R ————
B AR AL
S Rt
SRS SR
R s
et %
R
R
CRRCIBREN .
R
T e
RN o

2

A O A RO B
RSO SIRRES

SRR S

s 3

%

o T, O
o 2RERRUR
B S i
RO SRS

SRR XL o
L SRS

A A

RS s

e
SRR

R

5
2

2

S

R s
R

%
i

3

5
2
&

'
0

2
o
Shietately
vt
X0
et

AR

%

%
e
jeetes
S
S5

SR
e o 200
S SR
0 SRR
R
R
ORI RBRILEL
R . SRR
RS sl
et

o
&

SRS
e
i

i

ol
2

o
%

.
55
5

SRR,
e SRR
e BRI
B ranersantes
pesstelststs
-

%

5

ol
5
oo

s
3%

X
3
R

4o
et

P e RGO NS
s SRR, B et

e - %

RRODLS s

R

5

s
o
&

%

e

e
e
o
e
e

i
2

B
AR
e
B st
2t Rt o
L
e
SO S
S A Seretaias
s S
e 28
%

%
o
o
o
ol
5

o
0

e

5
.

R,

s

S

B
e B
o s
S

e

5
e

o
5

RO
S RCRESCs

R

SRR -

s
R
kR8s

o
0

5

et
TS

s
55

el
et

=
2
X
2
o

o
K
SRR RS
oty ey, SR R R R
Sy SRR, SRR R
o : 2 BRI
o Rl
LRI
e
Pl
RN
RRRIEIBE
SRR
SR

e
oot
5
2

.
i
Sl
%
,.

Tt
7
2
oo
o
s

(q\]
(4]
=
>
W %
©
=
[
©
=
wn

>

=
e
52

o

i
e
e
SO

20

oS tlentalnte!

ke bl &

oS

BRI
Soeseasl
SRR

'
B
Taet
%

%

e

2
2
53

%
o
et
: Sesateateratotieietetel
et
0%]
e e
R R
R ORI
R
5 e
e
Rt
oo
s
R
35 R
S R e
S B S
OSSR ¥ s

%
ol
o

e

5%
%
55
..........M.W.': % s
S st s
S L
SRS < SRR
RS0 SRR
RS R
s SRR,
TR e et
SRR L
3 2 RSN
R R
e "
AR AN IO KR RN 2Ry

e
s

R
Soaed
o3

3

3

A
5

3

o
%
3
ot
et
oS
o

R
%8
50

o
X
555

8%

5

o

et
R
SR
SRS
o
e
%
oo

20%%;

&

%

2
&8
!
ote!
%
oie!
o

o
508
e
2R
%

Z

Programmer

Pascal

Notice

Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities

Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its

quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed “as is” The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

Written by David Casseres

The word Apple and the Apple logo are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0003

Apple lll Pascal

Programmer’s Manual

ii Apple III Pascal

Acknowledgements

The Apple III Pascal system is based on UCSD Pascal.

"UCSD PASCAL" is a trademark of the Regents of the University
of California. Use thereof in conjunction with any goods or
services is authorized by specific license only and is an
indication that the associated product or service has met
quality assurance standards prescribed by the University. Any
unauthorized use thereof is contrary to the laws of the State
of California.

111

A e e B P

Volume ll—Appendices

Preface

ix

A The TRANSCEND
and REALMODES Units

Introduction

The Units

The Functions

The Remainder (REM) Function

B The PGRAF Unit

v BN

11

13 Overview

18 Memory Usage

19 Saving and Loading Display Buffers
19 Summary of PGRAF Routines

2¢ Initial Conditions

2¢) GRAPHIXMODE

21 GRAPHIXON and TEXTON

21 PENCOLOR and FILLCOLOR

22 VIEWPORT

23 INITGRAFIX

23 MOVETO, LINETO, and DOTAT

24 MOVEREL, LINEREL, and DOTREL
24 FILLPORT

iv Apple III Pascal

XYCOLOR, XLOC, and YLOC
Text in Graphics
DRAWIMAGE

The Color Table

The Transfer Option

NEWFONT and SYSFONT

GSAVE and GLOAD

The CP28@ Mode

Reading From the Graphics Driver
The PGRAF Interface

C The CHAINSTUFF Unit %

49
41
41
42

The SETCHAIN Procedure
The SETCVAL Procedure
The GETCVAL Procedure
An Example of Chaining

D The APPLESTUFF Unit 45

46
48
48
49
49
50
52

The RANDOM Function

The RANDOMIZE Procedure
The KEYPRESS Function

The JOYSTICK Procedure

The SOUND Procedure

The Internal Date and Time
PADDLE, BUTTON, and NOTE

E Fioating-Point Arithmetic 55

56
59
62
64
65
69
71
76
77
78
83
85

Introduction

Exceptions

Floating-Point Format

Arithmetic with Denormalized Numbers
Infinity Arithmetic and Comparisons
NaNs

Accuracy

Real Arithmetic Environments
Exception Handling

Arithmetic Modes

Summary of the Floating-Point System
Bibliography

The Apple lll Pascal Compiler

Contents

v

87

88
88
89
93
94
98

1090

192

102

143

104

149

119

Introduction

Diskette Files Needed

Using the Compiler

Compiler Option Syntax

Options that Do Not Affect Program Code
Error Checking Options

Control of Segments and Libraries
The USING Option

The INCLUDE Option

Special Compilation Mode
Conditional Compilation

Compiling Apple II Code

Compiler Option Summary

Special Techniques

113

114
114
116
119
120
120
124
125

Introduction

Representation of Scalar Values
Implications

Representation of Arrays
Representation of Real Values
Free Union Variants

Byte-Oriented Built-Ins Revisited
Special Uses of UNITSTATUS

Comparison To Apple Il Pascal

127

128
128
128
128
129
129
129
129
13¢
139
139
13¢
131
131
131

OTHERWISE Clause in CASE Statement
SOS Pathnames

SOS Device Driver Support
Graphics

New Procedures

New Data Types

Real Arithmetic

Library Files and Units
Memory Organization

The UNITSTATUS Procedure
Runtime Segment Table
Conditional Compilation
The CHAINSTUFF Unit
Compiling Apple II Code
File Variable Size

vi Apple III Pascal

131 Compiler Options
131 Procedure Complexity
131 System Globals

/ Syntax Diagrams 133

134 Compilation

134 Program

135 Unit

135 1Intrinsic Unit heading
135 Regular Unit heading
136 Interface

136 Implementation

137 Block

137 Uses Declarations

138 Label Declarations
138 Constant Declarations
138 Constant

138 Type Declarations

139 Type

139 Simple Type

139 User—-defined Scalar Type
140 Subrange Type

140 Pointer Type

140 Set Type

140 String Type

140 Array Type

141 Record Type

141 Field List

141 Variant Part

142 File Type

142 Variable Declarations
142 Procedure Definition
143 TFunction Definition
143 Parameter List

143 Parameter Declaration
143 Compound Statement
144 Statement

144 Assignment Statement
144 Procedure Call

145 With Statement

145 Goto Statement

145 For Statement

145 Repeat Statement

146 While Statement

146 If Statement

146 Case Statement

Contents vii

146 Case Clause

147 Otherwise Clause
147 Expression

147 Simple Expression
148 Term

148 Factor

149 Variable reference
149 Function Call

149 Set Constructor
150 Unsigned Constant
150 Unsigned Number
150 Unsigned Integer
151 1Identifier

J Tables 153

154 Table 1: Execution Errors

155 Table 2: 1/0 Errors

157 Table 3: Reserved Words

158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/0 Devices
166 Table 8: Size Limitations

K The TURTLEGRAPHICS Unit 167

168 Using Apple II TURTLEGRAPHICS with the Apple IIIL

Figures and Tables 169

Index 177

viii Apple III Pascal

Preface ix

Preface

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Intoduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer”s Manual (Volumes 1 and 2)

Before using the Apple III Pascal system or reading its manuals,
you should be familiar with starting up the Apple III as
described in the Apple III Owner”s Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal: Introduction, Filer, and Editor
manual. The Filer and the Editor described in this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will show
you the differences in operation between the two systems.

Apple III Pascal Program Preparation Tools is the next manual
that you should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The

components of the Apple III Pascal system covered in this manual
include

- The Linker, used to combine separately developed
program segments stored in libraries with your
application program.

- The Apple III Pascal 652 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files.

- The Librarian, used to put commonly used routines into
libraries for use with application programs.

x Apple III Pascal

Your main source of information while developing Pascal programs
will be the two volumes of the Apple III Pascal Programmer”s
Manual, which contain a complete description of the Pascal
language on the Apple III and the use of the Apple III Pascal
Compiler.

The Contents of This Manual

This manual describes the complete Apple III Pascal language.
Except for the introductory material in Chapters 1 and 2, this is
an explanatory reference manual rather than a textbook; it does
not assume that you know anything about Pascal, but it does
assume that you are familiar with computer programming in some
language.

Please note that a large and detailed index 1s provided at the
end of this manual; you will probably need it when you are using
the manual for reference purposes. The index does not point to
every occurrence of a word or phrase in the manual; instead it
points to the pages that have significant information about the
topic associated with the word or phrase.

Volume 1 of this manual contains the chapters; Volume 2 contains

the appendices and the index. Here is a brief description of the
contents:

= Chapter 1 is an introduction to the Pascal language,
comparing it with other well-known languages and giving

a very simple program as an example.

- Chapter 2 is an extensive overview of Pascal. Every
major concept and construction in the language is
introduced here at an intuitive level.

- Chapters 3 through 11 provide complete, detailed
information about every major feature of the language.

- Chapters 12 through 15 provide complete, detailed
information about the more specialized features of the
language. These features are needed for certain large
or specialized programs.

- Appendices A through E describe the standard library
facilities of Apple III Pascal. These are sets of
procedures and functions for special purposes such as
graphics, audio, joystick inputs, and special
arithmetic features.

Preface xi

- Appendix F 1s a complete reference manual for the Apple
III Pascal Compiler, including details of operation and
all of the Compiler options.

= Appendices G through J are supplementary information on
various topics. 1In particular, Appendix J is a
collection of useful tables.

- Appendix K provides information on the use of Apple II
TURTLEGRAPHICS on the Apple III.

Two special symbols are used throughout this manual to draw your
attention to particular items of information.

The pointing hand indicates something particularly

interesting or useful.

The eye is used for points you need to be cautious about.

Syntax Diagrams

Throughout this manual, the syntax of the Pascal language is
indicated by means of syntax diagrams, also known as "railroad
tracks."” These diagrams are easy to follow once you are used to
them: begin at the upper left and follow the arrows. Every
possible path through the diagram represents a valid construction

in Pascal. For example:

while statement

—{while)—ﬂ expressionl——-}(DO)—DISI:Lme;I—V

This diagram tells us that a "while statement” consists of the
word WHILE, followed by an expression, followed by the word DO,
followed by a statement.

The words WHILE and DO are enclosed in rounded "bubbles;" this
means that they are reserved words or symbols of the language, to
be typed as shown. The words expression and statement are in
boxes with square corners; this means that they are higher-level
constructions, which have their own syntax diagrams.

xii Apple III Pascal

Here is an example where there is more than one path through the
diagram:

identifier

s letter

letter

digit

underscore

N J

This tells us that an identifier begins with a letter, and this
letter may be followed by a letter, a digit, an underscore, or
nothing. From here, there is the possibility of looping back to
add another letter, digit, underscore, or nothing. This can he
repeated indefinitely (in principle), so the syntax says that an
identifier can be of any length. 1In practice, of course, there
is a 1limit which the syntax does not show.

Note that Appendix I contains a full set of syntax

diagrams.

Syntax of Procedure and Function Calls

Pascal provides a number of built-in procedures and functions
which are activated by means of "calls.” Most of these use a
simple kind of syntax in which there is only one path through the
diagram, and in these cases a diagram is not shown. Instead, a

"form” is given; for example, the form of the REWRITE procedure
is

REWRITE (FILEID, PATHNAME)

Preface xiii

The word REWRITE is the name of the procedure, and is to be typed
as shown; all words in parentheses are names for "parameters,” to
be replaced with actual expressions or variable identifiers as
explained in the text. In this example, FILEID is to be replaced
by the identifier of a "file variable"” and PATHNAME 1is to be
replaced by a string of characters that is the pathname of a
file.

A few procedures have a more complex form of syntax, and syntax
diagrams are used for these.

xiv ~ Apple III Pascal

The Transcend and Realmodes Units 1

The TRANSCEND and
REALMODES Units

2 Apple III Pascal

Introduction

The transcendental, square root, and remainder functions are not
built into Apple III Pascal. Instead, they are provided in two
units, TRANSCEND and REALMODES, which are intrinsic units in the
SYSTEM.LIBRARY file. This appendix describes TRANSCEND and
REALMODES and the precision of their functions.

The first part of the appendix is an overview of the units and
how to use them. The second part is a description of the
functions for users concerned with the mathematical precision of
the functions. A section on each function presents a precise
description of the value the function takes and the value it
returns.

The Units

The REALMODES unit contains the remainder and square root
functions.

The TRANSCEND unit contains the following transcendental
functions:

sine

cosine

arctangent

e to the x
natural logarithm
decimal logarithm

To compile or execute a program that uses TRANSCEND, both
TRANSCEND and REALMODES must be either in the SYSTEM.LIBRARY file
on the system diskette or in the program library file. See
Chapter 1l4.

Remainder is a new function added to UCSD Pascal in order to
conform to the IEEE floating-point standard. Square root and the
transcendental functions listed above have been modified to take
advantage of the increased capabilities of the IEEE
floating—point standard. The improvements include:

The Transcend and Realmodes Units 3

- faster square root;

- increased accuracy in natural log, e to the x, square
root, and decimal logarithm;

- the ability to produce and compute with

— infinities,

- NaNs (Not a Number), and

- denormalized numbers (those in the range
1.2E-38 to 7E-46) which diminish the effect
of underflow to be comparable to that of
rounding errors;

- increased domain in sine, cosine, and arc tangent.
(Previously ATAN(x) was defined only if
-4.6(27P5E18 < x < 4.6027P5E18. Now ATAN(x) is defined
for all real values including infinities and NaNs.)

To use the remainder or the square root function, a program must
have a USES declaration containing the identifier REALMODES
immediately after the program heading. For example, the
following USES declaration makes the public functions of the
REALMODES unit available to the program:

PROGRAM ALGEBRAIC;
USES REALMODES;

To use the transcendental functions, a program must have a USES
declaration containing both the identifiers REALMODES and
TRANSCEND immediately after the program heading. Since the
TRANSCEND unit uses the REALMODES unit, REALMODES must appear in
the USES declaration before TRANSCEND. For example, the
following USES declaration makes the public functions of the
TRANSCEND unit available to the program:

PROGRAM GEOMETRIC;
USES REALMODES, TRANSCEND;

4 Apple III Pascal

The Functions

This section of the appendix describes the effect of the
functions on the arithmetic modes of the calling program, defines
a NaN, and describes each function. At the end of the appendix
is a summary of special values and results showing the argument,
mode, result, and signal for each function.

Modes

The IEEE floating-point environment supplies the programmer with
arithmetic that can be customized for special use. Functions
that use these options must restore the environment of the
program that called them before they return control to the
calling program. The remainder, square root, and transcendental
functions save the arithmetic modes of the calling program for
later restoration and then set switches for

- round-to-nearest mode, and

- no-halt mode on overflow, underflow, or
floating-point-to-integer conversion. If one of these
events occurs during the calculation of a
transcendental function, the event isn’t reported to
the calling routine.

The called function restores the floating—point modes of the
calling program just before returning control to the calling
program. The status of the overflow, underflow, and
floating-point conversion signals is restored to the status they
held before the call. A function inherits the
Warning/Normalizing and Affine/Projective modes from the calling
program.

When the square root or remainder function or one of the
transcendental functions is called by a program, the following
sequence occurs:

The Transcend and Realmodes Units 5

1. function call

2. store calling program modes
3. set modes the function needs
4. compute function values

5. restore calling program modes
6. exit to calling program

For further explanation of modes and exceptions, see Appendix E.

NaNs

A NaN (Not a Number) is a diagnostic assigned to a floating-point
variable. It is produced as the result of an invalid
floating-point operation (such as (f divided by @#). If the
argument of a transcendental function is a NaN, the result
produced is also that NaN. (If the argument is a trapping NaN,
and the Halt on Invalid switch is set, the program halts.) For
further explanation of NaNs, see Appendix E.

The Square Root(SQRT) Function

The SQRT(x) function takes any non-negative real value, x

(including infinity), and returns the square root of x, except
when

x is negative;
x is denormalized and Warning mode is set; or
x is infinity in Projective mode.

For any of these exceptions, the Invalid Operation Signal will be

set. If the Halt on Invalid switch is not set, a diagnostic NaN
will be returned.

The Remainder(REM) Function

The REM(x,y) function is defined by the following relation when y
is not zero:

REM(X,y) =x -y * n

where n is the integer nearest x/y. When the fractional part of

6 Apple III Pascal

x/y is exactly 1/2, then n is the even integer nearest x/y. (For
example, if x/y = 3.5, then n = 4; if x/y = 6.5, then n = 6.)
The remainder function is exact, except when

y 1is zero;
X is infinite; or
y is denormalized and Warning mode is set.

For any of these exceptions, the Invalid Operation Signal will be
set., If the Halt on Invalid switch is not set, a diagnostic
(NaN) will be returned.

The Sine(SIN) Function

The SIN(x) function takes an angle, x, in radians, and returns
the sine of that angle when

-102942.13 < x < 1¢2942.13

For arguments outside this interval, a diagnostic NaN is
produced. The accuracy of the SIN function cannot be guaranteed
outside this interval because of argument reduction errors.

The Cosine(COS) Function
The COS(x) function takes an angle, x, in radians, and returns
the sine of that angle when

-102942.13 < x < 1¢2942.13

For arguments outside this interval, a diagnostic NaN is
produced. The accuracy of the COS function cannot be guaranteed
outside this interval because of argument reduction errors.

The Arctangent(ATAN) Function

The ATAN(x) (or inverse tangent) function takes any real number,
x (including + or - infinity), and returns the angle that is the
arctangent.

R = ATAN(x) -pi/2 <= R <= pi/2

The Natural Logarithm(LN) Function

The LN(x) function takes any non-negative positive real value x,
and returns its natural logarithm except when

The Transcend and Realmodes Units 7

x is denormalized (1.175494E-38 > x > 7.006492E-46) in
Warning mode;

x is negative; or

x is @ in Projective mode.

For any of these exceptions the Invalid Operation Signal is set.
If the HALT on Invalid switch is not set, a diagnostic NaN is
returned.

The Logarithm(LOG) Function

The LOG(x) function takes any non-negative positive real value,
x, and returns its base 1§ logarithm except when

x is denormalized (1.175494E-38 > x > 7.0P6492E-46) in
Warning mode;

x is negative; or

x is ¢ in Projective mode.

For any of these exceptions the Invalid Operation Signal is set.
If the Halt on Invalid switch is not set, a diagnostic NaN is
returned.

The Exponential(EXP) Function

The EXP(x) function takes a real value, x, and computes e raised
to the x power except when

x is + or - infinity in Projective mode.

This causes the Invalid Operatjon Signal to be set. If the Halt
on Invalid switch is not set, a diagnostic NaN is returned.

Summary of Special Values and Results

The figure below summarizes special values and results for each
function.

The square root and transcendental functions almost always
set the Inexact Signal (except for special cases, such as

SIN(#) = @).

8 Apple III Pascal

SQUARE ROOT, REMAINDER, AND TRANSCENDENTAL FUNCTIONS:
Summary of Special Values and Results

Function Argument Mode Result Signal

SQRT -@ any -@ none
+infinity Affine | +infinity | none
+infinity Proj NaN Invalid Operation
negative any NaN Invalid Operation
Denorm Warning | NaN Invalid Operand
NaN any argument none

REM (x,y)| vy = @ any NaN Invalid Operation
X is infinite | any NaN Invalid Operation
y is a Denorm | Warning | NaN Invalid Operand
NaN any argument none

SIN out of range¥* | any NaN Argument Reduction

Error

NaN any argument none

Ccos out of range* | any NaN Argument Reduction

Error

NaN any argument none

ATAN +infinity any pi/2 Inexact
-infinity any -pi/2 Inexact
NaN any argument none

*The range for sine and cosine is —-1(2942.136 < x < 102942.13 .

The Transcend and Realmodes Units

SQUARE ROOT, REMAINDER, AND TRANSCENDENTAL FUNCTIONS:
Summary of Special Values and Results

Function Argument Mode Result Signal

LN +infinity Affine | +infinity | none
+infinity Proj NaN Invalid Operation
negative any NaN Invalid Operation
Denorm Warning | NaN Invalid Operand
+/-0 any —infinity | none
NaN any argument none

LOG +infinity Affine | +infinity | none
+infinity Proj NaN Invalid Operation
negative any NaN Invalid Operation
Denorm Warning | NaN Invalid Operand
+/-0 any -infinity | none
NaN any argument none

EXP +infinity Affine | +infinity | none
+infinity Proj NaN Invalid Operation
-infinity Affine | @ none
-infinity Proj NaN Invalid Operation
NaN any argument none

10 Apple III Pascal

The PGRAF Unit 11

The PGRAF Unit

12 Apple III Pascal

The PGRAF unit provides a convenient Pascal interface to the
system’s graphics driver, which is known by the SOS device name
.GRAFIX or the Pascal device name GRAPHIC: (or unit #3:).
(Complete details on the graphics driver are given in the
Standard Device Drivers Handbook.)

PGRAF is an intrinsic unit in the SYSTEM.LIBRARY file. To
compile or execute a program that uses the PGRAF unit, this unit
must be either in the SYSTEM.LIBRARY file on the system diskette,
or in the program library (see Chapter 14).

To use the facilities of the PGRAF unit, the program must have a
USES declaration containing the identifier PGRAF, immediately
after the program heading; for example,

PROGRAM PLOTCURVES;
USES PGRAF, REALMODES, TRANSCEND;

The public procedures, functions, and data types of the PGRAF
unit are then available to the program.

Before any program that uses PGRAF can be executed, you
must use the system-level Options command to reserve the
necessary memory space for graphics display buffers.
Details are given below in the section on "Memory Usage."

Throughout this appendix, you will find references to

"default" values and options. Many of these defaults are
provided by the graphics driver, rather than by PGRAF, and
can be changed at the driver level via the System
Configuration Program on the UTILITIES diskette; see the
Standard Device Drivers Handbook for details.

Note that the PGRAF unit is not the only way to use the
graphics driver; you can also use UNITWRITE (see Chapter
12) to send characters directly to the graphics driver,
referencing it as unit number 3. Similarly, you can use
UNITREAD to input characters from the graphics driver (see
last section of this appendix). Use a "mode'" value of 12
with UNITREAD and UNITWRITE when communicating with the
graphics driver.

The PGRAF Unit 13

Overview

Before describing the actual procedures and functions of the
PGRAF unit, we present an overview of the concepts and operations
involved.

Graphic Displays

An Apple III graphic display can be thought of as a rectangular
array of dots (sometimes called '"pixels"). An X,Y coordinate
system is superimposed on this dot array; the origin (§,0) is at
the lower left-hand corner of the array, with X increasing to the
right and Y increasing toward the top of the display. This is
strictly an integer coordinate system. The height of the display
is always 192 dots, with Y coordinates in the range @#..191; the
width in dots depends on the selected "graphics mode'" as
explained below.

Another feature of the display is an invisible cursor which is
used as a position reference in certain operations. There are
also procedures for moving the cursor without affecting the
display.

Graphics Modes

There are four distinct modes for Apple III graphics. Each mode
is characterized by the number of dots in each horizontal row on
the physical screen and by the colors available:

- BW28@: In this mode the only available colors are
black and white. The screen is treated as 280 dots
wide and 192 dots high; that is, X coordinates are in
the range $..279 and Y coordinates are in the range
f..191.

- BW56@: This is identical to BW28@ except that the
horizontal scale is 560 dots instead of 28@. X
coordinates are in the range $..559 and Y coordinates
are in the range @..191.

14 Apple III Pascal

- COL14@: 1In this mode, 16 colors are available. The
horizontal scale is 140 dots; X coordinates are in the

range (..139 and Y coordinates are in the range
@..191.

- CP28@: 1In this mode, 16 colors are available but there
are special limitations. The horizontal scale is 28§
dots’; X coordinates are in the range (..279 and Y
coordinates are in the range $..191. A full
explanation of this mode is left until the end of this
appendix.

The digits in the identifier of each mode indicate the horizontal
scale.

In each mode, two distinct display buffers are available, as
explained below. The size of these buffers depends on the
graphics mode selected. Before executing any program that uses
PGRAF, you must use the system-level Options command to tell the
system how much memory must be reserved for display buffers.
Details are given below in the section on '"Memory Usage."

Dots and Lines

PGRAF provides a set of procedures for plotting dots and lines.
When PGRAF plots a line, it does so by plotting a sequence of
dots; thus everything that PGRAF does can be thought of in terms
of dots.

A dot is plotted by giving its X,Y coordinates. A line is
plotted by giving one pair of X,Y coordinates; the result is a
line from the current cursor position to the specified
coordinates. Alternatively, you can give X and Y displacements
instead of absolute coordinates; the displacements are taken
relative to the cursor position.

Colors

There are sixteen colors, with the following identifiers and
ordinalities:

The PGRAF Unit 15

Ordinality Identifier Ordinality Identifier
[} BLACK 8 BROWN
1 MAGENTA 9 ORANGE
2 DARKBLUE 19 GREY2
3 PURPLE 11 PINK
4 DARKGREEN 12 GREEN
5 GREY1 13 YELLOW
6 MEDBLUE 14 AQUA
7 LIGHTBLUE 15 WHITE

In the black-and-white modes, all colors other than BLACK are
converted to WHITE. Also, note that the colors produce a
16-level grey scale on the Apple III’s black/white video output.

Control of Color

At all times, there is a currently selected pen color and a
currently selected fill color. PGRAF provides procedures for
selecting these colors. By default the pen color is WHITE and
the fill color is BLACK.

In the simplest way of using graphics, plotting a dot changes its
color to the current pen color. A specified area of the display
can be "erased" by a filling operation; this changes all the dots
in the area to the fill color.

A great deal can be done with just these simple techniques. More
powerful techniques make use of two controllable processes that
affect every plotting or filling operation:

- A color table is used to modify the color used for
plotting or filling. The resulting color at any point
depends on the source color (pen color or fill color)
and may also depend on the existing color of the dot.

The color table is always applied to the pen color when
a dot is plotted, or the fill color when a dot is
filled. By default, the color table specifies that the
result is always the same as the source color, but you
can change this.

- A transfer option is used to determine how the
resulting color from the color table is applied to the
actual dot on the display. The effect on the display
depends on the color from the color table, and may also
depend on the existing color of the dot.

16 Apple III Pascal

The transfer option is always applied to the color that
results from applying the color table. By default, the
transfer option specifies that the result from the

color table is the new color of the dot, but you can
change this.

By changing either the color table or the transfer option, you
can cause the colors to be modified before they are actually
placed on the display. Usually, only one of these methods is
used; at a time (usually the color table); however, exotic
combinations may prove useful in certain cases.

The use of the color table and the transfer option are explained
further on. The following diagram shows the transformations that
are always applied to a color before it appears on the display:

PEN COLOR (plotting) I (I If mode is a black/
or

white mode, all
A colors except BLACK
FILL COLOR (filling) jzﬂ are changed pt:o WHITE.
7 J

COLOR TABLE (by I || TRANSFER OPTION (by

default, this has default, this has no

no effect). ’:::ﬂ effect).
7 7

Current display
buffer shows
on screen if

the program

requests it.

Current display
buffer (in memory).

) s v
o s

The "current display buffer'" concept is explained further on.

The Viewport

One of the PGRAF procedures allows you to define the boundaries
of the current viewport. This is the area of the display that
can be affected by plotting and filling operations; by default,
the viewport is the whole display. If the program tries to plot
or fill outside the viewport there is no effect. If a line is
plotted and any portion of it is outside the viewport, only the
part that is in the viewport is actually plotted.

The PGRAF Unit 17

Note, however, that the motion of the invisible cursor is not
limited by the viewport boundaries.

The FILLPORT procedure fills the current viewport with the fill
color; this is a useful way of clearing the viewport.

Display Buffers

Up to this point we have used the term 'display' and avoided the
term "screen." The reason is that the output from graphics
procedures does not go directly to the screen but to the current
display buffer. A display buffer is a memory area containing a
coded representation of dot colors on a screen. The graphics
output affects the data in the current display buffer, but the
current display buffer is not shown on the physical screen until
the program specifically requests this.

If enough memory has been reserved (see 'Memory Usage' below),
two display buffers are available simultaneously for the current
graphics mode. This means that a program can set up a display on
the screen, change to a different display buffer, and create a
different display without disturbing the screen. When the new
display is ready, the program can cause the screen to show the
new buffer.

Text on a Graphics Display

By using WRITE or UNITWRITE, a program can put characters on a
graphics-mode display. Each character is drawn in the current
pen color, on a background of the current fill color; these
colors may be changed by the color table or transfer option.

By default, the characters are drawn in the same system character
font used in text mode. Alternatively, the program can switch to
a user—defined font (which can, if desired, have a different
character size than the system font).

Copying an Image

A program can use internal data (such as a packed array of
boolean) to represent dots on the display. A specialized
procedure is provided to transfer the pattern of bits in the
array to a pattern of dots on the the display, plotting one dot
(with the current pen color) for a 1 bit and filling one dot

18 Apple III Pascal

(with the current fill color) for a @ bit. The colors may be
modified by the color table or transfer option. This is a
high-speed procedure and is useful for doing animation.

Memory Usage

For each of the four graphics modes, two display buffers are
defined (referenced by the numbers 1 and 2). Before you can
execute a program that uses graphics you must first use the
system—level Options command to tell the system how much memory
is required for graphics buffers. You can determine this from
the following diagram.

BW564, COL14@, cp28¢,

Buffer 2 Buffer 2 Buffer 2
{ér Total memory

usage (bytes)

/’ ,,’ 7
E BW289, ch'
BW564, COL140, cp28@, Buffer 2
Buffer 1 Buffer 1 Buffer 1 BW280, §¥
Buffer 1

For any one mode, the two buffers are separate; and the two BW28§
buffers are separate from buffer 2 of any other mode. Buffers

that are separate from each other can be used independently to
store different images.

Note that the space required by graphics buffers is subtracted
from the memory space available for the program itself.

If your program attempts to use a graphics mode or buffer that
has not had the required space allocated via the Options command,
PGRAF will halt the program with an error message.

The PGRAF Unit 19

Saving and Loading Display Buffers

Simple methods are provided for saving the current display buffer

in a diskette file, and for subsequently retrieving it from the
file to the current display buffer.

Summary of PGRAF Routines

The remainder of this appendix is concerned with the actual
operation of the procedures and functions of PGRAF. They are:

— GRAFIXMODE to select the graphics mode and the current
display buffer; GRAFIXON to show the current buffer on
the screen; TEXTON to show the normal text display on
the screen.

- PENCOLOR and FILLCOLOR to set colors for plotting and
filling. 1In all operations that use these colors, the
colors may be modified by the color table and the
transfer option.

- VIEWPORT to set the boundaries of the viewport.

~ INITGRAFIX to reinitialize the conditions for graphics
operations. The color table and transfer option are
set to normal, the viewport to full screen, and the
cursor to the lower left corner. Nothing else is
changed.

- LINETO, LINEREL, DOTAT, DOTREL, and DRAWIMAGE for
plotting; FILLPORT for filling the viewport; MOVETO and
MOVEREL for moving the cursor.

- XYCOLOR, XLOC, and YLOC are functions that return
information about the current display.

— SETCTAB and XFROPTION to change the color table and
transfer option.

20 Apple III Pascal

- NEWFONT for changing to a user—defined font for text in

graphics, and SYSFONT for restoring the normal system
font.

- GSAVE for saving the current display buffer in a
specified diskette file, and GLOAD for retrieving a
saved image into the current display buffer.

Initial Conditions

When you execute a program that contains a USES PGRAF
declaration, the PGRAF unit goes through a one-time
initialization sequence before any of the main program’s
statements are executed. This initialization commands the
graphics driver to go into its default state; unless the driver’s
defaults have been changed via the System Configuration Program,
the defaults are

Graphics mode: BW280

Display buffer: 1

Viewport: Full screen

Cursor position: #,0 (lower left corner)
Pen color: White

Fill color: Black

Transfer option: Normal (@)

Color table: Normal (see below)

Font for text in graphics: Current system font.

The "normal" color table and transfer option mean that the pen
color and fill color are not altered during the plotting or
filling operations.

GRAFIXMODE

The GRAFIXMODE procedure sets the current graphics mode and
selects a display buffer. It takes two parameters, which are of
types GMODE and GBUF; these types are defined in the PGRAF unit
and can be used by any program that uses PGRAF:

GMODE = (BW28@, CP28@, BW56@, COL14@);
GBUF = 1..2;

The PGRAF Unit 21

The form for calling GRAFIXMODE is
GRAFIXMODE (MODE, BUFFER)

where MODE is an expression with a result of type GMODE and
BUFFER is an expression with a result of type GBUF. For example,

GRAFIXMODE (BW28¢, 2)

changes the current graphics mode to BW28@ and selects buffer 2.
This does not affect the screen; it simply causes subsequent
graphics operations to affect display buffer 2 of BW28(mode.
This buffer is not shown on the screen until requested by the
GRAFIXON procedure (see below).

GRAFIXON and TEXTON

The GRAFIXON procedure takes no parameters. It causes the
current display buffer to appear on the screen. Note that this
is the only way to cause a newly selected buffer to appear on the
screen. A program that uses PGRAF begins executing with the
screen still displaying the normal text display; therefore it
must call GRAFIXON at some point in order to put any graphics on
the screen.

The TEXTON procedure takes no parameters. It causes the current
text-mode display to appear on the screen. Note that while a
graphics buffer is being shown on the screen, any operations that
would normally put text on the text display still do soj; if the
program subsequently calls TEXTON, the text display that appears
on the screen will reflect these operations.

When a program terminates while showing graphics on the screen, a
TEXTON operation is automatically performed to return the screen
to normal text mode. This includes both normal termination at
the end of a program, and error halts.

PENCOLOR and FILLCOLOR

The PENCOLOR and FILLCOLOR procedures set the colors to be used
for plotting and filling operations, repectively. They each take
a single parameter, which is of type SCREENCOLOR; this type is

22 Apple III Pascal

defined in the PGRAF unit and can be used by any program that
uses PGRAF:

SCREENCOLOR = (BLACK, MAGENTA, DARKBLUE, PURPLE, DARKGREEN,
GREY1, MEDBLUE, LIGHTBLUE, BROWN, ORANGE,
GREY2, PINK, GREEN, YELLOW, AQUA, WHITE);

The form for calling PENCOLOR is
PENCOLOR (COLOR)

where COLOR is an expression with a result of type SCREENCOLOR.
For example,

PENCOLOR(LIGHTBLUE)

changes the pen color to LIGHTBLUE; subsequent plotting
operations will use this color (which may be modified by the
color table and transfer option).

The form for calling FILLCOLOR is
FILLCOLOR (COLOR)

where COLOR is an expression with a result of type SCREENCOLOR.
For example,

FILLCOLOR(YELLOW)

changes the fill color to YELLOW; subsequent filling operations
will use this color (which may be modified by the color table and
transfer option).

VIEWPORT

The VIEWPORT procedure sets the boundaries of the viewport. The
viewport is simply the area of the display that can be affected
by plotting and filling operations. The form for calling
VIEWPORT is

VIEWPORT (LEFT, RIGHT, BOTTOM, TOP)

where all four parameters are expressions with results of type
integer. If any parameter exceeds a boundary of the current

The PGRAF Unit 23

graphics mode, it is replaced by the applicable boundary value.

INITGRAFIX

The INITGRAFIX procedure has no parameters and can be called at

any time. It reinitializes four of the operating conditions to
their default state:

- The color table is set to its normal state, i.e. no
effect on specified colors.

- The transfer option is set to its normal state, i.e. no
effect on color results from the color table.

~ The viewport is set to full screen.

- The cursor is moved to the (#,H) point, i.e. the lower
left corner of the screen.

MOVETO, LINETO, and DOTAT

All three of these procedures move the cursor to a new position,
which is specified by its absolute X and Y coordinates. MOVETO
does nothing else except move the cursor; LINETO draws a line
from the original cursor position to the new one, using the
current pen color; and DOTAT plots a single dot at the new cursor
position, using the current pen color. The pen color may be
modified by the color table and transfer option. The forms for
calling MOVETO, LINETO, or DOTAT are

MOVETO (XCOORD, YCOORD)

LINETO (XCOORD, YCOORD)

DOTAT (XCOORD, YCOORD)
where XCOORD and YCOORD are expressions with results of type
integer and indicate absolute X and Y coordinates on the

display.

If any part of a line drawn by LINETO lies outside the current
viewport, that part of the line is not plotted. Likewise DOTAT

24 Apple III Pascal

will not plot a dot outside the current viewport. In all cases,
however, the cursor is moved to the new position even if it lies
outside the viewport.

MOVEREL, LINEREL, and DOTREL

These procedures are similar to MOVETO, LINETO, and DOTAT, except
that the new cursor position is specified by its X and Y
displacements relative to the original cursor position. The
forms for calling MOVEREL, LINEREL, or DOTREL are

MOVEREL (DX, DY)
LINEREL (DX, DY)
DOTREL (DX, DY)

where DX and DY are expressions with results of type integer and
indicate relative X and Y displacements on the display.

Since these are automatically added to the original cursor

coordinates, it is possible for the mathematical result to
exceed the limits of Pascal integer values, which are
-32768 and 32767. If the new X or Y coordinate of the
cursor would exceed one of these limits, then the limit is
used as the new coordinate value.

FILLPORT

The FILLPORT procedure takes no parameters. It fills every dot

in the current viewport with the current fill color. The color

at each point on the display may be modified by the color table

or transfer option (see below). If the color table and transfer
option are in their default states, the effect of FILLPORT is to
erase everything in the current viewport.

The PGRAF Unit 25

XYCOLOR, XLOC, and YLOC

The XYCOLOR, XLOC, and YLOC functions return information about
the current display. They take no parameters.

XYCOLOR returns an integer value, which is the ordinality of the

color found in the current display buffer at the current cursor
position.

XLOC and YLOC return integer values which are the X and Y
coordinates of the current cursor position, respectively.

Another way to obtain the color of screen dots is to read

from the graphics driver with UNITREAD. See last section
of this appendix.

Text in Graphics

To put text onto a graphic display, simply output the text to the
graphics driver. This can be done with WRITE if you declare a
file variable of type INTERACTIVE and open it with REWRITE and
the name ‘GRAPHIC:’ as in the following example:

VAR GSCREEN: INTERACTIVE;
REWRITE (GSCREEN, ‘GRAPHIC:”);

WRITELN(GSCREEN, ‘Hello!’);

The string ‘Hello!’ will be displayed. By default, the system
character font is used but you can specify a different font as
explained in a later section. The characters are drawn in the
current pen color on a background of the current fill color
(possibly modified by the color table and transfer option).

The string is positioned with the upper left corner of the

first character at the current cursor position, and the
cursor is moved into position for the next character to
follow, in case there is one.

26 Apple III Pascal

Another way to write text to the graphics driver is to use
UNITWRITE with the value 3 as the "unitnum" parameter. To create
the same effect as the previous example, you can declare a string
variable and write its value out as follows:

VAR MSG: STRING;

UNITWRITE(3, MSG[1], LENGTH(MSG), @, 12);
Note that the string must be subscripted, since UNITWRITE will
treat it as a simple PACKED ARRAY OF CHAR with indices beginning
at (; the characters of the string start at [1], not at the first
byte of the string variable.

DRAWIMAGE

This is a high-speed procedure that draws a rectangular image,
using data from a program variable as its input. The variable is
typically a two-dimensional packed array of boolean, but can
actually be any variable. It is considered as a sequence of
bytes of data in memory. The bits within these bytes are mapped
into dots on the display.

The sequence of bytes is considered to be broken into groups of a
specified length, representing rows; then each of these rows is
considered as a row of bits (eight bits for each byte). Thus
DRAWIMAGE treats the variable as a two-dimensional array of

bits.

Depending on the parameters, DRAWIMAGE can use the entire array
of bits or it can select any rectangular subarray. This subarray
is mapped to a rectangular area of the display buffer, using each
bit to represent one dot. A "1" bit is considered to represent
the current pen color, and a "@" bit is considered to represent
the current fill color; these colors may be modified by the color
table or transfer option.

The first row of bits in the array (or subarray) becomes the top
row of the image, and the last row of bits becomes the bottom row
of the image. Within a row, the first bit is at the left edge of
the image and the last bit is at the right edge. The upper left
corner of the image (corresponding to the first bit in the first
row) is placed at the current cursor position. The cursor is not
moved.

The PGRAF Unit 27,

The type and size of the variable are not checked in any

way. DRAWIMAGE simply starts with the first (least
significant) byte of the variable and proceeds to use the
bytes that follow it in memory. The number of bytes that
DRAWIMAGE uses, and the way they are broken up into rows,
are determined entirely by the parameters passed to
DRAWIMAGE as explained below.

The form for calling DRAWIMAGE is
DRAWIMAGE (SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT)
where the parameters are as follows:

SOURCE is a reference to any program variable; its
least significant byte is the starting point for
DRAWIMAGE.

ROWSIZE is an expression with an integer value and
specifies the size, in bytes, of each row in the array
of bytes. ROWSIZE should always be an even value when
using two-dimensional arrays, since Pascal aligns each
row in the array on a word boundary.

XSKIP is an expression with an integer value and
specifies the number of bits to be skipped at the
beginning of each row in the array. This parameter and
the remaining parameters have the effect of selecting a
subarray within the array.

YSKIP is an expression with an integer value and
specifies the number of rows to be skipped in the
array.

WIDTH is an expression with an integer value and
specifies the number of bits to be taken from each row
(starting at XSKIP).

HEIGHT is an expression with an integer value and
specifies the number of rows to be taken from the array

(starting at YSKIP).

The following diagram summarizes the meanings of the parameters:

28 Apple III Pascal

least significant bit
of least significant byte
row size of source variable.

in bytes
A ",/”///’
e T 1)

yskip (rows)
y

4—— xskip—p
. (bits) IMAGE to be
in drawn. One
bit becomes | height (rows)
one dot on current
display. cursor
position

memory

4——width —p
(bits)

For example, suppose that we have a 2@x1§ packed array of boolean
values declared as follows:

VAR PIC: PACKED ARRAY([{..19, #..9] OF BOOLEAN;

Since the array is packed, each boolean value will occupy just
one bit. Note two important points about the dimensions of this
array:

- The first dimension specifies the number of rows in
PIC, and the second specifies the number of values
(bits) in each row. This means that in a subscripted
reference to PIC, the first subscript is a Y coordinate
and the second is an X coordinate. This is important
to know when you write statements to put some pattern
of bits into PIC.

The PGRAF Unit 29

— Although each boolean value is packed down to one bit,
each row of 1§ values is not packed down to 1§ bits:
each row is packed to an integral number of two-byte
words. In the present case, each 1@-bit row is packed
down to one word, or two bytes. In a two-dimensional
packed array of boolean, you can calculate the number
of bytes occupied by each row from the expression

2%((N+15) DIV 16)

where N is the number of packed boolean values in each
row. The result of this expression is the '"row size"
to be specified to DRAWIMAGE.

Now suppose that a 2@x1@ image has been put into PIC, and we want
to draw it on the display. The DRAWIMAGE call is

DRAWIMAGE(PIC, 2, @, #, 14, 20)

where we specify PIC as the SOURCE variable, 2 as the ROWSIZE, §
as the XSKIP,) as the YSKIP, 1 as the WIDTH, and 2§ as the
HEIGHT. Each boolean value in PIC is transformed into a display
dot, using the current pen color, color table, and transfer
option. The upper left corner is placed at the current cursor
position.

The Color Table

The SETCTAB procedure sets the color table. As previously
mentioned, the color table is applied to the pen color or fill
color whenever a display dot is plotted or filled; by default it
has no effect. By changing the color table, you can cause the
resulting color to depend on the source color (pen color or fill
color) and the existing color of each display dot that is
affected.

The form for calling SETCTAB is
SETCTAB (SOURCE, OLD, RESULT)

where all three parameters are expressions with results of type
SCREENCOLOR. The effect is that whenever a dot is plotted or
filled with the specified SOURCE color, and the existing color of
that dot is the specified OLD color, then the RESULT color is

30 Apple III Pascal

used instead of the SOURCE color.

For example, suppose that we want to protect all yellow dots on

the display from being drawn over by any other color. We have
declared a variable of type SCREENCOLOR:

VAR COL: SCREENCOLOR;
Now we can protect all yellow dots as follows:
FOR COL := BLACK TO WHITE DO SETCTAB(COL, YELLOW, YELLOW)

This changes the color table so that for all possible SOURCE
colors (from BLACK to WHITE), if the OLD color of a dot is YELLOW
then the RESULT color is also YELLOW. Later we can change the
color table again so that one color, ORANGE, can draw over a
YELLOW dot:

SETCTAB(ORANGE, YELLOW, ORANGE)

More complicated effects can also be achieved. Suppose that we
have an image on the display in GREEN and WHITE on an AQUA
background. The color table is in its default state (no
effect). Now we want to create a '"night" effect by changing the
display so that the background becomes BLACK, each GREEN dot
becomes DARKGREEN, and each WHITE dot becomes GREYl. We can do
this as follows:

SETCTAB(BLACK, GREEN, DARKGREEN);
SETCTAB(BLACK, WHITE, GREY1);
FILLCOLOR(BLACK);

FILLPORT

When the viewport is filled with BLACK, each AQUA dot is changed
to BLACK because we made no changes to the color table for AQUA.
Each GREEN dot is changed to DARKGREEN, and each WHITE dot is
changed to GREYl.

The color table can always be set back to its default condition

(no effect) by the INITGRAFIX procedure.

When the color table is in its default condition, all
plotting and filling operations will run faster.

The PGRAF Unit 31

The Transfer Option

The XFROPTION procedure sets the transfer option. As previously
mentioned, the transfer option is applied to the result from the
color table whenever a display dot is plotted or filled; by
default it has no effect.

By changing the transfer option, you can cause the resulting
color to depend on the result from the color table and the
existing color of each display dot that is plotted or filled.
You can do this in any mode, but its main usefulness is in the
black-and-white modes.

While the color table operates at the level of specified colors,
the transfer option operates at the level of the 4-bit patterns
that are used internally to represent colors. Each color is
represented internally as a 4-bit pattern whose numeric value is
the ordinality of the color. Thus the color BLACK has an
ordinality of (), and is represented internally as @@@@; the color

ORANGE has an ordinality of 9 and is represented internally as
1¢P1, and so forth.

The transfer option specifies a bitwise logical operation upon
the source color (pen color or fill color) and the old (existing)
color of a display dot. For example, since ORANGE is represented
as 10@1 and AQUA is represented as 1110}, we can say that the
meaning of ORANGE AND AQUA is the color represented by 1000,
namely BROWN. In a black-and-white mode, the only color values
are ¢@¢@ (BLACK) and 1111 (WHITE). BLACK AND WHITE means BLACK,
while BLACK OR WHITE means WHITE.

By default, the transfer option specifies that the 4-bit result
is the same as the 4-bit representation of the source color. The
other transfer options specify various 4-bit logical operations
involving the source color and the old color; most of them are of
greatest use when you are working in a black-and-white mode, but
some are useful in full color.

The form for calling XFROPTION is

XFROPTION (OPTION)

32

Apple III Pascal

where OPTION is an expression with a result of type integer, in
the range (#..7. This value selects one of the 8 transfer

options.

as follows, given a SOURCE color (result from the color table)
and an OLD color (existing on the display):

"B

k03

7:

The default option; result is SOURCE, regardless of the
OLD color on the display.

The "overlay" option; the result is SOURCE OR OLD. A
white dot is unaffected when drawn over with either
black or white; a black dot is changed to the SOURCE
color. For effects in 16-color modes, see the Standard
Device Drivers Handbook.

The "invert" option; result is SOURCE XOR OLD. This is
a particularly useful option, which works with full
color as well as with black and white. If you draw in
any color, over any background, the result will
probably be clearly visible; and if you subsequently
repeat the drawing with the same color, the effect is
to erase the drawing and restore the background to what
it was originally.

The "erase'" option; result is (NOT SOURCE) AND OLD.
This also works with full color. If you draw something
using the default option, and subsequently repeat the
drawing with the "erase'" option, the result is all
black.

The "inverse replace'" option; result is NOT SOURCE.
Same as the default option, except that a 'negative"
image is produced. For effects in l6-color modes, see
the Standard Device Drivers Handbook.

The "inverse overlay" option; result is (NOT SOURCE) OR
OLD.

The "inverse invert" option; result is (NOT SOURCE) XOR
OLD.

The "inverse erase'" option; result is SOURCE AND OLD.

The transfer option can always be set back to its default state
by the INITGRAFIX procedure.

Each of the options specifies a 4-bit logical operation

The PGRAF Unit 33

NEWFONT and SYSFONT

The NEWFONT and SYSFONT procedures are used to change the font
used for displaying text as part of a graphic display. NEWFONT
changes to a user—-defined font, and SYSFONT changes back to the
system font.

The form for calling NEWFONT is
NEWFONT (FONT, CWIDTH, CHEIGHT)

where FONT is a variable reference; the variable should be an
array in which you have created a font definition (see below).
CWIDTH and CHEIGHT are expressions with integer values that
specify the character height and width of the new font, in dots.

The effect is that character images that are drawn by writing
text out to the graphics driver will be taken from the FONT
variable. Also, the specified character width and height will be
used in moving the cursor when a character is drawn.

NEWFONT has no effect on the font used by the console
driver; it only affects text displayed in graphics mode.

Defining a Font

The font variable’s type and size are not checked in any way, and
technically the font variable can be any program variable. The
graphics procedures interpret the font variable as if it had a
type defined as follows:

CONST CHEIGHT {character height in the range #..255};
CWIDTH = {character width in the range ¢..255};

TYPE CIMAGE = PACKED ARRAY[l..CHEIGHT, 1l..CWIDTH]
OF BOOLEAN;

FONT = PACKED ARRAY[@..127] OF CIMAGE;
where the values of CHEIGHT and CWIDTH are the values supplied in

the NEWFONT call. In the following discussion we will assume
that the program itself declares the type FONT as shown above.

34 Apple III Pascal

A variable of type FONT is a packed array of 128 variables of
type CIMAGE, and each variable of type CIMAGE is one character
image. To display a particular character, the graphics driver
uses the character’s ASCII code as an index into the font
variable.

Note that the font variable must contain space for the
first 32 ASCII characters, even though they are control
characters and cannot be displayed (if written to the
graphics driver, they cause actions as described in the
Standard Device Drivers Handbook). The displayable ASCII
characters are ASCII 32 through ASCII 126, and their
images must be in corresponding CIMAGE elements of the
font variable.

To draw a character image, the graphics driver uses the DRAWIMAGE
procedure described previously; thus each desired image can be
set up as the contents of a CIMAGE variable by using the
information given under DRAWIMAGE.

GSAVE and GLOAD

You can transfer the contents of the current graphics buffer to a
diskette file by using GSAVE; subsequently, the same program or
another one can retrieve the stored image into the current
graphics buffer by using GLOAD.

The forms for calling GSAVE and GLOAD are
GSAVE (pathname)
GLOAD (pathname)

where the pathname is an ordinary pathname for a diskette file.
The file is essentially a data file, but the file type is
"Fotofile." Note that no file variable in your program is used
for these operations. The specified diskette file is only
accessed during execution of GSAVE or GLOAD.

Along with the graphics image, the graphics mode information is
stored by GSAVE. GLOAD sets the current graphics mode to the
mode that was stored by GSAVE.

The PGRAF Unit 35

The CP280 Mode

The CP28f) mode is a byproduct of the 4@-column, l6-color text
display mode of the console driver. It is not a very
straightforward mode for graphics, but may be useful in some
applications. When used carefully, CP28(mode allows you to draw
certain kinds of images in full color with twice the horizontal
resolution of the COL14(mode.

In the CP28f mode, the display is 192 dots high and 28@ dots wide
(same dimensions as the BW28@ mode). The individual dots can be

plotted and filled as in the BW28(mode, and all 16 colors can be
used as in the COL14@) mode—but with an important restriction as

explained below.

Each row of 28f dots can be considered as a row of 4@ cells, each
containing 7 dots. Within any particular cell, there can only be
two colors which are called the background and foreground colors
of the cell.

In the other modes, each dot is considered to have a specific
color at a given moment; in the CP28(mode it is useful instead
to think of each dot as being ON or OFF. A dot that is ON
appears in the foreground color of its 7-dot cell; a dot that is
OFF appears in the background color of its cell.

The effect of drawing to a dot in the CP28f mode is this: the dot
is turned ON and the foreground color for the cell that the dot
is in is set to the current pen color (possibly altered by the
color table and transfer option). This becomes the new color of
this dot and of any other dots in the same cell that are ON. The
processes that do this are any of the line and dot plotting
procedures, the DRAWIMAGE procedure (when it uses a "1" bit in
its source data), and text output via the graphics driver (which
uses DRAWIMAGE).

The effect of filling a dot in the CP28f mode is this: the dot
is turned OFF and the background color for the cell that the dot
is in is set to the current fill color (possibly altered by the
color table and transfer option). This becomes the new color of
this dot and of any other dots in the same cell that are OFF.
The processes that do this are the FILLPORT procedure, the
DRAWIMAGE procedure (when it uses a "@" bit in its source data),

36 Apple III Pascal

and text output via the graphics driver (which uses DRAWIMAGE and
thus fills all the dots in the background of each character).

For the effect of transfer options other than the default

option, and other information about the CP28@ mode, see
the Standard Device Drivers Handbook (section entitled
"The Limited Color Mode" in the chapter on the graphics
driver).

Reading from the Graphics Driver

As explained in the Standard Device Drivers Handbook, successive
bytes read from the graphics driver indicate the colors found on
the display at successive dots, starting at the current cursor
position and proceeding downward, upward, to the left, or to the
right. The default direction is downward but this can be changed
by means of a graphics driver command.

Reading from the graphics driver can be done most conveniently by
using UNITREAD (see Chapter 12) with unit number 3 and mode 12.

The PGRAF Unit 37

The PGRAF Interface

UNIT PGRAF; INTRINSIC CODE 55 DATA 56;

(* VERSION 1.(pA *)

INTERFACE

TYPE Screencolor= (Black,Magenta,DarkBlue,Purple,DarkGreen,

Greyl,MedBlue,LightBlue,Brown,Orange,
Grey2,Pink,Green,Yellow,Aqua,White);

GMode = (BW28@%,CP28@,BW56@,COL140) ;
GBuf = 1..2;

XfrMode = Beo7;

GSCBptr = “GSCB;

GSCB = PACKED RECORD

GHMode ,GSMode : CHAR;

GPX,GPY: INTEGER;
GVL,GVR,GVB,GVT: INTEGER;
GCF,GCB: CHAR;
GFont: PACKED ARRAY[(..3] OF CHAR;
CWidth,CHeight: CHAR;
GColTab: PACKED ARRAY[{..15,0..7]
OF CHAR;
END;

VAR FotoFile: FILE;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

GrafixMode(GrfxHMode: GMode; GrfxBuf: GBuf);
GrafixOn;

TextOn;

FillPort;

PenColor(Color: Screencolor);
FillColor(Color: Screencolor);
XfrOption(GrfxSMode: XfrMode);
SetCTab(Ink,Pixelcolor,Newcolor: Screencolor);
Viewport(Left,Right,Bottom,Top: INTEGER);
MoveTo(X,Y: INTEGER);

MoveRel (DX,DY: INTEGER);

DotAt(X,Y: INTEGER);

DotRel(DX,DY: INTEGER);

LineTo(X,Y: INTEGER);

38 Apple III Pascal

PROCEDURE LineRel(DX,DY: INTEGER);

PROCEDURE NewFont (VAR Font; ChrWidth,ChrHeight: INTEGER);

PROCEDURE SysFont

PROCEDURE DrawlImage (VAR Source; SRowSize,SXskip,SYskip,
Width,Height: INTEGER);

FUNCTION XYcolor: INTEGER;

FUNCTION Xloc: INTEGER;

FUNCTION Yloc: INTEGER;

PROCEDURE GSave(FName: STRING);

PROCEDURE GLoad(FName: STRING);

PROCEDURE InitGrafix;

The CHAINSTUFF Unit 39

40 Apple III Pascal

CHAINSTUFF is an intrinsic unit in the SYSTEM.LIBRARY file. To
compile or execute a program that uses CHAINSTUFF, this unit must
be either in the SYSTEM.LIBRARY file on the system diskette, or
in the program library (see Chapter 14).

This unit allows one program to ''chain to" another program. This
means that the first program specifies the second one by giving
its filename; the system then executes the second program as soon
as the first one terminates normally.

The CHAINSTUFF unit also allows the first program to pass a
STRING value to the second program; note that this allows almost
any information to be passed, since the string can be a filename
and can thus specify a communications file containing almost
anything.

CHAINSTUFF provides these capabilities in the form of three
procedures named SETCHAIN, SETCVAL, and GETCVAL. To use these
procedures, the program must have a USES declaration immediately
after the program heading:

PROGRAM STARTER;
USES CHAINSTUFF;

oo

The SETCHAIN Procedure

The SETCHAIN procedure call has the form

SETCHAIN (NEXTFILE)

where NEXTFILE is a STRING value (up to 8@ characters). It
should be either the name of a code file, or the name of an exec
file with the prefix EXEC//. As soon as the program terminates
normally, the system will proceed to execute the file whose name
is the value of NEXTFILE.

The file is executed exactly as if the X command had been used;
thus it is not necessary to supply the suffix .CODE for a code
file. Exec files are ASCII files; they do not have a standard
suffix attached to their names.

If the program is halted because of any run-time error, the
chaining does not occur. Note that this includes a halt caused

The CHAINSTUFF Unit 41
e,

by the HALT procedure. However a termination caused by the EXIT

procedure is considered a normal termination and the chaining
will work.

The SETCVAL Procedure

The SETCVAL procedure call has the form

SETCVAL (MESSAGE)

where MESSAGE is a STRING value (up to 8@ characters). SETCVAL

stores the MESSAGE in a system location called CVAL, where it can
be picked up by another program.

The GETCVAL Procedure

The GETCVAL procedure call has the form

GETCVAL (MESSAGE)

where MESSAGE is a STRING variable whose value is altered by
GETCVAL. GETCVAL picks up the current value of CVAL from the
system and stores it in the MESSAGE variable. Note that if CVAL
has not been set by another program (using SETCVAL), then the

value of CVAL is a zero-length string. Once CVAL has been set,
it remains set to the same STRING value until it is changed or

the system is reinitialized or rebooted.

If you execute a program from the main command line, CVAL is set
to an empty string.

42 Apple III Pascal

An Example of Chaining

Suppose that a diskette named /GAMES contains a collection of
game programs whose code files have the following names:

CHESS.CODE
CHECKERS.CODE
BLASTOFF.CODE
GOMOKU.CODE
BACKGAMMON.CODE
BLACKJACK.CODE
HEARTS.CODE
SPROUTS.CODE

The user could use the Filer to display a list of filenames on
the /GAMES diskette, then return to the Command level and use X
to execute a selected program. Instead, however, you can write a
"front—end" program to display a menu of all the available games;
the user chooses one by typing a number, and the front-end
program chains to the selected game program:

PROGRAM FRONT;
USES CHAINSTUFF;

VAR GAMENUM: INTEGER;

BEGIN
{Display a greeting}
WRITELN(‘Welcome to GAMES!’);
WRITELN;
{Display the menu}
WRITELN(‘Select game from list by typing its number:’);
WRITELN;
WRITELN(’1 —=- Chess’);
WRITELN(’2 -- Checkers’);
WRITELN(’3 -- Blastoff’);
WRITELN(’4 -- Gomoku’);
WRITELN(’5 -- Backgammon’);
WRITELN(’6 -— Blackjack’);
WRITELN(‘7 —-- Hearts’);
WRITELN(’8 —-- Sprouts’);
WRITELN;

The CHAINSTUFF Unit 43

{Get a number from the user}
WRITE('Type a number from 1 to 8, then press RETURN: ');
READLN (GAMENUM)
{Make sure the number is valid}
WHILE NOT (GAMENUM IN [1..8]) DO BEGIN
WRITE(‘Number must be from 1 through 8--try again: ’);
READLN(GAMENUM)
END;
{Set chaining to filename of selected game}
CASE GAMENUM OF
1: SETCHAIN(’/GAMES/CHESS’);

2: SETCHAIN(’/GAMES/CHECKERS”);
3: SETCHAIN(’/GAMES/BLASTOFF’);
4: SETCHAIN(’/GAMES/GOMOKU’);

5: SETCHAIN(’/GAMES/BACKGAMMON’);
6: SETCHAIN(’/GAMES/BLACKJACK’);
7: SETCHAIN(’/GAMES/HEARTS’);

8: SETCHAIN(’/GAMES/SPROUTS’)

END
END.

There are several advantages to this. For one thing, the /GAMES
diskette may have many other files besides the actual game
programs, and this could be confusing to the user.

Many game programs ask the user to type in her name, so it can be
used in messages and prompts from the program. You could also
have the FRONT program get the user’s name and pass it to the
selected game program. To do this, the FRONT program can declare
a STRING variable, NAME, and then include the following lines
either just before or just after the CASE statement:

{Get user’s name and store it in CVAL}
WRITE('Type your name, please: ‘);
READLN (NAME) ;

SETCVAL(NAME)

Now a game program that uses the user’s name can obtain it by
having its own STRING variable named (for example) UNAME, and
then calling GETCVAL:

GETCVAL (UNAME)
Note that if the FRONT program’s codefile is placed on the system

diskette and given the name SYSTEM.STARTUP , the FRONT program
will be run automatically as soon as the system is booted.

44 Apple III Pascal

The APPLESTUFF Unit 45

46 Apple III Pascal

The APPLESTUFF unit is an intrinsic unit in the SYSTEM.LIBRARY
file. To compile or execute a program that uses the APPLESTUFF
unit, this unit must be either in SYSTEM.LIBRARY or in the
program library (see Chapter 14).

The APPLESTUFF unit provides procedures and functions that allow
you to do the following:

- Generate random numbers

— Test the keyboard to find out whether a key has been
pressed

Use the joystick inputs
- Generate sounds on the Apple III’s speaker

- Read and set information in the Apple III system’s
internal date and time.

To use the facilities of the APPLESTUFF unit, the program must
have a USES declaration containing the identifier APPLESTUFF,
immediately after the program heading; for example,

PROGRAM MUMBLE ;
USES GRAPHICS, APPLESTUFF;

The public procedures and functions of the APPLESTUFF unit are
then available to the program.

The RANDOM Function

RANDOM is an integer function with no parameters. It returns a
pseudo-random value uniformly distributed between ¢ and 32767.
If RANDOM is called repeatedly, the result is a pseudo-random
sequence of integers. The statement

WRITELN (RANDOM)

will display an integer between the indicated limits.

The APPLESTUFF Unit 47

Using the Random Function

A typical application of this function is to get a pseudo-random
number, say, between LOW and HIGH inclusive. The expression

LOW + RANDOM MOD (HIGH-LOW+1)

is sometimes used where results are not critical, but the values
formed by this expression are not evenly distributed over the
range LOW through HIGH. If you want pseudo-random integers
evenly distributed over a range, you can use the following
function:

FUNCTION RAND (LOW, HIGH:INTEGER; VAR ERROR:BOOLEAN):INTEGER;
VAR MAX, DIFF, TEMP: INTEGER;
BEGIN
ERROR := FALSE;
IF LOW > HIGH THEN BEGIN
TEMP := LOW;
LOW := HIGH;
HIGH := TEMP
END;
{ LOW <= HIGH }
IF LOW < ¢ THEN ERROR := HIGH > MAXINT + LOW;
IF ERROR THEN RAND := () { error exit }
ELSE BEGIN
DIFF := HIGH - LOW; { ¢ <= DIFF <= MAXINT }
IF DIFF = MAXINT THEN RAND := LOW + RANDOM
ELSE BEGIN { ¢§ <= DIFF < MAXINT }
MAX := MAXINT -
(MAXINT - DIFF) MOD (DIFF + 1);
REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;
RAND := LOW + TEMP MOD (DIFF + 1)
END
END
END;

If HIGH is less than LOW, then the values of HIGH and LOW are
exchanged. If the difference between HIGH and LOW exceeds
MAXINT, then RAND returns @ and sets the ERROR parameter to
TRUE. Otherwise, RAND returns evenly distributed pseudo-random
integer values between LOW and HIGH (inclusive).

48 Apple III Pascal

Much of the complexity of the RAND function comes from the need
to check that the values of HIGH and LOW are within the range

¢ <= HIGH - LOW < MAXINT

The ARBITRARY function, listed below, is a simpler, faster
version of the RAND function. The ARBITRARY function contains no
error—checking; it must be called with parameter values within
the appropriate range or it will not return a correct result.

FUNCTION ARBITRARY (LOW, HIGH:INTEGER):INTEGER;
VAR MAX, RANGE, TEMP: INTEGER;
BEGIN
RANGE := HIGH - LOW + 1;
MAX := MAXINT - (MAXINT - RANGE + 1) MOD RANGE;
REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;

ARBITRARY := LOW + TEMP MOD RANGE
END;

The RANDOMIZE Procedure

RANDOMIZE is a procedure with no parameters. Each time you run a
given program using RANDOM, you will get the same random sequence
unless you use RANDOMIZE.

RANDOMIZE uses a time—-dependent location to generate a starting
point for the random number generator.

The KEYPRESS Function

This function, which has no parameters, returns TRUE if there are
any characters in the console type-ahead buffer. KEYPRESS does
not read the character from CONSOLE or KEYBOARD or have any other
effect on I/0. The following statement reads the next character
in the type-ahead queue, if any. (CH is a CHAR variable.)

IF KEYPRESS THEN READ(KEYBOARD, CH)

This statement could be used to retrieve a character typed while
the program was doing something else.

The APPLESTUFF Unit 49

Once KEYPRESS becomes true it remains true (so that all
characters will be read from the type—ahead buffer) until a GET,
READ, or READLN accesses either the INPUT file or the KEYBOARD
file, or until a UNITREAD or UNITCLEAR accesses the keyboard
device.

The JOYSTICK Procedure

The JOYSTICK procedure has the form

JOYSTICK (SELECT, XCOORD, YCOORD, Bf, Bl)

where SELECT is an integer treated modulo 2 to select one of the
two joysticks numbered @ and 1. XCOORD and YCOORD are integer
variables which are used to return the coordinates of the
selected joystick. The values returned in XCOORD and YCOORD are
in the range ¢ to 255. B@ and Bl are boolean variables which are
used to return the status of the two buttons associated with the
selected joystick. The values returned in Bf and Bl are TRUE for
a button that is pressed or FALSE for a button that is not
pressed.

The SOUND Procedure

The SOUND procedure has the form

SOUND (PITCH, DURATION, VOLUME)

where PITCH is an integer from ¢ through 86, DURATION is an
integer from ¢ through 255, and VOLUME is an integer from §
through 63.

A PITCH of @ is used for a rest, and 2 through 86 yield a
tempered (approximately) chromatic scale. DURATION is in

arbitrary units of time, and VOLUME is in arbitrary units of
loudness.

SOUND (1,1,63) gives a click.

50 Apple III Pascal

A chromatic scale is played by the following program:
PROGRAM SCALE;

USES APPLESTUFF;
VAR PITCH, DURATION, VOLUME: INTEGER;

BEGIN
DURATION := 1¢@;
FOR PITCH := 12 TO 24 DO
SOUND (PITCH, DURATION, 63)

END.

Use of this procedure requires the standard device driver
.AUDIO. See the Standard Device Drivers Handbook to find out how
to add this driver to your SOS.DRIVER file.

The Internal Date and Time

The DATE, TIMEOFDAY, CLOCKINFO, and SETTIME procedures let you
read and set information in the Apple III system’s internal date
and time.

The DATE procedure has the form

DATE (D)

where D is a string variable to contain the information returned
by DATE. The returned string has the format "YYYYMMDD", where
YYYY is the year, MM is the month (as a two-digit number), and DD

is the day of the month. For example, May 28th, 1945 would be
represented as '1945@528".

The TIMEOFDAY procedure has the form

TIMEOFDAY (T)

where T is a string variable to contain the information returned
by TIMEOFDAY. The returned string has the format "HHMMSS", where
HH is the hour (24-hour format), MM is the minute, and SS is the
second. For example, the time 3:44:06 PM would be represented as
"154406".

The APPLESTUFF Unit 51

The CLOCKINFO procedure has the form

CLOCKINFO (YEAR, MON, DAY, DAYOFWK, HR, MIN, SEC, THOU)
where all of the parameters are integer variables used to contain
the date and time information returned by CLOCKINFO. After a
CLOCKINFO call, the variables have the following values:

YEAR — the current year.

MON — the number of the current month (1 for January
to 12 for December).

DAY — the day of the month.

DAYOFWK — the number of the day of the week (1 for
Sunday to 7 for Saturday).

HR — the hour in 24-hour format.
MIN — the minute.

SEC — the second.

THOU — the millisecond.

The SETTIME procedure lets you set the internal system date and
time from a program.

The SETTIME procedure has the form

SETTIME (T)
where T is a string of eighteen characters representing the date
and time to be recorded internally by the system. T has the

format

YYYYMMDDWHHNNSSUUU

52 Apple III Pascal

where the fields are defined as

Field Description Range

YYYY year @300 - 9999

MM month @1 - 12 (Jan - Dec)

DD date of the month p1 - 31

W day of the week 1 = 7 (Sun - Sat)

HH hour in 24-hour format @@ - 23 (midnight to 11 pm)
NN minute @0 - 59

SS second @@ - 59

uuu millisecond @B - 999

SETTIME checks that each field is in range, but it does not check
consistency between fields. For example, it does not recognize
February 31 as an erroneous date because 2 is a valid month and
31 is a valid date. Any field that is out of range will be set
to zero by SETTIME.

PADDLE, BUTTON, and NOTE

The PADDLE and BUTTON functions and the NOTE procedure provide

compatibility with Apple II Pascal programs. The PADDLE function
has the form

PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the
four paddle inputs numbered ¢, 1, 2, and 3. PADDLE returns an
integer in the range @ to 255 which represents the position of
the selected paddle.

The BUTTON function has the form

BUTTON (SELECT)
where SELECT is an integer treated modulo 4 to select one of the
four button inputs numbered @#, 1, 2 and 3. The BUTTON function
returns a BOOLEAN value of TRUE if the selected game-control
button is pressed, and FALSE otherwise.

The NOTE procedure has the form

NOTE (PITCH, DURATION)

The APPLESTUFF Unit 53

where PITCH is an integer from ¢ through 86 and DURATION is an
integer from ¢ through 255.

A PITCH of @ is used for a rest, and 2 through 86 yield a

tempered (approximately) chromatic scale. DURATION is in
arbitrary units of time.

NOTE (1,1) gives a click.

To use the NOTE procedure you must have the driver .AUDIO in your

SOS.DRIVER file. (See the Standard Device Drivers Handbook for
details.)

54 Apple III Pascal

Floating-Point Arithmetic 55

Floating-Point Arithmetic

56 Apple III Pascal

Introduction

This appendix describes the Apple III Pascal implementation of
the TEEE floating-point proposal. The information in this
appendix is needed only if you are concerned with the best
possible accuracy in floating-point calculations.

By default, the improved arithmetic will not do anything
unexpected except that it provides "gradual underflow"” of
arithmetic results. Most Pascal programs written for other
UCSD-based systems and recompiled for the Apple III will produce
the same arithmetic results, except for improved performance in
cases where underflow occurs.

The arithmetic also eliminates artificially imposed limitations
on the development of algorithms, providing numerical analysts
with additional tools.

This appendix includes two main sections: a description of the
floating-point system and an explanation of the functions and
procedures that enable you to configure the arithmetic
environment. At the end of this appendix is a table that
summarizes the Apple III Pascal floating-point system.

IEEE Floating-Point Standard

Recently, the IFEE appointed a committee to study issues of
floating-point arithmetic such as the problems of limited
precision, finite range, and varying treatment by different
computers of overflow, underflow, and division by zero. The
committee created a Proposed Standard for Binary Floating-Point
Arithmetic (Draft 8.0 of IEEE Task P754). The floating-point
operations available in Apple III Pascal conform to this standard
(single precision only).

Floating-Point Arithmetic 57
[et e B e e

The standard specifies

- accuracy of arithmetic, I/0 conversions, remainder, and
square root;

- internal number formats;
- rounding modes;

- special optional treatment of exceptions like overflow
and division by zero; and

- configurable arithmetic under program control.
The purpose of the standard is to

- allow programs written in many different environments
to run on computers that adhere to the standard; and

- improve diagnostics and error handling.

Definitions

The following definitions are for terms used by the IEEE
floating—-point standard.

Binary Floating-Point Number. A 32-bit string characterized by
three components: a sign, a signed exponent, and a significand.
Its numeric value, if any, is the signed product of its
significand and 2 raised to the power of its exponent.

Exponent. The component of a binary floating—-point number that

normally signifies the power to which 2 is raised in determining
the value of the represented number. Occasionally, the exponent
is called the signed or unbiased exponent.

Biased Exponent. FExponents are stored as values that range from
to 255. For normalized numbers, the biased exponent equals the
unbiased exponent plus 127.

Significand. The 24-bit component of a binary floating-point
number that consists of the implicit bit to the left of the
binary point and the fraction field to the right of the binary
point. The implicit bit is not stored.

58 Apple III Pascal

Fraction. The 23-hit field of the significand that lies to the
right of its implied binary point.

NaN. Not a Number. Special 32-bit quantities that are generated
automatically when the result of an arithmetic operation could
not otherwise be specified (for example, #/#). The internal
format of the NaN contains a code that describes the
circumstances in which it was generated. If a NaN is an argument
of an arithmetic operation, the result will be a NaN. This
allows programs to run to completion when they would otherwise be
forced to abort.

Exceptions. The IEEE Proposed Standard for Binary Floating-Point
Arithmetic specifies a list of exceptions—-—-special cases in
arithmetic, comparisons, remainder, and square root. The
response to these exceptions is specified to insure a uniform
arithmetic environment.

Exception Signal. Associated with each exception is a signal
that can be set, cleared, and tested. It is set whenever a given
exception occurs and stays set until it is cleared.

Rounding. When the result of an arithmetic operation cannot be
represented exactly as a binary floating-point number (for
example, 1/3 or 1/1(}), a decision of how to round the result must
be made. There are four rounding methods that can be selected.
These methods are described in a later section of this appendix.

Infinities. Infinities are signed quantities that behave like
very large numbers. They are generated by overflows and division
by zero, and can be arguments in arithmetic operations and
comparisons.

Normalized Numbers. The storage format of all binary
floating-point numbers except infinities, NaNs, and denormalized
numbers (certain values at the underflow threshold). Normalized
numbers are characterized by the assumption of a leading 1 in the
significand.

Denormalized Numbers. A special treatment of underflow may
produce a nonzero number when an Apple II program would have
aborted. These numbers are characterized by a special format
that is not normalized (the leading bit of the significand is @
and the exponent is ~'26),

Floating—-Point Arithmetic 59

Exceptions

The IEEE standard lists the following set of exceptional
conditions in floating-point arithmetic:

Overflow

Underflow
Division by zero
Inexact result

Invalid operation
Apple III Pascal adds a sixth exception to this list:

Integer conversion

The integer conversion exception is signaled by TRUNC and ROUND

if their arguments exceed the bounds of the predeclared type
INTEGER.

Associated with each exception is a "sticky" signal, which is
set each time the exception occurs and is only cleared by an
explicitly programmed call on the SETXCPN procedure.

Each exception can cause the program to halt. The

programmer controls whether or not the occurrence of an
exception halts the program. The section on exception handling
describes how to choose halt or continue for each exception,
and what the result is for each exception when it occurs.

To test whether or not an exception occurred during the

evaluation of an expression or procedure, be sure to clear
the signal before evaluating the expression or procedure,
then test the signal after evaluating the expression or
procedure.

Overflow

The overflow exception occurs when a correctly rounded result is
larger than the largest normalized single-precision real number.
The table below shows that number.

60 Apple III Pascal

Storage Format Meaning Decimal Value
Sign= (,1
Exponent= 254 22412 %1.11..1 3.402823E38

Fraction= all ones
The default response to an overflow is a program halt.

Underflow

The standard specifies a treatment of underflow called "gradual
underflow”. On many computers, a single-precision result less

than the underflow threshold (27'%® on Apple II Pascal) will
cause a zero result. For example,
if A= 2" then A/2 =@

The standard specifies that if the exponent of a number is
smaller than -126, the significand is right-shifted
(denormalized) until the number is correctly represented. For
example, representing the significand in binary,

A=1,x2"126

A/2=0.1x2 "%

Alb=p.P1x2 "%

A/2N=0.@..01x2?® (with N leading zeros)

If N is greater than 23, A is set to #.
This procedure is called gradual underflow, and it reduces the
impact of underflow to be comparable to rounding errors. The
default response to an underflow exception is to continue.
The underflow exception occurs when the magnitude of a nonzero

result is:

- in normalizing mode, less than 1.1754944 x 1¢-38(2-126)
(result is not necessarily @#); or

Floating—-Point Arithmetic 61

- in warning mode, less than 1.1754944 x 1¢7% (27'%°)
and further denormalized. For example,

27 % 2 is not an underflow, but

27 / 2 is an underflow
(the result will not necessarily be @f.)

Division by Zero

The division by zero exception occurs in a division operation
when the divisor is # and the dividend is a finite non-zero
number (for example, 2/@). The default is to halt the program.
If continue is set, the result is infinity with the proper sign.

Division of ## by @ is a special case, covered in the section on
invalid operations.

Inexact Result

The inexact exception occurs when a result has been rounded or
has overflowed. The default response to an inexact result is
to continue.

Invalid Operations

This exception arises in a variety of arithmetic operations.
Any exception other than overflow, underflow, division by zero,

and inexact result falls in the category of invalid operations.
Invalid operations are exceptions that do not occur frequently

enough to deserve special classification.
The following events are invalid operations:

- if the argument of a function is a NaN that causes an
invalid operation signal (see NaN section);

- addition or subtraction of infinities in Projective
mode; or (+infinity)-(+infinity) or
(+infinity)+(-infinity) in Affine mode;

62 Apple III Pascal

- multiplication of @ * infinity;

- division of:
- zero by zero,
- Infinity/Infinity, or
- in warning mode, A/X where A is finite and not
zero, and X is denormalized;

- Remainder x REM y, where:
- y is zero or denormalized in warning mode, or
- x 1s infinite;

= Square Root if the operand is :
- less than zero, or
- infinity in the projective mode, or
- denormalized in warning mode;

- conversion of a single-precision real to an integer
when overflow or infinity make a correct conversion
impossible;

- comparisons using <,<= , >=, or > when the relation is
unordered.

= SCALB in warning mode, when its operand is denormalized
and the result would be normalized.

The default result of an invalid operation is to halt the
program.

Floating-Point Format

This section describes the format of the numbers used hy the
floating-point system. A normalized, single-precision number has
the form

E-127

X =+/- 2 * (1.F)

The number X above is represented in storage by the bit string

byte 3

(high addr) (low addr)

byte 2 | byte 1 | byte @

S exponent fraction

31|39 23] 22]

Floating-Point Arithmetic 63

Where:
+/- = sign bit (+ is @, - is 1),
E = exponent, and

F = X“s 23-bit fraction that, together with an implicit
leading 1, is the significand. The significand ranges
between 1.f@..84 and 1.11..1 (since the leading bit is
always 1, it is not stored.)

These numbers offer the same precision (slightly more than 7
significant decimal places) as the DEC PDP-11 format and slightly
more than the IBM 37¢ short format.

In addition to normalized numbers certain other special symbols
are required. These are +/- @ (the sign is only regarded in
division), infinities (the sign bit is sometimes ignored), NaNs,
and denormalized numbers (used to cope with underflow).

The following table presents the format for normalized numbers,

@, denormalized numbers, infinities, and NaNs. For each type of
number, the table gives the range for the sign, exponent, and

fraction. It also gives an interpretation for each type of
number.

SPECIFIC NUMBER FORMATS

Type Sign | Exponent Fraction Interpretation
n S E=-127
Normalized Number | @#,1 | 1 to 254 Any (-1) *2° " *(1.F)
Zeros 9,1 9 9 -1V * ¢
Denormalized g,1 [1] Non-Zero |[(-1) *2&u6*(¢.F)
Infinities @3,1 255 0] +/- Infinity
NANs ¢,1 255 Non-Zero | (See NaN table)

64 Apple III Pascal

Arithmetic with Denormalized Numbers

Because gradual underflow and denormalized numbers are not
generally familiar, the standard allows arithmetic operations on
denormalized numbers in two modes, normalizing mode and warning
mode.

Normalizing mode (the default) is recommended for most
application development.

Warning mode is intended for use when numerical programs are to
be transported from a non—-IEEE floating—point system. Warning
mode prevents promotion of denormalized numbers to normalized
numbers. In Warning mode, if a multiplication or division would
promote a denormalized operand to a normalized result, the
program signals an invalid operation and returns a NaN instead.
For example, the operation

9145 g 9100 _ o-a5

signals the invalid operation exception and produces a NaN

instead of 2°*° . This is done to prevent an undetected loss
of precision caused by denormalization. Note that this

cannot occur in addition or subtraction. (In Normalizing mode,
the answer is produced and no warning is given.)

In Warning mode, underflow is signaled only if "further
denormalization” occurs. For example,

2 % 27" would not cause an underflow signal, but

27145/ 2 would.

(Note that in normalizing mode, both operations would cause the
underflow signal.)

Floating—Point Arithmetic 65

Infinity Arithmetic and Comparisons

On other systems, overflows or division by zero may cause
unpredictable results and sometimes halt the program. An
alternative is provided by the standard in this floating-point
system. The halt switches can be turned off (see the section
on halts) and infinities can be created whenever overflow or
division by zero occurs. Infinities may be positive or
negative.

Affine and Projective Modes

Arithmetic operations and comparisons of the infinities are
done in either of two modes:

Affine (the default), or
Projective.

Affine mode creates a real number system with two infinities,
one positive and one negative:

Linear Infinities

Negative<«——Decreasing Increasing—Positive

Affine Mode

Affine mode is recommended for nearly all applications of
infinity arithmetic.

Projective mode creates a real number system with one
infinity. That number system has the real line as a circle
with the negative and positive real axes meeting at infinity:

66 Apple III Pascal

0

NEG NUMBER POS NUMBER

Projective Mode

In arithmetic operations, the only difference hetween Affine
and Projective mode is when both arguments are infinity. In
that case, in Projective mode additions and subtractions
always set the invalid operation exception signal. There are
more significant differences in comparisons.

Rules for Infinity Arithmetic

The two tables below show the results of arithmetic operations
on infinities, with halts disabled to permit a program to
continue after division by zero, invalid operations, overflow,
and underflow. The appropriate exceptions are always signaled.
For multiplication and division, the sign of the result is + if
the operands have the same sign, and - if they have different
signs. Any operation involving a NaN produces a NaMN.

Floating-Point Arithmetic 67

Table of rules for arithmetic involving infinities

RESULTS OF ARITHMETIC WITH INFINITIES

operand 2
operand 1 - infinity number + infinity
- infinity - infinity* - infinity NaN
Addition number - infinity number? + infinity
+ infinity NaN + infinity + infinity*
- infinity NaN - infinity - infinity*
Subtraction number + infinity number? - infinity
+ infinity | + infinity* + infinity NaN
operand 2
operand 1 @ number infinity
? ? [} NaN
Multiplication number (1] number? infinity
infinity NaN infinity infinity
[NaN @ @
Division number infinity number? (]
infinity infinity infinity NaN

* This value is a NaN in projective mode

? This value can be an infinity if the operation overflows

68 Apple TII Pascal

Rules for Comparisons

The rules for comparison operations are summarized below. In
traditional computers when two operands a and b are compared,
there are only three possible outcomes:

[
VAl
oo o

In Apple III Pascal, there is a fourth possibility:

unordered

-~ A NaN is unordered with respect to all real values,
including other NaNs and itself.

- In Projective mode, infinity is unordered with respect
to all finite values (+/- infinity is equal to
+/-infinity).

The comparison of two unordered values by means of a relational
operator (>, <, =, >=, <=) will always yield "false" as a
result. Every comparison other than equals signals an invalid
operation.

Input and Output of Infinities

When an infinite value is output via WRITE or WRITELN, it is
always represented by two or more contiguous "+" signs if it is
positive, or by two or more "-" signs if it is negative.

The written value is always preceded by at least one space. If
the width specification is greater than 2, the field is filled
with "+" or "-" signs. If there is a '"decimal places"
specification, it is ignored.

An infinite value written out in this manner can be read back
correctly by READ or READLN.

Floating-Point Arithmetic 69

NaNs

To provide for the handling of exceptional conditions, the
standard specifies 32-bit quantities that are used as
diagnostics. These diagnostics, called NaNs ("Not a Number"),
may be generated by the programmer or as the result of an
exceptional condition. In either case, they will be propagated
when arithmetic operations are performed upon them unless an
invalid operation causes a halt. The figure below shows the
internal format for a NaN.

NaN (Not a Number)

l byte 2 byte 1 byte @
* reserved ERROR CODE reserved
22|21 1615 817 []

*Invalid Operation bit

The subfields in the figure are interpreted as follows:
= Sign bit: ignored

- Signaling Bit: determined by the class of the NaN.
NaNs are divided into two classes. One (a signaling
NaN) signals an invalid operation when an arithmetic
operation is performed upon it; the other (a
propagating NaN) does not. A signaling NaN has a 1 in
the Signaling Bit. A propagating NaN has a @.

- Error Code: This value (bits 8-15) indicates the
circumstance in which the NaN was generated. The codes
are explained below.

- Reserved Bit: Bits 1-7 and 16-22 are reserved for
future use.

70 Apple III Pascal

An arithmetic operation on a signaling NaN signals an invalid
operation and results in a propagating NaN with the same error
code. If no program halt occurs, the Signaling Bit is turned
off, and the NaN propagates.

If an operation involves one NaN, the result will be that NaN.
If an operation involves two NaNs, then the result will be the
NaN with the greater error code.

The following table presents the error codes and their meanings.

NAN ERROR CODES

Error Code Meaning

o0 Reserved

g1 Invalid square root

@2 Invalid affine addition of infinities

P4 Invalid division, such as @/@

07 Invalid projective addition of infinities

8 Invalid multiplication, such as @*infinity

P9 Invalid remainder or modulo

A Invalid parameter to base conversion routine

fc Warning mode: normalized result from denormalized
operand

11 Invalid decimal to binary conversion: syntax

1.2 Decimal to binary conversion: NaN in source

13 Decimal to binary conversion: unrepresentable value

21 Trig radian argument reduction error: argument
exceeds capacity of conversion routine

FF Reserved

NaNs appear in a Pascal program in the following situations:

- as a result of invalid operations when no exception
halt occurs (see the section on halts). These are
always propagating NaNs.

- as the result returned by the MAKENAN function in the
REALMODES unit. These NaNs can (at the programmer”s
choice) cause the invalid operation exception to occur
and may be used for debugging.

Floating—-Point Arithmetic 71

Accuracy

The following sections describe these aspects of the
floating—-point system that affect the accuracy of arithmetic
operations: rounding modes, the inexact signal, and input/output
conversions.

Accuracy of Arithmetic Operations

The standard requires the following arithmetic operations:

+, =, *, /, remainder, round-to-integer, and square root. The
standard specifies performance down to the last bit. Remainders
that do not underflow are computed without rounding error.

Rounding Modes and the Inexact Signal
If the result of an arithmetic operation is exactly representabhle
in the single-precision format, that result will be returned.

Otgerwise, the result will be rounded. There are four rounding
modes:

= round to nearest value, with ties going to the even
value (this is the default);

- round toward zero (truncate);

=~ round up; and

- round down.
Here is an example showing the rounding modes. Assume Z cannot
be represented as a single-precision real. If Z is the exact

result of an arithmetic operation and X1 and X2 are the closest

single-precision real values for which X1 < Z <X2, then the
rounding modes function as follows:

72 Apple III Pascal

Round to nearest (Z) = the nearer of X1 and X2 to Z.
In the case of a tie, choose the one that has a @ in
its least significant bit. Ties round to even.

- Round toward zero (Z) = smaller of X1 and X2 in
magnitude.

Round up (Z) = X2.
- Round down (Z) = XI1.

A rounding operation during an arithmetic operation sets the
inexact signal.

Input/Output Conversions

The use of floating-point arithmetic requires the conversion of
numbers from decimal to binary on input and from hinary to
decimal on output. The error that occurs in these conversions
will be less than 1 unit of the destination”s least significant
digit. The I/0 conversions are used by:

READ and READLN
WRITE and WRITELN

This section describes how real values may be written to and
read from text files, using the built-in procedures RFEAD and
WRITE. READLN and WRITELN work similarly to READ and WRITE,
respectively. Since text files represent numbers in decimal
notation, and the computer uses a binary representation
internally, such input and output require number base
conversions from decimal to binary and binary to decimal. Base
conversions have rarely been done accurately in a way that
permits simple error bounds to be put on the results.

The proposed IEEE standard for Binary Floating-Point
Arithmetic specifies accuracy and other desirable properties of
decimal <---> binary conversions, which Apple III Pascal
follows. In addition, several Pascal standards groups (IEFE,
ANSI, and ISO) have tentatively agreed on some cosmetic details
of READ and WRITE, that will make it easier to format reports
and predict what your output will look like. We have tied to
follow their suggestions, too.

Reals appear as character strings in two different contexts:
as source code submitted to the Compiler (real constants), and

Floating—-Point Arithmetic 73

as text files written and read by Pascal programs. The syn<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>