAY [l..3] OF CHAR;
and during program execution the following assignments are made:

A 1= ‘cat’;
B := ‘dog”’
Then A contains the characters '"cat" and B contains the

characters "dog". A is "less than" B, and the following
expressions are valid:

o]

{result is FALSE}
{result is TRUE}
{result is FALSE}
{result is TRUE}
{result is FALSE}
{result is TRUE}

v
o}

> > > >
AVANVAI
os)
thﬂ

=

The same comparisons can be made between a one—dimensional packed
array of characters and a string constant, if the number of
elements in the array is the same as the number of characters in
the string constant. The comparisons above could be written as

A= {result is FALSE}
A <> ‘dog’ {result is TRUE}
A > ‘dog’ {result is FALSE}
A < “dog’” {result is TRUE}
A >= ‘dog’ {result is FALSE}
A <= ’dog’ {result is TRUE}

One-dimensional packed arrays of characters are also handled in a
special way by the built-in procedures WRITE and WRITELN as
explained in Chapter 1l.

Arrays, Sets, and Strings 115

Sets

In Pascal, a set is a collection of distinct values, all of the
same scalar type. The values are called members of the set; the
type of the members is called the base type of the set. The
syntax of a set type is

set type

base
type

Here are some examples of set variable declarations:

VAR LETTERS, SPECIALCHARS, PRINTINGCHARS: SET OF CHAR;
DIGITS: SET OF “§’..’9";
COLORS: SET OF (VIOLET, BLUE, GREEN, YELLOW,
ORANGE, RED);

A set type specifies all the possible members of a set of that
type. For example, a SET OF CHAR can contain any collection of
distinct char values. The term '"distinct" here means that a
particular char value can only appear once in the set; for
example, the set DIGITS, declared above, either contains the
character ‘5’ or it doesn’t.

When the type given after the words SET OF is a subrange, the

base type of the set is the base type of the subrange. Thus in
the second example above (SET OF ‘f’..”9’), the base type of the
set DIGITS is the char type; the set can contain only the

characters ‘@’ through ‘9.

Set Values

To understand set values, it may be helpful to know that a set
value is represented internally as a bit pattern, with a bit for
each possible member of the set. Each of these bits indicates
whether that possible member is actually a member. The point of

116 Apple III Pascal

this is that although a set is a collection of members, a set
value is a single value.

To write a set value explicitly, you specify its members between
square brackets. For example, suppose that the variable
SPECIALCHARS has been declared as a SET OF CHAR (as shown
above). Now consider the assignment statement

SPECIALCHARS := [“.", “,", "3’y "+ "("y ")']
After this assignment, SPECIALCHARS is the set containing the
period, comma, semicolon, colon, and left and right parentheses.
Internally, this value is represented by a bit pattern containing
256 bits, one for each possible char value. In this pattern, the
particul ar bits corresponding to the characters that are members

of the set are "on" and the other bits are "off."

When the members form a subrange, you can use the subrange
notation, as in

DIGITS := [‘$#’.."9"]

This makes DIGITS the set of all characters from ‘@’ through
‘9, Alternatively, if you wanted DIGITS to contain only octal
digits, you could write

DIGITS := ["¢#".."7"]

This makes DIGITS the set of all characters from ‘@’ through
‘7"« You can also use more than one subrange and mix subranges
and individual members as in the following:

LETTERS := [‘A’.."Z7, "a’.."2"]

COLORS := [VIOLET..GREEN, ORANGE];
After these two assignments, LETTERS is the set of all capital
letters and all lower-case letters, and COLORS is the set
containing VIOLET, BLUE, GREEN, and ORANGE.

A set value written with square brackets in this manner is called
a set constructor. The syntax for a set constructor is

Arrays, Sets, and Strings 117

set constructor

expression expression

e
o/

The set constructor [] denotes the empty set.

Restrictions on Sets

The base type of a set cannot have more than 512 values. A set
cannot contain any value whose ordinality is less than @ or
greater than 511. 1In particular, it cannot contain any integer
less than ¢ or greater than 511. An attempt to assign more than
512 members to a set, or to assign an integer member outside the
range @#..511, results in a run—-time error which halts the
program.

The formula for the number of words of storage, given the number
of members in a set, is

((n=1) DIV 16)+1
where n is the number of possible values in the base type.

A set of 512 members occupies 32 words of storage.

The IN Operator

The IN operator is used to test whether a particular scalar value
is a member of a particular set. The IN operator is a relational
operator and has a boolean result. It has the same precedence

as the other relational operators.

The IN operator must have a scalar value on the left and a set on
the right. The type of the scalar value must be the same as the
base type of the set. Suppose that we have the following
declarations and assignments:

118 Apple III Pascal

TYPE COLOR = (MAGENTA, CYAN, YELLOW);

VAR LETTERS: SET OF CHAR;
COLORS: SET OF COLOR;
INCHAR, TSTCH: CHAR;

INDEX: INTEGER;
TINT: COLOR;

BEGIN
LETTERS := [‘A’..°Z2", “a’.."z"];
COLORS := [MAGENTA, CYAN];

Then the following expressions are valid uses of IN:

INCHAR IN LETTERS {TRUE if value of INCHAR is a letter}
TSTCH IN [“a’..’z’] {TRUE if value of TSTCH is a lower-
case letter}
SUCC(TINT) IN COLORS {TRUE if successor of value of TINT
is CYAN}
(INDEX + 5) IN [@..255] {TRUE if value of (INDEX +45) is
in the range ¢..255}

All of these expressions could be replaced with constructs that
do not use sets; for example, INCHAR IN LETTERS could be replaced
with

(INCHAR >= ‘A’) AND (INCHAR <= ‘Z7)
OR (INCHAR >= “a’) AND (INCHAR <= ‘z")

However, the expression INCHAR IN LETTERS is not only more
straightforward, it executes faster. Set operations in general
are quite fast.

Combining Sets

So far, we have only seen two ways to represent set values: set
variables, and set constructors. Such set values can also be
combined to form expressions with set results. The operators are
+, -, and *. These symbols are also used with numeric operands
to perform arithmetic. They have different meanings when the
operands are set values, but they have the same precedence
whether they function as set operators or arithmetic operators.

The + operator forms a set union. If A and B are set values with
members of the same type then the value of A+ B (or B + A) is

Arrays, Sets, and Strings 119

the set that contains all members of A and all members of B.

For examples of the use of set unions, suppose that we have the
declarations:

VAR CAPS, LOWERS, LETTERS, DIGITS, ALPHANUMERICS:
SET OF CHAR;

and the assignments

CAPS := ["A’.."Z"];
LOWERS := [‘a’..’z’];
DIGITS := [‘@#’..’9"];

Then we can conveniently make the following assignments for
LETTERS and ALPHANUMERICS:

LETTERS := CAPS + LOWERS;
ALPHANUMERICS := LETTERS + DIGITS;

A common use of the union operator is to add a single new member
to a set. Suppose that we wish to add the character “$’ to the
set ALPHANUMERICS:

ALPHANUMERICS := ALPHANUMERICS + [“$”]

The - operator forms a set difference. If A and B are set values
with members of the same type then the value of A — B is the set
that contains all members of A that are not members of B. For
example, the value of the expression

[CHR(®¥)..CHR(255)] - LETTERS

is the set of all character values that are not letters. You can
also use the difference operator to remove a single value from a
set. For example, the value of the expression

LETTERS - [’A’]
is the set of all letters except the letter ‘A’.
The * operator forms a set intersection. If A and B are set

values with members of the same type then the value of A * B (or
B * A) is the set that contains all members of A that are also

members of B. For example, suppose that we have the declarations

120 Apple III Pascal

VAR COMMANDS, OPTIONS: SET OF CHAR;

and the assignments

COMMANDS := [‘A’, ‘S’, ‘M’, ‘D’, ‘E‘, ‘0’];
OPTIONS := [‘B’, ‘0’, ‘D’, ‘H’]

then the value of the expression
COMMANDS * OPTIONS

is the set containing the characters ‘0’ and ‘D’.

Comparing Sets

Two sets that have the same base type can be compared using the =
and <> operators, to see if they are equal or unequal. They can
also be compared using the <= and >= operators, to see if one set
contains the other. These operators produce boolean results.

The same symbols are used for arithmetic comparison; they have
different meanings when the operands are set values, but they
have the same precedence whether they function as set comparisons
or arithmetic comparisons. Note that the comparisons > and <
cannot be used with sets.

With set operands, the = operator denotes set equality and the <>
operator denotes set inequality. Two sets are said to be equal
if they contain exactly the same elements, and unequal

otherwise.

With set operands, the >= operator means "includes." Set A

includes set B if every member of B is also a member of A. Note
that A may contain other members which are not in B. Similarly,
the <= operator means "is included in."

Strings

A string value is a sequence of up to 255 characters. Strings
are supported by a set of built-in procedures and functions,
described further on in this chapter.

Arrays, Sets, and Strings 121

String Constants

A string constant consists of the string itself between
apostrophes (with a special way of including apostrophes in the
string as explained below). The syntax is

string constant

character

To write a string constant that contains an apostrophe, write two
apostrophes as in the following examples:

‘Can’’t find the specified file.’
‘The challenger’’s score is:

’ ’ s v

‘Type either ““yes’’ or ‘’no

A string constant can also be declared with an identifier, as in
the following:

CONST ERRMSG = ‘Can’’t find the specified file’;

- 4

Note that a string constant must be on a single line in the
program; it cannot contain a line-break.

String Variables

A string variable is a variable whose value at any point during
program execution is a string. String variables are usually
treated as single units, but it is possible to pick out a single
character value from a string variable by indexing it in the same
way that an array element is selected by indexing.

A string variable is created by declaring it with a string type.
The syntax of a string type is

122 Apple III Pascal

string type
STRING P »
unsigned
integer
constant

Here are some examples of string variable declarations:

VAR MSGBUFFER: STRING[255];
INPUTNAME, OUTPUTNAME: STRING;

The number in brackets, if used, specifies the maximum length of
the string. The number can be any integer from 1 through 255.
If no number is specified, the maximum length is 8@. Since the
string variable’s value can change during execution, the system
keeps track of the length of the string value; if this length
exceeds the maximum, a run—-time error occurs.

The value of a string variable can be altered by using an
assignment statement with a string constant or another string
variable:

TITLE := * This is a title
or
NAME := TITLE
or by means of the READLN procedure as described in Chapter 11:
READLN(TITLE)

or by means of the string built-ins, described further on in this
chapter.

A string value can be compared to any other string value,
regardless of length. Also, as previously mentioned, a string
value can be compared to a one-dimensional packed array of
characters if the length of the string is the same as the number
of elements in the array.

Arrays, Sets, and Strings 123

The relational operators =, <>, <, >, <=, and >= are used. One
string is '"less than" another if it would come first in an
"alphabetic" list of strings based on the ordering of the ASCII
character set.

Elements of a String

The individual characters within a string are indexed from 1 (not
@!) to the length of the string. For example, if TITLE is the
name of a string and we have the assignment

TITLE := ‘A Quick Brown Fox’

then TITLE([1l] is a reference to the first character of TITLE,
namely the character ‘A’, and TITLE[17] is a reference to the
last character, namely “x’. The index must not be less than 1 or
greater than the length of the string. For example, TITLE[18]
would lead to a run—time error.

There is a case where you must assign a character to a string
element. It may be necessary to convert the value of a char
variable to a one-character string valuye; for example you may
want to add it to a string with the CONCAT procedure (see next
section), which requires a string value rather than a char
value.

Note that while a one-character string constant is the same thing
as a character constant, a string variable whose value is a
single character is not the same thing as a character variable
and you cannot assign one to the other.

The way to deal with this is shown in the example below, which
assumes that the value of the char variable CHVAL is to be
concatenated to the value of the string variable LINE. To make
this possible we use a string variable named ONECH. First we
initialize it with a one-character string constant, so it will
have the right length, and then we assign the char value to its
element, ONECH[1].

ONECH := ‘X’;

ONECH[1] := CHVAL;
LINE := CONCAT(LINE, ONECH)

Beware of zero-length strings: they cannot be indexed at
all without causing a run-time error. If a program

124 Apple III Pascal

indexes a string that might have zero length, it should
first use the LENGTH function (see next section) to see if
the length is zero. If the length is zero, the program
should not execute statements that index the string.

You cannot define a function of type string. However, there are
built-in functions of type string as described in the next
section.

String Built-Ins

In the following descriptions, a '"string value" means a string
variable, a string constant, or any function or expression whose
value is a string. Unless otherwise stated all parameters are
value parameters.

The LENGTH Function

The LENGTH function returns the length of a string. LENGTH takes
one parameter:

LENGTH (STRG)

where STRG is a string value parameter. For example, if we have
the assignment

S := ‘abcdefg’;

then the value of LENGTH(S) is 7 and the value of S[LENGTH(S)]
is ‘g’.

The POS Function

The POS function returns an integer value. POS takes two
parameters:

POS (SUBSTRG, STRG)

where both SUBSTRG and STRG are string value parameters. The POS
function scans STRG to find the first occurrence of SUBSTRG
within STRGe POS returns the index within STRG of the first
character in the matched pattern. If the pattern is not found,
POS returns zero.

Arrays, Sets, and Strings 125

For example, suppose that a string variable named FNAME contains
a filename that has been typed on the keyboard. Then the value
of POS(’.”, FNAME) will be ¢ if the filename contains no period,
1 if the first character is a period, etc.

The CONCAT Function

The CONCAT function returns a string value. CONCAT can take any
practical number of actual parameters each of which is a string

value; the parameters are separated by commas. The syntax of the
call is

string
value

CONCAT returns a string which is the concatenation of all the

strings passed to it. For example, if FNAME is a string variable
containing a file name from the keyboard, then the statement

FNAME := CONCAT(FNAME, ’.TEXT’)

has the effect of appending the suffix .TEXT to the name. Another
example: if we have the assignments

FIRSTNAME := ’‘George’;

LASTNAME := ‘Washington’

éé%HNAMES := CONCAT(LASTNAME, ’, ‘,FIRSTNAME)
then the statement

WRITELN(BOTHNAMES)
will print

Washington, George

126 Apple III Pascal

The COPY Function

The COPY function returns a string value. COPY takes three
parameters:

COPY (STRG, INDEX, COUNT)

where STRG is a string value parameter and both INDEX and COUNT
are integer value parameters. COPY returns a string containing
COUNT characters copied from STRG starting at the INDEXth
position in STRG. Example:

TL := ‘KEEP SOMETHING HERE’;

KEPT := COPY(TL, POS(’S’, TL), 9);
WRITELN (KEPT)

This will print:

SOMETHING

The DELETE Procedure

The DELETE procedure modifies the value of a string variable.
DELETE takes three parameters:

DELETE (STRG, INDEX, COUNT)

where STRG is a string variable parameter and both INDEX and
COUNT are integer value parameters. DELETE removes COUNT
characters from STRG starting at the INDEX specified. Example:

LATIN := ‘Cartago delenda est.’;
DELETE(LATIN, POS(’delenda’, LATIN), LENGTH(’delenda));
WRITELN(LATIN)

This will print:

Cartago est.

The INSERT Procedure

The INSERT procedure modifies the value of a string variable.
INSERT takes three parameters:

INSERT (SUBSTRG, STRG, INDEX)

Arrays, Sets, and Strings 127

where SUBSTRG is a string value parameter, STRG is a string
variable parameter, and INDEX is an integer value parameter.

INSERT inserts SUBSTRG into STRG at the INDEXth position in
STRG. Example:

ID := ‘INSERTIONS’;

MORE := ‘ DEMONSTRATE’;
DELETE(MORE, LENGTH(MORE), 1);
INSERT(MORE, ID, POS(’IO’, ID));
WRITELN(ID)

This will print:
INSERT DEMONSTRATIONS

You can insert a substring at the end of a string by using INDEX
value LENGTH(string)+l. For example

S 1= ‘ABC’
T := '‘DE’
INSERT(T,S,LENGTH(S)+1);

will produce a string of length 5 containing

“ABCDE .

The STR Procedure

The STR procedure modifies the value of a string variable. STR
takes two parameters:

STR (N , STRG)

where N is an integer value parameter, and STRG is a string
variable parameter. N may be a long integer.

STR converts the value of N into a string. The resulting string
is placed in STRG. Example:

128 Apple III Pascal

INTLONG := 102¢395@3;

STR(INTLONG, INTSTRING);

INSERT(’.”, INTSTRING, LENGTH(INTSTRING)-1);
WRITELN(’$’, INTSTRING)

This will print:
$102¢395.93
The use of STR requires availability of the long integer

procedure, LONGINTIO, which is found in the standard system
library file.

Records 129

130 Apple III Pascal

Record Variables

A record variable is a collection of elements called fields which
may be of different types. Each field has its own identifier
within the record, and can be individually referenced; or the
record can be referenced as a whole.

As will be seen in later chapters, record types are extremely
useful in conjunction with dynamic variable allocation and files;
in this chapter, the discussion is restricted to ordinary record
variables (which are neither dynamic variables nor components of
files).

The syntax for a record type is

record type

RECORD L END
list

The syntax for a field list is

field list

new type N variant
identifier I 3 part

Each field identifier is the name of a distinct variable, or
field, within that record type. The type of a fieid may be
anything except a file type. The syntax for the variant part is
given in the next section; in this section, we assume that there
is no variant part.

Records 131

The following record type can be used to represent a date:

DATE = RECORD
DAY, YEAR: INTEGER;
MONTH: STRING
END;

If you declare a variable named TODAY, of type DATE, then the
fields of this variable can be referenced as TODAY.DAY (an
integer variable), TODAY.YEAR (another integer variable), and
TODAY.MONTH (a string variable).

The record type below uses the type DATE for two of its fields.
It could be used in a checking—account program.

TYPE CHECK = RECORD
CHECKNUMBER: INTEGER;
DATEWRITTEN, DATEPAID: DATE;
AMOUNT: REAL;

RECIPIENT: STRING;
BOUNCED: BOOLEAN

END;

Type CHECK contains six fields. A checkbook might be represented
as an array of records of type CHECK:

VAR CHECKBOOK: ARRAY[l..1¢@¢] OF CHECK;

To reference a field in a record, merely write a reference to the
record, then a period, then the field identifier. For example,
with the declarations above,

— CHECKBOOK[3] refers to a particular check (a variable
of type CHECK).

— CHECKBOOK[3].CHECKNUMBER refers to the number of that
check (an integer variable).

~ CHECKBOOK[3].DATEWRITTEN refers to the date on which
that check was written (a variable of type DATE).

— CHECKBOOK[3].DATEWRITTEN.MONTH refers to the month
within the date (a string variable).

132 Apple III Pascal

To assign numbers to the checks in the array you could use the
statement:

FOR I := 1 TO 1¢¢ DO CHECKBOOK[I].CHECKNUMBER := TI;

Variant Records

The optional variant part of a record type contains two or more
alternate field lists. For example, a variant part of a record
could be declared to contain either a string or two reals, an
integer, and a string.

To understand what this means, recall that a Pascal variable
consists of two things:

- Allocated memory space to hold the value of the
variable in binary form

- Type information which tells the system how to
interpret the binary information.

When a variant part is declared, the Compiler allocates enough
space for the largest of the alternate field lists in the variant
part. All of the alternate field lists then use the same
allocated space.

The syntax for a variant part is

Records 133

variant part

tag tag
CASE identifier type
identifier

O_, field
constant
list

The variant part resembles a CASE statement, and its meaning is
closely related. The tag identifier and tag type serve to
declare a tag field, which can be of any scalar type. The tag
field is an ordinary field of the record (just as if it were
declared before the variant part).

Note that the tag identifier is optional; if it is

omitted, then there is no tag field. In the rest of this
chapter, we assume that the tag field is present; for
information on the use of variants without tag fields, see
Appendix G.

The tag type cannot be omitted, because it also relates to the
constants within the variant part: each constant in the variant
part must be one of the possible values of the tag identifier.
Each of these constants is a '"label" for a field list, enclosed
in parentheses.

The variant part syntax allows you to declare records of a single
type which can have more than one configuration —- each of the
field lists in the variant part represents a specific, distinct
configuration.

At run time, the program can refer to any of the fields in the
variant part. All of the '"cases" or field lists of a variant

134 Apple III Pascal

part occupy the same space in memory, on the assumption that at
any point in the program, the data in that space is to be
interpreted according to just one field list.

The following example shows a record that has a variant part.

TYPE YESNO
IDENT

(YES, NO);
RECORD
LASTNAME, FIRSTNAME: STRING[1@];
CASE HASLIC: YESNO OF
YES: (LICNO: INTEGER[1(]);
NO: (SOCSEC: STRING[1¢])
END;

A record of type IDENT contains four fields: LASTNAME,
FIRSTNAME, HASLIC and either LICNO or SOCSEC. The program can
use the tag field HASLIC to determine which variant field, LICNO
or SOCSEC, should be used.

Fields in the variant part of a record are referenced exactly as
normal fields are. At any point in the program, you can refer to
either IDENT.LICNO or IDENT.SOCSEC. The two references refer to
the same physical data; the difference is that a reference to
IDENT.LICNO interprets the data as a ten-digit long integer,
while a reference to IDENT.SOCSEC interprets the same data as a
string of up to ten characters.

Now suppose we have an array of records of type IDENT, and some
other variables to contain information input by the user:

VAR IDCARD: ARRAY [1..1¢¢@] OF IDENT;
LASTNAMEIN, FIRSTNAMEIN, SSNUMIN: STRING[10];
HASLICIN: YESNO;

LICNUMIN: INTEGER[1¢];

The following assignments can be made to a particular record,
IDCARD[N]:

IDCARD[N].LASTNAME := LASTNAMEIN;
IDCARD[N].FIRSTNAME := FIRSTNAMEIN;
IDCARD[N].HASLIC := HASLICIN;
CASE IDCARD[N].HASLIC OF
YES: IDCARD[N].LICNO := LICNUMIN;
NO: IDCARD[N].SOCSEC := SSNUMIN
END

Records 135

Notice that the tag field is used to select the proper variant
field.

The tag field does not have to be declared after the word

CASE; as mentioned before, it is really just another field
of the record. In fact, the type IDENT declared above can
be thought of as an abbreviation for the declaration

TYPE IDTOO = RECORD
LASTNAME, FIRSTNAME: STRING[10];
HASLIC: YESNO;
CASE YESNO OF
YES: (LICNO: INTEGER[1(0]);
NO: (SOCSEC: STRING[1¢])
END;

where the tag field is declared before the variant part.
However, note that the tag type must appear after the word
CASE, since it determines the possible values for the
constants in the variant part.

The tag field does not automatically control which fields

can be referenced in the variant part of the record. It

is up to the program to use the tag field as a control, as
shown in the example above.

The WITH Statement

The WITH statement is a shorthand method for referencing elements
of a record. It provides a means by which the fields of
specified records can be referenced using only their field
identifiers. The syntax of a WITH statement is

136 Apple III Pascal

with statement

record
variable statement
reference

The meaning of the record variable reference is determined once,
before the statement following DO is executed.

Earlier, we showed the following assignments to the record
IDCARD[N]:

IDCARD [N].LASTNAME := LASTNAMEIN;
IDCARD[N].FIRSTNAME := FIRSTNAMEIN;
IDCARD[N].HASLIC := HASLICIN;
CASE IDCARD[N].HASLIC OF
YES: IDCARD[N].LICNO := LICNUMIN;
NO: IDCARD[N].SOCSEC := SSNUMIN
END

These statements can be abbreviated by using a WITH statement:

WITH IDCARD[N] DO BEGIN
LASTNAME := LASTNAMEIN;
FIRSTNAME := FIRSTNAMEIN;
HASLIC := HASLICIN;

CASE HASLIC OF
YES: LICNO := LICNUMIN;
NO: SOCSEC := SSNUMIN
END
END

Variables that are not fields of records may be referenced as
usual within the WITH statement. For example, if COUNTER is
declared as a variable of type integer, then you can write

WITH CHECKBOOK[I] DO BEGIN
COUNTER := COUNTER+];

CHECKNUMBER := COUNTER MOD 1@¢¢
END

Records 137

The identifier COUNTER references the integer variable COUNTER

(rather than a record field named COUNTER) because the records
listed do not have a field named COUNTER.

If one of the fields of a record is itself a record, then nested
WITH statements can be used:

WITH CHECKBOOK[I] DO WITH DATEWRITTEN DO BEGIN
CHECKNUMBER := I;
DAY := 5; {references CHECKBOOK[I].DATEWRITTEN.DAY}
MONTH := ‘JULY’

END

For convenience, these nested WITH statements can be combined
into a single WITH statement:

WITH CHECKBOOK[I], DATEWRITTEN DO BEGIN
CHECKNUMBER := I;
DAY := 5; {references CHECKBOOK[I].DATEWRITTEN.DAY}
MONTH := ‘JULY’

END

When the same field name occurs in more than one record, and both
records are "abbreviated" via the WITH statement, a potential
ambiguity arises. Consider the following:

WITH CHECKBOOK[I], DATEWRITTEN, DATEPAID DO BEGIN
DAY := 5;

END

The field DAY occurs both in CHECKBOOK[I].DATEPAID.DAY and in
CHECKBOOK[I].DATEWRITTEN.DAY; which one is referenced in the
assignment statement? The answer is that
CHECKBOOK[I].DATEPAID.DAY is referenced, because DATEPAID is the
last record listed in the WITH statement.

The confusion arises because DATEWRITTEN and DATEPAID are
"parallel;" that is, one is not a field of the other. WITH
statements that allow this kind of confusion should be avoided.
For example, the following WITH construction can be used to
reference fields of the same name in both DATEWRITTEN and
DATEPAID:

138 Apple III Pascal

WITH CHECKBOOK[I] DO BEGIN
WITH DATEWRITTEN DO BEGIN

DAY := 5;

END;

WITH DATEPAID DO BEGIN
DAY := 6;

ENB..

END

Comparisons and Assignments

Although most assignments to records are done on a field by field
basis, it is also possible to make assignments between entire
records of the same type. For example, the result of the
assignment

CHECKBOOK[I] := CHECKBOOK[I + 1]

is to assign to every field in CHECKBOOK[I] the value of its
corresponding field in CHECKBOOK[I + 1].

Actually, assignments between records of different types

are allowed if the types are 'congruent'" -- that is, if
every field in one record has a corresponding field, of

the same type but not necessarily of the same name, in the
other record.

The only operations that can be performed on records are
comparisons, giving boolean results. Of the relational
operators, only

= equal to
<> not equal to

can be used with records. The rules for comparing two records
are the same as the rules for assignment to records: the two
records being compared must have corresponding fields of
identical types.

Records 139

Two packed records can be compared successfully only if

all 16 bits in each word of each record have been
defined. See the following section.

Packed Records

The following record declaration declares a record with four
fields. The entire record occupies one 16-bit word as a result
of declaring it to be packed.

VAR R: PACKED RECORD
I,J,K: 0..31;
B: BOOLEAN
END;

The fields I, J, K each take up five bits in the word. The
boolean field B occupies the 16th bit of the same word.

In much the same manner that multidimensional arrays can be
packed, packed records may contain fields which themselves are
packed records or packed arrays. Slight differences in the way
in which declarations are made will affect the degree of packing
achieved. For example, note that the following two declarations
are not equivalent:

VAR A:PACKED RECORD VAR B: PACKED RECORD
C: INTEGER; C: INTEGER;
F: PACKED RECORD F:RECORD
R:CHAR; R: CHAR;
K: BOOLEAN K: BOOLEAN
END; END;
H: PACKED ARRAY([@..3] H: PACKED ARRAY[@..3]
OF CHAR OF CHAR
END; END;

As with packed arrays, the word PACKED should appear with every
occurrence of the word RECORD or ARRAY to ensure that all fields
of the record are actually packed. In the above example, only
record A has the F field packed into one word. In B, the F field
is not packed and therefore occupies two 16-bit words. It is
important to note that a packed or unpacked array or record which
is a field of a packed record will always start at the beginning

140 Apple III Pascal

e e

of the next word boundary. This means that in the case of A,
even though the F field does not completely fill one word, the H
field starts at the beginning of the next word boundary.

A variant part may be used in a packed record, and the amount of
space allocated to it will be the size of the largest variant
among the various cases. The details of the packing methods are
beyond the scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF
TRUE: (Z: INTEGER);
FALSE: (M: PACKED ARRAY[@..3] OF CHAR)
END;

In the above example the B and F fields are stored in two bits of
the first 16-bit word of the record. The remaining fourteen bits
are not used. The size of the variant part is always the size of
the largest variant, so in the above example the variant part
will occupy two words, one byte for each of four characters.

Thus the entire packed record will occupy three words.

Pointers and Dynamic Variables 141

142 Apple III Pascal

Concepts

Up to this point we have dealt only with static variables: these
are declared in the program and the Compiler responds to the
declaration by

- allocating memory space to hold the value of the
declared variable at run time;

- associating the declared identifier with that memory
space, and with the type information in the
declaration.

In other words, everything about a static variable except its
actual value is determined when the program is compiled. Only
the value is determined at run time. Variant records may appear
to be an exception to this statement, but really they are just a
slightly more compl icated case; the Compiler allocates enough
space for the largest variant of a record variable, and at run
time the field identifier determines how this space is used.
Again, all information about the variable is determined at
compile time, except for the actual value(s).

Some programs need a more flexible kind of variable. For
example, imagine a program that will read a sequence of records
from a file or from the terminal; suppose that the records are of
type

TYPE RTYPE = RECORD
INTVALS: INTEGER;

RVAL: REAL;
END;

At the time when the program is written, the difficulty is that
we don’t know how many records will be read. How can we create
variables to hold the records? One way is to make a generous
guess and declare an array. For example if we think the number
of records will not exceed 1@@, we could declare

VAR REC: ARRAY [1..10@] OF RTYPE;

This is not very satisfactory; if the number does exceed 1(@ the
program will be unable to cope, and if the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>