
Pascal
Programmer's Manual Volume 1

Notice
Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities
Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed "as is:• The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
1©260 Bandley Drive
Cupertino, California 95014
(4Qll) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

Written by David Casseres

The word Apple and the Apple logo are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0003

Apple Ill Pascal

·Programmer's Manual

1

Volume 1

ii Apple III Pascal

Acknowledgements
The Apple III Pascal system is based on UCSD Pascal.
"UCSD PASCAL" is a trademark of the Regents of the University
of California. Use thereof in conjunction with any goods or
services is authorized by specific license only and is an
indication that the associated product or service has met
quality assurance standards prescribed by the University. Any
unauthorized use thereof is contrary to the laws of the State
of California.

Volume I-Chapters

1

2

Preface

What is Apple Ill Pascal?
2 Introduction
3 Pa scal vs. BASIC
4 Pascal vs. FORTRAN
5 Structure of a Pascal Program
5 A Sample Program

Overview of Pascal
8 Pa scal Source Tex t
9 Symbols

12 Declarations
13 Data Types
18 Statements
22 Expressions
24 Procedures
25 Functions
26 Built-In Procedures and Functions
26 Pa scal Program Structure
30 Sample Program

Contents iii

xiii

1

7

iv Apple III Pascal

3

4

5

Simple Data Types
34 Introduction
35 Declarations
38 The Real Type
40 Scalar Types
40 The Integer Type
42 The Long' Integer Type
43 The Char Type
45 The Boolean Type
45 Defining New Scalar Types
46 Subrange Types
47 Built-In Functions For Scalar Types
49 Numeric Functions

Expressions and Assignments
52 Introduction
53 Precedence of Operators
56 The Arithmetic Operators
60 The Relational Operators
62 Logical Operators
63 Relational Operators with Boolean Operands
63 Result Types
64 Assignments

The Flow of Control
66 Introduction
67 The Compound Statement
68 The Procedure Call
69 The Repetition Statements
73 The Conditional Statements
80 The EXIT and HALT Procedures
81 The GOTO Statement

33

51

65

Contents v

6 Procedures and Functions 83

84 Introduction
85 Defining a Procedure
87 Value Para11.1eters
89 Variable Parameters
90 Defining a Function
92 Calling a Function
92 ,Recursion
96 Rules of Scope
99 Segment Procedures and Functions

100 External Procedures and Functions
101 Size and Complexity Limits

7 Arrays, Sets, and Strings 103

104 Introduction
104 Array Variables
115 Sets
120 Strings
124 String Built-Ins

8 Records 129

130 Record Variables
135 The WITH Statement
138 Comparisons and Assignments
139 Packed Records

9 Pointers and Dynamic Variables 141

142 Concepts
144 Pointer Values
144 Declaring Pointer Variables
145 Using Pointers
147 The NEW Procedure
150 MEMAVAIL
151 MARK and RELEASE

vi Apple III Pascal

10 Introduction To Files and /JO
156 Files
161 Overview of Apple III Pascal I/O Facilities
162 Typed File I/O
175 Random Access

155

178 Special Handling of Control Characters With GET and PUT

11 Text /JO
182 Introduction
182 Character Files
184 Using the Procedures and Functions
185 The EOLN Function
186 The READ Procedure
190 The READLN Procedure
191 The WRITE Procedure
194 The WRITELN Procedure
197 The PAGE Procedure
197 Additional Details

12 Block File /JO and Device /JO
202 Introduction
202 Block File I/O
206 Device I/O
213 Textfiles and Asciifiles

13 Special-Purpose Built-Ins
218 Introduction
218 Byte-Oriented Features
224 Miscellaneous Procedures

181

201

217

Contents vii

14 Library Units 231

232 Introduction
233 Regular Units
234 Intrinsic Units
236 Writing a Unit
243 An Example Unit
245 Using the Example Unit
246 Nesting Units
250 Program Libraries and SYSTEM.LIBRARY
250 Changing a Unit or its Host Program

15 Program Segmentation 253

254 Program Segments
255 The Segment Dictiona ry
255 The Run-Time Segment Table
258 Loading of Segment Procedures and Functions
259 Loading of Unit Segments
261 The RESIDENT Option

Figures and Tables

Index

Volume II-Appendices

Preface

A The TRANSCEND and
REALMODES Units
2 Introduction
2 The Units
4 The Functions
5 The Remainder (REM) Function

265

273

ix

1

viii Apple III Pascal

B The PGRAF Unit
13 Overview
18 Memory Usage
19 Saving and Loading Display Buffers
19 Summary of PGRAF Routines
20 Initial Conditions
20 GRAPHIXMODF
21 GRAPHIXON and TEXTON
21 PENCOLOR and FILLCOLOR
22 VIEWPORT
23 INITGRAFIX
23 MOVETO, LINETO, and DOTAT
24 MOVEREL, LINEREL, and DOTREL
24 FILLPORT
25 XYCOLOR, XLOC, and YLOC
25 Text in Graphics
26 DRAWIMAGE
29 The Color Table
31 The Transfer Option
33 NEWFONT and SYSFONT
34 GSAVE and GLOAD
35 The CP280 Mode
36 Reading From the Graphics Driver
37 The PGRAF Interface

C The CHAINSTUFF Unit

D

40 The SETCHAIN Procedure
41 The SETCVAL Procedure
41 The GETCVAL Prodecure
42 An Example of Chaining

The APPLESTUFF Unit
46 The RANDOM Function
48 The RANDOMIZE Procedure
48 The KEYPRESS Function
49 The JOYSTICK Procedure
49 The SOUND Procedure
50 The Internal Date and Time
52 PADDLE, BUTTON , and NOTE

11

39

45

E

F

G

Floating-Point Arithmetic
56 Introduction
59 Exceptions
62 Floating-Point Format
64 Arithmetic with Denormalized Numbers
65 Infinity Arithmetic and Comparisons
69 NaNs
71 Accuracy
76 Real Arithmetic Environments
77 Exception Handling
78 Arithmetic Modes
83 Summary of the Floating-Point System
85 Bibliography

The Apple Ill Pascal Compiler
88 Introduction
88 Diskette Files Needed
89 Using the Compiler
93 Compiler Option Syntax
94 Options that Do Not Affect Program Code
98 Error Checking Options

100 Control of Segments and Libraries
102 The USING Option
102 The INCLUDE Option
103 Special Compilation Mode
104 Conditional Compilation
109 Compiling Apple II Code
110 Compiler Option Summary

Special Techniques
114 Introduction
114 Representation of Scalar Values
116 Implications
119 Representation of Arrays
120 Representation of Real Values
120 Free Union Variants
124 Byte-Oriented Built-Ins Revisited
125 Special Uses of UNITSTATUS

Contents ix

55

87

113

x Apple III Pascal

H Comparison To Apple II Pascal 127

128 OTHERWISE Clause in CASE Statement
128 SOS Pathnames
128 SOS Device Driver Support
128 Graphics
129 New Procedures
129 New Data Types
129 Real Arithmetic
129 Library Files and Units
130 Memory Organization
130 The UNITSTATUS Procedure
130 Runtime Segment Table
130 Conditional Compilation
131 The CHAINSTUFF Unit
131 Compiling Apple II Code
131 File Variable Size .
131 Compiler Options
131 Procedure Complexity
131 System Globals

I Syntax Diagrams 133

134 Compilation
134 Program
135 Unit
135 Intrinsic Unit heading
135 Regular Unit heading
136 Interface
136 Implementation
137 Block
137 Uses Declarations
138 Label Declarations
138 Constant Declarations
138 Constant
138 Type Declarations
139 Type
139 Simple Type
139 User-defined Scalar Type
140 Subrange Type
140 Pointer Type
140 Set Type
140 String Type
140 Array Type
141 Record Type

Contents xi

141 Field List
141 Variant Part
142 File Type
142 Variable Declarations
142 Procedure Definition
143 Function Definition
143 Parameter List
143 Parameter Declaration
143 Compound Statement
144 Statement
144 Assignment Statement
144 Procedure Call
145 With Statement
145 Goto Statement
145 For Statement
145 Repeat Statement
146 While Statement
146 If Statement
146 Case Statement
146 Case Clause
147 Otherwise Clause
147 Expression
147 Simple Expression
148 Term
148 Factor
149 Variable reference
149 Func tion Call
149 Set Constructor
150 Unsigned Constant
150 Unsigned Number
150 Unsigned Integer
151 Identifier

J Tables 153

154 Table 1: Execution Errors
155 Table 2: I/O Errors
157 Table 3: Reserved Words
158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/O Devices
166 Table 8: Size Limitations

xii Apple III Pascal

K The TURTLEGRAPHICS Unit 167

168 Using Apple II TURTLEGRAPHICS with the Apple III

Figures and Tables 169

Index 177

Preface xiii

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Intoduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer's Manual (Volumes 1 and 2)

Before using the Apple III Pascal system or reading its manuals,
you should be familiar with starting up the Apple III as
described in the Apple III Owner's Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal: Introduction, Filer, and Editor
manual. The Filer and the Editor described in this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will show
you the differences in operation between the two systems.

A~ple III Pascal Program Preparation Tools is the next manual
t at you should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The
components of the Apple III Pascal system covered in this manual
include

- The Linker, used to combine separately developed
program segments stored in libraries with your
application program.

- The Apple III Pascal 65~2 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files.

- The Librarian, used to put commonly used routines into
libraries for use with application programs.

xiv Apple III Pascal

Your main source of information while developing Pascal programs
will be the two volumes of the Apple III Pascal Programmer's
Manual, which contain a complete description of the Pascal
language on the Apple III and the use of the Apple III Pascal
Compiler.

The Contents of This Manual
This manual describes the complete Apple III Pascal language.
Except for the introductory material in Chapters 1 and 2, this is
an explanatory reference manual rather than a textbook; it does
not assume that you know anything about Pascal, but it does
assume that you are familiar with computer programming in some
language.

Please note that a large and detailed index is provided at the
end of this manual; you will probably need it when you are using
the manual for reference purposes. The index does not point to
every occurrence of a word or phrase in the manual; instead it
points to the pages that have significant information about the
topic associated with the word or phrase.

Volume 1 of this manual contains the chapters; Volume 2 contains
the appendices and the index. Here is a brief description of the
contents:

- Chapter 1 is an introduction to the Pascal language,
comparing it with other well-known languages and giving
a very simple program as an example.

- Chapter 2 is an extensive overview of Pascal. Every
major concept and construction in the language is
introduced here at an intuitive level.

- Chapters 3 through 11 provide complete, detailed
information about every major feature of the language.

- Chapters 12 through 15 provide complete, detailed
information about the more specialized features of the
language. These features are needed for certain large
or specialized programs.

- Appendices A through E describe the standard library
facilities of Apple III Pascal. These are sets of
procedures and functions for special purposes such as
graphics, audio, joystick inputs; and special
arithmetic features.

Pref ace xv

- Appendix F is a complete reference manual for the Apple
III Pascal Compiler, including details of operation and
all of the Compiler options.

- Appendices G through J are supplementary information on
various topics. In particular, Appendix J is a
collection of useful tables.

- Appendix K provides information on the use of Apple II
TURTLEGRAPHICS on the Apple III.

Two special symbols are used throughout this manual to draw your
attention to particular items of information.

The pointing hand indicates something particularly
interesting or useful.

The eye is used for points you need to be cautious about.

Syntax Diagrams
Throughout this manual, the syntax of the Pascal language is
indicated by means of syntax diagrams, also known as "railroad
tracks." These diagrams are easy to follow once you are used to
them: begin . at the upper left and follow the arrows. Every
possible path through the diagram represents a valid construction
in Pascal. For example:

while statement

DO statement

This diagram tells us that a "while statement" consists of the
word WHILE, followed by an expression, followed by the word DO,
followed by a statement.

The words WHILE and DO are enclosed in rounded "bubbles;" this
means that they are reserved words or symbols of the language, to
be typed as shown. The words expression and statement are in
boxes with square corners; this means that they are higher-level
constructions, which have their own syntax diagrams.

xvi Apple III Pascal

Here is an example where there is more than one path through the
diagram:

identifier

letter

l etter

digit

underscore

This tells us that an identifier begins with a letter, and this
letter may be followed by a letter, a digit, an underscore, or
nothing. From here, there is the possibility of looping back to
add another letter, digit, underscore, or nothing. This can be
repeated indefinitely (in principle), so the syntax says that an
identifier can be of any length. In practice, of course, there
is a limit which the syntax does not show.

Note that Appendix I contains a full set of syntax
diagrams.

Syntax of Procedure and Function Calls
Pascal provides a number of built-in procedures and functions
which are activated by means of "calls. " Most of these use a
simple kind of syntax in which there is only one path through the
diagram, and in these cases a diagram is not shown. Instead, a
"form" is given; for example, the form of the REWRITE procedure
is

REWRITE (FILEID, PATHNAME)

Preface xvii

.. , inE&f#•iii tfl

The word REWRITE is the name of the procedure, and is to be typed
as shown; all words in parentheses are names for "parameters," to
be replaced with actual expressions or variable identifiers as
explained in the text. In this example, FILEID is to be replaced
by the identifier of a "file variable" and PATHNAME is to be
replaced by a string of characters that is the pathname of a
file.

A few procedures have a more complex form of syntax, and syntax
diagrams are used for these.

xviii Apple III Pascal

What is Apple III Pascal? 1

2 Apple III Pascal

Introduction
Apple III Pascal is an implementation of the Pascal language for
the Apple III computer. It is based on UCSD Pascal, which in
turn is based on the original definition of Pascal by Kathleen
Jensen and Niklaus Wirth in the Pascal User Manual and Report
(Springer-Verlag, 1974). Chapter 2 is a comprehensive overview
of the language. This chapter is a brief description to give the
flavor of Pascal, especially in comparison to two other popular
general-purpose languages, BASIC and FORTRAN.

Pascal is a modern high-level programming language that belongs
to the family of Algol-like languages; that is, it is descended
from the Algol language which introduced many of the fundamental
ideas of modern high-level programming. Like Algol, Pascal is
written free-form and is block-structured. It goes beyond Algol
in several ways; the most important is that Pascal has a great
variety of different data types and allows the programmer to
define new data types.

An Apple III Pascal program is first written as a text file,
using the system's Editor; this text is called the source of the
prog~am. Next it is compiled by the Pascal Compiler. The
Compiler produces a file of P-code, a special code that resembles
machine language.

The P-code can then be "executed" by an interpreter program,
which interprets the P-code instructions and executes . them
immediately. The interpreter program is known as the P-machine,
and is an integral part of the software system. The use of
P-code and an interpreter provides an important benefit: with a
few limitations, the P-code of an Apple III Pascal program can
also be executed by a different P-machine on a different
computer.

An important part of the philosophy of high-level languages is to
separate the programmer from the details of the computer
hardware. In Pascal, for instance, there is no need to refer to
specific physical addresses in memory. The system takes care of
all memory management, without any intervention from the Pascal
program. The system also provides control of all special machine
features via Pascal statements; in most cases, this eliminates
the need for writing machine-language routines for detailed

What is Apple III Pascal? 3

control of the hardware. However, there is a way to link
machine-language routines into a Pascal program.

Pascal vs. BASIC
If you are a BASIC programmer, you will find that Pascal is
different in some very fundamental ways:

- LINE NUMBERS: Pascal has no line numbers. In fact,
line breaks mean nothing in a Pascal program. You can
break up a statement into several lines or put several
statements on one line. Statements are separated from
each other by semicolons. You will find that the
mechanics of writing, editing, or modifying a Pascal
program are easier than with BASIC because you don't
need to maintain line numbers.

- VARIABLES: All variables in a Pascal program must be
declared before they can be used. A variable
declaration associates an identifier (variable name)
with one of the many data types of Pascal. (In BASIC,
only arrays need to be declared, via the DIM
statement.)

- FLOW OF CONTROL: Pascal has several me~hods for
controlling the sequence in which statements are
processed. These methods go beyond the IF, FOR, GOTO,
and GOSUB/RETURN of BASIC. As a result, most Pascal
programs are easier to read and understand than
comparable BASIC programs. Pascal has a GOTO
statement, but it is much less important than the other
methods.

- PROCEDURES: In Pascal you can write a procedure, which
is simply a subprogram. The main program can execute
the subprogram by mentioning its name. This replaces
the GOSUB/RETURN mechanism of BASIC and is more
powerful, since the main program can supply parameter
values to the procedure when it executes it.

- FUNCTIONS: A Pascal function is just a procedure that
returns a value, in the same way as a BASIC
user-defined function. A Pascal function definition
can contain any number of statements, where a BASIC

4 Apple III Pascal

user-defined function is usually severely limited in
the number of statements it can contain.

- BLOCK STRUCTURE: Block structure means that a
procedure or function can have its own variables which
are independent of the main program. A procedure or
function can even have a variable of its own which has
the same name as a variable in the main program.
Because of this, a Pascal programmer can use a kind of
discipline that is not possible in BASIC; the result is
cleaner, more comprehensible programs.

- PHYSICAL ADDRESSES: There are no POKE, PEEK, or CALL
statements in Pascal. A Pascal program doesn't use
physical addresses; various mechanisms in Pascal make
them unnecessary.

Pascal vs. FORTRAN -
If you are a FORTRAN programmer, these differences will be
particularly noticeable:

- There are no line numbers.

- Identifiers (names) are less restricted.

- The format of the program text is less restricted.

- The program control structures are more constrained.

Procedures and functions can be recursive: that is,
they can call themselves either directly or
i ndirectly.

- Block structure (see above) allows be tter program
organization and eliminates the need for common
blocks. Subprograms (procedures and functions) are
written within the main program, and automatically have
access to the main program's data.

- There is no equivalencing of variables.

- Variables can be created dynamically as the program
runs, and referenced through pointers.

What is Apple III Pascal? 5

- There is no implicit typing. The type of every
variable is explicitly declared.

- There are no OWN (SAVE) variables.

- I/O formatting facilities are simpler.

Structure of a Pascal Program
Every Pascal program has the following outline (words i n capi t a l
letters are "reserved words" of Pascal):

program heading,
containing the word PROGRAM and the program's name;

declarations of any user-defined data types,
variables, etc.

definitions of any procedures and functions

the word BEGIN

any number of statements, separated by semicolons

the word END, followed by a period

A Sample Program
Here is a very simple Pascal program, which displays 11 lines of
text on the screen. Each line displayed contains a di f ferent
number, counting from 0 to 10. The program is presented here
without explanation, just to show you wha t Pascal source text
looks like. The words between starred parentheses are
Pascal-language comments. At the end of the next chapter, we
will see this program again with an explanation.

6 Apple III Pascal

The

PROGRAM FIRSTEXAMPLE;

VAR I:INTEGER;

PROCEDURE DISPLAY (J:INTEGER);
BEGIN

WRITELN;
WRITELN('The number is

END;

BEGIN
FOR I:=0 TO 10 DO DISPLAY(I)

END.

J)

output from this program appears

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

program heading }

declaration of
a variable

{ procedure definition }

on the

end procedure
definition }

begin program body }
{ statement }

{ end of program }

screen as follows:

Overview of Pascal 7

8 Apple III Pascal

This chapter gives a brief account of each major feature of Apple
III Pascal, and tells you where to find further information in
this manual.

Pascal Source Text
The source text of a Pascal program is a sequence of symbols.
Symbols are like the words, spaces, and punctuation marks that
make up a paragraph of English sentences. The kinds of symbols
that make up Pascal programs are

- Reserved words (the fixed vocabulary of Pascal)

- Identifiers (names: some made up by the programmer,
and others built into the language)

- Numeric constants (numbers written in the program to be
used as data)

- Character and string constants (characters written in
the program to be used as data)

- Delimiters (special characters and punctuation)

These different kinds of symbols are described further under
"Elements of the Language" below.

A Pascal program can also contain comments. A comment is text
that is totally ignored by the Compiler; it serves to make the
program more comprehensible to a human reader. Anything enclosed
within the special symbols { and } is a comment; also , anything
enclosed within the special symbols (* and *) is a comment. For
example:

{This is a comment}
(*This is another comment*)

A comment formed with the {} delimiters can include the (* *)
delimiters, and vice versa.

The source text of a Pascal program is written free-form: that
is, you can break the text into lines in any way you like, you
can indent the lines in any way you like , and you can insert
spaces freely between symbols. For example , the Pascal statement

Overview of Pascal 9

FOR I:= 0 TO N DO BEGIN A:=I; B:=2*I+l END

can also be written as follows:

FOR I := 0 TO N DO BEGIN
A := I;
B := 2*I + 1

END

or in many other ways. All that matters is the sequence of
symbols. It is customary to break the text into lines which are
meaningful, and to use indentation (as above) to improve
clarity. There are no specific rules for this; as you learn the
language you will understand the way indentation is used in the
examples and develop your own style.

Another way to write our sample Pascal statement is

For i := 0 to n do Begin a:=i; b:=2*i + 1 End

In this manual, most Pascal program text is shown in capitals,
simply to set it off from other text. However, the
capitalization of letters is not significant in Pascal (except
within constants, as we will see).

Symbols
Symbols are the smallest meaningful elements in Pascal,
corresponding to the words, spaces, and punctuation in an English
sentence. Everything else in the language is built up out of
symbols.

Reserved Words
These symbols are words such as FOR, WHILE, AND, DO, and BEGIN.
They make up the essential vocabulary of Pascal and have fixed
meanings. A complete table of reserved words is given in
Appendix J.

Identifiers
These symbols are names for things such as variables, data types,
and procedures. Most identifiers are made up by the programmer

10 Apple III Pascal

and given meanings in declarations; other identifiers are names
of variables, data types, procedures, etc., that are built into
the language and don't need to be declared. The syntax for an
identifier is

identifier

letter

letter

digit

underscore

Thus an identifier must begin with a letter, and this letter may
be followed by any number of letters, digits, or underscores.
The Compiler ignores the case of letters; 'A' and 'a' are
equivalent. Underscore characters in an identifier are ignored;
their only purpose is to make an identifier more legible. Also,
only the first eight characters (not counting underscorss) are
significant. For example, the following six identifiers are
equivalent and interchangeable:

MYNUMBER
MY NUMBER
MY-NUMBER VALUE

mynumber
My Number
MY-NUMBER SYMROL

There is an important restriction on identifiers: an identifier
must not be the same as any reserved word.

Numeric Constants
Numeric constants are signed decimal integer or floating-point
values that are written into the program to be treated as data.
In Pascal there are two kinds of numeric data called integer and
real. Integer constants must fall in the range -32767 to 32767.
The following are valid integer constants:

-1 2 865 16383 -2000 0 1949

Overview of Pascal 11

A real constant contains a decimal point (period) and may contain
an "exponent part." The exponent part consists of the letter "E"
and a number, and indicates multiplication by a power of ten.
The following are valid real constants, and all represent the
same numerical value:

3.14159 0.314159El 3141.59E-3

Character Constants
These are single characters written into the program to be
treated as data. The apostrophe or "single quote" is used to set
off character constants. The following are examples:

'a' 'A' '0' '+'

The first two constants, 'a' and 'A', are not equivalent.
Capital letters are distinguished from lower case in constants.
The last example shows how to represent a single quote as a
character constant. By the way, don't confuse two single quotes
with the double-quote character ("), which has no meaning in
Pascal.

String Constants
These are character sequences written into the program to be
treated as data. Like character constants, they are set off by
apostrophes. Examples:

'Smith' '$408.23' 'Type your name: 'DON' 'T WORRY'

Capital letters are distinguished from lower case. The
next-to-last example shows how to use an apostrophe as a
character within a string constant. The last e~ample shows how
to represent a string consisting of no characters.

Delimiters
Delimiters have the effect of separating other symbols from each
other, which is why they are called delimiters. When two symbols
are not separated by a delimiter, they must be separated by a
space or a line break.

These special characters (and a few two-character combinations)
also have various special meanings such as arithmetic operations,
array indexing, setting off comments. etc. The. one-character

12 Apple III Pascal

delimiters are

() + - I * < >

and the two-character delimiters are

:= (* *) <= >= <>

Declarations
You can think of a Pascal program as being made up of two kinds
of "sentences"- -statements, which generally cause some kind of
action to occur when the program is executed, and declarations.
Use declarations to announce the nature of an identifier.

Variable Declarations
All variables must be declared (except dynamic variables, which
are discussed la,ter). The effect of a variable declaration is to
create an identifier, associate it with a data type, and allocate
memory space for it. Variable declarations are introduced by the
reserved word VAR. Example:

VAR NEWVALUE:INTEGER;
RESULT:REAL;

These two declarations create an identifier NEWVALUE which is the
name of an integer variable, and an identifer RESULT which is the
name of a real variable.

Constant Declarations
Identifiers may also be declared for numeric and character
constants. A constant identifier can then be used in the program
instead of the constant itself. Constant declarations are
introduced by the reserved word CONST. Example:

CONST PI=3.14.159;
ROWSIZE=64;
COLUMNSIZE=2048;

These three declarations create the identifiers PI, ROWSIZE, and
COLUMNSIZE, with the values indicated. In a program that uses
the value of pi in many different statements, it is more

Overview of Pascal 13

convenient to declare PI as shown and use it in the statements
instead of having to write 3.14159 repeatedly. Another advantage
of declared constants is that if a program is first developed
with ROWSIZE and COLUMNSIZE as shown above, and later you want to
change these values, you need only change the declarations rather
than searching through all the statements for the values 64 and
2048.

Type Declarations
Pascal allows you to declare your own data types, as described in
the next section. Type declarations are introduced by the
reserved word TYPE.

Data Types
Pascal has a great variety of data types. They are described
very briefly here, and several chapters are devoted to describing
them in detail. The data types are broken into two broad
categories called "simple" and "structured" types; a simple data
type represents just one value, while a structured type
represents a collection of values.

Most of the simple types are "scal&r" types. This important term
is defined in Chapter 3.

The Real Type
Real values are signed, 32-bit floating-point numbers in the
proposed IEEE format with a precision of about seven decimal
places (depending on the actual value). The range of real values
is from plus or minus l.401298464E-45 to plus or minus
3.402823466E38; also, 0.0 is a real value. (See Appendix E for
complete details.)

The Integer Type
Integer values are signed whole numbers in the range -32768 to
32767. There are also "long integers" which are BCD-coded and
can represent values up to 36 decimal digits.

14 Apple III Pascal

The Char Type
A value of type char is a character: that is, any member of the
extended 8-bit ASCII character set used on the Apple III.

The Boolean Type
A boolean value is either TRUE or FALSE. Such values result from
various kinds of expressions (such as comparisons), can be used
with the logical operators NOT, AND, and OR to result in new
boolean values, and are used in some of the control statements of
Pascal. Note that TRUE and FALSE are not numerical values.

User-Defined Scalar Types
In Pascal, a scalar data type is one that has a fixed number of
possible values which form a fixed sequence. The integer, char,
and boolean types are scalar types (the sequence for char values
is the sequence of the ASCII table, and the sequence for booleans
is FALSE, TRUE).

You can also define your own scalar types. For example, the
declaration

VAR DAY:(SUN, MON, TUES, WED, THURS, FRI, SAT);

creates a variable called DAY. The possible values of DAY are
represented by the identifiers SUN, MON, etc. The actual values
are internal bit patterns, of course, but you don't need to know
what they are because you have the identifiers for them. The
values have the ordering indicated in the declaration.

Subrange Types
Subrange types are variations on the scalar types described
above. For example, the declaration

VAR DAYNUM: 1 .. 7;

creates an integer subrange variable whose values cannot be less
than 1 or greater than 7. If the program tries to give DAYNUM a
value outside this range, tl.e interpreter will halt the program
with an error message. Subrange types can also be based on the
char type and on user-defined scalar types, as shown in the
following declarations:

Overview of Pascal 15

• +·-··
VAR CAPITALS:'A' •• 'Z';

DAY:(SUN, MON, TUES, WED, THURS, FRI, SAT);
WEEKDAY:MON •• FRI;

Subrange types are particularly useful for array indices.

The String Type
The value of a string variable is a sequence of char values.
Besides the value, a string variable also has a length attribute
which is automatically maintained by the system when the value of
the string changes during program execution. The declaration

VAR IASTNAME: STRING;

creates a variable LASTNAME of type string. The maximum length
for a string is 255 characters. Apple III Pascal has a powerful
set of built-in procedures and functions for manipulating string
values.

Array Types
An array is a collection of values, all of the same type. The
values are called array elements. A particular element of an
array can be referenced by writing the name of the array followed
by one or more indices enclosed in square brackets []. The array
is said to have one dimension for each of its indices.

Pascal arrays are very flexible. They can have any number of
dimensions (subject to space restrictions). The elements of an
array can be of any type except file types. The indices of an
array can be of any subrange type (including integer subranges),
or any scalar type except integer. The declaration

VAR NUMS: ARRAY[0 •• 511] OF REAL;

creates a one-dimensional array named NUMS, with 512 elements.
Each element is a real value. The first element in the array is
NUMS[0] and the last is NUMS[511]. The declaration

VAR MATRIX: ARRAY(l •• 255, 1 •• 64] OF BOOLEAN;

creates a two-dimensional 255x64 array of boolean values. Note
that this time, the indices start at 1 instead of 0. Finally,
the declaration

16 Apple III Pascal

VAR CHARCODE: ARRAY[CHAR] OF 0 •• 255;

creates a one-dimensional array which contains values in the
range 0 to 255. The array is indexed by characters. For
example, CHARCODE['A'] refers to the 66th element of the array,
since the character A is the 66th character in the ASCII set.

Record Types
Like an array, a record variable is a collection of values; but
the values belonging to a record need not all be of the same
type. Each element of a record variable has its own identifier.
The declaration

VAR PERSON: RECORD
FIRSTNAME: STRING;
INITIAL: CHAR;
LASTNAME: STRING;
AGE: INTEGER

END;

creates a record variable PERSON which contains four values; two
of the values are strings, one is a char, and one is an integer.
The elements of PERSON are referred to in the program as
PERSON.FIRSTNAME, PERSON.INITIAL, PERSON.LASTNAME, and
PERSON.AGE.

Set Types
The declaration

VAR SPECIALCHARS: SET OF CHAR;

creates a set variable SPECIALCHARS which is a set of
characters. We say that the type char is the base type of the
set SPECIALCHARS. During program execution, the actual value of
SPECIALCHARS is a bit pattern which reflects the presence or
absence of each character in the ASCII character set; to make use
of this value, Pascal provides a notation for writing a set value
as in the following assignment statement:

SPECIALCHARS := ['.', ':', ';']

This statement assigns to SPECIALCHARS the set of characters
consisting of the period, colon, and semicolon characters.
Pascal also provides operations for adding a new member to a set,

Overview of Pascal 17

testing to see if a particular value is a member of the set,
forming the union, intersection, or difference of two sets, and
comparing sets. The base type of a set can be any subrange type
(including integer subranges), or any scalar type except
integer. The base type cannot have more than 512 possible
values; this means that a set cannot have more than 512 members.

Dynamic Variables and Pointers
Pascal provides a mechanism for using variables that are created
during program execution, using unallocated memory space; these
are called dynamic variables. A dynamic variable can be of any
data type (except a file type, which is discussed in the next
section). A dynamic variable is not declared; instead, a pointer
variable is declared. During program execution, the pointer is
used to create one or more dynamic variables. For example,
consider the following declarations:

TYPE PREC=RECORD
FIRSTNAME: STRING;
INITIAL: CHAR;
LASTNAME: STRING;
AGE: INTEGER

END;

VAR PPTR: APREC;

The type PREC is equivalent to the type of the PERSON variable in
the example for record types (see above). The pointer variable
PPTR is defined as a pointer to a dynamic variable of type PREC.
The program can then contain the statement

NEW(PPTR)

which creates a new dynamic variable of type PREC. This variable
can be referred to in the program as PPTRA, and its elements as
PPTRA.FIRSTNAME, PPTRA.INITIAL, etc.

File Types
In Pascal, files are considered to be program variables. A file
is considered to be a sequence of an indefinite number of data
elements, all of the same type. The elements can be of any type
except a file type. The declaration

VAR OUT: FILE OF INTEGER;

18 Apple III Pascal

creates a file variable OUT whose elements are of type integer.
Physically, a file in the Apple III system is either a diskette
file or some device or device driver attached to the system; so
Apple III Pascal has mechanisms for associating a file variable
with an externai file. A powerful set of built-in procedures is
provided for doing file I/O.

Statements
Pascal statements do the work of a Pascal program. There are ten
distinct kinds of statement in Pascal; they are described here
very briefly. A distinctive feature of Pascal is that some kinds
of statements can contain other statements.

Pascal uses the semicolon character in two ways. In the
preceding sections we have seen semicolons used to
terminate declarations. In the body of a program or
procedure, Pascal uses semicolons to separate statements.
When a semicolon appears at the end of a statement, it is
not part of the statement: it stands alone and separates
the statement from the next statement. If the next thing
in the text is not a statement (for example, the word
END), no semicolon is required. The examples in this book
use semicolons only where they are actually required.

The Assignment Statement
An assignment statement gives a value to a variable. An example
is

MEANVAL := (LEFTVAL + RIGHTVAL) / 2

where MEANVAL, LEFTVAL, and RIGHTVAL are variables of type real.
The effect of this assignment statement is to calculate the sum
of the current values of LEFTVAL and RIGHTVAL, divide by 2, and
make the resulting value the new value of MEANVAL.

The Procedure Call Statement
Procedures are discussed further on; they can be thought of as
subprograms that are embedded in the main program. The statement

WRITE(' ABCD')

Overview of Pascal 19

is a procedure call statement that activates the WRITE
procedure. WRITE is a built-in procedure; that is, it is
automatically available to all Apple III Pascal programs. In the
example, the procedure call statement passes the string ABCD to
the WRITE procedure as a parameter; WRITE will display the string
on the screen.

The Compound Statement
In some ways this is the most important kind of statement in
Pascal. It consists of the reserved word BEGIN, followed by any
number of Pascal statements , followed by the reserved word END.
This allows you to put any number of statements in a place where
only one statement is allowed, since the compound statement is
just one statement. You will see many examples of this
practice. Also, the body of every program and of every procedure
and function definition is a single compound statement.

The IF Statement
The IF statement provides conditional execution of a statement
which is contained in the IF statement . The condition is the
value of an expression, which has a boolean value (TRUE or
FALSE). An example:

IF A < B THEN C := D

In this example, the assignment statement C := D will be executed
only if the expression A < B has the value TRUE--that is, if the
value of A is less than the value of B. Another example:

IF X = Y THEN BEGIN
MATCHCNT := MATCHCNT + l;
WRITELN('X is equal to Y')

END

This shows the use of a compound statement, which will be
executed only if X and Y have equal values . Inside the compound
statement are two statements--an assignment statement and a
procedure call. Note the use of a semicolon to separate the two
statements. Also, note that just as the compound statement is a
single statement containing two other statements, the entire IF
statement is a single statement containing the compound
statement.

20 Apple III Pascal

An IF statement can also have an ELSE part , which is executed
only if the condition is FALSE; for example,

IF M = 0 THEN ZEROCNT :z ZEROCNT + 1
ELSE NONZEROCNT := NONZEROCNT + 1

Here either ZEROCNT or NONZEROCNT will be incremented , depending
on whether or not M is equal to 0.

The CASE Statement
The CASE statement lets a program select and execute one
statement from a set of statements. The CASE statement contains
an expression, and the statements inside the CASE statement are
labeled with possible values of the expression; thus the value of
the expression selects one statement to be executed . An
example:

CASE COMMCH OF
'A': APPEND;
'R': REORDER;
'F': FORGET;
'X': BEGIN

END

WRITELN('Exiting from program');
EXIT(PROGRAM)

END

where the controlling expression is COMMCH (a char variable) and
APPEND, REORDER, FORGET, and EXIT are procedures . If COMMCH is
'A', the first statement is executed , calling the APPEND
procedure. If COMMCH is 'R' , the second statement is executed to
call the REORDER procedure , and so forth . Note the use of a
compound statement to do two things in the 'X' case . If COMMCH
does not match any of the labels in the CASE statement, none of
the statements within the CASE statement are executed; the
program proceeds to the next statement after the CASE statement .

The REPEAT and WHILE Statements
These statements, like the IF statement , contain an expression
whose value is boolean (TRUE or FALSE). A REPEAT statement
contains one or more statements which are executed once, and then
repeated if the expression's value is FALSE . Repetition
continues until the expression's value is TRUE. The following
example prompts the user to type the word "cat" and repeats until

the user does so:

REPEAT
WRITE('Type the word "cat" ');
READLN(INSTRING)

UNTIL INSTRING = 'cat'

Overview of Pascal 21

In this example , the built-in procedure READLN reads whatever the
user types (terminated with the RETURN key) and puts the
characters in INSTRING.

The WHILE statement executes a single (possibly compound)
statement repeatedly, as long as the value of the controlling
expression is TRUE. This value is tested before anything is
executed; thus in some cases the statement within the WHILE
statement may not be executed at all. The following example is a
variation on the previous one; note that the symbol <> means "not
equal to":

WRITE('Type the word "cat" ');
READLN(INSTRING);
WHILE INSTRING () 'cat' DO

BEGIN
WRITELN('You typed ', INSTRING);
WRITELN(' Try again:');
WRITE('Type the word "cat" ');
READLN(INSTRING)

END

The compound statement in the WHILE statement is executed only if
the user fails to type "cat" on the first try; but in this event
the compound statement is executed until the word "cat" is
typed.

The FOR Statement
The FOR statement controls repetition of a single (possibly
compound) statement by counting . For example, the following
statement will list the integers from 1 to 10 on the screen:

FOR NUMBER := 1 TO 10 DO WRITELN(NUMBER)

where NUMBER is an integer variable which is used as the control
variable of the FOR statement . First the value 1 is assigned to
it . Then the WRITELN statement is executed (using the current
value of NUMBER) . Then the value of NUMBER is changed to the

22 Apple III Pascal

next integer in sequence, and the WRITELN is executed again. The
process is repeated until the value of NUMBER exceeds the value
of the limit expression, which is 10 in this case. Thus the last
number written on the screen is 10.

The FOR statement can also count in reverse, by using the word
DOWNTO instead of TO. The following will list the letters in
reverse order from Z to A:

FOR CHARACTER := 'Z' DOWNTO 'A' DO WRITELN(CHARACTER)

Notice that in this example character values are used instead of
integer values. In fact, any scalar type can be used to control
a FOR statement.

The WITH Statement
The WITH statement is a convenience for referring to the fields
within a record variable without having to write the identifier
of the record repeatedly.

The GO TO Statement
The GOTO statement causes an unconditional "jump" to a specific
statement. There are some important restrictions on the use of
GOTO in Apple III Pascal; see Chapter 5 for details.

Expressions
Pascal expressions are "algebraic" in form. An expression can
contain just a single value, such as a variable identifier or a
constant, or it can be a complex combination of various operands
and operators.

Arithmetic Operators
For arithmetic operations with real and integer operands, the
operators are

+

*
I
DIV

MOD

Overview of Pascal 23

addition
subtraction or negation
multiplication
division with real result
division of integers with integer result
rounded toward zero
remainder of integer division

In Apple III Pascal , all arithmetic operations on real
values conform to the proposed IEEE floating-point
standard . See Appendix E for complete details .

Comparison Operators
Comparisons between scalar or real operands , yielding boolean
results, are performed by the operators

> greater than
>= greater than or equal to

equal to
<= less than or equal to
<> not equal to

Logical Operators
Logical operations with boolean operands and boolean results are
performed by the operators

NOT
AND
OR

boolean negation
boolean conjunction
boolean disjunction

Set Operations
Set operations with set results are performed by the operators

+

*

union
difference
intersection

Set comparisons , with boolean results , are performed by the
operators

24 Apple III Pascal

equal to
<> not equal to
>= includes or is equal to
<= is included by or equal to
IN is a member of

Notice that some of the operator symbols are used in more than
one way: for example, the + symbol can be the numeric addition
operator or the set union operator. In such a case, the meaning
of the operator symbol depends on the operands.

Procedures
A procedure can be thought of as a "subprogram," which is defined
(that is, written) inside the main program (before the main
program's body of executable statements) and can then be executed
by the main program, using a procedure call statement.

An example of a procedure definition:

PROCEDURE 'IWOLINES;
BEGIN

WRITELN;
WRITELN;

END;

This procedure does nothing but call the WRITELN procedure twice;
this displays two blank lines on the screen. A more useful
procedure would be

PROCEDURE NLINES (NUMBER: INTEGER);
VAR COUNTER: INTEGER;
BEGIN

FOR COUNTER:=! TO NUMBER DO WRITELN
END;

This procedure has a parameter: an integer value which is called
NUMBER within the procedure definition. The value of NUMBER is
determined when NLINES is called by a statement such as

NLINES(S)

which gives the value 5 for the parameter. NLINES uses the value
of NUMBER as the limit value in a FOR statement; the procedure

Overview of Pascal 25

call statement NLINES(S) would cause NLINE to put five blank
lines on the screen.

Notice that in order to use the FOR statement, NLINES needs an
integer variable to control it. Therefore NLINES contains a
declaration of the integer variable COUNTER. This variable
belongs to NLINES and is unknown to the rest of the program. In
fact, the main program could have another variable with the same
name, COUNTER, and this would not cause any problems.

Every procedure has the following general outline:

procedure heading,
consisting of the word PROCEDURE, the procedure's name,
and a list of any parameters;

declarations of any user-defined data types,
constants, variables, etc.

definitions of any procedures and functions

the word BEGIN

any number of statements, separated by semicolons

the word END, followed by a semicolon

Compare this to the structure of a program shown in the previous
chapter. The underlines indicate the only differences between a
procedure definition and a program. Note that procedure
definitions can be written inside other procedure .definitions;
when this is done, the inner procedure belongs to the outer one,
and is unknown to the rest of the program .

For more about procedures , see Chapter 6.

Functions
A function is a procedure that returns a value. While a
procedure call is a statement , a function call is an operand in
an expression. The function calculates a value, and this value
becomes the value of the operand in the expression . The
following function calculates the cube of a rea l value:

26 Apple III Pascal

FUNCTION CUBE (V: REAL): REAL;
BEGIN

CUBE := V * V * V
END;

Note that the function heading includes the type of the value
calculated by the function. Within the function, the function
name appears on the left side of an assignment statement; this
establishes the value that the function returns. The CUBE
function could be used in an expression as follows:

CUBE(5.7*Y) + 2.3

In evaluating this expression, the value of Y is first multiplied
by 5.7. The result is the parameter value to be passed to CUBE.
The CUBE function is then executed, and it calculates the cube of
the parameter value. This value then becomes the first operand
in the expression; 2.3 is added to it to get the value of the
expression.

For more about functions, see Chapter 6.

Built-In Procedures and Functions
Pascal has a large set of procedures and functions built into
it. These procedures and functions do not have to be defined;
they do not reside in a library; they are part of the language
itself and are automatically available to all programs. They
serve such purposes as control of input and output, various
mathematical functions, manipulation of strings, use of dynamic
variables, and various special purposes. Further information on
the built-in procedures and functions is in various chapters,
along with the topics that the procedures and functions relate
to.

Pascal Program Structure
Chapter 1 gives an outline of the structure of a Pascal program.
We can now show the structure in a slightly more sophisticated
way. First we define something called a block.

Overview of Pascal 27

Every block has the following outline:

optional label declarations~the word LABEL followed by
declaration of labels

optional constant declarations~the word CONST followed by
declarations of identifiers for constants

optional type declarations~the word TYPE followed by
declarations of user-defined data types

optional variable declarations~the word VAR followed by
declarations of variables

optional definitions of procedures and functions

one compound statement

The LABEL declaration has been mentioned briefly; it is only
needed in a block that uses GOTO statements.

The idea of a block is important in Pascal. For one thing, we
can now say that the outline of every program is

program heading

optional USES declaration

block

period

(The USES declaration is explained below.) Similarly, the
outline of every procedure definition is

procedure heading

block

semicolon

and the outline of every function definition is

28 Apple III Pascal

function heading

block

semicolon

The Scope of Identifiers
The scope of an identifier is simply the part of the program in
which it is known. Here are the rules about the scope of
identifiers:

- An identifier that is declared in a procedure or
function is not known outside of that procedure or
function. This includes the identifiers of parameters
in the procedure or function heading.

- A procedure or function can re-declare an identifier
which was already declared outside the procedure or
function. In this case there are two different things
that happen to have the same identifier, but there is
no problem: the "outer" identifier is unknown inside
the procedure or function, and vice versa.

- The identifier of a procedure or function is considered
to be declared both inside and outside the procedure or
function. That is, the identifier is known both inside
and outside and you cannot re-declare it.

To see how this works, consider the following fragment of a
program:

PROGRAM SAMPLE;

CONST MSG= 'Limit exceeded.';

VAR LIMIT:REAL;

PROCEDURE TSTLIM (X: INTEGER);
CONST LIMIT=3;
BEGIN

IF X) LIMIT THEN WRITELN(MSG)
END;

BEGIN

Overview of Pascal 29

The string constant MSG is known throughout the program,
including the procedure TSTLIM. We say that MSG is local to the
program and global to TSTLIM.

The integer variable X, declared in the procedure heading of
TSTLIM, is known only inside TSTLIM. We say that X is local to
TSTLIM and unknown to the program.

The real variable LIMIT is known throughout the program, except
inside TSTLIM, because the integer constant LIMIT is declared
within TSTLIM. The integer constant LIMIT is local to TSTLIM and
unknown to the program--while the real variable LIMIT is local to
the program and unknown to TSTLIM.

The example shows a procedure within a program, but exactly the
same rules apply when a procedure or function is nested within
another procedure or function.

This scoping of identifiers becomes a real advantage when a
program is large or complex . It means that you (or some other
programmer) can develop a procedure without worrying about
whether the procedure's variables will conflict with the main
program's variables.

Library Units
A library unit is a package of "public" procedures, functions,
variables, etc. that has been compiled separately and placed in a
library file. A file named SYSTEM.LIBRARY is an integral part of

30 Apple III Pascal

the system and contains a number of standard packages. These
packages provide such things as transcendental functions,
graphics functions, and access to special Apple III machine
features.

A program that uses a library unit has access to all the public
features of that unit, just as if they were declared at the
beginning of the program. To use a unit, the program merely
gives the name of the unit in a USES declaration immediately
after the program heading. For example, two of the standard
units are called TRANSCEND and APPLESTUFF. To use both of them,
a program would have the declaration

USES TRANSCEND, APPLESTUFF;

immediately after the program heading.

Sample Program
At the end of Chapter 1, a sample program was given without
explanation. Now we can explain how the program works.

PROGRAM FIRSTEXAMPLE;

VAR I: INTEGER;

PROCEDURE DISPLAY (J:INTEGER);
BEGIN

WRITELN;
WRITELN('The number is

END;

BEGIN
FOR !:=0 TO 10 DO DISPLAY(!)

END.

J)

program heading

declaration of
a variable

{ procedure definition

end procedure
definition }

begin program body
{ statement

{ end of program

One procedure, DISPLAY, is declared. DISPLAY accepts one
parameter, an integer value which is known within the procedure
as J,

Notice that the program body contains just one statement: a FOR
statement that repeats for values from 0 through 10. The FOR

Overview of Pascal 31

statement is controlled by the integer variable I, declared in
the VAR declaration at the beginning of the program.

Each time the FOR statement executes, it executes a procedure
call to the DISPLAY procedure. The procedure call passes the
current value of I to DISPLAY. DISPLAY assigns this value to its
own variable J, DISPLAY then executes two statements:

- First it calls the built-in procedure WRITELN with no
parameters. This causes a blank line to be displayed
on the screen.

- Then it calls WRITELN again with two parameters
(separated by the comma). The first parameter is the
string constant 'The number is ', and the second is the
integer value J, WRITELN displays these values on one
line on the screen.

Each time DISPLAY is called, the value of I is passed to it as
the value for J. Since I is the control variable of the FOR
statement, it takes on the values 0 through 10 in sequence.
Therefore, the output from the program is

The number is 0

The number is 1

The number is 2

The number is 3

The number is 4

The number is 5

The number is 6

The number is 7

The number is 8

The number is 9

The number is 10

32 Apple III Pascal

Simple Data Types 33

34 Apple III Pascal

Introduction
Every piece of data used or created by a Pascal program has an
attribute called its type. The type tells the program and the
system how to interpret the piece of data. For example, one of
the fundamental types is the integer type; another distinct type
is the real type. An integer value is a signed whole number,
while a real value is a signed floating-point number. You can
think of a data type as a definition of the set of possible
values that the data can have.

If the piece of data is the value of a named constant or
variable, its type is assigned when the constant or variable is
declared. Otherwise, the type of the data depends on how the
program inputs or creates the data.

Pascal offers an especially wide range of built-in types, each
with its own identifier. Pascal also allows you to define your
own types within a program. A user-defined type can be a
composite of built-in types, for example, or it can be a subrange
of a built-in type. In this chapter, we cover the simple data
types~i.e. the types that a single value can have. These are

The type REAL
The scalar types:

INTEGER and LONG INTEGER
CHAR
BOOLEAN
User-defined scalar types
Subrange types

Other chapters will cover the structured data types, where a
typed piece of data can be a collection of various single
values.

Jensen and Wirth, in their definition of Pascal, define
the type REAL to be a scalar type. Most books on Pascal
follow Jensen and Wirth on this point. But REAL values
are not handled in the same way as values of other scalar
types, and are an exception to most of the rules about
scalars; therefore, this book considers reals to be a
separate category.

Simple Data Types 35

Declarations
As described in the previous chapter, the structure of a Pascal
program includes sections for several different kinds of
declarations. Here is a sample program that uses two kinds of
declarations:

PROGRAM XYZ;

CONST MAXA = 24;
MAXB = 31;
COEFFICIENT

VAR A
B

x

BEGIN

INTEGER;
INTEGER;
REAL;

{An integer constant}
{Another integer constant}

17.3; {A real constant}

{An integer variable}
{Another integer variable}
{A real variable}

FOR A := 0 TO MAXA DO
FOR B := 0 TO MAXB DO

BEGIN

END.

X := A + B*COEFFICIENT;
WRITELN(X)

END

Note that different kinds of declarations must be placed
in a specific order in the program. Variables are always
declared last, and constants are always declared before
variables. There are also several other kinds of
declarations; further on in this chapter we will see type
declarations.

Declaring Constants
Generally, constants do not have to be declared; however, it is
often a convenience to do so. When you declare a constant, you
are creating an identifier and associating it with a specific,
unchanging value. All constant declarations are grouped together
and introduced by the reserved word CONST.

36 Apple III Pascal

The syntax diagram for constant declarations is

constant declarations

-8c:! ,,00";;,,0 , ~•-c-ons_t_a_n_t_kJ)
Note the use of the "="
ends with a semicolon.
the following:

symbol, and note that each declaration
In this diagram, "constant" can be any of

- A signed or unsigned whole number representing a value
of type INTEGER. (See se\'.t1on further on for LONG
INTEGER numbers).

- A signed or unsigned floating-point number representing
a value of type REAL.

- A character or string of characters enclosed in
apostrophes, representing a value of type CHAR or type
STRING. A single character string constant is
identical to a constant of type CHAR. Strings are
explained in Chapter 7.

- The identifier of a previously declared constant (to
create a new constant with the same value and a
different identifier).

The following example declares two constants:

CONST Pl = 3.14159;
MAXITERATIONS = l~;

The first constant, PI, has the value 3.14159 , and the second,
MAXITERATIONS, has the value 1~. Pl is a constant of type real
and MAXITERATIONS is a constant of type integer.

You can use the constant Pl wherever a real value is allowed; for
example, in the expression

2 * Pl * RADIUS

where RADIUS is a variable . In this expression, 2 is an example
of an integer constant that has not been declared . Incidentally ,
the integer value 2 is automatically converted to the real value

Simple Data Types 37

2.0 before the multiplication takes place (for details, see
Chapter 4).

Declaring a constant such as PI is a convenience, not a
necessity; you could write

2 * 3.14159 *RADIUS

and it would mean exactly the same thing.

Declaring Variables
All variables must be declared. When you declare a variable, you
are creating an identifier and associating it with a specific
data type; when the program is executed, the variable can take on
any of a set of values depending on the type. All variable
declarations are grouped together and introduced by the reserved
word VAR.

The following example declares two variables:

VAR RATIO: REAL;
ITERATION: INTEGER;

Again, each declaration ends with a semicolon. The first
variable, RATIO, is of type real, and the second, ITERATION, is
of type integer. When two or more variables of the same type are
declared, you can combine the declarations:

VAR I, J, K: INTEGER;
X, Y, Z: REAL;

This declares three integer variables, I, J, and K, and three
real variables, X, Y, and z.

In the remainder of this chapter, you will see many examples of
variable declarations, using many different data types. However,
all of them follow the general form of the examples just given.
The syntax diagram for variable declarations is

38 Apple III Pascal

variable declarations

type

Note the use of the ":" symbol, and note that each declaration
ends with a semicolon. The word "type" in the diagram stands for
any of a wide range of possibilities. In this chapter we are
concerned with certain predefined types, which are represented by
identifiers such as INTEGER and REAL; we will also introduce two
of the ways in which you can define new data types.

The Real Type
A value of type real is a signed floating-point number. It is
stored as a 32-bit number following the IEEE format. Real values
can be combined with each other by means of the arithmetic
operators +, -, *• and I to yield real results. A real value can
also be combined arithmetically with an integer value; when this
happens, the integer value is first automatically converted to a
real value, and the result is real.

An integer value is also automatically converted to a real value
when it is assigned to a real variable. A real value can be
converted to an integer value in either of two ways: the TRUNC
function and the ROUND function. These built-in functions are
described in the last section of this chapter.

A real value can be compared arithmetically with another real
value or with an integer value by means of the <, <=, >=, >,
and <> operators, to yield boolean results.

The range of real values is from plus or minus l.401298464E-45 to
3.402823466E38; 0.0 is also a real value. Each real value is
represented in 32 bits (two 16-bit words, or four 8-bit bytes).
This gives a precision of about 7 significant digits (de pending
on the actual value).

Simple Data Types 39

Warning: do not confuse the Pascal type real with the
mathematical idea of a real number. The Pascal type is a
floating-point bit pattern or code which can be used to
represent a number in the computer. These codes and the
operations on them do not always correspond exactly to
their mathematical counterparts.

For example, if the exact result of an operation on reals
can't be represented in the 32-bit format, it is
automatically rounded to fit. Subsequent calculation with
this rounded value may make later results approximate as
well. It is a wise precaution to analyze your program
carefully, anticipating errors from this cause. See
Appendix E for further information.

Declaring Real Variables
As shown in the examples above, real variables are declared by
using the word REAL to the right of the colon in the
declaration.

Declaring Real Constants
A constant of type real can be declared in a constant declaration
with a literal floating-point number to the right of the equal
sign (read on for examples). The syntax for a floating-point
number is

floating-point number

tgf(.....__ldigit-~-digi-t __.I~ __ .. , 7· .

and the syntax for an "exponent" is

40 Apple III Pascal

exponent

digit

Examples are

3.14159 2.0 -3.5 12.6E3 7.8236E-12 -83769E-3

The "E" notation indicates a power of ten; for example, 12.liE3
and 12600.0 mean the same thing. Note that the last example has
no decimal point; this shows that if a numeric constant has
either a decimal point or an "E" in it, it is considered to be a
real constant. Finally, note that if there is a decimal point,
it must have at least one numeric digit on either side of it.

Scalar Types
A scalar data type has a distinct set of possible values, which
are considered to be ordered in a specific way: they can be put
in one-to-one correspondence with some sequence of possible
values of type integer. There are three built-in scalar types,
namely integer, char, and boolean ; these are described helow.
Also, you can create your own scalar types.

In Apple III Pascal, the type real is not a scalar type by this
definition; the reason is that there are not enough integer
values to match up with all the possible real values .

The Integer Type
Integer values are whole numbers in the range from -32768 through
32767. Integer values can be combined with each other by means
of the arithmetic operators +, -, *, DIV, and MOD to yield
integer results, or by means of the I operator to yield a real

Simple Data Types 41

result. An integer value can also be combined arithmetically
with a real value; when this happens, the integer value is first
automatically converted to a real value, and the result is real.

An integer value can be compared arithmetically with another
integer value or with a real value by means of the <, <=, >=,
>, and <> operators, to yield boolean results.

An integer value is automatically converted to a real value when
it is assigned to a real variable.

Declaring Integer Variables
As shown in the examples above, integer variables are declared by
using the reserved word INTEGER to the right of the colon in the
declaration.

Declaring Integer Constants
A constant of type integer can be an identifier previously
declared in a constant declaration or a non-floating-point
number. The syntax for a non-floating-point number is

non-floating-point number

digit

Examples are

I ~ -3 23583 -4532

Note that a non-floating-point number is one that contains
neither a decimal point nor the letter "E". Note also that
-32768 cannot appear as an integer constant in a program.

42 Apple III Pascal

MAX/NT
MAXINT is the identifier of a built-in constant whose value is
the largest possible integer, 32767.

The Long Integer Type
This is a special-purpose type. A long integer variable contains
a signed whole number represented internally as a sequence of up
to 36 binary-coded decimal (BCD) digits. The maximum number of
digits is specified by a length attribute in the declaration of
the variable. For example, the declaration

VAR CENTS: INTEGER[9];

creates a long integer variable named CENTS which can represent a
value of up to 9 decimal digits. You can specify a length
attribute up to and including 36. (The actual limit, at run
time, may be greater than the number you specify.)

There are also long integer constants; any constant whose value
is a non-floating-point number greater than 32767 (the largest
integer) or less than -32768 (the least integer) is a long
integer constant.

An integer value can be assigned to a long integer variable; it
is automatically converted to a long integer value. A long
integer value cannot be directly assigned to an integer variable;
however, if it is not greater than 32767 or less than -32768 it
can be converted to an integer value by means of the TRUNC
function descr i bed further on in this chapter.

Long integers cannot be used as freely as integers. Long
integers can be combined with each other by means of the +, -, *,
and DIV operators (but not the I and MOD operators), to give long
integer results. With the same operators, a long integer value
can be combined with an integer value; the integer value is
automatically converted to a long integer and the result is of
type long integer.

In long integer arithmetic, overflow occurs if any
intermediate or final result would exceed 36 digits.
causes a run-time error halt.

This

Simple Data Types 43

Note that long integer is not a scalar type, for the same reason
that real is not a scalar type--there are more possible long
integer values than there are integer values. Long integers are
mentioned here simply because they are conceptually related to
integers.

The standard system library file, SYSTEM.LIBRARY, contains
a library unit called LONGINTIO. Long integer operations
cannot be executed unless this unit is available to the
program at start of execution.

The Char Type
A char value is any character from the 8-bit ASCII character set
used on the Apple III. Thus the char values correspond to the
integers from 0 to 255; the integer associated with each char
value is called its ASCII code. The first 128 char values (ASCII
0 through ASCII 127) have standard interpretations as printing
characters and control characters, as shown in the ASCII code
table in Appendix J. The remaining char values can also be used
as explained below in the section on the CHR function.

A char variable is declared by using the reserved word CHAR in
the declaration. For example, the declaration

VAR CURRENT_CH, LAST_CH: CHAR;

declares two variables (CURRENT_CH and LAST_CH) of type char.

A character constant is formed by placing the character between
apostrophes (single quotes), as in the following examples:

'a' '5'

Note that the value of the third constant is the apostrophe
character; this is a special notation. The value of the last
constant is the space character.

44 Apple III Pascal

A character constant can be declared, as in the following
example:

CONST FLAG_CH = IAI;

The CH R Function
In the 8-bit ASCII set there are numerous character values that
cannot be represented as char constants, since they cannot be
entered from the keyboard when you are using the Editor. To
represent such char values (and for other purposes), Pascal has a
built-in function, CHR. To use this function, the form is

CHR (expression)

where the expression can be any expression with an integer value
in the range from 0 to 255. ' Note that this can be just an
integer constant, namely the ASCII code for the desired
character. For instance, the value of

CHR(0)

is the "NUL" (null) character, whose ASCII code number is 0.

The ASCII codes in the range 128 through 255 are not
assigned to specific characters, but are nevertheless
usable as ASCII code values; thus CHR(200) is a valid
function call and returns "the character whose ASCII code
is 200" even though this does not have a standard
interpretation. These characters can be generated on the
keyboard by holding down the Open Apple key and typing a
character. The Open Apple key sets the high bit of the
8-bit ASCII code to 1, which has the effect of adding 128
to the code shown in the ASCII code table in Appendix J.

The CHR function does not check its parameter value to
make sure it is in the range 0 through 255. If the
parameter value is outside this range, CHR will return an
undefined character value.

Simple Data Types 45

The Boolean Type
By definition, there are only two boolean values, represented by
the words FALSE and TRUE. These words are actually identifiers
for built-in constants, whose values represent a logical "false"
result and a logical "true" result, respectively. These are not
numerical values (though of course they are represented
internally as binary numbers). FALSE is less than TRUE.

Boolean values are created in various ways; in particular, the
results of comparison operations are boolean values. For
example, the value of the expression

LEGAL AGE) AGE

(where LEGAL AGE and AGE are integer variables) is either TRUE or
FALSE. An iiportant use for boolean value s is in controlling the
program. For example, a boolean value can be used to control an
IF statement:

IF LEGAL_AGE) AGE THEN WRITE('Below legal age.')

The WRITE statement is executed if and only if the boolean value
of LEGAL AGE > AGE is TRUE.

Boolean variables are declared by using the r e s e rved word BOOLEAN
in the declaration. For example, the decla~ation

VAR FLAGl, FLAG2: BOOLEAN;

creates two boolean variables, FLAGl and FLAG2.

You can also declare boolean constants, by giving FALSE or TRUE
as the value.

Defining New Scalar Types
The boolean type is an example of a data type where the values
are represented by identifiers. The "meaning" of these values is
in the way they are used. You can define a new scalar type by
listing the identifiers for its values. For example, the

46 Apple III Pascal

declaration

VAR FIDDLE: (BASS, CELLO, VIOLA, VIOLIN);

creates a variable, FIDDLE, whose possible values are the listed
identifiers from BASS to VIOLIN. These four identifiers are
constants. They correspond to the integers 0, 1, 2, 3, so that
they are strictly ordered; for example, the value CELLO is less
than the value VIOLA.

The syntax diagram for a declaration of a user-defined scalar
type is

user-defined scalar type

new
identifier

Like boolean values, these user-defined scalar types are useful
for control purposes; examples will be found in Chapte.r 5.

It is often useful to declare a new type explicitly. For
example, instead of declaring FIDDLE in the manner shown above,
you could first declare the type as follows:

TYPE STRING INSTRUMENT= (BASS, CELLO, VIOLA, VIOLIN);

and then declare

VAR FIDDLE: STRING_INSTRUMENT;

Subrange Types
Subrange types are used to provide automatic run-time range
checking. A subrange type is based upon some scalar type which
is called the "base type." The subrange type is exactly like the
base type, except that its possible values are a subset of the
possible values of the base type. For example, the declaration

Simple Data Types 47

VAR X: 11) •• 255;

creates a variable X which is exactly like an integer variable
except that it can only have values from 0 to 255. If the
program attempts to give X a value less than 0 or greater than
255, it will be halted with an error message. Another example:

TYPE CAPITAL LETTER= 'A' 'Z';

This creates the new type CAPITAL LETTER, whose possible values
are the capital letters from 'A' through 'Z'.

You can create a subrange type based on any scalar type,
including user-defined scalars. For example,

TYPE LOW STRING BASS •• VIOLA;

creates the type LOW_STRING, which is a subrange of the type
STRING INSTRUMENT in a previous example. The syntax for a
subrange type is

subrange type

constant constant

where the two constants must be of the same type (the base
type).

A subrange type is a scalar type. The possible values of a
subrange type cannot be distinguished from the values of the base
type that fall in the same range.

Built-In Functions For Scalar Types
To make good use of the properties of scalar types, Pascal
provides a special set of built-in functions. (Recall that a
function is a subroutine that accepts one or more values as
parameters, and returns one value as a result.) We have already
seen the CHR function, which takes an integer as its parameter
and returns the corresponding character as its result. The other

48 Apple III Pascal

special functions for scalars are ORD, PRED, and SUCC.

The ORD Function
For any scalar type, each possible value corresponds to a unique
integer. This integer is called the ordinality of the scalar
value. For values of type integer, the ordinality of each value
is the same as the value itself. For all other scalar types, the
ordinalities begin at 0 for the first value and count up as far
as necessary.

The ORD function accepts any scalar value as its parameter, and
returns the ordinality of that value. The ORD of any single
character is its ASCII code. Examples:

ORD(-5) is -5
ORD('A') is 65 (the ASCII code for 'A')
ORD(FALSE) is 0
ORD(TRUE) is 1
ORD(VIOLA) is 2 (given the declaration shown above)

ORD of a boolean value may in some cases return a value
other than 0 or 1, and should be avoided.

The SUGG and PRED Functions
Within any scalar type, each possible value except the last has a
successor. The successor is simply the next value in sequence,
according to the ordering of the type. Also, each possible value
except the first has a predecessor, which is the value that
precedes it. The SUCC function takes any scalar value and
returns its successor (if it has one). The PRED function takes
any scalar value and returns its predecessor (if it has one).
For example:

SUCC(-5) is -4
PRED('c') is 'b'
SUCC(CELLO) is VIOLA (given the declaration shown above)

Simple Data Types 49

SUCC of the last possible value of a scalar type, or PRED
of the first possible value, will return an undefined
value. This can cause program bugs. It is up to the
program to avoid this situation by checking parameters for
SUCC and PRED to make sure that the successor or
predecessor exists.

Numeric Functions
A set of simple numeric functions is built into Pascal. Each
takes a single numeric value as its parameter, and returns a
single value. The first two functions, ROUND and TRUNC, convert
real values to integer values. Note that there is no need for a
function to convert integer values to real values; they are
automatically converted whenever necessary.

The ROUND Function
The ROUND function takes a real value as its parameter and
returns an integer value, which is obtained by rounding the real
value to the nearest integer. If the parameter is halfway
between two integers, then it is rounded away from zero.
(Rounding algorithms are discussed in detail in Appendix E.) For
example,

ROUND(723.3) is 723
ROUND(-5.7) is -6
ROUND(7.7E3) is 7700
ROUND(43.5) is 44
ROUND(-43.5) is -44

The TRUNC Function
Like the ROUND function, TRUNC takes a real parameter and returns
an integer value; however, the integer is obtained by dropping
(truncating) the fractional part of the real value. For example,

TRUNC(723.3) is 723
TRUNC(-5.7) is -5
TRUNC(7.7E3) is 7700

50 Apple III Pascal

TRUNC can also accept a long integer value and convert it to an
integer value. However, the long integer parameter must not be
greater than 32767 or less than -32768.

The ABS Function
The ABS function takes either a real value or an integer value as
its parameter, and returns a value of the same type. The value
returned is the absolute value of the parameter--that is, if the
parameter is negative the sign is changed to positive. For
example,

ABS(3.6545) is 3.6545
ABS(-3.6545) is 3.6545
ABS(-512) is 512

The SQR Function
The SQR function takes either a real value or an integer value as
its parameter, and returns a value of the same type. The value
returned is the square of the parameter.

The ODD Function
The ODD function takes an integer value as its argument, and
returns a boolean value. The value returned is TRUE if the
integer is odd and FALSE if the integer is even.

Library Functions
A set of trigonometric and exponential functions and a
square-root function are provided as a library unit called
TRANSCEND. This is described in Appendix A.

Expressions and Assignments 51

52 Apple III Pascal

Introduction
In Pascal the value of a variable is changed by the assignment
statement. The syntax of an assignment statement is

assignment statement

variable
reference

expression

A variable reference is a reference to a specific, previously
declared variable of any type. The syntax is

variable reference

variable
identifier

field
identifier

In other words, a variable reference is an identifier which may
have a number of "qualifications" appended to it. Each
"qualification" is either an array subscript notation in square
brackets, a record field identifier set off by a period, or the ~

symbol to indicate the object of a pointer. Arrays, records, and
pointers are fully explained in other chapters.

The symbol := is known as the assignment operator. It means that
the expression on the right-hand side of the assignment operator
is to be evaluated, and the result is to become the new value of
the variable that is referred to on the left-hand side.

In its simplest form, an expression may be a constant, a variable
reference, or a function call. More generally, an expression is
a combination of operands and operators.

Expressions and Assignments 53

An operand is a single value, such as a constant, variable
reference, or function call. Two operands can be combined by
means of an operator, such as *, +, -, or <=. Examples:

X <= XLIMIT
RAINFALL.OLDVAL + INCREMENT
MARGIN[INDEX] - 3

There are also operators that take only one operand: the NOT
operator takes a single operand, and the + and - operators may
take a single operand. Examples:

-x
NOT TSTRESULT

The simplest form of an operand is a variable reference or a
constant. Examples of assignments which use operators that take
two operands are:

RESULT := ONEOPERAND * ANOTHEROPERAND;
TRUTH := BIGINTEGER)= LITTLEINTEGER;
FALSITY := MYDOG > YOURDOG;

The operands in an expression can be much more complex than this;
in fact, an operand itself can be an expression (which may be
enclosed in parentheses, depending on context). Notice that this
allows expressions to be complicated nestings of operations.
Some slightly more sophisticated assignment statements are:

CHAMBER.PRESSURE := N * R * CHAMBER.TEMP / CHAMBER.VOL;
FINISHED := (TEST= TRUE) AND (ERROR= FALSE);
ANSWER[K] := TRUNC(SQR(COS(THETA[K])));

Precedence of Operators
Pascal expressions often contain more than one operator. The
rules of precedence determine the way in which the operations
within the expression are grouped. If there were no precedence,
the expression:

A - B * c I D + E

would be evaluated from left to right as if it read:

54 Apple III Pascal

(((A - B) * C) / D) + E

But the operators do have precedence. For example, the * and I
operators are always applied before the + and - operators,
regardless of the sequence in the expression (unless parentheses
are used to overrule the precedence). The above example is
actually evaluated as if it read:

(A - ((B * C) / D)) + E

The operations are grouped this way because * and / have higher
precedence while + and - have lower precedence.

Pascal has four different levels of operator precedence, as shown
in the following table:

ORDER OF
PRECEDENCE OPERATORS DESCRIPTION

1 NOT NOT operator
2 * I DIV MOD AND Multiplying operators
3 + OR Adding operators
4 <> < <= >= > IN Relational operators

In this table, each line contains operators of equal precedence.
The NOT operator has the highest precedence.

In an expression all of the operators of the highest level are
applied before any of the operators of the next level are
applied. If an expression contains more than one operator of the
same precedence they are applied from left to right.

The precedence table is one of the significant differences
between Pascal and many other languages. For example, in
many languages AND and OR have the same precedence. Also,
in Pascal each operator symbol always has the same
precedence even if it has two possible meanings; e.g. the
+ operator can mean arithmetic addition or set union
(depending on its operands) but it has the same precedence
in either case. The virtue of Pascal's precedence table
is that it is extremely easy to remember.

A portion of an expression that is enclosed in parentheses is
called a subexpression. A subexpression is evaluated as if it
were an independent expression, before it is combined with any
other parts of the expression. If there are nested parentheses

Expressions and Assignments 55

(parentheses within parentheses) in the expression, the innermost
subexpression is evaluated first. Parentheses can be used, as in
ordinary algebra, to override the precedence of operators.

Here are a few examples of how expressions are evaluated:

EXPRESSION EVALUATED AS RESULT
1. 4 + 3 * 2 - 1 (4 + (3 * 2)) - 1 -9--

2. 8 * 2 > 5 + 6 (8 * 2) > (5 + 6) TRUE
3. 2 > 1 AND 4 < 5 (2 > (1 AND 4)) < 5 illegal!
4. 5 MOD 4 + 3 (5 MOD 4) + 3 4

In expression 1, the multiplying operator * is applied first, as
if the expression were written 4 + (3 * 2) - 1. Since + and -
are both of the same precedence, the remaining expression is
evaluated from left to right, giving 9 as result.

Expression 2 is a relational operation between two arithmetic
operations. The * operator is applied first, then the +
operator, then the > operator. Because 8 * 2 is greater than
5 + 6, the result of the entire expression is TRUE.

Expression 3 appears to be a boolean operation between the
results of two relational operations. The highest
precedence operator, however, is AND which is applied to
and 4. Because AND requires boolean operands, this
expression is ILLEGAL. It could be properly written as
(2 > 1) AND (4 < 5).

Expression 4 is evaluated exactly as it is written.

If a function call appears in an expression, the function is
called, and a value is returned, before that value is used as an
operand of some operator.

The precedence rules specify the order of performance of
operations. However, do NOT make any assumptions about
the order of evaluation of operands.

56 Apple III Pascal

The Arithmetic Operators
The arithmetic operators, used with operands of type integer,
long integer, and real, are:

* multiplication
I division with real result
DIV division of integers with integer result
MOD remainder of integer division
+ addition

subtraction or negation

Each operator has specific rules concerning what type of operands
it may take, and what type of results are produced. A universal
rule is that no arithmetic operator may be used to combine a real
operand with a long integer operand.

In Apple III Pascal, the arithmetic operations on real
values conform to the proposed IEEE floating-point
standard. Under default conditions, these operations
behave in ways that are familiar to most programmers.
However, some subtle variations in the execution of
operations on real values are available by methods
described in Appendi x E.

Remember that each type of result has size constraints.
An integer result must fall within the range -32768 to
32767 while a long integer result cannot exceed 36 decimal
digits (not including sign). A real result must have an
absolute value in the range l.401298464E-45 to
3.402823466E38, or 0.0.

Integer arithmetic overflow occurs when an integer
arithmetic operation results in a final or intermediate
result outside the limits given above. This does not
cause an error halt; instead it produces an undefined
integer result. It is up to the programmer to be sure
that integer arithmetic will not overflow.

Real arithmetic overflow occurs when a real arithmetic
operation would result in a final or intermediate r esult

Expressions and Assignments 57

with an absolute value greater than the upper limit given
above. This causes an error halt under default
conditions; see Appendix E for details. A real result
with an absolute value less than the lower limit does not
cause an error; it produces a result of 0.0.

The * Operator
Multiplication is done with the * operator. The results of
multiplication operations are as follows:

MULTIPLICAND MULTIPLIER RESULT TYPE
integer integer integer
long integer long integer long integer
real real real
integer long integer long integer
integer real real
real long integer not allowed

Two examples of multiplication in expressions are:

writeln('two cubed=', 2*2*2);
A := C * D

The I Operator
The I operator is used for division and it always gives real
results. The results of division operations are:

DIVIDEND
integer
real
integer
real
long integer
anything

Example:

DIVISOR
integer
real
real
integer
anything
long integer

RESULT TYPE
real
real
real
real
not allowed
not allowed

APPROXPI := 355 / 113; { APPROXPI is real }

The DIV Operator
DIV is the integer division operator. It is used with integer
and long integer operands with the following results:

58 Apple III Pascal

DIVIDEND DIVISOR RESULT TYPE
integer integer integer
long integer long integer long integer
integer long integer long integer
long integer integer long integer
real anything not allowed
anything real not allowed

The DIV operation produces a result that is truncated toward 0:
the remainder of the division is lost. The expression

A DIV B

(where A and B are integer values) is equivalent to

TRUNC(A / B)

This shows the relationship between DIV and /.

The MOD Operator
MOD takes two integer operands and returns an integer value that
is the remainder of the absolute value of the first operand
divided by the absolute value of the second operand.

A typical application of the MOD function is

A MOD B = 0

which is TRUE if B is a factor of A.

This implementation of the MOD operator does not
correspond to the definition of MOD given by Jensen and
Wirth.

The + Operator
The + operator is used for addition of integers, long integers
and reals. Results of addition operations are:

Expressions and Assignments 59

OPERAND TYPES
integer
long integer
real
integer
integer
real

Example:

integer
long integer
real
long integer
real
long integer

XREAL := AINTEG + XREAL + 2;

RESULT TYPE
integer
long integer
real
long integer
real
not allowed

The + operator can be used with a single operand as a sign
indicator. This use of + produces a result that is identical to
its operand.

The - Operator
The - operator is used for subtractions of integer, long integer
and real operands. Operations using the - operator give these
results:

MINUEND SUBTRAHEND RESULT TYPE
integer integer integer
long integer long integer long integer
real real real
integer long integer long integer
long integer integer long integer
integer real real
real integer real
real long integer not allowed
long integer real not allowed

Example:

FRACTION := A / B - A DIV B; {A,B:integer, FRACTION:real}

The - operator can also be used with a single operand (integer,
long integer, or real) to perform arithmetic negation, i.e. to
change the sign of the operand. Examples of negation are:

-3
-A
-TRUNC(A)
-(3 + 2)
-(-2)

60 Apple III Pascal

If a negated operand is used after one of the arithmetic
multiplying operators (*, /, DIV, or MOD) the operand must be
enclosed in parentheses. Two examples are:

-A * (-B)
4 * (-OFFSET) MOD (-(3 + 2))

The Relational Operators
The relational operators are used to make comparisons between
scalar and/or real operands. They are especially useful with the
flow of control statements which are explained in the next
chapter. The relational operators are:

> greater than
>= greater or equal to

equal to
< less than
<= less than or equal to
<> less than or greater than

Another relational operator, IN, is used with set values. It is
explained in Chapter 7.

Comparisons are always made between two values of the same scalar
or numeric type, and yield boolean results. If an integer is
compared with a real, the integer is first converted to a real,
and then a real-to-real comparison is done. Likewise, a
conparison between an integer and a long integer will convert the
integer to a long integer before invoking a long integer
comparison. No other implicit type conversions are done by these
operators; in general, a comparison that mixes types will be
flagged by the Compiler. Boolean and user defined scalars may
only be compared with values of the same type. Of course
expressions may also be compared, provided that the comparison
follows the rules described above. Here are some examples of
properly used relational operators:

IF SCORES[!]) MAXSCORE THEN MAXSCORE := SCORES[I];
WHILE ANGLE< CIRCUMFERENCE/ ARCLENGTH * 360 DO, •• ;
REPEAT

UNTIL INDEX) LIMIT

Expressions and Assignments 61

Notice that relational operators, because they give boolean
results, are a primary tool used to control program flow. The
use of boolean values in IF, WHILE and REPEAT statements is
explained in the next chapter.

User-defined scalars can be compared using any of the relational
operators. The ordinality of a value of a user-defined scalar
type is determined by its position in the type's declaration.
Thus, with the declaration

VAR PAINT: (NONE, RED, ORANGE, YELLOW);

the statement

IF PAINT) NONE THEN PAINTPICTURE;

will cause the procedure PAINTPICTURE to be executed if the value
of PAINT is RED, ORANGE, or YELLOW.

The result of comparing two real values will be exactly one of
four possible relations:

(1) equal,
(2) less than,
(3) greater than, or
(4) unordered.

We are used to thinking that if two numbers are unequal, then one
must be larger than the other. But the real type includes, in
addition to numeric values, special diagnostic values that result
from invalid operations and other special events (like division
by zero). These diagnostic values may compare "unordered" with
numeric values, and such comparisons may even cause runtime
halts. See Appendix E for details; for ordinary programming just
remember that, for real comparisons,

- "a <> b" [that is, a less than or greater than b] is
not synonymous with "not (a = b)", and

- if "a < b" is false, you don't automatically know that
"a >= b", because a and h may be unorclered with respect
to one another.

62 Apple III Pascal

The relational operators can also be used to compare structured
types. The operations permitted between operands of the
structured types (arrays, sets, strings and records) are
explained as each structured type is explained.

Logical Operators
Sometimes you need to find a result that is dependent on more
than one boolean value. In Pascal this capability is provided hy
the logical operators which, in order of precedence, are:

NOT boolean negation
AND boolean conjunction
OR boolean disjunction

Logical operators take boolean operands and produce boolean
results according to the following rules:

A B A AND B A OR B NOT B
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

As you can see the operator NOT takes a single boolean operand
whereas the operators AND and OR both require two boolean
operands.

Examples of correctly used logical operators are:

(A) B) AND (C < SQR(D))
A AND B AND NOT(A AND B)
(COUNT <= 100) OR ERROR

{SQR(D) returns square of D}
{result is always false}
{ERROR is a boolean variable}

Although it is not always necessary to evaluate both
operands of a boolean expression in order to determine the
result, a program may nevertheless evaluate both
operands.

Expressions and Assignments 63

Relational Operators with Boolean Operands
Each of the relational operators (=, <>, <=, <, >, >=, IN) yields
a boolean value. Furthermore, the type boolean is defined such
that FALSE < TRUE. Therefore, it is possible to define each of
the 16 boolean operations using logical and relational
operators. If p and q are boolean values, one can express

implication
equivalence
exclusive OR

as
as
as

p <= q
p = q
p <> q

Note that without the use of relational operators you would have
to express the exclusive OR function as

(p AND NOT q) OR (NOT p AND q)

Result Types
The result types for all combinations of operator and operands
are described in full detail in the preceding sections. This
section summarizes those descriptions.

In the table of results below, the column on the right lists the
operators that may not be used with the pair of operands in that
row.

OPERAND TYPES
integer integer

long integer long integer
real real
integer real
integer long integer
real long integer

RESULT TYPE
integer
(real for
I operator)

long integer
real
real
long integer
not allowed

ILLEGAL OPERATORS

/, MOD
DIV, MOD
DIV, MOD

I
ALL

The logical operators NOT, AND and OR all take boolean operands
and give boolean results. NOT precedes its single operand; AND
and OR each take two operands.

64 Apple III Pascal

The relational operators >, >=, =, <=, < and <> can he used to
compare two boolean values, two user defined scalar values of the
same type, or two numeric values. The only numeric values that
cannot be compared are a real with a long integer. All
relational operations yield boolean results.

Assignments
There are also restrictions concerning what types of values may
be assigned to what types of variables. The legal assignments
for non-structured variables are:

VARIABLE TYPE EXPRESSION TYPE
integer := integer
long integer := integer or long integer
real := integer or real
boolean := boolean
char := char

To do assignments that are not shown in this table, use type
conversion functions. These are described in Chapter 3.

The Flow of Control 65

66 Apple III Pascal

Introduction
We begin with a brief digression on Pascal statements in general,
since this chapter describes most of the types of statements.
There are ten kinds of statements in Pascal; all are introduced
in Chapter 2. Thus we have

statement

assignment statement

compound statement

procedure cal 1

for statement

repeat statement

while statement

if statement

case statement

goto statement

with statement

The assignment statement is described in Chapter 4 . The WITH
statement is described in Chapter 8.

The Flow of Control 67

Notice that technically, there is an eleventh type of
statement which consists of nothing; this is called a
"null statement." It simply means that whenever Pascal
syntax calls for a statement, you can omit it.

It also means that when a program contains an unnecessary
semicolon, the Pascal Compiler considers the semicolon to
be separating a null statement from another statement.
The result is two statements where you intend to have only
one. Most of the time this is harmless, but occasionally
it causes a compilation error because only one statement
is allowed.

Except for the WITH and assignment statements, all the statements
shown in the diagram are statements that determine the flow of
control in a Pascal program; that is, they determine the order in
which other statements are executed. There are "flow of control"
statements that repetitively or conditionally execute other
statements, and there are statements that transfer control to
another portion of the program.

The flow of control statements can be subdivided into groups.

- The compound statement groups several statements into
one.

- The procedure call statement causes execution of a
procedure.

- The repetition statements (FOR, REPEAT and WHILE) allow
a sequence of statements to be executed repeatedly.

- The conditional statements (IF and CASE) permit
conditional execution of statements.

- The GOTO statement permits unconditional transfer of
control from one part of the program to another.

The Compound Statement
The compound statement is one of the most useful statements in
Pascal. The syntax is

68 Apple III Pascal

compound statement

A compound statement can contain any number of statements of any
type, separated by semicolons. Note that the word BEGIN does not
have a semicolon after it , since it is not a statement; likewise ,
there is no semicolon just before the word END because END is not
a statement.

The compound statement is always considered as a single
statement , even though it may contain more than one statement.
Keep this in mind since most of the other flow of control
statements act on single statements . Whenever you want a
sequence of statements to be treated as a single statement,
simply delimit it with BEGIN and END .

The Procedure Call
A procedure is called by merely mentioning its
whatever parameters the procedure may require.
procedure call is

procedure call

procedure
identifier

expression

name, with
The syntax for a

The procedure identifier is the name of the procedure to be
called. The list of expressions in parentheses is called the
parameter list of the procedure call. The number of parameters
in the list depends on the procedure being called.

The Flow of Control 69

The effect of a procedure call is to execute the procedure
immediately (passing the specified parameters, if any). When the
procedure terminates, control is transferred to the statement
following the procedure call. See Chapter 6 for complete
information on procedures.

The Repetition Statements
Pascal has three statements that can repeatedly execute a
statement or sequence of statements. Termination of the
repetition is determined by the state of control variables or
expressions. The repetition statements are the FOR, REPEAT and
WHILE statements.

The FOR Statement
The FOR statement is used to execute a statement a specific
number of times. This is done by executing the statement once
for each value of a control variable between an initial value and
a limit value. The syntax of the FOR statement is

for statement

identifier expression

expression statement

where the identifier is the identifier of a variable called the
control variable. The control variable may be of any scalar
type. The two expressions must be of the same scalar type as the
control variable.

70 Apple III Pascal

The control variable must be a simple variable; it cannot
be an array element, a record field, or a dynamic
variable.

The value of the "initial" expression is called the initial
value, and the value of the "limit" expression is called the
Iiiiiit value.

For example, suppose that we have an array of 24 integer values
and an integer value that can be used to index it:

VAR VAL: ARRAY [1 •• 24] OF INTEGER;
IX: INTEGER;

Now suppose that we want to multiply each value in the array by
2. We can do this with a FOR statement:

FOR IX := 1 TO 24 DO VAL[IX] := 2*VAL[IX]

Note that the control variable is available within the FOR
statement. (Remember that the control variable, like any other
variable, must be declared.) However, the value of the control
variable should not be changed within the FOR statement.

If the value of the control variable is changed within the
FOR statement, the results are unspecified as this is a
violation of the rules of Standard Pascal.

In the above example, the embedded assignment statement is
executed 24 times. Each time, the control variable (IX) takes on
a new value; this value is 1 the first time and 24 the last
time.

If we want to write out each value after multiplying by 2, we can
use a compound statement inside the FOR statement:

FOR IX := 1 TO 24 DO BEGIN
VAL[IX] := 2*VAL[IX];
WRITELN(VAL[IX])

END

Processing of the FOR statement (using TO instead of DOWNTO) is
as follows:

The Flow of Control 71

- First, the initial value is calculated (just once) and
assigned to the control variable.

- Then, the limit value is calculated (just once).

- If the initial value is greater than the limit value,
the remainder of the FOR statement is skipped.
Otherwise, the following steps are taken:

1. The statement following the word DO is executed.

2. The control variable is assigned the value of its
own successor.

3. If the new value of the control variable is not
greater than the limit value, go back to Step 1 and
repeat. Repetition continues until the value of
the control variable is greater than the limit
value.

After the FOR statement has finished executing, the value
of the control variable is unspecified.

The DOWNTO option of the FOR statement sets the control variable
to its own predecessor after each iteration, stopping when the
value of the control variable is less than the limit value.

Some points to remember about Pascal FOR statements:

- A variable of any scalar type (integer, char, boolean,
user-defined, or subrange) may be used as a control
variable. However, a control variable of type real is
not allowed.

- If the value of the control variable is changed within
the FOR statement, the results are unspecified.

- Use of the control variable in either limit expression
produces undefined results.

The REPEAT Statement
The REPEAT statemenL, Like the FOR statement, is used to control
repetition in a program. The syntax is

72 Apple III Pascal

repeat statement

REPEAT statement expression

Note the differences from the FOR statement. The sequence of
statements in a REPEAT statement doesn't need to be delimited by
a BEGIN and an END; the REPEAT and UNTIL do this. The expression
after UNTIL must have a boolean result. It is evaluated after
each execution of the enclosed statements; hence the statements
are always executed at least. once. Notice that if the expression
is never TRUE, the statements will be repeated forever.

A typical application of the REPEAT statement is

REPEAT
WRITE('ENTER A NUMBER BETWEEN 0 AND 100 -> ');
READLN(INTVAR);
WRITELN('2 times', INTVAR, 'is', Z*INTVAR)

UNTIL (INTVAR < 0) OR (INTVAR > 100)

This REPEAT statement executes the contained statements until the
user types a number less than 0 or greater than 100.

The WHILE Statement
The WHILE statement is similar to the REPEAT statement. The
syntax is

while statement

while expression DO statement

Unlike the REPEAT statement, the WHILE statement evaluates the
controlling expression before each repetition of its statement.

The Flow of Control 73

If the expression, which must have a boolean result, is initially
false, the statement will not be executed.

The WHILE statement acts on a single statement; thus a compound
statement must be used if more than one statement is to be
executed following the word DO.

For example, suppose that a program requires the user to type a
number from 1 to 8. If the user does this, the program can
continue. But if the user types a number that is out of range,
the program must display an error message and give the user
another chance; and this should be repeated until the user types
a number in the required range. This is a natural application
for the WHILE statement:

WRITE('Type a number from 1 to 8: ');
READLN(NUMBER);
WHILE (NUMBER < 1) OR (NUMBER > 8) DO BEGIN

WRITELN('Number must not be less than 1 or more than 8!');
WRITE('Try again. Type a number from 1 to 8: ');
READLN(NUMBER)

END

If the user gives a correct response the first time, the WHILE
statement is never executed. But if the user's response is out
of range, the WHILE statement executes repeatedly until the user
responds correctly. In either case, the value of NUMBER is
guaranteed to be in the range 1 •• 8 at the end of this sequence.

The Conditional Statements
The IF statement and the CASE statement are used to execute a
statement if a variable or expression has a desired value.

The IF Statement
The IF statement contains a boolean expression, a statement to be
executed if the value of the expression is TRUE, and (optionally)
another statement to be executed if the value of the expression
is FALSE. The syntax of the IF statement is

74 Apple III Pascal

if statement

expression statement statement

When an IF statement is executed, the following sequence of
events takes place.

The boolean expression is evaluated.
- If the boolean expression is TRUE:

- The statement following THEN is executed.
- If the boolean expression is FALSE:

- If there is an ELSE, the statement following
ELSE is executed.

- If there is no ELSE, the IF statement has no
effect.

Note that just one statement is allowed after the word THEN; it
may be a compound statement. Likewise, just one statement
(possibly compound) is allowed after the word ELSE. Here is an
example of an IF statement without an ELSE part:

IF TOTAL) 100 THEN BEGIN
WRITELN('Error: Total too big');
TOTAL := TOTAL - CRNT

END

If the value of the variable TOTAL is greater than 100, the
compound statement is executed to display the message
"Error: Total too big" and adjust the value of TOTAL; otherwise
the compound statement is not executed.

The ELSE part of an IF statement is only executed if the result
of the boolean expression is false. For example, the statement

IF TOTAL > 100 THEN BEGIN
WRITELN('Error: Total too big');
TOTAL := TOTAL - CRNT

END
ELSE WRITELN('Total is', TOTAL)

The Flow of Control 75

will execute the compound statement if the value of TOTAL is
greater than 100 (just as in the previous example); but if the
value of TOTAL is not greater than 100, then the WRITELN
statement following the word ELSE is executed to display the
message "Total is " followed by the value of TOTAL.

It is important to be careful of semicolon placement in IF
statements. For example

IF A = B THEN BEGIN
WRITELN('A equals B');
EQCOUNT := EQCOUNT + 1

END
ELSE WRITELN('A not equal to B')

is correct: there is no semicolon after the END because
the ELSE does not start a new statement--it is a
continuation of the same IF statement. A common mistake
is to put a semicolon before the ELSE, which causes a
compilation error because there is no Pascal statement
that begins with the word ELSE.

Nested IF Statements
The statement following the word ELSE can be an IF statement, and
can contain its own ELSE clause. Thus a statement can be written
to take different actions for each of several mutually exclusive
conditions.

REPEAT
WRITE('Enter command S,D,P,Q,E -> ');
READLN(COMM);
IF COMM = 'S' THEN SHUFFLEDECK

ELSE IF COMM = 'D' THEN DEALCARDS
ELSE IF COMM = 'p' THEN DISPLAYPOINTS

ELSE IF (COMM = 'Q') OR (COMM= 'E') THEN QUIT
UNTIL (COMM='Q') OR (COMM='E')

Conditions will only be checked until a true one is found. The
greatest efficiency is achieved if the most probable conditions
are checked first.

The statement following the word THEN can also be a nested IF
statement, but this construction is less useful and can lead to a
confusing program. Be careful with the following type of

76 Apple III Pascal

construction:

IF A=B THEN IF C=D THEN WRITELN('A=B and C=D')
ELSE WRITELN('A=B but C()D')

The ELSE matches the last preceding THEN, as indicated by the
indentation. If you add another ELSE it will match the first
THEN:

IF A=B THEN IF C=D THEN WRITELN('A=B and C=D')
ELSE WRITELN('A=B but C<>D')

ELSE WRITELN('A<>B')

The above statement can be clarified, without changing its
meaning, by making the nested statement a compound statement:

IF A=B THEN BEGIN
IF C=D THEN WRITELN('A=B and C=D')

ELSE WRITELN('A=B but C()D')
END

ELSE WRITELN('A<>B')

Now it is obvious which ELSE matches which THEN.

The CASE Statement
The CASE statement uses the value of an expression to select and
execute one statement from a list of statements. The controlling
expression and the list of statements are contained within the
CASE statements, and each statement in the list is "labeled" with
one or more constants called case selectors which are possible
values of the controlling expression. An OTHERWISE clause is
optional; if present, it contains a statement which is executed
if the controlling expression's value does not match any of the
case selectors.

The syntax is

The Flow of Control 77

case statement

expression

caseclause ----~..-----...

otherwiseclause

caseclause

c ooo" ' "' I) •04 "•Oemen< ~

0 1---

78 Apple III Pascal

otherwiseclause

--\.QJ.,-----;---~--t~HcoTHERWisEH statement~

where the expression must give a result of a scalar type, and the
constants in each caseclause must be of the same type. The
expression is evaluated and the result is sequentially compared
with the constants in each caseclause. If the result matches one
of the constants, only the statement in that caseclause is
executed.

If no match is found and there is an OTHERWISE clause, the
statement in the OTHERWISE clause is executed. If no match is
found and there is no OTHERWISE clause, then the CASE statement
has no effect.

In discussing nested IF statements above, we gave the following
example:

REPEAT
WRITE('Enter command S,D,P,Q,E -> ');
READLN(COMM);
IF COMM = 'S' THEN SHUFFLEDECK

ELSE IF COMM = 'D' THEN DEALCARDS
ELSE IF COMM = 'P' THEN DISPLAYPOINTS

ELSE IF (COMM= 'Q') OR (COMM = 'E') THEN QUIT
UNTIL (COMM='Q') OR (COMM='E')

Exac tly the same effect can be achieved more naturally with a
CASE statement:

The Flow of Control 79

REPEAT
WRITE('Enter command S,D,P,Q,E -> ');
READLN(COMM);
CASE COMM OF

'S': SHUFFLEDECK;
'D' : DEALCARDS;
'P': DISPLAYPOINTS;
'Q', 'E': QUIT

END
UNTIL (COMM='Q') OR (COMM='E')

If we used the nested IF statement and tried to allow for the
possibility of lower-case letters, the resulting nest would be
unwieldy. With a CASE statement, however, the enhancement is
easy. We also add an OTHERWISE clause to handle invalid command
input by calling a procedure named HELP.

REPEAT
WRITE('Enter command S,D,P,Q,E -> ');
READLN(COMM);
CASE COMM OF

'S', 's': SHUFFLEDECK;
'D', 'd': DEALCARDS;
'P', 'p': DISPLAYPOINTS;
'Q' , 'E' , 'q ' , 'e' : QUIT
OTHERWISE HELP

END
UNTIL (COMM='Q') OR (COMM='E') OR (COMM='q') OR (COMM='e')

As in all other cases where only a single statement is allowed,
each statement within a caseclause or OTHERWISE clause can be a
compound statement.

Caution is required if you use integer constants as case
selectors in a CASE statement. If the difference between
the largest and the smallest case selector in a CASE
statement is too great, the Compiler will he unable to
compile it. The limit depends on the statements within
the CASE statement, but as a rule of thumb do not use any
integer case selectors that differ by more than 100.

The reason for this is that to implement a CASE statement,
the Compiler builds a table in the code with an entry for
each possible case selector from the smallest actually
used to the largest.

80 Apple III Pascal

The EXIT and HALT Procedures
The Pascal statements already described should
controlling the flow of almost all programs.
is convenient to be able to exit immediately.
allows this; the syntax for calling EXIT is

be adequate for
In some cases, it

The EXIT procedure

where the identifier is the name of a procedure, a function, or
the program. The most common use of EXIT is with either the word
PROGRAM or the program name as the parameter; EXIT then
terminates the program in an orderly manner: all open files are
closed (see Chapter 10), and control returns to the command level
of the system just as if the program had reached its END.

When a procedure or function identifier is used in calling EXIT,
the specified procedure or function is exited.

Do not use this technique unless you are sure you
understand what you are doing (Chapter 6 covers procedures
and functions).

Control returns to the point where the procedure or function was
called, just as if the procedure or function had reached its END;
however, if a function is exited without an assignment being made
to the function identifier, the function will return an
unpredictable value.

Note that the specified procedure or function need not be the one
in which the EXIT procedure is called . EXIT follows the trail of
procedure calls back to the procedure or function specified; each
procedure or function in the trail is exited (whether or not it
has completed its execution). If the specified procedure or

The Flow of Control 81

function is recursive (see Chapter 6), then the most recent
incarnation is exited; earlier incarnations will complete their
executions normally.

The HALT procedure takes no parameters. It brings the program to
an immediate halt with a non-fatal run-time error.

The GOTO Statement
Some programming situations demand an instant transfer of control
in a manner that is not easy to achieve using the repetition or
conditional statements. To handle these situations Pascal has
the GOTO statement. The GOTO statement should be used only in
those unusual cases that cannot be handled easily by the other
control statements. By default, the Compiler does not allow GOTO
statements. If your program uses GOTO statements you must
include the Compiler option

{$GOTo+}

This option must precede the first GOTO statement in the
program. Please see Appendix F for more information about
Compiler options.

The GOTO statement causes a direct transfer of control to a
labeled statement that is in the same procedure or function as
the GOTO statement (considering the main program to be a
procedure). The extremely uncomplicated syntax of GOTO is

goto statement

unsigned
integer

where the label is an unsigned integer of not more than four
digits. The label must first be declared. Label declarations
come immediately after the heading of a program, procedure, or
function, before any other declarations. The following program,
which loops infinitely, shows legal use of label declarations and

82 Apple III Pascal

the GOTO statement. It also shows some of the problems of the
GOTO statement.

{$GOTo+}
PROGRAM JUMP;
LABEL 1, 5326, 42, 999;
BEGIN

1: GOTO 5326;
999: GOTO 42;
5326: GOTO 999;
42: GOTO 1

END.

Note that you cannot jump out of a block with a GOTO
statement.

Passing control to a statement that is inside a structured
statement from a point outside the structured statement by
means of a GOTO has undefined effects, although the
Compiler will not indicate an error. All of the GOTO
statements in the following example are wrong for this
reason.

IF TRUE THE~
123: GOTO 6;

FOR INDEX := 1 TO 10 DO
6: GOTO 123;

BEGIN
1: WRITELN('GOTO ANOTHER PROCEDURE');
GOTO 6

END;
GOTO 1

Procedures and Functions 83

84 Apple III Pascal

Introduction
Procedures and functions are the subroutines of Pascal. Each
procedure or function is a distinct section of code, contained
within a program, that is executed when the program calls it. In
many cases the program calls it more than once .

A procedure can be thought of as a subprogram nested in the main
program (or within another procedure , or within a function) .
Just as you define a Pascal program by writing it in text form,
you define a procedure by writing a procedure definition into the
text of the program. If you study the syntax diagrams further on
in this chapter you can see that a procedure definition, like a
program, contains one block. The block may contain other
procedure definitions. Thus procedures (and functions) can be
freely nested within each other. Indeed, for purposes of program
execution the system considers the program itself to be just the
outermost procedure of a nested structure of procedures and
functions.

A procedure is called by means of a procedure call statement,
which refers to the procedure by name and supplies values for any
parameters belonging to the procedure. Parameters are a special
kind of variable used to pass information to the procedure when
it is called; they are discussed in detail below .

A function is similar to a procedure except that it is called by
means of a function reference instead of a call statement . The
function reference appears in an expression; it references the
function by name and supplies any parameters required by the
function. The function returns a value; that is, it computes a
value, and this value replaces the function reference when the
expression is evaluated .

Procedures and functions are defined (written) after the variable
declarations, if any, and before the compound statement that
contains the statements of the program .

Procedures and Functions 85

Defining a Procedure
A procedure definition consists of a procedure heading, a block,
and a terminating semicolon:

procedure definition

PROCEDURE

block

new
identifier

parameter
list

The first part of the procedure definition--the word PROCEDURE,
the identifier, the parameter list, and the semicolon--are called
the procedure heading. The remaining part--the block and the
final semicolon--are called the procedure body. The syntax for a
parameter 1 ist is

parameter 1 ist

parame t er
declaration

The parameter list declares the procedure's parameters, if any.
It consists of an opening parenthesis, one or more parameter
declarations separated by semicolons, and a closing parenthesis.
The syntax for each parameter declaration is

86 Apple III Pascal

parameter declaration

new
identifier

type
identifier

If the word VAR is used, this declaration declares one or more
variable parameters; otherwise it declares one or more value
parameters. The distinction is explained below. Each
declaration can declare any number of parameters, all of the same
type. Note that the type must be given as a single identifier
such as REAL, CHAR, or the identifier of type that has been
declared in the program. This is one of the reasons for
declaring types.

Here is an example of a simple procedure heading that declares
three value parameters:

PROCEDURE ALPHA (INITIAL, LIMIT: REAL; COUNT: INTEGER);

INITIAL and LIMIT are real parameters, and COUNT is an integer
parameter. The following example declares a variable parameter
and a value parameter:

PROCEDURE BETA (VAR ERRFLAG: BOOLEAN; N: INTEGER);

ERRFLAG is a variable parameter of type boolean, and N is a value
parameter of type integer.

The rest of a procedure definition consists of one block. The
syntax for a block is

Procedures and Functions 87

block

label declarations

constant declarations

type declarations

variable declarations

procedure definition

function definition

compound statement

In other words , a block consists of optional declarations,
optional procedure and function definitions, and one compound
statement. Further on in this chapter we will see a special case
where the block is replaced by the word FORWARD.

Value Parameters
There are two kinds of parameters: value parameters and variable
parameters . Every parameter is a value parameter unless it is
explicitly declared as a variable parameter (see next section).
Value parameters are used to pass values (of expressions or
variables) to a procedure or function at the time it is called .

88 Apple III Pascal

The following example shows how value parameters can be used:

PROCEDURE WRITEMEAN (A, B: REAL);
{Display the mean of two real values}
VAR SUM: REAL;
BEGIN

SUM :=A+ B;
WRITELN(SUH/2) {Display the value on the screen}

END;

WRITEMEAN has two formal parameters, A and B; both are value
parameters of type real. A and B are, in effect, real variables
belonging to the WRITEMEAN procedure; but they have the special
property that each time the procedure is called, A and B are
initialized with the values of actual parameters contained in the
call statement. The call statement must provide an actual
parameter for each formal parameter.

The actual parameters are expressions. Each expression is
evaluated and the result is assigned to the corresponding formal
parameter before the statements of WRITEMEAN are executed.

All of the following are valid calls to WRITEMEAN (with different
results):

WRITEMEAN(4. 3, X);
WRITEHEAN(X, Y);
WRITEMEAN(Z + 2.3*Y, X);
WRITEMEAN(ZS, Z)

In these procedure calls, assume that X, Y, and Z are variables
or constants of type real. Note that each actual parameter in
the procedure call is an expression; the expression is evaluated
and the value is passed to the procedure. The fourth example
shows that an integer value may be supplied for a real parameter;
the integer value is converted to a real value just as if it were
being assigned to a real variable.

The type of a value parameter can be any Pascal data type
except a f i1 e type. To pass a file to a procedure or
function, you must use a variable parameter (see next
sect ion).

Procedures and Functions 89

Variable Parameters
A value parameter, as we have seen, provides one-way
communication between the calling program and the procedure or
function: the call supplies a value, and this value is used
inside the procedure or function. A variable parameter provides
two-way communication.

With a variable parameter, the actual parameter is not an
expression but a variable reference, and the information passed
to the procedure or function is not the value of the variable but
the variable itself. Note that this variable is one declared
outside the procedure or function.

(At run time, what is passed is the address of the actual
parameter, so that the code of the procedure or function can
access it.)

If the value of the formal parameter is changed inside the
procedure or function, the effect is to change the value of the
actual parameter variable (outside the procedure or function).
The declaration of the formal parameter is preceded by the
reserved word VAR, as in the following example:

PROCEDURE MOVIT (RHO, THETA: REAL; VAR X, Y: REAL);
{Update rectangular coordinates X and Y for motion
through distance RHO at angle THETA (in degrees).}

CONST PI= 3.14159;
BEGIN

THETA := THETA*PI/180; {Convert to radians}
X := X + (RHO* COS(THETA));
Y := Y +(RHO * SIN(THETA))

END;

COS and SIN are trig functions contained in the system library
(see Appendix A). They assume that angles are given in radians.
The MOVIT procedure has two value parameters, RHO and THETA, and
two variable parameters, X and Y. Suppose that MOVIT is called
by the statement

MOVIT(RADIUS, ANGLE, HORIZ, VERT)

where RADIUS, ANGLE, HORIZ, and VERT are real variables. MOVIT

90 Apple Ill Pascal

assigns the current values of RADIUS and ANGLE to its own value
parameters RHO and THETA, respectively. It also assigns the
current values of HORIZ and VERT to X and Y respectively.

When MOVIT executes, it converts the value of THETA to radians
without affecting the variable ANGLE. But when it changes the
values of X and Y, it changes the values of HORIZ and VERT.
Because MOVIT was called with HORIZ and VERT as actual parameters
for the formal variable parameters X and Y, each reference to X
during this execution of MOVIT is in effect a reference to HORIZ;
and each reference to Y is in effect a reference to VERT.

Of course, MOVIT could have been written with direct reference to
HORIZ and VERT, instead of X and Y. But that would make it less
flexible; by using variable parameters, MOVIT is able to update
any two real variables that are passed to it.

The type of a variable parameter can be any data type, including
file types. If you have a formal parameter that is a string, you
can pass any string variable to it, even if the declared length
is not the same. However, if the length of the source parameter
is less than the length of the formal parameter, you must use the
VARSTRING Compiler option, which is described in Appendix F.

However, an individual element of a packed variable cannot
be supplied as the actual parameter (see Chapters 7 and 8
for discussion of packed variables).

For special purposes, there are two data types called
BYTESTREAM and WORDSTREAM which are used for variable
parameters. Chapter 13 describes these types.

Defining a Function
Syntactically, a function definition is very similar to a
procedure definition. The heading has the word FUNCTION instead
of PROCEDURE, and it specifies a type, which is the type of the
value returned by the function.

function definition

new
identifier

Procedures and Functions 91

parameter
list

type 0 I
-i·d•e•n•t•i•f-ie_r_--- ; ,___..,~ .. block

The type of the function must be a simple type (real, scalar,
subrange, or pointer).

Within the function, there should be an assignment st.atement that
has the function identifier on the left-hand side. This is how
the function returns a value. For example, consider the
WRITEMEAN procedure shown earlier. It displays a _result on the
screen. For some programs, it would be more useful to define a
function which would perform the same calculation and return the
result:

FUNCTION MEAN (A, B: REAL): REAL;
{Return the mean of two real values}
VAR SUM: REAL;
BEGIN

SUM : =A + B;
MEAN := SUM/2

END;

If no value is assigned to the function identifier, an undefined
value will be returned. If there are two or more assignment
statements with the function identifier on the left-hand side,
the last value assigned as the function executes is the value
returned.

Normally the function identifier should be used within the
function only as shown in the example above: on the left
side of an assignment statement, for the purpose of
returning a value. Do not use the function identifier on
the right-hand side of an assignment statement within the
function, unless the function is designed to be
recursive. Recursive functions and procedures are
discussed further on.

92 Apple III Pascal

Calling a Function
As mentioned in Chapter 2, a function is activated by a function
call, which appears as an operand in an expression. When the
operand is evaluated at run time, the function is executed. The
value returned by the function becomes the value of the operand.
The syntax of a fun ct ion cal 1 is

function call

function
identifier

Recursion

expression

A recursive procedure or function is one that calls itself; this
is permitted in all Pase al procedures and fun ct ions. A ful 1
discussion of the idea of recursion is beyond the scope of this
manual; instead a single example is offered as an illustration.

Consider the following situation: A 30x50 array of boolean
values is used to represent a graphic picture 30 dots high and 50
dots wide. Each boolean value represents a dot in the
picture--TRUE for a white dot and FALSE for a black dot. The
array is declared as follows:

VAR PIC: ARRAY[l •• 30, 1 •• 50] OF BOOLEAN;

Now suppose that the picture contains several "images," each of
which consists of a group of white dots that are connected to
each other--that is, every dot in an image is a neighbor of at

Procedures and Functions 93

least one other dot in the image (horizontally, vertically, or
diagonally). In terms of the array, this means that an image is
a collection of TRUE elements, and each of these elements is a
neighbor of at least one other element in the image. One array
element is a neighbor of another if their indices differ by 1 or
0, and both have the value TRUE.

The problem is this: we want to write a procedure called ZAP
that will erase all the dots in one image, if we give it the
coordinates (indices) of any one dot in the image--without
affecting any other image in the picture. This is an unwieldy
problem if ZAP has to find all the dots in the image in a single
pass; but if ZAP can call itself, the problem becomes simple. In
English, the ZAP procedure is

"IF the specified dot is in the array AND it is white,
THEN erase it and ZAP each of its neighbors in turn.
ELSE do nothing and return immediately."

When ZAP is called once with the indices of a dot in an image, it
will eventually call itself for every other dot in the image. To
write ZAP in Pascal, we first write a convenient function for
checking that a pair of indices is val id--i.e., that both indices
are within the bounds of the array PIC:

FUNCTION INARRAY(I, J: INTEGER): BOOLEAN;
BEGIN

INARRAY := (I IN (1 •• 30])
AND

(J IN (1 •• 50])
END;

The reference INARRAY(A, B), where A and B are integer values,
will return TRUE if A and B are both valid indices for PIC. Now
we can write ZAP as follows:

94 Apple III Pascal

PROCEDURE ZAP(X,Y: INTEGER);
{Two variables to be used as coordinates of neighbors: }
VAR XN, YN: INTEGER;
BEGIN

{If X,Y is in the array and is a white dot •••
IF INARRAY(X,Y) THEN IF PIC[X,Y] THEN BEGIN

{ ••• then erase it ••• }
PIC[X,Y] :=FALSE;
{ ••• and ZAP all its neighbors:
FOR XN := X-1 TO X+l DO

FOR YN := Y-1 TO Y+l DO
ZAP(XN, YN)

END
END;

(Notice that in the process of ZAPping all the neighbors, ZAP
will also ZAP the dot that it started with. This is harmless,
because the dot is no longer white; this particular recursive
call will do nothing and return immediately.)

Each time a recursive routine calls itself, a new "incarnation"
of the routine is created--that is, all the data belonging to the
current incarnation has to be saved and new space allocated for
the data belonging to the new incarnation. Eventually, if the
routine is written correctly, the recursion terminates; the last
incarnation does not call itself, but simply returns to the
previous incarnation, which returns to the one before it, and so
forth. Finally the first incarnation returns, and the execution
of the recursive routine is finished.

In the case of ZAP, each incarnation makes 9 recursive calls in
sequence. Each of these calls starts a new chain of
incarnations. Each chain terminates when the dot that it is
supposed to ZAP turns out not to be in the array, or not to be a
white dot. When all the dots in the image have been erased, then
all the chains have terminated and all the incarnations have
returned; the original incarnation returns to the point in the
program where ZAP was called non-recursively.

Termination
In order to make sense, a recursive function or procedure has to
be written so that it will always terminate. This means that
there is some condition under which it will not call itself;
furthermore, if it calls itself enough times, it will always
arrive at that condition. Otherwise, it may keep calling itself

Procedures and Functions 95

.,._, _____ .. ,,. ___ , .. ,.
until the system runs out of space to keep track of all the
recursive calls, and halts the program with a "Stack overflow"
error message. Actually this can happen even if the recursive
procedure or function is correctly written, because of the space
required by the numerous incarnations. When this happens, some
sort of rewriting is required. A full discussion of space-saving
techniques is beyond the scope of this manual, but the following
suggestions may prove helpful:

- Eliminate the recursion, or find a way to make it
terminate sooner.

- Reduce the amount of storage used for variables inside
the recursive routine, since this storage has to be
replicated for each recursive call.

- Segment your program to increase the amount of space
available at the point where the recursive routine is
called (see Chapters 14 and 15).

- If the program uses dynamic variables, use the MARK and
RELEASE procedures to increase the amount of space
available at the point where the recursive routine is
called (see Chapter 9).

- Use files to store large data structures on diskette
instead of in memory (see Chapters 1(11, 11, and 12).

Indirect Recursion
The above discussion describes direct recursion; there is also
such a thing as indirect recursion. Suppose that a program
contains three or more procedures or functions called A, B, C,
and so forth. If A calls B and B calls A, that is indirect
recursion. Likewise, if A calls B, B calls C, and C calls A, we
have indirect recursion. The most general definition of
recursion is that it occurs vA:i.enever a procedure or function is
called (by itself or by another procedure or function) before it
completes its execution and returns.

Like direct recursion, indirect recursion requires that there be
a condition that will terminate the recursion, and the procedures
must be designed to guarantee that the termination condition will
be reached.

96 Apple III Pascal

When you write indirectly recursive procedures or functions, one
procedure or function must call another before it is defined.
This is impossible using normal procedure or function
definitions, so Pascal provides a special form of definition
called the forward definition. In a forward definition the block
is replaced by the word FORWARD. The forward definition suffices
to declare the identifier and parameters, and the type in the
case of a function definition. The forward-defined procedure or
function can then be called in a following procedure or function,
and then the remainder of the forward definition can be given as
in the following example (where function F calls procedure P and
vice versa):

{Forward definition of F, to allow it to be referenced
within P:}

FUNCTION F (X, Y: REAL; COUNT: INTEGER): REAL;
FORWARD;

{Normal definition of P, which calls F:}
PROCEDURE P (N: INTEGER);

VAR A, B, C: REAL;
BEGIN

C := 2 * F(A, B, N)

END;

{Various statements}
{This calls F}
{Various statements}

{Continued definition of F; parameters and type omitted
since they are al ready declared: }

FUNCTION F;
VAR TMP, DL, DX, DY: REAL;
BEGIN

P(TRUNC(X))

END;

Rules of Scope

{Various statements}
{This calls P}
{Various statements}

Up to this point we have informally talked about a variable
"belonging to" a particular procedure or function, or to the main
program. What this means is that the procedure, function, or
program knows what the identifier means because it contains the
declaration.

Procedures and Functions 97

Now we wil 1 give the formal rules for the scope of any object
that has an identifier. The scope of an object is that part of
the total program in which the object is known by its
identifier. The rules of scope are simple, and they apply
universally to declared constants, declared types, variables,
procedures, and functions.

In this section the word "procedure" will be used loosely, to
mean any procedure, any function, or the main program. Also the
word "declaration" will be used to include procedure and function
definitions. We can then view any program as a structure of
nested procedures. The main program itself is the outermost
procedure, and may have procedures nesting within it; these
nested procedures may have other procedures nested within them.
The "extent" of a procedure is the entire procedure, including
the heading and any procedures nested within it.

The rules of scope are:

- An identifier that has been used in a declaration in a ·
particular procedure can be redeclared in any other
procedure, including procedures nested within the first
procedure.

- The scope of a declared object is the entire extent of
the procedure in which it is declared, minus the entire
extent of any nested procedure in which the same
identifier is redeclared.

- The above rules apply to formal parameters, just as
they apply to other variables declared in a procedure.

98 Apple III Pascal

To see how this works, consider the program structure shown
below, where Procedures A and B are nested within Program P, and
Procedure Z is nested within Procedure B:

PROGRAM P;
VAR FOO: REAL;

INTEGER; BAR:

PROCEDURE A;
VAR FOO: REAL;
BEGIN

{Statements of Procedure A}
END;

PROCEDURE B;
VAR FOO: BOOLEAN;

BEGIN

END.

PROCEDURE Z;
VAR FOO: INTEGER;

BAR: CHAR;
BEGIN

{Statements of Procedure Z}
END;

BEGIN
{Statements of Procedure B}

END;

{Statements of Program P}

The identifiers FOO and BAR are declared and redeclared at
various points in the program . What is the scope of each
variable shown in the diagram?

The real variable FOO declared in the main program is
known throughout the main program , except that it is
not known anywhere within Procedure A or Procedure B

Procedures and Functions 99

since the identifier FOO is redeclared in those
procedures.

The integer variable BAR declared in the main program
is known throughout the main program, except that it is
not known anywhere within Procedure Z since the
identifier BAR is redeclared in that procedure.

- The real variable FOO declared in Procedure A is known
throughout Procedure A.

- The boolean variable FOO declared in Procedure B is
known throughout Procedure B, except that it is not
known anywhere within Procedure Z since the identifier
FOO is redeclared in that procedure.

- The integer variable FOO and the char variable BAR
declared in Procedure Z are known throughout Procedure
z.

A declared object is said to be local to the procedure in which
it is declared, and global to any nested procedure that is within
its scope. Thus each procedure knows about its own local
objects, and also about global objects. The nested structure of
Pascal, and the rules- of scope, are what make it a block
structured language. The virtues of block structure, and the
techniques for taking advantage of it, are beyond the scope of
this manual; however, any good tutorial on Pascal goes into this
topic at some length.

Built-in objects (the built-in types, procedures, functions,
etc.) act as if they were declared in a procedure that the main
program is nested in. Thus they are global to the main program,
unless they are redeclared. Values of variables local to a
procedure are lost upon exit from the procedure.

Segment Procedures and Functions
A segment procedure or function is declared by placing the word
SEGMENT at the beginning of the heading. For example,

SEGMENT FUNCTION CALCULATE (X, Y, Z: REAL): REAL;

100 Apple III Pascal

is a function heading for a segment function named CALCULATE.
The rest of the definition is conventional. The effect of making
the function a segment is that at run time, the code of the
function is not loaded into memory until the function is called;
as soon as it terminates, the space occupied by the code is
released and can be used for something else~such as the code of
another segment function or procedure. This is helpful with
programs that contain large procedures or functions; see Chapter
15 for more information.

Segment procedures and func tions are called in the same way as
ordinary procedures and functions.

External Procedures and Functions
An external procedure or function is written in assembly language
as a .PROC or .FUNG. The assembled code is assumed to be in a
library file, which will be linked into the compiled Pascal
program before execution; the Program Preparation Tools manual
describes the use of the Assembler and Linker. Within the Pascal
program, the external procedure or function must still be defined
so that it can be called. The external procedure or function
definition consists of a conventional heading, with the word
EXTERNAL instead of a block. For example,

PROCEDURE MAKESCREEN (INDEX: INTEGER);
EXTERNAL;

This means that the procedure MAKESCREEN is an external
assembly-language procedure, with one parameter of type integer.
It is the user's responsibility to make sure that the assembly
language procedure or function is compatible with the external
declaration in the Pascal program; the Linker checks only that
the parameters occupy the correct number of bytes.

There is a special rule for external procedures and
functions: a variable parameter can be declared without
any type .

Procedures and Functions 101

Size and Complexity Limits
The Compiler imposes limits on the size and complexity of
procedures. Here the term "procedure" includes functions and the
main program. The "size" is the number of bytes of memory
required for the compiled code of the procedure; "complexity" has
to do with the number of backward jumps in the compiled code.

The Compiler error message "Procedure too long" means either that
the procedure's code exceeds the limit of about 1200 bytes, or
that the procedure has too much complexity. In either case, the
remedy is simple: move some statements from the offending
procedure into one or more new procedures, and call the new
procedure(s) at the point where the statements originally
appeared. The new procedure(s) may be nested within the original
procedure, so that the essential structure of the procedure is
not changed.

By examining the source text of a procedure you cannot tell
whether it will violate the limits, since the limits apply to the
code created by the Compiler, not to the source text. But as a
rule of thumb, a procedure whose body can be printed on one page
will compile successfully. (Nested procedures don't count.) In
any case it is good progrmnming practice to keep procedures
short; it makes the program much easier to understand and
maintain.

102 Apple III Pascal

Arrays, Sets, and Strings 103

104 Apple III Pascal

Introduction
Up to this point, all the data types discussed have been simple
data types, which have single values. Pascal also has a variety
of structured data types, which can be thought of as collections
of values. This chapter covers only the three simplest kinds:
arrays, sets, and strings. Subsequent chapters cover records and
f i1 es.

An array variable is a collection of variables called elements;
all the elements of an array are of the same type. A single
element of the array is referenced by using the array identifier
with an index value (sometimes called a subscript). The index
value selects the desired element from among the other elements
of the array.

A set is a collection of values which are called members of the
set. Set operations in Pascal are fast, and allow very
straightforward coding of routines which would be much more
complicated without the use of sets.

A string is a sequence of characters, normally treated as a
single entity. Apple III Pascal provides a set of built-in
procedures and functions for manipulating strings.

Array Variables
An array variable is an ordered collection of elements, all of
the same type. Each element in an array can be considered as a
variable in its own right. A particular element is distinguished
from other elements by means of an index value enclosed in square
brackets. For example, you can declare an array called XYZ,
consisting of three elements of type real numbered 1, 2, and 3,
as follows:

VAR XYZ: ARRAY [1 •• 3) OF REAL;

Then these elements can be referred to individually as XYZ[l),
XYZ[2), and XYZ[3). Each of them is a variable of type real.

Arrays, Sets, and Strings 105

Pascal arrays differ from arrays in other languages in several
ways:

- Pascal arrays can have any number of dimensions.

- The elements of a Pase al array can be of any type
except a file type. In particular, the elements can be
arrays or records.

- The values used to index elements of a Pascal array can
be of any scalar or subrange type except integer.
(They can be a subrange of integer.) This means that
the first element of an array is not necessarily
element ~. or element l; it depends on how the array is
declared.

An array can be treated as a unit, without indexing, in three
ways:

The

- It can be passed to a procedure or function as · an
actual parameter, if its type is "congruent" to the
type of the formal parameter (this term is explained in
Congruent Array Types later in this chapter).

- It can be assigned to another array of congruent type.

- It can be compared to another array of congruent type.

syntax of an array type is:

array type

element
OF type

Note that there can be more than one index type: one for each
dimension of the array type . First we will consider
one-dimensional arrays .

106 Apple III Pascal

One-Dimensional Arrays
An array type can be used in a type declaration as follows:

TYPE VALS =ARRAY [0 •• 99] OF REAL;

or in a variable declaration as follows:

VAR VALUES: ARRAY [0 •• 99] OF REAL;

The index type is usually a subrange of type integer, but it can
also be any scalar or subrange type except the integer type. The
element type can be any type except a file type.

The index type determines the number of elements in the array:
there is one element for each possible value of the index. For
example, consider the following declaration:

VAR TENREALS: ARRAY [0 •• 9] OF REAL;

The index type is the subrange 0 •• 9, so the array TENREALS will
have 10 elements, each one of which is of type real. The first
element is TENREALS[0], the next is TENREALS[l], etc.; the last
element is TENREALS[9].

The reason that the type integer is not allowed for array indices
is simply that the array would have more elements than could be
stored in memory.

Multidimensional Arrays
Since the type of the elements can be anything except a file
type, you can declare an array of arrays. For example, here is a
declaration of an array whose elements are arrays like the one
declared above:

VAR SQUARE: ARRAY [0 •• 9] OF ARRAY [0 •• 9] OF REAL;

SQUARE has ten elements, each of which is an array of ten real
values. The variable SQUARE[3] is an array variable, and you can
think of SQUARE as a 10xl0 matrix of real values; SQUARE[3] can
be thought of as a row, and its real elements can be thought of
as the column elements of the row. To select one of the real
values from the matrix, you need two indices; for example,
SQUARE[6][5] refers to row 6, column 5.

Arrays, Sets, and Strings 107

Thinking of the first index as a row index and the second as a
column index is a matter of choice; you could just as well think
of the first index as a column index and the second as a row
index.

Instead of writing SQUARE[6][5], you can write both indices in
one pair of brackets, with a comma to separate them:
SQUARE[6,5]. The two notations are equivalent and
interchangeable. Similarly, you can condense the declaration of
SQUARE by writing

VAR SQUARE: ARRAY [0 •• 9, 0 •• 9] OF REAL;

This declaration means exactly the same thing as the previous
one, and has the advantage of being more explicit to the human
reader. It obviously declares a two-dimensional array of reals.
Here is a declaration of a three-dimensional array:

VAR SPACE: ARRAY [0 •• MAXX, 0 •• MAXY, 0 •• MAXZ] OF REAL;

where MAXX, MAXY, and MAXZ are previously declared integer
constants. A Pascal array can have as many dimensions as
desired.

Other Index Types
So far, all the examples have shown integer subranges as index
types, since this is the most common usage. However, remember
that an index type can be any scalar type except integer. For
example, it can be char, or a subrange of char. The declaration

VAR CRYPT: ARRAY [CHAR] OF CHAR;

creates an array of characters which is indexed by character
values. It has one element for each possible character value, or
256 elements in all. Such an array could be useful for a
cryptography routine.

The indices of a multidimensional array can be of different
types. For a more complicated cryptographic scheme, you might
declare

VAR CRYPTARR: ARRAY [CHAR, l •• KEYMAX] OF CHAR;

108 Apple III Pascal

where KEYMAX is a previously declared constant. CRYPTARR
contains one element for each possible combination of a character
value and an integer value from 1 to KEYMAX.

Index Values
In a reference to a specific element of an array, each index
value is given as an expression. For example, the following is a
valid assignment statement:

SPACE[X,Y,Z] := SPACE[X-DX, Y-DY, K];

The only restriction on an expression used as an index value is
that the type of the expression's value must be compatible with
the index type in the array declaration; if the index type is a
subrange, the index value must be within the subrange.

Congruent Array Types
In the foll owing sect ions the term "congruent type" is used. To
say that two array types are congruent means that they have
elements of the same type, the same dimensionality, and the same
number of elements in each dimension. However, the index type in
a particular dimension does not have to be identical for the two
arrays, as long as the number of elements in the dimension is the
same. For example, these three array types are congruent even
though they are not identical:

TYPE A
c
D

ARRAY [0 •• 25, 0 •• 18] OF INTEGER;
ARRAY [10 •• 35, 10 •• 28] OF INTEGER;
ARRAY ['A' •• 'Z', 0 .. 18] OF INTEGER;

Each of these types is a 26-by-19 array of integers, and so they
are congruent types even though the index types are different.
The two array types

TYPE E
F

ARRAY [1 •• 5, 1 •• 10] OF REAL;
ARRAY [1 •• 50] OF REAL;

are not congruent, even though both contain 50 real elements.
Type Eis a two-dimensional 5-by-10 array and type F . is one
dimensional.

Arrays, Sets, and Strings 109

Passing Arrays
A procedure or function parameter (either value or variable) can
be declared to be an array; then when the procedure or function
is called, an array of congruent type can be passed as the actual
parameter.

The following example shows a way to use this technique:

PROGRAM X;

CONST MINX -100; !1rnY = -32; MINZ = (1;
t1AXX 100; MAXY = 156; !1AXZ = 96;

TYPE XINDEX = MINX •• MAXX;
YINDEX = MINY •• MAXY;
ZINDEX = MINZ •• MAXZ;
THREESPACE = ARRAY [XINDEX, YINDEX, ZINDEX) OF REAL;

VAR !1AINSPACE, BUFFERSPACE, SCRATCHSPACE: THREESPACE;
NOMINAL, STRENGTH: REAL;

PROCEDURE INITSPACE (VAR S: THREESPACE; VALUE: REAL);
{Set all elements of specified array to spec ified
value.}

VAR X: XINDEX; Y: YINDEX; Z: ZINDEX;
BEGIN

FOR X : = MINX TO MAXX DO
FOR Y : = MINY TO MAXY DO

FOR Z : = MINZ TO MAXZ DO S(X, Y, Z) : = VALUE
END;

FUNCTION MEAN (A: TIIREESPACE): REAL;
{Return the me a n of all elements in array.}
VAR X: XINDEX; Y: YINDEX; Z: ZINDEX; SUM: REAL;
BEGIN

SUM := 0.0;
FOR X : = MINX TO !1AXX DO

FOR Y : = MINY TO MAXY DO
FOR Z := MINZ TO MAXZ DO SUM: = SUM+ A[X,Y, Z);

MEAN : = SUM I ((MAXX-MINX+l)*(MAXY-MINY+l)*
(MAXZ-MINZ+l))

END;

110 Apple III Pascal

BEGIN

INITSPACE(MAINSPACE, NOMINAL);

STRENGTH := MEAN(MAINSPACE);

END.

The INITSPACE procedure has a variable parameter, S, which is an
array of type THREESPACE. In the main program, INITSPACE is
called with the array MAINSPACE as actual parameter; this is
legal because MAINSPACE is also of type THREESPACE. When
INITSPACE assigns the value of NOMINAL to each element of S, the
effect is to assign the value of NCMINAL to each element of
MAINS PACE.

The MEAN function has a value parameter, A, which is an array of
type THREESPACE. It returns the mean of the values of the
elements of the array. In the main program, MEAN is called with
MAINSPACE as its actual parameter; it therefore returns the mean
of all the element values of MAINSPACE.

Array Assignments
An array can be assigned to another array of congruent type. For
example, if we have the declarations

VAR AAA, BBB: ARRAY [1 •• 255) OF INTEGER;

then we can assign all the values of BBB to the corresponding
elements of AAA as follows:

AAA : = BBB

Array Comparisons
An array can be compared with another array of congruent type.
The only comparison operators allowed for arrays are the = and <>
operators (except as noted below under "Packed Character
Arrays"). For example, if we have the declarations

VAR CCC, DDD: ARRAY [0 •• 99) OF REAL;

Arrays, Sets, and Strings 111

then we can compare CCC to DDD as follows:

CCC ; DDD

The result of this express ion is TRUE if every element of CCC has
the same value as the corresponding element of DDD. The other
possible comparison is

CCC <> DDD

which is TRUE if any element of CCC has a different value from
the corresponding----element of DDD.

Two packed arrays can be compared successfully only if all
16 bits in each word of each array have been defined. See
the following section.

Packed Arrays
Any array can be declared as a packed array by inserting the word
PACKED in the declaration as shown below.

Ordinarily, every scalar value or variable in Apple III Pascal
occupies one 16-bit word (two 8-bit bytes) of memory. This
includes scalar types such as boolean values, which can logically
be represented by a single bit, or char values which can
logically be represented in only eight bits. Obviously the use
of a whole word to store such a value is a waste of memory, but
not a significant waste in the case of single values.

If you have a large array with elements that can logically be
represented in less than one word, the waste of memory becomes
more significant. The most obvious example is large arrays of
characters, where the waste is 50% if each char value occupies a
word. The declaration

VAR CHBUF: ARRAY [0 •• 2047] OF CHAR;

creates an array that occupies 2048 words of memory, or 4096
bytes. To avoid the waste, you can instead declare

VAR CHBUF: PACKED ARRAY (0 •• 2047] OF CHAR;

112 Apple III Pascal

This causes the char elements of the array to be packed, two in
each word. The packed array occupies only 1024 words or 2048
bytes.

When the program accesses an element of a packed array, a
must be either unpacked from the array or packed into it.
is done automatically, but requires some extra time for
execution. Thus the saving in storage space is a tradeoff
against execution speed and extra code space.

value
This

As wil 1 be seen in the next chapter, record types can al so be
packed. In fact, you can insert the word PACKED into the
definition of any structured type, including sets and files.
However it has no effect except with arrays and records.

There is one restriction on the use of packed values: an element
of a packed array or record cannot be passed to a procedure or
function as an actual variable parameter.

In a packed array (or record), 16-bit words are still the unit of
storage; the difference is that one word may contain more than
one value. Values are never packed across a word boundary; for
example, consider this array:

VAR XXX: PACKED ARRAY [1 •• 3] OF 0 .. 127;

To store a
logically.
word, with
of memory:
the second

value in the range 0 •• 127 requires just 7 bits,
Thus two such values can be stored in one 16-bit

two bits left over. The array XXX occupies two words
one word contains the elements XXX[l] and XXX[2], and
word contains the element XXX[3].

It is easy to be mistaken about how a particular array
will be packed. When in doubt, you can use the built-in
procedure SIZEOF to find out the actual number of bytes
occupied by any data type as explained in Chapter 13. The
following points about packing should be kept in mind if
you are trying to solve a critical space problem.

Since the word is the basic unit of storage, the minimum size for
any packed array is one word. Consider the array type

TYPE EIGHTBITS =PACKED ARRAY [0 •• 7] OF BOOLEAN;

Arrays, Sets, and Strings 113

Logically, this array type only requires one byte, since each of
its 8 elements only requires one bit. However a variable of type
EIGHTBITS actually occupies one word or 16 bits, since that is
the minimum. Now consider

VAR BATS: PACKED ARRAY [0 •• 3) OF EIGHTBITS;

or its exact equivalent

VAR BATS: PACKED ARRAY [0 •• 3, 0 •• 7) OF BOOLEAN;

BATS consists of four packed arrays, each containing eight
booleans. You might expect BATS to occupy a total of 32 bits, or
two words; but as we have just seen, a packed array of eight
booleans takes a whole word. Therefore BATS occupies four words,
not two. Furthermore, note that

VAR FATS: PACKED ARRAY [0 •• 7, 0 •• 3) OF BOOLEAN;

occupies eight words!

In general, elements are packed only if each element can be
represented in eight bits or less--in other words, only if two or
more elements can be packed into a word. As the previous
examples show, if the "elements" under consideration are arrays,
they always require one or more words and can never be packed.

This leads to the fact that the word PACKED, in an array
declaration, has an effect only when it appears just before the
last occurrence of the word ARRAY. In other words, only the last
dimension of an array can actually be packed. For example, the
following two declarations are not equivalent:

VAR E: PACKED ARRAY [0 •• 9) OF ARRAY [0 •• 3) OF CHAR;
VAR F: PACKED ARRAY [0 •• 9, 0 •• 3) OF CHAR;

The array E is not packed, because the word PACKED is not just
before the last occurrence of the word ARRAY. The array F is
packed, however.

Packed Character Arrays
One-dimensional packed arrays of characters have some special
properties that go beyond what is allowed with other array
types.

114 Apple III Pascal

A string constant can be assigned to a one-dimensional packed
array of characters, if the number of elements in the array is
exactly the same as the number of characters in the string
constant. (See next section for details of string constants.)

Two one-dimensional packed arrays of char that have the same
number of elements can be compared using the >, <, <=, and >=
operators. The comparison is done as if the arrays were being
put in "alphabetical order" according to the ordering of the
ASCII character set. For example, if arrays A and B are declared
as follows:

VAR A, B: PACKED ARRAY [1 •• 3) OF CHAR;

and during program execution the following assignments are made:

A := 'cat';
B := 'dog'

Then A contains the characters "cat" and B contains the
characters "dog". A is "less than" B, and the following
express ions are val id:

A= B {result is FALSE}
A <> B {result is TRUE}
A > B {result is FALSE}
A < B {result is TRUE}
A >= B {result is FALSE}
A <= B {result is TRUE}

The same comparisons can be made between a one-dimensional packed
array of characters and a string constant, if the number of
elements in the array is the same as the number of characters in
the string constant. The comparisons above could be written as

A= 'dog' {result is FALSE}
A <> 'dog' {result is TRUE}
A > 'dog

,
{result is FALSE}

A < 'dog' {result is TRUE}
A >= 'dog

,
{result is FALSE}

A<= 'dog' {result is TRUE}

One-dimensional packed arrays of characters are also handled in a
special way by the built-in procedures WRITE and WRITELN as
explained in Chapter 11.

Arrays, Sets, and Strings 115

Sets
In Pascal, a set is a collection of distinct values, all of the
same scalar type. The values are called members of the set; the
type of the members is called the base type of the set. The
syntax of a set type is

set type

base
type

Here are some examples of set variable declarations:

VAR LETTERS, SPECIALCHARS, PRINTINGCHARS: SET OF CHAR;
DIGITS: SET OF 'fil' •• '9';
COLORS: SET OF (VIOLET, BLUE, GREEN, YELLOW,

ORANGE , RED) ;

A set type specifies all the possible members of a set of that
type. For example, a SET OF CHAR can contain any collection of
distinct char values. The term "distinct" here means that a
particular char value can only appear once in the set; for
example, the set DIGITS, declared above, either contains the
character '5' or it doesn't.

When the type given after the words SET OF is a subrange, the
base type of the set is the base type of the subrange. Thus in
the second example above (SET OF 'fil' •• '9'), the base type of the
set DIGITS is the char type; the set can contain only the
characters 'lil' through '9'.

Set Values
To understand set values, it may be helpful to know that a set
value is represented internally as a bit pat tern, with a bit for
each possible member of the set. Each of these bits indicates
whether that possible member is actually a member. The point of

116 Apple III Pascal

this is that al though a set is a collect ion of members, a set
value is a single value.

To write a set value explicitly, you specify its members between
square brackets. For example, suppose that the variable
SPECIALCHARS has been declared as a SET OF CHAR (as shown
above). Now consider the assignment statement

SPECIALCHARS := ['.', ',', ';', ':'·, '(', ')']

After this assignment, SPECIALCHARS is the set containing the
period, comma, semicolon, colon, and left and right parentheses.
Internally, this value is represented by a bit pattern containing
256 bits, one for each possible char value. In this pattern, the
particular bits corresponding to the characters that are members
of the set are "on" and the other bits are "off."

When the members form a subrange, you can use the subrange
notation, as in

DIGITS:= ['0' •• '9']

This makes DIGITS the set of all characters from '0' through
'9'. Alternatively, if you wanted DIGITS to contain only octal
digits, you could write

DIGITS := ['0' •• '7']

This makes DIGITS the set of all characters from '0' through
'7'. You can al.so use more than one subrange and mix subranges
and individual members as in the following:

LETTERS:= ['A' •• 'Z', 'a' •• 'z']
COLORS := [VIOLET •• GREEN, ORANGE];

After these two assignments, LETTERS is the set of all capital
letters and all lower-case letters, and COLORS is the set
containing VIOLET, BLUE, GREEN, and ORANGE.

A set value written with square brackets in this manner is called
a set constructor. The syntax for a set constructor is

Arrays, Sets, and Strings 117

set constructor

The set constructor [] denotes the empty set.

Restrictions on Sets
The base type of a set cannot have more than 512 values. A set
cannot contain any value whose ordinality is less than~ or
greater than 511. In particular, it cannot contain any integer
less than ~ or greater than 511. An attempt to assign more than
512 members to a set, or to assign an integer member outside the
range 0 •. 511, results in a run-time error which halts the
program.

The formula for the number of words of storage, given the number
of members in a set, is

((n-1) DIV 16)+l

where n is the number of possible values in the base type.

A set of 512 members occupies 32 words of storage.

The IN Operator
The IN operator is used to test whether a particular scalar value
is a member of a particular set. The IN ope rat or is a rel at ion al
operator and has a boolean result. It has the same precedence
as the other relational operators.

The IN operator must have a seal ar value on the left and a set on
the right. The type of the scalar value must be the same as the
base type of the set. Suppose that we have the following
declarations and assignments:

118 Apple III Pascal

TYPE COLOR = (MAGENTA, CYAN, YELLOW);

VAR LETTERS: SET OF CHAR;
COLORS: SET OF COLOR;
INCHAR, TSTCH: CHAR;
INDEX: INTEGER;
TINT: COLOR;

BEGIN
LETTERS := ['A',,'Z', 'a',,'z'];
COLORS : = [MAGENTA, CYAN];

Then the following expressions are val id uses of IN:

INCHAR IN LETTERS {TRUE if value of INCHAR is a letter}
TSTCH IN ['a' .. 'z'] {TRUE if value of TSTCH is a lower

case letter}
SUCC(TINT) IN COLORS {TRUE if successor of value of TINT

is CYAN}
(INDEX+ 5) IN [0 •• 255] {TRUE if value of (INDEX +5) is

in the range 0 .. 255}

All of these expressions could be replaced with constructs that
do not use sets; for example, INCHAR IN LETTERS could be replaced
with

(INCHAR)= 'A') AND (INCHAR <= 'Z')
OR (INCHAR)= 'a') AND (INCHAR <= 'z')

However, the expression INCHAR IN LETTERS is not only more
straightforward, it executes faster. Set operations in general
are quite fast.

Combining Sets
So far, we have only seen two ways to represent set values: set
variables, and set constructors. Such set values can also be
combined to form expressions with set results. The operators are
+, -, and *· These symbols are also used with numeric operands
to perform arithmetic. They have different meanings when the
operands are set values, but they have the same precedence
whether they function as set operators or arithmetic operators.

The + operator forms a set union. If A and B are set values with
members of the same type then the value of A+ B (or B +A) is

Arrays, Sets, and Strings 119

the set that cont a ins al 1 members of A and al 1 members of B.

For examples of the use of set unions, suppose that we have the
declarations:

VAR CAPS, LOWERS, LETTERS, DIGITS, ALPHANUMERICS:
SET OF CHAR;

and the assignments

CAPS : = ['A' •• 'Z '] ;
LOWERS:= ['a' •• 'z'J;
DIGITS:= ['0' •• '9'];

Then we can conveniently make the following assignments for
LETTERS and ALPHANUMERICS:

LETTERS :=CAPS +LOWERS;
ALPHANUMERICS := LETTERS+ DIGITS;

A common use of the union operator is to add a single new member
to a set. Suppose that we wish to add the character '$' to the
set ALPHANUMERICS:

ALPHANUMERICS :=ALPHANUMERICS+ ['$']

The - operator forms a set difference. If A and B are set values
with members of the same type then the value of A - B is the set
that contains all members of A that are not members of B. For
example, the value of the expression

[CHR(Q) •• CHR(255)] - LETTERS

is the set of all character values that are not letters. You can
also use the difference operator to remove a single value from a
set. For example, the value of the express ion

LETTERS - ['A']

is the set of all letters except the letter 'A'.

The * operator forms a set intersect ion. If A and B are set
values with members of the same type then the value of A * B (or
B * A) is the set that cont a ins al 1 members of A that are al so
members of B. For example, suppose that we have the declarations

120 Apple III Pascal

VAR COMMANDS, OPTIONS: SET OF CHAR;

and the assignments

COMMANDS : = ['A' , ' S ' , 'M' , ' D ' , 'E ' , ' 0 '] ;
OPTIONS:= ['B', 'O', 'D', 'H']

then the value of the expression

COMMANDS * OPTIONS

is the set containing the characters 'O' and 'D'.

Comparing Sets
Two sets that have the same base type can be compared using the =
and <>operators, to see if they are equal or unequal. They can
also be compared using the <= and >= operators, to see if one set
contains the other. These operators produce boolean results.

The same symbols are used for arithmetic comparison; they have
different meanings when the operands are set values, but they
have the same precedence whether they function as set comparisons
or arithmetic comparisons. Note that the comparisons > and <
cannot be used with sets.

With set operands, the = operator denotes set equality and the <>
operator denotes set inequality. Two sets are said to be equal
if they contain exactly the same elements, and unequal
otherwise.

With set operands, the>= operator means "includes."
includes set B if every member of B is also a member
that A may contain other members which are not in B.
the <= operator means "is included in."

Strings

Set A
of A. Note
Similarly,

A string value is a sequence of up to 255 characters. Strings
are supported by a set of built-in procedures and functions,
described further on in this chapter.

Arrays, Sets, and Strings 121

String Constants
A string constant consists of the string itself between
apostrophes (with a special way of including apostrophes in the
string as explained below). The syntax is

string constant

charac t e r

To write a string constant that contains an apostrophe, write two
apostrophes as in the following examples:

'Can''t find the specified file.'
'The challenger"s score is: '
'Type either ''yes'' or ''no'''

A string constant can also be declared with an identifier, as in
the foll owing:

CONST ERRMSG = 'Can''t find the specified file';

Note that a string constant must be on a single line in the
program; it cannot contain a line-break.

String Variables
A string variable is a variable whose value at any point during
program execution is a string . String variables are usually
treated as single units, but it is possible to pick out a single
character value from a string variable by indexing it in the same
way that an array element is selected by indexing .

A string variable is created by declaring it with a string type.
The syntax of a string type is

122 Apple III Pascal

string type

STRING

unsigned
integer

cons t ant

Here are some examples of string variable declarations:

VAR MSGBUFFER: STRING(255];
INPUTNAME, OUTPUTNAME: STRING;

The number in brackets, if used, specifies the maximum length of
the string. The number can be any integer from 1 through 255.
If no number is specified, the maximum length is 80. Since the
string variable's value can change during execution, the system
keeps track of the length of the string value; if this length
exceeds the maximum, a run-time error occurs.

The value of a string variable can be altered by using an
assignment statement with a string constant or another string
variable:

TITLE := This is a title

or

NAME :=TITLE

or by means of the READLN procedure as described in Chapter 11:

READLN(TITLE)

or by means of the string built-ins, described further on in this
chapter.

A string value can be compared to any other string value,
regardless of length. Also, as previously mentioned, a string
value can be compared to a one-dimensional packed array of
characters if the length of the string is the same as the number
of elements in the array.

Arrays, Sets, and Strings 123

The relational operators =, <>, <, >, <=, and >= are used. One
string is "less than" another if it would come first in an
"alphabetic" list of strings based on the ordering of the ASCII
char act er set.

Elements of a String
The individual characters within a string are indexed from 1 (not
0!) to the length of the string. For example, if TITLE is the
name of a string and we have the assignment

TITLE := 'A Quick Brown Fox'

then TITLE[l] is a reference to the first character of TITLE,
namely the character 'A', and TITLE[l7] is a reference to the
last character, namely 'x'. The index must not be less than 1 or
greater than the length of the string. For example, TITLE[l8]
would lead to a run-time error.

There is a case where you must assign a character to a string
element. It may be necessary to convert the value of a char
variable to a one-character string valqe; for example you may
want to add it to a string with the CONCAT procedure (see next
section), which requires a string value rather than a char
value.

Note that while a one-character string constant is the same thing
as a character constant, a string variable whose value is a
single character is not the same thing as a character variable
and you cannot assign one to the other.

The way to deal with this is shown in the example below, which
assumes that the value of the char variable CHVAL is to be
concatenated to the value of the string variable LINE. To make
this possible we use a string variable named ONECH. First we
initialize it with a one-character st ring constant, so it will
have the right length, and then we assign the char value to its
element, ONECH[l].

ONE CH : = 'X';
ONECH[l] := CHVAL;
LINE := CONCAT(LINE, ONECH)

Beware of zero-length strings: they cannot be indexed at
all without causing a run-time error. If a program

124 Apple III Pascal

indexes a string that might have zero length, it should
first use the LENGTH function (see next section) to see if
the length is zero. If the length is zero, the program
should not execute statements that index the string.

You cannot define a function of type string. However, there are
built-in functions of type string as described in the next
sect ion.

String Built-Ins
In the following descriptions, a "string value" means a string
variable, a string constant, or any function or expression whose
value is a string. Unless otherwise stated all parameters are
value parameters.

The LENGTH Function
The LENGTH function returns the length of a string. LENGTH takes
one parameter:

LENGTH (STRG)

where STRG is a string value parameter. For example, if we have
the assignment

S := 'abcdefg';

then the value of LENGTH(S) is 7 and the value of S[LENGTH(S)]
is 'g'.

The POS Function
The POS function returns an integer value. POS takes two
parameters:

POS (SUBSTRG, STRG)

where both SUBSTRG and STRG are string value parameters. The POS
function scans STRG to find the first occurr.ence of SUBSTRG
within STRG. POS returns the index within STRG of the first
character in the matched pattern. If the pattern is not found,
POS returns zero.

Arrays, Sets, and Strings 125

For example, suppose that a string variable named FNAME contains
a filename that has been typed on the keyboard. Then the value
of POS('.', FNAME) will be~ if the filename contains no period,
1 if the first character is a period, etc.

The CONCAT Function
The CONCAT function returns a string value. CONCAT can take any
practical number of actual parameters each of which is a string
value; the parameters are separated by commas. The syntax of the
call is

CONCAT returns a string which is the concatenation of all the
strings passed to it. For example, if FNAME is a string variable
containing a file name from the keyboard, then the statement

FNAME := CONCAT(FNAME, '.TEXT')

has the effect of appending the suffix .TEXT to the name . Another
example: if we have the assignments

FIRSTNAME := 'George';
LASTNAME := 'Washington'

BOTHNA!1ES := CONCAT(LASTNAME,', ',FIRSTNAME)

then the statement

WRITELN(BOTHNA!1ES)

will print

Washington, George

126 Apple III Pascal

The COPY Function
The COPY function returns a string value. COPY takes three
parameters:

COPY (STRG, INDEX, COUNT)

where STRG is a string value parameter and both INDEX and COUNT
are integer value parameters. COPY returns a string containing
COUNT characters copied from STRG starting at the INDEXth
position in STRG. Example:

TL := 'KEEP SOMETHING HERE';
KEPT := COPY(TL, POS('S', TL), 9);
WRI TELN (KE PT)

This will print:

SOMETHING

The DELETE Procedure
The DELETE procedure modifies the value of a string variable.
DELETE takes three parameters:

DELETE (STRG, INDEX, COUNT)

where STRG is a string variable parameter and both INDEX and
COUNT are integer value parameters. DELETE removes COUNT
characters from STRG starting at the INDEX specified. Example:

LATIN:= 'Cartage delenda est.';
DELETE(LATIN, POS('delenda', LATIN), LENGTH('delenda '));
WRITELN(LATIN)

This will print:

Cartage est.

The INSERT Procedure
The INSERT procedure modifies the value of a string variable.
INSERT takes three parameters:

INSERT (SUBSTRG, STRG, INDEX)

Arrays, Sets, and Strings 127

where SUBSTRG is a string value parameter, STRG is a string
variable parameter, and INDEX is an integer value parameter.
INSERT inserts SUBSTRG into STRG at the INDEXth position in
STRG. Example:

ID := 'INSERTIONS';
MORE := 'DEMONSTRATE';
DELETE(MORE, LENGTH(MORE), l);
INSERT(MORE, ID, POS('IO', ID));
WRITELN(ID)

This will print:

INSERT DEMONSTRATIONS

You can insert a substring at the end of a string by using INDEX
value LENGTH(string)+l. For example

S := 'ABC'
T := 'DE'
INSERT(T,S,LENGTH(S)+l);

will produce a string of length 5 containing

'ABCDE',

The STR Procedure
The STR procedure modifies the value of a string variable. STR
takes two parameters:

STR (N , STRG)

where N is an integer value parameter, and STRG is a string
variable parameter. N may be a long integer.

STR converts the value of N into a string. The resulting string
is pl aced in STRG. Example:

128 Apple III Pascal

INTLONG := 102039503;
STR(INTLONG, INTSTRING);
INSERT('.', INTSTRING, LENGTH(INTSTRING)-1);
WRITELN('$', INTSTRING)

This will print:

The use of STR requires availability of the long integer
procedure, LONGINTIO, which is found in the standard system
1 ibrary file.

Records 129

130 Apple III Pascal

Record Variables
A record variable is a collection of elements called fields which
may be of different types. Each field has its own identifier
within the record, and can be individually referenced; or the
record can be referenced as a whole.

As will be seen in later chapters, record types are extremely
useful in conjunction with dynamic variable allocation and files;
in this chapter, the discussion is restricted to ordinary record
variables (which are neither dynamic variables nor components of
files).

The syntax for a record type is

record type

field
list

The syntax for a field list is

field list

type variant
part

Each field identifier is the name of a distinct variable, or
field, within that record type . The type of a field may be
anything except a file type. The syntax for the variant part is
given in the next section; in this section, we assume that there
is no variant part .

Records 131

The following record type can be used to represent a date:

DATE = RECORD
DAY, YEAR: INTEGER;
MONTH: STRING

END;

If you declare a variable named TODAY, of type DATE, then the
fields of this variable can be referenced as TODAY.DAY (an
integer variable), TODAY.YEAR (another integer variable), and
TODAY.MONTH (a string variable).

The record type below uses the type DATE for two of its fields.
It could be used in a checking-account program.

TYPE CHECK = RECORD
CHECKNUMBER: INTEGER;
DATEWRITTEN, DATEPAID: DATE;
AMOUNT: REAL;
RECIPIENT: STRING;
BOUNCED: BOOLEAN

END;

Type CHECK contains six fields. A checkbook might be represented
as an array of records of type CHECK:

VAR CHECKBOOK: ARRAY[l •• 100] OF CHECK;

To reference a field in a record, merely write a reference to the
record, then a period, then the field identifier. For example,
with the declarations above,

- CHECKBOOK(3] refers to a particular check (a variable
of type CHECK).

- CHECKBOOK[3].CHECKNUMBER refers to the number of that
check (an integer variable).

- CHECKBOOK[3].DATEWRITTEN refers to the date on which
that check was written (a variable of type DATE).

- CHECKBOOK(3].DATEWRITTEN.MONTH refers to the month
within the date (a string variable).

132 Apple III Pascal

To assign numbers to the checks in the array you could use the
statement:

FOR I:= 1 TO 100 DO CHECKBOOK[I].CHECKNUMBER :=I;

Variant Records
The optional variant part of a record type contains two or more
alternate field lists. For example, a variant part of a record
could be declared to contain either a string or two reals, an
integer, and a string.

To understand what this means, recall that a Pascal variable
consists of two things:

- Al 1 ocated memory space to hold the value of the
variable in binary form

- Type information which tells the system how to
interpret the binary information.

When a variant part is declared, the Compiler allocates enough
space for the largest of the alternate field lists in the variant
part. All of the alternate field lists then use the same
allocated space.

The syntax for a variant part is

variant part

tag
identifier

tag
type

identifier

field
list

Records 133

The variant part resembles a CASE statement, and its meaning is
closely related. The tag identifier and tag type serve to
declare a tag field, which can be of any scalar type. The tag
field is an ordinary field of the record (just as if it were
declared before the variant part).

Note that the tag identifier is optional; if it is
omitted, then there is no tag field. In the rest of this
chapter, we assume that the tag field is present; for
information on the use of variants without tag fields, see
Appendix G.

The tag type cannot be omitted, because it also relates to the
constants within the variant part: each constant in the variant
part must be one of the possible values of the tag identifier.
Each of these constants is a "lab el" for a field 1 ist, enclosed
in parentheses.

The variant part syntax allows you to declare records of a single
type which can have more than one configuration -- each of the
field lists in the variant part represents a specific, distinct
configuration.

At run time, the program can refer to any of the fields in the
variant part. All of the "cases" or field lists of a variant

134 Apple III Pascal

part occupy the same space in memory, on the assumption that at
any point in the program, the data in that space is to be
interpreted according to just one field list.

The following example shows a record that has a variant part.

TYPE YESNO
IDE NT

(YES, NO);
RECORD

LASTNAME, FIRSTNAME: STRING[l0];
CASE HASLIC: YESNO OF

END;

YES: (LICNO: INTEGER[l0]);
NO: (SOCSEC: STRING[l0])

A record of type !DENT contains four fields: LASTNAME,
FIRSTNAME, HASLIC and either LICNO or SOCSEC. The program can
use the tag field HASLIC to determine which variant field, LICNO
or SOCSEC, should be used.

Fields in the variant part of a record are referenced exactly as
normal fields are. At any point in the program, you can refer to
either IDENT.LICNO or IDENT.SOCSEC. The two references refer to
the same physical data; the difference is that a reference to
IDENT.LICNO interprets the data as a ten-digit long integer,
while a reference to IDENT.SOCSEC interprets the same data as a
string of up to ten characters.

Now suppose we have an array of records of type !DENT, and some
other variables to contain information input by the user:

VAR IDCARD: ARRAY [l •• 1000] OF !DENT;
LASTNAMEIN, FIRSTNAMEIN, SSNUMIN: STRING[l0];
HASLICIN: YESNO;
LICNUMIN: INTEGER[l0];

The following assignments can be made to a particular record,
IDCARD[N]:

IDCARD[N].LASTNAME := LASTNAMEIN;
IDCARD[N].FIRSTNAME := FIRSTNAMEIN;
IDCARD[N].HASLIC := HASLICIN;
CASE IDCARD[N].HASLIC OF

YES: IDCARD[N].LICNO := LICNUMIN;
NO: IDCARD[N].SOCSEC := SSNUMIN

END

Records 135

Notice that the tag field is used to select the proper variant
field.

The tag field does not have to be declared after the word
CASE; as mentioned before, it is really just another field
of the record. In fact, the type IDENT declared above can
be thought of as an abbreviation for the declaration

TYPE IDTOO = RECORD
LASTNAME , FIRSTNAHE: STRING[l0];
HASLIC: YESNO;
CASE YESNO OF

END;

YES: (LICNO: INTEGER[l0]);
NO: (SOCSEC: STRING[l0])

where the tag field is declared before the variant part.
However, note that the tag type must appear after the word
CASE, since it determines the possible values for the
constants in the variant part.

The tag field does not automatically control which fields
can be referenced in the variant part of the record. It
is up to the program to use the tag field as a control, as
shown in the example above.

The WITH Statement
The WITH statement is a shorthand method for referencing elements
of a record. It provides a means by which the fields of
specified records can be referenced using only their field
identifiers. The syntax of a WITH statement is

136 Apple III Pascal

with statement

DO s t a t emen t

The meaning of the record variable reference is determined once,
before the statement following DO is executed.

Earlier, we showed the following assignments to the record
IDCARD(N]:

IDCARD(N].LASTNAME := LASTNAMEIN;
IDCARD[N].FIRSTNAME := FIRSTNAMEIN;
IDCARD[N].HASLIC := HASLICIN;
CASE IDCARD[N].HASLIC OF

YES: IDCARD[N].LICNO := LICNUMIN;
NO: IDCARD [N]. SOC SEC : = SSNUMIN

END

These statements can be abbreviated by using a WITH statement:

WITH IDCARD[N] DO BEGIN
LASTNAME : = LASTNAMEIN;
FIRSTNAME : = FIRSTNAMEIN;
HASLIC := HASLICIN;
CASE HASLIC OF

END
END

YES: LICNO : = LICNUMIN;
NO: SOCSEC := SSNUMIN

Variables that are not fields of records may be referenced as
usual within the WITH statement. For example, if COUNTER is
declared as a variable of type integer, then you can write

WITH CHECKBOOK[I] DO BEGIN
COUNTER := COUNTER+l;

CHECKNUHBER := COUNTER MOD 1000
END

Records 137

The identifier COUNTER references the integer variable COUNTER
(rather than a record field named COUNTER) because the records
listed do not have a field named COUNTER.

If one of the fields of a record is itself a record, then nested
WITH statements can be used:

WITH CHECKBOOK[!] DO WITH DATEWRITTEN DO BEGIN
CHECKNUMBER := I;
DAY := 5; {references CHECKBOOK[I].DATEWRITTEN.DAY}
MONTH := 'JULY'

END

For convenience, these nested WITH statements can be combined
into a single WITH statement:

WITH CHECKBOOK[!], DATEWRITTEN DO BEGIN
CHECKNUMBER :=I;
DAY := 5; {references CHECKBOOK[I].DATEWRITTEN.DAY}
MONTH := 'JULY'

END

When the same field name occurs in more than one record, and both
records are "abbreviated" via the WITH statement, a potential
ambiguity arises. Consider the following:

WITH CHECKBOOK[!], DATEWRITTEN, DATEPAID DO BEGIN

DAY : = 5;

END

The field DAY occurs both in CHECKBOOK[I].DATEPAID.DAY and in
CHECKBOOK[I].DATEWRITTEN.DAY; which one is referenced in the
assignment statement? The answer is that
CHECKBOOK[I].DATEPAID.DAY is referenced, because DATEPAID is the
last record listed in the WITH statement.

The confusion arises because DATEWRITTEN and DATEPAID are
"parallel;" that is, one is not a field of the other. WITH
statements that allow this kind of confusion should be avoided.
For example, the following WITH construction can be used to
reference fields of the same name in both DATEWRITTEN and
DATEPAID:

138 Apple III Pascal

WITH CHECKBOOK[I] DO BEGIN
WITH DATEWRITTEN DO BEGIN

DAY := 5;

END;
WITH DATEPAID DO BEGIN

DAY := 6;

END
END

Comparisons and Assignments
Al though most assignments to records are done on a field by field
bas is, it is al so possible to make assignments between entire
records of the same type . For example , the result of the
assignment

CHECKBOOK[I] : = CHECKBOOK(I + l]

is to assign to every field in CHECKBOOK[I] the value of its
corresponding field in CHECKBOOK[I + l].

Actually , assignments between records of different types
are allowed if the types are "congruent" -- that is, if
every field in one record has a corresponding field, of
the same type but not necessarily of the same name, in the
other record .

The only operations that can be performed on records are
comparisons , giving boolean results . Of the relational
operators, only

equal to
<> not equal to

can be used with records . The rules for comparing two records
are the same as the rules for assignment to records: the two
records being compared must have corresponding fields of
identical types .

Records 139

Two packed records can be compared successfully only if
all 16 bits in each word of each record have been
defined. See the following section.

Packed Records
The following record declaration declares a record with four
fields . The entire record occupies one 16-bit word as a result
of declaring it to be packed.

VAR R: PACKED RECORD
I,J,K: 11) •• 31;
B: BOOLEAN

END;

The fields I, J, Keach take up five bits in the word. The
boolean field B occupies the 16th bit of the same word.

In much the same manner that multidimensional arrays can be
packed, packed records may contain fields which themselves are
packed records or packed arrays. Slight differences in the way
in which declarations are made will affect the degree of packing
achieved. For example , note that the following two declarations
are not equivalent:

VAR A:PACKED RECORD
C:INTEGER;
F:PACKED RECORD

R:CHAR;
K:BOOLEAN

END;
H:PACKED ARRAY[0 •• 3]

OF CHAR
END;

VAR B:PACKED RECORD
C: INTEGER;
F:RECORD

R:CHAR;
K:BOOLEAN

END;
H:PACKED ARRAY[0 •• 3]

OF CHAR
END;

As with packed arrays , the word PACKED should appear with every
occurrence of the word RECORD or ARRAY to ensure that all fields
of the record are actually packed. In the above example, only
record A has the F field packed into one word. In B, the F field
is not packed and therefore occupies two 16-bit words. It is
important to note that a packed or unpacked array or record which
is a field of a packed record will always start at the beginning

140 Apple III Pascal

of the next word boundary. This means that in the case of A,
even though the F field does not completely fill one word, the H
field starts at the beginning of the next word boundary.

A variant part may be used in a packed record, and the amount of
space allocated to it will be the size of the largest variant
among the various cases. The details of the packing methods are
beyond the scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF

TRUE: (Z: INTEGER);
FALSE: (M: PACKED ARRAY[0 •• 3] OF CHAR)

END;

In the above example the B and F fields are stored in two bits of
the first 16-bit word of the record. The remaining fourteen bits
are not used. The size of the variant part is always the size of
the largest variant, so in the above example the variant part
will occupy two words, one byte for each of four characters.
Thus the entire packed record will occupy three words.

Pointers and Dynamic Variables 141

142 Apple III Pascal

Concepts
Up to this point we have dealt only with static variables: these
are declared in the program and the Compiler responds to the
declaration by

- allocating memory space to hold the value of the
declared variable at run time;

- associating the declared identifier with that memory
space , and with the type information in the
declaration .

In other words , everything about a static variable except its
actual value is determined when the program is compiled. Only
the value is determined at run time . Variant records may appear
to be an exception to this statement , but really they are just a
slightly more complicated case ; the Compiler allocates enough
space for the largest variant of a record variable , and at run
time the field identifier determines how this space is used.
Again , all information about the variable is determined at
compile time, except for the actual value(s) .

Some programs need a more flexible kind of variable. For
example, imagine a prograrJ that will read a sequence of records
from a file or from t he t erminal; suppose that the records are of
type

TYPE RTYPE RECORD
INTVALS : INTEGER ;
RVAL: REAL;

END ;

At the time when the program is written, the difficulty is that
we don ' t know how many records will be read . How can we create
variables to hold the records? One way is to make a generous
guess and declare an array . For example if we think the number
of records will not exceed 100 , we could declare

VAR REC: ARRAY [1 .• 100] OF RTYPE;

This is not very satisfactory; if the numb e r does exceed 100 the
program will be unable to cope , and if the number is less than

Pointers and Dynamic Variables 143

100 we will have wasted space. The situation calls for the use
of dynamic variables.

A dynamic variable is not declared, has no identifier, and is
created at run time. Since it has no identifier, it can only be
referenced indirectly, by means of a pointer. In Pascal,
pointers and dynamic variables are two parts of a single
mechanism. Note that this is the only Pascal mechanism for
accessing the unallocated memory space that is available at run
time.

Instead of declaring the REC array as shown above, we declare

VAR PTR: ARTYPE;

This creates a static variable called PTR which is a pointer to a
dynamic variable of type RTYPE. At compilation time there is no
such variable, but in the program we can write

NEW(PTR)

NEW is a built-in Pascal procedure. The call shown does two
things at run time:

It creates a new variable of type RTYPE, somewhere in
unused memory space.

- It sets the value of PTR so that it po in ts to this new
variable.

Now we can refer to the new dynamic variable by writing

which means "the thing pointed to by PTR." We can refer to the
fields within the variable by writing PTRA.INTVALS or PTRA.RVAL,
just as if "PTRA" were the identifier of the variable. However,
another NEW(PTR) call will create a second variable of type
RTYPE, and then PTR will point to this second variable. At this
point you may be wondering how to refer to the first dynamic
variable after the second is created, and this point will be
dealt with at length further on.

144 Apple III Pascal

Pointer Values
Pointer values are generated by NEW and there is no way to write
a pointer value explicitly. Therefore you cannot declare a
pointer constant; however, there is a built-in pointer constant
named NIL, which can be a value of any pointer variable and which
points to nothing.

The value of a pointer variable can be changed in only two ways :
by giving the pointer variable as a parameter to NEW and by
assigning it the value of another pointer variable or NIL.

The only other operation allowed with pointers is comparison
using the = and <> operators, yielding a boolean result .
Pointers cannot be compared using the <, <= , >, and >= operators,
and they cannot be combined using any of the arithmetic
operators. Pointers are not a scalar type , and thus do not have
successors or predecessors. However, you can use the ORD
function with a pointer; the result is an integer which
represents a physical address.

For readers who are familiar with pointers in some other
language, it must be emphasized that in Pascal you cannot set a
pointer to a static variable; pointers can point only to dynamic
variabl es created by NEW .

Declaring Pointer Variables
A pointer variable is declared by using a pointer type. The
syntax for a pointer type is

pointer type

~
~

Pointers and Dynamic Variables 145

In other words, a pointer type is a hase type prefixed with the
symbol. The base type specifies the type of variable that a
pointer of this type can point to. The base type can be any type
except a file type, and there is a special provision: the base
type can be an identifier for a variable type that has not yet
been declared. This is the only time in Pascal where you can use
an identifier that has not yet been declared. Examples:

TYPE DATASET= ARRAY (0 .. 25] OF REAL;
RPTR = ARTYPE;
RTYPE = RECORD

LINK: RPTR;
DATA: DATASET

END;

VAR INDATA: DATASET;
FIRST, LAST, CURRENT: RPTR;

The pointer type RPTR is declared using RTYPE as its base type,
even though RTYPE is still undefined. Then RTYPE is declared,
and it makes use of the RPTR type in its own declaration, for
reasons that will be explained below. The RPTR type is used
again in a static variable declaration; FIRST and CURRENT are
pointers to point to dynamic variables of type RTYPE.

Using Pointers
The dynamic variable currently pointed to by a pointer is called
the object of the pointer. To refer to the object of a pointer,
merely refer to the pointer and append the A symbol.

For example, suppose that we have the declarations shown above,
and the program sets up some values in the array INDATA (perhaps
by reading from a file). Now we write

NEW(FIRST);

which creates a dynamic variable of type RTYPE and sets the
pointer FIRST to point to it. The data from the INDATA array can
be transferred into the new dynamic variable by writing

FIRSTA.DATA := INDATA
FIRSTA.LINK :=NIL

146 Apple III Pascal

Next suppose that the program puts another set of values into
INDATA, and we want to transfer these into a second dynamic
record. If we again use NEW(FIRST), we will lose the pointer to
the first dynamic record; so instead we write

LAST :=FIRST; {The first record is also the last record}

We will leave the value of FIRST unchanged for the rest of the
program; it will always point to the first dynamic record. Now,
for each new dynamic record required by the program, we use the
following:

{Create new dynamic record, pointed to by last record's
LINK field:}

NEW(LASTA .LINK);
{Make the new record the last record}
LAST := LASTA.LINK;
{Transfer data into last record}
LASTA.DATA := INDATA;
{Set last record's LINK field to NIL}
LASTA.LINK :=NIL

The first statement creates a new dynamic record and sets the
LINK field of the last record to point to the new record. The
second statement sets the LAST pointer to point to the new
record, and the third transfers the new data into the new
record. The last statement sets the LINK field of the last
record to NIL, so that the program can always tell which dynamic
record is the last in the list.

When all the data has been stored in dynamic records, the result
is a linked list of data arrays, structured as follows:

- The pointer FIRST points to the first record.

- The LINK field of each record except the last points to
the next record in the list.

- The last record can be identified by the fact that its
LINK field is NIL.

Suppose that PROCESS is a procedure that takes an ARRAY [0 •• 25)
OF REAL as its parameter, and we want to use PROCESS on each of
the data arrays in the dynamic records. We write

Pointers and Dynamic Variables 147

{Set current pointer to first record:}
CURRENT :=FIRST;
{Repeat as long as CURRENT points to something:}
REPEAT

{Process data of current record:}
PROCESS(CURRENTA.DATA);
{Advance to next record:}
CURRENT := CURRENTA.LINK

UNTIL CURRENT = NIL

A general discussion of linked data structures is beyond the
scope of this manual, but the above example shows the essential
idea: each record in a linked data structure contains at least
one pointer, which can point to another record in the structure.
At least one static pointer variable (FIRST in the example)
provides an entry into the structure; after using this pointer to
begin with, other records are accessed by using the pointers
contained in the records.

When a program starts running, pointer variables are not
initialized; they have unknown values until they are set
by NEW or by assignment. A variable reference using a
pointer that has not been set is a reference to some
unknown memory location and can have disastrous results.

The NEW Procedure
As we have already seen, NEW is a built-in procedure that takes a
pointer variable as a parameter. NEW creates a dynamic variable
whose type is the same as the pointer's base type, and sets the
value of the pointer variable to point to the new dynamic
variable. NEW is the only way to create a new pointer value, and
the only way to create a dynamic variable.

So far we have used only the simplest (and most common) way of
calling NEW. The complete syntax is

148 Apple III Pascal

If there is only one parameter, NEW operates as described in the
previous sections. Constants can be passed if the pointer's base
type is a variant record type; the next section discusses this
technique.

Dynamic Records with Specified Variants
If you are creating numerous dynamic variables of a record type
that has a variant part, you may be able to save space by
specifying the variant for each dynamic variable. This is done
by passing a constant to NEW along with a pointer variable. The
constant must be the same as one of the case labels in the
variant part. The constant specifies which variant is to be used
by this particular dynamic record.

The effect is that the space allocated for the dynamic record is
only large enough for the specified variant. Note that this is
an exception to the usual rule that the space occupied by any
record variable with a variant part is large enough for the
1 argest variant.

The constant that specifies the variant is not assigned to
the dynamic record's tag field. The program must make
this assignment explicitly after the dynamic record is
created (assuming that there is a tag field).

Also, observe the following cautions when accessing the dynamic
record; if you do not, you may inadvertently destroy information
in another record.

- You should not try to change the variant of the
record.

- You should not make an assignment to the record as a
whole. You can freely make assignments to fields
within the record, as long as the fields do not belong
to a different variant.

- You should not reference a field that does not belong
to the variant you have specified.

To see how all this works, consider an example. Suppose that we
have the declarations

Pointers and Dynamic Variables 149

TYPE ARRAYSIZE = (SMALL, BIG);
SMALLARRAY =ARRAY [0 •• 9] OF REAL;
BIGARRAY =ARRAY [0 •• 99] OF REAL;
VRPTR = AVREC;
VREC = RECORD

LINK: VRPTR;
CASE WHATSIZE: ARRAYSIZE OF

SMALL: (MEANDATA: SMALLARRAY);
BIG: (RAWDATA: BIGARRAY)

END;

VAR INRECORD: RECORD CASE v~IATSIZE: ARRAYSIZE OF
SMALL: (MEANDATA: SMALLARRAY);
BIG: (RAWDATA: BIGARRAY)

END;
HEAD, CURRENT: VRPTR;

The program proceeds as in the previous example to create dynamic
records and load them with new array values from INRECORD; for
each new dynamic record, this could be done as follows:

NEW(CURRENTA.LINK);
CURRENT:= CURRENTA.LINK;
CASE INRECORD. WHATS IZE OF

SMALL: CURRENTA.MEANDATA := INRECORD.MEANDATA;
BIG: CURRENTA.RAWDATA := INRECORD.RAWDATA

END;
CURRENTA .WlIATSIZE : = INRECORD.WHATSIZE;
CURRENTA.LINK :=NIL

This is just like the previous example, except that the CASE
statement is needed to check what size array is contained in
INRECORD and make the appropriate assignment; and of course the
tag field must also be assigned.

But the first statement, NEW(CURRENTA.LINK), causes the new
dynamic variable to be big enough to contain an array of 100 real
values, even if only an array of 10 values is going to be
assigned to it. If the array size in this particular dynamic
variable is not going to change, this is a waste of space.
Instead, we write

150 Apple III Pascal

CASE INRECORD.WHATSIZE OF
SMALL: BEGIN

{Create & load small variant of dynamic record: }
NEW(CURRENTA .LINK, SMALL);
CURRENT := CURRENTA.LINK;
CURRENTA.MEANDATA := INRECORD.MEANDATA

END
BIG: BEGIN

END;

{Create & load big variant of dynamic record:}
NEW(CURRENTA.LINK, BIG);
CURRENT := CURRENTA.LINK;
CURRENTA.RAWDATA := INRECORD.RAWDATA

END

CURRENTA.WHATSIZE := INRECORD.WHATSIZE;
CURRENTA.LINK :=NIL

Now each dynamic record will occupy only the space it needs to
contain the data actually assigned to it.

The syntax for cal 1 ing NEW al 1 ows for more than one constant;
this is because a record type can have more than one variant part
(nested inside one another). You can specify the variant for
each variant part in the record; the sequence of constants in the
NEW call is matched with the sequence of variant parts in the
record type declaration.

You can supply fewer constants than the number of variant parts;
the constants supplied are matched with the variant parts as far
as possible, and the remaining variant parts are left unspecified
(thus al 1 owing enough space for the largest possible variant).

MEMAVAIL
In working with dynamic variables, it may be necessary to check
the amount of available memory before calling NEW to create a new
dynamic variable. The MEMAVAIL function returns the number of
two-byte words of memory that are guaranteed to be currently
available for program data. It can be used as in the following
example:

Pointers and Dynamic Variables 151

TYPE BIGARRAY = ARRAY[0 •• 99, 0 •• 12] OF INTEGER;

VAR APTR: ABIGARRAY;

IF 2*MEMAVAIL > SIZEOF(BIGARRAY) THEN NEW(APTR)
ELSE WRITELN('Help, I'm running out of room! ');

Note that the value returned by MEMAVAIL is multiplied by 2 to
convert from words to bytes, since the value returned by
SIZEOF(BIGARRAY) is the size in bytes of a variable of type
BIGARRAY. The SIZEOF function is described in Ch apt e r 13.

The system, when reading in the directory of an Apple II
formatted diskette, allocates approximately 2 ,000 bytes in
program memory for the directory . After the directory is
read , MEMAVAIL will indicate that you have 2,00\<l fewer
bytes avail able . This space is automatically freed for
use when you issue a NEW or RELEASE procedure call . You
can also c ause the space to be fr eed, without any othe r
effect on your program, by calling MARK.

MARK and RELEASE
Pasc al as orig inally defined by Jensen and Wirth has a procedure
called DISPOSE . This procedure is not provided in Apple II I
Pascal. Instead, the MARK and RELEASE procedures are used for
returning dynamic memory allocations to the system. Note that
MARK and RELEASE do not provide exactly the same capability as
DISPOSE; programs using DISPOSE require some rewriting for use on
the Apple III.

When a Pascal program starts running , there is an area of memory
that is unused . When a dynamic variabl e i s cr eat ed by NEW, the
space allocated to the dynamic variable is at the beginning of
unused memory . Each subsequent dynamic variable is allocated
space just after the previous dynamic variable .

Thus while the program is running, there is a sequence of dynamic
variables which are physically laid out in the order in which
they were created. Note that this is not necess arily the orde r
in which the NEW calls are written in the source program; it is
the order in which they ar e actually execut ed .

152 Apple III Pascal

The MARK procedure al 1 ows you to mark a particular point in the
sequence. After this the program can create more dynamic
variables. The RELEASE procedure release s the space occupied by
these dynamic variables; the space can then be re-used for
dynamic variables created after the RELEASE call.

MARK takes a pointer of any type as its only parameter, and so
does RELEASE. The forms are

MARK (XXX)

RELEASE XXX

where XXX is a pointer variable.

MARK works by making XXX point to the beginning of available
unused space. This can be thought of as "marking" the existing
space allocation.

RELEASE works by r es toring the sp ace allocation that is "marked"
by the current value of XXX. That is, RELEASE causes the system
to consider that the available unused space begins at the
location pointed to by XXX. The effect is to throw away all
dynamic variables created since the last time MARK was called
with the same variable as its parameter. The chronology is that
of the running program, not necessarily the same as the sequence
of st ateme nts in the progr am source.

Only the beginning of available space is marked. The end
of available space may also change dynamically as the
program runs, because of memory usage by the system. The
MEMAVAIL function can be used to check the minimum amount
of space actually available at any time.

The us e of a pointe r variable in conjunc tion with MARK and
RELEASE means that a number of marks can be made by calling MARK
at different points in the program with different pointer
variables. RELEASE can then be called at various other points to
release space back to various different marks. The following
program fragment is a simple example:

Pointers and Dynamic Variables 153

VAR MARKER!, MARKER2: ~INTEGER;

PROCEDURE ONE;
BEGIN
{This procedure creates dynamic variables}
END;

PROCEDURE 1WO;
BEGIN
{This procedure creates dynamic variables}
END;

PROCEDURE THREE;
BEGIN
{This procedure creates dynamic variables}
END;

BEGIN {Main program}
REPEAT

{Before calling ONE, mark the existing allocation.}
MARK(MARKERl);
ONE;
{Before calling TWO, mark the existing allocation.}
MARK(MARKER2);
TWO;
{Now we need to release the space used by TWO (but not by

ONE), before calling THREE. The following statement
releases all space dynamically allocated since MARKER2
was used as parameter for MARK. The chronology is that
of the running program.}

RELEASE(MARKER2);
THREE;
{Now we need to release all of the dynamically
allocated space, before repeating. The following
statement releases all space dynamically allocated
since MARKER! was used as parameter for MARK. The
chronology is that of the running program.}

RELEASE(MARKERl);
UNTIL {some condition};

END.

Careless use of MARK and RELEASE can leave dangling
pointers, which do not point to any useable data. This
can lead to inadvertent destruction of data.

154 Apple III Pascal

Introduction to Files and I/O 155

Introduction to Files and 110

156 Apple III Pascal

This chapter assumes that you are familiar with the Filer
and with the conventions of pathnames. When a pathname is
used in a Pascal program, all convent ions are as described
in the Introduction, Filer, and Editor manual (chapter on
the Filer) except that wildcard characters are not
allowed.

This chapter introduces the basic concepts of Pascal files,
including the declaration of files in a program. Next it
presents a brief overview of the I/O facilities of Apple III
Pascal. The remainder of the chapter covers I/O operations on
typed files.

Files
A Pascal file is a special kind of structured variable. A file
variable resembles an array, in that it consists of a sequence of
distinct variable components, all of the same type. However, the
number of components is unknown and they are not accessed by
indexing but via the processes called input and output, or I/O.

External Files
To use a file variable, it must be associated with an external
file. An external file is a peripheral device, or a named
diskette file. The Pascal program does not manage these devices
directly; instead the built-in I/O procedures send requests to
the SOS device drivers, which manage the external devices and
transfer data between external devices and the program in a very
specific manner.

The Pascal programmer need not be concerned with details of
device management; however in Chapter 12 we will see procedures
for direct device-oriented I/O. The communication between the
program and the SOS device drivers is performed automatically by
the built-in input and output procedures.

There are three categories of external files:

- Character devices, also called non-block-structured
devices. These include the console, printers, the
graphics screen, the audio generator, and any other

Introduction to Files and I/O 157

devices whose input and output are in the form of a
stream of ASCII characters (or individual bytes of
data). For each of these devices there is a SOS
driver, e.g., .CONSOLE, .PRINTER, .SILENTYPE, .GRAFIX,
and .AUDIO. You can use these for I/O by giving the
driver name as the pathname (you can also use Pascal
unit names or numbers; see Appendix J).

- Block-structured devices. These are devices, such as
diskette drives, that store blocks of data. Other
mass-storage devices would also be in this category.
These also have their own SOS drivers (.Dl, .DZ,
etc.). Chapter 12 describes methods of using these
devices directly; more commonly they are considered as
containers for stored files.

- Stored files on block-structured devices, e.g.,
diskette files. These are the files that appear in the
directories for diskettes. You can use these for I/O
by giving a pathname that specifies a diskette volume
name and a local filename. (You can also use the SOS
device driver name, a Pascal unit name, or a Pascal
unit number instead of the diskette volume name; see
Appendix J.)

In this chapter and the next we are concerned with character
devices and named files. For the most part, these two kinds of
files are handled identically; the few cases where there are
differences in special-character handling are described as they
come up.

File Variables
The most important feature of a file variable is that its values
are not generally in memory. Instead, they exist outside the
program as the contents of an external file. However, an
1, l(jl(jl-byte area of memory is allocated for every declared file in
a currently active procedure.

A file variable is declared along with other variables, using a
file type. In this chapter and the next we are concerned with
typed files; "block" files are covered in Chapter 12. The syntax
of a file type (for a typed file) is

158 Apple III Pascal

file type (for typed file)

component
type

INTERACTIVE--------------

where the component type can be any type except a file type.
TEXT and INTERACTIVE are built-in file types: TEXT is exactly
equivalent to FILE OF CHAR, and INTERACTIVE is a special type
described in the next chapter.

External diskette files also have "types," which are
independent of Pascal file variable types. One of these
external file types is called "Text file". Note that the
file variable type TEXT and the external file type
"Textfile" are two different things; a file variable of
type TEXT may or may not correspond to an external file of
type "Textfile." See Chapter 12 for a description of the
external "Textfile" type and what it means to a Pascal
program.

Remember that the file variable type determines how the
Pascal program will interpret the file's contents. The
external type of the file determines how the data are
actually stored and formatted on the diskette. As a
general rule, the external file type makes no difference
to a Pascal program that uses the I/O mechanisms described
in this chapter and in Chapter 11. The external file type
"Textfile" affects random access with the SEEK procedure
(explained further on in this chapter) and in block I/O
and device-oriented I/O (see Chapter 12).

The components of a file variable are usually called logical
records or simply "records," although their type is not
necessarily a record type. For example, the declarations

Introduction to Files and I/O 159

VAR INTVALS: FILE OF INTEGER;
REALVALS: FILE OF REAL;
COMPVALS: FILE OF RECORD

I: INTEGER;
R: REAL

END;

create three file variables. INTVALS is a file variable whose
records are integer values, and REALVALS is a file variable whose
records are real values. COMPVALS is a file variable whose
records are actually of a record type, with an integer value and
a real value in each record.

Using a File
This chapter goes into I/O mechanisms in detail, but first we
present a brief description of how a program can store values in
a diskette file and how they can be retrieved later.

The RESET and REWRITE procedures, described in detail further on,
serve to associate a file variable with a specific pathname; if
the pathname refers to a diskette drive or a named diskette, the
file variable can be associated with a specific named file on the
diskette. Once this has been done, the file is said to be "open"
and its records can be accessed. For example, suppose that we
have the declarations shown above and that a diskette drive
contains a diskette named /VALUES. If we write

REWRITE (INTVALS, '/VALUES/INTEGERS.DATA')

the effect is to associate the file variable INTVALS with the
diskette file /VALUES/INTEGERS.DATA. Because we opened the file
with REWRITE instead of RESET, SOS automatically creates a
diskette file named INTEGERS.DATA on diskette /VALUES. (If there
is already a diskette file by that name, SOS will later delete
either the old diskette file or the new one, depending on how the
program "closes" the file.)

REWRITE also prepares for I/O by defining a buffer variable
called INTVALSA. This is an integer variable, since INTVALS is a
FILE OF INTEGER. Suppose that the program contains an integer
variable XYZ, and we want to write the value of XYZ into INTVALS
as the first record of the file variable. We write

INTVALS A : = XYZ;
PUT(INTVALS)

160 Apple III Pascal

The first statement assigns the value of XYZ to the buffer
variable, and the PUT procedure (via SOS) writes the value out as
the first record of the diskette file /VALUES/INTEGERS.DATA. The
next PUT(INTVALS) call will write out the buffer variable to the
second record of /VALUES/INTEGERS.DATA, and each subsequent
PUT(INTVALS) writes the next record in sequence.

When the program is through using the INTVALS file, it closes
it:

CLOSE(INTVALS , LOCK)

The LOCK option tells SOS to make the new /VALUES/INTEGERS.DATA
diskette file permanent.

Now we have a permanent diskette file containing some unspecified
number of integer values. Suppose that another program needs to
access this data. Again we must declare a file variable of
appropriate type:

VAR INDATA: FILE OF INTEGER;

Although this file variable has a different name from the one
used previously, it can of course be associated with the same
diskette file. In the new program, we open the file with RESET
instead of REWRITE:

RESET(INDATA, '/VALUES/INTEGERS.DATA')

Unlike REWRITE, RESET requires that the external file already
exist. (If it does not, the program is halted with an error
message.) RESET creates a buffer variable of type integer (named
INDATAA) and, unlike REWRITE, it loads the buffer variable with
the first value in the diskette file. Suppose that we want to
assign this value to an integer variable named ABC , and then have
the next value from the diskette file loaded into the buffer
variable. We write

ABC := INDATAA;
GET(INDATA)

The effect of GET is always to load the next record from the
external file into the buffer variable (by issuing a request to
SOS).

Introduction to Files and I/O 161

Note the parallelism between output and input. For output we
opened the file with REWRITE, and then each value was written out
by

Using the buffer variable (by assigning the value to
it).

- Calling PUT with the name of the file variable as its
parameter.

For input we opened the file with RESET, and then each value was
read in by

- Using the value of the buffer variable (assigning it to
another variable in this case) .

- Calling GET with the name of the file variable as its
parameter.

Before proceeding to a detailed description of the built-in I/O
procedures for typed files , we give an overview of all the file
I/O facilities provided in Apple III Pascal .

Overview of Apple Ill Pascal 110 Facilities
Apple III Pascal I/O facilities fall into four different
categories:

- Device-oriented I/O (covered in Chapter 12): The
procedures UNITREAD , UNITWRITE , UNITBUSY , UNITWAIT,
UNITSTATUS , and UNITCLEAR are the lowest level of
control . They allow a Pascal program to transfer a
specified number of consecutive bytes between memory
and a device . They are not controlled by SOS
pathnames , directories , etc ., but merely use unit
numbers and (for diskette drives) block numbers .

- Block I/O (covered in Chapter 12): The BLOCKREAD and
BLOCKWRITE functions provide I/O for untyped files .
They make use of SOS pathnames and directories , but
they consider a file to be merely a sequence of
512-byte blocks--not a sequence of logical records of a
particular type .

162 Apple III Pascal

- Text I/O (covered in Chapter 11): The READ, READLN,
WRITE, and WRITELN procedures provide text-oriented I/O
for files of characters. The PAGE procedure writes a
form feed control character into a file of characters.
The EOLN function provides an indication of when the
end of a text line has been reached.

- Typed file I/O (covered in the remainder of this
chapter): The GET, PUT, and SEEK procedures treat a
file as a sequence of logical records. GET and PUT
provide transfers between individual file records and
the file's buffer variable, and SEEK causes the next
GET or PUT to access a specified record. The EOF
function provides an indication of when the end of the
file has been reached.

Typed File 110
This section is concerned with typed files--that is, files that
are considered as a sequence of logical records. Typed files are
declared as shown at the beginning of this chapter. Such file
variables are generally associated with diskette files, and all
of the examples given here use diskette files. The essential
mechanisms for I/O operations with typed files are the GET and
PUT procedures.

For files where the logical records are characters (types FILE OF
CHAR, TEXT, and INTERACTIVE), Pascal also provides specialized
text-oriented I/O as explained in the next chapter. Character
files can be accessed either with the text I/O procedures or with
GET and PUT as described below; however there are some special
considerations for INTERACTIVE files which are discussed in the
next chapter.

If an I/O operation is unsuccessful, the system will
normally terminate program execution with an error
message. However, there is a Compiler option to disable
this feature, as described in Appendix F. The IORESULT
function can then allow the program itself to check on the
status of the most recent I/O operation and take
appropriate action.

Introduction to Files and I/O 163

The REWRITE Procedure
This procedure opens a new file--i.e., it creates an external
file, associates it with a file variable, and creates a buffer
variable. The file can then be used for input and output.
REWRITE is normally used for output. The form for calling
REWRITE is

REWRITE (FILEID, PATHNAME)

where FILEID is the identifier of a file variable, and PATHNAME
is an expression with a string value. The string value is the
pathname of the external file.

If the pathname specifies a character device, then the file is
simply opened. If the pathname specifies a diskette file,
REWRITE creates a new file and opens it. If the pathname is the
same as that of an existing diskette file, a new diskette file is
created with the same name; one or the other will later be
deleted as described below under CLOSE.

If the file is a diskette file and is already open--i.e., if the
file identifier corresponds to a currently open file--an I/O
error occurs (see IORESULT below). The file remains open.

However, any external file that has been opened can legally be
opened again via REWRITE with a different file variable.

An example showing the use of REWRITE in a program follows the
description of GET and PUT later in this chapter.

The RESET Procedure
This procedure, like REWRITE, opens a file which can then be used
for input and output. RESET is normally used for input. Unlike
REWRITE, RESET requires that the external file already exist.
The syntax for calling RESET is:

file
identifier

string
expression

Note that the string expression may be omitted; this is explained
below. The string value is the pathname of the external file.

164 Apple III Pascal

If there is no file with this name, an I/O error occurs (see
IORESULT, below).

If the file is a diskette file and is already open--i.e., if
either the file identifier or the diskette-file pathname
corresponds to a currently open file--an I/O error occurs (see
IORESULT below). The file remains open. However, if a
non-diskette file has been opened, it can legally be opened again
with a different file variable.

RESET automatically performs a GET action--that is, it loads the
first record of the file into the file's buffer variable, and the
first explicit GET or PUT in the program will access the second
record. Thus, resetting a non-interactive file to the console
requires the user to type a character when the RESET is
executed. If the file is INTERACTIVE (see next chapter) no GET
is performed.

Note that RESETing a non-INTERACTIVE file to an output-only
device, such as .PRINTER, may cause a run-time error as a result
of the automatic GET caused by the RESET. In this case, use
REWRITE to open the file.

When a file opened with RESET is used for output, only the file
records actually written are affected.

RESET can also be called without a pathname if the file is
already open. The effect is simply to "reopen" the file, using
the same external file. This allows the program to go back to
the beginning of the file and re-access records. The buffer
variable contains the value of the first record, and the next
explicit GET or PUT will move the buffer variable to the second
record. In the case of the console, the primary use of RESET
without a pathname is to clear end-of-file.

An example showing the use of RESET in a program follows the
description of GET and PUT later in this chapter.

The CLOSE Procedure
This procedure closes a file which was previously opened with
RESET or REWRITE. The syntax for calling CLOSE is

CLOSE
file

identifier
opt ion

identifier

Introduction to Files and I/O 165

where the opt ion identifier, if used, may be any one of the
following predefined identifiers. If no option identifier is
used, the effect is the same as using the NORMAL option.

NORMAL -- A normal close is done; i.e., CLOSE simply
sets the file state to closed. If the file was opened
using REWRITE and the external file is a diskette file,
it is deleted from the directory.

LOCK -- If the external file is a diskette file and was
opened with REWRITE, it is made permanent in the
diskette' s directory; otherwise a NORHAL close is
done. If the file was opened with a REWRITE and the
pathname matches an existing diskette file, the old
file is deleted.

WPROTECT -- Same as LOCK, but the external file is made
write-protected. Any future attempt to write to the
file, delete it, or rename it (either with a file I/O
procedure or from the command level) will cause an I/O
error (see IORESULT below). However, note that the
file is not protected against the UNITWRITE procedure
(see Chapter 12).

UNPROTECT Same as LOCK, but write-protection is
cancelled if the file was opened with a RESET.

PURGE -- If the external file is a diskette file, it is
deleted from the directory (unless write-protected).
In the special case of a diskette file that already
exists and is opened with REWRITE, the original file
remains in the directory, unchanged. If the external
file is not a diskette file, the associated unit will
go off-line.

CRUNCH -- This is like LOCK except that it locks the
end-of-file to the point of last access; i.e.,
everything after the last record accessed is thrown
away.

166 Apple III Pascal

All CLOSEs regardless of the option will mark the file closed and
will make the file buffer variable undefined . CLOSE on a closed
file causes no action .

If a program terminates with a file open (i . e . , if CLOSE is
omitted), the system automatically closes the file with the
NORMAL opt ion.

If you open an existing file with RESET and modify the
file with any write operation, the contents are
immediately changed no matter what CLOSE option you
specify.

An example showing the use of CLOSE in a program follows the
description of GET and PUT later in this chapter .

Effect of CLOSE Options
The following diagrams show the result of closing a file which
was opened with REWRITE or RESET, depending on the CLOSE option
selected .

Introduction to Files and I/O 167

diagram: opened with rewrite

0"'1' Opened with REWRITE

,.,, q,
(,/'.

"~ o,,. NORMAL LOCK WPROTECT UNPROTECT

Pathname Pathname
No

Pathname Pathname

Old
not entere d; entered; entered & e ntered;

File
conte nts contents protected; contents

thrown away kept conte nts kept kept

Contents Contents Pathname Contents '"{ thrown away kept protected; kept
e c ted contents kept

File
xis ts Contents Contents Contents Contents

kept deleted deleted deleted

Unpro t

E

Contents Run-time Run-time Run-time

'"{ thrown away e rror error e rror
ected
File

I<~ x i s t s Con tents k e pt

I ' ,

Pro t

PURGE

Pathname
not entered ;

contents
thrown

away

Contents
thrown

away

Contents
kept

Contents
thrown away

CRUNCH

Pathname
entered;
contents

t runcated
and kept

Contents
trunca t e d
and kept

Contents
deleted

Run-time
e rror

~
-

-

New file
results

Old file
results

New file
results

Ol d fi l e
resul t

Example : If an old un p r ot ect ed file is opened wi t h REWRITE and
closed with CRUNCH , the new file cont ent s are truncated and kept
while the old file contents ar e dele t ed .

diagram: opened with reset

LOCK WPROTECT UNPROTECT PURGE CRUNCH

Run-time 1/0 e rror upo n RESET ; f i le never opene d

Old Pathname
Pathname Contents

Unprotected Contents Contents protected; Cont ents & contents truncated
File kept kept contents kept deleted & kept

Exists kept

Old Pathna me Run-time
Protected Contents Contents Conte n ts u nprotect e d; Run- time

e rror unless
File k e pt k ept k e p t c ontents e rror at EOF

Exists k ept

168 Apple III Pascal

® To determine if an existing file is write-protected:

- reset the file;
- do a read;
- reset the file again (to go to the beginning) ;
- try to write the information you just read .

If the file was write-protected , the write will fail;
otherwise the write will succeed and leave the file
unchanged .

To remove the protection from a write-protected file ,
reset the file and then close it with the UNPROTECT
option .

The EOF Function
This function returns a BOOLEAN value to indicate whether the end
of a specified file has been reached . When EOF is true, nothing
more can be read from the file . The syntax for calling EOF is

--.(EOF)----~,.......-~•-i-de-~t_i~-~i-·e_r .. K?J•
If no file identifier is used , the predefined file INPUT (see
next chapter) is assumed .

EOF is false immediately afte r the file is opened if the file has
any records in it ; EOF is true on a closed file . Whenever EOF is
true for a particular file , the value of the file's buffer
variable is undefined .

After an input operation, EOF is true if t he operation attempted
to access a record that is after the end of the file . When this
is the case , the value of the file ' s buffer variable is not
defined .

After an output ope rat ion , EOF is true if the fil.e cannot be
expanded to accommodate the out put (because of liCTit ed diskette
space , for example) . However , note t hat this will generally be
considered an 1/0 error, causing t he program to halt with an

Introduction to Files and I/O 169

error message before EOF can be checked.

An example showing the use of EOF in a program follows the
description of GET and PUT below.

The GET and PUT Procedures
These procedures are used to read or write one logical record
from or to a typed f i1 e. The fo rrns are

GET FILEID

PUT FILEID

where FILEID is the identifier of a file, which must be open.

GET moves the contents of the next external file record into the
file's buffer variable. Note that immediately after RESET, the
contents of the first external file record are already in the
buffer variable and the "next" record is the second record.

There is one special case: when GET is used with a file
of type TEXT or INTERACTIVE and a "return" character
(ASCII 13) is read, the character is converted to a space
(ASCII 32). Also, the function EOLN (see next chapter)
will then return TRUE.

See the last section of this chapter for a note on special
handling of control characters.

PUT puts the contents of the file's buffer variable into the next
external file record. If the file was opened with REWRITE, this
means that the "next" record is created; if it was opened with
RESET, the "next" record already exists and is overwritten.

Note that when a non-INTERACTIVE file is opened with RESET, there
is apparently no way for PUT to access the first record of the
external file. This is because immediately after the RESET the
"next" record is the second one. The SEEK procedure (see below)
provides a way around this limitation.

After a GET or PUT, the next GET or PUT with the same file
identifier will access the next external file record in
sequence.

170 Apple III Pascal

With diskette files, the actual physical diskette access may not
occur until the next time the physically associated block of the
diskette is no longer considered the current working block. The
kinds of operation which tend to force the block to be written
are: a SEEK to elsewhere in the file, a RESET, and CLOSE.
Successive GETs or PUTs to the file will cause the physical I/O
to happen when the block boundaries are crossed.

The following two example programs illustrate the use of REWRITE,
RESET, CLOSE, EOF, GET, and PUT. The first program creates a new
file of component type REAL, with the pathname /WTS/REAL. DATA,
and puts ten REAL values into it. The values are supplied by the
user.

To obtain the values , the program uses a WRITE to display a
prompt on the screen and a READ to accept the value typed by the
user. READ and WRITE are described in detail in the next
chapter .

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
I: INTEGER;

BEGIN
{Open with REWRITE since this is a new file.}
REWRITE(F , '/WTS/REAL.DATA');
{Read l~ numbers and store them in the file .}
FOR I:=l TO l~ DO BEGIN

{Put a prompt on the screen.}
WRITE('-->');
{Read number from keyboard into buffer variable .}
READ(FA);
{Store the number in the file.}
PUT(F)

END;
{Close the file and lock it.}
CLOSE(F, LOCK)

END.

The second program reads values from the file created by the
first program , and displays ther:i on the screen.

PROGRAM READFILE;

VAR F: FILE OF REAL;

Introduction to Files and I/O 171

BEGIN
{Open with RESET since we want to read the file}
RESET(F, '/WTS/REAL.DATA');
{First number is in FA. While EOF remains false, display
each number and get the next . }

WHILE NOT EOF(F) DO BEGIN
{Display the current number on the screen}
WRITELN(r);
{Get the next number}
GET(F)
{If there was no next number, EOF is now true.}

END;
{Cl os e the f il e}
CLOSE(F)

END.

Note that these programs offer no flexibility as to the pathname
of the file. The next example will show how to let the program's
user specify the pathname of the external file to be used .

The IORESULT Function
This built-in function takes no parameters and returns an integer
value which reflects the status of the last completed I/O
ope rat ion:

0
2
3
5
6
7

8
9

HJ
11
12
13
14
15
16
19
48 •• 63
64

No error; normal I/O completion
Bad unit number
Illegal operation (e . g . , read from . PRINTER)
Lost unit--no longer on line
Lost file--file is no longer in directory
Illegal pathname
No room--insufficient space on diskette
No unit--unit is not on line
No such file in specified directory
Duplicate pathname
At tempt to open an al ready open file
Attempt to access a closed file
Bad input format--error in reading number
Ring buffer overflow--input arriving too fast
Write-protect error--diskette is protected
Too many files open for system to handle
(SOS) Device-specific error
Device error--bad address or data on diskette

172 Apple III Pascal

65
66
73
74
81
84
87

(SOS) Too many character files open
(SOS) Too many block files open
(SOS) Directory full
(SOS) Incompatible file format
(SOS) Volume format neither SOS nor Apple II
(SOS) Out of memory for SOS system buffer
(SOS) Duplicate volume error

The (SOS) notation indicates an error reported by SOS as opposed
to the Pascal system. There are some other SOS I/O errors
besides those shown above; see Appendix J for a complete table.

In normal operation, the Compiler will generate code to perform
run-time checks after each I/O operation except UNITREAD or
UNITWRITE. This causes the program to be halted with a run-time
error message on a bad I/O operation. Therefore if you want to
check IORESULT with your own code in the program, you must
disable run-time I/O checking by using a Compiler option.

Compiler options are commands to the Compiler, embedded in the
program text. The complete set of options is described in
Appendix F, but here we are concerned with just two: the text

{$IOCHECK-}

disables run-time I/O checking, and the text

{$IOCHECK+}

enables it. The following sample program illustrates the use of
these options. It allows the user to add new records to a file
containing information about people's birthdays. If the external
file specified by the user does not already exist, the program
detects this fact by using IORESULT. If IORESULT does not return
a 0 value, the program uses REWRITE instead of RESET to create
the external file.

Introduction to Files and I/O 173

PROGRA11 ADDRECORDS;
{Adds records to a birthday file. Creates the file if
necessary.}

VAR
INCHAR: CHAR;
PATHNAME: STRING;
BIRTHDAYS: FILE OF RECORD

BEGIN

NAME: STRING[2~];
DAY, MONTH: INTEGER;

END;

{Obtain pathname.}
WRITE('Enter pathname: ');
READLN(PATHNAME);

{Use RESET to preserve existing contents of file; if
it doesn't exist, then use REWRITE to create it.}

{$IOCHECK-} {This turns off I/O error checking, so
if RESET doesn't work the program doesn't
get halted. Then it can use IORESULT to
check for error.}

RESET(BIRTHDAYS, PATHNAME);
{$IOCHECK+} {This turns I/O error checking back on.}
IF IORESULT<>~ THEN REWRITE(BIRTHDAYS, PATHNAME);

{Go to end of file with repeated GETs.}
WHILE NOT EOF(BIRTHDAYS) DO GET(BIRTHDAYS);

174 Apple III Pascal

{Repeat the following until user doesn't want to make
any more new records.}

REPEAT
{Find out if user wants to make a new record.}
WRITE('Hake a new record? (Type y or n): ');
READ(INCHAR);
IF INCHAR IN ['y', 'Y'] THEN BEGIN

{Create the new record}
WITH BIRTHDAYSA DO BEGIN

WRITELN;
WRITE('Enter name: ');
READLN(NAHE);
WRITE('Enter day: ');
READLN(DAY);
WRITE('Enter month: ');
READLN(MONTH)

END;
{PUT the new record into file.}
PUT(BIRTI!DAYS)

END {of "if inchar in ['y', 'Y']"}
UNTIL NOT (INCHAR IN ['y', 'Y']);

CLOSE(BIRTHDAYS, LOCK) {Must use LOCK in case REWRITE
was used to open.}

END.

Be careful if you disable I/O error checking with the
{$IOCHECK-} opt ion. You will not be infonned of the
failure of any I/O operation that is performed while I/O
error checking is disabl ed .

Every I/O operation potentially changes IORESULT.
Therefore, if you want to write out the value of IORESULT
fo r a previous I/O operation, you should save it in an
auxiliary variable and then write the auxiliary variable.

Introduction to Files and I/O 175

Random Access

Introduction
So far, we have only discussed sequential access to files: after
accessing any particular file record, the next record accessed is
the next one in sequence . In random access, a program can access
any existing file record at any time, without regard to the
sequence of records in the file . Note that this means a given
record can be accessed repeatedly, without the need to RESET the
file . For example, a program might first read all records of a
diskette file sequentially, and then alter the 8th, 2nd, 10th,
and 5th records in that order.

This is done by using the SEEK procedure with record numbers .
The sequence of records in a file can be regarded as a numbered
sequence: the first record in the file is record number 0, the
next is record number 1, and so forth.

Incidentally , the terms "random file" and "sequential
file" are commonly used but misleading . Random and
sequential are two methods for accessing files--not two
kinds of files. Any typed file can be accessed randomly
or sequentially or both ways. Whether it makes sense to
use a particular kind of access depends on the program and
on the contents of the file records .

The SEEK Procedure
The SEEK procedure allows the program to access any specified
record in a file, and this provides random access to file
records . The form for calling SEEK is

SEEK (FILEID, RECNU!)

where FILE ID is the identifier of a file and RECNUH is an
expression with an integer value that specifies a record number
in the file . Note that records in files are numbered from 0 .

SEEK affects the action of the next GET or PUT from / to the file,
forcing it to access the specified file record instead of the
"next" record . SEEK does not affect the file's buffer variable .

176 Apple Ill Pascal

The file should be a file on a diskette or other block-structured
device . It should not be a character device , nor should it be
declared as a file of type TEXT , INTERACTIVE , or FILE OF CHAR.

If the file is a character device or is of the type TEXT,
INTERACTIVE, or FILE OF CHAR, SEEK does nothing .

A GET or PUT must be executed between SEEK calls since two
SEEKs in a row may cause unpredictable results .
Immediately after a SEEK, EOF will return false; a
following GET or PUT will cause EOF to return the
appropriate value .

The record number specified in a SEEK call is not checked
for validity . If the number is not the number of a record
in the file and the program tries to GET the specified
record, the value of the buffer variable becomes undefined
and EOF becomes true . In fact , this is a way to check the
val id i ty of a record number: SEEK it and then do a GET .
If EOF is false after the GET then the number was valid .

But if SEEK is cal 1 ed with an invalid record number and
the program tries to do a PUT to the specified record, the
result of the PUT is unpredictable and nay cause an I/O
error . Therefore if there is any doubt about the validity
of a record number , the program should make sure that it
is val id .

The standard system library file SYSTEM . LIBRARY contains a
unit named PASCALIO . The SEEK procedure cannot be
executed unless this unit is available in a library at the
start of execution .

The following sample program demonstrates the use of SEEK to
randomly access and update records in a file . It uses a file of
birthday information created by the program shown in the previous
section , and it allows the user to correct existing records in
this file.

Introduction to Files and I/O 177

PROGRAM RANDOMACCESS;
{Allows update of any selected record in birthday file.}
VAR

RECNUMBER: INTEGER;
FNAME: STRING;
BIRTHDAYS: FILE OF RECORD

BEGIN

NAME: STRING[2\!l);
DAY, MONTH: INTEGER;

END;

{Obtain filename.}
WRITE('Enter filename: ');
READLN(FNAME);
{Use RESET to preserve existing contents of file; if
it doesn't exist, complain and stop the program.}

{$IOCHECK-} {This turns off I/O error checking.}
RESET(BIRTHDAYS, FNAME);
{$IOCHECK+} {This turns I/O error checking back on.}
IF IORESULT<>\!l THEN BEGIN

WRITELN('File not found.');
EXIT(PROGRAM)

END;

{Repeat the following until user types a negative record
number, or until there is not enough diskette space for
new records.}

REPEAT
{Obtain record number; fall through to end if user types
negative record number.}

WRITE('Enter record number (negative to quit): ');
READLN(RECNUMBER);
IF RECNUMBER >= \!l THEN BEGIN

{GET the specified record}
SEEK(BIRTHDAYS,RECNUMBER);
GET(BIRTHDAYS);

178 Apple III Pascal

{If record number was invalid , EOF(BIRTHDAYS) will now
be true, so skip the rest and get another number . }

IF NOT EOF(BIRTHDAYS) THEN BEGIN
{Update the record}
WITH BIRTHDAYSA DO BEGIN

WRITELN('Name is ', NAME);
WRITE('Enter correct name: ');
READLN (NAME);
WRITELN('Day is ', DAY);
WRITE('Enter correct day: ');
READLN(DAY);
WRITELN('Month is ', MONTH);
WRITE('Enter correct month: ');
READLN(MONTH)

END;

{Now SEEK the sane record again, since the GET
advanced the f ile pointer t o the next r ecord af t e r
it got the current record into BIRTHDAYSA }

SEEK(BIRTHDAYS ,RECNUMBER);

{PUT updated record into file . }
PUT(BIRTHDAYS)

END {of "if not eof(birthdays)"}
END {of "if recnumber >= !}"}

UNTIL RECNUMBER < I};
CLOSE(BIRT!!DAYS)

END.

Special Handling of Control Characters
with GET and PUT
Fil es of t ype TEXT or INTERACTIVE are usually accessed with the
text I/O procedures described in the next chapter. When GET and
PUT are used with files of type TEXT and INTERACTIVE, there are
some special considerations for three special control characters,
namely

The CR (or "return" or CTRL-M) char acter, ASCII 13
The DLE (or CTRL-P) char acter, ASCII 16
The CTRL-C (or ETX) charact er, ASCII 3

Introduction to Files and I/O 179

Because of the special handling of these characters,
described below, GET and PUT should not be used for
control-character communication with device drivers.
Instead, use UNITREAD and UNITWRITE as described in
Chapter 12.

The CR character is used in files of characters to mark the end
of a 1 ine. The special handling is as follows:

- As al ready mentioned, when this character is read by
GET it is converted to a space (ASCII 32).

- When PUT writes the CR character to a diskette file,
there is no special action; the CR character is simply
written into the file.

- When PUT writes the CR character to a character device
a linefeed character (ASCII l~) is automatically
written immediately after the CR.

The DLE character is used in textfiles as the first character of
a two-character code to represent indentation at the beginning of
a line or a sequence of spaces anywhere on a line; this is called
a DLE-blank code and is explained in detail at the end of Chapter
12. The special handling is as follows:

- When the DLE character is read by GET, it and the
following character are converted to a sequence of
spaces (assuming that a sequence of GETs is used for
reading). The exception is when GET is used to read
from the console; in this case the DLE and the
following character are simply read like any other
characters.

- When PUT writes the DLE character to a diskette file,
there is no special action; the DLE character and the
following character are simply written out. However
when output is to a character device, the DLE character
and the next character following it are converted into
a sequence of spaces (see Chapter 12 for details).

The CTRL-C character is used with character devices as an
"end-of-text" indicator. The special handling is as follows:

180 Apple III Pascal

- When the CTRL-C character is read from a diskette file
by GET, no special handling occurs; the CTRL-C is read
1 ike any other character .

When the CTRL-C character is read from a character
device by GET, it is converted to a space. EOF and
EOLN (see next chapter) will return TRUE .

When PUT writes the CTRL-C character , there is no
special action; the CTRL-C character is simply written
out like any other character. Howeve r when output is
to the console , this has a special effect as a screen
control code. In general , do not write any control
character to the console unless you pay careful
attention to the section on "Screen Control Codes" in
the Standard Device Drivers Handbook .

Text I/O 181

182 Apple III Pascal

Introduction
In addition to PUT, GET, and EOF, Apple III Pascal provides the
standard procedures READ, READLN, WRITE, WRITELN, EOLN, and PAGE,
collectively known as the text I/O procedures.

WRITE, WRITELN, READ, and READLN have already been introduced
informally in examples. WRITE and WRITELN have the effect of
writing out text. In the examples, they have been used to write
text on the screen. The only difference between the two is that
WRITE writes only the specified text, while WRITELN writes the
specified text so that the next character written will start a
new line.

READ and READLN have been ·used in examples to read text from the
keyboard. The difference between the two is th~t READLN advances
to the beginning of the next line after reading, and READ does
not.

The EOLN function is used to detect an end-of-line in text input,
and the PAGE procedure places a form-feed (ASCII 12) in text
output .

These procedures have capabilities beyond what has already been
shown; complete details are given in this chapter. Generally,
they give Pascal programs a convenient way to treat a file of
characters as a sequence of characters organized into lines ; the
characters within a line can be treated as individual character
values or as strings, or interpreted as numeric values (INTEGER
or REAL). To support these capabilities, Apple III Pascal has
some special features for files of characters.

Character Files
The text I/O procedures can only be used with files that are
declared as character files. A character file is any file whose
components are declared to be of type CHAR. Thus the type of a
character file can be any one of the following:

FILE OF CHAR
TEXT
INTERACTIVE

Text I/O 183

Note that this definition is not the same as the SOS usage
of the term "character file." In this manual, the term is
always meant to apply to the Pascal types listed above.

As previously noted, the built-in type TEXT is exactly equivalent
to FILE OF CHAR. In the remainder of this chapter, we will refer
only to the types TEXT and INTERACTIVE; remember that FILE OF
CHAR is the same thing as TEXT.

Various parts of the system that deal with files of
characters (such as the Editor and the Compiler) are
designed to use files of the external type "Textfile".
For most purposes, it is therefore recommended that you
use the "Textfile" type for any character files created by
your programs. This means that when you create a
character file with REWRITE, the pathname should end with
the .TEXT suffix.

For the purposes of this chapter, however, the distinction
between the "Textfile" type and other external types is
unimportant; the text I/O procedures make the special
formatting of a "Textfile" invisible to the Pascal
program. In particular, this means that Pascal programs
can process "Asciifiles" created in BASIC.

INTERACTIVE Files
The difference between TEXT and INTERACTIVE files is in the way
they are handled by the RESET, READ, and READLN procedures.

When a Pascal program READs characters from an existing TEXT
file, the program must first open the file with RESET. RESET
automatically performs a GET operation: that is, it loads the
first character of the file into the file's buffer variable and
then advances the file pointer to the next character. A
subsequent READ or READLN begins its operation by first taking
the character that is already in the buff er variable and then
performing a GET.

184 Apple III Pascal

If the file is of type INTERACTIVE instead of TEXT, the opening
RESET does not perform a GET. The buffer variable is undefined
and the file pointer points to the first character of the file
instead of the second. Therefore, a subsequent READ or READLN
begins its operation by first performing a GET and then taking
the character that was placed in the buffer variable by the GET.
This is the reverse of the READ sequence used with a TEXT file.

There is one primary reason for using the INTERACTIVE type. If a
file is not a diskette file but a character device, it is not
possible to perform a GET on it until the device has a character
ready for input. If RESET tried to do a GET from the keyboard,
for example, the program would then have to wait until a
character was typed. With the INTERACTIVE type, the program
doesn't perform a GET until it is executing a READ or READLN.

Therefore, the type INTERACTIVE is normally used for text I/O
with any character device.

Built-Jn Files
For convenience in performing console I/O, three files are
predeclared. Their identifiers are OUTPUT for output to the
screen, and INPUT and KEYBOARD for input from the keyboard. All
three of these files are of type INTERACTIVE, and all three are
automatically opened via RESET when the Pascal program begins
executing.

The difference between INPUT and KEYBOARD is that when INPUT is
used to refer to the keyboard,
automatically displayed on the
characters are not displayed .
have complete control over the
typed by the user .

the typed characters are
screen; when KEYBOARD is used, the
This allows a Pascal program to
screen's response to characters

When the EOF function is used with these files, it behaves in a
special way: EOF(KEYBOARD) and EOF(OUTPUT) are never true, and
EOF(INPUT) only becomes true when CTRL-C (ASCII 3) is typed and
remains true until a RESET is executed .

Using the Procedures and Functions
The operation of the text I/O procedures is very straightforward
when they are used consistently to treat a file as a sequence of

Text I/O 185

text entities for either input or output. However, difficulties
may arise in the following unusual cases:

- When you explicitly use GET, PUT or the file buffer
variable in combination with text I/O procedures on the
same file variable. (As it turns out, there is rarely
any reason to do this.)

- When you mix reading and writing operations on the same
file variable. (Instead, you can use one file variable
for input and another for output.)

The reason is that the text I/O procedures themselves use GET and
PUT in complicated ways, and therefore the exact position in the
file can become a question. Specifically, it is sometimes hard
to be sure about the following points:

Exactly what character is the "next" record in a file
after a READ or READLN.

- Exactly when EOLN or EOF becomes true.

- Whether the file buffer variable contains the "current"
character or the "next" character.

The exact rules are given at the end of this chapter. Note that
they depend, in some cases, on whether the file variable is of
type TEXT or INTERACTIVE and also on what type of variable is
used with READ or READLN.

The EOLN Function
EOLN is defined only for character files. This function returns
a BOOLEAN value to indicate whether the end of a text line has
been reached in the input from a specified character file. The
syntax is

7

186 Apple III Pascal

If no file identifier is given, INPUT is assumed.

EOLN returns true on a closed file. It returns false immediately
after the file is opened, except in the special case of a file of
type TEXT that begins with the RETURN character .

As a rule, EOLN returns true whenever EOF is true . There is only
one exception: EOLN never returns true after a READLN operation
on an INTERACTIVE file (regardless of whether EOF is true) .

For more details on the behavior of EOLN after a READ or READLN ,
see the descriptions below .

The READ Procedure
This procedure can be used only on character files . It allows
characters, strings, and numeric values to be read from a file
without the need for explicit use of GET or explicit reference to
the window variable . The syntax for calling READ is

file
identifier

where the file identifier must be that of an open character
file . If the file identifier is omitted , the predeclared file
INPUT is assumed . Each variable reference may refer to a '
variable of type CHAR, STRING , INTEGER , LONG INTEGER, or REAL .
(But you should use READLN for STRING variables) .

Text I/O 187

READ reads values from the file and assigns them to the variables
in sequence .

READ with a CHAR Variable
For a CHAR variable, READ reads one character from the file and
assigns that character to the variable. For example,

READ(TSTFIL,INCHAR)

(where TSTFIL is a character file and INCHAR is a CHAR variable)
reads the next character from TSTFIL and assigns its value to
INCHAR.

Special characters are handled as follows:

- Whenever the RETURN character (ASCII 13) is read, it is
converted to a space (ASCII 32) .

A DLE-blank code found in a "Textfile" is converted by
READ to a sequence of spaces . The exception is when
READ is used for input from the console ; in this
special case a DLE is not converted but simply read
like any other character .

- When the CTRL-C character (ASCII 3) is read from a
diskette file, there is no special handling; the CTRL-C
is read like any other character .

- When the CTRL-C character is read from a character
device , it is converted to a space and causes EOF and
EOLN to return true .

- Whenever EOF becomes true, the value assigned to the
CHAR variable is not defined .

After the READ, the next READ or READLN will always start with
the character immediately following the one just read .

The workings of EOLN and EOF depend on whether the file is of
type TEXT or INTERACTIVE:

For a TEXT file , EOF is true when the last text
character in the file has been read . EOLN is true when
the last text character on a line has been read , and
also whenever EOF is true . (A " text character" here

188 Apple III Pascal

means a character that is not the RETURN character.)

- For an INTERACTIVE file, EOF is not true until the
program attempts to read past the last character in the
file, or until the CTRL-C character is read from a
character device. EOLN is not true until the RETURN
character at the end of the line has been read or until
EOF is true.

If you are using READ with a CHAR variable and you need to
detect the end of an input line, you may be able to
simplify the situation by using READLN with a STRING
variable instead; this gives you line-oriented reading
without the need to check EOLN (see below).

READ with a STRING Variable
For a variable of type STRING, READ reads all the characters up
to the end of the line or until a CTRL-C is read from a character
device. The RETURN character, or CTRL-C from a character device,
is not read. If this is directly followed by another READ with a
string variable, the result is to read nothing, since there are
no more characters on the line. This can lead to an infinite
loop if not handled correctly. We therefore recommend that you
use READLN with a string variable; this has the same effect as
READ except that READLN skips to the beginning of the next line
after reading.

READ with a Numeric Variable
For a variable of type INTEGER, LONG INTEGER, or REAL, READ
expects to read a string of characters which can be interpreted
as a numeric value of the same type. Any space or RETURN
characters preceding the numeric string are skipped. The string
includes all characters up to the first character that does not
fit the syntax for an integer or real value representation
(depending on the variable), or up to the end of the file.

The string is converted to a numeric value and the value is
assigned to the variable. For example,

READ(X)

(where X is a REAL variable) reads characters from the INPUT file
(the keyboard). It first skips any spaces or RETURNs; then it

Text I/O 189

reads as many subsequent characters as it can interpret as part
of a real number. Spaces, RETURNs, and end-of-files, will
frequently delimit reals in a text file, since use of WRITE and
WRITELN will produce just such files. The interpreted value is
assigned to X.

If READ(X) does not find a numeric string after skipping spaces
and RETURNs, the program is halted with an error message. (For
further information, refer to Appendix E.)

If nothing but spaces and/or RETURNs are found before the
end-of-file, the result depends on whether READ is looking for a
REAL or an INTEGER value. If READ is looking for an INTEGER
value, a value of ~ is read; but if READ is looking for a REAL
value, the program is halted with an error message.

After the READ, the next READ or READLN will always start with
the character immediately following the last character of the
numeric string.

If the last character of the numeric string is the last character
on the line, then EOLN will be true. If the last character of
the numeric string is the last character in the file, then EOE
and EOLN will both be true.

Note that the behavior of READ with a numeric variable is exactly
the same regardless of whether the file is TEXT or INTERACTIVE.

The standard system library file, SYSTEM.LIBRARY, contains
a library unit called PASCALIO. READ or READLN with a
REAL variable cannot be executed unless this unit is
available in a library at the start of execution.

~ When READ is looking for a REAL value:

- any number of characters can be read for a REAL
variable, but at most 9 significant digits are
converted.

READ will use decimal-to-binary conversion
methods that are slightly different from those
used for REAL values written in the program as
constants.

190 Apple III Pascal

- READ will accept '.NaN.' (any combination of
upper- and lower-case characters) as a REAL
value which is "not a number".

- READ will accept a string of two or more plus
signs as positive infinity and two or more minus
signs as negative infinity.

See Appendix E for further information.

With the exception of NaNs and infinities, the syntax of a
real number entered by READ is the same as the syntax of a
real number appearing in a program.

Apart from these ·differences, the rules are the same as
those for constants of type REAL. In particular, note
that if there is a decimal point it must be preceded and
followed by numeric digits.

The READLN Procedure
This procedure may be used only on character files. It allows
line-oriented reading of characters, strings, and numeric
values. The syntax for calling READLN is

file
identifier

where the file identifier must ref er to an open character file.
If the file identifier is omitted, INPUT is assumed. Each
variable may be of type CHAR, STRING, INTEGER, LONG INTEGER, or
REAL.

READLN works exactly like READ, except that after a value has
been read for the last variable, the remainder of the line is
skipped (including the RETURN). After any READLN, the next READ
or READLN will always start with the first character of the next

Text I/O 191

line, if there is a next line. If there is no next line, EOF
will be true. If EOF is already true, an I/O error will occur.

READLN with a STRING variable reads all the characters up to but
not including the RETURN character, then skips to the next line.
Thus repeated READLNs with a STRING variable have the effect of
reading successive lines of the file as strings .

Unlike READ, READLN can be called with no variable references at
all. READLN with no variable references simply skips to the
beginning of the next line in the input file .

One of the most common uses of READLN with a STRING variable is
to read a string of characters from the keyboard. In the
following example, READLN is used to read a pathname type<l by the
user:

PROGRAM MAKEFILE;

VAR F: FILE OF REAL;
I: INTEGER;
NAME: STRING;

BEGIN
{Ask user for pathname.}
WRITE('Type name of file: ');
{Accept line typed by user .}
READLN(NAME);
{If pathname has no suffix , add customary .DATA suffix.}
IF POS(' . ', NAlfE)=l(l THEN NAME:=CONCAT(NANE, '.DATA');
{Open with REWRITE since this is a new file}
REWRITE(F, NAME);

Another useful example is given below unde r WRITE and WRITELN .

The WRITE Procedure
This procedure may be used only on character files. It allows
characters, strings, and numeric values to be written to a file
as t ext strings, wi·thout the nee d for explicit use of PUT or
explicit r e ference to the window varia ble . The syntax for
calling WRITE is

192 Apple III Pascal

~(file
identifier

where the file identifier must refer to an open character file.
If the file identifier is omitted, OUTPUT is assumed. Each
"value specifier" has the following syntax:

value
expression

width
expression

decimal
places

express ion

The "value expression" may have an INTEGER, REAL, STRING, CHAR,
or LONG INTEGER value; these are values to be written out as text
strings. Also, the identifier of a one-dimensional PACKED ARRAY
OF CHAR may be used; all of the characters in the array are
written out as a string.

A "width expression" must have a positive INTEGER value. If
present, it specifies the minimum number of character positions
to be occupied by the string that is written out. If no width is
specified for a value, the default width is exactly enough
character positions to hold the value. If the value written out
is shorter than the width, spaces are added on the left to fill
the width (i.e., the value is right-justified within the width).

When an INTEGER value is written out, the sign is written only if
it is negative. If the sign is positive, a space is written
instead.

Text I/O 193

When a REAL value is written out, the rules are slightly
different. The value is always preceded by at least one space,
regardless of the width specification. After the space, the sign
is written only if it is negative. Nothing is written for a
positive sign.

A "decimal places expression" is only allowed after a REAL
value. It must have a positive INTEGER value. If present, it
specifies the number of decimal places to be written out. The
number is written in "fixed-point" form, i.e., the exponent
notation is not used. If necessary, the value is rounded (not
truncated) to the specified number of decimal places.

If a string value or PACKED ARRAY OF CHAR is longer than the
specified width, the value or array is truncated on the right to
fit the specified width.

If the "value expression" has a numeric value, the WRITE
procedure always writes the entire value. The "width expression"
is ignored if the numeric value is longer than the specified
width, or if the width is too short to contain the specified
number of decimal places.

If the number of decimal places is not specified, the value is
rounded to 6 significant digits, the decimal point is placed
between the first and second digits, and the exponent notation is
used.

Regardless of the width and decimal places specified, no more
than 9 significant digits are ever written out.

A numeric value written out by WRITE or WRITELN produces
exactly the same number when read back by READ or READLN
if one of the following conditions is true:

- the value is written as a 6-digit number and
read as a 6-digit number; or

- the value is written as a 9-digit number and
read as a 9-digit number.

Special characters are handled by the WRITE procedure as
follows:

- Whenever a RETURN character (ASCII 13) is written to a
character device, a linefeed (ASCII 10) is
automatically written out immediately after the RETURN

194 Apple III Pascal

character. This is not done when output is to a
diskette file.

- When a DLE-blank code (ASCII 16 followed by another
character) is written to a character device, the
DLE-blank code is "expanded" to a sequence of spaces.
The DLE-blank coding is explained in Chapter 12.
DLE-blank codes are not expanded when output is to a
diskette file; the DLE character and the next character
are written like any other characters.

- No special handling is provided for the CTRL-C
character; but note that the console treats this
character as a screen-control code. In general, do not
write any control' character to the console unless you
carefully study the "Screen Control Codes" section of
the Standard Device Drivers Handbook.

Because of the special handling of control characters,
WRITE is not recommended for control-character
communication with a SOS device driver. To control a
device driver by sending it control characters, use
UNITREAD and UNITWRITE as explained in Chapter 12.

The standard system library file, SYSTEM.LIBRARY , contains
a library unit called PASCALIO • WRITE or WRITELN with a
REAL variable cannot be executed unless this unit is
available in a library at start of execution.

The WRITELN Procedure
WRITELN works exactly like WRITE, except that after the last
value has been written a RETURN character (ASCII 13) is written
to end the line. If output is to a character device, the RETURN
character is automatically followed by a linefeed (ASCII 10).
The syntax for calling WRITELN is

WRITELt~
file

identifier

Text I/O 195

The syntax for a "value specifier" is given above under WRITE.
WRITELN with no value specifiers skips to the next line in the
output.

The following example uses WRITELN to produce formatted output on
the screen, namely a table of the ASCII codes for the digits
, 0, •. , 9':

PROGRAM ASCIITABLE;

VAR DIGIT: CHAR;

BEGIN
WRITELN('Character Code');
WRITELN;
FOR DIGIT := '0' TO '9' DO

WRITELN(DIGIT:S, ORD(DIGIT):l2)
END.

The following example program illustrates a number of useful
techniques. It uses line-oriented I/O with STRING variables, and
performs character manipulations on the STRING variables. It
also shows the use of IORESULT to stop the program if the input
file does not exist. The effect of the program is to read the
input file line by line, remove any leading periods from the
lines, and write the lines out to the output file.

PROGRAM FLUSHPERIODS;

CONST PERIOD='.';

VAR INFILE, OUTFILE: TEXT;
INNAME, OUTNAME, LINEBUF: STRING;

196 Apple III Pascal

BEGIN

{First get the files open.}
{Get input pathname.}
WRITE('Name of input file: ');
READLN (INNAME);
{Supply the default suffix .TEXT if needed.}
IF POS('.', INNAME)=0

THEN INNAME: =CON CAT (INNAME, ' • TEXT') ;

{Turn off automatic error checking so program can do it .}
{$IOCHECK-}
{Input file should already exist, so open with reset.}
RESET(INFILE,INNAME);
{If it doesn't work, complain and stop program.}
IF IORESULT<>0 THEN BEGIN

WRITELN('File not found.');
EXIT(PROGRAH)

END;
{Turn automatic error checking back on.}
{$IOCHECK+}

{Get output pathname.}
WRITE('Name of output file: ');
READLN(OUTNAME);
{Supply default suffix .TEXT if needed .}
IF POS('.', OUTNAME)=0

THEN OUTNAHE:=CONCAT(OUTNAME, '.TEXT');
{Open file with rewrite.}
REWRITE(OUTFILE,OUTNAME);

{Now do the job.}
WHILE NOT EOF(INFILE) DO BEGIN

READLN(INFILE,LINEBUF);
WHILE POS(PERIOD, LINEBUF)=l DO DELETE(LINEBUF , 1, l);

WRITELN(OUTFILE,LINEBUF)
END;

{Now clean up. }
CLOSE(OUTFILE,LOCK);
CLOSE(INFILE)

END.

Text I/O 197

The PAGE Procedure
This procedure sends a form feed character (ASCII 12) to the
file. The form is

PAGE (FILEID

where FILEID must be the identifier of an open character file.
Note that PAGE(OUTPUT) has the effect of placing the cursor at
the top left corner of the screen without clearing the screen.

Additional Details
The following facts about READ and READLN are important if you
combine text I/O with GET and PUT calls, or mix reading and
writing operations on the same file variable. You may also need
to know exactly when EOLN and EOF become true with READLN and
with numeric variables.

Note that for mixed reading and writing, the rules given below
are more straightforward for INTERACTIVE files than for TEXT
files.

After READ with a CHAR variable and an INTERACTIVE file:

- The file buff er variable contains the character that
was read, unless EOLN or EOF is true .

If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the character after the one
that was read.

- EOF is true if the character read was beyond the end of
the file or was a CTRL-C character from a character
device. In this case the value of the file buffer
variable is undefined.

- EOLN is true if the character read was the RETURN
character. In this case the file buffer variable
contains a space .

198 Apple III Pascal

- EOLN is also true if EOF is true.

After READ with a CHAR variable and a TEXT file:

- The file buffer variable contains the character after
the character that was read, unless EOLN or EOF is
true.

If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the second character after
the one that was read.

- EOF is true if the character read was the last
character in the file or if a CTRL-C was read from a
character device. In this case the value of the file
buffer variable is undefined.

- EOLN is true if the character read was the last
character on the line (not counting the RETURN
character). In this case the file buffer variable
contains a space.

- EOLN is also true if EOF is true.

After READ with a numeric variable and a TEXT or INTERACTIVE
file:

- The file buff er variable contains the character after
the last character of the numeric string that was read,
unless EOLN or EOF is true.

If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the second character after
the last character of the numeric string.

- EOF is true if the last character of the numeric string
was the last character in the file or a CTRL-C was read
from a character device. In this case the value of the
file buffer variable is undefined.

- EOLN is true if the last character of the numeric
string was the last character on the line (not counting
the RETURN character). In this case the file buffer
variable contains a space.

- EOLN is also true if EOF is true.

Text I/O 199

After READ with a STRING variable and a TEXT or INTERACTIVE
file:

- The file buff er variable contains a space which
represents the RETURN character at the end of the line,
unless EOF is true.

If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the first character on the
next line.

- EOF is true if the line read was the last line in the
file. In this case the value of the file buffer
variable is undefined.

- EOLN is always true.

After READLN with any variable and an INTERACTIVE file:

- The file buffer variable contains a space which
represents the RETURN character at the end of the line,
unless EOF is true.

- If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the first character on the
next line.

- EOF is true if the line read was the last line in the
file. In this case the value of the file buffer
variable is undefined.

- EOLN is never true.

After READLN with any variable and a TEXT file:

- The file buffer variable contains the first character
on the next line, unless EOLN or EOF is true.

- If the next I/O operation is a PUT, WRITE, or WRITELN,
the operation begins with the second character on the
next line.

200 Apple III Pascal

- EOF is true if the line read was the last line in the
file . In this case the value of the file buffer
variable is undefined .

EOLN is true only when EOF is true .

Block File I/O and Device I/O 201

202 Apple III Pascal

Introduction
This chapter describes the two lower levels of I/O provided by
Apple III Pascal: block file I/O, and device I/O, These methods
allow higher speed and more direct control of the I/O process, by
omitting most of the automatic features of the higher levels of
I/O.

The last section of this chapter describes the difference between
files of external types "Textfile" and "Asciifile". The
difference is invisible to a Pascal program unless it uses the
methods described in this chapter.

Block File 110
Block file I/O treats a file variable as a s equence of 512-byte
"blocks"; the bytes are not type-checked but considered as raw
data. This can be useful for applications where the data need
not be interpreted at all during I/O operations.

The external file is still handled as described in earlier
chapters; it has a pathname which is found in a directory, it
must be opene d and closed, etc.

To use block file I/O, the file is declared as a block file, and
the BLOCKREAD and BLOCKWRITE functions are used for input and
output.

Block File Declarations
Block files are sometimes ca lled "untyped" files, because they
are declared with no component type. The type for a block file
variable is simply FILE. For example, the declaration

VAR INFILE, OUTFILE: FILE;

declares two file variables, INFILE and OUTFILE. They have no
component types, so they are block files.

A block file i s opened and c losed like any other file. The type
of the ext e rnal file ("Textfile," "Asciifile," "Datafile," etc.)

Block File I/O and Device I/O 203

is totally ignored.

A block file has no buffer variable, and it cannot be used with
GET, PUT, or any of the text I/O procedures. It can only be used
with RESET, REWRITE, CLOSE, EOF, and the BLOCKREAD and BLOCKWRITE
functions described below.

The BLOCKREAD Function
This function is used to transfer one or more
data from a block file to a program variable.
is the number of blocks actually transferred.
calling BLOCKREAD is

BLOCKREAD

where

count
expression

file
identifier

512-byte blocks of
The value returned
The syntax for

variable
reference

- The file identifier must be the identifier of an open
block file.

- The variable reference refers to the variable into
which the blocks of data will he read. The size and
type of this variable are not checked; if it is not
large enough to hold the data, other program data may
be overwritten and the results are unpredictable.

- The "count expression" is an expression of integer
value that specifies the number of blocks of data to be
transferred. BLOCKREAD will read as many blocks as it
can, up to this limit; if the end of the file is
reached before the specified number of blocks are read,
then EOF will be true and the value returned by

204 Apple III Pascal

BLOCKREAD indicates how many blocks were actually
read.

- The "blocknumber expression" is an expression of
integer value that specifies the starting block number
in the file (see below).

The blocks in a file are considered to be numbered sequentially
starting with 0. The system keeps track of the "current" block
number in each open block file; this is block 0 immediately after
the file is opened. Each time a block is read , the current block
number is incremented. If the blocknumber expression is omitted
in a call to BLOCKREAD, the transfer begins with the current
block. Thus the transfers are sequential if the blocknumber
expression is never used; if a blocknumber expression is used, it
provides random access to blocks.

After BLOCKREAD, EOF is true if the last block in the file was
read.

The BLOCKWRITE Function
This function is used to transfer one or more
data from a program variable to a block file.
is the number of blocks actually transferred.
calling BLOCKWRITE is

BLOCKWRITE

where

count
expression

file
identifier

512-byte blocks of
The value returned
The syntax for

variable
reference

- The file identifier must be the identifier of an open
block file.

Block File I/O and Device I/O 205

- The variable reference refers to the variable from
which the blocks of data will be read. The size and
type of this variable are not checked; if it is not
large enough to contain the specified number of blocks
of data, other program data will be written out to the
file.

- The "count expression" is an expression of integer
value that specifies the number of blocks of data to he
transferred. BLOCKWRITE will write as many blocks as
it can, up to this limit; if the available space is
used up before the specified number of blocks are
written, then EOF will be true and the value returned
by BLOCKWRITE indicates how many blocks were actually
written.

The "blocknumber expression" is an expression of
integer value that specifies the starting block number
in the file (see explanation above under BLOCKREAD).

Using Block 110
The following program is an example of the use of block I/O. It
simply copies one diskette file to another. This could be done
by transferring one block at a time, but the program can execute
faster by transferring two blocks at a time, using a buffer
variable whose size is 1024 bytes. Since a file might contain an
odd number of blocks, the program must make sure that after each
BLOCKREAD, the subsequent BLOCKWRITE transfers the same number of
blocks that were read.

PROGRAM FILECOPY;
{Copy one diskette file to another.}

VAR INFILE, OUTFILE: FILE;

PROCEDURE OPENINPUT;
{Open the input file.}

VAR INNAME:STRING;
BEGIN

WRITE('Type pathname of input file: ');
READLN(INNAME);
RESET(I~~ILE, INNAME)

END;

206 Apple III Pascal

PROCEDURE OPENOUTPUT;
{Open the output file.}

VAR OUTN&'IB:STRING;
BEGIN

WRITE('Type pathname of output file: ');
READLN(OUTNAME);
REWRITE(OUTFILE, OUTNAME)

END;

PROCEDURE TRANSFER;
{Transfer blocks two at a time from input file, to buffer
variable, to output file, until end of input file.}

VAR COUNT: INTEGER;
BUF: PACKED ARRAY[l •• 1024] OF CHAR;
{The important thing about BUF is that it is exactly
1024 bytes in size--equivalent to two blocks. The
BLOCKREAD and BLOCKWRITE functions do not check for
this, and they do not care that it happens to be a
packed array of char.}

BEGIN
WHILE NOT EOF(INFILE) DO BEGIN

COUNT := BLOCKREAD(INFILE, BUF, 2);
COUNT := BLOCKWRITE(OUTFILE, BUF, COUNT)

END
END;

BEGIN {Main program}
OPENINPUT;
OPENOUTPUT;
TRANSFER;
CLOSE(INFILE);
{LOCK to make new file permanent.}
CLOSE(OUTFILE, LOCK)

END.

Device /JO
The Pascal system identifies each peripheral device by a unit
number and a unit name. SOS device names may also be used. The
numbers and names for standard devices are

Block File I/O and Device I/O 207

sos PASCAL PASCAL
DEVICE NAME UNIT If UNIT NAME
.CONSOLE -1- CONSOLE:
.CONSOLE 2 SYS TERM:
.GRAFIX 3 GRAPHIC:
.Dl 4 (volume name)
.D2 5 (volume name)
.PRINTER 6 PRINTER:
.RS232 7 REMIN:
.RS232 8 REMOUT:
.D3 9 (volume name)
.D4 10 (volume name)

The distinction between units 1 and 2 (CONSOLE: and SYSTERM:) is
that I/O operations using SYSTERM: (unit 2) do not cause typed
characters to be echoed on the screen. The built-in Pascal file
identifier KEYBOARD is associated with the SYSTERM: unit, and the
built-in Pascal file identifiers INPUT and OUTPUT are associated
with the CONSOLE: unit.

The distinction between units 7 and 8 (REMIN: and REMOUT:) is
that unit 7 is used for input and unit 8 is used for output.
Both are associated with the SOS device .RS232.

Note that if there is a printer-like driver present (e.g.,
.SILENTYPE) and no .PRINTER , the printer-like driver is assigned
the Pascal unit name PRINTER: and its unit number is 6.

Non-standard devices are assigned sequential unit numbers in the
range 128 through 255 according to their order in SOS.DRIVER.
(See Standard Device Drivers Handbook.)

The procedures described below can be used for direct
communication with any peripheral device.

The UN/TREAD and UNITWRITE Procedures
These are the procedures that perform device-oriented I/O. They
are dangerous procedures. Unlike the other I/O procedures, these
do not offer any protection against mistakes. In particular,
UNITWRITE allows you to write any block on a disk without knowing
what it contains; thus you can easily destroy a disk directory.
Use these procedures cautiously. The syntax is

208 Apple III Pascal

where

length
e x pr ession

~variable
~-c-ef_e_c-en-ce-

mode
expres s i o n

The "unitnum expression" is an expression with an
integer value, which is the unit number of an I/O
device.

The variable reference refers to a program variable,
whose contents are to be transferred to or from the
unit. As with the block I/O procedures (see above),
the type and size of this variable are not checked; if
the size of the variable does not match the specified
number of bytes to be transferred, results are
unpredictable.

The "length expression" is an expression with an
integer value, which specifies the number of bytes to
transfer.

The "blocknum expression" is an expression with an
integer value. It is meaningful only when using a disk
drive and is the absolute block number at which the
transfer will start. If the blocknum expression is
omitted and the unit is a disk drive , the transfer will
start at block 0.

The "mode expression" is an expression with an integer
value; if it is omitted, the default is 0. It controls
options which are described below.

Block File I/O and Device I/O 209

For UNITWRITE, the options controlled by the "mode" parameter
apply only to character devices; they do not apply to
block-structured devices. Both options are enabled by default,
if no "mode" parameter is supplied. They are designed to handle
the special coding found in "Textfiles", and are convenient when
text is read from such a file with UNITREAD and then output via
UNITWRITE to a character device.

One option is conversion of DLE-blank codes. These are found in
"Textfiles", as explained in the last section of this chapter.
On output to a character device, this option detects the
DLE-blank code and converts it into a sequence of spaces.

Conversion of DLE-blank codes is disabled by a "mode" value that
has a one in Bit 2 (see below).

The other option is automatic linefeeds. In character files, the
end of each line is marked by a RETURN character (ASCII. 13)
without any linefeed character. On output to a character device,
the automatic linefeed option inserts an LF character (ASCII 10)
after every RETURN.

Automatic linefeeds are disabled by a "mode" value that has a one
in Bit 3 (see below).

For UNITREAD, the only option is CTRL-C recognition (enabled by
default). When the CTRL-C character (ASCII 3) is recognized by
UNITREAD, the effect is to terminate the input. Any bytes in the
destination variable that remain unused at this point are filled
with 0's.

When unit 1 (CONSOLE:) is read with UNITREAD, characters
typed on the keyboard are echoed (as with other methods of
input). The echoing is performed by UNITWRITE, using the
same mode parameter supplied to UNITREAD. Usually this
has no noticeable effect, but it might cause a surprising
result with certain modes and certain input characters.

Only Bit 2 and Bit 3 of the "mode" value have any significance.
Bits 0, 1, and 4 •• 12 are reserved for future use; bits 13 •• 15 are
unassigned.

Bit 2, by itself, corresponds to a value of 4, and Bit 3 by
itself corresponds to a value of 8. The following values can be
used to control the options:

210 Apple III Pascal

- Mode ~ (the default value) enables all options.

- Mode 4 disables DLE conversion and CTRL-C
recognition, and enables automatic linefeeds.

- Mode = 8 disables automatic linefeeds and enables DLE
conversion and CTRL-C recognition.

- Mode = 12 disables all options. This mode should be
used for control-character communication with SOS
driver programs.

Note that UNITREAD and UNITWRITE are not controlled in any
way by the format in which files are stored on a diskette;
they treat an entire diskette as one sequence of blocks.
Therefore, files on Apple II formatted diskettes and files
on SOS-formatted diskettes will not be accessed in the
same way by these built-ins. Don't use these procedures
with diskette files unless you know exactly what you're
doing.

The UNITCLEAR Procedure
This procedure cancels all I/O operations to the specified unit
and resets the hardware to its power-up state. The form is

UNITCLEAR UNITNln1)

where UNITNUM is an expression with an integer value, which is
the unit number of an I/O device.

IORESULT is set to a non-zero value if the specified unit is not
present (you can use this to test whether or not a given unit is
present in the system). Note that UNITCLEAR (1) flushes the
type-ahead buffer for the console and resets certain keyboard and
screen parameters.

For any device except the console, UNITCLEAR is equivalent
to the SOS device control call with the control parameter
set to zero to indicate a RESET operation.

Block File I/O and Device I/O 211

The UNITSTATUS Procedure
This procedure communicates with the SOS device driver program
associated with a specified unit. It can either check the
current status parameters for the device's input or output
channel, or perform a control operation on the device.

Reserved Driver dependent code S/C O/I

15 13 12 2

UNITSTATUS: OPTION Format

The form is

where

UNITSTATUS (UNITNUM, DATA, OPTION)

UNITNUM is an expression with an integer value that is
the unit number of an I/O device.

DATA is a variable reference. The variable is assumed
to contain either control information to be transferred
to the device driver, or status information to be
retrieved from it. For most devices, this variable
should be an ARRAY[0 •• 29) OF INTEGER, but this may
differ for certain devices. The type and size of this
variable are not checked.

OPTION is an expression with an integer value whose
individual bits control the operation of the UNITSTATUS
procedure as follows:

Bit 0: If this bit is 0, the output channel
of the unit is specified; if it is 1, the
input channel is specified. For most
devices, there is no distinction between
input and output channels and this bit is
ignored; it is also ignored if the device has

212 Apple III Pascal

only one channel (e.g., a printer).

Bit 1: If this bit is 0, UNITSTATUS will put
the current status parameters of the device
driver into the specified program variable
(calling the SOS device status procedure).
If it is 1, UNITSTATUS will use the values in
the program variable to update the status
parameters of the device driver (using the
SOS device control procedure).

Bits 2 •• 12: These bits are sent to the
device driver, which uses them to select a
particular status or control operation. For
further information on these status codes and
control codes, see the Standard Device
Drivers Handbook.

Bits 13 •• 15: These bits are reserved for
future use. They should be set to zero.

As an example of the use of UNITSTATUS, consider the problem of
determining whether a character is present in the keyhoard
typeahead buffer. The console driver will return the number of
characters in the typeahead buffer in response to a device status
call with a parameter of S. UNITSTATUS, with the following
parameters, will issue this device status call:

UNITNUM = 1 to specify the console unit.

A reference to an INTEGER variable to contain the
result returned from the console driver. (Note that in
this case we do not use an ARRAY[0 •• 29] OF INTEGER; the
type of variable used here depends on the device.)

OPTION = 21, which has the following bit values:

Bit 0 =
console.

to specify the input channel of the

Bit 1 = 0 to specify a device status call
(retrieve status information from device
driver).

Bits 2 •• 12 cause the console driver to return
the number of characters in the typeahead

Block File I/O and Device I/O 213

I
15

buffer. Bits 2 and 4 are set to 1; all
others in the range are set to zero.

Reserved Driver dependent code S/C

k'l 0 0 0 0 0 0 0 0 0 0 1 0 l 0

13 12 2

UNITSTATUS: OPTION 21

O/I

0

The following function uses this UNITSTATUS call. It returns
true if the typeahead buffer contains one or more characters;
thus it can be used to find out whether any character has been
typed since the last time the keyboard was rea9 or cleared.

FUNCTION KEYPRESS: BOOLEAN;
VAR CHARCOUNT: INTEGER;
BEGIN

CHARCOUNT:= 0;
UNITSTATUS(l, CHARCOUNT, 21);
KEYPRESS := CHARCOUNT <> 0

END;

Note that this KEYPRESS function is provided in the APPLESTUFF
library unit (see Appendix D).

Textfiles and Asciifiles
When a diskette file is created, it is assigned one of the
external file types described in the Introduction, Filer, and
Editor manual. Character files are generally of external type
"Asciifile" or "Textfile"; but note that for purposes of Pascal
program I/O, the other external types ("Datafile" in particular)
are equivalent to "Asciifile".

When you create a file via the Filer or via a user Pascal
program, the type depends on the suffix used as the last part of
the pathname. Files created with the suffix .ASCI are of type

214 Apple III Pascal

"Asciifile". Files created with the suffix .TEXT are of type
"Textfile".

The Editor creates "Textfiles" by default, and can create
"Asciifiles" on request. The Editor reads files as "Textfiles"
unless they are of external type "Asciifile", in which case it
assumes no special formatting.

Textfile Structure
"Textfiles" have a special physical format that includes other
data besides the characters that appear to a Pascal program.
When you access a "Textfile" with the I/O procedures of Chapters
10 and 11, all of this extra data is invisible; but when you use
block I/O or device I/O, the extra data and the special
formatting are visible.

The special format of a "Textfile" is as follows:

- There are two blocks (1024 bytes) of "header"
information at the beginning of the file. When RESET
opens a "Textfile" (using a file variable of type TEXT
or INTERACTIVE), these 1024 bytes are skipped. When
REWRITE opens a "Textfile" (using a variable of type
TEXT or INTERACTIVE), these 1024 bytes are
automatically written out with default values. In
other words, the header blocks are normally invisible
to a Pascal program. However, if the file variable is
not a character file, the header information is treated
as ordinary data.

- The rest of the file consists of two-block "pages."
Each page contains lines of text, separated from each
other by RETURN characters (ASCII 13). No line ever
crosses a page boundary; thus a page contains only
whole lines. After the last line on a page, the
remainder of the page is filled with NUL characters
(ASCII 00). READ and READLN skip the NUL characters,
and WRITE and WRITELN provide them automatically. Thus
this "page" formatting is also normally invisible to a
Pascal program. However, if the file variable is not a
character file, the NUL characters are treated as
ordinary data.

A sequence of leading spaces in a line may be
compressed to a "DLE-blank code." This is a DLE

Block File I/O and Device I/O 215

control character (ASCII 16) followed by one byte
containing the number of spaces to indent plus 32
(decimal). This saves a considerable amount of space
in files where indentation is used heavily. The Editor
is the main creator of DLE-blank codes; it usually
outputs a DLE-blank code where a sequence of spaces
occurs at the beginning of a line. Of course, Pascal
user programs may also use this coding in creating
"Textfiles".

GET, READ, and READLN convert DLE-blank coding to
actual spaces on input from a "Textfile" to a file
variable of type TEXT or INTERACTIVE; thus the
compression of spaces is also normally invisible to a
Pascal program.

Note that it is still possible for a "Textfile" to
contain actual sequences of spaces, including leading
spaces on a line, depending on how the data was
actually created and output. Also, a line with no
indentation may or may not be preceded by a DLE
character and an indent code value of 32 (meaning 0
indentation).

Various parts of the system that deal with files of characters
(such as the Editor and the Compiler) are designed to take
advantage of the special "Textfile" format. For most purposes,
it is recommended that you use the "Textfile" type for any
character files created by your programs.

Asciifile Structure
Text files created by BASIC are "Asciifiles"; since the Pascal
Editor can handle these files, it can be used to edit RASIC text
files. (See the Introduction, Filer, and Editor manual.)
Likewise, Pascal programs can be written to process such files.

The "Asciifile" type can also be used for files created by Pascal
programs, in certain situations--for example, where
character-level random access is required.

Note that for purposes of Pascal program I/O, there is actually
no distinction between "Asciifiles" and other diskette files that
are not "Textfiles".

216 Apple III Pascal

An "Asciifile" contains a sequence of characters; for purposes of
a Pascal program, each character that is in the external file
appears as one record of a file variable of type TEXT or
INTERACTIVE.

Physically, the file is a sequence of 512-byte hlocks (not
2-block pages). There are no header blocks; the first character
in the file is the first byte in the first block.

Lines in an "Asciifile" may cross block boundaries; there is no
filling with NUL characters, except in the last block where any
unused bytes after the last file character are filled with NULs.

On output to an "Asciifile" from the Editor, sequences of spaces
are not converted to DLE-blank codes. If an "Asciifile" does
contain a DLE-blank code, it is not interpreted or converted on
input to a Pascal program; it simply appears as two characters,
namely the DLE character followed by some character whose ASCII
code is the indent code. Thus all spaces in an "Asciifile"
should be represented by actual space characters.

Special-Purpose Built-Ins 217

218 Apple III Pascal

Introduction
This chapter describes two sets of built-in features of Apple III
Pascal: the byte-oriented features and three "miscellaneous"
procedures.

Byte-Oriented Features
These features allow a program to treat a program variable as a
sequence of bytes, without regard to data types. The SIZEOF
function can be used to determine the number of bytes in a
variable; this is important since none of the other features
described here do any checking on variable sizes.

~ These features make it very easy to overwrite memory areas
~ unintentionally; use them with caution.

Typically, the byte-oriented features are used to access packed
character arrays or other packed variables whose elements are
stored as byte values. However, they are not restricted to such
uses.

The SIZEOF Function
This function returns an integer value, which is the number of
bytes occupied by a specified variable, or by any variable of a
specified type. SIZEOF is particularly useful in connection with
the FILLCHAR, MOVERIGHT, and MOVELEFT built-ins (see below). The
form is

SIZEOF (IDENTIFIER)

where IDENTIFIER is either a type identifier or a variable
identifier. It must not be BYTESTREAM, WORDSTREAM, a file type,
or the identifier of a variable of any of these types, because
these types do not have a definite size. (The BYTESTREAM and
WORDSTREAM types are described further on in this chapter.)

Special-Purpose Built-Ins 219

For example, if AREA is declared as

AREA: PACKED ARRAY[~ •• 511] OF 0 •• 255;

(a packed array of 512 byte-size integer values), then the
function reference

SIZEOF(AREA)

will return the value 512.

The FILLCHAR Procedure
This procedure fills a specified range of memory bytes with the
ASCII code of a specified character. The form is

FILLCHAR (DEST, COUNT, CHARACTER)

where

DEST is a variable reference and may refer to a
variable of any type except a file type. The first
byte of this variable is the beginning of the range of
bytes to be filled.

COUNT is an expression with an integer value which
specifies the number of bytes to be filled.

CHARACTER is an expression of any scalar type whose
ordinal value MOD 256 is copied into each byte in the
specified range • .

For example, if AREA is declared as in the previous example, then
each of the 512 bytes of AREA can be filled with the numerical
value 65 (the ASCII code for 'A') by either of the following
statements:

FILLCHAR(AREA, SIZEOF(AREA), 'A')

or

FILLCHAR(AREA, SIZEOF(AREA), CHR(65))

220 Apple III Pascal

The SCAN Function
This function scans a range of memory bytes, looking for a one
character target. The target can be a specified character, or it
can be any character that does not match the specified
character. SCAN returns an integer value, which is the number of
bytes scanned. The form is one of

where

SCAN
SCAN

LIMIT, =CHARACTER, SOURCE
LIMIT, <>CHARACTER, SOURCE

or

LIMIT is an expression with an integer value which
gives the maximum number of bytes to scan. If the
limit is negative, SCAN will scan backward. If SCAN
fails to find the specified target, it will return the
value of the limit expression.

CHARACTER is an express ion with a CHAR value, If it is
preceded by the= symbol, then SCAN searches for the
specified character. If it is preceded by the <>
symbol, then SCAN searches for any character that is
not the specified character.

SOURCE is a variable reference that may ref er to a
variable of any type except a file type. The first
byte of the variable is the starting point of the
scan.

SCAN terminates when it ·finds the target or when it has scanned
the number of bytes specified by LIMIT. It then returns the
number of bytes scanned. If the target is found at the starting
point, the value returned will be zero. If LIMIT is negative,
the scan will go backward and the value returned will be negative
or zero.

Examples: Suppose that DEM is declared as follows:

VAR DEM: PACKED ARRAY [~ •• l~~] OF CHAR;

and then the first 5~ elements of DEM are loaded with the
characters

,,,,,THE NEXT FIVE NOTES OF THE SCALE IN SEQUENCE.

Special-Purpose Built-Ins 221

We then have the following:

SCAN(-26,=': ',DEM[30])

SCAN(l00,<>'.' ,DEM)

SCAN(lS,=' ',DEM[S])

will return -26

will return 5

will return 3.

The MOVELEFT and MOVERIGHT Procedures
These procedures do mass moves of a specified number of bytes.
The forms are

MOVELEFT (SOURCE, DEST, COUNT)

where

MOVERIGHT (SOURCE, DEST, COUNT)

SOURCE is a variable reference that may ref er to a
variable of any type except a file type. The first
byte of this variable (lowest address) is the beginning
of the range of bytes whose values are copied.

DEST is a variable reference that may refer to a
variable of any type except a file type. The first
byte of this variable (lowest address) is the beginning
of the range of bytes that the values are copied into.

COUNT is an expression with an integer value, which
specifies the number of bytes to be moved.

MOVELEFT starts from the "left" end of the source range (lowest
address). It proceeds to the "right" (higher addresses), copying
bytes into the destination range, starting at the lowest address
of the destination range.

MOVERIGHT starts from the "right" end of the source range
(highest address). It proceeds to the "left" (lower addresses),
copying bytes into the destination range, starting at the highest
address of the destination range.

222 Apple III Pascal

The reason for having both of these is that the source and
<lest inat ion ranges may overlap. If they overlap, the
order in which bytes are moved is critical: each byte
must be moved before it gets overwritten by another byte.

In particular this consideration applies when source and
destination are subarrays of the same array. If bytes are
being moved to the right (destination has a higher
subscript than source), use MOVERIGHT. If bytes are being
moved to the left (destination has a lower subscript than
source), use MOVELEFT.

The BYTESTREAM and WORDSTREAM Types
These special data types allow a procedure or function to accept
an array of indefinite length as a VAR parameter. Within the
procedure or function, the array can be indexed with any
non-negative INTEGER value. BYTESTREAM is used for a PACKED
ARRAY OF CHAR or STRING, and WORDSTREAM is used for an array of
scalar type.

BYTESTREAM and WORDSTREAM act within a procedure as if they were
declared as follows:

TYPE BYTESTREAM
WORDSTREAM

PACKED ARRAY[0 •• ?] OF CHAR;
ARRAY[0 •• ?] OF INTEGER;

where the "?" means that the upper bound of the index type is
not defined. BYTESTREAM is compatible with any PACKED ARRAY of
byte-sized quantities such as CHAR, or any STRING type.
WORDSTREAM is compatible with any non-packed array of scalars.
The actual parameter may be indexed.

BYTESTREAM and WORDSTREAM can occur only in the parameter list of
a procedure or function declaration.

For example, suppose that your program contains the declarations

VAR A
B

ARRAY[0 •• 20] OF INTEGER; {21 ELEMENTS}
ARRAY[l •• 512] OF INTEGER; {512 ELEMENTS}

Now suppose th.at you want to write a procedure that will accept,
as a VAR parameter, any array of INTEGER. The procedure also
accepts the number of elements in the array and an INTEGER value;

Special-Purpose Built-Ins 223

it fills all elements of the array with the INTEGER value.

PROCEDURE FILL (VAR INTARRAY:WORDSTREAf.1; COUNT,N:INTEGER);
VAR I: INTEGER;
BEGIN

FOR 1:=0 TO COUNT-1 DO INTARRAY[I]:=N
END;

Now to fill array A with the value 5 and array B with the
value r), write

FILL(A, 21, 5);
FILL(B, 512, 0)

Similarly, the following example shows how the type BYTESTREAM
can be used in a procedure that accepts any PACKED ARRAY OF CHAR
as a VAR parameter. The procedure goes through this array and
replaces each lower-case letter that it finds with the
corresponding upper-case letter. As in the previous exar.i.ple, the
number of elements in the array must also be supplied as a
parameter.

PROCEDURE UPPERCASE (VAR CHARRAY: BYTESTREAH; COUNT: INTEGER);
VAR OFFSET, !:INTEGER;
BEGIN

OFFSET:=ORD('a') - ORD('A');
FOR I:=0 TO COUNT-1 DO

END;

IF CHARRAY[I] IN ['a'.,'z'] THEN
CHARRAY[I]:=CHR(ORD(CHARRAY[I]) - OFFSET)

Within a procedure or function the type must be treated as
a PACKED ARRAY OF CHAR (for type BYTESTREAM) or an ARRAY
OF INTEGER (for type WORDSTREAM). Ranse checking is never
done on a parameter of type BYTESTREAM or WORDSTREAM.

Also note that within a procedure that has a BYTESTREAf.1
parameter, you cannot use the BYTESTREAM as a parameter to WRITE
or WRITELN. However you can use an indexed element of the
BYTESTREAf.1 as a parameter to WRITE or WRITELN, since each element
of a BYTESTREAf.1 is just a CHAR variable.

224 Apple III Pascal

Miscellaneous Procedures

The PWROFTEN Function
This fast machine-code function returns a real value which is 10
to a specified (integer) power . The form is

PWROFTEN (EXPONENT)

where EXPONENT is an expression with an integer value in the
range 0 •• 37. PWROFTEN returns the value of 10 to the EXPONENT
power .

The GOTOXY Procedure
This procedure sends the cursor to a specified position on the
screen. The form is

GOTOXY (XCOORD , YCOORD)

where XCOORD and the YCOORD are expressions with integer values
interpreted as X (horizontal) and Y (vertical) coordinates .
XCOORD must be in the r ange 0 through 79; YCOORD must be in the
range 0 through 23 . The cursor is sent to these coordinates .
The upper left corner of the screen is assumed to be (0,0) .

The TIME Procedure
The form for cal 1 ing TIME is

TIME (HITIME , LOTIME)

where HITIME and LOTil1E are references to integer variables; TIME
sets these variables to zero . This function is available only
for compatibility with Apple II.

To access the Apple III system's internal date and time ,
use procedures in the APPLESTUFF library unit . (See
Appendix D.)

Special-Purpose Built-Ins 225

The TREESEARCH Function
This is a fast function for searching a binary tree that has a
particular kind of structure. The form is

where

TREESEARCH (ROOTPTR, NODEPTR, NAMEID

ROOTPTR is a pointer to the root node of the tree to be
s earched.

NODEPTR is a reference to a pointer variable to be
updated by TREESEARCH.

NAMEID is the identifier of a PACKED ARRAY(l •• 8) OF
CHAR which contains the 8-character name to be searched
for in t he tree.

The nodes of the binary tree are assumed to be linked records of
the type

NODE=RECORD
NAME: PACKED ARRAY[l •• 8) OF CHAR;
LEFTLINK, RIGHTLINK: ANODE;

••• {other fields can be anything} •••

END;

The actual identifier of the type and the field identifiers are
not important; TREESEARCH assumes only that the first eight bytes
of the record contain an 8-character name and are followed by two
pointe rs to othe r nodes.

It is al so assumed that name s are not duplicated within the tree
and are assigned to nodes according to an alphabetical rule: for
a given node, the name of the left subnode is alphabetically less
than the name of the node, and the name of the right subnode is
alphabetically greater than the name of the node. Finally, any
links that do not point to other nodes should be NIL.

226 Apple III Pascal

TREESEARCH can return any of three values:

\ii: The name passed to TREESEARCH (as the third
parameter) has been found in the tree. The node
pointer (second parameter) now points to the node with
the specified name.

1: The name is not in the tree. If it is added to the
tree, it should be the right subnode of the node
pointed to by the node pointer.

-1: The name is not in the tree. If it is added to
the tree, it should be the left subnode of the node
pointed to by the node pointer.

The TREESEARCH function does not perform any type checking on the
parameters passed to it.

The IDSEARCH Procedure
IDSEARCH is a very fast machine-language routine that scans Apple
III Pascal source 1 anguage for identifiers and identifies the
reserved words. The Compiler uses IDSEARCH, and it is also
available to programmers whose programs read Pascal source
language. Note that the procedure scans only identif iers--you
will have to scan special characters and comments yourself. The
syntax is

IDSEARCH (OFFSET, BUFFER)

To use IDSEARCH, you must include the following declarations in
your program. Note that the variables (except for BUFFER) must
be declared in exactly the order and types shown.

Special-Purpose Built-Ins 227

TYPE
{SYMBOL is the enumerated type of symbols in the Pascal

language, the lines in comments are the identifiers

SYMBOL

corresponding to the symbols }

DO TO
(ident,comma,colon,semicolon,lparent,rparent,dosy,tosy,
{DOWNTO END UNTIL OF THEN ELSE }
downtosy,endsy,untilsy,ofsy,thensy,elsesy,becomes,

{ BEGIN IF CASE
lbrack,rbrack,arrow,period,beginsy,ifsy,casesy,

{REPEAT WHILE FOR WITH GOTO LABEL CONST
repeatsy,whilesy,forsy,withsy,gotosy,labelsy,constsy,

{TYPE VAR PROCEDURE FUNCTION ** FORWARD }

{
typesy,varsy,procsy, funcsy, progsy,forwardsy,

NOT *** OR
intconst,realconst,stringconst,notsy,mulop,addop,

{IN SET PACKED ARRAY RECORD FILE
relop,setsy,packedsy,arraysy,recordsy,filesy,othersy,

{ USE UNIT INTERFACE IMPLEMENTATION }
longconst,usessy,unitsy,intersy, implesy,

{EXTERNAL OTHERWISE
externlsy,otherwsy);

{**: progsy is returned on both PROGRAM and SEGMENT}
{***: mulop is returned on AND, DIV, MOD }

{OPERATOR expands the nn1ltiplicative, additive and
relational operators (mulop, addop and relop)}

OPERATOR = AND DIV MOD OR
(MUL,RDIV,ANDOP,IDIV,IMOD,PLUS,MINUS,OROP,LTOP,
{ IN }
LEOP,GEOP,GTOP,NEOP,EQOP,INOP,NOOP);

ALPHA PACKED ARRAY [1 •• 8] OF CHAR;

228 Apple III Pascal

VAR
{the next four variable must be declared in order shown}
OFFSET: INTEGER;
SY: SYMBOL;
OP: OPERATOR;
ID: ALPHA;

BUFFER: PACKED ARRAY (0 •• 1023] OF CHAR;

IF BUFFER[OFFSET] in ['A' •• 'z','a' •• 'z'] THEN BEGIN
IDSEARCH(OFFSET, BUFFER);

END;

IDSEARCH begins looking for an identifier at the character
pointed to by BUFFER[OFFSET] and assumes that this character is
alphabetic. IDSEARCH produces the following results:

- BUFFER[OFFSET] points to the character following the
identifier just found.

- ID contains the first 8 alphanumeric characters of the
identifer just found, left-justified and padded with
spaces as necessary.

- SY contains the symbol associated with the identifier
just found if the identifier is a reserved word, or
IDENT if the identifier is not a reserved word. E.g.,
the identifier 'MOD' translates to MULOP; the
identifier 'ARRAY' translates to ARRAYSY; and the
identifier 'MYLABEL~ translates to IDENT.

- OP contains the operator value which corresponds to the
identifier just found if the identifier is an operator,
or NOOP if the identifier is not an operator. E.g.,
the identifier 'MOD' translates to IMOD; the
identifier 'ARRAY' translates to NOOP; and the
identifier 'MYLABEL' translates to NOOP.

An example of a procedure which uses IDSEARCH follows:

Special-Purpose Built-Ins 229

BEGIN

IF BUFFER[OFFSET] in ['A' •• 'Z','a' •• 'z'] THEN BEGIN
IDSEARCH(OFFSET, BUFFER);

END;

END.

An algorithmic representation of IDSEARCH follows:

PROCEDURE IDSEARCH (VAR OFFSET: INTEGER; VAR BUFFER: BYTESTREAM);

{Scanidentifier increments OFFSET until BUFFER[OFFSET] is
no longer part of an identifier, copying the first 8
alphanumeric characters passed into ID (right justified,
padding with spaces)

LookUpReservedWord translates an identifier into the
associated symbol (defaulting to IDENT)

LookUpOperator translates an identifier into the
associated operator (defaulting to NOOP)

BEGIN
ID := Scanidentifier(OFFSET, BUFFER);
SY := LookUpReservedWord(ID);
OP := LookUpOperator(ID);

END;

230 Apple III Pascal

Library Units 231

232 Apple III Pascal

Introduction
So far we have seen Pascal programs, which are compiled into
codefiles that can be executed directly via the RUN and XECUTE
commands. Now we will consider units, which are compiled into
libraries.

Units are collections of procedures that are separately compiled
and then invoked as modular components of a host program . A
compiled unit contains code for "public" procedures, functions,
types, constants, and variables. These are available to any host
program that uses the unit, just as if they were defined in the
host program itself .

Units provide many advantages to the Pascal programmer .

- Units allow programs to be partitioned into logical
chunks.

- Units allow programs to be written in small, separately
compilable sections which are faster to compile than a
single large program and which require less memory at
compile time .

- Individual units can be modified without recompiling
the main (host) program .

- Units contain groups of common procedures and functions
that can be used in more than one program . For
instance, the APPLESTUFF unit is available to all
Pascal programs.

- Units are a more flexible form of program segmentation
than SEGMENT procedures because you can have more than
one procedure in a unit .

- Units give the Pascal programmer controlled access to
"private" data structures .

Units reside in libraries. A library is a special kind of
codefile that is not directly executed; instead , a compiled unit
contained in a library can be used by one or more programs. To
use a unit, a program must contain a USES declaration with the

Library Units 233

name of the unit; the program is then called a host program.

Two or more libraries can be combined into one , and units can be
moved from one library to another, by means of the LIBRARY
utility program described in the Program Preparation Tools
manual. Thus one library file can contain a number of different
compiled units.

For example, the Pascal system comes with a library called
SYSTEM.LIBRARY which contains code for several units (see
Appendices A through E); one of the units is called APPLESTUFF,
and it provides a set of procedures and functions for using
special features of the Apple III. To use these procedures and
functions, a program need only have the declaration

USES APPLESTUFF;

after the program heading. The program can then call APPLESTUFF
procedures such as SOUND and JOYSTICK.

This chapter also explains how to create and compile your own
units. The output from compiling a unit is a codefile that"C"an
be used as a library; two or more of these files can be combined
into a single library by means of the LIBRARY utility.

Regular Units
There are two kinds of uni ts called "regular" and "intrinsic."
When a host program uses a regular unit, the unit's code is
inserted into the host program's codefile by the Linker. This
need only be done once unless the unit is modified and
recompiled; then it must be relinked into the host program. The
diagram at the end of this section illustrates how regular units
are created and used.

By default, regular units are assumed to be in the SYSTEM.LIBRARY
file on the system diskette; however, you can use a regular unit
that is in another library. In this case, you must use the USING
option of the compiler to tell the compiler which library file
contains the unit. See Appendix F.

If a regular unit used by your program is conta ined in the
SYSTEM .LIBRARY file, a Run command will automatically invoke the ..
Linker to do the necessary linking. Otherwise, you must use the

234 Apple III Pascal

Compile command to compile the program and then the Link command
to explicitly invoke the Linker.

regular units diagram

a unit host program

Compiler

unit.code host.code

Linker

EXECUTING PROGRAM

Intrinsic Units
When a host program uses an intrinsic unit, the unit's code
remains in its library file and is automatically loaded into
memory when the host program is executed. The Linker is not
needed; an intrinsic unit is "prelinked." The diagram at the end

Library Units 235

of this section illustrates how intrinsic units are created and
used.

Intrinsic units help to reduce the size of the host program's
codefile. Also, an intrinsic unit can be modified and recompiled
without the need to relink.

Note that an intrinsic unit must be either in the program library
(see below) or in the SYSTEM.LIBRARY file on the system
diskette. The library that contains the unit must be on line
both when the program is compiled and when the program is
executed.

The Compiler's NOLOAD and RESIDENT options (see Chapter 15
and Appendix F) allow further control over the handling of
intrinsic units.

intrinsic units diagram

a unit

unit.code

I
I

I

host program

I
:¢'; host.code
~/

&/
~~/
~/
~/ AY;
I

I
I

I

236 Apple III Pascal

Writing a Unit
One or more units can be written in a single file and compiled
together; the syntax for a "compilation" (i.e., something that
can be compiled) is

compilation

progr am I 01· •
uni t

Note that a period is required at the end of every compilation
(since a program ends with a period).

The source text for a unit has a form somewhat similar to a
Pascal program. The overall syntax of a unit is

unit

unit
heading i nt e r face

compound
s t a t ement

The syntax for a unit heading depends on whether the unit is
regular or intrinsic, as explained in the Interface section of
this chapter.

Library Units 237

The INTERFACE declares the parts of the unit that are
"public"--that is, the types, constants, variables, procedures,
and functions that can be referenced by a host program. For
procedures and functions, only the headings are given in the
INTERFACE. The syntax is shown below.

The IMPLEMENTATION is omitted if the INTERFACE does not declare
any public procedures or functions. If present, the
IMPLEMENTATION declares the parts of the unit that are
"private"--that is, the labels, constants, variables, procedures,
and functions that are used within the unit but cannot be
referenced by a host program, Also, the public procedures and
functions whose headings appear in the INTERFACE are redeclared
here with their bodies included. The syntax is shown below.

If a compound statement appears at the end, it is called an
"initialization." This is the "main program" of the unit, and is
automatically executed at the beginning of the host program. If
the initialization is omitted, the unit is terminated with a
single END.

Like a program, a unit is terminated with a period.

Writing Regular Units
The heading of a regular unit has the syntax

regular unit heading

new
identifier

where the identifier is the identifier of the unit to be
referenced in the USES declaration of a host program.

The compiled unit is linked into the host program just once after
the program is compiled, and the entire unit's code is actually
inserted in the host program's codefile at that time.

238 Apple III Pascal

Writing Intrinsic Units
The heading of an intrinsic unit has the syntax

intrinsic unit heading

new
identifie r

dsegnum
c onstant

csegnum
c ons t ant

where the csegnum and dsegnum constants are the segment numbers
to be used by the unit at run time. By definition, segment
numbers range from ~ to 63, but certain of these numbers are
reserved for the system (see below).

The unit will have a data segment if it declares any variables
not contained in procedures or functions in either the INTERFACE
or IMPLEMENTATION. In this case the word DATA and a data segment
number are required; otherwise they must be omitted.

The code segment will have segment number csegnum and the data
segment (if there is one) will have segment number dsegnum.

Every unit in a library has a specific segment number associated
with it . The segment numbers used by items already in the
library are shown in parentheses by the LI BRARY and LIBMAP
utility programs (see Program Preparation Tools manual). In
choosing segment numbers for an intrinsic unit, there are two
constraints:

Library Units 239

- No two units in the same library should have the same
segment number. If they do, the system may use the
wrong unit.

When the host program runs, the various segment numbers
used by the program and the system must not conflict.

Observe the following:

While any program is executing, the main program body
uses segment 1. Therefore, never use this segment
number for an intrinsic unit.

- Segments ~. 2 through 6, and 59 through 63 are reserved
for use by the system.

- The standard library units LONGINTIO and PASCALIO are
permanently assigned segment numbers 30 and 31,
respectively. Segment 30 will be loaded if you use the
built-in STR function or any long integer operation.
Segment 31 will be loaded if you use the built-in SEEK
function, or any of the following with a real
argument: READ, READLN, WRITE, or WR.ITELN.

- If the program declares any SEGMENT procedures or
functions or uses any regular units, these procedures,
functions, and regular units use sequentially
increasing segment numbers starting at 7.

- Each unit used by the program uses the segment number
shown in the library listing. To see what these
numbers are, use the LIBMAP utility as described in the
Program Preparation Tools manual.

Generally, it is a good idea to use segment numbers in the range
from 16 through 58, excluding those that are already used in the
library.

For a complete explanation of the meaning of segment
numbers, see the next chapter.

240 Apple III Pascal

The INTERFACE
The INTERFACE immediately follows the unit's heading. It
contains declarations of constants, types, variables, procedures
and functions that are public~that is, the host program can
access them just as if they had been declared in the host
program. The INTERFACE portion is the only part of the unit that
is "visible" from the outside; it specifies how a host program
can communicate with the unit.

When a procedure or function is declared in the INTERFACE, only
the procedure or function heading is given. The rest of the
procedure or function is declared in the IMPLEMENTATION.

~ No SEGMENT procedures or functions are allowed in a unit.

Include files are not allowed within the INTERFACE
section.

If the unit uses another unit (as discussed further on in this
chapter), a USES declaration is placed at the beginning of the
INTERFACE. Thus the syntax of the INTERFACE is

Library Units 241

interface

uses declaration

constant declarations

type declarations

variable declarations

procedure heading

function heading

Note that no label declarations are allowed in the INTERFACE,

The IMPLEMENTATION
The IMPLEMENTATION, if present, immediately follows the last
declaration in the INTERFACE . It must be omitted if the
INTERFACE does not declare any procedures or functions .

The IMPLEMENTATION begins by declaring those labels, constants,
and variables that are private--that is, not accessible to the
host program . Then the public procedures and functions that were

242 Apple III Pascal

declared in the INTERFACE are defined. As shown in the example
below, they are defined without parameters or function result
types, since these have already been defined in the INTERFACE.
Other private procedures and functions may be declared here as
necessary.

The syntax of an IMPLEMENTATION is

implementation

IMPLEMENTATION label declarations

constant declarations

variable declarations

procedure declaration

function declaration

Note that no USES declaration or type declarations are allowed in
the IMPLEMENTATION.

Library Units 243

Also, no file variable may be declared anywhere in the
IMPLEMENTATION, except as a VAR parameter of a procedure
or function.

The Initialization
At the end of the IMPLEMENTATION, following the last function or
procedure, an "initialization" may be written. This is a
compound statement followed by a period, like the body of a
program. The resulting code runs automatically when the host
program is executed, before the host program's own code is
executed. It can be used to make any preparations that may be
needed before the procedures and functions of the unit can be
used. The example below shows this. If no initialization is
used, the unit must still end with the word END followed by a
period. The initialization code is executed exactly once.

An Example Unit
The following is a complete intrinsic unit that has a data
segment and an initialization, to demonstrate the information
given above. It provides convenient features for opening
textfiles.

UNIT OPENS;
INTRINSIC CODE 17 DATA 18;

INTERFACE

VAR OFILRESULT, NFILRESULT: INTEGFR;
{Two public variables: these are both initialized to -1,
and subsequently used by the public procedures to hold
results from the IORESULT function. Because of these
variables, the data segment is needed.}

244 Apple III Pascal

PROCEDURE OPENOLDFILE (VAR F:TEXT; VAR PATHNAME:STRING);
PROCEDURE OPENNEWFILE (VAR F:TEXT; VAR PATHNAME:STRING);
{Two public procedures for opening text files: these are
similar except that OPENOLDFILE uses RESET while
OPENNEWFILE uses REWRITE. If the pathname has no suffix,
the suffix .TEXT is added. I/O checking is turned off
while the file is opened, and then IORESULT is used to
check whether the file was opened successfully.
OPENOLDFILE puts the result in OFILRESULT and OPENNEWFILE
puts the result in NFILRESULT; the host program can check
these variables to find out what happened.}

IMPLEMENTATION

{A private procedure that is called by the public ones, to
add the .TEXT suffix to a pathname if it doesn't have a
suffix:}

PROCEDURE ADDSUFF(VAR PATHNAME:STRING);
BEGIN

IF POS('.TEXT', PATHNAME)= 0
THEN PATHNAME := CONCAT(PATHNAME, '.TEXT')

END;

{The first of the public procedures. The parameter list is
made into a comment, since the parameters have already been
declared in the interface:}

PROCEDURE OPENOLDFILE {(VAR F:TEXT; VAR PATHNAME:STRING)};
BEGIN

ADDSUFF(PATHNAME);
{$IOCHECK-}
RESET(F, PATHNAME);
{$IOCHECK+}
OFILRESULT := IORESULT

END;

{The other public procedure. Again, the parameter list is
made into a comment:}

PROCEDURE OPENNEWFILE {(VAR F:TEXT; VAR PATHNAME:STRING)};
BEGIN

ADDSUFF(PATHNAME);
{$IOCHECK-}
REWRITE(F, PATHNAME);
{$IOCHECK+}
NFILRESULT := IORESULT

END;

Library Units 245

{The initialization, which provides initial values for the
two public variables. The value -1 is chosen because it is
never returned by the IORESULT function:}

BEGIN
NFILRESULT := -1;
OFILRESULT := -1

END.

Using the Example Unit
The OPENS unit shown above can be compiled exactly as if it were
a program. Then it can be installed in SYSTEM.LIBRARY , using the
LIBRARY utility. Once in the library, the unit can be used by
any Pascal host program. A sample program to use our unit is
sketched out below:

PROGRAM USEIT;
USES OPENS;

VAR INFILE, OUTFILE: TEXT;
INNAME, OUTNAME:STRING;

BEGIN
{At this point, OFILRESULT and NFILRESULT have both been
initialized to -1.}

WHILE OFILRESULT <> (/J DO BEGIN
WRITE('Type input file name: ');
READLN(INNAME);
OPENOLDFILE(INFILE, INNAME);

{At this point, INNAME has had the .TEXT suffix added
if necessary, and OFILRESULT contains the result from
IORESULT.}

IF OFILRESULT <> (/J THEN
WRITELN('Can' 't open file ', INNAME)

END;

246 Apple III Pascal

WHILE NFILRESULT <> 0 DO BEGIN
WRITE('Type output file name: ');
READLN (OUTNAME) ;
OPENNEWFILE(OUTFILE, OUTNAME);

{At this point, OUTNAME has had the .TEXT suffix added
if necessary, and NFILRESULT contains the result from
IORESULT.}

IF NFILRESULT <> 0 THEN
WRITELN('Can''t open file ', OUTNAME)

END;

CLOSE(INFILE);
CLOSE(OUTFILE, LOCK)

END.

The USES declaration must immediately follow the heading of the
host program; procedures and functions may not contain their own
USES declarations. At the occurrence of a USES declaration, the
Compiler references the INTERFACE of the unit as though it were
part of the host text itself. Therefore all constants, types,
variables, functions, and procedures publicly defined in the unit
are global to the host program.

A conflict will occur if the host program declares an
identifier that is also publicly declared in the unit.

Nesting Units
A unit may also use another unit, in which case the USES
declaration must appear at the beginning of the INTERFACE.
However, an intrinsic unit cannot use a regular unit. For
example, a unit named MUSIC might use the APPLESTUFF unit (which
is an intrinsic unit):

UNIT MUSIC;
INTRINSIC CODE 25;

USES APPLESTUFF;
INTERFACE

Library Units 247

When a host program uses a unit that uses another unit, the host
program must declare that it uses the deepest nested unit first:

PROGRAM PLAYER;
USES APPLESTUFF, MUSIC;

The following example is a unit that uses the OPENS unit shown
previously.

UNIT OPENTXT;
INTRINSIC CODE 19 DATA 20;

INTERFACE

{The USES declaration must appear here:}
USES OPENS;

VAR FFF:TEXT;
{The variable FFF is a file used only by a private function;
however it has to be declared here because private files
are not allowed. This is why this unit needs a data
segment.}

PROCEDURE OPENINFILE(VAR INFILE:TEXT);
PROCEDURE OPENOUTFILE(VAR OUTFILE:TEXT);
{These are the two public procedures for opening textfiles
for input and output. They interact with the user to
obtain pathnames, and use the procedures and variables in
the OPENS unit. They allow the user to exit from the
program by pressing the RETURN key without typing a
pathname. OPENOUTFILE also checks to see if the pathname
is that of an existing file, and asks the user to confirm
that the existing file is to be destroyed.}

248 Apple III Pascal

IMPLEMENTATION

{This private function is used to find out whether a
pathname is the pathname of an existing file, by opening it
with OPENOLDFILE. If the file exists, it will be
successfully opened and the value of OFILRESULT will be 0.
The file is then closed.}

FUNCTION FILEXISTS(VAR NAME:STRING): BOOLEAN;
BEGIN

OPENOLDFILE (FFF, NAME);
FILEXISTS := OFILRESULT 0;
CLOSE(FFF)

END;

{This is the publ.ic procedure to open a textfile for input.
The parameter list is made into a comment.}

PROCEDURE OPENINFILE{ (VAR INFILE :TEXT)};
VAR INNAME: STRING;
BEGIN

REPEAT
WRITE('Type input filename (RETURN to quit): ');
READLN (INNAME) ;
IF LENGTH(INNAME) = 0

THEN EXIT(PROGRAM)
ELSE OPENOLDFILE(INFILE, INNAME);

IF OFILRESULT <> ~
THEN WRITELN('Can' 't open file ', INNAf!E)

UNTIL OFILRESULT = 0
END;

Library Units 249

{This is the public procedure to open a textfile for output.
The parameter list is made into a comment.}

PROCEDURE OPENOUTFILE{(VAR OUTFILE:TEXT)};
VAR CH: CHAR;

OUTNAME:STRING;
BEGIN

REPEAT
WRITE('Type output filename (RETURN to quit): ');
READLN(OUTNAME);
IF LENGTH(OUTNAME) 0

THEN EXIT(PROGRAM)
ELSE BEGIN

IF FILEXISTS(OUTNAME)
THEN BEGIN

END

WRITE('Destroy existing file ', OUTNAl1E, '? ');
REPEAT

READ(KEYBOARD, CH)
UNTIL CH IN ['Y', 'y', 'N', 'n'];
WRITELN(CH);
IF CH IN ['y' , 'y']

THEN OPENNEWFILE(OUTFILE, OUTNAME)
END
ELSE OPENNEWFILE(OUTFILE, OUTNAME)

UNTIL NFILRESULT = 0
END;

{This unit needs no initialization, so it ends with just the
word END followed by a period.}

END.

The following program uses the OPENINFILE and OPENOUTFILE
procedures in the OPENTXT unit:

PROGRAM FILEUSER;
USES OPENS, OPENTXT;

VAR INFILE, OUTFILE: TEXT;

BEGIN
OPENINPUT(INFILE);
OPENOUTPUT(OUTFILE);

CLOSE(INFILE);
CLOSE(OUTFILE, LOCK)

END.

250 Apple III Pascal

Program Libraries and SYSTEM.LIBRARY
For any program, you can create a program library file to contain
units used by that program. When the program is executed, it can
then use intrinsic units from both the program library and
SYSTEM.LIBRARY •

By definition, the program library for any particular program is
a library file whose pathname is identical to the pathname of the
program's codefile, but with the suffix .LIB instead of .CODE.

For example, suppose that /USEFUL/SORTER.CODE is the codefile's
pathname. You can create a program library for this program by
using the pathname /USEFUL/SORTER.LIB (note that this means it is
on the same diskette).

In order to compile the program using units from the program
library, you must use the Compiler's USING option; see
Appendix F.

When any program is executed, each unit that it uses is searched
for first in the program library, if there is one, and then in
the SYSTEM.LIBRARY file on the system diskette.

If the local filename of the codefile is more than 11
characters and does not end in .CODE , then the system
forms the program library name by truncating to 11
characters and adding the .LIB suffix. For example, if
you have a codefile named /MINE/SYSTEM.STARTUP , the system
will look for a program library named
/MINE/SYSTEM.STAR.LIB •

Changing a Unit or its Host Program
For test purposes, you may define a regular unit right in the
host program, after the heading of the host program. In this
case, you will compile both the unit and the host program
together. Any subsequent changes in the unit or host program
require that you recompile both.

Library Units 251

Normally, you will define and compile a regular unit separately
and use it as a library file (or store it in another library by
using the LIBRARY utility). After compiling a host program that
uses such a unit, you must link that unit into the host program's
codefile by executing the Linker. Trying to run an unlinked code
file with the R command will cause the Linker to run
automatically, looking for the unit in the system library.
Trying to execute an unlinked file with the X command causes the
system to remind you to link the file.

Changes in the host program require that you recompile the host
program. You must also link in the unit again, if it is not
intrinsic.

Changes in a regular unit require you to recompile the unit, and
then to recompile and relink all host programs (or other units)
which use that unit.

Intrinsic units and their host programs can be changed as
described above, but they do not have to be relinked.

252 Apple III Pascal

Program Segmentation 253

254 Apple III Pascal

The information in this chapter is not needed for small programs,
but can be crucial for large programs.

Program Segments
To make the most efficient use of the memory space available for
program code and data, programs can be divided into segments.
This section gives essential information on how the Pascal System
implements segmentation.

A segment is code (or data space) that can be loaded into memory
by itself, independent of other segments. Every program consists
of at least one segment, and some programs consist of many
segments. Whenever a program is compiled , the Compiler and
Linker create the following segments in the code file:

- Each SEGMENT procedure or function becomes a segment in
the code file.

- Each regular unit that the program uses becomes a
segment in the code file.

- The main program itself becomes a segment in the code
file. This includes the program's non-SEGMENT
procedures and functions.

Similarly, whenever a regular unit is compiled, the result is a
code segment for the unit itself, plus an additional segment for
each regular unit that is used within the unit being compiled.
(Note that SEGMENT procedures and functions are not allowed
inside units.)

When an intrinsic unit is compiled , it produces a code segment,
and may produce a data segment as well. (Note that an intrinsic
unit cannot use a regular unit.)

Note that segments do not nest~every segment is just one segment
and does not contain any other segments. For example, if the
declaration of a SEGMENT procedure contains the declaration of
another SEGMENT procedure, tne result is two distinct code
segments, even though they are nested syntactically and the scope
is nested.

Program Segmentation 255

The Segment Dictionary
Every code file (including library files) contains information
called a segment dictionary . This contains an entry for each
segment in the code file; the entry has all the information the
system needs to load and execute the segment .

The segment dictionary has slots for 16 entries . Therefore, one
code file can contain at most 16 segments . In the case of a
program, this implies one segment for the program itself, one for
each SEGMENT procedure or function , and one for each regular unit
used by the program.

Note that intrinsic units used by a program do not require
entries in the segment dictionary of the program's code
file. This is because an intrinsic unit's code segment is
never in the program's code file~it is in a libra ry file ,
and appears in the library file's segme nt dictionary .

Therefore a program can have a maximum of 16 s egments , not
counting segments from intrinsic units . Counting segments from
intrinsic units , a program can have up to 48 segments as
explained below .

The Run-Time Segment Table
When a program is executed , the Pascal Interpreter uses a segment
table which contains an entry for each segment that is used in
executing the program . This table thus contains the following
entries:

- Entrie s for 11 segments that the system uses when
executing a user program

An entry for each segment in the segment dictionary of
the program's cod~ file

An entry for each intrinsic unit segment (both data and
code s egments) .

256 Apple III Pascal

The segment table has slots for up to 64 entries. Since the
system uses 11, this means that 53 slots are left for the program
to use. Remember that only 16 can be in the program's code file;
any excess over 16 must be intrinsic unit segments. Since each
intrinsic unit must be in either the program library or the
SYSTEM.LIBRARY file, which are code files, there can only be 32
intrinsic units altogether. Thus the maximum number of segments
a program can have is 48.

Segment Numbers
A segment number is an index into the segment table; thus at run
time, every segment has a segment number in the range 0 .. 63 and
no two segments in the program can have the same number.

These segment numbers are assigned to the program segments
(except intrinsic unit segments) when the segment entries are
placed in the code file's segment dictionary (before run time).
Numbers are assigned as follows:

- The program itself is Segment 1.

- The segments used by the system are 0, 2 •• 6, and
59 •• 63. These numbers are never assigned to segments
of the program.

- The segment numbers of regular unit segments and 'of
SEGMENT procedures and functions are automatically
assigned by the system; they begin at 7 and ascend.
Note that after a regular unit is linked into a
program, it may not have the same segment number that
it had in the library.

The segment number of an intrinsic unit segment is determined by
the unit's heading, when the intrinsic unit is compiled. (These
numbers can be found by examining the segment dictionary of the
library file with the LIBMAP utility program.)

To summarize the above, the segment numbers of the program
itself, the segments used by the system, and any intrinsic units
used by the program are fixed before the program is compiled; the
segment numbers of regular units and of SEGMENT procedures and
functions are not fixed, and are assigned as the program is
compiled and linked, in ascending sequence beginning with 7.

Program Segmentation 257

Normally, the only time you need to specify segment numbers is in
writing an intrinsic unit, as explained in Chapter 14.

The NEXTSEG Option
When unavoidable segment-number conflicts arise there is a
solution: the Compiler has a NEXTSEG option which allows you to
specify the segment number of the next regular unit, SEGMENT
procedure, or SEGMENT function encountered by the Compiler.

Compiler options are commands that can be embedded in a Pascal
source file to control Compiler operation. Options are enclosed
in comment delimiters, and the first character within the comment
delimiters is the $ character. For complete details, see
Appendix F.

The NEXTSEG option has the form

{$NS num}
or {$NEXTSEG num}

where num is a literal integer constant that should be in the
range 8 •• 56. The effect is to set the next segment number to
num.

The NEXTSEG option is ignored if it precedes the program heading;
this means that it cannot be used to specify tje segment number
of the program itself.

The NEXTSEG option will only work if the specified number is
greater than the "default" number that would be automatically
assigned. If the number specified in the NEXTSEG option is less
than or equal to the default segment number, the option is
ignored.

For example, suppose that you want to use an intrinsic unit named
ZEBRA, whose code segment number is 7 and whose data segment
number is 8. (Normally, such numbers should be avoided in
writing intrinsic units.) Your program also contains a SEGMENT
procedure:

PROGRAM ELEPHANT;
USES ZEBRA;

SEGMENT PROCEDURE HORSE;

258 Apple III Pascal

The Compiler will automatically compile the HORSE procedure as
segment number 7, and when you try to execute the program, the
Pasca l system will not execute the codefile because the program
has two different segments with the number 7 . There are two
remedies: recompile ZEBRA with different segment numbers (if you
have the source for ZEBRA) or use the NEXTSEG option in your
program:

PROGRAM ELEPHANT;
USES ZEBRA;

{$NEXTSEG 9}
SEGMENT PROCEDURE HORSE ;

Now HORSE will become segment 9 instead of segment 7, and the
conflict is avoided .

Loading of Segment Procedures and Functions
Normally , the code of a SEGMENT procedure or function is present
in memory only as long as it is act ive . If it is not active when
it is called, it is loaded from the code file (on diskette). The
following program illustrates this:

PROGRAM ONE; {Segment ONE is always in memory . }

SEGMENT PROCEDURE ALPHA; {In memory only when active.}
BEGIN

END;

Program Segmentation 259

SEGMENT PROCEDURE BRAVO; {In memory only when active.}
SEGMENT PROCEDURE CHARLIE; {In memory only when active . }

BEGIN {Body of CHARLIE}

ALPHA; {When this is executed , the segments in
memory are ONE , ALPHA, BRAVO , and CHARLIE . }

END;
BEGIN {Body of BRAVO}

CHARLIE; {When this starts executing, the segments in
memory are ONE , BRAVO , and CHARLIE.}

ALPHA; {When this is executed , the segments in
memory are ONE , BRAVO , and ALPHA.}

END;

BEGIN {Body of ONE}

ALPHA; {When this is executed, the segments in
memory are ONE and ALPHA.}

BRAVO; {When this starts executing , the segments in
memory are ONE and BRAVO.}

END.

The RESIDENT option can be used to alter this, as explained
below.

Loading of Unit Segments
Normally, all segments of units used by a program are loaded
automatically before the program begins executing, and remain in
memory throughout program execution . For example, consider the
following program where DELTA and GAMMA are two units, either
regular or intrinsic :

PROGRAM TWO
USES DELTA, GAMMA;

BEGIN

END.

260 Apple III Pascal

Throughout program execution, the segments in memory are TWO,
DELTA, and GAMMA. This can be altered by the NOLOAD option, as
explained below. In any case , the initialization code for every
intrinsic unit is executed at program startup time. The order in
which unit names are listed in the USES statement at the
beginning of the program is significant; the initialization code
for the units is executed in this order.

The NOLOAD Option
The NOLOAD option has the form

{$N+}
or { $NOLOAD+}

The option is placed 'at the beginning of the main program body
(after the BEGIN). It causes all unit segments to be swapped i~
and out in the same way as SEGMENT procedures: thus a unit
segment is in memory only when a procedure or function in its
INTERFACE is referenced by the program.

The {$NOLOAD+} option does not prevent the initialization of a
unit from being loaded and executed before program execution; but
after initialization the unit segment is unloaded until it is
activated. Also, the initialization code is not executed when
the unit is reloaded.

Consider the following program , where HUGEPROC is a large SEGMENT
procedure and BIGUNIT is a large unit. The system does not have
enough memory to hold HUGEPROC and BIGUNIT at the same time,
along with the program itself.

PROGRAM THREE;
USES BIGUNIT;

SEGMENT PROCEDURE HUGEPROC;
BEGIN

END;

BEGIN

Program Segmentation 261

{$NOLOAD+} {Keeps BIGUNIT out of memory until needed.}
HUGEPROC;

CALCULATE; {A procedure in BIGUNIT}

HUGEPROC
END.

First HUGEPROC is called; BIGUNIT is not in memory because of the
{$NOLOAD+} option. When CALCULATE is called, HUGEPROC is not in
memory since it is a SEGMENT procedure; it is immediately swapped
in. As soon as no part of BIGUNIT is active, it is again swapped
out of memory, and HUGEPROC can be called again.

The RESIDENT Option
The RESIDENT option has one of the following forms:

{$R identifier}
{$RESIDENT identifier}
{$R number}
{$RESIDENT number}

where the identifier is the name of a unit or a SEGMENT procedure
or function, and the number is the segment number of a unit or a
SEGMENT procedure or function. This unit, procedure, or function
is then said to be "resident" within the procedure or function
that contains the option.

The RESIDENT option is placed at the beginning of the body of a
procedure or function (after the BEGIN). It alters the handling
of segments that would otherwise be in memory only when active:
that is, SEGMENT procedures and functions, and units under the
NOLOAD option.

262 Apple III Pascal

When such a segment is called from a procedure or function that
specifies it to be resident, it is immediately loaded into memory
and remains there as long as the calling procedure or function is
active. For example, consider the following program:

PROGRAM FOUR;
USES BIGUNIT;

SEGMENT PROCEDURE HUGEPROC;
BEGIN

END;

PROCEDURE CALLHUGEPROC;
VAR I: INTEGER;
BEGIN

FOR I:=l TO 100 DO HUGEPROC
END;

PROCEDURE CALLCALCULATE;
VAR I: INTEGER;
BEGIN

FOR I:=l TO 100 DO CALCULATE {A procedure in BIGUNIT}
END;

BEGIN
{$NOLOAD+} {Keeps BIGUNIT out of memory until needed.}
HUGEPROC;

CALCULATE;

CALLHUGEPROC;

CALLCALCULATE
END.

This resembles the previous example, but the CALLHUGEPROC and
CALLCALCULATE procedures are new. As written, these two
procedures have a problem: since HUGEPROC is a SEGMENT
procedure, it will be swapped in from diskette 100 times when
CALLHUGEPROC executes, and because of the {$NOLOAD+} option in
the main program body, BIGUNIT will be swapped in 100 times when
CALLCALCULATE executes. This is obviously undesirable, and it
can be prevented by using the RESIDENT option in each of these
procedures:

PROCEDURE CALLHUGEPROC;
VAR I: INTEGER;
BEGIN
{$RESIDENT HUGEPROC}

FOR I:=l TO 100 DO HUGEPROC
END;

PROCEDURE CALLCALCULATE;
VAR I: INTEGER;
BEGIN
{$RESIDENT BIGUNIT}

Program Segmentation 263

FOR I:=l TO 100 DO CALCULATE {A procedure in BIGUNIT}
END;

Now HUGEPROC will be kept in memory as long as CALLHUGEPROC is
active, and BIGUNIT will be kept in memory as long as
CALLCALCULATE is active.

Finally, note that the RESIDENT option can be applied to more
than one segment, by separating instances of the options with
commas as in the following example:

{$RESIDENT ALPHA,RESIDENT BETA,RESIDENT GAMMA}
{no spaces after commas}

where ALPHA, BETA, and GAl'fr1A are names of segments (units,
SEGMENT procedures, or SEGMENT functions). The option shown
would make all three segments resident in the procedure
containing the option.

264 Apple III Pascal

Volume I-Chapters

1 What is Apple Ill Pascal?
6 Sample Program: FIRSTEXAMPLE

2 Overview of Pascal
1¢ Identifier Syntax
12 Delimiter Characters
23 Arithmetic Operators
23 Comparison Operators
23 Logical Operators
23 Set Operators
3¢ Sample Program: FIRSTEXAMPU:

3 Simple Data Types
36 Constant Declarations Syntax
38 Variable Declarations Syntax
39 Floating-point Number Syntax
4¢ Exponent Syntax

Figures and Tables 265

41 Non-floating-point Number Syntax
46 User-defined Scalar Type Syntax
47 Subrange Type Syntax

266 Apple III Pascal

4 Expressions and Assignments
52 Assignment Statement Syntax
52 Variable Reference Syntax
54 Precedence of Operators
56 Arithmetic Operators
57 Type Results of Multiplication
57 Type Results of Division
58 Type Results of Integer Division
59 Type Results of Addition
59 Type Results of Subtraction
60 Relational Operators
62 Logical Operators with Boolean Operands
63 Relational Operators with Boolean Operands
63 Summary of Type Results
64 Legal Assignments for Non-structured Variables

5 The Flow of Control
66 Statement Syntax
68 Compound Statement Syntax
68 Procedure Call Syntax
69 FOR Statement Syntax
72 REPEAT Statement Syntax
72 WHILE Statement Syntax
74 IF Statement Syntax
77 CASE Statement Syntax
77 Caseclause Syntax
78 OTHERWISE Clause Syntax
80 EXIT Procedure Syntax
81 GOTO Statement Syntax

6 Procedures and Functions
85 Procedure Definition Syntax
85 Parameter List Syntax
86 Parameter Declaration Syntax
87 Block Syntax
91 Function Definition Syntax
92 Function Call Syntax
98 Nested Program Structure

Figures and Tables 267

7 Arrays, Sets, and Strings
105 Array Type Syntax
115 Set Type Syntax
117 Set Constructor Syntax
121 String Constant Syntax
122 STRING Type Syntax
125 CONCAT Function Call Syntax

8 Records
130 Record Type Syntax
130 Field List Syntax
133 Variant Part Syntax
136 WITH Statement Syntax

9 Pointers and Dynamic Variables
144 Pointer Type Syntax
147 NEW Procedure Syntax

10 Introduction To Files and /JO
158 File Type Syntax (For Typed File)
163 RESET Procedure Syntax
165 CLOSE Procedure Syntax
167 Effect of CLOSE Options (Opened
167 Effect of CLOSE Options (Opened
171 IORESULT Function Status Codes
177 Sample Program: RANDOMACCESS

11 Text 110
186 EOLN Function Syntax
186 READ Procedure Call Syntax
190 READLN Procedure Call Syntax
192 WRITE Procedure Call Syntax
192 "Value Specifier" Syntax
195 WRITELN Procedure Call Syntax
195 Sample Program: ASCIITABLE
195 Sample Program: FLUSHPERIODS

with
with

REWRITE)
RESET)

268 Apple III Pascal

12 Block File 110 and Device 110
203 BLOCKREAD Function Call Syntax
204 BLOCKWRITE Function Call Syntax
205 Sample Program: FILECOPY
207 Standard Device Numbers and Names
208 UNITREAD and UNITI•RITE Procedure Call Syntax
211 UNITSTATUS Procedure
213 UNITSTATUS Procedure: OPTION=21

13 Special-Purpose Built-Ins
223 Sample Procedure: UPPERCASE
227 IDSEARCH Declarations

14 Library Units
234 Regular Unit
235 Intrinsic Unit
236 Compilation Syntax
236 Unit Syntax
237 Regular Unit Heading Syntax
238 Intrinsic Unit Heading Syntax
241 INTERFACE Syntax
242 IMPLEMENTATION Syntax
243 Sample Unit: OPENS
245 Sample Unit: USEIT

15 Program Segmentation

Figures and Tables 269

Volume II-Appendices

A The TRANSCEND and REALMODES Units
8 Square Root, Remainder, and Transcendental Functions:

Summary of Special Values and Results

B The PGRAF Unit
15 Color Identifiers and Ordinalities
16 Color Transformations
18 Memory Usage
19 Summary of PGRAF Routines
20 Graphics Driver Defaults
28 DRAWIMAGE Parameters
32 Transfer Options
37 PGRAF INTERFACE

C The CHAINSTUFF Unit
42 Sample Program Using CHAINSTUFF

D The APPLESTUFF Unit
47 Sample Function: Generate Pseudo-Random Integers
52 SETTIME Procedure Fields

E Floating-Point Arithmetic
62 Floating-Point Format
63 Specific Number Formats
65 Linear Infinities
66 Circular Infinities
67 Results of Arithmetic with Infinities
69 NaN Format
70 NaN Error Codes
83 Summary of Floating-Point Syst em

270 Apple III Pascal

F The Apple Ill Pascal Compiler
96 Sample Compilation

110 Compiler Option Summary

G Special Techniques
115 16-Bit Binary Word Structure
117 Sample Program: MASKER (Convert to Upper Case)
122 Sample Program: BINARY (Display Integer as

Boolean Values)
123 Sample Program: REALBITS(Dlsplay Fields of Real Value)

H Comparison To Apple II Pascal

I Syntax Diagrams
134 Compilation
134 Program
135 Unit
135 Intrinsic Unit heading
135 Regular Unit heading
136 Interface
136 Implementation
137 Block
137 Uses Declarations
138 Label Declarations
138 Constant Declarations
138 Constant
138 Type Declarations
139 Type
139 Simple Type
139 User-defined Scalar Type
140 Subrange Type
140 Pointer Type
140 Set Type
140 String Type
140 Array Type
141 Record Type
141 Field List
141 Variant Part
142 File Type
142 Variable Declarations

J

K

142 Procedure Definition
143 Function Definition
143 Parameter List
143 Parameter Declaration
143 Compound Statement
144 Statement
144 Assignment Statement
144 Procedure Call
145 With Statement
145 Goto Statement
145 For Statement
145 Repeat Statement
146 While Statement
146 If Statement
146 Case Statement
146 Case Clause
147 Otherwise Clause
14 7 Expression
147 Simple Expression
148 Term
148 Factor
149 Variable reference
149 Function Call
149 Set Constructor
150 Unsigned Constant
150 Unsigned Number
150 Unsigned Integer
151 Identifier

Tables
154 Table 1: Execution Errors
155 Table 2: I/O Errors
157 Table 3: Reserved Words

Figures and Tables 271

158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/O Devices
166 Table 8: Size Limitations

The TURTLEGRAPHICS Unit

272 Apple III Pascal

Index 273

The page numbers in this index do not refer to every occurrence
of a word or phrase in the text. Instead, they refer to the
locations of significant information on the topic related to the
word or phrase.

References in Volume II are shown in square brackets [].

A
ABS function 50
actual parameter 88
addition 58
address [115]
affine mode [4,65-66]
Algol 2
allocation of memory 132,

142, 148, 151-153, [18]
AND operator 62, [114]
apostrophe 11, 43, 121
APPLE compile-time variable

[106]
Apple II formatted diskettes

[91 J
Apple II Pascal [52,109,

128-131]
Apple III Pascal 2
Apple III Pascal System xv,

[ix]
APPLESTUFF unit [46-53]
ARBITRARY function [48]
arithmetic operation accuracy

[71]

arithmetic operators 22,
56-60

array assignment 15, 110
array comparison 110-111, 114
array definition 104
array element 104-105
array of indefinite length

222-223
array parameter 84-90,

104-105
array representation

[119-120]
array types 15, 105-110,

[140]
array variable 104-105
ASCII code 43-44, 219, [115,

164]
Asciifile structure 215-216
Asciifile type 183, 213-214
Assembler xv, 100, [ix]
assembly language 100
assignment operator 52, 64
assignment statement 18, 52,

64, [144]
asterisk 8

274 Apple III Pascal

ATAN function [6)
audio [50, 53)
automatic line feeds 209-210
automatic rounding [58, 71,

78)
automatic type conversion 38

B
base type of pointer 145
base type of set 46, 115, 117
BASIC 3
BASIC text files 183, 215
BCD 42

68, 72 BEGIN
biased
binary

exponent [57)
floating-point number

[57)
binary search 225
binary to decimal conversion

[74-75)
bit 111-113, 115-116,

139-140, [17,26,31,115)
block 26-28, 84, 87, 204,

[137)
block file declarations

202-203
block file I/O 202-206
block structure 27, 87
block-structured device 157,

202-206, 214
BLOCKREAD function 203-204
BLOCKWRITE function 204-205
boolean logic [114]
BOOLEAN type 14, 45, [115)
boolean values [115)
bubbles xvii, [xi)
buffer variable 159, 170,

183-184, 197-200, 20~
built-in 34, 47, [158)
built-in files 184, [158)
built-in procedures and

functions 26, 47, [158)
buttons (on joystick) [52)
BW280 graphics mode [13)
BW560 graphics mode [13)

byte 111-113, 218-223,
[26, 115)

byte-oriented features
218-223, [124]

BYTESTREAM type 222-223

c
case clause [146]
CASE ~tatement 20, 76-79,

[146)
chaining [40-43]
CHAINSTUFF unit [40-43]
CHAR type 14, 43, 182-183
character constants 11, 43
character device 156-157,

184, 209
character file
character input

182, 214
184

character output
character set 43
CHR function 44

194

clearing the screen 197
CLOCKINFO procedure [51]
CLOSE options 166-168
CLOSE procedure 160, 164-166
closure [78)
code segment 238, 254-255
code swapping 260-261
codefile 250, 254-255, [88)
COL140 graphics mode [14]
color table [29)
columns. in array 106-107
COMMENT compiler option [98)
comments 8
comparison of sets 120
comparison operators 23 ,'

60-62
compilation 236, [134)
Compile command [89)
compile-time error checking

[92)
compile-time expressions

[106)
compile-time variables

[104-106)
Compiler 2, 79, 81, 132, 183,

254, [88-11, 159)

Compiler error [92,159-163]
Compiler options [93-104]
compiling Apple II code [109]
compound statement 19, 67,

[143]
CONCAT function 125
conditional compilation [104]
conditional statements 73
congruent type 105, 108, 138
conjunction 62
console 156-157, 180
CONSOLE: [165]
CONST 12, 35-36
constant [138]
constant declarations 12,

35-37, 39, 41-47, [138]
control 66-82
control characters 178-180
control variable 21, 69
control-C character 179-180,

187, 194, 209
convert overflow exception

[59-6~,83]
converting char to string 123
COPY function 126
COS function [6]
CP280 graphics mode [14,35]
CR character 178-179
CRUNCH 165
cursor 224

D
DATA 238
data segment 238, 254-255
data types 13, 34-50
Datafile type 213
date and time [50]
decimal places 193
decimal point 38, 4~, 190,

193
decimal to binary conversion

[73-74]
declarations 3, 12, 35-47,

[96]
DELETE procedure 126
delimiters 11

Index 275

denormalized number [58,
63-64]

device 156, [165]
device driver 157, 179, 194,

206-2~7, 211-212
device driver control 21~-212
device driver status 207-213
device I/O 206-213
difference operator 119
dimensions of array 105-1~7

direct recursion 92-95
directory 165, 2~7
disjunction 62
diskette block numbers 204
diskette file 157, 170
display [17]
display buffer [17-19]
DISPOSE procedure 151
DIV operator 57
dividend 57-58, [61]
division (integer) 57
division (real) 57
division hy 0 [61]
divisor 57-58, [61,66,71]
DLE character 179, 194,

215-216
DLE-blank code 214-216
DLE-blank code conversion

209, 215-216
DOTAT procedure
DOTREL procedure
DOWNTO 69-71

[21]
[24]

DRAWIMAGE procedure [26]
dynamic variable 17, 143-150

E
E notation 39, 193
Editor xv, 2, 183, 214, [ix]
element of array 104-106
ELSE 74
ELSEC compiler option [107]
empty set 117
END 68
end of file 168-169, 197-2~0
end of line 162, 179,

185-186, 197-200

276 Apple III Pascal

end of text 179
ENDC compiler option [107]
EOF function 168-169, 180,

187-188, 197-200
EOLN function 180, 185-188,

197-200
error checking [98-100]
error message [92,154-155,

159,163]
ETX character 178-180
exception [58,59-62,77]
exception signal [58]
EXEC/ prefix [40]
Execute command [89]
execution error [96-97,154]
EXIT procedure 80, [41]
EXP function [7]
explicit set value 116
exponent 40, [57]
exponent field [82]
exponential function 50, [7]
expression 22, 52-55, 84,

87-89, [147]
extent of a procedure 97
EXTERNAL 100
external file 156, 158,

213-214
external function 100, [88]
external procedure 100, [88]

F
factor
FALSE
field
field
file

[148]
45, 62, 63

identifier 130
list 130, 132,
156

[141]

file block 202-204
file block numbers 204
file buffer variable 159-161,

183-185, 197-200, 203
file component type 158
file declaration 159
FILE OF CHAR 158, 183
file parameter 84-90
file record 158-159
FILE type 202

file type 17, 157-159, [142]
file variable 157, 243
Filer xv, [ixl
fill color [15,21]
FILLCHAR procedure 219, [124]
filling [15]
FILLPORT procedure [24]
fixed-point output 193
floating-point arithmetic

[56-85]
floating-point number 13,

38-39, [57]
flow of control 67
font [33]
FOR statement 21, 69, [145]
formal parameters 88
formatted output 195
FORTRAN 4
FORWARD 96
forward definition 96
fraction field [58]
free memory 150-153
free union [120]
function 3, 25, 90-92
function call 25, 92, [149]
function complexity 101
function definition 91, [143]
function heading 236-238
function identifier 91
function size 101
function type 91

G

GET and PUT with text I/O
185, 197-200

GET procedure 169-171, 203,
215

GETCVAL procedure [41]
GLOAD procedure [34]
global 99
GOTO compiler option [100]
GOTO statement 22, 81, [100,

145]
GOTOXY procedure 224
gradual underflow [60]
GRAFIXMODE procedure [20]

GRAFIXON procedure [21)
graphics cursor [13,23]
graphics driver [12,25-26,

34-36]
graphics modes [13]
GSAVE procedure [34]

H
HALT procedure 80, [41]
host program 232-233, 250-251

I
I/O 159, 182-200, 202-203
I/O checking 172-174, [98,

156)
I/O devices 206-207, [165)
I/O error 162-164, 171-172,

[155)
I/O facilities 161-162
I/O units 207, [165)
identifier 9, 28, 37, [151)
IDSEARCH 226-229
IEEE floating-point standard

23, 56, [2,56-85]
IF statement 19, 73-75, [146]
IFC compiler option [107)
IMPLEMENTATION 241, [136)
IN operator 117-118
incarnation 94
INCLUDE compiler option (102)
include file (103]
index of array 104-108
index type 104-108
index values 108
indirect recursion 95
inexact result [61]
infinities [58]
infinity [58,63,68)
infinity arithmetic [65-67]
INITGRAFIX procedure [23)
initial value 70
initialization 237, 243, 260
input 161
INPUT built-in file 184

Index 277

input/output conversions
[72-75]

INSERT procedure
INTEGER constant
INTEGER type 13,
INTERACTIVE type

216

126-127
41
40
158, 183,

INTERFACE 240-241, (136]
intersection operator 119-120
intrinsic unit 234-235,

238-239, 254-256, [88]
intrinsic unit heading (135]
invalid operations [61]
IOCHECK compiler option 172,

(98,156]
IORESULT function 171-174,

210, (155]

J

Jensen and Wirth 2, (114]
joystick [49]

K
K (@@)
keyboard [48]
KEYBOARD built-in file 184,

(158 J
KEYPRESS function (48]

L

label 81
label declarations 81, (138]
length attribute (LONG

INTEGER, STRING) 42, 124
LENGTH function 124
lexical level [96)
LIBMAP utility program

238-239, 256
Librarian xv, [ix]
library file 100, 232-251,

254-255, (89)
library unit 29, 232-251

278 Apple III Pascal

LIBRARY utility program 233,
238

limit value 7(/J
line-oriented input 195
line-oriented output 195
linefeed character 179,

193-194, 2f/J9-2lf/J
LINEREL [24 J
LINETO [23)
linked list 146-147
Linker xv, lf/Jf/J, 233-234, 251,

254, [ix,88-89)
list 146
LIST compiler option [95]
listing [95, 159)
LN function [6]
loading of segments 258-26(/J
local 99
LOCK 165
LOG function [7]
logarithmic functions [7]
logical operators 23, 62
logical record 158
LONG INTEGER input 188-19(/J
LONG INTEGER output 192
LONG INTEGER type 42
LONGINTIO unit 43, 239

M
machine language 2
MARK procedure 95, 151-153
MAXINT 42
MEMAVAIL function 15(/J-151
member of set 115
memory allocation 139-14(/J,

142-143, 148, 151-152, [18]
minuend 59
mixed reading and writing

185, 197-2(/Jf/J
MOD operator 58
mode parameter (device I/O)

2f/J8-21f/J
modes, arithmetic
MOVELEFT procedure

[124]

[4 J
221-222,

MOVEREL procedure [24]
MOVERIGHT procedure 221-222,

[124)
MOVETO procedure [23]
multidimensional array

lf/J6-lf/J7
multiplication 57

N
NaN [5,58,63,69-7(/JJ
natural logarithm [6]
negation (arithmetic) 59
negation (boolean) 62
nested IF statements 75
nested WITH statements 137
nesting 97
nesting units 246-249
NEW procedure 143-144,

147-148
next record in file 16(/J-161,

169, 185
NEXTSEG compiler option 257,

[lf/Jl J
NIL 144
NOLOAD compiler option

26(/J-261, [ll;HJ
Non-standard devices [165]
NORMAL 165
normalized number [58,63]
normalizing mode [4,64,79]
NOT operator 62, [114]
NOTE procedure [52]
NUL character 214, 216
null statement 67
numeric constants lf/J
numeric environment [79]
numeric functions 49
numeric-string input 188,19(/J
numeric-string output 191

0
object of a pointer 145-147
ODD function 5f/J, [116)

one-character string 123
one-dimensional array 106
Open Apple key 44
opening a file 159, 163-167
operand 52-64
operating system 159-160
operator 52-64
Options command [12}
OR operator 62, [114}
ORD function 48, [116}
ordinality 48, [116}
OTHERWISE clause 76-79, [128,

147}
output 161
OUTPUT built-in file 184
overflow 43, 56, [59,60]

p

P-code 2, [88]
P-machine 2, [88}
PACKED 113, 139
packed array 111-113
packed character array

113-114
packed record
packed variable

218

139
90, 111-114'

PADDLE function [52]
PAGE compiler option [97]
PAGE procedure 197
parameter 19, 84-90
parameter declaration 86,

[143}
parameter list 68, 85, [143}
parentheses in expression 54
Pascal interpreter 2, 255,

[88]
Pascal User Manual and Report

2
PASCALIO unit 176, 189, 239
passing arrays 109
pathname 157, 159, 163, 183,

213, 250, [95, 102}
pen color [15,21}
peripheral device [165]
PGRAF unit [12-38}

Index 279

physical address 144, 151-153
physical diskette access 170
plotting [14-16,23]
pointer 17' 143-147' 153
pointer assignment 147

comparison 144 pointer
pointer reference 145, 147
pointer type 144-145, [140]
pointer variable 144, 147'

152
POS function 124-125
power of ten 224
precedence of operators 53
precision of REALs [76}
PRED function 48
predecessor 48
predefined identifiers [158]
printer 156-157
private 241-242
procedure 3, 24, 84-87
procedure call statement 18,

68, 84-90, [144}
procedure complexity 101
procedure definition 85, [142}
procedure heading 85, 236-238
procedure identifier 68
procedure size 101
procedure termination 94-95
Procedure too long error

[166]
program [134]
program heading 5
program library 250, 255, [2,

12,40,46,102]
program listing [9 SJ
program segment 254
program structure s, 26,

84-101
projective mode [4,65-66]
pseudo-random number [46-48]
public 232, 240
PURGE 165
PUT procedure 169-171, 203
PWROFTEN function 224

280 Apple III Pascal

Q

QUIET compiler option (98]

R
railroad tracks xvii, [xi]
random access 175, 215
random numbers [46-48]
range checking 44, 46
RANGECHECK compiler option

[99]
READ procedure 186-187,

197-200
READ with a char variable

187, 197-198
READ with a numeric variable

188, 198
READ with a string variable

188, 199
READLN procedure 190-191,

197-200, 214-215
real arithmetic [76]
real arithmetic environment

[76]
REAL type 13, 34, 38-40
REALMODES unit (2,S,70,76-82]
record 130
record assignments 138
record comparisons 138-139
record field 13¢-131
record numbers 175-176
record parameter 84-9¢,

REPEAT statement 20, 71,
[145]

repetition statements 69
representation of arrays

[119]
representation of REALs [76,

120]
representation of scalars

[114]
reserved word 9, 226, [157]
RESET procedure 163-164
RESIDENT compiler option

261-263, [l!H]
result types 63
return character 169, 187,

193, 209, 214
REWRITE procedure 163
ROUND function 49, [59,78]
rounding [58]
rounding error [71]
rounding mode [71-72,78]
rows in array 106-107
Run command [89]
run-time error [97;154-156]
run-time error checking [97,

154-156]
run-time error message

154-156)
run-time halt [97,156]
run-time segment table

255-256

s

[97'

130-132 scalar types 13, 34, 40-49
13¢-131, [141] SCALB [62]
136 SCAN function 220-221, (124]

record type 16,
record variable
recursion 92-96
regular unit 233-234,

254, [88, 135]
relational operators

[68]

237,

60, 63,

scope of built-in objects Q9
scope of identifiers 28, 97
screen 224

RELEASE procedure
REM function [SJ
REMIN: (165]

screen control codes 180, 194
screen coordinates [13]

95, 151-153 SEEK procedure 175-178
segment 254, [96]

REMOUT: (165]
segment dictionary 255
SEGMENT function 99, 2397240,

254, 258-259

segment number 238-239,
256-257' [96, 154]

SEGMENT procedure 99-lQJQJ,
239-24\/l, 254, 258-259

segment table 255-256
semicolon 18, 67-68, 75
set 115
set comparison
set constructor

[149]

12\/l
116-117,

set difference 119
set equality 12\/l
set inclusion 12\/l
set inequality 12\/l
set intersection 119
set member 1Ql4
set operations 23, 118
set restrictions 117
set types 16, 115, [14\/l]
set union 118
set value 115
set variable 16, 115-117
SETC compiler option [l\ll7]
SETCHAIN procedure [4\ll]
SETCTAB procedure [29]
SETCVAL procedure [41]
SETTIME procedure [5\ll]
SETXCPN [59]
sign bit [69]
significand [57]
simple data types 34-5\/l
simple expression [147]
simple type [139]
SIN function [6]
single quote --see

"apostrophe"
size limitations 1\lll, [166]
SIZEOF function 112, 218-219,

[124]
sos 156-16\/l, 171-172
SOS character file 182
SOS device name 2Ql6-2Ql7,

[165]
SOS-formatted diskettes 21\/l
SOUND procedure [49]
source text 2, 8, 236, [88]
speaker [46]

Index 281

special characters 187
special-purpose built-ins

218-229
SQR function 5Ql
SQRT function [5]
square-root function 50, [5]
star --see "comments"
statements 18, 66, [144]
STR procedure 127
string 1Ql4
string built-ins 124
string comparison 122-123
string constant 11, 121
string element 123
string index 123
string input 188
string length 124
string output 191
STRING type 15, 121-122,

[14\/l l
string value 12\/l
string variable 121-123
strong typing [114]
structured data types 1Ql4,

13Ql-14Ql
subexpression 54
subprogram 84
subrange types 14, 46, [14\/l]
subroutine 84
subscript 104
subtraction 59
subtrahend 59
SUCC function 48
successor 48
SWAP compiler option [94]
swapping of code 26\ll-261
symbol table [87]
symbols 9
syntax diagrams xvii-xix,

[xi-xiii,135-155]
system font [17]
SYSTEM.COMPILER [88]
SYSTEM.EDITOR (89]
SYSTEM.LIBRARY 29, 43, 176,

194, 233, 25\/l, 256, [2,12,
4\ll,46,88]

SYSTEM.LINKER [89]

282 Apple III Pascal

SYSTEM.PASCAL [89]
SYSTEM.STARTUP [43]
SYSTEM.SYNTAX [89,92,159]
SYSTEM.WRK.CODE [90]
SYSTEM.WRK.TEXT [88]
SYSTERM: [165]

T
tag field 133, 135
tag identifier 133
tag type 133, 135
term [148]
text I/O procedures 184-185
text in graphics mode [17,25]
text mode [21]
TEXT type 158, 183-185, 216
Textfile structure 214-215
Textfile type 158, 183,

213-214
TEXTON procedure [21]
time and date [50]

TIME procedure 224
top-of-form character

"linefeed character"
TRANSCEND unit 50, [2-9]
transcendental functions

[2-9]

see

transfer option [31]
TREESEARCH function 225-226
trigonometric functions 50,

[6]
TRUE 45, 62-63
TRUNC function 49, [59]
TURTLEGRAPHICS [168]
two's-complement [115]
type 34, (139]
type conversion functions 60
type declarations 13, 86, 96,

(138]
type-ahead

212-213,
typed file

buffer 21~,

[48]
157-159, 162

u
UCSD Pascal 2
unallocated memory 143,

15~-153
underflow [59,6~]
union operator 118-119
unit (device) name 206-2~7
unit (device) number 206-2~7
unit (in library) 232-251,

254, [88]
unit example 243-246
unit heading (in library unit)

236-238
unit name (I/O) [165]
unit number (I/O) [165]
unit segment loading 259-26~
unit syntax [135]
UNITCLEAR procedure
UNITREAD procedure
UNITSTATUS procedure

[125]

210
207-210

211-213,

UNI'.IWRITE procedure 2~7-210

unordered relationship 61,
[68]

UNPROTECT 165
unsigned constant [15~]
unsigned integer [150]
unsigned number [150]
UNTIL 72
untyped file 2~2
unused memory 143, 150-153
USER compiler option [104]
user-defined font [17,33]
user-defined scalar types 14,

45-47, [115-116, 139]
USES declaration 232-233, [3,

46, 137]
USING compiler option [102]

v
value parameters 86-88
VAR 89
variable declarations 12, 37,

39, 41-47, [142]

variable parameters 86, 89-90
variable reference 52, 89,

208, [149]
variables 37, 39, 41-47
variant 132-134 140, [120]
variant part 132-133, 140,

[120,141]
variant record 132, [120]
VARSTRING compiler option

[100]
viewport [16, 22]

w
Warning mode [4,64,79]
WHILE statement 20, 72, [146]
width expression 192-193
wildcard 156
window variable --see "buffer

variable"
WITH statement 22, 135-138,

[145]
word 117, 139-140, [96,119]
WORDSTREAM type 222-223
workfile [88]
WPROTECT 165
WRITE procedure 191-194, 214
write-protected file 165-168
WRITELN procedure 194-196,

214

x
XLOC procedure [25]
XYCOLOR procedure [25]

y

YLOC procedure [25]

z
zero value [75]
zero-length string 123-124,

[41]

Index 283

Symbols
* operator 57
I operator 57
+ operator 58
- operator 59
> operator 60,

operator 60,
< operator 60,

63
63
63

>= operator 60, 63
<= operator 60, 63
<> operator 60, 63
{$G+} compiler option

[100]
{$I-} compiler option

[98,156]
{$I+} compiler option

[98]
{ $N+} compiler option

[101]
{$NS n} compiler option

[101]

81,

172,

172,

260,

257,

{$R identifier} compiler
option 261, [101]

{$S+} compiler option [94]
{$U filename} compiler option

[102]
.ASCI suffix 213
.CODE suffix [90]
• LIB suffix 25Ql
.GRAFIX [12]
.TEXT suffix 183, 213, [90]

©

'

~

~1)
r....~
~.

::::: -
Q)l•J

.... en
11.cYJ
Q)
:-:-
~

Tuck end flap
.......

D';;:iio
inside back cover ~
when using manual. ...,Q)

~
3~

CD
"" (/)~

~
,,.;;:_]

D Q)

~:::l
~./·

..._
Q)

~== -~
0 -,.._C::

ISj
CD
........

	Apple III Pascal: Programmer's Manual Volume 1
	Acknowledgements
	Contents
	Preface
	What is Apple III Pascal?
	Overview of Pascal
	Simple Data Types
	Expressions and Assignments
	The Flow of Control
	Procedures and Functions
	Arrays, Sets, and Strings
	Records
	Pointers and Dynamic Variables
	Introduction to Files and I/O
	Text I/O
	Block File I/O and Device I/O
	Special-Purpose Built-Ins
	Library Units
	Program Segmentation
	Figures and Tables
	Index

