
©

Pascal
Programmer's Manual Volume 2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I •

Notice
Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities
Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its
quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed "as is:· The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(400) 996-1010

© BEELDRECHT, Amsterdam/VEGA, NY
Collection Haags Gemeentemuseum

Written by David Casseres

The word Apple and the Apple Jago are registered trademarks of
Apple Computer.

Reorder Apple Product #A3L0003

ii Apple III Pascal

Acknowledgements
The Apple III Pascal system is ba~ed on UCSD Pascal.
"UCSD PASCAL" is a trademark of the Regents of the University
of California. Use thereof in conjunction with any goods or
services is authorized by specific license only and is an
indication that the associated product or service has met
quality assurance standards prescribed by the University. Any
unauthorized use thereof is contrary to the laws of the State
of California.

1--

Contents

Volume II-Appendices

Preface

A The TRANSCEND
and REALMODES Units

2 Introduction
2 The Units
4 The Functions
5 The Remainder (REM) Function

B The PGRAF Unit
13 Overview
18 Memory Usage
19 Saving and Loading Display Buffers
19 Summary of PGRAF Routines
20 Initial Conditions
20 GRAPTUXMODE
21 GRAPHIXON and TEXTON
21 PENCOLOR and FILLCOLOR
22 VIEWPORT
2 3 INITGRAFIX
23 MOVETO, LINETO, and DOTAT
24 MOVEREL, LINEREL, and DOTREL
24 FILLPORT

Contents iii

ix

1

11

iv Apple III Pascal

25 XYCOLOR, XLOC, and YLOC
25 Text in Graphics
26 DRAWIMAGE
29 The Color Table
31 The Transfer Option
33 NEWFONT and SYSFONT
34 GSAVE and GLOAD
35 The CP280 Mode
36 Reading From the Graphics Driver
37 The PGRAF Interface

C The CHAINSTUFF Unit

D

E

40 The SETCHAIN Procedure
41 The SETCVAL Procedure
41 The GETCVAL Procedure
42 An Example of Chaining

The APPLESTUFF Unit
46 The RANDOM Function
48 The RANDOMIZE Procedure
48 The KEYPRESS Function
49 The JOYSTICK Procedure
49 The SOUND Procedure
50 The Internal Date and Time
52 PADDLE, BUTTON, and NOTE

Floating-Point Arithmetic
56 In.troduction
59 Exceptions
62 Floating-Point Format
64 Arithmetic with Denormalized Numhers
65 Infinity Arithmetic and Comparisons
69 NaNs
71 Accuracy
76 Real Arithmetic Environments
77 Exception Handling
78 Arithmetic Modes
83 Summary of the Floating-Point System
85 Bibliography

39

45

55

F The Apple Ill Pascal Compiler
88 Introduction
88 Diskette Files Needed
89 Using the Compiler
93 Compiler Option Syntax
94 Options that Do Not Affect Program Code
98 Error Checking Options

100 Control of Segments and Libraries
102 The USING Option
H~2 The INCLUDE Option
103 Special Compilation Mode
104 Conditional Compilation
109 Compiling Apple II Code
110 Compiler Option Summary

G Special Techniques
114 Introduction
114 Representation of Scalar Values
116 Implications
119 Representation of Arrays
120 Representation of Real Values
120 Free Union Variants
124 Byte-Oriented Built-Ins Revisited
125 Special Uses of UNITSTATUS

H Comparison To Apple II Pascal
128 OTHERWISE Clause in CASE Statement
128 SOS Pathnames
128 SOS Device Driver Support
128 Graphics
129 New Procedures
129 New Data Types
129 Real Arithmetic
129 Library Files and Units
130 Memory Organization
130 The UNITSTATUS Procedure
130 Runtime Segment Table
130 Conditional Compilation
131 The CHAINSTUFF Unit
131 Compiling Apple II Code
131 File Variable Size

Contents v

87

113

127

vi Apple III Pascal

131 Compiler Options
131 Procedure Complexity
131 System Globals

I Syntax Diagrams 133

134 Compilation
134 Program
135 Unit
135 Intrinsic Unit heading
135 Regular Unit heading
136 Interface
136 Implementation
137 Block
137 Uses Declarations
138 Lahel Declarations
138 Constant Declarations
138 Constant
138 Type Declarations
139 Type
139 Simple Type
139 User-defined Scalar Type
140 Subrange Type
140 Pointer Type
140 Set Type
140 String Type
140 Array Type
141 Record Type
141 Field List
141 Variant Part
142 File Type
142 Variable Declarations
142 Procedure Definition
143 Function Definition
143 Parameter List
143 Parameter Declaration
143 Compound Statement
144 Statement
144 Assignment Statement
144 Procedure Call
145 With Statement
145 Goto Statement
145 For Statement
145 Repeat Statement
146 While Statement
146 If Statement
146 Case Statement

Contents vii

146 Case Clause
147 Otherwise Clause
147 Expression
147 Simple Expression
148 Term
148 Factor
149 Variable reference
149 Function Call
149 Set Constructor
150 Unsigned Constant
150 Unsigned Number
150 Unsigned Integer
151 Identifier

J Tables 153

154 Table 1: Execution Errors
155 Table 2: I/O Errors
157 Table 3: Reserved Words
158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/O Devices
166 Table 8: Size Limitations

K The TURTLEGRAPHICS Unit 167

168 Using Apple II TURTLEGRAPHICS with the Apple III

Figures and Tables 169

Index 177

viii Apple III Pascal

Preface ix

The Apple III Pascal system is described in three manuals:

Apple III Pascal: Intoduction, Filer, and Editor
Apple III Pascal Program Preparation Tools
Apple III Pascal Programmer's Manual (Volumes 1 and 2)

Before using the Apple III Pascal system or reading its manuals,
you should be familiar with starting up the Apple III as
described in the Apple III Owner's Guide.

When you are familiar with the contents of that manual, begin
reading the Apple III Pascal: Introduction, Filer, and Editor
manual. The Filer and the Editor described i n this manual are
needed by everyone who uses the Pascal system. If you are
familiar with the Apple II Pascal system, this manual will show
you the differences in operation between the two systems.

Apple III Pascal Program Preparation Tools is the next manual
that you should read before you start to develop Pascal and
assembly-language programs to run on the Apple III. The
components of the Apple III Pascal system covered in this manual
include

- The Linker, used to combine separately developed
program segments stored in libraries with your
application program.

- The Apple III Pascal 65~2 Assembler, used to translate
assembly-language source files produced by the Pascal
Editor into machine-language code files.

- The Librarian, used to put commonly used routines into
libraries for use with application programs.

x Apple III Pascal

Your main source of information while developing Pascal programs
will be the two volumes of the Apple III Pascal Programmer's
Manual, which contain a complete description of the Pascal
language on the Apple III and the use of the Apple III Pascal
Compiler.

The Contents of This Manual
This manual describes the complete Apple III Pascal language.
Except for the introductory material in Chapters 1 and 2, this is
an explanatory reference manual rather than a textbook; it does
not assume that you know anything about Pascal, but it does
assume that you are familiar with computer programming in some
language.

Please note that a large and detailed index is provided at the
end of this manual; you will probably need it when you are using
the manual for reference purposes. The index does not point to
every occurrence of a word or phrase in the manual; instead it
points to the pages that have significant information about the
topic associated with the word or phrase.

Volume 1 of this manual contains the chapters; Volume 2 contains
the appendices and the index. Here is a brief description of the
contents:

- Chapter 1 is an introduction to the Pascal language,
comparing it with other well-known languages and giving
a very simple program as an example.

- Chapter 2 is an extensive overview of Pascal. Every
major concept and construction in the language is
introduced here at an intuitive level.

- Chapters 3 through 11 provide complete, detailed
information about every major feature of the language.

- Chapters 12 through 15 provide complete, detailed
information about the more specialized features of the
language. These features are needed for certain large
or specialized programs.

- Appendices A through E describe the standard library
facilities of Apple III Pascal. These are sets of
procedures and functions for special purposes such as
graphics, audio, joystick inputs, and special
arithmetic features.

Preface xi

- Appendix F is a complete reference manual for the Apple
III Pascal Compiler, including details of operation and
all of the Compiler options.

- Appendices G through J are supplementary information on
various topics. In particular, Appendix J is a
collection of useful tables.

- Appendix K provides information on the use of Apple II
TURTLEGRAPHICS on the Apple III.

Two special symbols are used throughout this manual to draw your
attention to particular items of information.

The pointing hand indicates something particularly
interesting or useful.

The eye is used for points you need to be cautious about.

Syntax Diagrams
Throughout this manual, the syntax of the Pascal language is
indicated by means of syntax diagrams, also known as "railroad
tracks." These diagrams are easy to follow once you are used to
them: begin at the upper left and follow the arrows. Every
possible path through the diagram represents a valid construction
in Pascal. For example:

while statement

DO statement

This diagram tells us that a "while statement" consists of the
word WHILE, followed by an expression, followed by the word DO,
followed by a statement.

The words WHILE and DO are enclosed in rounded "bubbles;" this
means that they are reserved words or symbols of the language, to
be typed as shown• The words expression and statement are in
boxes with square corners; this means that they are higher-level
constructions, which have their own syntax diagrams.

xii Apple III Pascal

Here is an example where there is more than one path through the
diagram:

identifier

letter

letter

digit

underscore

This tells us that an identifier begins with a letter, and this
letter may be followed by a letter, a digit, an underscore, or
nothing. From here, there is the possibility of looping back to
add another letter, digit, underscore, or nothing. This can be
repeated indefinitely (in principle), so the syntax says that an
identifier can be of any length. In practice, of course, there
is a limit which the syntax does not show.

Note that Appendix I contains a full set of syntax
diagrams.

Syntax of Procedure and Function Calls
Pascal provides a number of built-in procedures and functions
which are activated by means of "calls." Most of these use a
simple kind of syntax in which there is only one path through the
diagram, and in these cases a diagram is not shown. Instead, a
"form" is given; for example, the form of the REWRITE procedure
is

REWRITE (FILEID, PATHNAME)

Preface xii i

The word REWRITE is the name of the procedure, and is to be typed
as shown; all words in parentheses are names for "parameters," to
be replaced with actual expressions or variable identifiers as
explained in the text. In this example, ~!LEID is to be replaced
by the identifier of a "file variable" and PATHNAME is to be
replaced by a string of characters that is the pathname of a
file.

A few procedures have a more complex form of syntax, and syntax
diagrams are used for these.

xiv Apple III Pascal

The Transcend and Realmodes Units

2 Apple III Pascal

Introduction
The transcendental , square root , and remainder functions are not
built into Apple III Pascal . Instead , they are provided in two
units, TRANSCEND and REALMODES , which are intrinsic units in the
SYSTEM. LIBRARY file . This appendix describes TRANSCEND and
REALl10DES and the precision of their functions .

The first part of the appendix is an overview of the units and
how to use them. The second part is a description of the
functions for users concerned with the mathematical precision of
the functions. A section on each function presents a precise
description of the value the function takes and the value it
returns.

The Units
The REALl10DES unit contains the remainder and square root
functions .

The TRANSCEND unit contains the following transcendental
functions:

sine
cosine
arctangent
e to the x
natural logarithm
decimal logarithm

To compile or execute a program that uses TRANSCEND , both
TRANSCEt>lD and REALMODES must be either in the SYSTEM .LIBRARY file
on the system diskette or in the program library file . See
Chapter 14 .

Remainder is a new function added to UCSD Pascal in order to
conform to the IEEE floating-point s tandard . Square root and the
transcendental functions listed above have been modified to take
advantage of the increased capabilities of the IEEE
floating-point standard . The improvements include:

The Transcend and Realmodes Units 3

- faster square root;

- increased accuracy in natural log, e to the x, square
root, and decimal logarithm;

- the ability to produce and compute with

- infinities,
- NaNs (Not a Number), and

denormalized numbers (those in the range
l.2E-38 to 7E-46) which diminish the effect
of underflow to be comparable to that of
rounding errors;

increased domain in sine, cosine, and arc tangent.
(Previously ATAN(x) was defined only if
-4.602705El8 < x < 4.602705El8. Now ATAN(x) is defined
for all real values including infinities and NaNs.)

To use the remainder or the square root function, a program must
have a USES declaration containing the identifier REALMODES
immediately after the program heading. For example, the
following USES declaration makes the public functions of the
REALHODES unit available to the program:

PROGRAM ALGEBRAIC;
USES REALMODES;

To use the transcendental functions, a program must have a USES
declaration containing both the identifiers REALMODES and
TRANSCEND immediately after the program heading. Since the
TRANSCEND unit uses the REALMODES unit, REALMODES must appear in
the USES declaration before TRANSCEND. For example, the
following USES declaration makes the public functions of the
TRANSCEND unit available to the program:

PROGRAM GEOMETRIC;
USES REALMODES,TRANSCEND;

4 Apple III Pascal

TheFuncuons
This section of the appendix describes the effect of the
functions on the arithmetic modes of the calling program, defines
a NaN, and describes each function. At the end of the appendix
is a summary of special values and results showing the argument,
mode, result, and signal for each function.

fv1odes
The IEEE floating-point environment supplies the programmer with
arithmetic that can be customized for special use. Functions
that use these options must restore the environment of the
program that called them before they return control to the
calling program. The remainder, square root, and transcendental
functions save the arithmetic modes of the calling program for
later restoration and then set switches for

- round-to-nearest mode, and

- no-halt mode on overflow, underflow, or
floating-point-to-integer conversion. If one of these
events occurs during the calculation of a
transcendental function, the event isn't reported to
the calling routine.

The called function restores the floating-point modes of the
calling program just before returning control to the calling
program. The status of the overflow, underflow, and
floating-point conversion signals is restored to the status they
held before the call. A function inherits the
Warning/Normalizing and Affine/Projective modes from the calling
program.

When the square root or remainder function or one of the
transcendental functions is called by a program, the following
sequence occurs:

The Transcend and Realmodes Units 5

1. function call

2. store calling program modes

3 . set modes the function needs

4. compute function values

5. restore calling program modes

6 . exit to calling program

For further explanation of modes and exceptions , see Appendix E.

NaNs
A NaN (Not a Number) is a diagnostic assigned to a floating-point
variable . It is produced as the result of an invalid
floating-point operation (such as 0 divided by 0) . If the
argument of a transcendental function is a NaN , the result
produced is also that NaN. (If the argument is a trapping NaN ,
and the Halt on Invalid switch is set , the program halts .) For
further explanation of NaNs , see Appendix E.

The Square Root(SQRT) Function
The SQRT(x) function takes any non-negative r eal value , x
(including infinity) , and returns the square root of x , except
when

x is negative;
x is denormalized and Warning mode is set; or
x is infinity in Projective mode.

For any of these exceptions , the Invalid Operation Signal will be
set . If the Halt on Invalid switch is not set , a diagnost ic NaN
will be returned.

The Remainder(REM) Function
The REM(x , y) function is defined by the following relat ion when y
is not zero:

REM(x , y) = x - y * n

where n is the integer nearest x/y . When the fractional part of

6 Apple III Pascal

x/y is exactly 1/2, then n is the even integer nearest x/y. (For
example, if x/y = 3.5, then n = 4; if x/y = 6.5, then n = 6.)
The remainder function is exact, except when

y is zero;
x is infinite; or
y is denormalized and Warning mode is set.

For any of these exceptions, the Invalid Operation Signal will be
set. If the Halt on Invalid switch is not set, a diagnostic
(NaN) will be returned.

The Sine(SIN) Function
The SIN(x) function takes an angle, x, in radians, and returns
the sine of that angle when

-102942.13 < x < 102942.13

For arguments outside this interval, a diagnostic NaN is
produced . The accuracy of the SIN function cannot be guaranteed
outside this interval because of argument reduction errors .

The Cosine(COS) Function
The COS(x) function takes an angle , x, in radians, and returns
the sine of that angle when

-102942 . 13 < x < 102942.13

For arguments outside this interval , a diagnostic NaN is
produced . The accuracy of the COS function cannot be guaranteed
outside this interval because of argument reduction errors .

The Arctangent(ATAN) Function
The ATAN(x) (or inverse tangent) function takes any real number,
x (including + or - infinity), and returns the angle that is the
arctangent.

R = ATAN(x) -pi/2 <= R <= pi/2

The Natural Logarithm(LN) Function
The LN(x) function takes any non-negative positive real value x,
and returns its natural logarithm except when

The Transcend and Realmodes Units 7

x is denormalized (l . 175494E-38 > x > 7. 006492E-46) in
Warning mode;

x is negative; or
x is 0 in Projective mode .

For any of these exceptions the Invalid Operation Signal is set .
If the HALT on Invalid switch is not set , a diagnostic NaN is
returned .

The Logarithm(LOG) Function
The LOG(x) function takes any non-negative positive real value,
x, and returns its base 10 logarithm except when

x is denormalized (l . 175494E-38 > x > 7. 006492E-46) in
Warning mode;

x is negative; or
x is 0 in Projective mode .

For any of these exceptions the Invalid Operation Signal is set.
If the Halt on Invalid switch is not set , a diagnostic NaN is
returned.

The Exponential(EXP) Function
The EXP(x) function takes a real value, x, and computes e raised
to the x power except when

x is + or - infinity in Projective mode .

This causes the Invalid Operat~on Signal to be set. If the Halt
on Invalid switch is not set, a diagnostic NaN is returned.

Summary of Special Values and Results
The figure below summarizes special values and results for ea ch
function .

The square root and transcendental functions almost always
set the Inexact Signal (except for special cases, such as
SIN(0) = 0).

8 Apple III Pascal

SQUARE ROOT, REMAINDER, AND TRANSCENDENTAL FUNCTIONS:
Summary of Special Values and Results

Function Argument Mode Result Signal

SQRT -0 any -0 none
+infinity Affine +infinity none
+infinity Proj NaN Invalid Operation
negative any NaN Invalid Operation
Deno rm Warning NaN Invalid Operand
NaN any argument none

REM (x,y) y = 0 any NaN Invalid Operation
x is infinite any NaN Invalid Operation
y is a Denorm Warning NaN Invalid Operand
NaN any argument none

SIN out of range* any NaN Argument Reduction
Error

NaN any argument none

cos out of range* any NaN Argument Reduction
Error

NaN any argument none

ATAN +infinity any pi/2 Inexact
-infinity any -pi/2 Inexact
NaN any argument none

*The range for sine and cosine is - 102942 . 136 < x < 102942.13 •

The Transcend and Realmodes Units 9

SQUARE ROOT, REMAINDER, AND TRANSCENDENTAL FUNCTIONS:
Summary of Special Values and Results

Function Argument Mode Result Signal

LN +infinity Affine +infinity none
+infinity Proj NaN Invalid Operation
negative any NaN Invalid Operation
Deno rm Warning NaN Invalid Operand
+/-'/J any -infinity none
NaN any argument none

LOG +infinity Affine +infinity none
+infinity Proj NaN Invalid Operat ion
negative any NaN Invalid Operation
Deno rm Warning NaN Invalid Operand
+/-'/J any -infinity none
NaN any argument none

EXP +infinity Affine +infinity none
+infinity Proj NaN Invalid Operation
-infinity Affine '/J none
-infinity Proj NaN Invalid Operation
NaN any argument none

10 Apple III Pascal

The PGRAF Unit 11

12 Apple III Pascal

The PGRAF unit provides a convenient Pascal interface to the
system's graphics driver, which is known by the SOS device name
.GRAFIX or the Pascal device name GRAPHIC: (or unit #3:).
(Complete details on the graphics driver are given in the
Standard Device Drivers Handbook.)

PGRAF is an intrinsic unit in the SYSTEM.LIBRARY file . To
compile or execute a program that uses the PGRAF unit, this unit
must be either in the SYSTEM.LIBRARY file on the system diskette,
or in the program library (see Chapter 14).

To use the facilities of the PGRAF unit, the program must have a
USES declaration containing the identifier PGRAF, immediately
after the program heading; for example,

PROGRAM PLOTCURVES;
USES PGRAF, REALMODES, TRANSCEND;

The public procedures, functions, and data types of the PGRAF
unit are then available to the program.

Before any program that uses PGRAF can be executed, you
must use the system-level Options command to reserve the
necessary memory space for graphics display buffers.
Details are given below in the section on "Memory Usage ."

Throughout this appendix, you will find references to
"default" values and options. Many of these defaults are
provided by the graphics driver, rather than by PGRAF, and
can be changed at the driver level via the System
Configuration Program on the UTILITIES diskette; see the
Standard Device Drivers Handbook for details.

Note that the PGRAF unit is not the only way to use the
graphics driver; you can also use UNITWRITE (see Chapter
12) to send characters directly to the graphics driver,
referencing it as unit number 3. Similarly, you can use
UNITREAD to input characters from the graphics driver (see
last section of this appendix). Use a "mode" value of 12
with UNITREAD and UNITWRITE when communicating with the
graphics driver.

The PGRAF Unit 13

Overview
Before describing the actual procedures and functions of the
PGRAF unit , we present an overview of the concepts and operations
involved .

Graphic Displays
An Apple III graphic display can be thought of as a rectangular
array of dots (sometimes called "pixels") . An X, Y coordinate
system is superimposed on this dot array; the origin (0 , 0) is at
the lower left-hand corner of the array , with X increasing to the
right and Y increasing toward the top of the display . This is
strictly an integer coordinate system . The height of the display
is always 192 dots , with Y coordinates in the range 0 •• 191; the
width in dots depends on the selected "graphics mode" as
explained below .

Another feature of the display is an invisible cursor which is
used as a position reference in certain operations . There are
also procedures for moving the cursor without affecting the
display .

Graphics Modes
There are four distinct modes for Apple III graphics . Each mode
is characterized by the number of dots in each horizontal row on
the physical screen and by the colors available :

- BW280 : In this mode the only available colors are
black and white . The screen is treated as 280 dots
wide and 192 dots high ; that is , X coordinates are in
the range 0 •• 279 and Y coordinates are in the range
0 • • 191 .

- BW560: This is identical to BW280 except that the
horizontal scale is 560 dots instead of 280 . X
coordinates are in the range 0 •• 559 and Y coordinates
are in the range 0 •• 191 .

14 Apple III Pascal

- COL140: In this mode, 16 colors are available. The
horizontal scale is 140 dots; X coordinates are in the
range 0 •• 139 and Y coordinates are in the range
0 .. 191.

- CP280: In this mode, 16 colors are available but there
are fpecial limitations. The horizontal scale is 280
dots; X coordinates are in the range 0 •• 279 and Y
coordinates are in the range 0 •• 191. A full
explanation of this mode is left until the end of this
appendix .

The digits in the identifier of each mode indicate the horizontal
scale.

In each mode , two distinct display buffers are available, as
explained below. The size of these buffers depends on the
graphics mode selected . Before executing any program that uses
PGRAF, you must use the system-level Options command to tell the
system how much memory must be reserved for display buffers.
Details are given below in the section on "Memory Usage."

Dots and Lines
PGRAF provides a set of procedures for plotting dots and lines .
When PGRAF plots a line , it does so by plotting a sequence of
dots; thus everything that PGRAF does can be thought of in terms
of dots .

A dot is plotted by giving its X,Y coordinates . A line is
plotted by giving one pair of X, Y coordinates; the result is a
line from the current cursor position to the specified
coordinates . Alternatively , you can give X and Y displacements
instead of absolute coordinates; the displacements are taken
relative to the cursor position .

Colors
There are sixteen colors , with the following identifiers and
ordinalities:

The PGRAF Unit 15

Ordinalit;>: Identifier Ordinalit;>: Identifier
0 BLACK 8 BROWN
1 MAGENTA 9 ORANGE
2 DARKBLUE 10 GREY2
3 PURPLE 11 PINK
4 DARKGREEN 12 GREEN
5 GREY! 13 YELLOW
6 MED BLUE 14 AQUA
7 LIGHTBLUE 15 WHITE

In the black-and-white modes, all colors other than BLACK are
converted to WHITE. Also, note that the colors produce a
16-level grey scale on the Apple Ill's black/white video output.

Control of Color
At all times, there is a currently selected pen color and a
currently selected fill color. PGRAF provides procedures for
selecting these colors. By default the pen color is WHITE and
the fill color is BLACK.

In the simplest way of using graphics, plotting a dot changes its
color to the current pen color. A specified area of the display
can be "erased" by a filling operation; this changes all the dots
in the area to the fill color.

A great deal can be done with just these simple techniques. More
powerful techniques make use of two controllable processes that
affect every plotting or filling operation:

- A color table is used to modify the color used for
plotting or filling. The resulting color at any point
depends on the source color (pen color or fill color)
and may also depend on the existing color of the dot.

The color table is always applied to the pen color when
a dot is plotted, or the fill color when a dot is
filled. By default, the color table specifies that the
result is always the same as the source color, but you
can c~ange this.

- A transfer option is used to determine how the
resulting color from the color table is applied to the
actual dot on the display. The effect on the display
depends on the color from the color table, and may also
depend on the existing color of the dot.

16 Apple III Pascal

The transfer option is always applied to the color that
results from applying the color table. By default, the
transfer option specifies that the result from the
color table is the new color of the dot, but you can
change this.

By changing either the color table or the transfer option, you
can cause the colors to be modified before they are actually
placed on the display . Usually , only one of these methods is
used1 at a time (usually the color table); however, exotic
combinations may prove useful in certain cases .

The use of the color table and the transfer option are explained
further on . The following diagram shows the transformations that
are always applied to a color before it appears on the display:

PEN COLOR (plotting)
or

FILL COLOR (filling)

COLOR TABLE (by
default, this has

no effect).

Current display
buffer (in memory) .

If mode is a black/
white mode, all

colors except BIACK
are changed to WHITE.

TRANSFER OPTION (by
default, this has no

effect).

Current display
buffer shows
on screen if
the program
requests it.

The "current display buffer" concept is explained further on.

The Viewport
One of the PGRAF procedures allows you to define the boundaries
of the current viewport. This is the area of the display that
can be affected by plotting and filling operations; by default ,
the viewport is the whole display . If the program tries to plot
or fill outside the viewport there is no effect . If a line is
plotted and any portion of it is outside the viewport, only the
part that is in the viewport is actually plotted .

The PGRAF Unit 17

Note, however, that the motion of the invisible cursor is not
limited by the viewport boundaries.

The FILLPORT procedure fills the current viewport with the fill
color; this is a useful way of clearing the viewport.

Display Buffers
Up to this point we have used the term "display" and avoided the
term "screen." The reason is that the output from graphics
procedures does not go directly to the screen but to the current
display buffer. A display buffer is a memory area containing a
coded representation of dot colors on a screen. The graphics
output affects the data in the current display buffer, but the
current display buff er is not shown on the physical screen until
the program specifically requests this .

If enough memory has been reserved (see "Memory Usage" below),
two display buffers are available simultaneously for the current
graphics mode. This means that a program can set up a display on
the screen, change to a different display buffer , and create a
different display without disturbing the screen. When the new
display is ready , the program can cause the screen to show the
new buffer.

Text on a Graphics Display
By using WRITE or UNITWRITE, a program can put characters on a
graphics-mode display . Each character is drawn in the current
pen color, on a background of the current fill color; these
colors may be changed by the color table or transfer option .

By default, the characters are drawn in the same system character
font used in text mode. Alternatively, the program can switch to
a user-defined font (which can, if desired , have a different
character size than the system font) .

Copying an Image
A program can use internal data (such as a packed array of
boolean) to represent dots on the display . A specialized
procedure is provided to transfer the pattern of bits in the
array to a pattern of dots on the the display, plotting one dot
(with the current pen color) for a 1 bit and filling one dot

18 Apple III Pascal

(with the current fill color) for a 0 bit. The colors may be
modified by the color table or transfer option. This is a
high-speed procedure and is useful for doing animation.

Memory Usage
For each of the four graphics modes, two display buffers are
defined (referenced by the numbers 1 and 2). Before you can
execute a program that uses graphics you must first use the
system-level Options command to tell the system how much memory
is required for graphics buffers. You can determine this from
the following diagram.

, ,
/

/

/
/ /

"v~ , , /
,

I I "' I I
I I
I I

COL140,
l

CP280,
I

BW5611J, l I
I I

Buff er 2 Buff er 2 I Buffer 2 I
I I

iQ1o-. I l Total memory I I
I I),

(bytes) I I usage
I

/ / /
/

/ ,
l
I BW280, 'O~ I
I
I Buffer 2 BW560, COL140, CP280, I
I

Buff e r 1 Buff er 1 Buffer 1 BW280,
Buffer 1

~~

For any one mode, the two buffers are separate; and the two BW280
buffers are separate from buffer 2 of any other mode. Buffers
that are separate from each other can be used independently to
store different images.

Note that the space required by graphics buffers is subtracted
from the memory space available for the program itself.

If your program attempts to use a graphics mode or buffer that
has not had the required space allocated via the Options command,
PGRAF will halt the program with an error message .

The PGRAF Unit 19

Saving and Loading Display Buffers
Simple methods are provided for saving the current display buffer
in a diskette file, and for subsequently retrieving it from the
file to the current display buffer .

Summary of PGRAF Routines
The remainder of this appendix is concerned with the actual
operation of the procedures and functions of PGRAF. They are:

- GRAFIXMODE to select the graphics mode and the current
display buffer; GRAFIXON to show the current buffer on
the screen; TEXTON to show the normal text display on
the screen .

- PENCOLOR and FILLCOLOR to set colors for plotting and
filling. In all operations that use these colors, the
colors may be modified by the color table and the
transfer option.

- VIEWPORT to set the boundaries of the viewport.

- INITGRAFIX to reinitialize the conditions for graphics
operations. The color table and transfer option are
set to normal, the viewport to full screen, and the
cursor to the lower left corner . Nothing else is
changed.

- LINETO, LINEREL, DOTAT, DOTREL, and DRAWIMAGE for
plotting; FILLPORT for filling the viewport; MOVETO and
MOVEREL for moving the cursor.

- XYCOLOR, XLOC, and YLOC are functions that return
information about the current display.

- SETCTAB and XFROPTION to change the color table and
transfer option.

20 Apple III Pascal

- NEWFONT for changing to a user-defined font for text in
graphics, and SYSFONT for restoring the normal system
font .

GSAVE for saving the current display buffer in a
specified diskette file, and GLOAD for retrieving a
saved image into the current display buffer .

Initial Conditions
When you execute a program that contains a USES PGRAF
declaration, the PGRAF unit goes through a one-time
initialization sequence before any of the main program's
statements are executed. This initialization commands the
graphics driver to go into its default state; unless the driver's
defaults have been changed via the System Configuration Program,
the defaults are

Graphics mode:
Display buffer:
Viewport:
Cursor position:
Pen color:
Fill color:
Transfer option:
Color table:
Font for text in graphics:

BW280
1
Full screen
0 , 0 (lower left corner)
White
Black
Normal (0)
Normal (see below)
Current system font.

The "normal" color table and transfer option mean that the pen
color and fill color are not altered during the plotting or
filling operations.

GRAFIXMODE
The GRAFIXMODE procedure sets the current graphics mode and
selects a display buffer. It takes two parameters, which are of
types GHODE and GBUF; these types are defined in the PGRAF unit
and can be used by any program that uses PGRAF:

GMODE = (BW280, CP280, BW560, COL140);
GBUF = 1. .2;

The PGRAF Unit 21

The form for calling GRAFIXMODE is

GRAFIXMODE (MODE, BUFFER)

where MODE is an expression with a result of type GMODE and
BUFFER is an expression with a result of type GBUF. For example,

GRAFIXMODE(BW280, 2)

changes the current graphics mode to BW280 and selects buffer 2.
This does not affect the screen; it simply causes subsequent
graphics operations to affect display buffer 2 of BW280 mode.
This buffer is not shown on the screen until requested by the
GRAFIXON procedure (see below).

GRAFIXON and TEXTON
The GRAFIXON procedure takes no parameters. It causes the
current display buffer to appear on the screen. Note that this
is the only way to cause a newly selected buffer to appear on the
screen. A program that uses PGRAF begins executing with the
screen still displaying the normal text display; therefore it
must call GRAFIXON at some point in order to put any graphics on
the screen.

The TEXTON procedure takes no parameters. It causes the current
text-mode display to appear on the screen. Note that while a
graphics buff er is being shown on the screen, any operations that
would normally put text on the text display still do so; if the
program subsequently calls TEXTON, the text display that appears
on the screen will reflect these operations.

When a program terminates while showing graphics on the screen, a
TEXTON operation is automatically performed to return the screen
to normal text mode. This includes both normal termination at
the end of a program, and error halts.

PENCOLOR and FILLCOLOR
The PENCOLOR and FILLCOLOR procedures set the colors to be used
for plotting and filling operations, repectively. They each take
a single parameter, which is of type SCREENCOLOR; this type is

22 Apple III Pascal

defined in the PGRAF unit and can be used by any program that
uses PGRAF:

SCREENCOLOR BLACK, MAGENTA, DARKBLUE, PURPLE, DARKGREEN,
GREY!, MEDBLUE, LIGHTBLUE, BROWN, ORANGE,
GREY2, PINK, GREEN, YELLOW, AQUA, WHITE);

The form for calling PENCOLOR is

PENCOLOR (COLOR)

where COLOR is an expression with a result of type SCREENCOLOR.
For example,

PENCOLOR(LIGHTBLUE)

changes the pen color to LIGHTBLUE; subsequent plotting
operations will use this color (which may be modified by the
color table and transfer option).

The form for calling FILLCOLOR is

FILLCOLOR (COLOR)

where COLOR is an expression with a result of type SCREENCOLOR.
For example,

FILLCOLOR(YELLOW)

changes the fill color to YELLOW; subsequent filling operations
will use this color (which may be modified by the color table and
transfer option).

WEWPORT
The VIEWPORT procedure sets the boundaries of the viewport. The
viewport is simply the area of the display that can be affected
by plotting and filling operations . The form for calling
VIEWPORT is

VIEWPORT (LEFT, RIGHT, BOTTOM , TOP)

where all four parameters are expressions with results of type
integer. If any parameter exceeds a boundary of the current

The PGRAF Unit 23

graphics mode, it is replaced by the applicable boundary value.

INITGRAFIX
The INITGRAFIX procedure has no parameters and can be called at
any time. It reinitializes four of the operating conditions to
their default state:

- The color table is set to its normal state, i.e. no
effect on specified colors.

- The transfer option is set to its normal state, i.e. no
effect on color results from the color table.

- The viewport is set to full screen.

- The cursor is moved to the (0,0) point, i.e. the lower
l eft corner of the screen.

MOVETO, LINETO, and DOTAT
All three of these proc·edures move the cursor to a new position,
which is specified by its absolute X and Y coordinates. MOVETO
does nothing else except move the cursor; LINETO draws a line
from the original cursor position to the new one, using the
current pen color; and DOTAT plots a single dot at the new cursor
position, using the current pen color. The pen color may be
modified by the color table and transfer option. The forms for
calling MOVETO, LINETO, or DOTAT are

MOVE TO XCOORD, YCOORD

LINE TO XCOORD, YCOORD

DOTAT (XCOORD, YCOORD

where XCOORD and YCOORD are expressions with results of type
integer and indicate absolute X and Y coordinates on the
display.

If any part of a line drawn by LINETO lies outside the current
viewport, that part of the line is not plotted . Likewise DOTAT

24 Apple III Pascal

will not plot a dot outside the current viewport. In all cases,
however, the cursor is moved to the new position even if it lies
outside the viewport.

MOVEREL, LINEREL, and DOTREL
These procedures are similar to MOVETO, LINETO, and DOTAT, except
that the new cursor position is specified by its X and Y
displacements relative to the original cursor position. The
forms for calling MOVEREL, LINEREL, or DOTREL are

MOVEREL DX, DY)

LINEREL DX, DY ')

DOTREL (DX, DY)

where DX and DY are expressions with results of type integer and
indicate relative X and Y displacements on the display.

Since these are automatically added to the original cursor
coordinates, it is possible for the mathematical result to
exceed the limits of Pascal integer values, which are
-32768 and 32767. If the new X or Y coordinate of the
cursor would exceed one of these limits, then the limit is
used as the new coordinate value.

FILLPORT
The FILLPORT procedure takes no parameters. It fills every dot
in the current viewport with the current fill color. The color
at each point on the display may be modified by the color table
or transfer option (see below). If the color table and transfer
option are in their default states, the effect of FILLPORT is to
erase everything in the current viewport.

The PGRAF Unit 25

XYCOLOR, XLOC, and YLOC
The XYCOLOR, XLOC, and YLOC functions return information about
the current display. They take no parameters.

XYCOLOR returns an integer value, which is the ordinality of the
color found in the current display buffer at the current cursor
position.

XLOC and YLOC return integer values which are the X and Y
coordinates of the current cursor position, respectively.

Another way to obtain the color of screen dots is to read
from the graphics driver with UNITREAD. See last section
of this appendix .

Text in Graphics
To put text onto a graphic display, simply output the text to the
graphics driver. This can be done with WRITE if you declare a
file variable of type INTERACTIVE and open it with REWRITE and
the name 'GRAPHIC:' as in the following example:

VAR GSCREEN: INTERACTIVE;

REWRITE(GSCREEN, 'GRAPHIC:');

WRITELN(GSCREEN, 'Hello!');

The string 'Hello!' will be displayed . By default, the system
character font is used but you can specify a different font as
explained in a later section. The characters are drawn in the
current pen color on a background of the current fill color
(possibly modified by the color table and transfer option).

The string is positioned with the upper left corner of the
first character at the current cursor position, and the
cursor is moved into position for the next character to
follow, in case there is one.

26 Apple III Pascal

Another way to write text to the graphics driver is to use
UNITWRITE with the value 3 as the "unitnum" parameter. To create
the same effect as the previous example, you can declare a string
variable and write its value out as follows:

VAR MSG: STRING;

UNITWRITE(3, MSG[l], LENGTH(MSG), 0, 12);

Note that the string must be subscripted, since UNITWRITE will
treat it as a simple PACKED ARRAY OF CHAR with indices beginning
at 0; the characters of the string start at [l], not at the first
byte of the string variable.

DRAW/MAGE
This is a high-speed procedure that draws a rectangular image ,
using data from a program variable as its input. The variable is
typically a two-dimensional packed array of boolean, but can
actually be any variable. It is considered as a sequence of
bytes of data in memory. The bits within these bytes are mapped
into dots on the display.

The sequence of bytes is considered to be broken into groups of a
specified length, representing rows; then each of these rows is
considered as a row of bits (eight bits for each byte). Thus
DRAWIMAGE treats the variable as a two-dimensional array of
bits.

Depending on the parameters, DRAWIMAGE can use the entire array
of bits or it can select any rectangular subarray. This subarray
is mapped to a rectangular area of the display buffer, using each
bit to represent one dot. A "l" bit is considered to represent
the current pen color, and a "0" bit is considered to represent
the current fill color; these colors may be modified by the color
table or transfer option.

The first row of bits in the array (or subarray) becomes the top
row of the image, and the last row of bits becomes the bottom row
of the image. Within a row, the first bit is at the left edge of
the image and the last bit is at the right edge . The upper left
corner of the image (corresponding to the first bit in the first
row) is placed at the current cursor position. The cursor is not
moved.

The PGRAF Unit 27

The type and size of the variable are not checked in any
way. DRAWIMAGE simply starts with the first (least
significant) byte of the variable and proceeds to use the
bytes that follow it in memory. The number of bytes that
DRAWIMAGE uses, and the way they are broken up into rows,
are determined entirely by the parameters passed to
DRAWIMAGE as explained below.

The form for calling DRAWIMAGE is

DRAWIMAGE (SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT)

where the parameters are as follows:

SOURCE is a reference to any program variable; its
least significant byte is the starting point for
DRAWIMAGE.

ROWSIZE is an expression with an integer value and
specifies the size, in bytes, of each row in the array
of bytes. ROWSIZE should always be an even value when
using two-dimensional arrays, since Pascal aligns each
row in the array on a word boundary.

XSKIP is an expression with an integer value and
specifies the number of bits to be skipped at the
beginning of each row in the array. This parameter and
the remaining parameters have the effect of selecting a
subarray within the array.

YSKIP is an expression with an integer value and
specifies the number of rows to be skipped in the
array.

WIDTH is an expression with an integer value and
specifies the number of bits to be taken from each row
(starting at XSKIP).

HEIGHT is an expression with an integer value and
specifies the number of rows to be taken from the array
(starting at YSKIP).

The following diagram summarizes the meanings of the parameters:

28 Apple III Pascal

in
memory

row size

least significant bit
of least significant byte

of source variable.
in bytes ~

-----"---~

yskip (rows)
.___ xskip-+J.. _____ _

(bits) IMAGE to be
drawn. One
bit becomes
one dot on
display.

current

For example, suppose that we have a 20xl0 packed array of boolean
values declared as follows:

VAR PIC: PACKED ARRAY[0 • • 19, 0 • • 9] OF BOOLEAN;

Since the array is packed, each boolean value will occupy just
one bit. Note two important points about the dimensions of this
array:

- The first dimension specifies the number of rows in
PIC, and the second specifies the number of values
(bits) in each row. This means that in a subscripted
reference to PIC, the first subscript is a Y coordinate
and the second is an X coordinate . This is important
to know when you write statements to put some pattern
of bits into PIC.

The PGRAF Unit 29

- Although each boolean value is packed down to one bit,
each row of 10 values is not packed down to 10 bits:
each row is packed to an integral number of two-byte
words. In the present case, each 10-bit row is packed
down to one word, or two bytes. In a two-dimensional
packed array of boolean, you can calculate the number
of bytes occupied by each row from the expression

2*((N+lS) DIV 16)

where N is the number of packed boolean values in each
row. The result of this expression is the "row size"
to be specified to DRAWIMAGE.

Now suppose that a 20xl0 image has been put into PIC, and we want
to draw it on the display. The DRAWIMAGE call is

DRAWIMAGE(PIC, 2, 0, 0, 10, 20)

where we specify PIC as the SOURCE variable, 2 as the ROWSIZE, 0
as the XSKIP, 0 as the YSKIP, 10 as the WIDTH, and 20 as the
HEIGHT. Each boolean value in PIC is transformed into a display
dot, using the current pen color, color table, and transfer
option. The upper left corner is placed at the current cursor
position.

The Color Table
The SETCTAB procedure sets the color table. As previously
mentioned, the color table is applied to the pen color or fill
color whenever a display dot is plotted or filled; by default it
has no effect. By changing the color table, you can cause the
resulting color to depend on the source color (pen color or fill
color) and the existing color of each display dot that is
affected.

The form for calling SETCTAB is

SETCTAB (SOURCE, OLD, RESULT

where all three parameters are expressions with results of type
SCREENCOLOR. The effect is that whenever a dot is plotted or
filled with the specified SOURCE color, and the existing color of
that dot is the specified OLD color, then the RESULT color is

30 Apple III Pascal

used instead of the SOURCE color.

For example, suppose that we want to protect all yellow dots on
the display from being drawn over by any other color. We have
declared a variable of type SCREENCOLOR:

VAR COL: SCREENCOLOR;

Now we can protect all yellow dots as follows:

FOR COL := BLACK TO WHITE DO SETCTAB(COL, YELLOW, YELLOW)

This changes the color table so that for all possible SOURCE
colors (from BLACK to WHITE), if the OLD color of a dot is YELLOW
then the RESULT color is also YELLOW. Later we can change the
color table again so that one color, ORANGE, can draw over a
YELLOW dot:

SETCTAB(ORANGE, YELLOW, ORANGE)

More complicated effects can also be achieved. Suppose that we
have an image on the display in GREEN and WHITE on an AQUA
background. The color table is in its default state (no
effect). Now we want to create a "night" effect by changing the
display so that the background becomes BLACK, each GREEN dot
becomes DARKGREEN, and each WHITE dot becomes GREY!. We can do
this as follows:

SETCTAB(BLACK, GREEN, DARKGREEN);
SETCTAB(BLACK, WHITE, GREY!);
FILLCOLOR(BLACK);
FILLPORT

When the viewport is filled with BLACK, each AQUA dot is changed
to BLACK because we made no changes to the color table for AQUA.
Each GREEN dot is changed to DARKGREEN, and each WHITE dot is
changed to GREY!.

The color table can always be set back to its default condition
(no effect) by the INITGRAFIX procedure .

When the color table is in its default condition, all
plotting and filling operations will run faster.

The PGRAF Unit 31

The Transfer Option
The XFROPTION procedure sets the transfer option. As previously
mentioned, the transfer option is applied to the result from the
color table whenever a display dot is plotted or filled; by
default it has no effect.

By changing the transfer option, you can cause the resulting
color to depend on the result from the color table and the
existing color of each display dot that is plotted or filled.
You can do this in any mode, but its main usefulness is in the
black-and-white modes.

While the color table operates at the level of specified colors,
the transfer option operates at the level of the 4-bit patterns
that are used internally to represent colors. Each color is
represented internally as a 4-bit pattern whose numeric value is
the ordinality of the color. Thus the color BLACK has an
ordinality of 0, and is represented internally as 0000; the color
ORANGE has an ordinality of 9 and is represented internally as
1001, and so forth.

The transfer option specifies a bitwise logical operation upon
the source color (pen color or fill color) and the old (existing)
color of a display dot. For example, since ORANGE is represented
as 1001 and AQUA is represented as 1110, we can say that the
meaning of ORANGE AND AQUA is the color represented by 1000,
namely BROWN. In a black-and-white mode, the only color values
are 0000 (BLACK) and 1111 (WHITE). BLACK AND WHITE means BLACK,
while BLACK OR WHITE means WHITE.

By default, the transfer option specifies that the 4-bit result
is the same as the 4-bit representation of the source color. The
other transfer options specify various 4-bit logical operations
involving the source color and the old color; most of them are of
greatest use when you are working in a black-and-white mode, but
some are useful in full color.

The form for calling XFROPTION is

XFROPTION (OPTION)

32 Apple III Pascal

where OPTION is an expression with a result of type integer, in
the range @ .. 7. This value selects one of the 8 transfer
options. Each of the options specifies a 4-bit logical operation
as follows, given a SOURCE color (result from the color table)
and an OLD color (existing on the display):

0: The default option; result is SOURCE, regardless of the
OLD color on the display.

1: The "overlay" option; the result is SOURCE OR OLD. A
white dot is unaffected when drawn over with either
black or white; a black dot is changed to the SOURCE
color. For effects in 16-color modes, see the Standard
Device Drivers Handbook.

2: The "invert" option; result is SOURCE XOR OLD . This is
a particularly useful option, which works with full
color as well as with black and white. If you draw in
any color, over any background, the result will
probably be clearly visible; and if you subsequently
repeat the drawing with the same color, the effect is
to erase the drawing and restore the background to what
it was originally.

3: The "erase" option; result is (NOT SOURCE) AND OLD.
This also works with full color. If you draw something
using the default option , and subsequently repeat the
drawing with the "erase" option, the result is all
black.

4: The "inverse replace" option; result is NOT SOURCE.
Same as the default option, except that a "negative"
image is produced. For effects in 16-color modes, see
the Standard Device Drivers Handbook.

5: The "inverse overlay " option; r esult is (NOT SOURCE) OR
OLD.

6: The "inverse invert" option; result is (NOT SOURCE) XOR
OLD.

7: The "inverse erase" option; result is SOURCE AND OLD.

The transfe r option can always be set back to its default state
by the INITGRAFIX procedure.

The PGRAF Unit 33

NEWFONT and SYSFONT
The NEWFONT and SYSFONT procedures are used to change the font
used for displaying text as part of a graphic display. NEWFONT
changes to a user-defined font, and SYSFONT changes back to the
system font.

The form for calling NEWFONT is

NEWFONT (FONT, CWIDTR, CHEIGHT

where FONT is a variable reference; the variable should be an
array in which you have created a font definition (see below) .
CWIDTR and CREIGHT are expressions with integer values that
specify the character height and width of the new font, in dots.

The effect is that character images that are drawn by writing
text out to the graphics drive r will be taken from the FONT
variable. Also, the specified character width and height will be
used in moving the cursor when a character is drawn.

NEWFONT has no effect on the font used by the console
driver; it only affects text displayed in graphics mode.

Defining a Font
The font variable's type and size are not checked in any way, and
technically the font variable can be any program variable. The
graphics procedures interpret the font variable as if it had a
type defined as follows :

CONST CHEIGRT
CWIDTH

{character height in the range 0 •• 255};
{character width in the r a nge 0 .• 255};

TYPE CIMAGE = PACKED ARRAY[l •• CHEIGHT, l • • CWIDTH]
OF BOOLEAN;

FONT= PACKED ARRAY[0 •• 127] OF CIMAGE;

where the values of CREIGHT and CWIDTH are the values supplied in
the NEWFONT call . In the following discussion we will as sume
that the progr am itself declares the type FONT as shown above.

34 Apple III Pascal

A variable of type FONT is a packed array of 128 variables of
type CIMAGE, and each variable of type CU!AGE is one character
image. To display a particular character, the graphics driver
uses the character's ASCII code as an index into the font
variable.

Note that the font variable must contain space for the
first 32 ASCII characters, even though they are control
characters and cannot be displayed (if written to the
graphics driver, they cause actions as described in the
Standard Device Drivers Handbook). The displayable ASCII
characters are ASCII 32 through ASCII 126, and their
images must be in corresponding CIMAGE elements of the
font variable.

To draw a character image, the graphics driver uses the DRAWIMAGE
procedure described previously; thus each desired image can be
set up as the contents of a CIMAGE variable by using the
information given under DRAWIMAGE.

GSAVE and GLOAD
You can transfer the contents of the current graphics buffer to a
diskette file by using GSAVE; subsequently, the same program or
another one can retrieve the stored image into the current
graphics buffer by using GLOAD.

The forms for calling GSAVE and GLOAD are

GSAVE pathname

GLOAD pathname

where the pathname is an ordinary pathname for a diskette file.
The file is essentially a data file, but the file type is
"Fotofile." Note that no file variable in your program is used
for these operations. The specified diskette file is only
accessed during execution of GSAVE or GLOAD.

Along with the graphics image, the graphics mode information is
stored by GSAVE. GLOAD sets the current graphics mode to the
mode that was stored by GSAVE.

The PGRAF Unit 35

The CP280 Mode
The CP280 mode is a byproduct of the 40-column, 16-color text
display mode of the console driver. It is not a very
straightforward mode for graphics, but may be useful in some
applications. When used carefully, CP280 mode allows you to draw
certain kinds of images in full color with twice the horizontal
resolution of the COL140 mode.

In the CP280 mode, the display is 192 dots high and 280 dots wide
(same dimensions as the BW280 mode). The individual dots can be
plotted and filled as in the BW280 mode, and all 16 colors can be
used as in the COL140 mode-.,but with an important restriction as
explained below.

Each row of 280 dots can be considered as a row of 40 cells, each
containing 7 dots. Within any particular cell, there can only be
two colors which are called the background and foreground colors
of the cell.

In the other modes, each dot is considered to have a specific
color at a given moment; in the CP280 mode it is useful instead
to think of each dot as being ON or OFF . A dot that is ON
appears in the foreground color of its 7-dot cell; a dot that is
OFF appears in the background color of its cell.

The effect of drawing to a dot in the CP280 mode is this: the dot
is turned ON and the foreground color for the cell that the dot
is in is set to the current pen color (possibly altered by the
color table and transfer option). This becomes the new color of
this dot and of any other dots in the same cell that are ON. The
processes that do this are any of the line and dot plotting
procedures, the DRAWIMAGE procedure (when it uses a "l" bit in
its source data), and text output via the graphics driver (which
uses DRAWIHAGE) .

The effect of filling a dot in the CP280 mode is this: the dot
is turned OFF and the background color for the cell that the dot
is in is set to the current fill color (possibly altered by the
color table and transfer option). This becomes the new color of
this dot and of any other dots in the same cell that are OFF.
The processes that do this are the FILLPORT procedure, the
DRAWIMAGE procedure (when i t uses a "0" bit in its source data) ,

36 Apple III Pascal

and text output via the graphics driver (which uses DRAWIMAGE and
thus fills all the dots in the background of each character) .

For the effect of transfer options other than the default
option , and other information about the CP280 mode , see
the Standard Device Drivers Handbook (section entitled
"The Limited Color Mode" in the chapter on the graphics
driver).

Reading from the Graphics Driver
As explained in the Standard Device Drivers Handbook, successive
bytes read from the graphics driver indicate the colors found on
the display at successive dots , starting at the current cursor
position and proceeding downward , upward , to the left , or to the
right . The default direction is downward but this can be changed
by means of a graphics driver command .

Reading from the graphics driver can be done most conveniently by
using UNITREAD (see Chapter 12) with unit number 3 and mode 12 .

The PGRAF Unit 3 7

The PGRAF Interface
UNIT PGRAF; INTRINSIC CODE 55 DATA 56;

(* VERSION l.00A *)

INTERFACE

TYPE Screencolor=

GMode =
GBuf =
XfrMode
GSCBptr
GSCB =

(Black,Magenta,DarkBlue,Purple,DarkGreen,
Greyl,MedBlue,LightBlue,Brown,Orange,
Grey2,Pink,Green,Yellow,Aqua,White);
(BW280,CP280,BW560,COL140);

1. . 2;
0 .. 7;
AGSCB;
PACKED RECORD

GHMode,GSMode:
GPX,GPY:
GVL,GVR,GVB,GVT:
GCF,GCB:
GFont:
CWidth,CHeight:
GColTab:

END;

VAR FotoFile: FILE;

CHAR;
INTEGER;
INTEGER;
CHAR;
PACKED ARRAY[0 •• 3] OF CHAR;
CHAR;
PACKED ARRAY[0 •• 15,0 •• 7]

OF CHAR;

PROCEDURE GrafixHode(GrfxHMode: GMode; GrfxBuf: GBuf);
PROCEDURE GrafixOn;
PROCEDURE TextOn;
PROCEDURE FillPort;
PROCEDURE PenColor(Color: Screencolor);
PROCEDURE FillColor(Color: Screencolor);
PROCEDURE XfrOption(GrfxSMode: XfrMode);
PROCEDURE SetCTab(Ink,Pixelcolor,Newcolor: Screencolor);
PROCEDURE Viewport(Left,Right,Bottom,Top: INTEGER);
PROCEDURE MoveTo(X, Y: INTEGER);
PROCEDURE MoveRel(DX,DY: INTEGER);
PROCEDURE DotAt (X, Y: INTEGER);
PROCEDURE DotRel(DX,DY: INTEGER);
PROCEDURE LineTo(X,Y: INTEGER);

38 Apple III Pascal

PROCEDURE LineRel(DX,DY: INTEGER);
PROCEDURE NewFont(VAR Font; ChrWidth,ChrHeight: INTEGER);
PROCEDURE SysFont;
PROCEDURE Drawimage(VAR Source; SRowSize,SXskip,SYskip,

Width,Height: INTEGER);
FUNCTION XYcolor: INTEGER;
FUNCTION Xloc: INTEGER;
FUNCTION Yloc: INTEGER;
PROCEDURE GSave(FName: STRING);
PROCEDURE GLoad (FName: STRDIG);
PROCEDURE InitGrafix;

The CHAINS TUFF Unit 39

40 Apple III Pascal

CHAINSTUFF is an intrinsic unit in the SYSTEM.LIBRARY file. To
compile or execute a program that uses CHAINSTUFF, this unit must
be either in the SYSTEM.LIBRARY file on the system diskette, or
in the program library (see Chapter 14).

This unit allows one program to "chain to" another program. This
means that the first program specifies the second one by giving
its filename; the system then executes the second program as soon
as the first one terminates normally.

The CHAINSTUFF unit also allows the first program to pass a
STRING value to the second program; note that this allows almost
any information to be passed, since the string can be a filename
and can thus specify a communications file containing almost
anything.

CHAINSTUFF provides these capabilities in the form of three
procedures named SETCHAIN, SETCVAL, and GETCVAL. To use these
procedures, the program must have a USES declaration immediately
after the program heading:

PROGRAM STARTER;
USES CHAINSTUFF;

The SETCHAIN Procedure
The SETCHAIN procedure call has the form

SETCHAIN (NEXTFILE)

where NEXTFILE is a STRING value (up to 80 characters). It
should be either the name of a code file, or the name of an exec
file with the prefix EXEC//. As soon as the program terminates
normally, the system will proceed to execute the file whose name
is the value of NEXTFILE.

The file is executed exactly as if the X command had been used;
thus it is not necessary to supply the suffix .CODE for a code
file. Exec files are ASCII files; they do not have a standard
suffix attached to their names.

If the program is halted because of any run-time error, the
chaining does not occur. Note that this includes a halt caused

The CHAINSTUFF Unit 41

by the HALT procedure . However a termination caused by the EXIT
procedure is considered a normal termination and the chaining
will work.

The SETCVAL Procedure
The SETCVAL procedure call has the form

SETCVAL (MESSAGE)

where MESSAGE is a STRING value (up to 80 characters). SETCVAL
stores the MESSAGE in a system location called CVAL, where it can
be picked up by another program.

The GETCVAL Procedure
The GETCVAL procedure call has the form

GETCVAL (MESSAGE)

where MESSAGE is a STRING variable whose value is altered by
GETCVAL. GETCVAL picks up the current value of CVAL from the
system and stores it in the MESSAGE variable. Note that if CVAL
has not been set by another program (using SETCVAL), then the
value of CVAL is a zero-length string. once CVAL has been set,
it remains set to the same STRING value until it is changed or
the system is reinitialized or rebooted.

If you execute a program from the main command line, CVAL is set
to an empty string.

42 Apple III Pascal

An Example of Chaining
Suppose that a diskette named /GAMES contains a collection of
game programs whose code files have the following names:

CHESS.CODE
CHECKERS.CODE
BLASTOFF.CODE
GOMOKU .CODE
BACKGAMMON.CODE
BLACKJACK.CODE
HEARTS.CODE
SPROUTS.CODE

The user could use the Filer to display a list of filenames on
the /GAMES diskette, then return to the Command level and use X
to execute a selected program . Instead, however, you can write a
"front-end" program to di splay a menu of all the available games;
the user chooses one by typing a number, and the front-end
program chains to the selected game program:

PROGRAM FRONT;
USES CHAINSTUFF;

VAR GAMENUM: INTEGER;

BEGIN
{Display a greeting}
WRITELN('Welcome to GAMES!');
WRITELN;
{Display the menu}
WRITELN('Select game from list by typing its number:');
WRITELN;
WRITELN('l
WRITELN('2
WRITELN('3
WRITELN('4
WRITELN('5
WRITELN(' 6
WRITELN('7
WRITELN('8
WRITELN;

-- Chess');
Checkers');
Blastoff');
Gornoku');
Backgammon');
Blackjack') ;
Hearts');

-- Sprouts');

The CHAINSTUFF Unit 43

{Get a number from the user}
WRITE('Type a number from 1 to 8, then press RETURN: ');
READLN(GAMENUM);
{Make sure the number is valid}
WHILE NOT (GAMENUM IN [1 •• 8]) DO BEGIN

WRITE('Number must be from 1 through 8--try again: ');
READLN(GAMENUM)

END;
{Set chaining to filename of selected game}
CASE GAMENUM OF

1: SETCHAIN('/GAMES/CHESS');
2: SETCHAIN('/GAMES/CHECKERS');
3: SETCHAIN('/GAMES/BLASTOFF');
4: SETCHAIN('/GAMES/GOMOKU');
5: SETCHAIN('/GAMES/BACKGAMMON');
6: SETCHAIN('/GAMES/BLACKJACK');
7: SETCHAIN('/GAMES/HEARTS');
8: SETCHAIN('/GAMES/SPROUTS')

END
END.

There are several advantages to this. For one thing, the /GAMES
diskette may have many other files besides the actual game
programs, and this could be confusing to the user.

Many game programs ask the user to type in her name, so it can be
used in messages and prompts from the program. You could also
have the FRONT program get the user's name and pass it to the
selected game program. To do this, the FRONT program can declare
a STRING variable, NAME, and then include the following lines
either just before or just after the CASE statement:

{Get user's name and store it in CVAL}
WRITE('Type your name, please: ');
READLN(NAME);
SETCVAL(NAME)

Now a game program that uses the user's name can obtain it by
having its own STRING variable named (for example) UNAME, and
then calling GETCVAL:

GETCVAL (UN AME)

Note that if the FRONT program's codefile is placed on the system
di skette and given the name SYSTEM .STARTUP , the FRONT program
will be run automatically as soon as the system is booted.

44 Apple III Pascal

The APPLESTUFF Unit 45

The APPLESTUFF Unit

46 Apple III Pascal

The APPLESTUFF unit is an intrinsic unit in the SYSTEM.LIBRARY
file. To compile or execute a program that uses the APPLESTUFF
unit, this unit must be either in SYSTEM.LIBRARY or in the
program library (see Chapter 14) .

The APPLESTUFF unit provides procedures and functions that allow
you to do the following:

- Generate random numbers

- Test the keyboard to find out whether a key has been
pressed

- Use the joystick inputs

- Generate sounds on the Apple Ill's speaker

- Read and set information in the Apple III system's
internal date and time .

To use the facilities of the APPLESTUFF unit , the program must
have a USES declaration containing the identifier APPLESTUFF,
immediately after the program heading; for example,

PROGRAM MUMBLE;
USES GRAPHICS, APPLESTUFF;

The public procedures and functions of the APPLESTUFF unit a r e
then available to the program.

The RANDOM Function
RANDOM is an integer function with no pa r ame ters . It r eturns a
pseudo-random va lue unif ormly distribute d between~ a nd 32767 .
If RANDOM is called repeatedly , the result is a pseudo-random
sequence of integers . The stat ement

WRITELN (RANDOM)

will display an integer between the i ndicated limits .

The APPLESTUFF Unit 47

Using the Random Function
A typical application of this function is to get a pseudo-random
number, say, between LOW and HIGH inclusive. The expression

LOW + RANDOM MOD (HIGH-LOW+!)

is sometimes used where results are not critical, but the values
formed by this expression are not evenly distributed over the
range LOU through HIGH. If you want pseudo-random integers
evenly distributed over a range, you can use the following
function:

FUNCTION RAND (LOW, HIGH:INTEGER; VAR ERROR:BOOLEAN):INTEGER;
VAR MAX, DIFF, TEMP: INTEGER;
BEGIN

ERROR := FALSE;
IF LOW > HIGH THEN BEGIN

TEMP : = LOW;
LOW := HIGH;
HIGH := TEMP

END;
{ LOW <= HIGH }
IF LOW < 0 THEN ERROR := HIGH) MAXINT + LOW;
IF ERROR THEN RAND := 0 { error exit }
ELSE BEGIN

END;

DIFF := HIGH - LOW; { 0 <= DIFF <= MAXINT }
IF DIFF = MAXINT THEN RAND := LOW + RANDOM
ELSE BEGIN { 0 <= DIFF < MAXINT }

END

MAX : = MAX INT -
(MAXINT - DIFF) MOD (DIFF + 1);

REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;
RAND := LOW+ TEMP l!OD (DIFF + 1)

END

If HIGH is less than LOW, then the values of HIGH and LOW are
exchanged. If the difference b~tween HIGH and LOW exceeds
MAXINT, then RAND returns 0 and sets the ERROR parameter to
TRUE. Otherwise, RAND returns evenly distributed pseudo-random
integer values between LOW and HIGH (inclusive).

48 Apple III Pascal

Much of the complexity of the RAND function comes from the need
to check that the values of HIGH and LOW are within the range

r/J <= HIGH - LOW < MAXINT

The ARBITRARY function, listed below, is a simpler, faster
version of the RAND function. The ARBITRARY function contains no
error-checking; it must be called with parameter values within
the appropriate range or it will not return a correct result.

FUNCTION ARBITRARY (LOW, HIGH: INTEGER): INTEGER;
VAR MAX, RANGE, TEMP: INTEGER;
BEGIN

RANGE := HIGH - LOW + 1;
MAX : = MAXINT - (MAXINT - RANGE + 1) HOD RANGE;
REPEAT TEMP := RANDOM UNTIL TEMP <= MAX;
ARBITRARY := LOW + TEMP MOD RANGE

END;

The RANDOMIZE Procedure
RANDOMIZE is a procedure with no parameters. Each time you run a
given program using RANDOM, you will get the same random sequence
unless you use RANDOMIZE.

RANDOMIZE uses a time-dependent location to generate a starting
point for the random number generator.

The KEYPRESS Function
This function, which has no parameters, returns TRUE if there are
any characters in the console type-ahead buffer. KEYPRESS does
not read the character from CONSOLE or KEYBOARD or have any other
effect on I/O. The following statement reads the next character
in the type-ahead queue, if any. (CH is a CHAR variable.)

IF KEYPRESS THEN READ(KEYBOARD, CH)

This statement could be used to retrieve a character typed while
the program was doing something else.

The APPLESTUFF Unit 49

Once KEYPRESS becomes true it remains true (so that all
characters will be read from the type-ahead buffer) until a GET,
READ, or READLN accesses either the INPUT file or the KEYBOARD
file, or until a UNITREAD or UNITCLEAR accesses the keyboard
device.

The JOYSTICK Procedure
The JOYSTICK procedure has the form

JOYSTICK (SELECT, XCOORD, YCOORD, B0, Bl)

where SELECT is an integer treated modulo 2 to select one of the
two joysticks numbered 0 and 1. XCOORD and YCOORD are integer
variables which are used to return the coordinates of the
selected joystick. The values returned in XCOORD and YCOORD are
in the range 0 to 255. B0 a nd Bl are boolean variables which are
used to return the status of the two buttons associated with the
selected joystick. The values returned in B0 and Bl are TRUE for
a button that is pressed or FALSE for a button that is not
pressed.

The SOUND Procedure
The SOUND procedure has the form

SOUND (PITCH, DURATION , VOLUME)

where PITCH is an integer from 0 through 86, DURATION is an
integer from 0 through 255, and VOLUME is an integer from 0
through 63.

A PITCH of 0 is used for a r est , and 2 through 86 yield a
tempered (approximately) chromatic scale. DURATION is in
arbitrary units of time, and VOLUME is in arbitrary units of
loudness.

SOUND (1,1,63) gives a click .

50 Apple III Pascal

A chromatic scale is played by the following program:

PROGRAM SCALE;

USES APPLESTUFF;
VAR PITCH, DURATION, VOLUME: INTEGER;

BEGIN

DURATION := 100;
FOR PITCH := 12 TO 24 DO

SOUND (PITCH, DURATION, 63)

END.

Use of this procedure requires the standard device driver
.AUDIO. See the Standard Device Drivers Handbook to find out how
to add this driver to your SOS.DRIVER file.

The Internal Date and Time
The DATE, TIMEOFDAY, CLOCKINFO, and SETTIME procedures let you
read and set information in the Apple III system's internal date
and time.

The DATE procedure has the form

DATE (D)

where D is a string variable to contain the information returned
by DATE. The returned string has the format "YYYYMMDD", where
YYYY is the year, MM is the month (as a two-digit number), and DD
is the day of the month. For example, May 28th, 1945 would be
represented as "19450528".

The TIMEOFDAY procedure has the form

TIMEOFDAY (T)

where T is a string variable to contain the information returned
by TIMEOFDAY. The returned string has the format "HHMMSS", where
HH is the hour (24-hour format), HM is the minute, and SS is the
second. For example, the time 3:44:06 PH would be represented as
"154406".

The APPLESTUFF Unit 51

The CLOCKINFO procedure has the form

CLOCKINFO (YEAR, MON, DAY, DAYOFWK, HR, MIN, SEC, THOU)

where all of the parameters are integer variables used to contain
the date and time information returned by CLOCKINFO. After a
CLOCKINFO call, the variables have the following values:

YEAR ~ the current year.

MON ~ the number of the current month (1 for January
to 12 for December).

DAY ~ the day of the month.

DAYOFWK ~ the number of the day of the week (1 for
Sunday to 7 for Saturday).

HR ~ the hour in 24-hour format.

MIN the minute.

SEC the second.

THOU ~ the millisecond.

The SETTil1E procedure lets you set the internal system date and
time f rom a program.

The SETTIME procedure has the form

SETTIME (T)

where T is a string of eighteen characters representing the date
and time to be r ecorded internally by the system. T has the
format

YYYYMMDDWHHNNSSUUU

52 Apple III Pascal

where the fields are defined as

Field Description Range
YYY.Y year 0000 - 9999
MM month (ill - 12 (Jan - Dec)
DD date of the month (ill - 31
w day of the week 1 - 7 (Sun - Sat)
HR hour in 24-hour format 00 - 23 (midnight to 11 pm)
NN minute 00 - 59
SS second 00 - 59
uuu millisecond 000 - 999

SETTIME checks that each field is in range, but it does not check
consistency between fields. For example, it does not recognize
February 31 as an erroneous date because (il2 is a valid month and
31 is a valid date. Any field that is out of range will be set
to zero by SETTIME.

PADDLE, BUTTON, and NOTE
The PADDLE and BUTTON functions and the NOTE procedure provide
compatibility with Apple II Pascal programs. The PADDLE function
has the form

PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the
four paddle inputs numbered 0, 1, 2, and 3. PADDLE returns an
integer in the range (il to 255 which represents the position of
the selected paddle.

The BUTTON function has the form

BUTTON (SELECT)

where SELECT is an integer treated modulo 4 to select one of the
four button inputs numbered 0, 1, 2 and 3. The BUTTON function
returns a BOOLEAN value of TRUE if the selected game-control
button is pressed, and FALSE otherwise.

The NOTE procedure has t he form

NOTE (PITCH, DURATION)

The APPLESTUFF Unit 53

where PITCH is an integer from 0 through 86 and DURATION is an
integer from 0 through 255.

A PITCH of 0 is used for a rest, and 2 through 86 yield a
tempered (approximately) chromatic scale. DURATION is in
arbitrary units of time.

NOTE (1,1) gives a click.

To use the NOTE procedure you must have the driver .AUDIO in your
SOS.DRIVER file. (See the Standard Device Drivers Handbook for
details.)

54 Apple III Pascal

Floating-Point Arithmetic 55

56 Apple III Pascal

Introduction
This appendix describes the Apple III Pascal implementation of
the IEEE floating-point proposal . The information in this
appendix is needed only if you are concerned with the best
possible accuracy in floating-point calculations .

By default, the improved arithmetic will not do anything
unexpected except that it provides "gradual underflow" of
arithmetic results. Most Pascal programs written for other
UCSD-based systems and recompiled for the Apple III will produce
the same arithmetic results, except for improved performance in
cases where underflow qccurs.

The arithmetic also eliminate s artificially imposed limitations
on the development of algorithms, providing numerical analysts
with additional tools.

This appendix includes two main sections: a description of the
floating-polnt system and an explanation of the functions and
procedures that enable you to configure the arithmetic
environment. At the end of this appendix is a table that
summarizes the Apple III Pascal floating-point system.

IEEE Floating-Point Standard
Recently, the IEEE appointed a committee to study issues of
floating-point arithmetic such as the problems of limited
precision, finite range, .and varying treatment by different
computers of overflow, underflow, and division by zero. The
committee created a Proposed Standard for Binary Floating-Point
Arithmetic (Draft 8.0 of IF.EE Task P754) . The floating-point
operations available in Apple III Pascal conform to this standard
(single precision only) .

Floating-Point Arithmetic 57

The standard specifies

- accuracy of arithmetic, I/O conversions, remainder, and
square root;

- internal number formats;

- rounding modes;

- special optional treatment of exceptions like overflow
and division by zero; and

- configurable arithmetic under program control.

The purpose of the standard is to

- allow programs written in many different environments
to run on computers that adhere to the standar<l; and

- improve diagnostics and error handling.

Definitions
The following definitions are for terms use<l by the IEEE
floating-point standard.

Binary Floating-Point Number. A 32-bit string characterized by
three components: a sign, a signed exponent, and a significan<l.
Its numeric value, if any, is the signed product of its
significand and 2 raised to the power of its exponent.

Exponent. The component of a binary floating-point number that
normally signifies the power to which 2 is raised in determining
the value of the represented number. Occasionally, the exponent
is called the signed or unbiased exponent .

Biased Exponent. Exponents are stored as values that range from
0 to 255. For normalized numbers, the biased exponent equals the
unbiased exponent plus 127 .

Significand. The 24-bit component of a binary floating-point
number that consists of the implicit bit to the left of the
binary point and the fraction field to the right of the binary
point. The implicit bit is not stored.

58 Apple III Pascal

Fraction. The 23-hit field of the significand that lies to the
right of its implied binary point.

NaN. Not a Number. Special 32-hit quantities that are generated
automatically when the result of an arithmetic operation could
not otherwise be specified (for example, 0/0). The internal
format of the NaN contains a code that describes the
circumstances in whj_ch it was generated. If a NaN is an argument
of an arithmetic operation, the result will he a NaN. This
allows programs to run to completion when they would otherwise be
forced to abort.

Exceptions. The IEEE Proposed Standard for Binary Floating-Point
Arithmetic specifies a list of exceptions--special cases in
arithmetic, comparisons, remainder, and square root. The
response to these exceptions is specified to insure a uniform
arithmetic environment.

Exception Signal. Associated with each exception is a signal
that can be set, cleared, and tested. It is set whenever a given
exception occurs and stays set until it is cleared.

Rounding. When the result of an arithmetic operation cannot be
represented exactly as a binary floating-point number (for
example, 1/3 or 1/10), a decision of how to round the result must
be made. There are four rounding methods that can he selected.
These methods are described in a later section of this appendix.

Infinities. Infinities are signed quantities that behave like
very large numbers. They are generated by overflows and division
by zero, and can he arguments in arithmetic operations and
comparisons.

Normalized Numbers. The storage format of all binary
floating-point numbers except infinities, NaNs, and denormalized
numbers (certain values at the upderflow threshold). Normalized
numbers are characterized hy the assumption of a leading 1 in the
significand.

Denormalized Numbers. A special treatment of underflow may
produce a nonzero number when an Apple II program would have
aborted. These numbers are characterized by a special format
that is not normalized (the leading bit of the significand is 0
and the exponent is -126) •

Floating-Point Arithmetic 59

Exceptions
The IEEE standard lists the following set of exceptional
conditions in floating-point arithmetic:

Overflow
Underflow
Division by zero
Inexact result
Invalid operation

Apple III Pascal adds a sixth exception to this list:

Integer conversion

The integer conversion exception is signaled by TRUNC and ROUND
if their arguments exceed the bounds of the predeclared type
INTEGER.

Associated with each exception is a "sticky" signal, which is
set each time the exception occurs and is only cleared by an
explicitly programmed call on the SETXCPN procedure.

Each exception can cause the program to halt. The
programmer controls whether or not the occurrence of an
exception halts the program. The section on exception handling
describes how to choose halt or continue for each exception,
and what the result is for each exception when it occurs.

To test whether or not an exception occurred during the
evaluation of an expression or procedure, be sure to clear
the signal before evaluating the expression or procedure,
then test the signal after evaluating the expression or
procedure.

Overflow
The overflow exception occurs when a correctly rounded result is
larger than the largest normalized single-precision real number.
The table below shows that number.

60 Apple III Pascal

Storage Format

Sign= (1,1
Exponent= 254
Fraction= all ones

Meaning Decimal Value

2 254-127 *l • 11 •• 1 3.402R23E3R

The default response to an overflow is a program halt.

Underflow
The standard specifies a treatment of un<lerflow called "gradual
underflow". On many computers, a single-precision result less

than the underflow threshold (2 "126 on Apple II Pascal) will
cause a zero result. For example,

if A = 2 ·126 then A/2 = 0

The standard specifies that if the exponent of a numher is
smaller than -126, the significand is right-shifted
(denormalized) until the numher is correctly represented. For
example, representing the significand in hinary,

A=l .x2·126

A/2=</J. lxz ·126

A/ 4=0. 0 lx2 "126

A/2N·=</J.</J •• </Jlx2 "126 (with N leading zeros)

If N is greater than 23, A is set to </!.

This procedure is called gradual underflow, and it reduces the
impact of underflow to he comparahle to rounding errors. The
default response to an underflow exception is to continue.

The underflow exception occurs when the Magnitude of a nonzero
result is:

- in normalizing mode, less than 1.1754944 x 10"38 (2"126)

(result is not necessarily </J); or

Floating-Point Arithmetic 61

- in warning mode, less than 1. 17 549M x H~ ·35 (2 ·126)

and further denormalized. For example,

2·140 * 2 is not an underflow, hut

2 ·140 / 2 is an underflow
(the result will not necessarily be r/!.)

Division by Zero
The division hy zero exception occurs in a division operation
when the divisor is r/! and the dividend is a finite non-zero
number (for example, 2/r/!). The default is to halt the program.
If continue is set, the result is infinity with the proper sign.

Division of 0 hy r/! is a special case, covered in the section on
invalid operations.

Inexact Result
The inexact exception occurs when a result has heen rounded or
has overflowed. The default response to an inexact result is
to continue.

Invalid Operations
This exception arises in a variety of arithmetic operations.
Any exception other than overflow, underflow, division hy zero,
and inexact result falls in the category of invalid operations.
Invalid operations are exceptions that do not occur frequently
enough to deserve special classification.

The following events are invalid operations:

- if the argument of a function is a NaN that causes an
invalid operation signal (see NaN section);

- addition or subtraction of infinities in Projective
mode; or (+infinity)-(+infinity) or
(+infinity)+(-infinity) in Affine mode;

62 Apple III Pascal

- multiplication of 0 * infinity;

- division of:
- zero by zero,
- Infinity/Infinity, or

in warning mode, A/X where A is finite and not
zero, and X is denormalized;

- Remainder x REM y, where:
- y is zero or denormalized in warning mode, or
- x is infinite;

- Square Root if the operand is :
- less than zero, or
- infinity in the projective mode, or
- denormalized in warning mode;

- conversion of a single- precision real to an integer
when overflow or infinity make a correct conversion
impossible;

comparisons using <,<= , >=, or > when the relation is
unordered.

- SCALB in warning mode, when its operand is denormalized
and the result would be normalized.

The default result of an invalid operation is to halt the
program.

Floating-Point Format
This section describes the format of the numbers used hy the
floating-point system. A normalized, single-precision numbe r has
the form

X = +/- 2E·l27 * (l.F)

The number X above is represented in storage hy the hit string

byte 3
(high addr)

s exponent

31 30' 23 22

byt e 2 byte 1

fraction

byte 0
(low addr)

Floating-Point Arithmeti.c 63

Where:

+/- = sign bit (+ is 0, - is 1),

E exponent, and

F X's 23-bit fraction that, together with an implicit
leading 1, is the significand . The significand ranges
between 1.00 •• 0 and 1 . 11 •• 1 (since the leading bit is
always 1, it is not stored .)

These numbers offer the same precision (slightly more than 7
significant decimal places) as the DEC PDP-11 format and slightly
more than the IBM 370 short format.

In addition to normalized numbers certain other special symbols
a.re required. These are +/- 0 (the sign is only regarded in
division), infinities (the sign bit is sometimes ignored), NaNs,
and denormalized numbers (used to cope with underflow).

The following table presents the format for normalized numbers,
0, denormalized numbers , infinities, and NaNs . For each type of
number, the table gives the range for the sign, exponent, and
fraction. It also gives an interpretation for each type of
number.

SPECIFIC NUMBER FORMATS

Type Sign Exponent Fraction Interpretation

Normalized Number 0,1 1 to 254 Any
n (-l)s *2e-121 * (1. F)

Zeros 0,1 0 0 (-1)5 * 0

Denormalized 0,1 0 Non-Zero (-1) *2s-12s*(0. F)

Infinities 0,1 255 0 +/- Infinity

NANs 0,1 255 Non-Zero (See NaN table)

64 Apple III Pascal

Arithmetic with Denormalized Numbers
Because gradual underflow and denormalized numbers are not
generally familiar, the standard allows arithmetic operations on
denormalized numbers in two modes, normalizing mode and warning
mode.

Normalizing mode (the default) is recommended for most
application development.

Warning mode is intended for use when numerical programs are to
be transported from a non-IEEE floating-point system. Warning
mode prevents promotion of denormalized numbers to normalized
numbers. In Warning mode, if a multiplication or division would
promote a denormalized operand to a normalized result, the
program signals an invalid operation and returns a NaN instead.
For example, the operation

2·145 * 2100 = 2 -45

signals the invalid operation exception and produces a NaN

instead of 2·45 • This is done to prevent an undetected loss
of precision caused by denormalization . Note that this
cannot occur in addition or subtraction. (In Normalizing mode ,
the answer is produced and no warning is given.)

In Warning mode, underflow is signaled only if "further
denormalization" occurs. For example,

2 * 2"145 would not cause an underflow signal, but

2 "145 I 2 would.

(Note that in normalizing mode, both operations would cause the
underflow signal.)

Floating-Point Arithmetic 65

Infinity Arithmetic and Comparisons
On other systems, overflows or division by zero may cause
unpredictable results and sometimes halt the program. An
alternative is provided by the standard in this floating-point
system. The halt switches can be turned off (see the section
on halts) and infinities can be created whenever overflow or
division by zero occurs. Infinities may be positive or
negative.

Affine and Projective Modes
Arithmetic operations and comparisons of the infinities are
done in either of two modes:

Affine (the default), or
Projective.

Affine mode creates a real number system with two infinities,
one positive and one negative:

Linear Infinities

-00 +oo
-----------------------~~~~--<--~~~~-----------------------

Negative..---Decreasing Increasing-----.Positive

Affine Mode

Affine mode is recommended for nearly all applications of
infinity arithmetic .

Projective mode creates a real number system with one
infinity. That number system has the real line as a circle
with the negative and positive real axes meeting at infinity:

66 Apple III Pascal

00 -·-/"'

/ "' / '\
I \
I \

NEG NUMBER POS NUMBER

Projective Mode

In arithmetic operations, the only difference hetween Affine
and Projective mode is when hoth arguments are infinity. In
that case, in Projective mode additions and subtractions
always set the invalid operation exception signal. There are
more significant differences in comparisons.

Rules for Infinity Arithmetic
The two tables below show the results of arithmetic operations
on infinities, with halts disahled to permit a program to
continue after division by zero, invalid operations, overflow,
and underflow. The appropriate exceptions are always signaled.
For multiplication and division, the sign of the result is + if
the operands have the same sign, and - if they have different
signs. Any operation involving a NaN produces a JITaJIT.

Floating-Point Arithmetic 67

Table of rules for arithmetic involving infinities

RESULTS OF ARITHMETIC WITH INFINITIES

operand 2

operand 1 - infinity number + infinity

- infinity - infinity* - infinity NaN
Addition number - infinity number• + infini.ty

+ infinity NaN + infinity + infinity*

- infinity NaN - infinity - infinity*
Subtraction number + infinity number• - infinity

+ infinity + infinity * + infinity NaN

operand 2

operand 1 0 number i nfinity

QI ~ 0 NaN
Multiplication number QI nnmber3 infinity

infinity NaN infinity infinity

0 NaN 0 0
Division number infinity numbera QI

infini ty infinity infinity NaN

* This value is a NaN in projective mode
a This value can be an infinity if the operation overflows

68 Apple III Pascal

Rules for Comparisons
The rules for comparison operations are summarized below. In
traditional computers when two operands a and b are compared,
there are only three possible outcomes:

a = b
a < b
a > b

In Apple III Pascal, there is a fourth possibility:

unordered

- A NaN is unordered with respect to all real values,
including other NaNs and itself.

- In Projective mode, infinity is unordered with respect
to all finite values (+/- infinity is equal to
+/-infinity),

The comparison of two unordered values by means of a relational
operator (>, <, =,)=, <=) will always yield "false" as a
result. Every comparison other than equals signals an invalid
operation.

Input and Output of Infinities
When an infinite value is output via WRITE or WRITELN, it is
always represented by two or more contiguous "+" signs if it is
positive, or by two or more "-" signs if it is negative.

The written value is always preceded by at least one space. If
the width specification is greater than 2, the field is filled
with "+" or "-" signs. If there is a "decimal places"
specification, it is ignored.

An infinite value written out in this manner can be read back
correctly by READ or READLN.

Floating-Point Arithmetic 69

NaNs
To provide for the handling of exceptional conditions, the
standard specifies 32-bit quantities that are used as
diagnostics. These diagnostics, called NaNs ("Not a Number"),
may be generated by the programmer or as the result of an
exceptional condition. In either case, they will be propagated
when arithmetic operations are performed upon them unless an
invalid operation causes a halt . The figure below shows the
internal format for a NaN.

NaN (Not a Number)

__ J__ byte 2 byte l byte 0

* reserved ERROR CODE reserved

22 21 16 15 8 7

*Invalid Operation bit

The subfields in the figure are interpreted as follows:

- Sign bit: ignored

- Signaling Bit: determined by the class of the NaN.
NaNs are divided into two classes . One (a signaling
NaN) signals an invalid operation when an arithmetic
operation is performed upon it; the other (a
propagating NaN) does not. A signaling NaN has a 1 in
the Signaling Bit. A propagating NaN has a ~.

0

- Error Code: This value (bits R-15) indicates the
circumstance in which the NaN was generated. The codes
are explained below.

- Reserved Bit: Bits 1-7 and 16-22 are reserved for
future use.

70 Apple III Pascal

An arithmetic operation on a signaling NaN signals an invalid
operation and results in a propagating NaN with the same error
code. If no program halt occurs, the Signaling Rit is turned
off, and the NaN propagates.

If an operation involves one NaN, the result will be that NaN.
If an operation involves two NaNs, then the result will be the
NaN with the greater error code.

The following table presents the error codes and their meanings.

NAN ERROR CODES

Error Code

00
01
02
04
07
08
09
0A
0C

11
12
13
21

FF

Meaning

Reserved
Invalid square root
Invalid affine addition of infinities
Invalid division, such as ~/0
Invalid projective addition of infinities
Invalid multiplication, such as 0*infinity
Invalid remainder or modulo
Invalid parameter to base conversion routine
Warning mode: normalized result from denormalized

operand
Invalid decimal to binary conversion: syntax
Decimal to binary conversion: NaN in source
Decimal to binary conversion: unrepresentable value
Trig radian argument reduction error: argument

exceeds capacity of conversion routine
Reserved

NaNs appear in a Pascal program in the following situations:

- as a result of invalid operations when no exception
halt occurs (see the section on halts). These are
always propagating NaNs.

- as the result returned by the MAKENAN function in the
REALMODES unit. These NaNs can (at the programmer's
choice) cause the invalid operation exception to occur
and may be used for debugging.

Floating-Point Arithmetic 71

Accuracy
The following sections <lescrihe these aspects of the
floating-point system that affect the accuracy of arithmetic
operations: rounding modes, the inexact signal, and input/output
conversions.

Accuracy of Arithmetic Operations
The standard requires the following arithmetic operations:
+, -, *, /, remainder, round-to-integer, and square root. The
standard specifies performance down to the last bit. Remainders
that do not underflow are computed without roun<ling error.

Rounding Modes and the Inexact Signal
If the result of an arithmetic operation is exactly representable
in the single-precision format, that result will he returned.
Otherwise, the result will be rounded. There are four rounding
modes:

- round to nearest value, with ties going to the even
value (this is the default);

- round toward zero (truncate);

- round up; and

- round down.

Here is an example showing the rounding modes. Assume 7. cannot
be represented as a single-precision real. If Z is the exact
result of an arithmetic operation and Xl and X2 are the closest
single-precision real values for which Xl < Z <X2, then the
rounding modes function as follows:

72 Apple III Pascal

- Round to nearest (Z) = the nearer of Xl and X2 to z.
In the case of a tie, choose the one that has a ~ in
its least significant bit. Ties round to even.

- Round toward zero (Z) = smaller of Xl and X2 in
magnitude.

- Round up (Z) X2.

- Round down (Z) = Xl.

A rounding operation during an arithmetic operation sets the
inexact signal.

Input/Output Conversions
The use of floating-point arithmetic requires the conversion of
numbers from decimal to binary on input and from binary to
decimal on output. The error that occurs in these conversions
will be less than 1 unit of the destination's least significant
digit. The I/O conversions are used by:

RF.An and READLN
WRITE and WRITELN

This section describes how real values may be written to and
read from text files, using the built-in procedures RF.An and
WRITE. READLN and WRITELN work similarly to READ and \•TRITE,
respectively. Since text files represent numbers in decimal
notation, and the computer uses a binary representation
internally, such input and output require number base
conversions from decimal to binary and binary to decimal. Base
conversions have rarely been done accurately in a way that
permits simple error bounds to he put on the results.

The proposed IEEE standard for Binary Floating-Point
Arithmetic specifies accuracy and other desirable properties of
decimal <---> binary conversions, which Apple III Pascal
follows. In addition, several Pascal standards groups (IEF.E,
ANSI, and ISO) have tentatively agreed on some cosmetic details
of READ and WRITE, that will make it easier to format reports
and predict what your output will look like. We have tied to
follow their suggestions, too.

Reals appear as character strings in two different contexts:
as source code submitted to the Compiler (real constants), and

Floating-Point Arithmetic 73

as text files written and read by Pascal programs. The syntax
of real numbers applies in hoth cases. The Compiler converts
character strinp;s to nuMhers differently than READ and WRITE
do. The main differences are:

- the Compiler can't use infinities and NaN's (to get
these into your program, use the REALMODES functions
described below); and

- the Compiler uses a simpler and less accurate method of
decimal-to-hinary conversion than RF.An and WRITE.

For READ and WRITE, positive infinity is represented hy a string
of at least two plus signs, and negative infinity by a string of
at least two minus signs. NaNs are represented by the characters
"NaN", with an optional leading sign, and an optional trailing
quoted string of characters, as follows:

-NaN'001.ff. 5'

The character string will he used in future versions to provide
diagnostic riata.

Input: Decimal to Binary
When READ expects a real number, it searches for the first
nonblank character, which is assum.ed to be the first character of
the real. READ throws away any blanks it finds in the meantime
(for this purpose, carriage returns are counted as blanks). All
suhsequent characters, up to but not including the first
character failing to satisfy the syntax of a real numher, are
assumed to belong to the real. The file's window variahle is
left pointing at the delimiting character.

If the first non-blank characters can't he interpreted as a real
number, or if an end-of-file (eof) was encountered before a real
could be found, a syntax error results. This signals the invalid
operation exception, and returns a syntax error NaN (see the
table of NaN error codes below). An eof may delimit the last
real in the file, acting as the "first character failing the
syntax".

When reading a real number, digits and decimal points are
interpreted in the usual way. "E" can he read (roughly) as
"times ten to the -- power". Any number of digits can he read,
and all of them will contribute to the conversion. The exponent

74 Apple III Pascal

part has a range of 0 to Q9. Conversion of NaNs and infinities
raises no exception.

The decimal-to-binary conversion signals underflow whenever a
nonzero input produces a zero or denormalized result. It signals
overflow whenever a finite input exceeds the largest
representable number. Both underflow and overflow are checked
after rounding according to the current rounding mode, which is
the only element of the numerical environment that governs the
conversion. The directed roundings "round up" and "round down"
guarantee, in addition to standard accuracy, that the binary
number returned is an upper or lower hound, respectively, of the
decimal number input.

Output: Binary to Decimal
For writing real values, WRITE statements take parameters of
three forms:

REXP:El
REXP:El:E2
REXP

where REXP is an expression of type REAL, and El and F.2 are
expressions of type INTEGER. El is called the "width
expression", and gives a minimum number of characters to he
written. E2 is called the "decimal places" expression, and
asks for a specific number of digits to appear to the right of
the decimal point.

REXP:El asks for the value "REXP" to be written as

-x.xxxxxxxF.+yy

In this "floating" form, the signs will vary, hut the form will
always include one digit to the left of the point and a
two-digit exponent with a sign. The value of "!?EXP" is rounded
(according to the current mode) to the number of digits needed
to fill up the field width given by El.

REXP:El :E2 asks for the value "!?.EXP" to he written as

bbbhb-xxxx.yyy

In this "fixed-point" form, there is no exponent, and the value
"REXP" is rounded (according to the current mode) to E2 decimal

Floating-Point Arithmetic 75

places to the right of the point. The numher of digits to the
left of the decimal point are implied by the magnitude of
REXP. Enough blanks are padded on the left to fill out the
field width given by El. If the width El is insufficient, it
is ignored and as many characters are written as are needed to
represent the value of REXP with E2 decimal places.

The parameter REXP (without El and E2) asks for the default
"floating" form with El set to 12. This gives six significant
digits of precision.

If E2 is missing, any El less than 8 is increased to 8.
If E2 is present, any El less than E2 + 3 is increased to
E2 + 3. Then, if El is greater than 80, F.1 is decreased
to 80, and if E2 is present, it is decreased hy an equal
amount.

A zero value is always written "0.0", regardless of El and E2.
It is padded with blanks left and right to fill the given
field width and to keep its decimal point aligned with those of
other values written with the same WRITE parameters.

Expert's Corner
In Warning mode, denormalized numbers are written as described
above, except that in the "floating" format, at least one
leading zero digit is written to indicate the possible loss of
precision due to denormalization. Furthermore, the exponent
written in Warning mode is not allowed to fall helow -38, which
makes the number of leading zeros a rough indicator of the
amount of denormalization.

A final note on accuracy, and the relation between the input
and output hase conversions: It is a curiosity of the
mathematics of base conversion that Cl is the minimum numher of
decimal digits required to distinguish different binary values,
although 10A9 > 2A24. Thus, an interval of 9-digit decimal
values is mapped into a single binary value by the input
routine. This guarantees that there are (9-digit) decimal
values d for which dec(bin(d)) = d fails. Our implementation
keeps the conversion errors small enough that for all
representable binary values b, bin(dec(b)) = b if the rounding
mode is "round to nearest". For length(d) <= 6 digits,
dec(bin(d)) = d as well.

76 Apple III Pascal

Real Arithmetic Environments
The settings of the exception signals, the halt switches, and
the arithmetic mo<le settings for rounding, closure, an<l
handling of denormalized numbers <lefine the arithmetic
environment. The REAT,MODES unit, <lescrihed in Appendix A,
contains functions and procedures that enahle you to:

- set or check an exception signal,

- arm or disarm halting on exceptions,

- set and check the arithmetic modes for rounding,
closure on infinities, and <lenormalized numbers,

- save and restore a numeric environment, and

- use supporting functions (such as ISNAN and SCALE).

REALMODES Unit
Using procedures contained in the REALMODES unit, a program can
check or modify the mode settings or the response to exceptions
from the default settings. To use any of these procedures, a
program must have a USES declaration containing the identifier
REALMODES immediately after the program heading; for example,

PROGRAM DESIGN;
USES REALMODES

The public functions of the REALMODES unit are then availahle to
the program.

The REALMODES unit defines five data types that can be used in
declaring program variables. They are declared as follows:

XCPN
RMODE
CLOSURE
DENO RM
NUMENV

(UNDERFL, OVERFL, DIV0, CVTOVFL, INXACT, INVOP)
(RNEAR, RPOS, RNEG, RZERO)
(PROJ, AFFINE)
(WARNING, NORMALIZJ.NG)
Array [0 •• 2] OF Integer

Floating-Point Arithmetic 77

Exception Handling
The XCPN type provides identifiers for the six kinds of exception:

OVERFL
UNDERFL
DIV0
CVTOVFL
INXACT
INVOP

The overflow exception
The underflow exception
The division by zero exception
The integer conversion overflow exception
The inexact result exception
The invalid operation exception

These types (or a variable or expression of type XCPN) are
used as parameters for the SETXCPN, GETXCPN, SF.THALT, and
GETHALT procedures. Associated with each type is a boolean
signal and a boolean halt switch. At the end of this section
is a table summarizing the exception halts and switches.

Signals
A boolean signal is set true by an occurrence of its
corresponding floating-point exception or hy an explicitly
programmed call on SF.TXCPN. It is set false only hy a call on
SETXCPN. GETXCPN returns the current state of the signal asked
for.

Halts
If an exception halt switch is true, the corresponding
exception causes a program halt. SETHALT arms or disarms the
halt switch (i.e., sets it true or false). GETHALT returns the
current state of the halt switch.

The occurrence of an exception, when its corresponding halt
switch is armed, causes the program to halt with a diagnostic
message on the screen. (The section on diagnostics in the main
text of this manual tells you how to use the diagnostic message
to find where in your program the error occurred.)

Pressing the spacehar reinitializes the Pascal operating system
and loses the current state of your program.

78 Apple III Pascal

Arithmetic Modes
Using the functions and procedures descrihed below, a
programmer controls the way in which floating-point arithmetic

- rounds inexact results of arithmetic operations,

- includes infinities in the number system (through
closure), and

- handles denormalized numhers.

Rounding
The RMODE type names the four rounding modes:

RNEAR -- round to nearest representahle value; in case
of a tie, use the value that has a 0 in the least
significant bit.

RPOS round in the positive direction.

RNEG round in the negative direction.

RZERO -- round toward 0.

A call on the procedure, SETROUND (R), sets the rounding mode
to R, where R is of type RMODE.

The GETROUND function returns a result of type RMODE, that is,
the current round mode.

Infinities and CLOSURE Modes
The CLOSURE type names the two ways of including infinity in the
number system:

AFFINE -- affine closure, and
PROJ -- projective closure.

A call on the procedure, SETCLOS (C), sets the closure mode to
C, where C is of type CI.OSURE.

Floating-Point Arithmetic 79

The GF.TCLOS function returns a result of type CLOSURE, that is,
the current mode.

Handling Denormalized Arithmetic
The DENORM type names the two modes for handling denormalized
operands:

NORMALIZING -- normalizing mode, and
WARNING -- warning mode.

A call on the procedure, SETDNORM (D), sets the indicated mode,
where D is of type DENORM.

The GETDNORM function returns a result of type DF.NORM, that is,
the current mode setting.

Numeric Environment
The current settings of the exception signals, the halt switches,
and the arithmetic mode settings for rounding, closure, and
handling of denormalized numbers all together define the current
state of a numeric environment. Since it takes 15 procedure
calls to set up a complete numeric environment, Making many
changes to a numeric environment can he tedious, especially if
you plan to restore the old settings.

For example, a suhroutine from a lihrary may require certain mode
settings, and, at the sal'le time, a programmer may want to protect
the exception signals from the actions of the lihrary routine.
For this purpose, the type NUMENV provides a place to store (in
encoded form) all the data necessary to set up a numeric
environment.

The purpose of this type is to permit entire environments to he
saved and restore<l by calls on the procedures:

SAVENV (E)
RESTENV (E)

A call on the procedure, SAVENV (E), stores the current state of
the numeric enviroment in the variahle E, using the code. (Note
that E must he a variable of type NUMENV, and not an
expression.) RESTENV sets up the numeric environment according
to the code in E, a variahle of type NUMENV. RESTENV (E), when F,

hasn't previously heen loaded hy a calJ_ on SAVEmr (F.), can

80 Apple III Pascal

produce very strange results.

Don't try to set signals or switches, or control
arithmetic modes, by changing the contents of a NUMENV
variable. The codes will be changing from version to
version, and you will encounter the strange results just
mentioned.

The IEEE proposed standard for binary floating-point arithmetic
specifies the following modes as the defaults:

Round to nearest
Warning mode
Projective mode
No halts on exceptions

To make the numeric environment conform to the IEEE settings,
embed the following code in your program:

USES REALMODES;

VAR E: XCPN;

BEGIN

END;

FOR E:=INVOP TO INXACT DO SETHALT (E, FALSE);
SETCLOS (PROJ);
SETDNORM (WARNING);

(There are many ways to embed this code in a program; choose
the one that best fits your situation.)

Supporting Functions
In addition to the procedures and functions for controlling the
numeric environment, REAI,MODES provides a set of useful
functions related to the special capabilities of Apple III
Pascal arithmetic. In all of the following descriptions, X and
Y represent any values of type real (including infinite and NaN
values).

Floating-Point Arithmetic Rl

INTEGRAL (X:REAL):BOOLEAN returns TRUE if the value of Xis an
integer (in the mathematical sense, not the Pascal sense.) It
returns FALSE otherwise.

FINITE (X:REAL) :BOOLEAN returns TRUE if X is a finite nuI'leric
value, FALSE if it is a NaN or an infinity.

ISNAN (X:REAL):BOOLEAN returns TRUE if Xis a NaN, FALSE
otherwise.

NEXTAFTER (X, Y:REAL):REAL returns, in general, the nearest
representable number to X, in the direction of Y. Since Y
serves only to indicate direction, Y can he infinite if the
closure mode is affine (the default). If Xis a NaN or
infinite, or Y is infinite in nrojective mode, then
NEXTAFTER (X,Y) returns X.

UNORDERED (X, Y:REAI.):BOOLEAN returns TRUE if X and Y are
unordered with respect to each other, FALSE otherwise.

INFINITY:REAJ, returns the positive infinity value.

MAXREAL:REAL returns the largest representahle positive real
value, which is ahout 3.402R23466E3R in Pascal notation.

MINNORM:REAL returns the smallest positive normalized value,
which is ahout 1.175494351E-3R in Pascal notation.

MINREAL:REAL returns the smallest representable positive real
value (denormalized), which is about l .4\H298464E-4.'l in Pascal
notation.

MAKENAN (SIGNALING:BOOLEAN):REAL returns a "prograI'!mer's NaN"
value, which contains the error code 0E in hits 8-15. If its
parameter is true, then using the NaN in a suhseouent
arithmetic operation signals an invalid operation exception.
If MAKENAN's parameter is false, the returned NaN will he a
propagating NaN.

COPYSIGN (X, Y:REAL):REAL returns a numher whose absolute
value is that of X, hut whose sign ls that of Y.

82 Apple III Pascal

LOGB (X:REAL) :RF.AL returns, in general, the "binary order of
magnitude" of X (i.e., the power of 2 represented in the
exponent field of X). If X is 0, (-infinity) is returned. If
X is infinite, (+infinity) is returned. If X is a NaN, the
value of X is returned.

SCALB (X:REAI.; N:INTEGER):REAL scales X by a power of 2. If X
is a numeric value, the value returned is

N

x * 2

This high-speed function allows you to scale a real value hy a
power of 2 which may he greater than the Maxi.mum representable
real value. No rounding errors occur since SCALB affects only
the exponent field unless the result would he denormalized.
LOGB and SCALB are inverses j_n the sense that

1 < SCALE (X, -LOGB (X)) < 2.

SCALB may cause underflow or overflow. If overflow occurs, the
value returned is infinity with X's sign. If X is infinite or
a propagating NaN, the value of X is returned. If X is a
signaling NaN, the invalid operation exception is signaled, and
the value returned is the same NaN converted to a propagating
NaN.

REM (X, Y), where X and Y are REAL values, returns a REAL value
which is the remainder when X is divided hy Y. This is
computed, in principle, by norMalizing X and taking the integer
quotient 0, where 0 is the integral value nearest to the
mathematical REAJ, value X/Y. If X/Y is exactly halfway between
two integral values, then 0 is the even one. The sign of 0 is
determined by normal arithmetic rules. The value returned is
X-(O*Y).

If X is 0 and Y is nonzero, or X is finite and Y is infinite,
then the value returned is X.

If X is infinite or Y is 0, the invali_d operation exception is
signaled, and the value returned is a NaN.

Floating-Point Arithmetic 83

The following figure su1T1marizes the capabilities of the Apple
III Pascal floatinp;-point system:

Summary of the Floating-Point System
The Apple III Pascal floating-point system supports the Proposed Standard for
Binary Floating-Point Arithmetic (Draft 8.0 of IEEE Task P754).

Data Format

Real data are stored in 4 bytes (32 hits). The format is that
specified in the standard, with least significant hyte at lowest address.

Operations
Operations governed hy the standard are supplied by the P-code interpreter
an<l hy three lihrary units:

- interpreter: +, - , * , I, TRUNC, ROUND, and comparison

- PASCALIO: decimal to binary and binary to deci~al conversions

- REALMODES: exception signals , halt & arithmetic mode switches, and
miscellaneous functions

- TRANSCEND: remainder anrl square root

Floating-Point Exceptions

Arithmetic Exception Default Response Response if Continue

Overflow Halt +!- Infinity
Underflow Continue Denormalized or 0
Divison by Zero Halt +/- Infinity
Conversion Overflow Halt (see standard)
Inexact Result Continue Round
Invalid Operation Halt NaN

Rounding Modes
Round-to-nearest (default)
Round-toward-0
Round up
Round down

84 Apple III Pascal

Infinity Arithmetic
Affine Mode (default): - Infinity< Finite Numbers <+Infinity
Projective Mode: - Infinity = + Infinity

Denormalized Arithmetic
Normalizing Mode (default)
Warning Mode

Procedures and Functions That Check or Modify Settings

Procedures/Functions

SETXCPN(E:XCPN; B:BOOLEAN)
GETXCPN(E:XCPN): BOOLEAN

SETHALT(H:XCPN; B:BOOLEAN)
GETHALT(H:XCPN): BOOLEAN

SETCLOS(C:CLOSURE)
GETCLOS: CLOSURE

SETDNORM(D:DENORM)
GETDNORM: DENORM

SETROUND(R:RMODE)
GETROUND: RMODE

SAVENV(VAR V:NUMENV)
RESTENV(V:NUMENV)

Type of Signal , Switch, or Mode

Exceptions

Halts

Infinity closure

Underflow

Rounding

Whole environment

Special Functions and Predicates

COPYSIGN(x,y:REAL): REAL
LOGB(x:REAL): REAL
SCALB(x:REAL; n:INTEGER): REAL
NEXTAFTER(x,y:REAL): REAL
INFINITY: BEAL
MAXREAL: REAL
MAKENAN(hal ting:BOOLEAN): REAL

FINITE(x:REAL): BOOLEAN
ISNAN(x:REAL): BOOLEAN
UNORDERED(x,y:REA~): BOOLEAN
INTEGRAL(x:REAL): BOOLEAN
MINNORM: REAL
MINREAL: REAL

Floating-Point Arithmetic 85

Bibliography
The following articles contain detailed information and
discussion of the proposed IEEE floating-point standard.
(Articles are listed in order of importance.)

"A Proposed Standard for Rinary Floating-Point Arithmetic",
IEEE Computer, Vol. 14, No. 3, March 1981.

Goonen, J.: "An Implenentation Guide to a Proposed Standar<l
for Floating-Point Arithmetic", IEEE Computer, Vol. l.>, No. 1,
January 1980.

ACM SIGNlJM Newsletter, special issue devoted to the propose(! IF.F:E
floating-point standar<l, Octoher 1979. In particular, see
article hy Kahan and Palmer.

Goonen, J.: "Underflow and the Denormalized NuMhers",
IEEE Computer, Vol. 14, No. 3, March 1981.

Goonen, J.: "Rinary <-->Decimal Conversion in KCS Arithmetic",
(unpuhlished ms.), July 10, 1980.

86 Apple III Pascal

The Apple III Pascal Compiler 87

88 Apple III Pascal

Introduction
The Apple III Pascal Compiler translates the source textfile of a
Pascal program into a codefile. The codefile contains P-code,
which is the "machine language" of the Pascal interpreter or
"pseudo-machine."

For a simple program, the codefile can be executed immediately.
However, if the program contains any external references, the
Linker must be used to link external code into the codefile
before it can be executed, as described in the Program
Preparation Tools manual. This is required in the following
cases:

- If the program contains any procedures or functions
that are declared EXTERNAL (ie., assembly code), it
requires linking.

If the program uses any regular units, it requires
linking. Note that the library packages supplied with
the system are intrinsic units and do not require
linking .

Diskette Files Needed
To operate the Pascal Compiler, you need the following diskette
files:

- Your source file ~ Any diskette, any drive; default is
the main system diskette's text workfile
SYSTEM.WR.K.TEXT , any drive .

- SYSTEM.COMPILER ~ Any diskette, any drive .

- SYSTEM.LIBRARY ~ System diskette , any drive; required
only if any of the units in the system library are used
by the program.

The Apple III Pascal Compiler 89

- Other Libraries ~ Any diskette, any drive; required if
any units not in the system library are use<l by the
program being compiled . In this case you will need to
use the Compiler's USING option, described further on
in this appendix .

- SYSTEM.EDITOR ~ Any diskette, any drive; optional; to
fix errors found by the Compiler .

- SYSTEM.SYNTAX ~ Any diskette , any drive; optional;
contains error messages given on entering the Editor
with an error from the Compiler .

In addition to the above files , the following files may be needed
if you are invoking the Compiler automatically via the Run
command:

SYSTEM . LINKER
SYSTEM . PASCAL

Using The Compiler
The Compiler is invoked by typing C for Compile or R for Run from
the outermost Command level of the system. The difference
between these commands is that Compile simply compiles the source
file, while Run has three stages: First it compiles the source
file if no codefile is found ; t hen i t automatically runs the
Linker if the program has any external references ; and finally it
automatically executes the program .

When the Linker is run automatically under the Run
command, it will only link in external code from the
SYSTEM.LIBRARY file . If your program uses any external
code that is in a different library file , you must use the
Compile command and t hen explici t ly run the Linker via the
Link command . To compile , the program must also contain
the USING option , described further on in this appendix.

If you use Compile instead of Run , i t is up to you to run the
Linker if necessary and to execute the program by means of the
Execute command.

90 Apple III Pascal

By default, the Compiler takes the text workfile as its input,
and places its output in the code workfile. The Compiler always
does this if the text workfile exists~even if it doesn't contain
valid Pascal source text, in which case the Compiler will soon
detect an error and terminate. If you don't want to compile the
workfile, use the Save and New commands of the Filer to save and
clear the workfile.

If the text workfile exists, the screen immediately shows the
message

Compiling •••

If no text workfile exists, you are prompted for a source
filename:

Compile what text?

You should respond by typing the name of the text file that you
wish to have compiled. If you do not type a suffix, the suffix
.TEXT is automatically supplied by the Compiler. If you want to
prevent this from happening, add a period to the end of your
filename. (If you want to return to the main menu without
compiling, press RETURN or press ESC followed by RETURN.)

Next, if there is no text workfile, you will be asked for the
name of the file where you wish to save the compiled version of
your program:

To what codefile?

If you press ESC followed by RETURN, the command will be
terminated. However, if you simply press the RETURN key, the
command will not be terminated, as you might expect. Instead,
the source file will be compiled and the compiled version of your
program will be saved on the code workfile named SYSTEM.WRK.CODE
on the system diskette.

If you want the codefile to have the same name as the source
textfile (with the suffix .CODE instead of .TEXT), just type a
dollar sign and press the RETURN key. The dollar sign ($)
repeats your entire source file specification, including the
volume identifier, so do not specify the volume identifier before
typing the dollar sign.

The Apple III Pascal Compiler 91

If you want your codefile to have a different name, type the
desired pathname. If you do not type the suffix .CODE, that
suffix is automatically supplied by the Compiler.

If you are using Apple II compatible disks, the following
information may be nee<led. By default, the Compiler
places the code file at the beginning of the largest
unused space on the disk. To override this, you can give
a size attribute with the pathname. In this case you must
type the suffix .CODE, followed by the number of blocks in
square brackets, followe<l by a period:

To what codefile? myprog.code[8J.

The period at the end prevents the system from adding the
.CODE prefix after the size attribute. The size attribute
[8] causes the code file to be placed in the first
location on the disk where at least 8 blocks are
available .

While the Compiler is running, messages on the screen show the
progress of the compilation as in the following example:

Apple ///Pascal Compiler [A3/l.0J
< 0>
MYPROG [2334 WORDS]
< 6) ••••••••

14 Lines
Smallest available space = 2334 words

The numbers in square brackets in the first line identify a
particular version of the Compiler, and may not be as shown
here.

The identifiers appearing on the screen are the identifiers of
the program and its procedures. The identifier for a procedure
is displayed at the moment when compilation of the procedure body
is started.

The numbers within [J indicate the number of 16-bit words
available for symbol table storage and Compiler execution at that
point in the compilation. If this number falls too low, the
Compiler may fail with a "stack overflow" message. You must then
put the swapping option (described below) into your program and
try again .

92 Apple III Pascal

The numbers enclosed within <>are the current line numbers in
the source file. Each dot on the screen represents one source
line compiled.

If the Compiler detects an error in your program, the screen will
show the text preceding the error, an error number, and a marker
<<<< pointing to the symbol in the source where the error was
detected. The following is an example:

IF I=2 THEN I:=0;
ELSE ««
Line 9, error 6: <sp)(continue), <esc)(terminate), E(di t

This shows that the word ELSE is an illegal symbol at this point
in the program. You have three options when you see a message
like this.

- Pressing the spacebar instructs the Compiler to
continue the compilation. If the error is not fatal
(ie., if the error number is less than 400), the
Compiler will attempt to recover and continue
compilation without generating a codefile. Note that
further error messages may appear as a consequence of
the first error.

- Pressing the ESC key causes termination of the
compilation and return to the Command level.

- Typing E sends you to the Editor, which automatically
reads in the workfile, ready for editing. If you were
not compiling the workfile, the Editor requests the
name of the file you were compiling. You should
respond by typing the filename of the file you were
compiling, and that file will then be read into the
Editor. When the correct file has been read into the
Editor, the top line of the screen displays the error
message (or number, if SYSTEM.SYNTAX is not on line)
and the cursor is placed at the symbol where the error
was detected.

If SYSTEM.SYNTAX is not available, you can look up the
error in Table 5 (see Appendix J). You may wish to
delete the file SYSTEM.SYNTAX on your backup copies to
obtain more diskette space.

The Apple III Pascal Compiler 93

Compiler Option Syntax
Compiler options are placed in the text to be compiled; the
option takes effect when the Compiler arrives at that place in
the text during compilation. A Compiler option looks like a
special kind of comment and takes the following form using either
the { } or (* *) comment delimiters:

{$option}

or

(*$option*)

where "option" consists of a keyword followed by any arguments
that a particular option may require. (In this appendix, use of
{ } is assumed.) Typical arguments are "+" (meaning "ON"), "-"
(meaning "OFF"), or a pathname. For most options, the keyword
can be given in full or abbreviated to a single letter; see the
individual option descriptions below. Also, all keywords can be
either upper or lower-case.

As shown below, there must be no spaces on either side of the $
character:

{$GOTO-}
{ $GOTO-}
{$ GOTO-}

This is a compiler option.
This is an ordinary comment.
This is an ordinary comment.

Several options can be combined in one set of {$ ••• } brackets, by
separating the options with commas; spaces are not allowed after
the comma.

{$opt ion,option, ••• } Example: {$IOCHECK-,SWAP+,GOTO-}

Some options can appear anywhere in a source file; others must
appear before the program heading; and still others must appear
at specific points within the source file. See the individual
descriptions below.

Some options require a text string (pathname, identifier, number,
etc.) immediately following the option letter, instead of the
usual +or - In this case, all characters between the option

94 Apple III Pascal

letter and the next comma or } are taken as the string , except
that blanks preceding or following the string are ignored.
Therefore, the string must be the last item before the comma
or } •

If the first character of a string is + or - , you must place a
blank between the option letter and the string .

& HAND Within an option that does not take a text string, you can
embed text after the argument and before the comma or }
that ends the option . This text will be ignored; for
example, the two options

{$GOTO+}

{$GOTo+ GOTO statements allowed from here on}

are exactly equivalent; the explanatory text in the second
one is ignored .

Options That Do Not Affect Program Code
The SWAP, LIST, PAGE, COMMENT,
on the code, run-time loading ,
are provided as conveniences.
SWAP and LIST,

The SWAP Option

and QUIET options have no effect
or execution of the program . They
The most important of these are

This option determines whether or not the Compiler operates in
"swapping" mode.

There are two main parts of the Compiler: one processes
declarations; the other handles statements . In the swapping (S+
OR SWAP+) mode, only one of these parts is in main memory at a
time . This makes about 5300 additional words available for
symbol-table storage at the cost of slower compilation speed
(because of the overhead of swapping the Compiler segments in
from disk). This option must occur before the program heading,
or it will have no effect.

The Apple III Pascal Compiler 95

Default option: {$SWAP-}

{$SWAP+} Puts the Compiler in swapping mode .

{$SWAP-} Puts the Compiler in non-swapping mode .

{$SWAP++} The Compiler does even more swapping than with
the S+ option . The program compiles still more
slowly, but still more room is left in memory for
symbol-table storage (about 1500 more words) .

The LIST Option
This option consists of the keyword LIST or the letter L followed
by a+, -, or pathname argument. A program listing is a text
file that contains the source text plus annotations indicating
how the resulting code is related to the source text . This is
useful for debugging purposes . LIST controls whether the
Compiler will generate a program listing , which parts of the
program will be listed, and where the listing will be written .

The LIST option is most often placed before the program heading
to generate a complete listing , but it can he placed anywhere in
the source text . Only one listing file can be produced .

Default option: {$LIST-}

{$LIST pathname} Tells the Compiler to start listing to
the specified file.

{$LIST+} Tells the Compiler to turn on listing of
the following source text . If a pathname has
not been specified with {$LIST pathname},
then the listing goes to the file
SYSTEM.LST.TEXT on the system diskette.

{$LIST-} Tells the Compiler to temporarily halt listing.

For example, the following will cause the compiled listing to be
sent to a diskfile called DEMOl . TEXT on the diskette named
/MYDISK

{$LIST /MYDISK/DEMOl . TEXT }.

96 Apple III Pascal

Note that a diskette listing file may be edited just like any
other text file, provided that it is not too big and that page
options have not been used. A listing file is approximately
twice as large as a source file.

In the compiled listing, the Compiler places next to each source
line the line number, segment number, procedure number, and the
number of bytes or words (bytes for code, words for data)
required by that procedure's declarations or code to that point.
The Compiler also indicates whether the line lies within the
actual code to be executed or is a part of the declarations for
that procedure by printing a "D" for declaration, an integer 0 •• 9
to designate the lexical level (the level of statement nesting
within the code part), or an "S" to indicate skipping of text due
to conditional compilation. All of these indications are as of
the end of the line.

Here is a sample listing, to which column headings have been
added:

Pro ell:
Linell ~II Lex.lvl Byte/I Program Text

1 1 1: D {$LIST /PRESCR/DOCTORLIST.TEXT}
2 1 l:D 1 PROGRAM DOCTOR;
3 1 l:D 3 VAR WEEK: 1 .. 52;
4 1 l:D 4
5 1 2:D 1 PROCEDURE DOSE;
6 1 2:0 0 BEGIN
7 1 2: 1 0 WRITE('! APPLE/DAY');
8 1 2: 1 23 WRITELN(' AND ')
9 1 2:0 48 END;

10 1 2:0 60
11 1 3:D 1 PROCEDURE WEEKTREAT;
12 1 3:D 1 VAR DAY: 1 .. 7;
13 1 3:0 0 BEGIN
14 1 3: 1 0 FOR DAY := 1 TO 7 DO BEGIN
15 1 3:3 17 DOSE
16 1 3:2 17 END
17 1 3:0 19 END;
18 1 3:0 40

The Apple III Pascal Compiler 97

19 1: 0 0 BEGIN
20 1 1: 0 0 {intentional value range error follows}
21 1 1: 1 0 FOR WEEK := 0 TO 52 no BEGIN
22 1 1:3 19 WEEKTREAT
23 1 1: 2 19 END;
24 1 1: 1 28 WRITELN('THAT KEEPS THE DOCTOR AWAY')
25 1 1:0 74 END.

The information given in the compiled listing can be very
valuable for debugging a large program. A run-time error message
will normally indicate the segment number, the procedure number,
and the byte number within the current procedure where the error
occurred.

Here is a sample run-time error message:

Exec Err II 1
Slf 1, Pff l, I/I 5
Type <space> to continue

where S/f is the segment number, Pll is the procedure number, and
Ilf is the byte number in that procedure where the error
occurred. In this example, you could find the Pascal statement
where the error occurred by finding Segment 1 in the second
column of the listing, then Procedure 1 in the third column .
Then look in the fourth column for the largest byte number that
is less than 5. This is the starting byte number of the
statement that contains Byte 5 of Procedure 1 of Segment 1, and
this is the statement where the error occurred.

The PAGE Option
This option consists of the keyword PAGE or the letter P, with no
arguments . If a listing is being produced, the PAGE option
causes one form-feed character (ASCII 12) to be inserted into the
text of the listing, just before the line containing the PAGE
option . If your program contains the line

{$PAGE}

that line will appear at the top of a new page when you print the
program's compiled listing. Before editing a listing file
containing form feed characters, use the Replace command of the
Editor to remove all form feeds.

98 Apple III Pascal

The COMMENT Option
This option consists of the keyword COMMENT or the letter C and a
line of text . The text is placed , character for character , in
Block 0 of the codefile bytes 432 to 511 (where it will not
affect program operation) . The purpose of this is to allow a
copyright notice or other comment to be embedded in the
codefile. Example:

{$COMMENT COPYRIGHT ALLUVIAL O. FANSOME 1981}

The COMMENT option can appear anywhere in the program . Note that
the line of text cannot contain a comma .

The QUIET Option
This option consists of the keyword QUIET or the letter Q
followed by a+ or - argument . It can be used to suppress the
screen messages that tell the procedure names and line numbers
and deta il the progress of the compilation.

Default option: {$QUIET-}

{$QUIET+} Causes the Compiler to suppress output to the
screen .

{$QUIET-} Causes the Compiler to send procedure name and
line number messages to the screen .

Error Checking Options
The IOCHECK, RANGECHECK , VARSTRING, and GOTO options control four
different error-checking features . IOCHECK and RANGECHECK are
opti ons for run-time error checking; VARSTRING and GOTO are
options for compile-time error checking .

Note that the Compiler provides for other types of error checking
besides the types controlled by these options .

The IOCHECK Option
This option consists of the keyword IOCHECK or the letter I and
a+ or - argument. It tells the Compile r whether or not to

The Apple III Pascal Compiler 99

create automatic error-checking code after each structured file
I/O statement (not the block or device I/O statements) . If the
automatic error-checking detects an I/O error, it halts the
program with a run-time error message.

Default option: {$IOCHECK+}

{$IOCHECK+} Instructs the Compiler to generate code after
each statement that performs any I/O, in
order to check that the I/O operation was
accomplished successfully. In the case of an
unsuccessful I/O operation, the program will
be terminated with a run-time error.

{$IOCHECK-} Instructs the Compiler not to generate any
I/0-checking code. In the case of an
unsuccessful I/O operation, the program is
not terminated with a run-time error. The
program can then use the IORESULT function
to detect and report I/O errors. (See
Chapter 10 .)

The IOCHECK option can appear anywhere in the program .

The RANGECHECK Option
This option consists of the keyword RANGECHECK or the letter R,
followed by a+ or - argument. With the {$RANGECHECK+} option,
the Compiler will produce code that checks on array and string
subscripts and on assignments to variables of subrange and string
types. The checking code will halt the program with a run-time
error message if a subscript or assignment is out of the range
specified in the program's declarations .

Default option: {$RANGECHECK+}

{$RANGECHECK+} Turns range checking on.

{$RANGECHECK- } Turns range checking off.

The RANGECHECK option can appear anywhere in the program. Note
that programs compiled with the {$RANGECHECK-} option selected
will run slightly faster. However if an invalid index occurs or
an invalid assignme.nt is made, the program will not be halted .
Use {$RANGECHECK-} only when speed or code size is critical .

100 Apple III Pascal

The VARSTRING Option
This option consists of the keyword VARSTRING or the letter V
followed by a+ or - argument . When a procedure or function has
a VAR parameter of type STRING, the actual parameter in each call
to the procedure or function can be checked at compile time to
make sure that its declared maximum length is not less than the
declared maximum length of the formal parameter. This checking
is controlled by the VARSTRING option:

Default option: {$VARSTRING+}

{$VARSTRING+} Turns checking on.

{$VARSTRING-} Turns checking off.

Note that if checking is off and the actual length of the actual
parameter is less than the maximum length of the formal
parameter, it is possible for the procedure or function to alter
bytes of data that are beyond the end of the actual parameter
variable . If VARSTRING checking is off and RANGECHECKing is on,
then the range checked is the length of the formal parameter, not
the length of the actual parameter . This does not cause a
run-time error, but does cause unpredictable results .

The GOTO Option
This option consists of the keyword GOTO or the letter G and a +
or - argument . It tells the Compiler whether to allow or forbid
the use of the Pascal GOTO statement within a program .

Default option: {$GOTO-}

{$GOTO+} Allows the use of the GOTO statement .

{$GOTO-} Causes the Compiler to treat a GOTO as an error .

The GOTO option can appear anywhere in the program .

Control of Segments and Libraries
The NEXTSEG, NOLOAD, and RESIDENT options control the way that
segments of a program are loaded for execution . Full

The Apple III Pascal Compiler 101

explanations and examples of the use of these options are in
Chapter 15. The USING option is used to select a library file
other than SYSTEM.LIBRARY as the file to search for units
referred to in a USES declaration.

The NEXTSEG Option
The NEXTSEG option consists of the keyword NEXTSEG or the letters
NS followed by an unsigned integer which should be in the range
1 •• 63. This option specifies the segment number to be associated
with the next code segment produced by the Compiler. This option
can appear anywhere in the program but is ignored in certain
cases; see Chapter 15 for details.

The NOLOAD Option
This option consists of the keyword NOLOAD or the letter N
followed by a+ or - argument. It prevents the code of any units
used by the program from being loaded automatically when the
program is executed. Instead, each unit's code is in memory only
when some portion of it is active, or unless specified as
resident by the RESIDENT option.

Default option: { $NOLOAD-}

{$NOLOAD+} Unit code will be loaded only when active.

{$NOLOAD-} Unit code will be loaded as soon as program
begins executing.

The {$NOLOAD+} option should be placed at the beginning of the
main program body (after the BEGIN). Note that use of the
{$NOLOAD+} option does not prevent the initialization portion of
a unit from being initially executed. For more information see
Chapter 15.

The RESIDENT Option
This option consists of the keyword RESIDENT or the letter R
followed by either an identifier or an unsigned number.

If an identifier is used, it must be the identifier of a unit or
of a SEGMENT procedure or function. If a number is used, it
should be the segment number of a unit or of a SEGMENT procedure
or function.

102 Apple III Pascal

The RESIDENT option should be placed at the beginning of a
procedure or function body (after the BEGIN and before any
statements) . It causes the code of the specified segment to be
kept in memory, for as long as the procedure or function that
contains the option is executing. See Chapter 15 for details .

The USING Option
This option consists of the keyword USING or the letter U
followed by the pathname of a library file . The USING option
causes the Compiler to seek units in subsequent USES declarations
in the named library file instead of in SYSTEM . LIBRARY .

Note that the USING option applies only during compilation. If
intrinsic units are used , then at execution time the system will
still look for them first in the program library (if there is
one) and then in SYSTEM.LIBRARY •

The specified pathname is used exactly as typed . No suffix is
added.

The following is an example of a valid USES declaration employing
the USING option:

USES UNIT1,UNIT2, {Found in SYSTEM . LIBRARY}
{$USING MYDISK:A. CODE } UNIT3,
{$USING MYDISK:B . LIBRARY} UNIT4,UNIT5;

The INCLUDE Option
This option consists of the keyword INCLUDE or the letter I
followed by a pathname . It causes the contents of another file
of Pascal source text to be compiled at that point in processing
the source file. Thus you can compile a large program without
having the entire source in one large file . The syntax is

{$I pathname }
or {$INCLUDE pathname}

The Apple III Pascal Compiler 103

If the INCLUDE option is in a series of options separated
by commas (within a single pair of comment delimiters),
then it must be the last option in the series.

Apart from this one restriction, the INCLUDE option can appear
anywhere in the source file. The contents of the specified file
are inserted into the compilation at the point where the option
is encountered by the Compiler.

The Compiler expands the pathname according to the normal n1les
when expecting a textfile. If the attempt to open the file
fails, or if some I/O error occurs while reading the file, the
Compiler responds with a fatal error message and terminates its
operation.

If the INCLUDE option occurs within the declarations section of a
program or procedure (i.e., before the BEGIN), then the Compiler
will allow further declarations out of order. For example,
suppose that a program contains TYPE declarations and VAR
declarations, and then an INCLUDE option. The included file is
allowed to contain further TYPE and VAR declarations, and can
also contain USES, LABEL, and CONSTANT declarations.

If the INCLUDE option occurs within the body of a procedure or
program (i.e., after the BEGIN), the included file must not start
with any declarations. If it does, a syntax error is generated
because declarations are not allowed in a program or procedure
body.

The Compiler cannot keep track of nested INCLUDE options; i.e.,
an included file must not contain an INCLUDE option. This
results in a fatal Compiler error.

Special Compilation Mode
The USER option controls a special compilation mode. It is not
used in normal programming with the standard Apple III Pascal
system.

104 Apple III Pascal

The USER Option
This option consists of the keyword USER or the letter U followed
by a+ or - argument . It determines whether this compilation is
a user program compilation, or a compilation at the system
level.

Default option: {$USER+}

{$USER+} Informs the Compiler that this compilation is
to take place on the user program lexical level.

{$USER- } Tells the Compiler to compile the program at
the system lexical level . Also sets certain
other options as follows: RANGECHECK- , GOTO+,
IOCHECK- .

Compilation at the sys t em level will produce meaningful
results only if the program was written with knowledge of
the operating system code structure . Do not attempt
system-level compilation unless you have this knowledge .

Conditional Compilation
The conditional compilation capability of the Apple III Pascal
Compiler allows sections of the source text to be skipped. The
skipping is controlled by the IFC, ELSEC, and ENDC options, which
are used to bracket sections of source text . A fourth option,
SETC, is used to create "compile-time variables" and assign
values to them.

Compile-Time Variables
IFC, like the Pascal IF statement, makes a decision based on a
boolean value which it obtains by evaluating an expression. The
expression can contain compile-time variables . These variables
are completely independent of program variables; even if a
compile-time variable and a program variable have the same
identifier and appear in the same procedure, they can never be
confused by the Compiler .

The Apple III Pascal Compiler 105

A compile-time variable is "declared" when it appears for the
first time on the left-hand side of a SETC assignment; for
example, the option

{$SETC LIBVERSION := 5}

declares the compile-time variable LIBVERSION (if it has not
appeared previously) and assigns the value 5 to it. Since 5 is
an INTEGER value, LlRVERSION is a variable of type INTEGER (the
SETC option is explained in detail below). Now suppose that
later in the compilation the Compiler finds

{$IFC PROGVERSION)= LIBVERSION}
K := KVALl(DATA+INDAT);
{ $ELSEC}
K := KVAL2(DATA+CPINDATA);
{$ENDC}
WRITELN(K);

where PROGVERSION is another compile-time variable. If the value
of PROGVERSION is greater than or equal to 5 (the value of
LIBVERSION), then the statement K := KVALl(DATA+INDAT) is
compiled, and the statement K := KVAL2(DATA+CPINDATA) is
skipped.

But if the value of PROGVERSION is less than the value of
LIBVERSION, then the first statement is skipped, and the second
statement is compiled.

In either case, the WRITELN(K) statement is compiled because the
conditional construction ends with the {$ENDC} option.

Note the following points about compile-time variables:

- The constants TRUE and FALSE are pre-declared.

- A compile-time variable is declared when it appears for
the first time on the left-hand side of the assignment
in a SETC option.

- All compile-time variables must be declared bef ore the
end of the declarations section of the main program.
In other words , a SETC option that declares a new
compile-time variable must precede the main program's

106 Apple III Pascal

procedure and function definitions (if any), and must
precede the BEGIN of the main program body; otherwise a
compilation error will be generated.

- At any time, a compile-time variable can have a new
value assigned to it by a SETC option.

- The type of a compile-time variable is that of the most
recent value assigned to it in a SETC option. Only
built-in scalar types are allowed. Therefore the only
possible types are INTEGER, BOOLEAN, and CHAR.

- There is no scope for compile-time variables; once
declared, a compile-time variable is known throughout
the compilation. As already mentioned, compile-time
variable identifiers are completely independent of
identifiers used by the program.

One compile-time variable , APPLE, is pre-declared; it is
used to specify whether Apple III code or Apple II code is
to be produced by the Compiler. Details are given further
on in this appendix; do not use the identifier APPLE as a
compile-time variable identifier for any other purpose.

Compile-Time Expressions
Compile-time expressions appear in the SETC option (on the
right-hand side of an assignment) and in the IFC option. The
only operands allowed in a compile-time expression are
compile-time variables and constants of the types INTEGER,
BOOLEAN, and CHAR. Function calls, set constructors, pointer
references, or references to program variables are not allowed.

The IN operator is not allowed , but all of the other operators
that can be used in Pascal expressions are allowed; since there
are no compile-time REAL values , the I operator is automatically
replaced by DIV. The Compiler evaluates a compile-time expression
as soon as it is encountered in the text, according to the usual
rules for evaluating Pascal expressions.

The Apple III Pascal Compiler 107

The SETC Option
The keyword SETC cannot be abbreviated. The SETC option has the
form

{$SETC ID := EXPR}

where ID is the identifier of a compile-time variable and EXPR is
a compile-time expression. EXPR is evaluated immediately. If ID
has not yet been found in a SETC option, it is declared at this
time. In any case, the value and type of EXPR are assigned to
ID.

THE IFC, ELSEC, AND ENDC OPTIONS (@)
The keywords IFC, ELSEC, and ENDC cannot be abbreviated. The
ELSEC and ENDC options take no arguments. The IFC option has the
form

{$IFC EXPR}

where EXPR is a compile-time expression with a boolean value.

These three options form constructions similar to the Pascal IF
statement, except that the ENDC option is always needed at the
end of the IFC construction. In other words, there are two ways
of using IFC. The first is without an ELSEC option:

{$IFC compile-time expression}
SOUR CE TEXT A
{$ENDC}
SOURCE TEXT B

If the compile-time expression has the value TRUE, then both
SOURCE TEXT A and SOURCE TEXT B are compiled as if the options
were not there. If the compile-time expression has the value
FALSE, then SOURCE TEXT A is skipped and compilation continues
with SOURCE TEXT R.

108 Apple III Pascal

The second form uses ELSEC:

{$IFC compile-time expression}
SOURCE TEXT A
{ $ELSEC}
SOURCE TEXT B
{ $ENDC}
SOURCE TEXT C

If the compile-time expression has the value TRUE, then SOURCE
TEXT A is compiled and SOURCE TEXT B is skipped. If the
compile-time expression has the value FALSE, then SOURCE TEXT A
is skipped and SOURCE TEXT B is compiled. In either case,
compilation continues with SOURCE TEXT C.

IFC constructions can be nested within each other to 5 levels.
Every IFC must have a matching ENDC.

When the Compiler is skipping source text during a conditional
compilation, all options are ignored except the following:

ELSEC
ENDC
IFC (so that ENDC's can be matched properly)
SETC
INCLUDE (text is scanned even if it is being skipped,

in case it contains ELSEC, ENDC, IFC, or
SETC options).

All Pascal program text is ignored during skipping. If a listing
is produced, each source line that is skipped is marked with the
letter S as its "lex level."

The Apple III Pascal Compiler 109

Compiling Apple II Code
The compile-time variable APPLE is predeclared with a value of
3. This default causes the Compiler to produce Apple III code.
If the value of APPLE is changed to 2 by a SETC option before the
program header,

{$SETC APPLE := 2}

then the Compiler will produce an Apple II codefile.

110 Apple III Pascal

Compiler Option Summary
Note: in the following summary, "pn" stands for "pathname."

COMMENT

GOTO+
GOTO
IOCHECK+

IOCHECK
INCLUDE pn

LIST+

LIST
LIST pn

NOLOAD+

NOLOAD-

NEXTSEG num
PAGE
QUIET+
QUIET
RANGECHECK+

RANGECHECK
RESIDENT name

RESIDENT num

SWAP+
SWAP++
SWAP
USER+
USER
USING pn

(C)

(G+)
(G-)
(I+)

(I-)
(I pn)

(L+)

(L-)
(L pn)

(N+)

(N-)

(NS num)
(P)
(Q+)
(Q-)
(R+)

(R-)
(R name)

(R num)

(S+)
(S++)
(S-)
(U+)
(U-)
(U pn)

Following string is placed directly
into codefile.
Allows GOTO statements.
Forbids GOTO statements (default).
Generates I/0-checking code
(default).
No I/O checking.
Includes named source file in
compilation .
Sends listing to SYSTEM.LST.TEXT on
system disk.
Makes no compiled listing (default).
Sends compiled listing to named
file.
Prevents units from being loaded
until activated.
Loads units immediately when program
runs (default).
Specifies number of next segment.
Inserts a form feed into listing .
Suppresses screen messages .
Sends messages to screen (default)
Generates range-checking code
(default) .
No range checking.
Keeps named segment loaded while
current procedure is active.
Keeps segment number loaded while
current procedure is active.
Puts Compiler in swapping mode.
Compiler does even more swapping.
Non-swapping mode .
Compiles user program (default) .
Compiles system program .
Specifies name of library
file for finding uni t s.

The Apple III Pascal Compiler 111

VARSTRING+ (V+) Checks VAR parameters of type STRING
(default).

VARSTRING- (V-) No checking of VAR paraMeters of type
STRING.

SETC (SETC) Assigns value to compile-time
variable.

IFC (IFC) Conditional compilation.
EL SEC (ELSEC) Conditional compilation.
ENDC (ENDC) Conditional compilation.

112 Apple III Pascal

Special Techniques 113

El-·--+----!·--
..

Special Techniques

_· _' __ . ---±=
!
i

114 Apple III Pascal

Introduction
This appendix discusses areas where Apple III Pascal goes beyond
the fundamental ideas of Pascal as originally defined by Jensen
and Wirth. These techniques are intended for the experienced
programmer when faced with problems for which the concepts of
Pascal are not adequate; if you use them , you abandon some of the
safety features of the language and it will be easier to create
incomprehensible bugs in your program. Thus use them carefully
if at all.

Strong Typing
A major assumption of Pascal philosophy is strong typing; this
means that any stored value represents data of one type only and
cannot be directly interpreted as if it were of another type .
Jensen and Wirth did provide a mechanism for circumventing strong
typing, namely the free union record variant . This mechanism is
explained here; in addition , Apple III Pascal provides other
mechanisms to circumvent strong typing .

Boolean Logic
Another assumption of Pascal is that there are only two boolean
values, represented by the built-in constants TRUE and FALSE.
But in this implementation of Pascal, a boolean value can
actually be any pattern of 16 bits and is interpreted as either
"true" or "false" depending on its least significant bit. The
boolean operators AND , OR , and NOT are usually assumed to do
single operations on values of TRUE and FALSE ; but actually they
are bitwise logical operators with 16-bit operands . This permits
some uses of boolean values and operations that are not normally
considered part of Pascal.

Representation of Scalar Values
In order to understand and apply these special techniques , you
need to know how some of the data types are represented . The
following sections give details on how data are stored in memory,
for each simple (i . e . single-valued) scalar data type . A later
section deals with arrays.

Special Techniques 115

The basic unit of storage is a 16-bit binary word, consisting of
two contiguous 8-bit bytes. The least significant byte comes
first (at the lower of the two byte addresses). A word can be
visualized as follows:

high byte

15 14 13 12 11 10 9

most
significant

8 7 6

Every scalar value is stored in one word .

Integers

low byte

5 4 3 2

least
significant

An integer value is stored in one word, least significant byte
first. Two's-complement notation is used to represent negative
integers.

Characters
A char value is represented by its ASCII code, stored i.n one
word. Since ASCII codes are in the range 0 •• 255, they only
require one byte; the char code is stored in the least
significant byte of the word (i.e . the first byte). The most
significant byte contains 0's .

Booleans
A boolean value is stored in one word . The logical "true" or
"false" value is represented by the least significant bit of the
least significant byte; for most purposes, this is the only
meaningful bit and all the other bits are ignored . However, see
the section below on the ORD and ODD functions.

User-Defined Scalars
When a user-defined scalar type is declared,
identifiers is associated with an ORD value:
declared has an ORD value of 0, the next has
and so forth. For example , the declaration

each of its value
the first one

an ORD value of 1,

116 Apple III Pascal

VAR DAY: (MON, TUES, WED, THURS, FRI, SAT, SUN);

creates a variable DAY whose possible values (at the source
program level) are MON •• SUN. These have the ORD values 0 .. 6;
thus ORD(MON) is 0, ORD(TUES) is 1, and ORD(SUN) is 6. Now if
DAY is assigned a particular value , such as

DAY := WED

the value is represented in memory as the integer 2~because
ORD(WED) is 2. Every user-defined scalar value is represented in
one word in memory as its binary value~its ordinality.

Implications
By combining this information on representation of scalars with
the following facts about the ORD and ODD functions, you can use
some special techniques.

ORD and ODD
The familiar ORD function accepts any scalar value as its
parameter, and returns the ordinality of that value. This is
done in a strikingly simple way: ORD merely returns the very
same value that was passed to it; since ORD is by definition an
integer function, the returned value is now interpreted as an
integer. This works because every scalar value is stored in the
same way: as a binary value. The numerical value of this word
is the ordinality of the scalar value.

The ODD function accepts any integer as its argument; it returns
"true" if the integer is odd, and "false" if the integer is
even . We saw above that "true" and "false" depend only on the
least significant bit of a boolean value; now notice that "odd"
and "even" depend only on the least significant bit of an integer
value. What ODD actually does is to return the same value that
was passed to it; since ODD is by definition a boolean function,
the returned value is now interpreted as a boolean value.

This implies that any scalar value can be interpreted according
to its original type, or as an integer, or as a boolean value:

- To interpret the value of any non-integer scalar S as
an integer, use ORD(S) .

Special Techniques 117

- To interpret the value of any integer N as a boolean,
use ODD(N).

- To interpret the value of any non-integer scalar X as a
boolean, use ODD(ORD(X)).

Here is a simple example of the application of these ideas. It
uses the concept of a bit mask as a way of controlling one bit
within a char variable~namely Bit 5, which is the bit that
distinguishes between capital and lower-case letters.

PROGRAM MASKER;
{A program to read a string and convert each lower-case
letter to the corresponding upper-case letter by masking
off Bit 5 }

VAR
ST: STRING;
MASK: BOOLEAN;

LOWERCASE: SET
I:INTEGER;

{A variable to contain the string }
{Contains a bit pattern with a 0 in
Bit 5 and all l's in the other bits

OF CHAR; {Contains the lower-case letters
{An integer index variable }

118 Apple III Pascal

BEGIN
MASK: =NOT ODD(32);
{The integer value 32 has a 1 in Bit S and all 0's in the
other bits. We take ODD(32) which is the same bits but
considered as a boolean value; the NOT operation
complements all 16 bits, resulting in a 0 in Bit S and
all l's in the other bits: }

{Initialize LOWERCASE with the lower-case letters:
LOWERCASE:=['a' •• 'z'];
{Prompt for a string , and read it into ST: }
WRITE('Type a string: ');
READLN(ST);
{Scan the string: }
FOR I:=l TO LENGTH(ST) DO

{If the character is lower-case letter, then ••• }
IF ST [I] IN LOWERCASE THEN

{AND it with MASK. The char code is a bit pattern.
Take ORD of it, which returns the same bits as an
integer, then take ODD which returns the same bits as
a boolean. Now AND it with MASK, thus masking off
Bit S. To get the bits back to being a char value,
take ORD and then CHR: }

ST[I]:=CHR(ORD(MASK AND ODD(ORD(ST[I]))));

{Write out the string: }
WRITELN(ST)

END.

There are simpler ways to do case conversion on char values; the
above program is presented merely to illustrate the technique of
manipulating individual bits by using ODD, ORD, and the boolean
operators.

"Normal" Uses of Booleans
As we have seen, there are other boolean values besides FALSE and
TRUE; for example ODD(3) is a boolean "true" value but
ORD(ODD(3)) is 3, not 1. However, note that the boolean
constants FALSE and TRUE are always represented as the integer
values ~and 1, respectively, since ORD(FALSE) is 0 and ORD(TRUE)
is 1.

It might appear that these extensions would interfere with the
"normal" uses of booleans--that is, the uses described or implied

Special Techniques 119

by Jensen and Wirth. However, in Apple III Pascal there is no
problem. The "normal" uses of boolean values work normally
because they consider only the least significant bit of a boolean
value. Thus every boolean value appears to be equal to either
TRUE or FALSE in all the following cases:

- Boolean value used to control an IF, WHILE, REPEAT,
CASE, or FOR statement .

- Comparison of two boolean values . The comparison
expression ODD(3)=0DD(S), for example, gives the result
TRUE .

- Array index of type boolean .

Testing a boolean value for membership in a set of
boolean .

- Putting a boolean value into a set of boolean.

The only "normal" use of a boolean that gives an "abnormal"
result is taking the ORD of a boolean, as described above: the
result may be a value other than 0 or 1. However there is
generally no reason to do this except when you want the
"abnormal" result; if you do want the "normal" value, write
ORD(B)=TRUE where B is the boolean value.

Representation of Arrays
A non-packed array of scalar values is represented simply as a
sequence of words , with each word containing one scalar value as
described previously .

When the array is packed, each value does not necessarily take up
one word . The word is still the unit of storage , but each word
can contain more than one value if it has enough bits . For
example, consider the declaration

VAR OCTAL: ARRAY[0 •• 63] OF 0 . • 7;

which creates an array OCTAL of 64 elements . Each element is an
integer value in the range 0 • • 7, and requires three bits . Since
a word contains 16 bits , 5 array elements can be packed into a
word . The elements are right - justified in the word: that is,

120 Apple III Pascal

the first element in each word is in bits 0 •• 2, the second is in
bits 3 •• 5, and so on to the fifth element in bits 12 •• 14. Bit 15
is unused. The next element goes in bits 0 •• 2 of the next word.

The following specific cases are of particular interest:

- A char value requires 8 bits; in a packed array of
char, each word of storage contains two char values;
the first one is in Bits 0 •. 7 and the second in Bits
8 .. 15.

A value of the subrange type 0 •• 255 also requires 8
bits and can be thought of as a "byte" type value.
Storage in a packed array of ~ •• 255 is the same as for
packed char values.

- A boolean value requires only one bit; in a packed
array of boolean, each word contains 16 values. The
first value is in Bit ~. and the last is in Bit 15.

The above only applies as long as the variables remain packed.
Whenever a value is unpacked from a packed variable, it is
expanded to occupy a full word.

Representation of Real Values
Comple te details on the representation of rea l value s ar e given
in Appendix E. Briefly, each real value is represented in two
words, or 32 bits. The most significant bit is the sign bit, the
next 8 bits are the exponent field, and the 23 least significant
bits are the fraction field. An example program in the next
section shows how to access individual bits in a real value.

Free Union Variants
In an ordinary variant record (as discussed in Chapter 8) a tag
field value is stored as part of the record, and is normally used
by the program to determine how to interpret the variant data.
This is useful when the data in each variant field of a
pa rti cular record is of a specific type; the presence of the t ag
fi e ld i s a safeguard against misinterpre ting the va riant data .

Special Techniques 121

But here we are interested in ways of purposely interpreting the
same data in more than one way. This is possible with an
ordinary variant record: merely ignore the tag field. By using
a free union variant, you can eliminate the tag field; this saves
a little memory and also makes the maneuver more convenient.

A free union variant looks like an ordinary variant, except that
the tag field identifier is omitted. A tag type is still
required, and case labels are still required. For example:

VAR FOXY: RECORD CASE BOOLEAN OF
FALSE: (INT: INTEGER);
TRUE: (BOOL: BOOLEAN)

END;

Now FOXY.INT refers to a value of type integer, and FOXY.BOOL
refers to a value of type boolean. Both refer to the same actual
word of data. The labels FALSE and TRUE, corresponding to the
tag type BOOLEAN, are a matter of convenience; you could use any
tag type that has enough possible values to use as case labels.
In the example below, you will see a user-defined scalar type
declared solely for use as a tag type for a free union that has
three cases.

Earlier, we needed to clear Bit 5 of a boolean variable, and did
so by first assigning the value NOT ODD(32) to the MASK and then
ANDing the MASK with the variable . In the following program we
will use a free union as a more powerful way of accessing
individual bits of a boolean value~and more. This will be a
three-way free union that allows the same word of data to be
treated as an integer, as a boolean value, or as a packed array
of 16 boolean values .

122 Apple III Pascal

PROGRAM BINARY;
{This program takes an integer value from the keyboard and
displays its value as a 16-bit binary number by treating it
as a packed array of 16 one-bit boolean values. Then it
treats the value as one 16-bit boolean value, complements
it, and again displays the result as a 16-bit binary
number: }

TYPE

VAR

{A type to use as tag tyl e in a 3-way free union:
THREEWAY=(A,B,C); ~P
{An index type for 16-element arrays:
BITINDEX=0 •• 15;
{An array type of 16 booleans , each represented as a bit: }
BITARRAY=PACKED ARRAY[BITINDEX) OF BOOLEAN;
{A free union record type, which can represent an integer,
or a bit array, or a boolean; same 16 bits in all cases: }

THREETYPES=RECORD CASE THREEWAY OF
A: (INT:INTEGER);
B: (BITS:BITARRAY);
C: (BOOL:BOOLEAN)

END;

VALUE: Tl!REETYPES; {A variable of the free union type

{A procedure which takes a parameter of free union type,
treats it as a bit array , and writes the 16 bits out as l's
and \il's: }

PROCEDURE BINOUT(NUM:THREETYPES) ;
VAR K:BITINDEX; {An index variable
BEGIN

{Scan the 16 bits , most significant first: }
FOR K:=l5 DOWNTO 0 DO

END;

{If the bit is true, write al;
if it's false, write a 0: }

CASE NUM .BITS[K) OF
TRUE: WRITE('!');
FALSE:WRITE('0')

END

Special Techniques 123

{Main program: }
BEGIN

{Prompt the user for a decimal integer:
WRITE('Type Number: ');
{Store it as an integer value:
READLN(VALUE.INT);
{Write it as a binary integer:
BINOUT(VALUE);
WRITELN;
{Complement the value as a 16-bit boolean: }
VALUE.BOOL:=NOT VALUE.BOOL;
{Write it as a binary integer: }
BINOUT(VALUE);
WRITELN;WRITELN

END.

~he next example uses a similar technique to access individual
bits of a real value. It takes any real value from the keyboard
and displays the bit values.

PROGRAM REALBITS;
{This program takes a real value from the keyboard and
displays the value of its sign, exponent, and fraction
fields by treating it as a packed array of 32 one-bit
boolean values: }

TYPE

VAR

{A type to use as tag type in a 2-way free union: }
TWOWAY=(A, B);
{An index type for 32-element arrays:
BITINDEX=0 •• 31;
{An array type of 32 booleans,
each one represented as a bit: }

BITARRAY=PACKED ARRAY[BITINDEX] OF BOOLEAN;
{A free union record type, which can represent a
real value or a bit array; same 32 bits in all cases:

TWOTYPES=RECORD CASE TWOWAY OF

VALUE: TWOTYPES;

A: (REALVAL:REAL);
B: (BITS:BITARRAY)

END;

{A variable of the free union type }

124 Apple III Pascal

{A procedure which takes a parameter of free union type,
treats it as a bit array , and writes the 32 bits out as l's
and 0's with spaces to separate the sign, exponent, and
fraction fields: }

PROCEDURE BINOUT(NUM:TWOTYPES);
VAR K:BITINDEX; {An index variable

BEGIN
{Write a 1 or 0 for the sign bit, then a space:}
IF NUM . BITS[31] THEN WRITE('!') ELSE WRITE('0');
WRITE(' ');
{Scan the 8 bits of the exponent field, most
significant first , then a space: }

FOR K:=30 DOWNTO 23 DO
CASE NUM . BITS [K] OF

TRUE: WRITE('!');
FALSE:WRITE(' 0 ')

END;
WRITE(' ');
{Scan the 23 bits of the fraction field, most
significant first: }

FOR K:=22 DOWNTO 0 DO
CASE NUH . BITS[K] OF

TRUE: WRITE('!');
FALSE:WRITE('0')

END
END;

{Main program:
BEGIN

{Prompt the user for a real number:
WRITE('Type Number: ');
{Store it as a real value:
READLN(VALUE.REALVAL);
{Display the bits: }
BINOUT(VALUE);
WRITELN;WRITELN

END .

Byte-Oriented Built-Ins Revisited
Chapter 13 describes the byte-oriented routines FILLCHAR,
MOVELEFT, MOVERIGHT, SCAN, and SIZEOF. It mentions that the
parameters for these routines are not type-checked; note that

Special Techniques 125

these procedures provide yet another way to defeat strong
typing. For example, if you have the declarations

VAf1 BIT: PACKED Af1RAY[0 • • 15] OF BOOLEAN;
BOOL: BOOLEAN;

then you can transfer the value of BOOL into the bit array BIT by
means of the statement

MOVELEFT (BOOL , BIT , 2)

which moves two contiguous bytes (one word) without checking data
type .

Special Uses of UNITSTATUS
Chapter 12 describes most functions of the UNITSTATUS procedure .
The form is

UNITSTATUS (UNITNUll , DATA, OPTION)

In Chapter 12 , UNITNUM is required to be the unit number of an
I/O device . However , special operations are invoked if UNITNUM
has value 0 (which is not the unit number of any Pascal unit) .

If UNITNID1 = 0 and OPTION = 0, UNITSTATUS retur ns a structure
containing SOS device numbers corresponding to the Pascal I/O
units numbered 1-20 and 128-147 . In this case, DATA should be a
record declared as follows:

DATA : PACKED RECORD
REGULAfJ..UNITS
USER UNITS

END;

PACKED ARRAY [1 •• 20] OF 0 •• 255;
PACKED ARRAY [128 •• 147] OF 0 • • 255

Array elements corresponding to non-existent units are set to 0.

If UNITNUM = 0 and OPTION = 1, UNITSTATUS reinitializes the
console to the same state it was initialized to at boot time .
This provides a means for the user to restore "normal " console
operation after having altered it for some purpose . In this
case, DATA may be of any type; it is not used.

126 Apple III Pascal

Comparison To Apple II Pascal 127

128 Apple III Pascal

The great majority of Apple II Pascal programs can be recompiled
and executed on the Apple III without modification.

The following is a summary of significant differences between
Apple II Pascal and Apple III Pascal.

OTHERWISE Clause in CASE Statement
Apple III Pascal provides an OTHERWISE clause in the CASE
statement. The OTHERWISE clause, if present , contains a
statement that is executed if none of the cases in the CASE
statement are executed . See Chapter 5 .

SOS Pathnames
SOS pathnames are different from the Pascal filenames used on the
Apple II. Apple III Pascal supports both kinds of names, as
explained in the Introduction, Filer, and Editor manual.

SOS Device Driver Support
All SOS device drivers are supported by Apple III Pascal as
"I/O units." See Chapters 10-12 and the Standard Device Drivers
Handbook.

Graphics
The Apple III screen graphics modes differ significantly from the
Apple II, and the graphics screen is driven through the SOS
graphics driver (see Standard Device Drivers Handbook).
Therefore, a new unit named PGRAF is supplied as a high-level
interface to the graphics driver .

TURTLEGRAPHICS is available only for compatibility with
Apple II~see Appendix K.

Comparison To Apple II Pascal 129

New Procedures
DATE, TIMEOFDAY, CLOCKINFO, and SETTIME are procedures provided
in the APPLESTUFF unit for reading and setting the Apple III
system's internal date and time. See Appendix D.

JOYSTICK and SOUND are procedures contained in the APPLESTUFF
unit, to support the joystick device and the Apple III built-in
sound generator. Note that PADDLE, BUTTON, and NOTE are also
supported. See Appendix D.

New Data Types
The BYTESTREAM and WORDSTREAM types are provided for use as types
of VAR parameters in procedure and function definitions. See
Chapter 13.

Real Arithmetic
For operations on values of type REAL, Apple III Pascal conforms
to the proposed IEEE floating-point standard. Under default
conditions, the difference between this and the arithmetic of
Apple II Pascal is invisible unless the program peforms
operations with exceptional results (such as division by zero).
See Appendix E for complete details.

Library Files and Units
In addition to the SYSTEM.LIBRARY file , each codefile under Apple
III Pascal can have a "program library" file associated with it .
This makes the use of library units more convenient and allows a
program to have up to 48 segments at run time.

When compiling a unit, it is no longer necessary in all cases to
use the Compiler's swapping option.

130 Apple III Pascal

Memory Organization
The memory organization of the Apple III under SOS and Pascal is
different from the memory organization of the Apple II under
Pascal. This makes no difference to most programs. However, the
amount of memory available for a user program will be somewhat
greater on the 128K Apple III than on the Apple II .

Memory organization might adversely affect an Apple II program if
it depends on pointer values created while running on an Apple II
and stored in a diskette file . Any such values will of course be
incorrect on the Apple III .

Similarly, an Apple II program that depends on explicit Apple II
hardware addresses will not work on the Apple III . This might
affect Apple II Pascal programs that are designed to drive the
Silentype printer; such programs should be revised to use the
Apple III Silentype driver described in the Standard Device
Drivers Handbook .

The UNITSTATUS Procedure
For device-oriented I/O, the UNITSTATUS procedure is supported.
See Chapter 12 .

Runtime Segment Table
The runtime segment table allows for 64 segments instead of 32.
See Chapter 15.

Conditional Compilation
The Apple III Pascal Compiler allows conditional compilation.
See Appendix F.

Comparison To Apple II Pascal 131

The CHAINSTUFF Unit
Since Apple III Pascal has no "system swapping" mode, the SWAPON
and SWAPOFF procedures are absent from the CHAINSTUFF unit.

Compiling Apple II Code
The Apple III Pascal Compiler can compile code to run on the
Apple II . See Appendix F .

File Variable Size
Every declared file in an active procedure requires 1,100 bytes
of memory .

Compiler Options
Option names can be spelled out.

Because Compiler options always end with a comma, they can be
chained together (except for the INCLUDE option) . Therefore, the
COHMENT option cannot contain a comma, and the RESIDENT option
does not accept a list.

Procedure Complexity
A more complex procedure may be compiled on the Apple III than on
the Apple II because of the Apple Ill's larger memory .

System Globals
Users of the {$USER- } option may find that their programs are not
portable.

132 Apple III Pascal

Syntax Diagrams 133

134 Apple III Pascal

These diagrams give the formal syntax for all Apple III Pascal
constructions.

compilation

program

-~
n ew

identifier ------

unit

uses dec l aration

block

unit

unit
heading

intrinsic unit heading

new
identifier

dsegnum

constant

regular unit heading

ident 1f i er

Syn tax Di ap,rams 135

implementation

csegnum
constant

136 Apple III Pascal

interface

uses declaration

constant declarations

type declarations

variable declarations

procedure heading

function heading

implementation

IMPLEMENTATION label declarations

constant declarations

variable declarations

procedure declaration

f unc tion declar ation

Syntax Diagrams 137

block

label declarations

constant declarations

type declarations

variable declarations

procedure definition

function definition

compound statement

uses declarations

138 Apple III Pascal

label declarations

constant declarations

constant

unsigned
constant

new
identifier

type declarations

new
identifier

&I cons tant

~ ..._ t ype v-__

simple type

simple type

pointer type

set type

army type

string type

reco r d type

file type

type
ide ntifier

use r-def ine d
scalar type

subrange
type

user-defined scalar type

- (

Syntax Diagrams 139

140 Apple III Pascal

subrange type

constant

pointer type

set type

string type

array type

constant

unsigned
integer

constant

e leme nt
type

record type

field list

variant part

tag
ident if i er

type

tag
type

identifier

field
list

Syntax Diagrams 141

variant
part

142 Apple III Pascal

file type

component
t y pe

INTERACTIVE .-------------~

variable declarations

procedure definition

SEGMENT

PROCEDURE

type

n ew

identifier

function definition

FUNCTION
new

ident Lfier

Syntax Diagrams 143

parame t e r
l i s t

Ci ide~~~~ier J---0-1 block ~----+

parameter list

parameter declaration

compound statement

lype
identi.fie r

144 Apple III Pascal

statement

assignment statement

compound statement

procedure call

fo r statement

repeat statement

while statement

if s tatement

case statement

goto statement

wi th statement

assignment statement

variable
reference

procedure call

procedure
identifier

expression

with statement

goto statement

~~
~

for statement

identifier

repeat statement

Syntax Diagrams 145

s tatcment

expression

statement

expression

146 Apple III Pascal

while statement

expression statement

if statement

expression statement

case statement

ex pression

caseclause L------

otherwiseclause

case clause

statement

otherwise clause

-•\.QJ ____ ; ____ _,~,.cOTHERWISE H statement J---+

expression

- simple
expression

simple expression

simple
expression

Syntax Diagrams 147

148 Apple III Pascal

term

factor

unsigned
constant

variable
reference

function
cal 1

set

factor

expression

variable reference

va r iable
identifier

function call

function
ide ntifier

set constructor

Syntax Diagrams 149

150 Apple III Pascal

unsigned constant

constant
identifier

uns igned
number

character

unsigned number

unsigned integer

Syntax Diagrams 151

identifier

- letter

letter

digit

underscore

152 Apple III Pascal

Tables 153

Tables

J -t -- - i

154 Apple III Pascal

Table 1: Execution Errors
1 Value range error
2 No procedure in segment table
3 Exit from uncalled procedure
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 NIL pointer reference
8 Program interrupted by user
9 System I/O error

10 User I/O error
11 Unimplemented instruction
12 Floating point error
13 String overflow
14 Programmed HALT
15 Programmed break-point

When one of these errors occurs, a message is displayed giving
the error number followed by a segment number, a procedure
number, and a byte number. These numbers relate to the program
listing; see the description of the "Listing" option in
Appendix F.

Tables 155

Table 2: /JO Errors
This table lists all the error numbers that can possibly be
returned by the IORESULT function (see Chapter 10). The notation
(SOS) in the table indicates an error reported by SOS; some of
the SOS errors are unlikely under the Pascal system, and are
included here for completeness only.

f/J

2
3
5
6
7
8
9

10
11
12
13
14
15
16
19
32
34
35
36
37
44
45
48 •• 63
64
65
66
67
73
74
75
76
77
78
79

No error; normal I/O completion
Bad unit number
Illegal operation (e.g., read from PRINTER:)
Lost unit -- no longer on line
Lost file -- file is no longer in directory
Illegal pathname
No room -- insufficient space on diskette
No unit -- unit is not on line
No such file in specified directory
Duplicate pathname
Attempt to open an alrea dy open file
Attempt to access a closed file
Bad input format -- error in reading number
Ring buffer overflow -- input arriving too fast
Write-protect error -- diskette is protected
Too many files open for system to handle
(SOS) Invalid request code
(SOS) Inva lid control parame t e r list
(SOS) Cha rac ter device not open
(SOS) Device not available
(SOS) Resource not available
(SOS) Invalid byte count
(SOS) Invalid block number
(SOS) Device-specific error
Device error -- bad address or data on diskette
(SOS) Too many character f i l e s open
(SOS) Too many block file s open
(SOS) Invalid file reference number
(SOS) Directory full
(SOS) Incompatible file format
(SOS) Unsupported storage type
(SOS) Attempted read past end of file
(SOS) File position out of range
(SOS) Il legal access attempted
(S-OS) Us er's buffer too sma ll

156 Apple III Pascal

80 (SOS) File busy
81 (SOS) Volume format neither SOS nor Apple II
83 (SOS) Inva lid value in list parameter
84 (SOS) Out of memory for SOS system buffer
85 (SOS) Buffer table full
86 (SOS) Invalid system buffer parameter
87 (SOS) Duplicate volume error

123 •• 127 (SOS) System call error

These errors result in a run-time halt unless the Compiler option
{$IOCHECK-} is used to turn off I/O checking . With I/O checking
off, the I /O error number can be returned to the program by the
built-in function IORESULT (see Chapter 10) .

Tables 157

Table 3: Reserved Words
These are words that have fixed meanings in Pascal . You can
never use them as identifiers without causing a Compiler error.
The next table lists some more words you should not use as
identifiers.

Standard Pascal Reserved Words
AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWN TO
ELSE
END
FILE
FOR
FORWARD
FUNCTION
GOTO
IF
IN
LABEL

MOD
NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

Additional Apple Ill Pascal Reserved Words
EXTERNAL
IMPLEMENTATION
INTERFACE
OTHERWISE
SEGMENT
UNIT
USES

158 Apple III Pascal

Table 4: Predefined Identifiers
These are the identifiers of the built-in procedures and
functions and the predefined types and variables of Apple III
Pascal. The list does not include those identifiers that are
declared or defined in the standard library units. If you
declare or define one of these identifiers in your program, no
error will result but you will lose the capability of the
corresponding built- in or predefined entity.

With each identifier, a code is shown to the left to indicate
what kind of object the identifier represents. The codes are

p procedure i integer function
b boolean function r real function
t type c char function
k constant f file
s string funct i on other

r ABS t INTERACTIVE p REWRITE
i BLOCKREAD i IORESULT i ROUND
i BLOCKWRITE f KEYBOARD i SCAN
t BOOLEAN i LENGTH p SEEK
t BYTE STREAM p MARK i SIZEOF
t CHAR k MAXINT r SQR
c CHR i MEMAVAIL s STR
p CLOSE p MOVE LEFT t STRING
s CON CAT p MOVERIGHT succ
s COPY p NEW t TEXT
p DELETE b ODD i TREE SEARCH
b EOF i ORD k TRUE
b EOLN f OUTPUT i TRUNC
p EXIT p PAGE b UNITBUSY
k FALSE i POS p UNITCLEAR
p FILLCHAR PRED p UNI TREAD
p GET p PUT p UNITSTATUS
p GOTOXY r PWROFTEN p UNI TWAIT
p HALT p READ p UNITWRITE
p IDSEARCH p READLN t WORD STREAM
f INPUT t REAL p WRITE
p INSERT p RELEASE p WRITELN
t INTEGER p RESET

Tables 159

Table 5: Compiler Error Messages
When the Pascal Compiler discovers an error in your program, it
reports that error immediately, by error number. If you then
enter the Editor to fix that error, a more complete error message
is given, taken from the system diskette file SYSTEM.SYNTAX • If
you remove the file SYSTEM.SYNTAX from the system diskette,
errors will be reported by number only.

The Pascal Compiler error message corresponding to each error
number is given in the table below. Some people will prefer to
gain some additional space on their system diskette, by removing
SYSTEM.SYNTAX and using this table instead. You can also print
your own copy of this table by transferring the file
SYSTEM.SYNTAX to a printer.

Some additional helpful information is provided in Table 5,
enclosed in square brackets [). This information is not part of
the file SYSTEM.SYNTAX it cannot be printed, and it will not
appear on your screen.

1: Error in simple type
2: Identifier expected
3: 'PROGRAM' expected
4: ')' expected
5: ': ' expected
6: Illegal symbol (maybe missing or extra
7: Error in parameter list
8: 'OF' expected
9: '(' expected

10: Error in type
11: ' [' expected
12: ']' expected
13: 'END' expected
14: ';' expected (possibly on line above)
15: Integer expected
16: '=' expected
17: 'BEGIN' expected
18: Error in declaration part
19: Error in field-list
20: ','expected
21: '.'expected
22: 'Interface' expected

on line above)

160 Apple III Pascal

23: 'Implementation' expected
24: 'CODE' expected
50: Error in constant
51: ':='expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or 'DOWNTO' expected in FOR statement
58: Error in factor (bad expression)
59: Error in variable

101: Identifier declared twice
102: Low bound exceeds high bound
103: Identifier is not of the appropriate class

[Maybe a packed variable is being used where an
unpacked variable is required .]

104: Undeclared identifier
105: Sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not al lowed here

[A file may not be part of a record or an array;
a file may not be the object of a pointer.]

109: Type must not be real
110: Tagfield type must be scalar or subrange
111: Incompatible with tagfield part
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
117: Unsatisfied forward reference
119: Re-specified params not OK for a forward declared procedure
120: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed
122: The result type of a forward declared function cannot be

re-specified
123: Missing result type in function declaration
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
128: Illegal operation for this file type

[BLOCKREAD and BLOCKWRITE must be to untyped files;
other operations must be to typed files . Certain
operations are restricted to character files. See
Chapter 12.]

129: Type conflict of operands
130: Expression is not of set type
131: Only tests on equality are allowed
132: Strict inclusion not allowed

133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
138: Type of variable is not array

Tables 161

139: Index type is not compatible with the declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal actual parameter
143: Illegal t ype of loop control variable
144: I llegal type of expressi on
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar
149: Index type must not be integer
150: Assignment to standard function is not allowed
152: No such field in this record
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local
156: Multidefined case label
158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Forward declared twice
162: Parame ter size must be constant

[Opt ional pa rame ters i n NEW must be constants.)
165: Multidef ined label
166: Multideclared label
167: Undeclared label
168: Undefined label

[165-168: In order to "declare" a label you must include
it in the LABEL declaration section; in order to "define"
a label you must specify it before the statement to whi ch
it r efer s in the body of the procedure . A l abe l mus t be
decla r ed and defined exact ly once .)

169: Base type of set too large
175: Actual parameter max string length < formal max length
182: Nested units not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit
186: Labels not a llowed in interfa ce s ection
187: Attempt to open libra ry unsucces sful
188: Unit not declared in previous uses decl a rat i on

162 Apple III Pascal

189: 'Uses' not allowed at this nesting level
190: Unit not in library
191: No private files in unit
192: 'Uses' must be in interface section
195: Unit not importable (interface text not available)
201: Error in real number--digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
253: Procedure too long

[A procedure is too long when it overflows the internal
code buffer used by the Compiler . Solution: break off
one or more nested procedures .]

254: Procedure too complex
[A procedure is too complex when it generates too many
long jumps (i . e . , too many control structures).]

260: New compile-time variable must be declared at global level
261: Undefined compile-time variable
262: Error in compile-time expression
263: Conditional compilation options nested too deeply
264: Unmatched ELSEC
265: Unmatched ENDC
266: Error in SETC
267: Unterminated conditional compilation option
271: Comment must appear at top of program

[Certain Compiler options must appear before the word
PROGRAM.]

272: Invalid symbol in Compiler option
273: No such unit or segment
274: Invalid segment number
275: Include must be last option
276: Invalid code version type
301: Not enough room for case jump table

[When a case statement is compiled, a jump table
is generated with one entry for each value between
the minimum and maximum case selectors . A short case
statement with a wide range between minimum and
maximum selectors may result in a very large piece
of code .]

350: No data segment allocated
[An intrinsic unit with global variables in either the
INTERFACE or the IMPLEMENTATION requires a data segment.
The data segment must not be declared unless it is used.]

352: No code segment allocated
353: Non-intrinsic unit called from intrinsic unit

354: Too many segments for segment dictionary
355: Data segment empty
399: Implementation restriction

[May be one of the following:
- subrange of real is not allowed;

Tables 163

- segment procedures, segment functions, and units must
be declared before regular procedures;

- the word SEGMENT must apply to PROCEDURE
or FUNCTION only;

- the defining text of a forward-declared segment must
repeat the word SEGMENT;

- no external segments are allowed.]
400: Illegal character in text
401: Unexpected end of input

[Possible causes include:
- mismatched BEGIN and END;
- omitting the period after the final END;
- unterminated comment;
- unterminated conditional compilation;
- procedure without a body.)

402: Error in write to code file, maybe not enough room on disk
403: Error while opening or reading include file
404: Bad open, read, or write to Linker file SYSTEM.INFO

[See Program Preparation Tools manual.)
405: Error while reading library
406: Include file not legal in interface nor while including
408: General Compiler error

164 Apple III Pascal

Table 6: ASCII Character Codes
Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
T 00 NUL 3z zw- gp- 6440_@_ %~-,-

1 01 SOH 33 21 6S 41 A 97 61 a
2 02 STX 34 22 II 66 42 B 98 62 b
3 03 ETX 3S 23 II 67 43 c 99 63 c
4 04 EQT 36 24 $ 68 44 D 100 64 d
s 0S ENQ 37 2S % 69 4S E 101 6S e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 10S 69 i

10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 7S 4B K 107 6B k
12 0C FF 44 2C 76 4C L 108 6C 1
13 0D CR 4S 2D - 77 4D M 109 6D m
14 0E so 46 2E . 78 4E N 110 6E n
lS 0F SI 47 2F I 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 S0 p 112 70 p
17 11 DC! 49 31 1 81 Sl Q 113 71 q
18 12 DC2 S0 32 2 82 S2 R 114 72 r
19 13 DC3 Sl 33 3 83 S3 s llS 73 s
20 14 DC4 S2 34 4 84 S4 T 116 74 t
21 lS NAK S3 3S s 8S SS u 117 7S u
22 16 SYN S4 36 6 86 S6 v 118 76 v
23 17 ETB SS 37 7 87 S7 w 119 77 w
24 18 CAN S6 38 8 88 S8 x 120 78 x
2S 19 EM S7 39 9 89 S9 y 121 79 y
26 lA SUB S8 3A 90 SA z 122 7A z
27 lB ESC S9 3B 91 SB [123 7B
28 lC FS 60 3C < 92 SC \ 124 7C
29 lD GS 61 3D 93 SD l 12S 7D
30 lE RS 62 3E > 94 SE ~ 126 7E -
31 lF us 63 3F ? 9S SF 127 7F DEL

The codes in the range 128 • • 2SS are not assigned to specific
characters , but are nevertheless usable as ASCII code values; see
Chapter 3.

Tables 165

Table 7: Standard 110 Devices
The Pascal system identifies each peripheral device by a unit
number and a unit name. SOS device names may also be used. The
standard unit names and numbers are

sos PASCAL PASCAL
DEVICE NAME UNIT II UNIT NAME
.CONSOLE 1 CONSOLE:
.CONSOLE 2 SYS TERM:
.GRAFIX 3 GRAPHIC:
.Dl 4 (volume name)
.D2 5 (volume name)
.PRINTER 6 PRINTER:
.RS232 7 REMIN:
.RS232 8 REMO UT:
.D3 9 (volume name)
.D4 10 (volume name)

The distinction between units 1 and 2 (CONSOLE: and SYSTERM:) is
that I/O operations using SYSTERM: (unit 2) do not cause typed
characters to be echoed on the screen. The built-in Pascal file
identifier KEYBOARD is associated with the SYSTERM: unit, and the
built-in Pascal file identifiers INPUT and OUTPUT are associated
with the CONSOLE: unit.

The distinction between units 7 and 8 (RmUN: and REMOUT:) is
that unit 7 is used for input and unit 8 is used for output.
Both ref er to the SOS device .RS232 •

Note that if there is a printer-like drive present (e.g.,
.SILENTYPE) and no .PRINTER , the printer-like driver is assigned
the Pascal unit name PRINTER: and its unit number is 6.

Non-standard devices are assigned sequential unit numbers in the
range 128 through 255 according to their order in SOS.DRIVER
(See the Standard Device Drivers Handbook.)

166 Apple III Pascal

Table 8: Size Limitations
Maximum size of any one procedure (including main

program): approximately 1200 bytes of compiled code
(see note below)

Default maximum length of the STRING value in a variable
declared without explicit size: 80

Maximum size that can be declared for a STRING
variable: 255

Maximum number of elements in a set: 512

Maximum number of segments in a codefile: 16

Maximum number of segments in a program: 48

Maximum number of procedures and/or functions
within a segment: 149

Maximum representable integer value: 32767

Minimum representable integer value: -32768

Maximum representable absolute real
value: 3.402823466E38

Minimum representable absolute non-zero
real value: l.401298464E-45

The Compiler error message "Procedure too long" means
either that the procedure's code exceeds the limit of
a bout 1200 bytes, or that the procedure has too much
complexity in its control structure. The remedy is
described at the end of Chapter 6.

TURTLEGRAPHICS Unit 167

168 Apple III Pascal

Using Apple II TURTLEGRAPHICS with
the Apple Ill
The TURTLEGRAPHICS unit is available for compatibility with
Apple II. TURTLEGRAPHICS is described in detail in the Apple II
Pascal Language Reference Manual .

If you have an Apple II program which uses the TURTLEGRAPHICS
unit, you can run it on your Apple III without having to change
the graphics code. However, you will notice the following
important differences:

- Because a different method of color generation is used
by the Apple III, TURTLEGRAPHICS uses only the
black-and-white mode. Any screencolor other than black
is shown as white except in the case of the INVERSE
screencolor .

Use of the screencolor REVERSE is significantly slower,
especially when the FILLSCREEN procedure is used.

- The DRAWBLOCK and CHARTYPE routines are available only
for modes 4,5,6,8,10,13, and 14. Any other mode is
treated by the Apple III as if it were mode 10.

- In text mode, 80 columns are displayed on the
Apple III. (The Apple II displays 40 columns.)

Recommended use of TURTLEGRAPHICS on Apple III is limited to
cases where

- you want to execute an Apple II program which uses
TURTLEGRAPHICS without modifying the code; or

- you want to use your Apple III to develop graphics
applications which will run on an Apple II.

We suggest that the PGRAF unit be used for all new
Apple III graphics applications. (See Appendix B.)

Figures and Tables 169

Volume 1-Chapters

1

2

3

What is Apple Ill Pascal?
6 Sample Program: FIRSTEXAMPLF.

Overview of Pascal
10 Identifier Syntax
12 Delimiter Characters
23 Arithmetic Operators
23 Comparison Operators
23 Logical Operators
23 Set Operators
30 Sample Program: FIRSTEXAMPLE

Simple Data Types
36 Constant Declarations Syntax
38 Variable Declarations Syntax
39 Floating-point Number Syntax
40 Exponent Syntax
41 Non-floating-point Number Syntax
46 User-defined Scalar Type Syntax
47 Subrange Type Syntax

I --1

1

7

33

170 Apple III Pascal

4 Expressions and Assignments 51

52 Assignment Statement Syntax
52 Variable Reference Syntax
54 Precedence of Operators
56 Arithmetic Operators
57 Type Results of Multiplication
57 Type Results of Division
58 Type Results of Integer Division
59 Type Results of Addition
59 Type Results of Subtraction
69) Relational Operators
62 Logical Operators with Boolean Operands
63 Relational Operators with Boolean Operands
63 Summary of Type Results
64 Legal Assignments for Non-structured Variables

5 The Flow of Control 65

66 Statement Syntax
68 Compound Statement Syntax
68 Procedure Call Syntax
69 FOR Statement Syntax
72 REPEAT Statement Syntax
72 WHILE Statement Syntax
74 IF Statement Syntax
77 CASE Statement Syntax
77 Caseclause Syntax
78 OTHERWISE Clause Syntax
89) EXIT Procedure Syntax
81 GOTO Statement Syntax

6 Procedures and Functions 83

85 Procedure Definition Syntax
85 Parameter List Syntax
86 Parameter Declaration Syntax
87 Block Syntax
91 Function Definition Syntax
92 Function Call Syntax
98 Nested Program Structure

Figures and Tables 171

7

8

9

Arrays, Sets, and Strings
105 Array Type Syntax
115 Set Type Syntax
117 Set Constructor Syntax
121 String Constant Syntax
122 STRING Type Syntax
125 CONCAT Function Call Syntax

Records
130 Record Type Syntax
130 Field List Syntax
133 Variant Part Syntax
136 WITH Statement Syntax

Pointers and Dynamic Variables
144 Pointer Type Syntax
147 NEW Procedure Syntax

10 Introduction to Files and 110
158 File Type Syntax (For Typed File)
163 RESET Procedure Syntax
165 CLOSE Procedure Syntax
167 Effect of CLOSE Options (Opened with REWRITE)
167 Effect of CLOSE Options (Opened with RESET)
171 IORESULT Function Status Codes
177 Sample Program: RANDOMACCESS

11 Text 110
186 EOLN Function Syntax
186 READ Procedure Call Syntax
190 READLN Procedure Call Syntax
192 WRITE Procedure Call Syntax
192 "Value Specifier" Syntax
195 WRITELN Procedure Call Syntax
195 Sample Program: ASCIITABLE
195 Sample Program: FLUSHPERIODS

103

129

141

155

181

172 Apple III Pascal

12 Block File 110 and Device 110
203 BLOCKREAD Function Call Syntax
204 BLOCKWRITE Function Call Syntax
205 Sample Program: FILECOPY
207 Standard Device Numbers and Names
208 UNITREAD and UNITWRITE Procedure Call Syntax
211 UNITSTATUS Procedure
213 UNITSTATUS Procedure: OPTION=21

13 Special-Purpose Built-Ins
223 Sample Procedure: UPPERCASE
227 IDSEARCH Declarations

14 Library Units
234 Regular Unit •
235 Intrinsic Unit
236 Compilation Syntax
236 Unit Syntax
237 Regular Unit Heading Syntax
23R Intrinsic Unit Heading Syntax
241 INTERFACE Syntax
242 IMPLEMENTATION Syntax
243 Sample Unit : OPENS
245 Sample Unit: TJSEIT

Volume II-Appendices

A TRANSCEND and REALMODES Units
8 Square Root, Remainder , and Transcendental Functions:

Summary of Special Values and Results

B The PGRAF Unit
15 Color Identifiers and Ordinalities
16 Color Transformations
18 Memory Usage

201

217

231

1

11

Figures and Tables 173

19 Summary of PGRAF Routines
20 Graphics Driver Defaults
28 DRAWIMAGE Parameters
32 Transfer Options
3 7 PGRAF INTERFACE

C The CHA/NSTUFF Unit
42 Sample Program Using CHAINSTUFF

D The APPLESTUFF Unit
47 Sample Function: Generate Pseudo-Random Integers
52 SETTIME Procedure Fields

E Floating-Point Arithmetic
62 Floating-Point Format
63 Specific Number Formats
65 Linear Infinities
66 Circular Infinities
67 Results of Arithmetic with Infinities
69 NaN Format
70 NaN Error Codes
83 Summary of Floating-Point System

F The Apple Ill Pascal Compiler
96 Sample Compilation

110 Compiler Option Summary

G Special Techniques
115 16-Bit Binary Word Structure
117 Sample Program: MASKER (Convert to Upper Case)

39

45

55

87

113

122 Sample Program: BINARY (Display Integer as Boolean
Values)

123 Sample Program: REALBITS (Display Fields of Real Value)

H Comparison To Apple II Pascal 127

174 Apple III Pascal

I Syntax Diagrams 133

134 Compilation
134 Program
135 Unit
135 Intrinsic Unit heading
135 Regular Unit heading
136 Interface
136 Implementation
137 Block
137 Uses Declarations
138 Label Declarations
138 Constant Declarations
138 Constant
138 Type Declarations
139 Type
139 Simple Type
139 User-defined Scalar Type
140 Subrange Type
140 Pointer Type
140 Set Type
140 String Type
140 Array Type
141 Record Type
141 Field List
141 Variant Part
142 File Type
142 Variable Declarations
142 Procedure Definition
143 Function Definition
143 Parameter List
143 Parameter Declaration
143 Compound Statement
144 Statement
144 Assignment Statement
144 Procedure Call
145 With Statement
145 Goto Statement
145 For Statement
145 Repeat Statement
146 While Statement
146 If Statement
146 Case Statement
146 Case Clause
147 Otherwise Clause
147 Expression
147 Simple Expression

Figures and Tables 175

148 Term
148 Factor
149 Variable reference
149 Function Call
149 Set Constructor
150 Unsigned Constant
150 Unsigned Number
150 Unsigned Integer
151 Identifier

J Tables 153

154 Table 1: Execution Errors
155 Table 2: I/O Errors
157 Table 3: Reserved Words
158 Table 4: Predefined Identifiers
159 Table 5: Compiler Error Messages
164 Table 6: ASCII Character Codes
165 Table 7: Standard I/O Devices
166 Table 8: Size Limitations

K The TURTLEGRAPHICS Unit 167

176 Apple III Pascal

Index 177

I I -t-t
~

r --···+·

lnCJex

L

The page numbers in this index do not ref er to every occurrence
of a word or phrase in the text. Instead, they refer to the
locations of significant information on the topic related to the
word or phrase.

References in Volume II are shown in square brackets [].

A
ABS function 50
actual parameter 88
addition 58
address [115]
affine mode [4,65-66]
Algol 2
allocation of memory 132,

142, 148, 151-153, [18]
AND operator 62, [114]
apostrophe 11, 43, 121
APPLE compile-time variable

[1061
Apple II formatted diskettes

[91]
Apple II Pascal [52,109,

128-131]
Apple III Pascal 2
Apple III Pascal System xv,

[ix]
APPLESTUFF unit [46-53]
ARBITRARY function [48]

arithmetic operation accuracy
[71]

arithmetic operators 22,
56-60

array assignment 15, 110
array comparison 110-111,
array definition 104
array element 104-105
array of indefinite length

222-223
array parameter 84-90,

104-105
array representation

[119-120]
array types 15, 105-110,

[140]

114

a rray variable 104-105
ASCII code 43-44, 219, [115,

164]
Asciifile structure 215-216
Asciifile type 183, 213-214
Assembler xv, 100, [ix]

178 Apple III Pascal

assembly language 100
assignment operator 52, 64
assignment statement 18, 52,

64, [144)
asterisk 8
ATAN function [6)
audio [50,53)
automatic line feeds 209-210
automatic rounding [58, 71,

78)
automatic type conversion 38

B
base type of pointer 145
base type of set 46, 115, 117
BASIC 3
BASIC text files 183, 215
BCD 42
BEGIN 68, 72
biased exponent [5 7)
binary floating-point number

[5 7J
binary search 225
binary to decimal conversion

[74-75)
bit 111-113, 115-116,

139-140, [17,26,31,115)
block 26-28, 84, 87, 204,

[137)
block file declarations

202-203
block file I/O 202-206
block structure 27, 87
block-structured device 157,

202-206, 214
BLOCKREAD function 203-204
BLOCKWRITE function 204-205
boolean logic [114)
BOOLEAN type 14, 45, [115)
boolean values [115)
bubbles xvii, [xi)
buffer variable 159, 170,

183-184, 197-200, 203
built-in 34, 47, [158)
built-in files 184, [158)
built-in procedures and

functions 26, 47, [158)

buttons (on joystick) [52)
BW280 graphics mode [13)
BW560 graphics mode [13)
byte 111-113, 218-223,

[26, 115)
byte-oriented features

218-223, [124)
BYTESTREAM type 222-223

c
case clause [146)
CASE statement 20, 76-79,

[146)
chaining [40-43)
CHAINSTUFF unit (40-43)
CHAR type 14, 43, 182-183
character constants 11, 43
character device 156-157,

182, 214
184

184, 209
character file
character input
character output
character set 43

194

CHR function 44
clearing the screen 197
CLOCKINFO procedure [51)
CLOSE options 166-168
CLOSE procedure 160, 164-166
closure [78)
code segment 238, 254-255
code swapping 260-261
codefile 250, 254-255, [88)
COL140 graphics mode [14)
color table [29)
columns in array 106-107
COMMENT compiler option [98)
comments 8
comparison of sets 120
comparison operators 23,

60-62
compilation 236, [134)
Compile command [89)
compile-time error checking

[92)
compile-time expressions

[106)

compile-time variables
[104-106)

Compiler 2, 79, 81, 132, 183,
254, [88-11,159)

Compiler error [92,159-163)
Compiler options [93-104)
compiling Apple II code [109)
compound statement 19, 67,

[143)
CONCAT function 125
conditional compilation [104)
conditional statements 73
congruent type 105, 108, 138
conjunction 62
console 156-157, 180
CONSOLE: [165)
CONST 12, 35-36
constant [138)
constant declarations 12,

35-37, 39, 41-47, [138]
control 66-82
control characters 178-180
control variable 21, 69
control-C character 179-180,

187, 194, 209
convert overflow exception

[59-60,83]
converting char to string 123
COPY function 126
COS function [6]
CP280 graphics mode [14,35)
CR character 178-179
CRUNCH 165
cursor 224

D

DATA 238
data segment 238, 254-255
data types 13, 34-50
Datafile type 213
date and time [50]
decimal places 193
decimal point 38, 40, 190,

193
decimal to binary conversion

[73-74]

Index 179

declarations 3, 12, 35-47,
[96]

DELETE procedure 126
delimiters 11
denormalized number [58,

63-64)
device 156, [165)
device driver 157, 179, 194,

206-207, 211-212
device driver control 210-212
device driver status 207-213
device I/O 206-213
difference operator 119
dimensions of array 105-107
direct recursion 92-95
directory 165, 207
disjunction 62
diskette block numbers 204
diskette file 157, 170
display [17]
display buffer [17-19)
DISPOSE procedure 151
DIV operator 57
dividend 57-58, [61]
division (integer) 57
division (real) 57
division by 0 [61]
divisor 57-58, [61,66, 71]
DLE character 179, 194,

215-216
DLE-blank code 214-216
DLE-blank code conversion

209, 215-216
DOTAT procedure [23)
DOTREL procedure [24]
DOWNTO 69-71
DRAWIMAGE procedure [26]
dynamic variable 17, 143-150

E
E notation 39, 193
Editor xv, 2, 183, 214, [ix)
element of array 104-106
ELSE 74
ELSEC compiler option [107)
empty set 117
END 68

180 Apple III Pascal

end of file 168-169, 197-200
end of line 162, 179,

185-186, 197-200
end of text 179
ENDC compiler option [1071
EOF function 168-169, 180,

187-188, 197-200
EOLN function 180, 185-188,

197-200
error checking [98-1001
error message [92, 154-155,

159, 163]
ETX character 178-180
exception [58,59-62,77]
exception signal [58]
EXEC/ prefix [40]
Execute command [89]
execution error [96-97,154]
EXIT procedure 80, [41]
EXP function [7]
explicit set value 116
exponent 40, [57]
exponent field [82]
exponential function 50, [7]
expression 22, 52-55, 84,

87-89, [147]
extent of a procedure 97
EXTERNAL 100
external file 156, 158,

213-214
external function 100, [88]
external procedure 100, [88]

F
factor
FALSE
field
field
file

[148]
45, 62, 63

identifier 130
list 130, 132,
156

[141]

file block 202-204
file block numbers 204
file buffer variable 159-161,

183-185, 197-200, 203
file component type 158
file declaration 159
FILE OF CHAR 158, 183
file parameter 84-90

file record 158-159
FILE type 202
file type 17, 157-159, [142]
file variable 157, 243
Filer xv, [ix]
fill color [15,21]
FILLCHAR procedure 219, [124]
filling [15]
FILLPORT procedure [24]
fixed-point output 193
floating-point arithmetic

[56-85]
floating-point number 13,

38-39' [57]
flow of control 67
font [33]
FOR statement 21, 69, [145]
formal parameters 88
formatted output 195
FORTRAN 4
FORWARD 96
forward definition 96
fraction field [58]
free memory 150-153
free union [120]
function 3, 25, 90-92
function call 25, 92, [149]
function complexity 101
function definition 91, [143]
function heading 236-238
function identifier 91
function size 101
function type 91

G

GET and PUT with text I/O
185, 197-200

GET procedure 169-171, 203,
215

GETCVAL procedure [41]
GLOAD procedure [34]
global 99
GOTO compiler option [1001
GOTO statement 22, 81, [100,

145]
GOTOXY procedure 224

gradual underflow (60]
GRAFIXMODE procedure (20]
GRAFIXON procedure (21)
graphics cursor (13,23)
graphics driver (12,25-26,

34-36]
graphics modes (13]
GSAVE procedure (34]

H
HALT procedure 80, (41]
host program 232-233, 250-251

I

I/O 159, 182-200, 202-203
I/O checking 172-174, [98,

156]
I/O devices 206-207, (165]
I/O error 162-164, 171-172,

(155]
I/O facilities 161-162
I/O units 207, (165]
identifier 9, 28, 37, (151]
IDSEARCH 226-229
IEEE floating-point standard

23, 56, (2,56-85)
IF statement 19, 73-75, (146]
IFC compiler option (107]
IMPLEMENTATION 241, [136]
IN operator 117-118
incarnation 94
INCLUDE compiler option (102]
include file (103]
index of array 104-108
index type 104-108
index values 108
indirect recursion 95
inexact result (61]
infinities (58]
infinity [58,63,68]
infinity arithmetic (65-67]
INITGRAFIX procedure (23]
initial value 70
initialization 237, 243, 260
input 161

Index 181

INPUT built-in file 184
input/output conversions

(72-75]
INSERT procedure
INTEGER constant
INTEGER type 13,
INTERACTIVE type

216

126-127
41
40
158, 183,

INTERFACE 240-241, [136]
intersection operator 119-120
intrinsic unit 234-235,

238-239, 254-256, [88]
intrinsic unit heading [135]
invalid operations (61]
IOCHECK compiler option 172,

(98, 156]
IORESULT function 171-174,

210, (155]

J
Jensen and Wirth 2, (114]
joystick (49]

K
keyboard (48]
KEYBOARD built-in file 184,

(158]
KEYPRESS function (48]

L

label 81
label declarations 81, (138]
length attribute (LONG

INTEGER, STRING) 42, 124
LENGTH function 124
lexical level (96]
LIBMAP utility program

2 38-2 39' 256
Librarian xv, [ix]
library file 100, 232-251,

254-255' (89]
library unit 29, 232-251

182 Apple III Pascal

LIBRARY utility program 233,
238

limit value 7'/J
line-oriented input 195
line-oriented output 195
linefeed character 179,

193-194, 2'/J9-210
LINEREL [24]
LINETO [23]
linked list 146-147
Linker xv, l'/J'/J, 233-234, 251,

254, [ix, 88-89]
list 146
LIST compiler option [95]
listing [95, 159]
LN function [6]
loading of segments 258-26'/J
local 99
LOCK 165
LOG function [7]
logarithmic functions [7]
logical operators 23, 62
logical record 158
LONG INTEGER input 188-190
LONG INTEGER output 192
LONG INTEGER type 42
LONGINTIO unit 43, 239

M

machine language 2
MARK procedure 95, 151-153
MAXINT 42
MEMAVAIL function 15'/J-151
member of set 115
memory allocation 139-14'/J,

142-143, 148, 151-152, [18]
minuend 59
mixed reading and writing

185, 197-200
MOD operator 58
mode parameter (device I/O)

2'/J8-21'/J
modes, arithmetic
MOVELEFT procedure

[124]
MOVEREL procedure

[4]
221-222,

[24]

MOVERIGHT procedure 221-222,
[124]

MOVETO procedure [23]
multidimensional array

106-107
multiplication 57

N

NaN [5,58,63,69-7'/J]
natural logarithm [6]
negation (arithmetic) 59
negation (boolean) 62
nested IF statements 75
nested WITH statements 137
nesting 97
nesting units 246-249
NEW procedure 143-144,

147-148
next record in file 160-161,

169, 185
NEXTSEG compiler option 257,

[1011
NIL 144
NOLOAD compiler option

26'/J-261, [l'/Jl]
Non-standard devices [165]
NORMAL 165
normalized number [58,63]
normalizing mode [4,64,79]
NOT operator 62, [114]
NOTE procedure [52]
NUL character 214, 216
null statement 67
numeric constants 10
numeric environment [79]
numeric functions 49
numeric-string input 188,190
numeric-string output 191

0
object of a pointer 145-147
ODD function 50, [116]
one-character string 123
one-dimensional array 106

Open Apple key 44
opening a file 159, 163-167
operand 52-64
operating system 159-160
operator 52-64
Options command [12]
OR operator 62, [114]
ORD function 48, [116]
ordinali ty 48, [116]
OTHERWISE clause 76-79, [128,

14 7]
output 161
OUTPUT built-in file 184
overflow 43, 56, [59,60]

p

P-code 2, (88]
P-machine 2, (88]
PACKED 113, 139
packed array 111-113
packed character array

113-114
packed record 139
packed variable 90, 111-114,

218
PADDLE function [52]
PAGE compiler option [97]
PAGE procedure 197
parameter 19, 84-90
parameter declaration 86,

[143]
parameter list 68, 85, [143]
parentheses in expression 54
Pascal interpreter 2, 255,

(88]
Pascal User Manual and Report

2
PASCALIO unit 176, 189, 239
passing arrays 109
pathname 157, 159, 163, 183,

213, 250, [95, 102]
pen color [15,21]
peripheral device (165]
PGRAF unit (12-38]
physical address 144, 151-153
physical diskette access 170
plotting [14-16, 23]

Index 183

pointer
pointer
pointer
pointer
pointer
pointer

17 ' 14 3-14 7. 15 3
assignment 147
comparison 144
reference 145, 147
type 144-145, [14f/l]
variable 144, 147,

152
POS function 124-125
power of ten 224
precedence of operators 53
precision of REALs [76]
PRED function 48
predecessor 48
predefined identifiers [158]
printer 156-157
private 241-242
procedure 3, 24, 84-87
procedure call statement 18,

68, 84-90, (144]
procedure complexity 101
procedure definition 85, (142]
procedure heading 85, 236-238
procedure identifier 68
procedure size lf/ll
procedure termination 94-95
Procedure too long error

[166]
program [134]
program heading
program library

12,4f/l,46, 102l
program listing
program segment

5
250, 255, [2,

[95]
254

program structure 5, 26,
84-101

projective mode [4,65-66]
pseudo-random number [46-48]
public 232, 240
PURGE 165
PUT procedure 169-171, 203
PWROFTEN function 224

a
QUIET compiler option [98]

184 Apple III Pascal

~ representation of scalars
[114)

railroad tracks xvii, [xi)
random access 175, 215
random numbers [46-48)
range checking 44, 46
RANGECHECK compiler option

[99)
READ procedure 186-187,

197-200
READ with a char variable

187, 197-198
READ with a numeric variable

188, 198
READ with a string variable

188, 199
READLN procedure 190-191,

197-200, 214-215
real arithmetic [76)
real arithmetic environment

[76)
REAL type 13, 34, 38-40
REALMODES unit [2,5,70,76-82)
record 130
record assignments 138
record comparisons 138-139
record field 130-131
record numbers 175-176
record parameter 84-90,

130-132
record type 16, 130-131, [141)
record variable 136
recursion 92-96
regular unit 233-234, 237,

254, [88, 135)
relational operators 60, 63,

[68)
RELEASE procedure 95, 151-153
REM function [5)
REMIN: [165)
REMOUT: [165)
REPEAT statement 20, 71,

[145)
repetition statements 69
representation of arrays

[119)
representation of REALs [76,

1201

reserved word 9 226, [157)
RESET procedure '163-164
RESIDENT compiler option

261-263, [1011
result types 63
return character 169, 187,

193, 209, 214
REWRITE procedure 163
ROUND function 49, [59, 78)
rounding [58]
rounding error [71)
rounding mode [71-72,78)
rows in array 106-107
Run command [89)
run-time error [97,154-156)
run-time error checking [97,

154-156)
run-time error message [97,

154-156)
run-time halt [97,156)
run-time segment table

255-256

s
scalar types 13, 34, 40-49
SCALE [62)
SCAN function 220-221, [124)
scope of built-in objects 99
scope of identifiers 28, 97
screen 224
screen control codes 180, 194
screen coordinates [13)
SEEK procedure 175-178
segment 254, [96)
segment dictionary 255
SEGMENT function 99, 239-240

254, 258-259 '
segment number 238-239

256-257, [96,154) '
SEGMENT procedure 99-100,

239-240, 254, 258-259
segment table 255-256
semicolon 18, 67-68, 75
set 115
set comparison 120

set constructor 116-117'
[149]

set difference 119
set equality 120
set inclusion 120
set inequality 120
set intersection 119
set member 104
set operations 23, 118
set restrictions 117
set types 16, 115, [140]
set union 118
set value 115
set variable 16, 115-117
SETC compiler option [107]
SETCHAIN procedure [40]
SETCTAB procedure [29]
SETCVAL procedure [41]
SETTIME procedure [50]
SETXCPN [59]
sign bit [69]
significand [57]
simple data types 34-50
simple expression [147]
simple type [139]
SIN function [6]
single quote --see

"apostrophe"
size limitations 101, [166]
SIZEOF function 112, 218-219,

[124]
sos 156-160, 171-172
SOS character file 182
SOS device name 206-207,

[165]
SOS-formatted diskettes 210
SOUND procedure [49]
source text 2, 8, 236, [88]
speaker [46]
special characters 187
special-purpose built-ins

218-229
SQR function 50
SQRT function [5]
square-root function 50, [5]
star --see "comments"
statements 18 , 66, [144]
STR procedure 127
string 104

Index 185

string built-ins 124
string comparison 122-123
string constant 11, 121
string element 123
string index 123
string input 188
string length 124
string output 191
STRING type 15, 121-122,

[140]
string value 120
string variable 121-123
strong typing [114]
structured data types 104,

130-140
subexpression 54
subprogram 84
subrange types 14, 46, [140]
subroutine 84
subscript 104
subtraction 59
subtrahend 59
SUCC function 48
successor 48
SWAP compiler option [94]
swapping of code 260-261
symbol table (87]
symbols 9
syntax diagrams xvii-xix,

[xi-xiii,135-155]
system font [17]
SYSTEM.COMPILER [88]
SYSTEM.EDITOR (891
SYSTEM.LIBRARY 29, 43, 176,

194, 233, 250, 256, (2,12,
40,46,88]

SYSTEM.LINKER (89)
SYSTEM.PASCAL (89]
SYSTEM.STARTUP (43]
SYSTEM.SYNTAX [89,92,159]
SYSTEM.WRK.CODE [90]
SYSTEM.WRK.TEXT [88]
SYS TERM: [165]

T
tag field 133, 135
tag identifier 133

186 Apple III Pascal

tag type 133, 135
term [148]
text I/O procedures 184-185
text in graphics mode (17,25]
text mode (21]
TEXT type 158, 183-185, 216
Textfile structure 214-215
Textfile type 158, 183,

213-214
TEXTON procedure (21]
time and date [50]

u

v

w
WORDSTREAM type 222-223
workfile [88]
WPROTECT 165
WRITE procedure 191-194, 214
write-protected file 165-168
WRITELN procedure 194-196,

214

x
XLOC procedure (25]
XYCOLOR procedure [25]

y

YLOC procedure [25)

z
zero value [75]
zero-length ~tring 123-124,

[41]

Symbols
* operator 57
I operator 57
+ operator 58
- operator 59
> operator 60, 63
= operator 60, 63
< operator 60, 63
>= operator 60, 63
<= operator 60, 63
<> operator 60, 63
{$G+} compiler option 81,

[1001
{$I- } compiler option 172,

[98, 156)
{$I+} compiler option 172,

[98]
{$N+} compiler option 260,

[101]
{$NS n} compiler option 257,

[101]
{$R identifier} compiler

option 261, [101]
{$S+} compiler option (94]
{$U filename} compiler option

(102]
.ASCI suffix 213
.CODE suffix [90]
.LIB suffix 250
• GRAFIX [12]
.TEXT suffix 183, 213, [90)

©

:bi

""~ r:....°'!'ooo
...... ---
Q)L•J

..... en
I

o..iQ)r'

:-:-
~

L•.J
.......

Tuck end flap rr.:."'lo
inside back cover
when using manual. S']Q)

~
3-
CD

Ill

//,
(,/) ~

/J/ ~ , ,
" Q)~

J/ :::J
A

r.:: ,,·, """'
~'

Q)

::-_:c.- - -~
~ -~c:
~
CD
~

P'I

~ pp (! c !)m puT 1~'C!f

ffi2 00-Bar ~~ ""' ;]upert1no. Czo' lifornili 95014
408) 9 il6-1011!

030-0242-A

	Apple III Pascal Programmer's Manual Volume 2
	Acknowledgements
	Contents
	Preface
	Appendix A: The TRANSCEND and REALMODES Units
	Appendix B: The PGRAF Unit
	Appendix C: The CHAINSTUFF Unit
	Appendix D: The APPLESTUFF Unit
	Appendix E: Floating-Point Arithmetic
	Appendix F: The Apple III Pascal Compiler
	Appendix G: Special Techniques
	Appendix H: Comparison to Apple II Pascal
	Appendix I: Syntax Diagrams
	Appendix J: Tables
	Appendix K: The TURTLEGRAPHICS Unit
	Figures and Tables
	Index

