

THE OSBORNE/McGRAW-HILL
GUIDE TO YOUR

THE OSBORNE/McGRAW-HILL GUIDE TO YOUR

APPLE® Ill

Stan Miastkowski

Osborne/McGraw-Hill
Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the
J.S.A., please write to Osborne/McGraw-Hill at the above address.

Apple, Silentype, and the Apple logo are registered trademarks of
Apple Computer, Inc.

Apple Unifile and Apple Profile are trademarks of Apple Computer,
Inc.

The Source is a service mark of The Source Telecomputing Corporation.

THE OSBORNE/McGRAW-HILL GUIDE TO YOUR APPLE~ Ill

Copyright © 1983 by McGraw-Hill. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any
means, or stored in a data base or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-101-0

Judy Ziajka, Acquisitions Editor
David Ushijima, Technical Editor
Fausto Poza, External Technical Reviewer
Ted Gartner, Copy Editor
Paul Butzler, Text Design
Yashi Okita, Cover Design
Unless otherwise noted, all photographs by Richard Cash

Dedication

To my wife Kathe, without whose patience and assistance this book
would never have been written.

ACKNOWLEDGEMENTS

I gratefully acknowledge:

Apple Computer, Inc., for supplying software and technical information
on the Apple III.

Richard Newman of Diversified Electronics (Keene, NH) for supplying
hardware and backup technical assistance.

Tim Gill and Bruce Harris of Quark Engineering (Denver, CO) for
supplying copies of Word Juggler and Catalyst.

J . Daniel Rimes of Amdek Corp. (Elk Grove Village, IL) for the loan of
a color monitor.

"T.B." for proofreading the original manuscript and providing encour
agement and constructive criticism.

Contents

Introduction XI

Chapter 1 Introducing the Apple III 1

Chapter 2 Getting Started with the Apple III 19

Chapter 3 Files, Paths, Utilities 39

Chapter 4 The System Configuration Program 59

Chapter 5 Getting Started with Business BASIC 77

Chapter 6 Programming in Business BASIC 95

Chapter 7 Advanced Programming in Business BASIC 125

Chapter 8 Creating Graphics and Sound 165

Appendix A Business BASIC Quick Reference 187

Appendix B Business BASIC Error Messages 221

Appendix C Business BASIC Reserved Words 229

Appendix 0 System Error Messages 231

Appendix E Console Reference 239

Appendix F Graphics References 247

Appendix G Pr inter Reference 253

Appendix H RS-232C Reference 255

Appendix Audio Reference 259

Appendix J ASCII Character Codes 261

Appendix K Apple II Emulation 267

Index 271

ix

Introduction

The book you're holding in your hands is designed to be a complete
guide to the Apple III personal computer system. The Apple III is a
powerful and versatile system that is designed to handle the most
involved tasks. For the first time, everthing you need to know about
setting up and using your Apple III is all in one place. There is no need
to continually flip back and forth between numerous manuals.

The first two chapters are an overview of the Apple III and how to
make it work. Chapter 1 is a detailed introduction to the system, includ
ing a look at the most popular accessories. Chapter 2 explains hooking
up the system, getting started, and making backups of your software. It
will also be useful to you if you purchase peripherals in the future.

Files are the means by which the Apple III stores and processes data
and programs. Chapter 3 explains files, how they're handled, and how
to use the Apple III System Utilities. disk.

The Apple III's sophisticated operating system (SOS) is one of the
most powerful available in any personal computer. Chapter 4 introduces
the SOS and goes into detail on how to use the System Confiuguration
Program to customize the SOS to your particular system.

Chapters 5 and 6 are an introduction to Business BASIC, the Apple
III's powerful and advanced BASIC interpreter. For people with little
or no prior experience with BASIC, Chapter 5 explains the mechanics
of using Business BASIC; Chapter 6 eases you into writing your own
programs.

If you're an experience BASIC programmer, you can go directly to
Chapters 7 and 8. Chapter 7 details the advanced features of Business
BASIC that allow you to write professional programs for serious appli
cations. Chapter 8 shows you how to create graphics and music with you
Apple III.

xi

xii I Apple Ill User's Guide

The first three appendixes are a comprehensive reference to Business
BASIC. Appendix A is a description of every statement and function
available in Business BASIC. It's designed to serve as a handy reference
once you become familiar with Business BASIC. Appendix B explains
Business BASIC's error messages and what to do about them. Appendix
C is a full list of Business BASIC's reserved words.

Appendix D covers the Apple III's system error messages, what they
mean, and what to do about them. Appendix E is a complete guide to
the console, including keyboard codes, cursor and console control keys,
screen console codes, and cursor movement options.

Appendix F is a quick reference to creating graphics with your Apple
III. It includes a summary of graphic procedures and functions, color
codes, and graphics modes.

Appendix G is a summary of the parameters you need to hook up a
printer. Appendix H provides detailed information on the Apple III's
RS-232-C serial interface. Appendix I is a quick reference to creating
music with your Apple III.

The Apple III can also run Apple II programs and use many Apple II
peripherals. Appendix K details options and limitations of Apple II
emulation.

Introducing
The Apple Ill 1

The Apple III personal computer is a sophisticated and versatile sys
tem. If you already own an Apple III, we don't have to convince you of
this. However, whether you're already the proud owner of an Apple III
or are seriously considering buying one, we suggest you read this chap
ter carefully. Whether the Apple III is your first personal computer or
the latest in a series, this chapter is designed to give you a thorough
background on the system's features and capabilities . .

OVERVIEW OF THE SYSTEM _______ _

Figure 1-1 shows a basic Apple III system, including the system unit
(the box with the keyboard, disk drive for floppy disks, and electronics)
and the Apple Monitor III, a 12-inch video monitor (high-quality televi
sion screen).

Figure 1-2 is a picture of what might be considered a "loaded" sys
tem. To the basic system shown in Figure 1-1, a second, 5 1/4-inch
floppy disk drive, a Profile hard disk (a special type of information
storage peripheral that stores the equivalent of 35 floppy disks), a high
resolution RGB (red-green-blue) video display for showing eye-popping
color graphics, and a printer have been added. (In this case, the printer
is an Epson MX-80 F/T, although nearly any printer will work with the
Apple III.)

Your Apple III system probably won't look exactly like either of these,

2 I Apple Ill User's Guide

Figure 1-1. Basic Apple III system

•

- - ~ ----:--- - ~~-«<::---~

/1111

Figure 1-2. Expanded Apple III system

Chapter 1: Introducing the Apple Ill I 3

since there are many ways to configure a system. The Apple III also
comes with either 128K or 256K bytes (1K equals 1024) of program
mable user memory called RAM, for random-access memory. This is
where the computer stores programs to be run and the results of its
calculations.

There are also four expansion slots inside the case where you plug in
accessory circuit boards like controllers for the hard disk drive or a
high-speed printer.

No matter how you've customized your system, there will be a
number of common features. Of course, there is the Apple III itself,
including the built-in keyboard, the floppy disk drive, and the video
monitor. In this chapter, you'll get a close look at each of these, some
common peripheral equipment, and the software needed to get the sys
tem up and running.

THE APPLE Ill KEYBOARD ________ _

Figure 1-3 is a close-up of the Apple III's keyboard. Although it looks
like a separate unit, the 74-key keyboard is permanently attached to the
main case. If you're an experienced typist, you'll find the Apple III's
61-key main keyboard familiar and comfortable; it's set up similar to a
normal typewriter. If you're a touch typist, you'll immediately notice
raised dots on the D and K keys to let you know where they are without
having to look at the keyboard.

If you haven't used a computer keyboard before, you'll notice several
keys that are new. ESCAPE and CONTROL are special keys you'll use often
in the course of using the system. You will normally press ESCAPE fol
lowed by another key to initiate a command. Another common way to
enter commands called control characters is to hold down the CONTROL

key while typing another character. The use of ESCAPE and CONTROL

depends on the program you are running.
There are also OPEN APPLE and CLOSED APPLE keys located on the

lower left-hand side of the keyboard. They can be programmed to per
form special functions that would normally take many keystrokes.

The four arrow keys on the lower right-hand side of the keyboard are
used to control the cursor-the solid square that appears on your video
display and tells you where you're working on the screen.

The majority of the character keys on the keyboard automatically
repeat if they are held down for more than half a second. The arrow
keys have two auto-repeat speeds. Touch them lightly and the cursor
moves slowly; touch them harder and the cursor moves faster.

4 I Apple Ill User's Guide

Figure 1-3. Close-up of the Apple III keyboard

A full 13-key calculator keyboard is included for applications where
you'll be entering a good deal of numeric information. On the upper
right-hand side of the keyboard is the RESET key that resets the entire
system. (This is known as a warm boot.) With the Apple III, a two-key,
fail-safe system has been added to make sure you don't accidentally
reset the system. When you need to reset the system, you have to hold
down the CONTROL key and press RESET.

FLOPPY DISK DRIVE __________ _

Immediately above the keyboard on the right side of the Apple III's
main case is the built-in, 5 1/4-inch floppy disk drive (shown in Figure
1-4). This drive stores 140K (143,360) bytes of data on a standard minia
ture disk (the equivalent of about 35 pages of single-spaced, typed text.)
This drive is used for loading the software to get the Apple III up and
running-a process called booting the system. There are several options
for increasing your system's disk storage capacity, which will be
detailed later in this chapter.

REAR PANEL ____________ _

If you're like most personal computer users, you'll find you want to
expand your system as you go along. The Apple III makes it easy, since
the connectors for the most commonly used accessories are built into the
rear of the case. Figure 1-5 shows the Apple III's rear panel. Working
from left to right, the connectors are

A connector labeled FLOPPY DISKS for add-on, 5 1/4-inch floppy
disk drives. As many as three additional drives can be added.

Chapter 1: introducing the Apple Ill I 5

Figure 1-4. Built-in floppy disk drive

Figure 1-5. Apple III rear panel

Two connectors labeled PORT A and PORT B for joysticks (for
playing games and using special software). The connector marked
PORT B is also where an Apple Silentype Thermal Printer is
plugged in.

6 I Apple Ill User's Guide

A connector labeled COLOR VIDEO to which a color video monitor
can be connected.

A connector labeled B/W VIDEO for a black-and-white video
display.

A miniature phone jack labeled AUDIO for connecting an external
speaker. (There's also a 2-inch speaker built into the main case.)

A connector labeled PORT C to the built-in, RS-232-C serial inter
face. It's used for hooking up a modem (modulator/demodulator) so
you can link your computer to other computers over telephone lines.
You can also plug serial printers into it.

A connector marked 120 VAC for connecting the Apple III to the
power line.

The ON/OFF switch for turning the Apple III on and off. The
switch is located on the far right.

Notice the four vertical slots in the middle of the rear panel above the
connectors. Behind the slots are places to plug in as many as four add
on circuit boards. (In Figure 1-5, two boards can be seen in the slots: a
Profile hard disk interface and a parallel interface card for connecting
a printer.)

VIDEO DISPLAY ___________ _

Video monitor, video display, Cathode Ray Tube (CRT)-they're all
different terms for what's essentially the same thing-a television
screen for reading information (either text or graphics) from the com
puter. Although you can use a television set as a monitor for the Apple
III, it's rwt recommended. A device called an rf modulator is required to
convert the Apple III's video signal to a signal that a television set can
use. The Apple III's high-quality video output requires a high-quality
monitor designed specifically for computer use. Most television sets
don't have the resolution or circuitry needed to display a full line of 80
characters or high-quality graphics.

Figure 1-6 shows the Apple Monitor III, a video monitor that is capa
ble of displaying high-resolution graphics. It is available in either stan
dard black-and-white or with a green phosphor (the coating on the
inside face of the display screen). The green phosphor causes characters
to be displayed as light green characters on a dark background and
tends to be easier on your eyes. It's highly recommended that you buy
the green display if you'll be using your Apple constantly. The Monitor

Chapter 1: Introducing the Apple Ill I 7

Figure 1-6. Apple Monitor III

III displays a sharp line of 80 characters and the Apple's highest
resolution graphics. If you don't want the Apple Monitor, which is
designed to fit nicely on the top of the computer case with the Profile
hard disk in between, there are numerous other monitors you can use.

To get the greatest use of the Apple III's outstanding color graphics,
you should consider buying a high-resolution color monitor. Although
Apple doesn't offer one, many brands are available. There are primarily
two types: composite video and RGB. Composite video monitors are the
less expensive of the two and offer high quality at a reasonable price.
They can also be used as monitors for video cassette recorders and video
games.

RGB (red-green-blue) monitors offer the ultimate in color quality
with separate inputs for each of the three primary colors that make up
a color television image. They normally can't be used for any other
applications. Figure 1-7 shows a typical RGB monitor.

What's on the Screen

The Apple III can display characters and graphics (pictures) in a
number of different ways. These displays are called modes. In addition,

8 I Apple Ill User's Guide

Figure 1-7. RGB color monitor

both upper- and lowercase letters can be displayed without using a spe
cial circuit board, making the Apple III ideal for word processing. The
three text modes are

24 lines of 40 characters each in black-and-white.

24 lines of 80 characters each in black-and-white.

24 lines of 80 characters each using 16 colors in the foreground and
background.

In each text mode, characters can be displayed in either normal or
inverse video. Normal is light characters on a dark background, and
inverse is dark characters on a light background. Most people find that
normal video is the easiest to read and work with.

The Apple III also has four different modes for displaying graphic
data (charts, graphs, and so on). Each graphic mode determines the
number of pixels (picture elements or individual dots) that are on the

Chapter 1: Introducing the Apple Ill I 9

screen at one time. The Apple III's graphics modes have screens that
consist of

280 X 192 pixels (53, 760 individual points) in black-and-white

280 X 192 pixels (53, 760 individual points) in 16 colors

560 X 192 pixels (107,520 individual points) in two colors only

140 X 192 pixels (26,880 individual points) in 16 colors.

INSIDE THE APPLE Ill _________ _

Inside the main case (often called the system unit) of the Apple III,
lurking behind the keyboard, is the circuitry (the hardware) that con
trols everything the system does. It includes the memory, the micropro
cessor, the built-in disk drive, and all the wires that allow information
to travel from one place to another.

Figure 1-8 shows the Apple III with its "top down." Admittedly,

Figure 1-8. Inside the Apple III main case

10 I Apple Ill User's Guide

there isn't much to see-just the floppy disk drive (on the left), the
speaker, and the four slots for plug-in circuit boards.

The rest of the Apple III's circuitry is encased in the metal enclosure
on the left and underneath the keyboard. The enclosure is there for a
good reason. It enables the Apple III to conform to the strict RFI (radio
frequency interference) standards set by the Federal Communications
Commission. Because microprocessors operate at millions of cycles per
second, they emit signals that can be picked up by radios and televi
sions, causing broadcast interference. The metal shield keeps the sig
nals inside the case so you can listen to a radio or have a television on in
the background while you're using your Apple III.

Figure 1-9 shows the circuitry inside the system unit.
WARNING: Don't remove the circuit board as we've done for this

photograph-it could void your warranty.
To give you an idea of where the board sits in the Apple III case,

notice the four slots on the upper left-hand side of the circuit board.
They're the same slots you saw in Figure 1-8.

The circuit board is full of integrated circuits (also called JCs or
chips). In each of the ICs are thousands of microscopic circuits. The
"brains" of the Apple III, the 8-bit 6502B microprocessor, is the right
most of the three large chips on the bottom of the circuit board. The
chips around it and on the rear part of the circuit board work with the
microprocessor to process information and store programs and data.

MEMORY __________________________ __

All computers (and your Apple III is no exception) have two kinds of
electronic memory: RAM and ROM.

RAM stands for random-access memory, although it's more techni
cally correct to call it user programmable read/write memory. This is
where the Apple III temporarily stores programs and data. Every time
the AC power is turned off, all the information in RAM is lost. By that
time, you'll either have printed out your information or stored it on a
floppy disk for later use.

The size of computer memory is measured in bytes. Each byte consists
of eight bits (binary digits or individual 1s or Os) and can store one
character (a letter, number, punctuation mark, or even a space). The
size of the memory is stated in "K" bytes (1024 bytes). Depending on
which configuration you purchase, the Apple III comes with either
128K (131,072) or 256K (262,144) bytes of RAM.

Chapter 1: Introducing the Apple Ill I 11

The amount of available memory points to another of the Apple's solid
advantages. Most 8-bit microprocessors can only address (read from or
write to) a maximum of 64K (65,536) bytes of RAM. But the Apple III
can handle much more because of its sophisticated circuitry.

What's the advantage? Simply put, the more RAM your computer
has, the better. The Apple III's huge RAM space is used by much of the
sophisticated software sold for the computer. Not only can large pro
grams do more, but with that much RAM available, they can efficiently
handle large amounts of data.

In Figure 1-9, part of the RAM is on the top circuit board. Actually,
what you see is a 256K system with 128K on the top board and 128K
hidden underneath.

That raised circuit board points out another advantage of the Apple
III. If you ever decide to expand your 128K system to 256K, your dealer
can easily install the memory expansion without the need to use one of
the four expansion slots.

ROM stands for read-only merrwry. ROM is a special memory into
which information has been permanently stored. Your Apple III has 4K
of ROM. Although that's a comparatively small amount, that's all the
Apple III needs. Stored in the ROM is special diagnostic software that
tests the system every time it's turned on.

Many small computers store their entire operating system and lan
guages like BASIC in ROM. Although using ROM is a convenient way

Figure 1-9. Apple III circuit board

12 I Apple Ill User's Guide

to store data, this limits the computer's possibilities. With the Apple III,
you load the operating system and whatever language you want to use
onto the system from a floppy disk. This only takes a few seconds and
makes the Apple III much more versatile. As new and improved ver
sions of the operating system and languages become available, you'll be
able to upgrade your system instantly.

SOFTWARE __________________________ _

Now that we've looked at the basic hardware of the Apple III, let's
look at software (programs). Software is the set of instructions that tells
the Apple III what to do. Without software, the Apple III is nothing but
a very dumb collection of circuits and wires.

Types of Programs

There are several different types of computer programs. All of them
are loaded into the Apple III's RAM from a floppy disk (this is the boot
ing process mentioned earlier).

Applications Programs. These are probably what you think of
when you hear the word "program." An applications program is
designed to do a specific thing like word processing, accounting, or
financial planning. There are hundreds of applications available from
Apple and from independent companies for the Apple III. Each differs
in the way it works. Our purpose in this book is to explain general oper
ations of the Apple III, not specific applications. Each applications pro
gram you buy for your Apple will have specific instructions for using it.

Languages. If you're like many Apple III users, you'll probably be
using your computer with pre-written applications programs. But as
you experiment more and more with the Apple, you may want to de
velop customized programs for your own applications.

At the time this book was written, Apple offered three popular pro
gramming languages: Apple Business BASIC (Beginner's All-Purpose
Symbolic Instruction Code) is the Apple III version of the popular
BASIC language; Pascal, an advanced programming language favored
by professional programmers; and COBOL (Common Business-Oriented
Language), a language used for many business applications programs.

But computers can't directly understand any language. At their most
basic level, computers can only understand the combination of ls and Os
called machine language. Two types of special programs called interpre
ters and compilers translate programs written in a high-level language

Chapter 1: Introducing the Apple Ill I 13

like BASIC or Pascal into machine language. An interpreted language
(like BASIC) is translated into machine language each time the pro
gra:m is run. Compiled languages (like COBOL) are first translated into
machine language. Since a program written in compiled language is
then stored in machine language, it tends to run faster.

Operating Systems. An operating system is an essential program
for every computer system. It can be thought of as the "traffic cop" that
controls the flow of data into, out of, and through the computer system.
An operating system also performs chores like copying data from a disk
to memory, getting data from the keyboard, and displaying it on the
video monitor.

SOS (Sophisticated Operating System) is the Apple III's operating
system. It has many features that until recently were only available in
larger computer systems.

In a later chapter, we'll explain SOS in detail. For now, you should
know that SOS has to be configured (set up) for your specific combina
tion of Apple III and peripherals. SOS communicates with every part of
the Apple III system using device drivers, special programs that com
municate with peripheral devices. Every time you add a new peripheral
you'll have to run something called the System Configuration Program
(SCP) to install the proper driver. Your dealer may have already done
this for you when you purchased your computer. The configuration pro
cess is straightforward, but there's enough involved to devote an entire
chapter (Chapter 3) to it.

ADDING POWER ___________ _

Although the basic Apple III system is powerful and versatile, there
are a number of accessories and peripherals that can be added as your
needs require.

We've already mentioned video monitors, but both Apple and indepen
dent manufacturers offer hardware additions for your Apple.

More Data

As we mentioned earlier, if you purchased an Apple III system with
128K of RAM, you can have it expanded to 256K by your dealer.
Whether you need 256K depends on what you'll be using your system
for. Most applications programs don't need 256K, but as more and more
sophisticated software becomes available, you might find that you will
need larger and larger amounts of memory. More memory is necessary
for programs that do a lot of numeric calculations.

14 I Apple Ill User's Guide

Figure 1-10. Apple Disk III

Floppy Disks

Most people find that they're rather limited by the single floppy disk
drive included with the Apple III. Not only do some programs require a
second disk drive, but having a second drive makes copying disks much
easier. Otherwise, you have to keep swapping disks into and out of the
single drive.

Apple offers several alternatives. The Apple Disk III (shown in Fig
ure 1-10), is an add-on, floppy disk drive that's identical to the disk
drive built into the Apple. It can read and write exactly the same
amount of data. It plugs directly into the back of the computer and
doesn't require modification of your operating system. As many as three
additional Disk III units can be connected to the Apple III.

The Apple Unifile and Duofile are high-capacity, floppy disk drives.
The Unifile contains one disk drive and the Duofile has two. They can

Chapter 1: Introducing the Apple Ill I 15

store large amounts of information on a single 5 1/4-inch floppy disk.
The disks that fit into the Unifile and Duofile are special and are not
interchangeable with the floppy disks that fit into the Apple III's built
in disk drive. Because of the special disks and the special hardware in
the drives, each disk can hold 871K bytes of data, as opposed to 140K for
the normal disks. (To put that in some perspective, 871K is the equiv
alent of over 200 pages of single-spaced, typed text.) If you'll be using
your Apple III for applications that require a good deal of information
storage, like word processing or accounting, the Unifile and Duofile are
lower-cost alternatives to the Profile hard disk.

Cassettes

There's no place on the Apple III where you'll be able to hook up a
cassette recorder. You don't need one. (The Apple III has a built-in
floppy disk drive.) Besides, cassette recorders are far from being the
most convenient way to store and retrieve data. If you have used a
cassette recorder with a computer, you'll soon see the advantages of
using floppy disks.

Profile Hard Disk

The ultimate in information storage for the Apple III is Apple's Pro
file hard disk drive, shown in Figure 1-11. A hard disk is just that-a
hard (as opposed to floppy) disk. Rather than a thin 'piece of plastic

Figure 1-11. Apple Profile hard disk drive

16 I Apple Ill User's Guide

coated with magnetic material, a hard disk is a magnetically-coated
aluminum platter. It's sealed in an air-tight enclosure where the air is
continually circulated and filtered. Because of the microscopic toleran
ces involved, an airborne particle of dust or smoke can destroy the
information on the disk.

Hard disks (often called "Winchesters") can't be removed from the
drives, but they make up for that disadvantage by storing a huge
amount of information. A single Profile disk can hold 5 megabytes (a
megabyte equals 1,024,000 bytes) of data. That's equivalent to over 1200
pages of single-spaced text. In addition to storing enough data for even
the largest application, the Profile disk spins at a much higher speed
than a floppy disk and can get information into and out of the computer
much faster.

When you look at a hard disk on a cost per byte of storage basis, it
becomes a cheap alternative if you're using the Apple III for an applica
tion that requires lots of data (for example, writing novels or keeping
track of hundreds of customers).

Admittedly, the Profile disk is comparatively expensive, as is any
hard disk, but if you need the storage capacity, it can't be surpassed.

Printers

Printers are an important part of any system. It's almost impossible
to do without them. The problem is often the choice. There are literally
hundreds available, ranging in price from a few hundred dollars to sev
eral thousand dollars.

Apple offers three printers for the Apple III: a low-cost thermal print
er that requires special paper, a dot-matrix printer, and a more expen
sive daisy-wheel printer that produces output identical to a high-quality
office typewriter. In between are many printers from many
manufacturers.

What you need in a printer is largely dependent on what you're doing
with the Apple III. If you're word processing and need to send out pro
fessional letters or manuscripts, a daisy-wheel printer is almost a neces
sity. If you're doing financial work like accounting or forecasting, you
might want a high-speed printer that can print reams of reports in a
short time.

A good compromise is one of the many medium-speed, high-quality
dot-matrix printers now available. An example is the Epson printer,
shown in Figure 1-12. Like many printers in its price range, it has sev
eral modes of operation, which range from fast printing to slower print
ing with a higher quality image.

Chapter 1: Introducing the Apple Ill I 17

Figure 1-12. Epson MX-80 F/T Printer

Modems

Another very useful peripheral is a rrwdem (modulator/demodulator).
It allows you to hook up your Apple III to telephone lines to access pub
lic databases like Compuserve, Dow Jones News/ Retrieval, and The
Source, or to swap files with other computer users.

Like so many peripherals, modems come in a variety of "flavors" at a
variety of prices. Some are acoustic couplers that have rubber cups into
which you place the telephone handset. The Apple III can use many
modems designed for the Apple II. They plug directly into the expan
sion slots inside the computer.

By far the most popular variety of modem is the direct-connect
modem, which plugs directly into the phone jack on your wall. Figure
1-13 shows a typical modem set-up.

In order to use a modem, you'll need special communications software
(sometimes called a "smart terminal" or "file transfer program"). Apple
offers a package called Access III, and many others are on the market.
See your local dealer for more information.

Apple II Peripherals

With its special ability to act like an Apple II, the Apple III can also
use some of the Apple II peripherals. In particular, since the slots for

18 I Apple Ill User's Guide

Figure 1-13. Modem with the Apple III

plug-in boards are identical to those in the Apple II, some of the plug-in
boards for the Apple II will work in the Apple III.

Note that we said some. Because of the hundreds of peripherals and
accessories made for the Apple II, it's impossible for us to be specific
about which will work and which won't. For instance, you can't use the
Apple II Language System (Pascal), although you can adapt most pro
grams to run on the Apple III (as long as you have Apple III Pascal).
Also, neither the Apple II Integer BASIC or Applesoft II firmware
cards will work. If you're in doubt, the best bet is to see your local Apple
dealer.

Getting Started
With the 1-\pple Ill 2

In Chapter 1 we gave you an overview of the Apple III system, its
features and capabilities, as well as the hardware, software, and acces
sories you can buy for it. In this chapter, we'll get down to specifics and
the process of setting up and using your Apple III.

First, we'll review getting the system unpacked and set up. (If your
system is already set up, skip ahead a few pages to the section of this
chapter titled "Using the System.")

UNPACKING THE APPLE ________ _

Depending on exactly which combination of the Apple III, peripher
als, and software you purchased, you'll have quite a few boxes sitting in
front of you. In each box Apple includes a list of the box's contents.
Make sure everything is included. (We won't give you a list since the
exact contents change from time to time.) If anything is missing, con
tact the dealer you purchased the computer from or fill out the missing
parts form enclosed in the box and send it to the address indicated.

SETTING UP THE SYSTEM ________ _

Before you can use the Apple III, you'll need to set up your system.
The exact steps you'll need to perform depend upon the system you've
purchased; however, the following sections review the usual processes
for setting up a system.

19

20 I Apple Ill User's Guide

Hooking Up the Apple Ill

All of the connections you'll have to make are located on the rear
panel of the Apple III. Place the Apple on a desk or a table with the rear
of the computer facing you.

Make sure the ON /OFF switch (located on the right side of the case)
is in the OFF position, and plug the AC power cord into the socket
located next to the switch (see Figure 2-1). Plug the other end of the
cord into the nearest three-wire grounded wall outlet. Make sure that
the socket is grounded. A non-grounded outlet is not only dangerous, but
can also cause a buildup of static electricity that can disrupt the opera
tion of your Apple III.

Next, connect the video monitor, as shown in Figure 2-2. If you're
using a monochromatic monitor (black-and-white, green-and-white, or
amber-and-white), you'll be able to use the cable included with the
Apple III. One end goes into the socket marked B/W VIDEO on the
rear panel of the Apple III and the other plugs into the monitor.

If you're using a color monitor, you'll use the socket on the Apple III
marked COLOR VIDEO. If you buy a color monitor, make sure the
dealer provides you with the proper cable for hooking up the monitor.

That's all that's required to hook up the basic system. However, if
you're like most Apple III owners, you also purchased a few additional
devices known as peripherals. Let's look at how to hook them up.

Figure 2-1. AC connector at the rear of the Apple III

Chapter 2: Getting Started With the Apple Ill I 21

Figure 2-2. Connecting the video monitor

Figure 2-3. Connecting the Apple Disk III

Installing an Apple Disk Ill

As shown in Figure 2-3, the Apple Disk III plugs into the leftmost
socket, marked FLOPPY DISKS. This socket also supplies electrical
power to the drive so that you don't have to plug it into a wall outlet.

22 I Apple Ill User's Guide

Add-on Boards

Several of the Apple III's peripherals require you to plug a circuit
board into one of the expansion slots located inside the Apple III's case.
To gain access toothese slots, loosen the two screws on either side of the
case underneath the keyboard. (See Figure 2-4.) Then place your fin
gers under the main case and pull upward as shown in Figure 2-5. The
expansion slots (shown in Figure 2-6) are located in the center of the
chassis.

Figure 2-4. Removing the cover screws

Installing the Profile Hard Disk

If you purchased the Profile hard disk drive, we'll explain the intrica
cies of using the drive later in this book. But in the meantime, let's
install it.

Chapter 2: Getting Started With the Apple Ill I 23

Figure 2-5. Removing the cover

Figure 2-6. Expansion slots

NOTE: The Profile is a very fragile piece of equipment. You probably
already realized this when you saw the box it was packed in with its
numerous precautions. Because of the microscopic tolerances involved,

24 I Apple Ill User's Guide

even a slight jar can damage the drive. Be very sure to observe the
precautions.

The Profile interface card (Figure 2-7) plugs into one of the four
expansion slots, as shown in Figure 2-8. Exactly which slot to use

Figure 2-7. Profile interface card

Figure 2-8. Plugging in a board

Chapter 2: Getting Started With the Apple Ill I 25

Figure 2-9. Connecting the Profile hard disk drive

depends on your system and what other peripherals you'll be using. See
Apple's Profile Owner's Manual for specifics on which slot to use for
your particular system.

Figure 2-9 shows how the Profile is hooked up. A cable plugs into the
connectors on the interface card and the back of the Profile. The Profile
also requires its own AC power (a cord is included).

In order to use the Profile, you'll have to install a program called a
device driver onto your operating system disk. We'll explain the details
in Chapter 4.

Installing a Printer

How you connect a printer to the Apple III depends upon the type of
printer that you have. The Apple Silentype thermal printer attaches to
the socket marked PORT B at the rear of the Apple III, while the Apple
daisy-wheel printer attaches to the socket marked RS-232-C.

Many popular parallel interface printers, including Apple's dot
matrix printers, require you to install the Apple Universal Parallel

26 I Apple Ill User's Guide

Figure 2-10. Apple Universal Parallel Interface Card

Interface Card (UPIC), shown in Figure 2-10. This card plugs into one
of the Apple III's expansion slots and provides a standard way of con
necting a parallel interface printer to the Apple III.

Since a number of different printers can be connected to the UPIC,
you will need to refer to the UPIC manual in order to properly set up
the board. In addition, you will need to install the proper device driver
on your operating system disk for the printer you are using (a subject
we will cover in Chapter 4).

Installing a Modem

If you'll be using your Apple III to communicate with "information
utilities," like The Source or CompuServe, or with other computers
through the telephone lines, you probably purchased a modem. Although
some modems are designed to plug directly into one of the Apple III's
expansion slots, many users buy modems that plug into the Apple III's
RS-232-C connector.

USING THE SYSTEM __________ _

Before you turn on your system, make sure that you've connected
everything correctly. When you're sure that all the cables are hooked up
to the right places, give the connectors an extra push and wiggle to
make sure they're securely connected. Before we explain all the specific

Chapter 2: Getting Started With the Apple Ill I 27

details of using the Apple III and its software, you should familiarize
yourself with the basics of using the system. That's easy to do with the
System Demonstration disk packed with your computer. Open the drive,
slide the disk in with the label up and toward the front of the computer,
close the door, and turn the ON/OFF switch (located on the left rear
panel) to the ON position.

The disk drive will whir and click for a few seconds and several mes
sages will appear on the screen. Shortly thereafter, a series of graphics
will appear on the monitor. They're designed to show you a few of the
capabilities of the system.

If you don't do anything, the demonstration will just go on and on.
However, after the graphics have finished, you'll see a list of demonstra
tion programs appear on the screen. This list is called a menu because it
gives you a list of choices. If you see one that interests you, press the key
of the number corresponding to the demonstration. If you do nothing,
the graphics will start up again. If, at any point, you want to see the list
of choices, press ESCAPE and the menu will appear on the screen.

Use the System Demonstration program until you've explored all its
possibilities. When you're ready, select option 5 and you will exit from
the demonstration.

THE CONSOLE ___________ _

As you use programs designed for the Apple III, you will run across
the term console quite a few times. The console is the keyboard and the
video screen (no matter what type you're using-black-and-white or
color).

Just like the dashboard of a car (also called a console), you'll use the
Apple III console to control the computer with the keyboard and moni
tor what is happening inside the Apple III by reading the messages that
appear on the video display.

By far the best way to see how the console works is to use it. The
Console Demonstration program is a good way to get used to the Apple
III keyboard.

THE APPLE Ill KEYBOARD ________ _

The Apple III keyboard (shown in Figure 2-11) closely resembles a
keyboard of a standard typewriter. For now, use the keyboard like you
would use a typewriter, and don't worry about the special keys.

28 I Apple Ill User's Guide

Figure 2-11. Apple III keyboard

When compared to a typewriter, there are several differences in the
way the Apple III handles text. Besides the obvious fact that text
appears on a screen rather than on a piece of paper, you don't have to
worry about pressing RETURN as you approach the end of the line. The
Apple III automatically wraps text around to the next line. Although
that sometimes results in a word being split in the middle, it makes no
difference to the computer. It still "sees" each word individually. (If
you'll be using one of the many word processing programs designed for
the Apple III, like Apple Writer III, you'll see the word wrap feature,
where entire words are wrapped around to the next line so they're not
split.)

Correcting Errors

Correcting an error on the Apple III is different from correcting an
error on a typewriter. You probably noticed that there isn't a backspace
key. You'll use the LEFT ARROW key (-) on the lower right. Type in a few
words and move the cursor (the solid square that indicates where you're
typing) back a few spaces. You'll notice an important fact: the arrow
keys don't change what they move over. You can back the cursor up
anywhere in the line and type over an error to correct it. This feature is
called typeover.

Note that if you press RETURN when the cursor is in the middle of a
line, everything to the right of the cursor is ignored by the Apple III.
For instance, if you're using Business BASIC and you type in

>PRINT "The Apple III is an advanced computer-. "

when you press RETURN, you'll see

The Apple III is an advanced computer-.

Chapter 2: Getting Started With the Apple Ill I 29

However, if you use the LEFT ARROW key to move the cursor back into
the middle of "advanced" and then press RETURN, you'll see

The Apple III is an adva

Everything to the right of the cursor is ignored.
NOTE: If you're using Apple III Pascal, there are some important

exceptions to the way the cursor works. See Apple's Pascal Manual for
details.

Deleting a Whole Line

The Apple III also allows you to erase an entire line (or several lines)
if you decide you want to retype. It's done by holding down the CONTROL

key and pressing x. To see how it works, type the following line and then
press CONTROL and X:

The Apple III

As soon as you've done so, the line will look like this:

The Apple III\

Even though the line of text is still on the screen, the backslash indi
cates that it's been ignored by the Apple III. The cursor moves down to
the next line and you can start over again.

Typeahead Buffer

A buffer is an area in memory where information is temporarily
stored until the computer is ready to use it. If you're a lightning-fast
typist, you can sometimes get ahead of the computer. With many com
puter systems, you actually lose what you type when the computer is
busy doing something else. This is not the case with the Apple III. While
the computer is busy, everything you type is stored in the typeahead
buffer and fed to the microprocessor as soon as the Apple III is ready.
Although that might not sound like a big feature right now, you'll find it
very handy in the future.

APPLE Ill SYSTEM DISKS _________ _

In Chapter 3, we'll take a long look at the Apple III's Sophisticated
Operating System (SOS). As you'll soon see, SOS is very powerful and

30 I Apple Ill User's Guide

gives you access to features that until recently have only been available
with large computer systems.

As we mentioned briefly in Chapter 1, in order for the system to work
you must have the SOS set up (configured) for your particular system.
The SOS communicates with individual parts of the system using
device drivers-special programs that control the major components. A
system disk is one that contains the operating system program and the
proper device drivers for your particular system.

BOOTING THE SYSTEM ________ _

"Boot the system" is one of the most commonly heard terms in the
world of computers.

The origins of the term come from a small program that actually
starts the computer. It essentially "pulls the system up by its boot
straps." When you "boot" your Apple III (or any other computer for that
matter), all you're doing is loading a program into memory to get the
hardware up and running. In the case of the Apple III, it's done by
inserting a system disk into the built-in disk drive and turning on the
power.

DISK CARE ____________ _

Like the other parts of your computer system, floppy disks are fragile
and should be handled with care.

Floppy disks are thin pieces of plastic coated with the same type of
magnetic material used on recording tapes. But the similarity ends
there. If you inadvertently damage a small part of a music cassette, you
can still play the music. However, a floppy disk stores data as hundreds
of thousands of tiny areas that are either magnetically charged or not
charged, corresponding to the ls and Os of the binary numbering sys
tem. In most cases, the program is ruined if even one of these bits is
damaged. Therefore, there are a few rules you should remember about
handling floppy disks.

Environment

Although floppy disks are enclosed in a protective plastic jacket to
keep the magnetic surfaces from being easily damaged, you should be
very careful to make sure you don't let your fingers touch the magnetic

Chapter 2: Getting Started With the Apple Ill I 31

areas that show through the protective jacket. Your fingers leave
microscopic oil residues that can destroy the magnetic surface.

Also make sure that you replace a disk in its protective envelope when
it's not being used. And store your disk in a dust-free, smoke-free envi
ronment. Smoke and dust particles can scratch the surface of disks if
they get under the surface of the plastic wrapper. (Many dealers sell
plastic cases that protect disks from such environmental hazards.)

Finally, make sure your working environment is clean. A computer
coated with dust is asking for trouble, since the dust will surely get on
the disks. And if you must have your cup of coffee while working on the
Apple III, keep it on a separate table-away from the computer and any
disks.

Handling

Floppy disks get their name from the fact that they're flexible. But
they still should be handled carefully. (If you treat them like they're
pieces of glass, you're headed in the right direction.) Remember that
they're coated with magnetic material. If you flex them or abuse them
too much, the coating will flake off, and your data will go into oblivion.

Never force a disk into a disk drive. If it does not go in easily, there's
a problem. (A common problem occurs when you attempt to force a disk
into a slot already containing another disk.)

Temperature

Temperature is another important consideration. Floppy disks are
most comfortable at the same temperatures at which people are comfor
table. High temperatures or high humidity can damage them. One of
the greatest advantages of today's personal computers, like the Apple
III, is that they don't require special climate-controlled rooms like the
behemoths of old. But if you're using your computer in a region where
high temperatures or high humidity are common, you should buy an air
conditioner or dehumidifier. It will make both you and your computer
very happy.

Magnetic Fields

Because a magnetic field is used to record the information on your
floppy disks, any stray magnetic field of sufficient strength can alter or
destroy the data on a floppy disk. You might be surprised to find that

32 I Apple Ill User's Guide

sources of magnetism abound in every office and home. In fact, just
about everything that uses electricity produces some sort of magnetic
field. It's better to be safe than sorry. Keep your floppy disks away from
television sets, telephones (the bell uses a magnet), fans, electric type
writers, and stereo speakers (many of which use huge magnets).

MAKING BACKUPS __________ _

It's good standard operating procedure to make copies of your soft
ware and store the originals away in a safe place. (Some people even use
a safe-deposit box.) In fact, the best method is to keep two sets of origi
nals by making backups of the "master" disks, labeling your new disks
"working masters," and making backups of them (as shown in Figure
2-12). That way, if something unexpected happens (disk drives have
been known to make occasional light lunches of floppy disks), you won't
be left without a copy of your program.

Storage

.t
"

S~orage

~

I I
0 MASTER

~tBackup

I I MASTER
0 BACKUP

~JBackup
Day-to-day

I I Use"
0 >

WORKING
MASTER

v

Figure 2-12. Making backup disks

l

c=J D AlLY
ACKUP 0

I
0

E!

B

Daily
Backu p

I w ORKING
ATA DISK D

J

Chapter 2: Getting Started With the Apple Ill I 33

If you're using your Apple III every day, you should make a daily
backup of your data (as shown in Figure 2-12). Although it looks compli
cated, it only takes a couple of minutes to copy your work at the end of
each day.

You should make backups of the following diskettes that came with
your Apple III (disks marked with"*" are optional, depending on which
system you purchased):

System Utilities

System Utilities Data

Apple II Emulation

Apple Business BASIC

Pascal 1*

Pascal 3*

Profile Driver and System Utilities Software*

Universal Parallel Interface Card Driver Software*

NOTE: Although most of the disks that came with your Apple III can
easily be copied, such is not the case with many of the applications pro
grams you'll buy. Many of them are "copy-protected" to prevent people
from making copies of very expensive software and distributing them.
However, most companies that copy-protect their software make low
cost replacement disks available if the originals are , inadvertently
ruined.

What You'll Need

If you haven't done so already, purchase at least one box of 5 1/ 4-inch
floppy disks. Ask your dealer for soft sectored, single-sided, single
density disks. (If you have the Unifile or Duofile, you'll need disks spe
cifically designed for these drives. Since they'll only fit in these drives,
they should be clearly marked "Unifile/Duofile." If in doubt, ask your
dealer.) For the standard drives, there's no need to pay the extra money
for double-sided or double-density disks. However, buy the best disks
you can afford. Although most bargain brands are okay, you should
trust your valuable data only to a top-quality disk.

Write-Protection

As you slide a disk into the Apple III's disk drives, you'll notice that
there's a square notch cut out from the left side. This is the write-protect

34 I Apple Ill User's Guide

notch. When it's covered, the Apple III won't let you erase data that's on
the disk or put new data on it. Your master disks should always be
write-protected. (Apple master disks come that way.) You can write
protect disks by covering the notches with the peel-off tabs that come
with most disks. If you try to copy onto a write-protected disk, the Apple
III will tell you (on the screen). Before removing a write-protect tab,
make sure you're using the right disk. Once you erase a disk by writing
new information onto it, there's no way to bring it back. (That's why you
should always make backups.)

Device and Volume Names

Many of the commands (like the COPY command which we will use
in a moment) will ask you for the name of the device you will be using.
In the case of the COPY command, the device name indicates where the
data can be found or where the data should be stored.

Device names always start with a"." and are easy to remember. Here
are a few:

.CONSOLE The console (video display/keyboard)

.Dl The built-in disk drive

.D2, .D3, or .D4 Additional disk drives you've added

.PROFILE The Profile hard disk

.PRINTER A printer

.PARALLEL The parallel interface card

.RS232 The RS-232 interface

In addition, when you use storage devices like floppy disk drives, you
may use what is called a volume name to refer to a particular disk. For
instance, the name of the System Utilities disk is /UTILITIES.

Volume names must begin with a slash followed by a letter and can
consist of up to 14 additional letters, numbers, or periods; no other
punctuation is allowed.

Here are a few legal names:

/UTIL.BACKUP

/FORMLETTERS

/MEMOS-1984

Chapter 2: Getting Started With the Apple Ill I 35

Figure 2-13. Utilities menu

The Backup Process

To show you how the backup process is done, let's back up the System
Utilities disk. It's one you'll be using extensively.

If you have a second Disk III drive (or a Unifile or Duofile), backing
up disks will be easy and quick. If you'll only be using the built-in drive,
it will still be easy, but not as quick. (You'll have to swap disks several
times during the backup process.) If you have a second disk drive and
haven't connected it yet, do so now.

Make sure the computer is turned off. Place the System Utilities disk
into the built-in drive and a blank disk into the second drive (if you have
one). Otherwise, keep the blank disk ready.

Turn the Apple III on. In a few seconds, you should see the menu
shown in Figure 2-13.

In many of the menus you'll be seeing as you use your Apple III, the
highlighted choice on the menu is the one that you'll use most often. We
don't want file handling commands this time - we're going to be using
the device handling commands. In Apple III parlance, a device is any of
the individual parts of the system the operating system communicates

36 I Apple Ill User's Guide

with (video display, keyboard, Profile, Disk III and so on). We want to
copy the contents of a whole device (the built-in disk) onto another
device (either the same or another disk drive). Press D and you'll see the
menu shown in Figure 2-14.

This time, the highlighted "Copy one volume onto another" is the
right choice, so press c.

You should see the following message at the bottom of the screen:

Copy the Volume:
[. 02 J
To the Volume:

With the New Volume Name:

The volume name in the brackets is the name of the volume you'll be
copying from. Since we put the original disk in the built" in drive (which
is called .Dl), we'll have to change it by typing .Dl and pressing
RETURN. (If you make a mistake, use the arrow keys to move the cursor
back and type in the correct character. If you get hopelessly mixed up,
press ESCAPE to get you out of the backup program and back into the
device handling commands menu.)

Figure 2-14. Device handling commands menu

Chapter 2: Getting Started With the Apple Ill I 37

Notice that as soon as you entered .Dl, the computer automatically
filled in .D2 as the volume to copy to. If you have two drives, you're all
set. If you don't, enter .Dl as the name of the volume to copy to and
press RETURN.

The Apple III assumes that you want your backup to have the same
volume name as the original, so it fills the name UTILITIES into the
space provided for the new volume name. If, for some reason, you want
to change the name, just type the new name over the existing name and
press RETURN. Otherwise just press RETURN.

With two disk drives, that's all there is to it. The drives will whir and
messages to let you know how the backup operation is proceeding will
appear on the screen.

With one disk drive, assuming you've typed .D 1 as both the origin and
destination drive, the system will prompt you (in a box at the top of the
screen) when to insert the SO'Urce volume (the original disk) and the des
tination volume (the blank disk you're copying to). Be forewarned that
you'll have to make a number of swaps before the process is finished.

The Apple III first formats the disk. This process electrically divides
the disk into sections and checks to make sure that it isn't defective. As
soon as the disk is formatted, the copying process starts. Depending on
the amount of data on the disk, it can take a few seconds or a couple of
minutes to completely copy it. A message appears on the screen when the
Apple III is done making the backup. At this point, you should remove
both disks, file the original in a safe place, and label your copy.

FORMATTING BLANK DISKS _______ _

The backup process automatically formats a blank disk before copy
ing all the files from the original disk onto the new disk. However, for
most applications, you'll need to have a number of blank, formatted
disks on hand for storing programs and data. You can use the device
handling commands on the System Utilities disk to format the rest of
the blank disks you have.

After selecting the device handling commands, press F to format a
blank disk. The following message appears on the bottom of the screen:

Format the medium of the volume
[. 02]
with the new volume name

Once again, the Apple III assumes you have a second disk drive (.D2)
connected to the system and that you've placed the blank disk in it. If
you don't have a second disk drive, type .Dl in the space. Then press

38 I Apple Ill User's Guide

RETURN and the cursor will move to the field labeled "with the new
volume name."

Suddenly a name appears on your screen. The Apple III will automat
ically name the disk you're formatting BLANK followed by a number.
Since at this point you don't know what you'll be using the disk for, the
best bet is to use the name the Apple III assigns to the disk. Press
RETURN and the formatting process will proceed. (If you want to give it
another name, type it into the space provided.)

NOTE: Once again, if you don't have a second disk drive, the system
will instruct you to swap disks a number of times. Also, if you've inad
vertently attempted to format a disk that already has information on it,
the system will ask you if it's okay to destroy what's there. (The format
ting process erases all data on a disk.)

A "formatting complete" message will appear on the screen. Press
ESCAPE to get back to the Device Handling Command Menu. Finally,
make sure to note on the disk's label that it has been formatted. This
eliminates duplication of effort later on.

IF YOU HAVE PROBLEMS ________ _

The Apple III utilities such as backup and format have been designed
to be easy to use and to lead you step-by-step through the process. If
you're doing something incorrectly or there are other problems, you'll
generally see a message explaining what the problem is. If you don't
understand the error message or still don't know what to do next, see
the error messages in Appendix D or Chapter 3, where we'll give you a
deeper explanation of using the System Utilities disk.

Files, Paths,
And Uti I ities 3

Every computer, from your Apple III to the largest mainframe, oper
ates on information. In the world of computers, information is known as
data. Computers retrieve data from storage (a floppy or hard disk),
operate (perform calculations) on it, and store information back into
memory or on the disk.

Although data is the basis of our "information society," it's nearly
impossible to use that information unless it's organized-put in some
type of logical order.

A file is an organized collection of data. Files, the electronic equiva
lent of the file cabinets and folders you find in every office, are where
your Apple III stores data. That· data can be programs, letters, mailing
lists, and so on.

In this chapter, we'll take a look at how you can organize, find, and
store data in your computer.

TYPES OF FILES ___________ _

The office filing cabinet is a good analogy to keep in mind when
thinking about how your computer stores and uses information. How
ever, unlike the files in the filing cabinet, there are several different
types of files. The type of file depends upon where the actual data in the
file is stored.

Permanent vs. Temporary Files

Any file that's stored on a floppy or hard disk is considered a perma
nent file. When you turn the computer off, the file is still there on the

39

40 I Apple Ill User's Guide

disk. A temporary file is one that resides in RAM, the electronic
memory of the Apple III. When the power switch is turned off, the file
is gone forever.

Block and Character Devices and Files

Simply put, a device is hardware that the microprocessor communi
cates with. Even if you have a "stripped down" Apple III, you have two
devices right in the case. One is the built-in floppy disk drive and the
other is the console-the keyboard and video display. Other devices are
printers, modems, and the Profile hard disk drive.

There are two types of devices: block devices and character devices. A
block device stores data in blocks of 512 bytes. (Each byte represents a
number, character, or graphics symbol.) Disk drives are examples of
block devices.

A character device sends or receives data one character at a time.
The screen, keyboard, and RS-232-C serial port are all examples of
character devices.

Only block devices are capable of storing files. Although character
devices are considered files for the purposes of input and output, they
are not capable of storing files.

FILENAMES ____________ _

In the Apple III, each file has a unique identifier called a filename.
The rules for an Apple III filename are as follows:

1. A filename can contain up to 15 characters and must consist of
letters, numbers, and periods (no other punctuation is allowed).

2. A filename must begin with a letter.

Here are a few legal names:

ARTICL.12.02.82

LETTR.TO.JIM

DATA3.00004

When naming a file it makes no difference whether you type in upper
or lowercase letters-the Apple III automatically converts all lowercase
letters to uppercase ones.

The following names are incorrect:

Chapter 3: Files. Paths, and Utilit ies I 41

12.02.82.ARTICL (Begins with a number)

LETTR TO JIM (Contains spaces)

DATA3:00004 (Contains punctuation other than a period)

FILE DIRECTORIES __________ _

You have to have some way to keep track of all the information you've
stored on a floppy or hard disk. In an office file cabinet, it's a relatively
simple matter of using individual file folders, each with a name or cate
gory on the tag.

Much the same is done with your computer files. A disk can contain
many files. If you're using a hard disk, there can be hundreds of files
stored there. Keeping track of them is done through the use of a
directory -essentially, a list of files stored on the disk. (Note that the
term catalog is often used interchangeably with directory in personal
computer jargon.) As you'll see later, you use the CATALOG command
to get a list of BASIC programs.

A directory is itself a file. If we go back to the file cabinet analogy,
you can think of the directory as a folder that contains a list of all the
other files in the cabinet (see Figure 3-1). If you want to know what files
are in the cabinet, all you have to do is pull out the directory file.

J DIRECTORY

ACCOUNTS.REC
PAYROLL.DATA
LETTERS. DEC
AMORT.LOANS
ORDER.INV

f ACCOUNTS.REC
f--

J f PAYROLL.DATA

j_ J LETTERS.DEC

I f AMORT.LOANS

I I ORDERS.INV

r-
r-

r-
r-

Figure 3-1. The directory file in a file cabinet

42 I Apple Ill User's Guide

The Apple III has a program called the Filer that gets the directory
from a disk for you to look through. It also allows you to do other things
like copy, delete, and rename files.

Subdirectories

A directory can contain a list of files in which some of them are them
selves directory files. These second-level directory files are known as
subdirectories. You'll be using subdirectories a great deal, especially if
you have a Profile hard disk.

Subdirectories allow you to organize large amounts of information in
a logical manner. A subdirectory can contain a list of related files that
do not appear when you look at the normal directory.

Let's look at an example. Suppose you have a floppy disk named
BASICl on which you've stored a number of BASIC programs. Your
directory contains entries which are subdirectories pointing to other
files. When you use the Filer program to get a directory of the disk, you
might see something like this:

GAMES

HOME.FINANCE

ACCOUNTING

WORD.PROCESSING

COMMUNICATIONS

You could have stored all of your game programs under the subdirec
tory GAMES, all of your home finance files under the subdirectory
HOME.FINANCE, all of your accounting files under ACCOUNTING,
and so on, as shown in Figure 3-2. The more files you store on a disk, the
more subdirectories become useful.

If you're storing large numbers of files on a hard disk, for example,
you can organize specific files in layers of subdirectories. This whole
thing is called a hierarchical storage system. We'll talk about how you
create a subdirectory later in this chapter.

PATHS AND PATHNAMES ________ _

The Apple III filing system allows you to access a file directly, even if
it's buried deep within several layers of subdirectories. You can go
directly to a file by telling the computer which "path" to take. You do
this by specifying a pathname.

Chapter 3: Files, Paths, and Utilities I 43

SPACE. RASCALS
TICTACTOE
GARBAGE.SCOW
GORILLA. HUNT

CHECKS.JAN

,..- CHECKS.FEB
MORTGAGE.AMORT
BUDGET.CALC

/ GAMES t--
ACCOUNTS.PAY / HOME. FINANCE

/ ACCOUNTING ACCOUNTS.REC

/ WORD.PROCESSING PAYROLL.DATA
BOTTOM. LINE /COMMUNICATIONS t--

LETTERS.JAN
~ MEMOS.JAN

SPELLING.CHECK

MODEM
DJNS.DATA
CS.DATA
LOGON.MESSAGE

Figure 3-2. An example of subdirectories

A path is defined in one of two ways. Using the example shown in
Figure 3-2, let's go directly to a specific game program: (SPACE.RAS
CALS). This can be done by typing

/BASIC1/GAMES/SPACE.RASCALS

or

.01/GAMES/SPACE.RASCALS

As you can see, each part of the path is preceded by a slash. The first
part of the pathname is the volume name, the name of the disk drive
where the file is located. Instead of the volume name, you can use the
actual device name. Recall that device names always begin with a
period. Apple III floppy disk drives are specified by .Dlthrough .D4.
The built-in disk drive is always .Dl. The Profile hard disk is referred
to by the device name .PROFILE.

44 I Apple Ill Use(s Guide

If you're going directly to a file that's on one of the drives and isn't
filed under a subdirectory, your pathname can be relatively short. Here
are a few examples:

.Dl/TEXT.FILE.MAKER

.D2/INSTRUCT.DOC

.PROFILE/MORTGAGE

APPLE Ill UTILITIES __________ _

The dictionary defines the word "utility" as something designed or
adapted for general use. That's exactly what your Apple III System
Utilities disk is designed to do. It contains a number of programs that
allow your computer to do "housekeeping" chores like displaying lists of
files, formatting floppy disks, copying files, and so on. The System Utili
ties disk has quite a few programs on it, but essentially they're divided
into three areas:

1. Operations on devices

2. Operations on files

3. Configuring the system.

Figure 3-3 shows the organization of the individual programs on the
System Utilities disk.

The device handling utilities allow you to work with files on a device
level; that is, they allow you to do file related things with entire devices.
The device handling utilities are primarily used to do things like copy
the contents of an entire disk drive.

File handling utilities, on the other hand, allow you to work with
individual files on a disk. They allow you to do things like copy, delete,
or rename individual files. The file handling utilities are referred to as
the Filer.

The System Configuration Program is extremely important because it
tells the Apple III's operating system what peripherals and accessories
you have hooked up to your computer and defines how communications
take place between the software and hardware. We will examine this in
depth in Chapter 4.

Your Apple III comes with a floppy disk labelled System Utilities. In
Chapter 2, you made a backup of that disk. Take the backup and boot it
in the following manner:

1. Make sure the power is off.

Chapter 3: Files, Paths, and Utilities I 45

UTILITIES MAIN MENU

[D] Device Handling Commands

- [F] File Handling Commands
- [S] System Configuration Program (SCP)

[Q] Quit

' DEVICE HANDLING COMMANDS MENU
[C] Copy one volume onto another
[R] Rename a volume
[F] Format a volume
[V] Verify a volume
[L] List devices configured
[T] Set Time and Date

• FILE HANDLING COMMANDS MENU
[L] List files
[C] Copy files
[D] Delete files
[R] Rename files
[M] Make a new subdirectory
[W] Set write protection (lock/unlock)
[P] Set prefix

+
SYSTEM CONFIGURATION PROGRAM MENU
[R] Read a Driver File
[D] Delete a Driver

.--- [E] Edit Driver Parameters
- [C] Change System Parameters

[G] Generate New System
[Q] Quit to Main Menu

• EDIT DRIVER PARAMETERS MENU
Device Name Slot Number
Device Type Unit Number
Device Subtype Manufacturer ID
Driver Status Block Count
Comment Version ID

• CHANGE SYSTEM PARAMETERS MENU

Number of Disk III Drives
Peripheral Slot Assignments
Standard Character Set
Keyboard Layout
Invert Standard Character Set
Change All System Parameters

Figure 3-3. Programs on the Apple III System Utilities disk

46 I Apple Ill User's Guide

2. Insert the disk into the built-in drive.

3. Turn the AC power on.

If everything works right, you should see the Utilities Main Menu
(Figure 3-4) in about thirty seconds.

Working With Utilities

All the Apple III utilities that we'll talk about in this chapter work in
essentially the same way. You'll see a menu (a list of the choices) and
then you select an option from the menu in one of two ways:

1. Press the letter key corresponding to your choice.

2. Use the UP ARROW and DOWN ARROW keys to move the cursor to your
choice. Then press RETURN.

In some cases, you'll see the message "Press RETURN to accept" on
the screen. In this case, press RETURN to select the given option.

As you use the utilities, the Apple III will often ask you to enter
information. A prompt will ask you for the information and a high
lighted field will show you where you need to enter the information. In
many cases, there will already be an entry in the field. This is the

Figure 3-4. Utilities Main Menu

Chapter 3: Files, Paths, and Utilities I 47

default, the response you'll be using most of the time. At this point, you
have a number of choices:

1. If you want to return to the previous menu, press ESCAPE.

2. If you want to back up to a previous field, hold down the CONTROL

key and press RETURN.

3. If the default is what you want to use, press RETURN.

4. If you need to change the default or enter additional information,
type in the new information and press RETURN.

The utility disk has a built-in editor that lets you change or correct
entries in the following ways:

1. You can use the LEFT ARROW and RIGHT ARROW keys to move the
cursor to a mistake and type over it.

2. If you want to delete a character in the middle of an entry, use the
arrow keys to move the cursor to the character you want to delete
and press the RIGHT ARROW key while holding down the OPEN APPLE

key. This will erase the character under the cursor and move the
other characters to the left. If you press the LEFT ARROW key while
holding down the OPEN APPLE key, the character to the left of the
cursor will be deleted.

3. If you need to add characters to an entry, move the cursor to the
position where you want to insert and press I while holding down
the OPEN APPLE key. This puts you in the insert nwde. Type the
characters you need to insert and then leave the insert mode by
holding down the OPEN APPLE key and pressing 1.

4. If, while you're editing a field, you decide that you want to restore
the default (if there was one), just press ESCAPE and the default
will reappear.

Wildcards

Many of the Apple III utilities require that you enter pathnames. If
you're typing a long list of files with similar names, you can avoid typ
ing all the names by using a wildcard. In Apple III utilities, the equal
sign (=) is the wildcard. It allows you to specify a group of filenames
that are similar. For instance, you can specify a group of files that begin
or end with a particular letter or all files that contain certain combina
tions of letters.

Let's use some examples. Suppose you wanted to specify all files that
end in .DATA. You could do this by typing /=.DATA.

48 I Apple Ill User's Guide

As another example, assume you have these files:

NOV83.SALES

DEC83.SALES

JAN84.SALES

FEB84.SALES

MAR84.SALES

You could specify all 83 sales by typing =83.SALES; or all 84 sales by
typing =84.SALES. All of the files that end in .SALES could be speci
fied with =.SALES.

THE FILER _____________ _

The utility that allows you to work with Apple III files is called the
Filer. To get to the Filer from the Utilities Main Menu, type For move
the cursor to the Filer entry on the menu and press RETURN. You'll see
the File Handling Commands Menu, as shown in Figure 3-5.

Figure 3-5. File Handling Commands Menu

Chapter 3: Files, Paths, and Utilities I 49

Next, type L, or since the cursor is already positioned at the "List
files" entry, just press RETURN. The Apple III will display this message
at the bottom of the screen:

List the directory information of the files:
.02
Including All directory levels; sending the listing to the file:

The default name of the disk to list is .D2 (the first add-on drive). If
that's the one you want to list, just press RETURN. Otherwise, if you want
a list of files that are on the built-in disk, type .Dl and press RETURN.

The Filer next asks you for the directory levels you want to list. If you
want all levels of files, press RETURN again. You can also choose to see
just the first level of files (subdirectory names) by typing a 1 in this
space.

The final option asks you where you want the directory listing sent.
The default is .CONSOLE -the video display. You can also send the
directory to a disk file by typing a pathname such as

.D 1/DIRECTORY.LIST

Alternately, you might want to send your directory listing to a print
er. Depending on which device driver you have installed for printing,
you'll likely type one of the following:

.PRINTER

.PARALLEL

.QUME

An example of a directory listing to the screen is shown in Figure 3-6.
The volume name of the disk appears at the top right along with the

date and time. Below the long horizontal line is the actual list of files on
the disk. As you can see, each directory entry consists of the filename,
the file's size in 512-byte blocks, the date and time it was last changed,
the file type, and several numbers pertaining to how the file is stored on
the disk.

Finding Files Quickly

Most of the options in the Filer require you to enter a filename or
pathname.

If you are not sure of the filename, you can enter the disk name and

50 I Apple Ill User's Guide

Figure 3-6. A directory listing on the screen

Chapter 3: Files. Paths, and Utilities I 51

press the UP ARROW or DOWN ARROW key and a box will appear that con
tains a list of the files on the disk you've selected. The cursor will move
up into the box and you can use the UP ARROW and DOWN ARROW keys to
point to the file or files you want. To mark a file, press the RIGHT ARROW

key and an arrow will appear next to the filename. (If you change your
mind, pressing the LEFT ARROW key will remove the marker.) To mark
additional files, move the cursor up or down and press the RIGHT ARROW

key again. Once you've marked all the files you need, press RETURN and
all the files you've marked will be selected for use by the utility you are
using.

Copying Files

As you saw when you first entered the File Handling Commands
Menu, you can do quite a few more things than just list the files that
you've stored on a disk. To return to the Utilities Main Menu, press
ESCAPE. Let's look at the other options.

The second option on the filer menu is "Copy files." Since the filer
utility works with individual files, you'll use the "Copy files" option to
copy individual files. If you want to copy everything on a disk, you use a
device handling utility.

To get to the Copy files utility from the File Handling Commands
Menu, type c or move the cursor to the "Copy files" entry and press
RETURN. At the bottom of the screen, you'll see a message like this:

Copy the files:
[

To the files

If you only have a single disk drive (built-in), you should insert the
disk that you want to copy from into the drive. (If you have a second
drive, place the source disk there.) Should you be copying a file from a
Profile hard disk, you won't have to insert anything.

If you're not sure of the exact name of the file you want to copy, enter
the name of the disk and then press the UP ARROW or DOWN ARROW key.
You can then choose the file you want to copy as described in the last
section.

If you only want to copy a single file, all you have to do is enter its
pathname and press RETURN. Then enter the pathname of the file you
want to copy to (if it's different than the original). When you press
RETURN, the copying process will begin.

If you use the arrow keys to select a number of files, you'll see that an
equal sign (=) appears next to the message "Copy the files." This is a

52 I Apple Ill User's Guide

wildcard that tells the system that you want to copy all the files you've
marked.

If you have a second disk drive, you'll also notice that the Apple III
enters .D2 as the default destination device. (It assumes that you want to
copy to the second drive.) If you only have a single drive, you'll see .Dl
as the default drive.

When everything is set up the way you want it, press RETURN and the
copy will proceed. As each file is copied a message will appear in the
middle of the screen.

Existing Filenames

If in the process of copying files, the copy utility finds that the desti
nation disk contains a file with the same name as the file you are copy
ing to, you'll hear a beep and get the message:

Delete old/volume name/filename?<Yes/No>

Copying to a file with the same name will erase the old file, so make
sure you want the old file erased before you press Y. If you press N you
can start the copy operation once again.

Copying With a Single Disk Drive

Finally, if you are using the same disk drive for both the source and
destination disks, you'll be required to change disks a number of times.
When it's time to change disks, you'll see the messages

Insert Source volume

Type SPACE to continue; ESCAPE to quit

or

Insert Destination volume

Type SPACE to continue; ESCAPE to quit

Deleting Files

The "Delete files" option of the Filer erases individual files or groups
of files. Choosing a file or files to erase is exactly the same as in the copy
option. Once you're prompted for the name of the files to delete with the
message

Delete the files:
[

Chapter 3: Files, Paths, and Utilities I 53

you can either type in individual file names or enter the name of the
disk drive and press the UP ARROW or DOWN ARROW key to choose from a
list of files.

Once you've selected the files to delete, you'll see the following
message:

File filename deleted
Update directory ? [Yes/NoJ

Pay close attention. Even though the message says the file is deleted,
it's really still there and will remain so until the disk's directory is
updated. If you've changed your mind about erasing the file, type N.

Otherwise, type Y and the file will actually be deleted.
NOTE: After you've erased something, there's nothing you can do to

get it back. So be sure before you type Y.

Deleting Protected Files

Files that are write-protected can't be erased until they're "un
protected." If you try to erase a protected file, you'll see the message

filename -- Write protect error
Type SPACE to continue; ESCAPE to quit

When you see it, you'll have to press ESCAPE, which returns you to the
main Filer menu. (See the section on "Write-Protection" later in this
chapter.)

Renaming Files

The "Rename files" option of the utilities disk lets you change the
name of files you've created. Do rwt change the names of system files
which are supplied by Apple. The Apple III expects to find certain files.
If you rename the system files, you'll end up with a system that doesn't
work correctly. In particular, don't rename the following files on your
System Utilities disk:

SOS.KERNEL

SOS.DRIVER

SOS.INTERP

54 I Apple Ill User's Guide

SYSTEM.PASCAL

SYSTEM.MISCINFO

SYSTEM. STARTUP

Although you can rename files using the wildcard (=) character, we
suggest that you rename files individually.

Creating Subdirectories

As we discussed earlier in this chapter, a subdirectory is a file con
taining the names and addresses of additional files. Subdirectories are
appropriate for organizing files into logical groups.

When you choose the "Make a new subdirectory" option, . you'll be
asked for the name of the subdirectory with the following message:

Make a subdirectory called
[fUTILITIES
with enough space for 25 files.

To review, remember that a pathname starts with the volume name of
the disk. The Filer fills in the name of the disk in the built-in drive (in
this case / UTILITIES). Suppose you want to create a subdirectory
named "GROUPl" on the utilities disk. Move the cursor to the end of
/UTILITIES, type /GROUPl, and then press RETURN twice.

You can also create a subdirectory by using a device name. Here are
some examples of subdirectories on various devices:

.PROFILE/GROUP!

.D2/GROUP1

/BASIC/GROUPl

The default value for the number of files in a subdirectory is 25.
That's enough for most subdirectories; however, if you think you'll need
more or less, be sure to change the number. Don't create a large subdi
rectory if you don't need to, since the space for a subdirectory takes up
space on your disk. However, if you create a subdirectory that has too
few files, you won't be able to expand it.

If you try to create a subdirectory that already exists, you'll see a
message asking you if you want to delete the old subdirectory. Be sure
this is what you want to do before typing Y, since all files in the old
subdirectory will be erased.

Chapter 3: Files, Paths, and Utilities I 55

Write-Protection

Although you can protect the entire contents of a disk from being
erased or changed by putting a write-protect tab over the notch on the
disk, you can also protect individual files by "locking" them with the
"Set Write protection (lock/unlock)" option of the Filer. When you lock a
file, you can read the data in that file, but you can't erase it or change it.

You can lock or unlock any or all files on a disk. In fact, it's a good
idea to make sure the six system files we listed in the last section are
locked so that you won't accidentally erase or change them.

Once again, you can either type the names of individual files to lock
or unlock or you can enter the name of the disk and press the UP ARROW

or DOWN ARROW keys to select from a list of files. The message

Turn Write protection on? CYesJ
<Yes to lock, No to unlock>

will appear in the middle of the screen. Typing Y will lock all the files
you've specified. As they're locked, you'll see the files listed on the
screen.

The process of unlocking files is nearly identical to locking them
except you press N to unlock the files you've selected.

Finally, it's important to note that if you try to lock a file that's
already locked or unlock files that are already unlocked, there won't be
any change in their status.

Set Prefix

The prefix is a special pathname that is stored in the Apple III. It
allows you to enter the local names of files without having to specify the
entire pathname. When you boot up from disk, the prefix is set to the
volume name of the disk. You can use the "Set prefix" option of the Filer
to change the prefix.

Whenever you enter a filename that does not begin with a "/" or ".",
the filename is automatically appended to the prefix. For example, if
you are using a disk whose volume name is /KEYS and you wish to
specify a file described by the pathname /KEYS/HOUSE/NUMBERS,
you would only need to type HOUSE/NUMBERS since the volume
name /KEYS was assigned to the prefix when you booted from the disk.
If you use the "Set prefix" option to change the prefix to KEYS/
HOUSE, you would only need to type NUMBERS to specify the file.

56 I Apple Ill User's Guide

Once you have set a prefix, you can override it by simply entering a
complete pathname, since the prefix is not used when you enter a name
beginning with a "/" or ".".

DEVICE HANDLING UTILITIES _______ _

The first option in the Utilities Main Menu is "Device handling com
mands." Whereas the file handling commands we talked about in the
last section work on individual files, the device handling commands
work on entire devices- in particular floppy and hard disk drives.

Copying Volumes

We talked about this option extensively in Chapter 2 when we explained
how to make a backup disk. This option allows you to copy the entire
contents of one disk to another. (If you need a review, see Chapter 2.)

Renaming Volumes

The "Rename a volume" option allows you to change the volume name
of a disk. When you select this option, you'll see the message

Rename the volume:
.02
With the new volume name:
[]

Once again, the utility supplies a default device name (.D2) which you
can change if you wish. If you want to change the volume name of the
disk, you can type in the new name (beginning with a slash) or modify
the existing name.

Formatting Disks

The format option, which was also explained in Chapter 2, prepares a
blank disk for storing information by dividing it into tracks and sectors.
In most cases, you need to format a disk before you can use it.

The format option asks you for the volume name of the disk to format.
Once again, the volume name must conform to the conventions for
Apple III volume names. If you don't enter a volume name, the format
utility automatically names the disk "BLANK" followed by a number.
Later you can change it using the rename utility.

Chapter 3: Files, Paths, and Utilities I 57

Verifying Volumes

The "Verify a volume" option lets you check a disk when you're not
sure everything is right. For instance, if you start getting errors in a
program you've been running for a long time certain areas on the disk
may have worn out or have otherwise been destroyed. The verify utility
checks the disk without harming any of the data that's already stored on
it.

When you use this option, the Apple III will check the disk you spec
ify. If there are no bad areas (blocks) on the disk, you'll see the message

0 bad block(s)

at the top of the screen. Otherwise, the numbers of the bad blocks will
be listed. If you do find bad blocks, copy all the files from the defective
disk to a new disk. Remember though that the files stored in bad areas
still won't work correctly on the new disk. That is why you should keep
a backup of original files.

To avoid problems, it's a good idea to verify disks after you've format
ted them and before you use them to store data. In addition, don't over
use disks. If you have files that you use nearly everyday, put them on
several disks and "rotate" them. Disks do wear out, and that's why it's
essential to buy the best you can afford.

Listing Configured Devices

The "List devices configured" option gives you a list of the device driv
ers that may be used with a particular disk. As we'll see in detail in the
next chapter, device drivers are programs that allow your programs to
access a device. The list of devices that you may access from a particu
lar disk depends on what device drivers have been installed on the disk.
Once you choose the "List devices configured" option, you can specify
where you want the list sent .. CONSOLE is the default device. If you
just press RETURN, you will see the list of devices on the screen. We'll
explain this in more detail in Chapter 4.

Setting Time and Date

The final option in the Device Handling Commands Menu is "Set
Time and Date." If you want to record the time and date when you
create a file with the System Utilities disk, you need to first set the time
and date with this option.

58 I Apple Ill User's Guide

It's important to remember that since the Apple III doesn't have an
internal calendar, it doesn't keep track of the time and date. Therefore,
if you want the correct date and time, you'll need to set it each time you
want to use it.

System Configuration
Program 4

One of the most powerful features of your Apple III is its ability to
utilize a wide variety of accessories and peripherals. This power comes
from the Sophisticated Operating System (SOS). This chapter will give
you an introduction to SOS and show you how to customize SOS for use
with the peripherals you purchased with your system.

SOPHISTICATED OPERATING SYSTEM ____ _

There are two types of software: applications software and system
software. Applications software allows your Apple III to do specific
tasks. All the programs on your System Utilities disk are applications,
as are programs like word processors, accounting packages, and even
games. But an application program can't entirely control the Apple III's
microprocessor, memory, associated circuitry, and peripherals. For that
you need system software - otherwise known as an operating system.
You can think of the Apple III's Sophisticated Operating System as the
"traffic cop" of the Apple III, coordinating the flow of data between the
microprocessor, memory, and peripherals like disk drives. One of its
most important jobs is servicing the keyboard whenever you press a key
and putting messages on the video display to let you know what is
happening.

Although a full technical explanation of SOS is well beyond the scope
of this book, an overview will be helpful in understanding how the
Apple III works.

59

60 I Apple Ill Use(s Guide

Parts of SOS

There are five basic components to SOS:

The file manager controls the storage and movement of files (collec
tions of data).

The device manager controls the storage and flow of data to and
from the keyboard, video screen, printer, disk drives, and other
devices.

The merrwry manager allows the Apple III's 8-bit microprocessor,
which is normally limited to addressing 64K of RAM, to address up
to 256K bytes.

The interrupt manager allows devices like the keyboard and serial
input/output port to temporarily suspend normal processing when
they require servicing. For example, when a character is ready for
input from the keyboard, the interrupt manager can interrupt the
current program to allow the character to be read.

The utility manager controls the system clock, schedules events,
and lets you use the joystick interfaces.

SOS is loaded into memory every time you boot the system. A boot
disk must contain the two files that comprise the operating system: SOS.
KERNEL and SOS.DRIVER. SOS.KERNEL contains the core of
SOS-the parts that must always be in memory regardless of what type
of system you have. SOS.DRIVER is the file that we'll be detailing in
this chapter. It contains specific programs that you customize for the
peripherals you have in your system.

Using SOS

SOS is unique among personal computer operating systems because
you can't communicate with it directly using commands. Instead, you
must use applications software to communicate indirectly with SOS.
The most common examples are the utility programs on the System
Utilities disk.

DEVICE DRIVERS __________ _

SOS uses device drivers to communicate with the various parts of
your system. Device drivers are special programs that act as "go
betweens" for the hardware (keyboard, screen, printer, disk drives,
modem, and so forth) and the operating system. In order to use any of

Chapter 4: System Configuration Program I 61

these peripherals, you must have the correct device driver installed on
the boot disk-the disk that you use to boot from.

Although it's useful to think of device drivers as separate programs,
to be absolutely correct you should note that device drivers are actually
part of your Apple III's Sophisticated Operating System. (See Figure
4-1 for a visual representation.)

The following is a list of the most common device drivers. Note that
the four drivers for the floppy disk drives are listed separately but are
actually contained in one module.

.FMTDl

+FMTD2

+FMTD3

+FMTD4

.CONSOLE

.PRINTER

.SILENTYPE

.PROFILE

C'J "" - Ci Ci
Ci E- E-
E- :;;; :;;; :;;;

"- "-"- + +

t t t
"' "' "' "' > .::: > .:: ,_ ·;::

0 ·;:; Ci Ci
o:l.:<

~ -"'
"' "' 6 6 6

-o "0
t:

,_
"' ""

"' Ci
E-
:;;;
"-+

t
"' > ·;::

Ci

~
6
-5
"'

Built-in disk drive

Additional disk drives (the plus sign

indicates that the drivers are tied together)

Keyboard and video display

RS-232-C port (out only)

Apple Silentype printer

Profile hard disk

Applications Software

~
Sophisticated Operating System

w
0.. w P:! >-- w:1 w E-:1 X

0 E- z r;:: 0
lf.) z 5 "-w z 0 <t:
0 ~:1 0:: ;:J P:!
u 0.. ;;; 0.. <t: ~

t t t t t t
"'

,_
C'J

,_
"'

,_
-"' "0

,_
"' ;;l s "" s Q.Q)

"'
,_ "' .2

0.·~ C'J

"'
>,~ ·-'" -"' ..<: ~ "' Ci;:c: '" -o 0 cb · ~ c ·r:; "'

0.

~:;;; P:!O.. 3!0.. 2 0. '" c;; lf.) 0 0 .;:, 0 0

>,~ "' ~ "' ·- 0.
~ > 0.

<t:

....:1
w
....:1
....:1
<t:
0::

0':

t
]""2
- '" ~ u

'" "' 0.. <)

..;:: ,_
s
"'

C'J

"" C'J
lf.)

0::

t
E
"' "0
0 :;;;

I
l

SOS.KERNEL

t Device Drivers
} (SOS.DRIVE R)

Figure 4-1. SOS device drivers

62 I Apple Ill User's Guide

.AUDIO

.GRAFIX

.PARALLEL

.RS232

Built-in speaker

Apple III graphics

Parallel interface card

RS-232-C (2-way for a modem)

If your dealer installed the device drivers before you received your
Apple III, you won't need to do any modifications in order to use your
system. However, if you buy new peripherals, new software, or sell some
of the parts of your system, you'll need to know how to install the right
device drivers on your disks. That's where the System Configuration
Program (SCP) comes in. With it, you can add, delete, or modify indi
vidual device drivers to "customize" the operating system for the hard
ware that you have.

Size Limitations

You might wonder why all Apple III disks don't come with all of the
possible device drivers installed. Device drivers take up quite a bit of
space on a disk. In some cases you'll even need to have two disks to get
your Apple III up and running. The bottom line is that you should have
the fewest possible number of drivers on a disk.

SYSTEM CONFIGURATION PROGRAM ____ _

You use the System Configuration Program (SCP) to customize your
system and add, delete, or change device drivers. The SCP is contained
on the disk marked System Utilities. (Make sure you make a backup of
the original System Utilities disk and put the "master" away in a safe
place before you go any further.)

What you want to do is make a customized system utilities disk that
contains all the device drivers for your particular Apple III. Once that's
done, you can copy the SOS.DRIVER file to any of the other boot disks
you'll be using with your system.

Finding the SCP

To get started, put the System Utilities disk into the Apple III's built
in disk drive and turn the system on. It takes about thirty seconds for
the Apple III to load all the files it needs into its memory. When it's
done, you'll see the Utilities Main Menu, shown in Figure 4-2.

Chapter 4: System Configuration Program I 63

Figure 4-2. Utilities Main Menu

We explained device and file handling commands in Chapter 3. To get
to the SCP, either type S or use the UP ARROW or DOWN ARROW keys to
move the cursor to the SCP entry and press RETURN. The SCP menu is
shown in Figure 4-3.

Reading a Driver File

Before you can modify a device driver, you'll have to read the contents
of SOS.DRIVER from a disk. (If you try to use any of the options other
than "Quit to Main Menu", you'll hear a "beep" from the Apple and
receive a message saying that no device drivers have been read.)

To read a driver, type R or move the cursor to the entry "Read a
Driver File" and press RETURN. This will result in the screen shown in
Figure 4-4.

At the bottom of the screen, under the message "Enter Pathname of
Driver File:", you'll notice a default entry-.Dl/SOS.DRIVER. This
tells the SCP to read the device driver file from the built-in disk drive
(.Dl). If you want to read the driver from a different drive, you can

64 I Apple Ill User's Guide

Figure 4-3. System Configuration Program menu

Figure 4-4. Reading a driver file

Chapter 4: System Configuration Program I 65

Figure 4-5. List of device drivers

change the default entry. For example, you could enter .D2/SOS.
DRIVER.

NOTE: The file that contains all the device drivers is always named
SOS.DRIVER.

To read the device drivers from the disk in the built-in drive, just
press RETURN. The Apple III needs a few seconds to read the driver file,
and then you'll see a screen similar to the one shown in Figure 4-5. (The
exact list of device drivers will depend on what drivers were installed
by your dealer.)

Note that the four floppy disk drivers are linked together into one
module. Even if you have only one disk drive (the built-in unit), you'll
still have all four device drivers in your SOS.DRIVER file.

WORKING WITH DRIVERS ________ _

Once you have loaded a device driver file into the Apple III, there are
a number of things that you can do with it:

Load additional drivers

Delete drivers

66 I Apple Ill User's Guide

Edit drivers

Leave things the way they are.

If your device driver file was already tailored for your system by your
dealer, you won't need to do anything else. If you don't want to change
anything, press ESCAPE and then Q to return to the Utilities Main Menu.
Once you do this, you'll see a message that says

GENERATE not per~ormed. Quit anyway? [Yes/Nol

If you're sure you want to exit the SCP after going to the trouble of
loading a device driver, press Y, and you'll be returned to the Utilities
Main Menu; if you press N, you'll be returned to the screen that contains
the list of device drivers.

Loading Additional Drivers

Most of the time, you'll be using the System Configuration Program
when you want to add or delete device drivers to or from the SOS.
DRIVER file. For instance, if you purchase a parallel interface card, a
modem, or a Profile hard disk, you'll need to add the appropriate drivers
to the SOS.DRIVER file in order to use them.

Let's use an example. Suppose you've purchased a Profile hard disk
and wish to add its driver to your SOS.DRIVER file. You'll be supplied
with a disk marked "Profile Driver and System Utilities Software." You
can find the name of the file that contains the Profile device driver by
using the "File handling commands" option on your System Utilities
disk and pressing L (for List files). The name of the driver file always
ends with .DRIVER. In this case, the name of the driver file is
PROFILE.DRIVER.

To add the Profile device driver to the drivers we listed previously,
return to the SCP menu and select the "Read a Driver File" option once
again. You'll see the list of device drivers that we read from the System
Utilities disk. Next, if you only have a single disk drive, you'll need to
remove the System Utilities disk from the built-in drive and replace it
with the Profile Driver and System Utilities Software disk. If you have
an additional drive, you can place the Profile Driver disk in the second
driver. In response to the prompt "Enter Pathname of Driver File:"
type either

• D 1/PROF I LE. DRIVER (Single-drive system)

or

. D2/PROFILE. DRIVER ('1\vo-drive system)

Chapter 4: System Configuration Program I 67

You'll see the driver named .PROFILE added to the list of device
drivers. But even though it's added to the list, we still haven't created
an updated SOS.DRIVER file. We'll explain that in the section called
"Generating the System" later in this chapter.

Deleting Drivers

As we mentioned earlier, there's no sense keeping drivers that you'll
never use in the SOS.DRIVER file. For instance, if you don't have a
Silentype printer, you can delete .SILENTYPE; or if you don't have a
serial printer, you should delete .PRINTER.

Deleting a driver is a simple matter of selecting the "Delete a Driver"
option from the SCP menu. Type the number of the driver you want to
delete and press RETURN. The program will ask you if you're sure you
want to delete the driver. If you press Y, the driver will be deleted and
you'll see an updated list of drivers. (Remember that anytime you
change anything in the SOS.DRIVER file, you'll need to generate a new
system. This will be explained in detail later in this chapter.)

Editing Driver Parameters

Individual device drivers contain parameters that specify how a
driver will interact with a device. In most cases, you won't need to
change the parameters. In fact, we suggest that you don't change the
parameters of individual drivers unless you're absolutely sure you know
what you're doing. This task is best left to your dealer.

To see what the parameters look like, select the "Edit Driver Parame
ters" option from the SCP menu. Type the number of the individual
driver you want to edit and press RETURN. Let's use .PROFILE for our
example. When you select the .PROFILE driver for editing, you will see
the screen shown in Figure 4-6. Let's look at what the individual
parameters mean.

Device names. The device name is the name of the device that the
driver communicates with. Although you probably won't ever need to
change the name, note that the name in the parameter list must con
form to the rules for a SOS filename. To review, a device name must
begin with a period, can be up to 15 characters long, and can contain
only letters, numbers, and periods. If you try to type in an illegal name,
SOS will give you an error message.

NOTE: Although you can use any device name you wish, many Apple

68 I Apple Ill User's Guide

Figure 4-6 .. PROFILE driver parameters

III programs use the default name. If you rename a device, you could
encounter problems later on.

Device type and subtype. These parameters specify how SOS will
treat the device. Both device type and subtype are hexadecimal (base
16) numbers. In most cases, you will not need to change this informa
tion. The only time you'll need to know about this information is if you're
writing your own device drivers, something beyond the scope of this
book.

Driver status. Any device driver can be active or inactive. If it's
inactive, SOS does not load it into memory when you boot the system.
Although inactive, a driver still takes up the same amount of memory
space on your floppy disk. In most cases, it's better to eliminate a driver
from your working disk than to make it inactive. However, if you have
drivers that you want to use occasionally, you can make them inactive.
To do this, select the "Driver Status" entry (item 4) and press RETURN.

You'll see the screen shown in Figure 4-7.

Chapter 4: System Configuration Program I 69

Figure 4-7. Editing driver status

Type INACTIVE in response to the prompt and press RETURN to
make the driver inactive. To make an inactive driver active, follow the
same steps and enter ACTIVE in response to the prompt.

Comments. The comment field is simply an area where you can
enter as many as 80 characters to remind you what the driver is and how
to use it. Drivers supplied by Apple, such as .PROFILE, normally con
tain copyright information. Usually you don't need to change this
information, although you can insert the date that your driver was
installed.

Configuration block. The last item in the list of parameters is the
configuration block. Note that not all devices have configuration blocks.
The configuration block allows you to customize the driver to the device
you're using. Although you'll probably seldom need to change this
information, you should be aware of what it looks like. Select the "Con
figuration Block Data" entry (item 6) and you'll see what the configura
tion block looks like. Figure 4-8 shows the configuration block for the
.PROFILE driver.

70 I Apple Ill Use(s Guide

Figure 4-8. Configuration block for the .PROFILE driver

Configuration blocks can contain as many as 255 hexadecimal char
acters. Each byte (two hexadecimal characters) is used to select a par
ticular attribute of the device. As you can see, the .PROFILE driver has
a very short configuration block. Although the configuration block for
the Profile hard disk is one that you probably won't need to change, the
configuration block is particularly important for the .PRINTER and
.RS232 drivers. With these drivers, you need to modify the configura
tion block for the type and speed of printer you'll be using, as well as for
the modem speed and data format.

If you purchased a printer or modem, your dealer may have custom
ized the configuration block for your peripherals. If you add to or
change these peripherals, you can use the information contained in
Appendix G (for the printer) and Appendix H (for the RS-232 port) to
modify the configuration block.

NOTE: Editing configuration blocks often requires advanced pro
gramming knowledge. Do not change any of the information in the con
figuration blocks unless you're absolutely sure you know what you're
doing. If in doubt, see your dealer.

Chapter 4: System Configuration Program I 71

Miscellaneous information. Below the list of driver parameters is
miscellaneous information that is set by the SOS software. Although it
is possible to change these values, changing anything other than the slot
number requires advanced programming skills.

Slot number. The number of the expansion slot that the interface
circuit board plugs into is called the slot number. (Remember that the
slots are numbered 1 through 4, from left to right as you look from the
front of the Apple III.) If the device driver doesn't use an expansion slot
(as is the case with floppy disk drives), the slot number is marked "n/a."

NOTE: You can change the slot numbers of interface cards by using
the "Change System Parameters" option of the SCP (see the next
section).

Unit number. Each module of a modular driver, such as the one for
the four floppy disk drives, is given a unit number starting with $00.
Drivers that aren't modular all have the $00 unit number.

Manufacturer ID. This is a hexadecimal number that identifies the
company that wrote the device driver. All Apple software has the
number $0001. Apple assigns other numbers to other manufacturers.

Version ID. This is the version number of the driver software. By
convention, version numbers are three digits long. Depending on when
you purchased your Apple III, you'll see 1.10, 1.20, 1.30, or a higher
number.

APPLE Ill SYSTEM PARAMETERS ______ _

The device parameters control how the operating system interacts
with a device. As you might guess, the system parameters control the
operation of the Apple III system as a whole. You can set four system
parameters:

The number of floppy disk drives you have

The style of characters that are displayed on the screen

The way the keys are arranged on the keyboard

The location of the interface cards in the expansion slots.

To take a look at the system parameters, select the "Change System
Parameters" option from the SCP menu. You'll see a screen that looks
something like the one shown in Figure 4-9.

You can change any of the system parameters by selecting the
parameter you want to change and following the prompts. Here's what
each of the system parameters means:

72 I Apple Ill User's Guide

Figure 4-9. System parameters

Number of Disk III drives. This number should match the number
of floppy disk drives you're using. Remember that the built-in drive
counts as one.

Peripheral slot assignments. This parameter lets you assign slot
numbers for expansion circuit boards. In most cases, you won't need to
change the existing slot numbers; however, if you ever need to install a
circuit board in a slot that is already occupied, you will need to reassign
slot numbers.

To assign a new slot number, move the cursor to the "Peripheral Slot
Assignments" entry and press RETURN or simply type 2. You'll see a list
of the device drivers you've loaded and the slots that are assigned to the
corresponding expansion boards. (Device drivers that don't require
expansion boards are marked "n/a.") You can change a slot assignment
by selecting a driver and filling in the new slot number in response to
the prompt.

Standard character set. The "standard" character set is what is
normally displayed on the screen. There are, however, three other char·
acter sets: Apple, Roman, and Byte. You'll find the files that allow you to
use these typestyles on the disk marked "System Utilities Data."

Which typestyle you use is strictly a matter of personal preference. If
you'd like to experiment with the other available styles, your Business

Chapter 4: System Configuration Program I 73

BASIC disk contains a BASIC program called FONTDEMO that dem
onstrates the different styles. You can change typestyles by choosing the
"Standard Character Set" option of the system parameters menu and
then typing the pathname of the file containing the new character set.
For example, to change the typestyle, select the "Standard Character
Set" option from the menu of system parameters. Then place the Sys
tem Utilities Data disk in the add-on drive and type

.02/FONTS/APPLE

or

.02/FONTS/ROMAN

or

.02/FONTS/BVTE

or

• 02/FONTS/STANOARO (To return to "normal")

If you only have a single drive, place the System Utilities Data disk in
the built-in drive and type .Dl and the name of the file. Remember that
your Apple III won't start using the new typestyle until you boot from a
disk with the new SOS.DRIVER installed.

Keyboard layout. The actual assignment of keys on the Apple Ill
keyboard is defined by SOS. The standard typewriter keyboard, some
times known as the QWERTY keyboard, is referred to as "SHOLES" in
the menu of system parameters.

You can change the layout using the menu of system parameters.
Your System Utilities Data disk contains a file that lets you redefine the
keyboard according to the Dvorak American Simplified Keyboard
layout. You can load this file by placing the System Utilities Data disk
in the second disk drive, selecting the "Keyboard Layout" option, and
typing

.02/KEVBOARO.LAVOUT/OVORAK

If you have only one drive, place the System Utilities Data disk in the
built-in drive, select the "Keyboard Layout" option, and type

.01/KEVBOARO.LAVOUT/OVORAK

When you boot from a disk with this driver installed, your keyboard
will produce characters according to the Dvorak layout. (You'll still be

74 I Apple Ill User's Guide

left with the problem of changing the keycaps to correspond to the new
layout.)

You can also set up the keyboard to produce characters needed by
other languages like French or Spanish. The software needed for these
changes isn't included with your Apple III. You can see your dealer if
you're interested.

Invert standard character set. This option lets you alter the char
acter set that you loaded with the "Standard Character Set" option so
that characters are displayed as dark characters on a light background.

Change all system parameters. This final option lets you read all
of the system parameters from another disk containing an SOS.
DRIVER file. Once you select this option, type in the pathname of the
file containing the system parameters you want to use.

GENERATING THE SYSTEM ________ _

Once you've made all the additions, deletions, and changes to the
device drivers, you can generate the new system. When you select the
"Generate New System" option from the SCP menu, the Apple III will
attempt to verify that the changes you have made to the driver file are
valid. Once the verification is complete, you· can enter the pathname for
the driver file you want to generate. If there is no other file by that
name on the disk that you specified, the drivers and parameters that
you have set up are loaded into the file.

If there's already a file with the same name, you'll be asked if you
want to erase the old file and create a new one.

Once the system has been generated, the Apple III will return to the
Utilities Main Menu. Remember that in order to use the newly gener
ated system, the drivers must be stored under the name SOS.DRIVER
on the disk that you boot from. Make sure that all the disks you'll be
booting from have the newly created SOS.DRIVER file on them. You
can copy SOS.DRIVER to other disks using the File Handling Com
mands Menu.

If It Will Not Fit

If you attempt to generate a very large SOS.DRIVER file containing
many device drivers, you might not have enough space on the System
Utilities disk to create the SOS.DRIVER file. When this happens, you
have two options:

Chapter 4: System Configuration Program I 75

1. Erase some files from the disk to open up more space.

2. Create a two-stage version of the System Utilities disk.

Two-Stage Boot

With a two-stage version of the System Utilities disk, you'll need two
disks to boot the system, with each disk containing a portion of the files
that need to be loaded into the Apple III's memory. To create a two
stage System Utilities disk, do the following (you might want to refer
back to Chapter 3 for a review of how to use the utilities):

1. Format two disks, named UTILITY! and UTILITY2.

2. Copy the following files from your System Utilities disk to
UTILITY I:

SOS.KERNEL
SOS.INTERP
SOS.DRIVER

3. Copy the following files from your System Utilities disk to
UTILITY2:

SYSTEM.MISCINFO

SYSTEM.PASCAL

SYSTEM. STARTUP

Put UTILITY! in the built-in drive to start the system. After a few
seconds, you'll see the message "Put System Disk in Built-in Drive".
When you insert UTILITY2 and press RETURN, you'll see the Utilities
Main Menu.

Creating a two-stage version of the System Utility disk will leave you
plenty of room for the largest SOS.DRIVER you can think of.

FINAL THOUGHTS ON
DEVICE DRIVERS ___________ _

Remember that the file named SOS.DRIVER that's custom config
ured for your system must be on every disk that you use to boot the
Apple III. You should go through your disks and use the System Utili
ties disk to delete the old versions of SOS.DRIVER and replace it with
the new one.

You'll need to make up a new SOS.DRIVER using the SCP whenever

76 I Apple Ill User's Guide

you add a new device. Although you don't have to use the SCP when you
disconnect a device, if you're never going to use it again, you should
either delete the driver to open up extra space on the disk or at least
make it inactive so it won't be loaded into memory when you boot the
Apple III.

You'll find additional details about the .PRINTER and .RS232 device
drivers in Appendices G and H.

Getting Started
With Business BASIC 5

Business BASIC for the Apple III is a powerful BASIC language
program that's especially adapted for writing programs for a business
environment. Its "core" is a BASIC interpreter that looks at each indi
vidual statement in a program and translates it into the ls and Os that
the Apple III's hardware understands.

Business BASIC incorporates a number of powerful extensions and
special features that make it versatile and easy to use. In this chapter,
we'll cover the "basics" of Business BASIC and give you enough informa
tion so that you can start writing your own programs.

Rather than attempt to teach you how to use Business BASIC by
explaining all the statements and commands, we'll ease you into the
concepts of Business BASIC. In Appendix A you'll find a reference
guide to all the commands and statements of Business BASIC. If you're
an experienced BASIC programmer, you'll find a great deal of informa
tion there. However, if you're just getting started, we suggest you read
through Chapters 5, 6, and 7 carefully. All BASICs have their own
peculiarities, and attempting to get a program to run without under
standing the peculiarities of Business BASIC can be a frustrating
experience.

PROGRAMMING LANGUAGES ______ _

A programming language like Business BASIC allows your Apple III
to perform useful work. You create a program by typing in statements
and commands that tell the Apple III to manipulate data in a particular
way.

You've probably heard about many different types of programming
languages. BASIC (which is short for Beginner's All-purpose Symbolic
Instruction Code) is a general-purpose programming language that's

77

78 I Apple Ill User's Guide

designed to be easy to learn, and it does a good job of creating programs
for many different applications.

There are quite a few languages available for computers, including
FORTRAN, COBOL, Pascal, APL, FORTH, and C. Some (including
Pascal and COBOL) are available for the Apple III. But if you're like
most Apple III users, you'll find that Business BASIC is the language
that will meet your needs for most applications.

GETTING STARTED __________ _

We'll assume that you've already made a backup copy of the Apple
Business BASIC disk that came with your Apple III system. (If you
haven't made a backup, see Chapter 2.) You'll also have to be sure that
you've installed the correct device drivers on the backup disk for your
syst!:!m (see Chapter 4).

Starting up Business BASIC is a simple matter of putting the Busi
ness BASIC disk into the built-in floppy disk drive and turning the
computer on. You'll see several messages as BASIC is loaded into the
Apple III's memory. First will be the SOS (Sophisticated Operating
System) message, followed by the Business BASIC message at the top of
the screen. After a few seconds, "Apple III Business BASIC" will go
across the screen. Finally, you'll see a catalog of the files on the disk
followed by the Business BASIC prompt character")". Anytime you see
the prompt, you'll know that Business BASIC is ready and waiting for
you to type in a command.

We suggest that you have Business BASIC running as you read this
chapter. In that way, you can try the examples and get a solid introduc
tion to using it.

SYNTAX ____________________________ __

The syntax of a language is the set of carefully designed rules that
tells you exactly how it's used. This is true of any spoken language, as
well as with Business BASIC. You must type in commands and state
ments in exactly the right format; otherwise you'll get a "?SYNTAX
ERROR" on the screen.

Some rules for using Business BASIC seem logical (like using "+"
and "- " for addition and subtraction); others don't seem to make sense.
Regardless, it's essential that you carefully learn the syntax for Busi
ness BASIC. It's the only way you will be able to use it.

There are three major elements to Business BASIC's syntax:

Line numbers

Instructions

Chapter 5: Getting Started With Business BASIC I 79

Data (information).

Each line of a Business BASIC program is numbered with a line
number. Line numbers allow you to refer to the statements and com
mands contained on other program lines. Most Business BASIC pro
grams contain statements that reference other program lines. For
instance, commands like GOTO and GOSUB cause a program to jump
to a different line.

Each line number in a Business BASIC program must be unique (you
can't use the same number twice) and in the range of 0 to 63999. We'll
talk about line numbers in more detail later on in this chapter.

Instructions are the statements and commands that allow you to do
various tasks in Business BASIC. In most cases, a single line will con
tain one statement or command; however, several statements can
appear in one program line.

Data is information that is used by a program. The Apple III brings
data into the system (input), manipulates it in some way, and puts it out
to the "real world" (output). There are a number of different types of
data you'll be working with in Business BASIC. We'll cover them in the
next chapter.

ESSENTIALS OF BUSINESS BASIC _____ _

There are several essential things that you should know to begin using
Business BASIC. Since all your interaction with Business BASIC will
be through the keyboard, you need to understand how to enter text. This
text can be the commands used to control what happens in Business
BASIC, or it can be the statements and data that make up a program.

Commands that you type can be carried out immediately in what is
called immediate mode. One of the easiest ways to see how immediate
mode works is to use the PRINT statement. Without actually knowing
how to write a program, you can use the PRINT statement to display
the results of calculations and use your Apple III just like you would a
calculator.

Entering Text

Entering text is a simple matter of typing. If you make a mistake, use
the LEFT ARROW key to move back a space and type over your mistake. If

80 I Apple Ill User's Guide

the mistake is in the middle of a line, use the RIGHT ARROW key to return
to where you were. If you ruin a line, press CONTROL x to cancel it. You
can then start over from the beginning. Later, we'll talk about more
advanced methods of changing (editing) text.

Using Spaces

If you're new to BASIC, you'll probably be a bit confused about where
to put spaces in Business BASIC commands and lines. The best word of
advice is not to worry too much about it.

Spaces help to separate the elements of a line so that Business BASIC
can easily identify things like line numbers and statements. Spaces also
make program listings easier to read.

It's a good idea to make a habit of putting a space between the line
number and the Business BASIC command, as well as between the
command and the expression that follows. (You'll see what we mean as
we go along.) You should also be concerned about spaces within quota
tion marks because whatever is between the quotes will be printed out
exactly as it appears.

Immediate and Deferred Execution

When the Apple III executes a program, it performs the actions spec
ified by the statements you type in. There are two ways to execute a
program: immediate mode and deferred mode. Execution in immediate
mode occurs when you type in a line without a line number and press
RETURN. Execution in deferred mode does not occur until you enter a
separate command, RUN. In order to use deferred mode, all statements
that you enter must be preceded by a line number. In immediate mode
the Apple III looks at the line, makes sure it contains a correct BASIC
statement, and does what it's directed. For instance, type

>PRINT "This is Business BASIC"

and press RETURN. You'll see

This is Business BASIC

If you made a mistake, for instance, typing PRIMT instead of PRINT,
Business BASIC will give you a message. You'll hear a beep, and the
message

?SYNTAX ERROR

will appear on the screen. This tells you that you've made a mistake.

Chapter 5: Getting Started With Business BASIC I 81

PRINT Statement

Let's begin with the Business BASIC statement that you'll be using
the most-PRINT. We've already used it in the previous examples, and
you'll see it throughout the examples in this chapter. The PRINT com
mand simply tells the Apple III to print something on the video display.
Although it sounds a bit strange, PRINT has absolutely nothing to do
with a printer. The command PRINT#, which we'll talk about in Chap
ter 6, is used with a printer.

PRINT has lots of power behind it, and we'll explain its fine points as
we go through this chapter and the next. For now, all you need to know
is that if you type PRINT followed by anything in quotation marks ("),
whatever appears within the quotes will appear on the screen exactly as
it's typed. For instance,

>PRINT " Hello, I'm the Apple III."

will appear like this when you press RETURN:

Hello, I'm the Apple III.

You can use PRINT in immediate mode as a handy (though expen
sive) calculator. The system will respond immediately with the answer.
Try the following examples:

>PRINT 120+324 Addition

444

>PRINT 450-230 Subtraction

220

)PRINT 1.275*6.34 Multiplication

8.0835

>PRINT 16543/7.2 Division

2297.64

) PRINT 7. 3··'·9 Exponentiation

5.88716E+07

>PRINT 4 . 557*2· 12*9. 05/6.31-. 334·''3 Combination

13.8186

82 I Apple Ill User's Guide

The correct answers will appear on the line immediately following
the PRINT statement. Notice that unlike our earlier examples, you don't
use quotation marks. Quotation marks indicate a literal-everything in
quotes is printed exactly the way it appears. For instance,

>PRINT "453.7/6.32+2.4"
453.7/6 . 32+2.4

You'll notice that you'll occasionally see results that are displayed in
scientific notation. That's a short way to express very large numbers.
For instance, the number

5.88516E+07

is equivalent to

58851600

The number after the "E" indicates the number of spaces you must
move the decimal point to the right to get the actual number.

Let's use another example. If you type

>PRINT 2A40 <2 raised to the fortieth power)
1.09951E+12

that number is equivalent to 1099510000000.

Error Messages

As you become familiar with Business BASIC, you'll make more than
a few mistakes along the way. When Business BASIC looks at some
thing it can't do or doesn't understand, you'll hear a beep and an error
message will appear. Error messages always start with a question
mark.

Unfortunately, there are hundreds of things that you can do wrong.
Business BASIC (indeed any BASIC) isn't very clever in figuring out
what you mean unless it's typed in exactly the right format.

The 40 error messages that Business BASIC produces are summar
ized in Appendix B. As we go along, we'll point out the common error
messages that you'll get in various circumstances. If you're a beginner,
the most common error you'll see will be

?SYNTAX ERROR

This means you haven't typed in the command correctly. It could be
as simple as typing RUM instead of RUN or it could be something more
complicated. You'll soon be able to recognize common errors.

Chapter 5: Getting Started With Business BASIC I 83

PROGRAMS ________________________ _

A program is simply a list of statements that tells your Apple III
exactly what to do. A program doesn't have to be long; in fact, the one
line commands we've used up to this point are programs themselves.
They do useful work, but most programs are much longer -often tens
or even hundreds of lines.

Combining Statements

Most of the time, you'll want to put each individual statement on a
single program line. (As you'll soon see, each line will normally have a
number.) However, to save space you can put several Business BASIC
statements into a single line. You do this by separating each statement
with a semicolon (:). For instance, you could type the following:

>PRINT "Business BASIC IS VERSATILE":PRINT 2/3:PRINT "THESE ARE THE TIMES THAT
TRY MEN'S SOULS": PRINT 214*6:PRINT "THE QUICK BROWN FOX JUMPED OVER THE LAZY D
OG":PRINT 56~4:PRINT "THE APPLE III'S PROFILE HARD DISK CAN STORE THE EQUIVALEN
T OF 35 FLOPPIES."

When you press RETURN, you'll see

BUSINESS BASIC IS VERSATILE
.666667
THESE ARE THE TIMES THAT TRY MEN'S SOULS
3
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG
9.8345E+06
THE APPLE III'S PROFILE HARD DISK CAN STORE THE EQUI VALENT OF 35 FLOPPIES.

Business BASIC "sees" each colon as the end of a statement and exe
cutes it. There's no limit to the number of statements that can be com
bined, but the total number of characters cannot be larger than 255. If
you get carried away in putting statement after statement into a single
line, you'll suddenly find that Business BASIC jumps back into the
immediate mode, as if you typed CONTROL x.

Deferred Execution

Even though you can pack quite a few statements into a line of Busi
ness BASIC using colons, there's still only so much you can do in imme
diate mode. The problem with immediate mode is that you have to type
in the lines every time you want to execute them.

What you need is a way to type in a program and store it away for
later use -even if that is only a few minutes away.

This is where deferred execution comes in. You "defer" execution by

84 I Apple Ill User's Guide

typing a line number before each BASIC line. As each line is typed, the
Apple III stores it away in its memory, but it doesn't execute the pro
gram until you instruct it to. That's done using the RUN command.

To see how deferred execution works, type

)10 PRINT "This is BLtsiness BASIC"

and press RETURN. Nothing happens because Business BASIC has
stored the line away, waiting for directions from you on when to run it.
To run it, type

>RUN

and you'll see the message printed.

Editing Programs

Editing a program is also easy. You can add another line to the pre
vious program by typing

)20 PRINT "For the Apple III"

When you type RUN, you will see the two messages on the display. If
you want to change (edit) one of the lines, the simplest way is to type the
line over again. For instance,

>20 PRINT "An advanced interpreter"

When you type RUN, you'll see the new line displayed.

Cursor Move Mode

Although retyping the whole line is the simplest way to correct a mis
take, if you've entered a long and involved line, the last thing you want
to do is type the whole line over again. Fortunately, there's another way
to edit program lines that lets you change only what you need to. It's
called cursor move mode.

To enter the cursor move mode, press ESCAPE after you've entered a
line. A plus sign (+)will appear in the cursor. This indicates that you
can move the cursor through the text without changing anything.

For example, if you've typed in the line

) 10 PRIMT "I LOVE MY APPLE III"

instead of typing the line over because you spelled PRINT incorrectly,

Chapter 5: Getting Started With Business BASIC I 85

just press ESCAPE. When you see the plus sign in the cursor, use the
arrow keys to move the cursor to the beginning of the line. When you
enter cursor move mode, you must move the cursor to the beginning of
the line you want to correct.

At this point, you must exit the cursor move mode by pressing ESCAPE

again. Use the RIGHT ARROW key to move the cursor to the first incorrect
character (the "M" in PRIMT). What you've just done is "read in" the
characters up to that point.

Type N to correct the incorrect character and then use the RIGHT

ARROW key to move the cursor to the end of the line. When you press
RETURN , the new line will be read by the Apple III.

The cursor move mode can save you time when you type in a long line
and find that it's incorrect. Give it a try with a few more lines to see
how it works.

More About Line Numbers

By convention, program lines are usually numbered in increments of
ten. You can use any increment you wish, but using increments of at
least ten gives you the opportunity to add additional lines in the pro
gram without having to retype the program.

Let's look at how this works. Enter the following program:

>10 REM A Quick Program
120 PRINT "This is a line of te:-:t"
130 END
>RUN
This is a line of text

REM stands for REMARK. Anything you type after REM is ignored
but it's handy for making notes to yourself about the program.

If you wanted to add another line of text to your program, it would be
a simple task. Since Business BASIC executes line numbers in a
sequential manner, all you need to type is

125 PRINT "This is another line of te>:t"
>RUN
This is a line of text
This is another line of text

As you see, the new line was automatically added to the program. It's
also important to remember that no two lines can have the same
number. If you inadvertently type in two lines with the same line

86 I Apple Ill User's Guide

number, only the second one you typed m will be stored. Try the
following:

>NEW
)10 REM Anothe~ sho~t p~og~am
>20 PRINT "This is te:·:t"
)20 PRINT "This is mo~e te>:t"
)30 END
>RUN
This is mo~e text

As you see, the first line 20 was ignored by Business BASIC. In the
same way, you can change a program line (it's called editing the pro
gram) simply by typing the line number followed by the new program
line.

Looking at the Program in Memory

You can type LIST at any point to see a list of the entire program
you've stored in memory. It doesn't matter in what sequence line
numbers were entered because you'll see the listing in numerical order.
Assuming you haven't erased the previous program, typing LIST
should give you the following:

>LIST

)

10 REM Anothe~ sho~t p~og~am
20 PRINT "This is mo~e te>:t"
30 END

Notice that the listing looks a little different from what you typed;
there are some extra spaces between the line numbers and the begin
ning of commands. That's because Business BASIC automatically for
mats the listing. We'll talk more about that in a while, but for now,
remember that as you enter longer and longer programs, certain lines
are automatically indented to make things easier to read.

If the program is longer than 24 lines (and many of them are), it will
scroll up over the top of the screen. You can make the listing pause
anywhere by typing CONTROL 7. Note that only the 7 key on the numeric
keypad can be used to do this. Typing CONTROL 7 again will resume the
listing. CONTROL c will stop the listing and return you to the Business
BASIC prompt character.

There are several ways to use LIST in addition to listing the entire
program. You can list parts of a program. For instance,

Chapter 5: Getting Started With Business BASIC I 87

>LIST 50

will list only line 50 of your program.

>LIST 50 TO

will list from line 50 to the end of the program.

>LIST TO 50

lists from the beginning of the program to line 50.
There are several other ways to list parts of programs:

>LIST 50 TO 100

>LIST 50-100

>LIST 50,100

will list all the lines between 50 and 100.

Erasing a Program

Unless you save your program (we'll discuss that later), it will be
erased every time you turn the Apple III off. But you don't have to do
that to erase it; just type NEW. Everything you've stored will be erased
from memory and the Apple III will be ready for a new program.

Erasing Parts of Programs

There will be times when you don't want to erase your entire pro
gram. Instead, you'll want to erase a line or several lines. This is done
using the DEL command. It's short for "delete," and it lets you selec
tively erase program lines. It can be a single line

>DEL 20

or a range of lines

>DEL 20 TO 100

The last form deletes all lines between 20 and 100 inclusive. There are
several ways to delete a range. You could also type

>DEL 20-100

or

88 I Apple Ill User's Guide

>DEL 20. 100

Both delete the entire range of lines.
There's also a short way to erase a single line. Just type the line

number, followed by RETURN. Business BASIC sees this as a "null line"
and ignores it.

WORKING WITH MEMORY _______ _

The Aple III's RAM (random-access memory) stores the program you
type in until you erase it, save it to disk, or turn off the computer. There
are two commands you can use to manage the Apple III's memory:
NEW and FRE.

NEW

When you are ready to start typing in a new program or are about to
load a program from disk, you need to clear the previous contents of the
Apple III's program memory. To do this you use the NEW command.

The NEW command clears any programs and data that are stored in
the area of memory reserved for BASIC programs and data.

FRE

FRE tells you how much space you have left in memory. For instance,
if you have a 256K system, type

>PRINT FRE

Depending on what device drivers you've installed on your Business
BASIC disk and the number of programs you've stored away, you'll get
a number somewhere around 196,000. The rest of the memory is used to
store the Apple III's system software- the SOS and the BASIC inter
preter.

FRE is handy for finding out how large a program is. If you type
FRE before and after loading a program into memory, you can deter
mine by subtraction how much memory the program uses.

SAVING AND GETTING
PROGRAMS ________________________ _

Although it's fine to type a program into memory, you won't want to
type in the same program every time you turn on your computer. Pro-

Chapter 5: Getting Started With Business BASIC I 89

grams are saved as files on a disk -either a floppy disk or the Profile
hard disk. You can do a great deal with files in Business BASIC. Most of
the advanced features will be covered in the next two chapters. For
now, there are a few commands you should learn to allow you to save
and load program files stored on disk.

SAVE

To save a program you've just typed, type SAVE and a pathname (see
Chapter 3). Here are a few examples:

>SAVE .01/Invcount
>SAVE .PROFILE/Checkbal

The first example will save a basic program called "Invcount" on a
floppy disk. The second saves "Checkbal" on the Profile hard disk.

Naming Files

In Business BASIC, the rules for naming a program are the same as
those for naming a file, as we discussed in Chapter 3. To review, a local
name (the name of the program you're saving) must begin with a letter
and can be as many as 15 characters in length. It can contain letters,
numbers, or periods-but no spaces or other punctuation. Here are a
few examples:

QUICI<PRINT.DEMO
TICTACTOE
LISTSORT

Although you can use any name you want, by convention most BASIC
programs are named as a single string of characters.

Note that even if you type in lowercase characters, the Business
BASIC program name will be stored as all uppercase characters.

Be careful that you don't use a name that already exists on the disk
you're putting the file on. If another program has the same name, it will
be erased.

CAT

The CAT (catalog) command gives you a list of the files that are
stored on a device. If you just type CAT, you'll get a list of the files
stored on the disk in the Apple III's built-in disk drive. Typing CAT
pathname will show you the list of files on the device or subdirectory you
specify. For instance,

90 I Apple Ill User's Guide

>CAT . Profile

will show you a list of the files on the Profile hard disk. We'll talk more
about CAT in Chapter 7. For now, remember that all files of type
"BASIC" are Business BASIC programs that you can run.

LOAD

Load takes a Business BASIC program from a disk and puts it into
the Apple III's memory. To load an existing program, type LOAD and
the pathname. Here are two examples:

>LOAD .D2/Expense

>LOAD .PROFILE/Income

If the file you've specified isn't on the disk you've specified, you'll get
the message

?FILE NOT FOUND ERROR

If you try to load a file that isn't written in Business BASIC, you'll see
the message

?TYPE MISMATCH ERROR

STARTING AND STOPPING
PROGRAMS ________________________ __

Once you have entered or loaded a program into memory, you will
want to execute it. The commands RUN and CONT can be used in
immediate mode to get a program running. Including the statements
STOP and END in a program will allow you to determine where your
program will stop or end.

RUN

The RUN command is Business BASIC's "starting gun." When you
type it in, the Apple III begins to execute the program that's in memory.
It begins by executing the line with the lowest line number.

If for some reason you want to start the program at a particular line
number (you might want to do it for "debugging") you can type RUN
and a line number, such as

>RUN 100

Chapter 5: Getting Started With Business BASIC I 91

You can also run a program that isn't loaded into memory yet by spec
ifying a pathname. For instance,

>RUN .PROFILE/INCOME

will load and run a hypothetical program named "Income" from the
hard disk.

STOP

STOP is used as a statement within a program to halt execution
immediately. When a STOP is executed, the line where the program
was stopped is displayed. For instance, a STOP statement in line 320
would result in

?BREAK IN 320

Remember that you can only use STOP in deferred mode. You can't type
it in from the keyboard to stop a program.

CONT

CONT is used in immediate mode. You can start up a program halted
by STOP with CONT (for continue). The program will then start from
where it left off.

END

END is a statement used within a program that works exactly like
STOP, except that it doesn't display a message stating where the pro
gram stopped. It's good programming practice to use END as the last
program line of a Business BASIC program.

CONTROL KEYS ___________ _

There are a number of special keys (and combinations of keys) that
can be used to control what's happening while you are running a
program.

CONTROL C

Holding down the CONTROL key and typing c while a program is run
ning will stop the program immediately. The system will then return to

92 I Apple Ill User's Guide

immediate mode. CONTROL c is just like the STOP statement explained
earlier, except that you can't put it in a program.

However, remember that the program is still in memory. Conse
quently, you can start the program running from where it stopped by
using the CONT command.

There are several instances when CONTROL c will rwt stop a program.
One instance is when you've used an ON KBD command in your pro
gram. If the program is waiting for a key to be pressed, it will see
CONTROL c as just another key. Also, if the program is waiting for an
input/output (I/0) operation to finish transferring a disk file or it is
printing, Business BASIC will ignore a CONTROL c. (These advanced
concepts will be explained in Chapter 6 and Chapter 7.)

RESET

Pressing RESET is exactly like pressing CONTROL c. Make sure you
don't press CONTROL and RESET at the same time. That causes a complete
system reset, and anything that's in memory is erased.

Other CONTROL Keys

Business BASIC has a number of special features that are initiated by
holding down the CONTROL key and typing a number from the numeric
keypad only. Admittedly, you probably won't need to use these very
often, but you should know about them.

CONTROL 5 This feature allows programs to run faster. When you
type it, the screen will go blank. Since the Apple III
doesn't have to use processor time and memory to keep
characters on the screen, a large program will run fas
ter. How fast it runs depends on the program. To get the
screen image back, just type CONTROL 5 once again.

CONTROL 6 Earlier in this book, we talked about the Apple III's
typeahead buffer. It's a place in memory where the
commands you type in from the keyboard are stored until
the computer is ready to act on them. For instance, you
might want to type in a command for the Apple III to use
as soon as it's finished working with a current program.
If you make a mistake, you can clear all the characters
you've typed in out of the typeahead buffer by typing
CONTROL 6. (It won't affect the program that's currently
running.)

Chapter 5: Getting Started With Business BASIC I 93

CONTROL 7 When you type CONTROL 7, all output to the screen is sus
pended. Typing another CONTROL 7 will allow the screen
output to continue. You use this command to prevent
lengthy displays from scrolling off the screen before you
have a chance to read them.

CONTROL s This command makes the Apple III ignore the special
purpose screen control codes. See Appendix E for a list
of these codes.

CONTROL 9 This command temporarily prevents any program output
from being displayed on the screen; however, the pro
gram will continue to run (as opposed to CONTROL 7 which
stops the program). Any output sent to the screen while
the screen is disabled is lost. Typing another CONTROL 9

will allow the output to once again be displayed.

Programming
In Business BASIC 6

Now that we've looked at getting started with Business BASIC, it's
time to fill in the details. This chapter explains Business BASIC con
cepts and shows you ways to combine the various statements and com
mands into useful programs. If you're new to BASIC programming, pay
attention to this chapter. Even if you've done BASIC programming
before, we suggest that you read this chapter. Not only is it a review,
but also it's a starting point for the features that are unique to Apple III
Business BASIC.

CONSTANTS ____________ _

A constant is a value that never changes. Business BASIC has two
kinds of constants:

A numeric constant is a number. Examples might be PI (3.1416) or
the number of feet in a mile (5280).

A string constant is anything you enclose in quotation marks (like
after a PRINT statement).

VARIABLES _____________ _

You can think of a variable as a place where a value is stored. To clear
up the concept, you can think of it as a container. You give each variable
a name. In Business BASIC, a variable name always starts with a letter
and can be up to 64 characters long. You can use letters, numbers, or

95

96 I Apple Ill Use(s Guide

periods in it. However, you can't use any spaces or other punctuation.
Here are a few examples:

NUMBEROFPEOPLE

CHECKS0183

INVENTORY.WIDGETS

Those are legal variable names. Here are a few illegal ones:

NUMBER OF PEOPLE (Contains spaces)

0183CHECKS (Begins with a number)

INVENTORY • WIDGETS (Contains a comma)

Types of Variables

Business BASIC has four types of variables; each is used to store a
specific type of data. The four types of variables are

Real

Integer

Long integer

String.

You tell Business BASIC which type of variable you're using by select
ing one of the following characters as the last character of the variable
name:

No character

%

&

$

= Real

=Integer

=Long integer

=String

Here are some examples of variable names and their types:

Income

Employees%

Stars&

Coname$

Real

Integer

Long integer

String

Business BASIC creates a variable the first time a variable name is
used in a program. Every time Business BASIC comes across a variable
name in a program, it first checks to see whether it already exists. If

Chapter 6: Programming in Business BASIC I 97

not, it creates it; otherwise, it uses the existing value stored in the
variable.

NUMBERS IN BUSINESS BASIC ______ _

You can use three types of numbers in Business BASIC:

Real numbers

Integers

Long integers.

Real Numbers

A real number is any positive or negative number. Real numbers
usually contain a fractional part, although that doesn't have to be the
case. Here are some examples of real numbers:

12.34

- 02.3

0

32

12986.4

In Business BASIC, the range of real numbers is -1.7E38 to 1.7E38.
These numbers are written in scientific notation, which is used to
express very large or very small numbers. The "E" stands for exponent.
For instance, 1. 7E38 means 1. 7 times 10 raised to the 38th power.

Scientific notation is a much handier way to express very large or
very small numbers. Expressed in the conventional way, the range of
real numbers in Business BASIC is

-170000000000000000000000000000000000000

to

170000000000000000000000000000000000000

For most applications, you won't be needing numbers as large as this.
You can enter large (or small) numbers in either scientific notation or
the "standard" way. Here are a few more examples of numbers in scien
tific notation:

98 I Apple Ill User's Guide

Standard Notation
1000000000
.000000001
300

-1234567890
-.00000123456789

Scientific Notation
1E09
1E - 09
3E2

-1.23457E09
-1.234E-06

You should note that in Business BASIC, any number whose absolute
value is smaller than 2.9388E-39 is automatically converted to 0.

Business BASIC automatically displays real numbers as six digits.
Longer numbers are rounded off. Leading zeroes to the left of the
decimal point and trailing zeroes to the right aren't shown.

Integers

An integer is any positive or negative number without a decimal point
or fractional part. A number without a sign is assumed to be positive.
In Business BASIC, the range of integers is -32768 to 32767. Here are a
few examples:

0

- 234

675

-30765

31654

Using integers whenever you can speeds up calculations in Business
BASIC. Never use a number like 7655.0 (a real number) when you could
use 7655 instead.

Remember that in Business BASIC, a variable name for an integer
must end with a percent sign (%).

Long Integers

A long integer is an integer that is as many as 19 digits long. The
range for long integers is - 9223372036854775808 to 92233720368
54775807. A variable name for a long integer must end with an amper
sand (&). Here are a few examples of legal long integers:

- 3456743268787665154
12
983

-876543
0

Chapter 6: Programming in Business BASIC I 99

As you can see, the range of long integers overlaps the range of
integers.

When would you use long integers? Obviously, scientific work often
requires numbers this large. It's worth noting that the Apple III works
on integers much faster than on real numbers. Therefore, you can use
long integers to speed up calculations in programs that use dollars and
cents. You can do this by changing those dollars and cents into pennies.
For example $12,231.67 would be 1223167 pennies. Keep this in mind as
you write your own programs.

STRINGS _____________ _

A string is a sequence of up to 255 characters enclosed in quotation
marks. (A string with 0 characters is called a null string.) The name of
a string variable must end with a dollar sign. We've already used a few
strings in the last chapter, but here are a few more examples:

"MAN IS BORN TO SUFFER AND DIE"

"ACCOUNT .320-67"

"DECEMBER 21, 1984"

"GEORGE JONES"

"AMALGAMATED WIDGETS, INC."

Within a string you can use any characters the Apple III keyboard
can generate except quotation marks. You can use single quotes in a
string. For instance,

"Type a "RETURN" when you see the prompt"

is not a legal string.

"Type a "RETURN' when you see the prompt"

is legal.

RESERVED WORDS __________ _

All the words that have a special meaning in Business BASIC are
called reserved words. In Appendix C, you'll find a list of all of Business
BASIC's reserved words. You'll get error messages if you use any of
these words for variable names.

100 I Apple Ill User's Guide

It's perfectly all right to use reserved words in a string (surrounded
by quotes), since a string isn't considered a command or a variable.

ARRAYS ____________________________ __

An array is a way of naming an ordered collection of individual vari
ables. Arrays are used extensively in many Business BASIC programs
and are an important concept to understand.

Arrays can simplify programming by giving a large collection of sim
ilar items a single array name instead of naming each item individu
ally. Suppose you had a table of several hundred numbers. To say the
least, it's much simpler to give them a single name than to make up
several hundred different names. (It also saves memory space.) You can
then identify individual numbers by their location in the table.

Each variable within an array is called an element. In keeping with
the usual way of doing things in computers, the elements in an array
are numbered starting with 0.

For instance, if you wanted to have Business BASIC display the value
of the 23rd element of an array called BOXES, you would type

>PRINT BOXES<23>

The number in parentheses that identifies the individual element
within an array is called the subscript.

Here's an example of a simple array:

NAME$(0) NAME$(!) NAME$(2) NAME$(3) NAME$(4) NAME$(5) NA M E$(6) NAME$(7) NAME$(8)

This string array, NAME$, is made up of nine elements, each of which
is a name. To display the third element you can enter

>PRINT NAME$(2)
>CARL

Before we go any further, remember that in the case of large arrays
you must specify the number of elements in an array before you can
create one. This is done using a DIM statement, which we'll talk about
later.

Chapter 6: Programming in Business BASIC I 101

Array Dimensions

An array can have more than one dimension, meaning that more than
one subscript is required to select an individual element.

The simplest array, a one-dimensional array, is simply a list of vari
ables, like the previous example. A two-dimensional array is organized
like a table with rows and columns. For instance, here's a two
dimensional integer array called WIDGETS%:

Widgets%(0.0) Widgets%(0,1) Widgets%(0,2) Widgets%(0.3} Widgets'%(0,4) Widgets%(0.5) WidgeL'>o/o(0.6) Widgets%(0.7) Widgets%(0,8)

Widgets%(1.0) Widgets%(!,!) Widgets%(1,2) Widgets%(1.3) Widgets'l6(1.4) W idgets%(1.5) Widgets%(1.6) Widgets%(1.7) Widgets'X~ l.8)

Widgets%(2,0) Widgets%(2, l) Wirlgets%(2.2) Widgets%(2.3) Widgets%(2,4) Widgets%(2,5) Widgcts%(2.6) Widgets%(2.7) Widgets%(2,8)

\Vidgets%(:!.01 \Vidgets%(3. 1) Widgets%(3.2) \Vidgets%(3.3) Widgets'X~3.4) Widgets%(3.5) Widgets%(3.6) Widgets%(3. 7) \Vidgets%(3.8)

\Vidgets~{4.0) \Vidgets~{4. l) \Vidgets~{4.2) Widgets%(4.3) \Vidgets%(4,41 Widgets%(4.5) Widgets~{4.6) WidgetsCX:.<4.7) Widgets%(4.8)

To identify the fourth element in the fifth row of this array you would
type

>PRINT WIDGETS%<4,3)

There are also three-dimensional arrays. One example is an array to
describe the popular cube puzzle. You need three subscripts to identify
the row, column, and layer that an element is positioned in.

But arrays can have four or more dimensions. A four-dimensional
array is a bit difficult to visualize, but it is possible. In most cases you
won't need an array of more than three dimensions.

Array Contents

An array can contain only one type of variable-real, integer, long
integer, or string. The same naming conventions we talked about earlier
regarding variables apply to array names. Here are a few examples:

SALES
ACCOUNT%
PENNIES&
CONAME$

Real
Integer
Long integer
String

Dimensioning Arrays

As mentioned earlier, if you want to create a large array, you tell
Business BASIC how much space to allocate to the array. That's done

102 I Apple Ill User's Guide

using the DIM statement. If you don't use DIM, Business BASIC auto
matically creates an array having 11 elements (0-10) in each dimension.
For instance,

>DIM Names$(39,29,4>

creates a three-dimensional string array having 40 elements (0-39)
down, 30 elements (0-29) across, and 5 (0-4) levels. That's a total of 4000
"boxes" (40 X 30 X 5) to store strings in (see Figure 6-1).

NOTE: Since array numbering begins with 0, the number in a DIM
statement is actually one integer smaller than the size of the array you
want to create. The maximum number of elements in each dimension of
an array is 32767.

1

0
I
2
3
4
5
6
7
8
9
w
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
o • 4 6 8 w ~ w ~ ~ w a ~ u n "

0
1

2
3

Figure 6-1. Representation of a 40X30X5 array

Chapter 6: Programming in Business BASIC I 103

Table 6-1. Arithmetic Operators

Sign Meaning Example

-i Plus sign +43
- Minus sign -254
+ Addition 64+32=96
- Subtraction 42-20=22
A Exponentiation 3" 6=729
* Multiplication 7*11=77
I Division 1211.3 = 9.23077

MOD Modulo 7 MOD 5=2
(Long integers only)

DIV Integer Division 8 DIV 5=1
(Long integers only)

EXPRESSIONS ____________ _

Business BASIC has five types of expressions:

Arithmetic

Long integer

String

Relational

Boolean.

An expression can be as simple as a single variable or constant, or it
can be a long mathematical expression that includes arithmetic opera
tors (symbols of mathematical calculations) and operands (the numbers
that are operated on). There are also string operators (to manipulate
strings), relational operators (to compare two values), and Boolean oper
ators (to perform the logical operations AND, OR, and NOT).

Business BASIC has nine arithmetic operators. They are given in
Table 6-1.

If you're not familiar with integer arithmetic, modulo is the integer
remainder of a division, and integer division is the integer result of a
division operation.

Precedence of Operators in Expressions

An expression often calls for more than one operation to occur. For
example

104 I Apple Ill User's Guide

>PRINT 5*611.5"2
13.3333

calls for multiplication, division, and exponentiation. Precedence is the
order in which arithmetic expressions are evaluated. In Business
BASIC, the order in which arithmetic operations are performed is as
follows:

1. Any statements enclosed in parentheses are evaluated.

2. Plus or minus signs are applied to numbers.

· 3. Exponentiation.

4. Multiplication, division, MOD, and DIV.

5. Addition and subtraction from left to right.

You can change the order in which Business BASIC evaluates arith
metic expressions by using parentheses. If more than one set of paren
theses is included in an expression, they are evaluated from left to
right.

Nesting is when one set of parentheses is included within another set.
In this case, Business BASIC evaluates the expression from the inner
most set outward. You can use as many sets of parentheses as you wish.
Don't be afraid to use them often to clarify the way you want expres
sions evaluated.

You need to be careful, however. Parentheses can vastly change the
results of an expression. Changing the previous example to

>PRINT <5*611.5>"2
400

gives a result that is considerably different.

Relational Expressions

Business BASIC's relational operators let you compare two values.
There are six relational operators:

Operator Operation

Equal to

< Less than

> Greater than

<= or =< Less than or equal to

> = or => Greater than or equal to

< > or >< Not equal to

Chapter 6: Programming in Business BASIC I 105

All relational operators have the same precedence and are evaluated
from left to right.

Business BASIC arbitrarily assigns 0 to a false condition and 1 to a
true condition. Here are a few examples:

34 >8
34 >213
123 >= 123
"Bill" > "Bill"
"Gil" > < "Cal"

Results in 1 (true)
Results in 0 (false)
Results in 1 (true)
Results in 0 (false)
Results in 1 (true)

You can include relational expressions within other expressions as in
the following examples:

345 + (23<>23) is the same as
(X + 1)*(56>34) is the same as

Comparing Strings

345 + 0
(X+ 1)*1

There are two rules that Business BASIC uses when comparing
strings. First, two strings that aren't the same length aren't equal.
Second, if the first string is identical to the the first part of a longer
string, the longer string is greater than the first string. Characters in
strings of equal length must be exactly the same in order for the strings
to be equal. Strings are compared one character at a time from left to
right.

Boolean Expressions

Because Business BASIC's Bo0lean operators give you the ability to
make logical decisions they're often called logical operators. There are
three standard Boolean operators in Business BASIC:

AND
OR
NOT

Boolean logic can be a bit confusing at first, but as you'll see, it's very
logical.

Let's use a few quick examples. Imagine you and a friend have exten
sive book collections, which we'll call Library1 and Library2.

Library1 AND Library2 = The list of books that both you and
your friend have in common.

106 I Apple Ill User's Guide

Library! OR Library2 = All the books in both collections.

Library2 NOT Library!= The books in Library2 that are NOT in
Library!.

That's all well and good, but your Apple III works with numbers, not
books. In Business BASIC, a Boolean operation is performed using the
binary representation of a number. Since relational expressions evalu
ate to either 1 or 0, Boolean operators are often used to combine several
relational expressions.

The following tables summarize how Boolean expressions are evalu
ated in Business BASIC. These tables are called truth tables.

AND results in 1 only if both values are 1.

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

OR results in 1 if either value is 1.

1 OR 1 = 1

1 OR 0 = 1

0 OR 1 = 1

0 OR 0 = 0

NOT logically complements each value.

NOT 1 = 0

NOT 0 = 1

If more than one Boolean operator is included in an expression, the
Boolean operators are evaluated from left to right. Here are a few
examples of Boolean expressions:

NOT (6+2>=5) Results in 0 (false)

NOT ("Apple" <> "Apple") Results in 1 (true)

("Basic" = "Business BASIC") OR ("Apple"= "Apple")
Results in 1 (true)

("Basic" = "Business BASIC") AND ("Apple" = "Apple")
Results in 0 (false)

Chapter 6: Programming in Business BASIC I 107

ASSIGNMENT STATEMENTS _______ _

Assignment statements are one of the most common things in Busi
ness BASIC programs. They assign the values to variables. Here's an
example:

>A=345.89

The variable to the left of the equal sign is assigned the value of the
expression on the right. You could also type

>LET A=34:5.89

LET is a reserved word that's optional in an assignment statement.
Most people leave it out.

Here are a few examples of assignment statements:

>LENGTH•12:56.21
>A$•"Appl• III Business BASIC"
>HOUSES'Y.::or2000
>SDFSc•2.38E2

Assigning values to elements of an array looks something like this:

10 FRUIT$<l>="APPLE"
20 FRUIT$<2>="0RANGE"
30 FRUIT$(3)="BANANA"
40 FRUIT$<4>="KIWI"

(A string variable name must end with a "$" and the string must be
in quotes.)

You can also type multiple assignment statements on a single line.
For example:

10 FRUIT$C11="APPLE":FRUIT$C21="0RANGE":FRUIT$(31•"BANANA"IFRUIT$(41="KIWI"

Assignment statements can also contain expressions like

SWAP

SWAP is a Business BASIC statement that swaps the values of two
variables. It works like this:

>X=20
>Y=40
>PRINT X:PRINT Y

108 I Apple Ill User's Guide

20
40
>SWAP X,Y
>PRINT X:PRINT Y
40
20

It goes without saying that the variables you swap must be the same
type. You can't, for instance, swap a string and an integer.

Clearing Variables

Business BASIC's CLEAR statement is similar to NEW, which we
discussed earlier. There is, however, one important difference: CLEAR
doesn't erase the program that's currently in the Apple III's memory.
Instead, it initializes all the variables in the current program by setting
all numeric variables and numeric array elements to zero, and every
string variable and string array element to the null string (a string of
length zero).

Most of the time, you'll use CLEAR when you're in immediate mode,
but it can also be used from within a program.

DATA AND READ STATEMENTS _______ _

There's another way to assign values to a list of variables. Look at the
following example:

10 DATA 10,24,63,934
20 READ W,X,Y,Z

Each value in the DATA statement is read into the corresponding
variable in the READ statement. After this program is run, W=lO,
X=24, Y=63, and Z=934.

Obviously, the number of elements in the DATA and READ state
ments must be identical. If you have too many variables and not enough
data, you'll get an "?OUT OF DATA" error. If you have too many indi
vidual pieces of data and not enough variables, the extra data will be
ignored. Since you won't get an error message in this case, it's a diffi
cult problem to find.

You can mix data types in a READ statement, but the variable names
must have the correct suffix. For example:

10 DATA 23, "APPLE I II", 763.54
20 READ PERSONNELY.,COMPUTER$,SALES

Chapter 6: Programming in Business BASIC I 109

RESTORE

RESTORE allows you to read the same data more than once by re
storing the "pointer" that keeps track of data back to the beginning of
the list. RESTORE is used as follows:

10 DATA "MARC","RALPH","KEVIN"
20 READ EMPLOYEE1$,EMPLOYEE2S,EMPLOYEE3$
30 REM READ SAME DATA INTO DIFFERENT VARIABLES
40 RESTORE
50 READ AUTHOR1S,AUTHOR2S,AUTHOR3$

If you try to read the same data without RESTORE, you'll get an
error message.

INPUTTING DATA
FROM THE KEYBOARD _________ _

Up to this point, we've talked about how a program gets the data it
needs to work on from within a program. However, there will be many
occasions when you will want a program to ask the person who's using it
to enter the needed data from the keyboard. For this, you'll use INPUT
and GET.

INPUT

An INPUT statement tells the computer to wait for the user (you or
another) to type something in from the keyboard. Until something is
typed, nothing else happens. It's often used in conjunction with a
PRINT statement that prints a message on the video display. For
example:

10 PRINT "Enter a whole number"
20 INPUT NMBR'Y.
)RUN
Enter a whole nummber
?

The question mark indicates that the Apple III is waiting for input.
When you enter a number and press RETURN , the variable NMBR% is
assigned the value you typed in.

110 I Apple Ill User's Guide

You can also combine a message with the INPUT statement as
follows:

10 INPUT "Enter a whole number";NMBR'Y.
>RUN
Enter a whole number

In this case, a question mark doesn't appear.

GET

GET is a special variation of INPUT. Its job is to assign a single
character or number from the keyboard to a variable in your program.
Depending on the variable type you specify, the entry is treated as a
string (letter or punctuation) or a number. For instance,

10 GET CHARACTER'Y.
20 PRINT CHARACTER'Y.
30 REM If entry is 8 then end program
40 IF CHARACTER'Y.8=8 THEN END ELSE GOTO 10

This program patiently waits for you to type an s on the keyboard and
stops the program when you do. The important things to remember
about GET are that it can only be used for a single character or number
and you don't press RETURN following the character-just press a key.

BRANCHING ____________ _

In Business BASIC, statements are executed in ascending order. But
there will be times when you'll want to jump to other sections of the
program. That's called branching. There are two kinds of branching:
unconditional and conditional.

An unconditional branch occurs when Business BASIC branches
regardless of whatever else is in the statement. It's done with the GOTO
statement. Conditional branching lets the program make choices
depending on the data. It's done with IF-THEN, IF-GOTO, and IF
THEN-ELSE statements.

WARNING: Too much branching can turn an otherwise readable
program into a mess. Use branching carefully and only when you need
to.

GOTO Statement

GOTO is a simple branch statement that lets you specify where the
program should go next. For instance:

Chapter 6: Programming in Business BASIC I 111

10 X=5
20 GDTD
30
40

5

In this program, the sequence of execution will be 10, 20, 70, 80.
Remember that you would need another statement to branch back to
line 30; otherwise, it would never get executed.

If you attempt to branch to a line that doesn't exist, you'll get a
"?UNDEF'D STATEMENT" error.

GOTO is a handy tool for executing the same group of statements
many times. It's certainly easier than typing in the same thing repeat
edly. Here's a program that will keep on running until you press RESET

or CONTROL c. A loop like this is called an infinite lo<Yp.

)10 REM An Infinite Loop
c> 20 PRINT "The Apple I I I is a smart computer"

>30 GOTO 20
>RUN
The Apple I I I is a smar-t computer
The Apple I I I is a smart computer
The Apple I I I is a smart computer
The Apple I I I is a smart computer-
The Apple I I I is a smar-t computer
The Apple I I I is a smar-t computer
The Apple I I I is a smart computer-

Conditional Branching

Conditional branching is one of the keys to the power of Business
BASIC. It allows the computer to choose where to go depending on the
value of a variable.

Business BASIC has three conditional branching statements:

IF-THEN

IF-THEN-ELSE

IF-GDTO

IF-THEN and IF-GOTO are similar in that they specify what a pro
gram will do depending upon the value of a logical expression. The

112 I Apple Ill User's Guide

form of the IF-THEN and IF-GOTO statements is

IF expression THEN expression or linenumber

IF expression GOTO linenumber

If the expression is true, then the expression or statement specified by
linenumber is executed. Most of the time, relational and Boolean expres
sions are used, although arithmetic expressions can also be used. Here
are some examples:

IF X=C-5 THEN PRINT Error$

IF C$<>" Receipts" THEN Calc=O

IF X<=23 AND Y<56 THEN 200

IF-THEN allows you to specify either a line number or another
expression. IF-GOTO only lets you specify a line number. Here are three
statements that are equivalent:

IF X=5 THEN 80

IF X=S BOTO 80

IF X=5 THEN BOTO 80

IF-THEN-ELSE

With the IF-THEN and IF-GOTO statements, the program just pro
ceeds to the next line number if the expression is not true. IF-THEN
ELSE allows you to specify an alternate operation to perform if the
expression isn't true. The form for the IF-THEN-ELSE statement is

IF expression THEN statement or linenumber :ELSE statement or
linenumber

Here are a few examples of IF-THEN-ELSE statements.

IF X=C-5 THEN PRINT ERROR$:ELSE 160

IF C$<>"RECEIPTS" THEN CALC=O:ELSE CALC==l

IF X<=23 AND Y<56 THEN 200:ELSE PRINT A$

It's important to note that if you use an ELSE statement without IF
THEN, Business BASIC will see it exactly like a REM statement. The
following statements are equivalent:

REM A Check-Balancing Program

ELSE A Check-Balancing Program

Chapter 6: Programming in Business BASIC I 113

FOR AND NEXT STATEMENTS _______ _

The easiest way to create a loop is to use the FOR and NEXT state
ments. Instead of the infinite loop we created earlier, let's use a FOR
NEXT loop to display the message a number of times.

>10 REM A FOR-NEXT Loop
>20 FOR X=l TO 5

(>30 PRINT "The Apple III is a smart computer"
>40 NEXT X
>RUN
The Apple I I I is a smart computer
The Apple I I I is a smart computer
The Apple III is a smart computer
The Apple I I I is a smart computer
The Apple I I I is a smart computer

As you can see, the statement between the FOR and NEXT state
ments is executed the number of times specified by the index variable,
which appears after the FOR.

Here is another example: a program that will fill an array with all
integers from 0 to 999 and print the results:

10 DIM NumbersXC999)

(
20 FOR X=O TO 999
30 NumbersXCX>=X
40 PRINT NumbersXCX>
50 NEXT X
60 END

When you run this program, you'll see all the numbers from 0 to 999
displayed on the screen.

STEP

The index variable can be incremented or decremented by steps using
the STEP option with the FOR statement. To illustrate, type NEW to
clear the Apple III's memory and then enter the following program:

(
> 10 FOR X=O
>20 PRINT X
)30 NEXT X
>RUN
0
5
10
15
20

TO 40 STEP 5

114 I Apple Ill User's Guide

25
30
35
40

X is incremented by the value of the step (in this case 5). The step
value can be any integer. If you don't use STEP, Business BASIC
assumes a value of 1.

You can also use steps to decrement the index variable:

>NEW

(
)10 FOR X=99
>20 PRINT X
>30 NEXT X
>RUN
99
96
93
90
87
84
81
78
75
72
69
66

TO 66 STEP -3

Using a negative number with STEP is a good way to establish a
"countdown."

Nested Loops

The FOR-NEXT loop is one of the most common statements you'll
find in Business BASIC programs. In fact, FOR-NEXT loops are used
so much that they're often nested one inside the other. Here's an
example:

>NEW

~
>10 FOR X=l TO 2
>20 PRINT X-1
)30 FOR Y=3 TO 6
>40 PRINT X+Y
>:SO NEXT Y
>60 NEXT X
>RUN
0
4
5
6

7
1
5
6
7
8

Chapter 6: Programming in Business BASIC I 115

Although it looks complicated at first, nested loops like this one aren't
really that difficult to understand. It will help to LIST the program
since Business BASIC automatically indents FOR-NEXT loops
making them much easier to read.

>LIST
10 FOR X=1 TO 2
20 PRINT X-1
30 FOR Y=3 TO 6
40 PRINT X+Y
50 NEXT Y
60 NEXT X

To help you further understand how this nested loop works, type
TRACE and run the program. As it runs, you'll see the line numbers of
the program listed as they're executed. Since putting arrows on the list
ing would make it difficult to read, here's the order in which this pro
gram is executed and the results:

tHO #20 0
#30 #40 4
#50 #40 5
#50 #40 6
#50 #40 7
#50 #60 #20 1
#30 #40 5
#50 #40 6
#50 #40 7
#50 #40 8
#50 #60

Spend a few minutes studying how this nested loop works. It's really
not that complicated if you remember that the innermost loop runs the
number of times you specify before returning to the outer loop.

A very common error that can be hard to trace occurs when the outer
loop ends before the inner loop. For instance in the previous program,

50 NEXT X
60 NEXT Y

would give you incorrect results and an error message.
You can nest as many as nine levels of FOR-NEXT loops, although

keeping track of that many would be a chore. Nesting more than nine
levels results in a "STACK OVERFLOW" error.

116 I Apple Ill User's Guide

SUBROUTINES ____________ _

As you get experience in Business BASIC programming, you'll soon
find that there are quite a few operations that you'll be doing repeatedly
in the same program. A subroutine allows you to reexecute a section of
your program to repeat a task.

You might think of a subroutine as a miniature program at the end of
a longer "main" program. The main program will branch to the subrou
tine, and once the subroutine has been executed, the main program will
resume at the point where it left off. In Business BASIC, you use a
GOSUB statement to tell the program to "go to" a subroutine and a
RETURN statement to return to the main part of the program.

Let's use a simple example:

10 REM An Example of GOSUB
20 INPUT"ENTER NUMBER";X
30 GOSUB 100
40 PRINT"THE ANSWER IS ";Y
50 END
100 Y=100*X/23
110 RETURN

This example is so simple that you probably wouldn't use a subroutine
for it, but you can see that as soon as you enter the number, the program
branches to the subroutine, performs the needed calculations, and
returns to the main program where the results are printed on the
screen.

Now that you see how a subroutine works, let's use a more practical
example. Here's a program with a subroutine that delays printing while
it counts through a FOR-NEXT loop.

10
20
30
40
50
60
70
80
90
300
310
320
330
340

REM A Time Delay Display
PRINT"This is; the Apple III"
GOSUB 300
PRINT"A versatile computer system"
GOSUB 300
PRINT"Especially with Business BASIC"
GOSUB 300
PRINT"And the Profile Hard Disk"
END

REM Time Delay Subroutine
PRINT"Wait a moment!"
FOR X=1 TO 3000

NEXT X
RETURN

Main program
(must have an
END statement)

l Subroutine
j

Each time a statement is printed, the program branches to the sub-

Chapter 6: Programming in Business BASIC I 117

routine, prints a wait message, counts to 3000 (it takes about five
seconds), and returns to the main program. (Notice that there isn't any
statement between the FOR and NEXT statements. In this case, we're
just letting the system sit there and count as a time delay.)

Up to this point, we've only used END statements occasionally since
they don't have to be put at the end of simple programs. However, in
this case you must put an END statement at the end of the "main" pro
gram to prevent the subroutine from being executed after the main
program is through.

Subroutines allow you to reuse the same section of a program without
having to type in the same lines over and over again. That makes for a
smaller program that saves space and runs faster. In addition, using
many subroutines lets you write programs that are structured in a
modular form that's easy to understand. (It's especially helpful if other
programmers will be working on the same program.)

Nested Subroutines

Just like FOR-NEXT statements, y,ou can nest subroutines, calling
other subroutines from within subroutines. Let's rewrite the previous
example to include a nested subroutine that prints out the message
while the system is waiting.

10
20
30
40
so
60
70
80
90
300
310
320
330
340
350
soo
510
520
530
540

REM A Time Delay Display
PRINT"This is the Apple III"
GOSUB 300
PRINT"A versatile computer system"
GOSUB 300
PRINT"Espec:ially with Business BASIC"
GOSUB 300
PRINT"And the Profile Hard Disk"
END

REM Time Delay Subroutine
PRINT"Wait a moment!"
FOR X=1 TO 3000

NEXT X
GOSUB SOO
RETURN
REM Return message subroutine}
PRINT"Wait's over!"
FOR X=1 TO 300 Nested .

NEXT x subroutme
RETURN

Main
program

Subroutine

Subroutines can be nested up to 23 deep in Business BASIC. Nesting
more than 23 will cause a "STACK OVERFLOW" error.

118 I Apple Ill User's Guide

COMPUTED BRANCHING ________ _

Both GOTO and GOSUB have variations that let the program branch
to a line number or subroutine, depending on the value of a numeric
expression.

ON-GOTO and ON-GOSUB

ON-GOTO and ON-GOSUB are statements that let a program branch
to one of several lines depending upon the value of a variable. Once
again, let's use a simple example:

10 REM An ON-GOTO Example
20 PRINT "Press any key from 1 to 6"
30 GET KEY%
40 ON KEYX GOTO 50,60,70,80,90,100
45 PRINT "You didn't do what we told you":GOTO 20
50 PRINT "You Pressed 1"
60 PRINT "You Pressed 2"
70 PRINT "You Pressed 3"
80 PRINT "You Pressed 4"
90 PRINT "You Pressed 5"
100 PRINT "You Pressed 6"

To explain how this works, KEY% must be an integer. If it's 1, the
program branches to line 50; if 2, it branches to line 60. If KEY%
doesn't equal 1 through 6, the program proceeds directly to the next
line. (In this case an incorrect entry will cause the program to loop back
to the beginning.)

ON-GOSUB works exactly the same way, except you indicate the sub
routines to branch to. Here's an example that will give you a delay that
increases with the size of the number you press:

10 REM An ON-GOSUB Example
20 PRINT"Press 1-5 for delay"
30 PRINT"The larger the number, the longer the delay"
40 GET DELAYX
50 ON DELAYX GOSUB 100,200,300,400,500
60 PRINT"Wait's Over!"
70 GOTO 20
80 END
100 FOR X=1 TO 100
110 NEXT X
120 RETURN
200 FOR X=1 TO 500
210 NEXT X
220 RETURN

Chapter 6: Programming in Business BASIC I 119

300 FOR X=1 TO 900
310 NEXT X
320 RETURN
400 FOR X=1 TO 1300
410 NEXT X
420 RETURN
500 FOR X=1 TO 1700
510 NEXT X
520 RETURN

Branching from the Keyboard

The ON KBD command is used to tell Business BASIC to execute a
statement when any key on the keyboard is pressed. When Business
BASIC encounters an ON KBD statement, it just keeps on going
through the program in a normal manner until a key is pressed. At that
point, it executes the statement given with ON KBD. Normally this will
be a GOTO.

An ON KBD GOTO is similar to a subroutine in that you have to use a
RETURN to allow the program to continue from where it left off. Here's a
program that continually prints out a message and tells you when you
press a key.

~10
ON KBD GOTO 100

20 PRINT"This is the Apple III speaking"} Program

c3o FOR X=1 TO 1000} branches to 100
40 NEXT X Delay loop ____J) when you
50 GOTO 10 press a key 100 PRINT" You pressed a key!"
110 RETURN

(Press RESET to stop the program since it's an infinite loop. You can't
use CONTROL c since the ON KBD statement treats it as just another
key.)

OFF KBD is used to tell Business BASIC to cancel the last ON KBD
statement. It allows a program to react to a keypress only during the
section of the program you specify.

FUNCTIONS IN BUSINESS BASIC ______ _

A very important element of Business BASIC is its functions. Func
tions are handy for writing Business BASIC programs because they
save you time. For instance, instead of writing a program that figures
the square root of a number, you need only use the SQR function.

120 I Apple Ill User's Guide

A Business BASIC function takes one or more expressions that are
called arguments and returns a value. With the exception of string func
tions, the arguments are enclosed in parentheses.

It's important to remember that a function isn't a statement. You have
to use it as part of a program statement.

Here's an example:

A=SQR

In this case, the SQR function takes the value of the variable B as its
argument, returns the square root of B, and assigns it to the variable A.

Here are some examples of the results you'd get using some of Busi
ness BASIC's functions:

>PRINT SQR(643.2l
>25.3614

>PRINT HEX'!i<726l
)0206

>PRINT TEN<02D6l
>726

Functions can be substituted for variables or constants just about
anywhere in a BASIC program. The only place they can't appear is to
the left of an equal sign.

One of the powers of Business BASIC is that it has many special func
tions that make programming easier. Each of Business BASIC's func
tions are explained fully in Appendix A.

Numeric Functions

There are 15 functions in Business BASIC that return numeric
results. These are shown in Table 6-2. The numeric functions include
the common trigonometric functions like SIN and COS as well as some
familiar math functions like LOG and absolute value.

String Functions

String functions let you manipulate information contained in strings.
Business BASIC's twelve string functions, listed in Table 6-3, will
become increasingly useful the more programming you do. You'll find a
complete explanation of each function in Appendix A.

Chapter 6: Programming in Business BASIC I 121

Table 6-2. Business BASIC Numeric Functions

Function Purpose

SIN Returns the sine of an angle.

cos Returns the cosine of an angle.

TAN Returns the tangent of an angle.

ATN Returns the arctangent of an angle.

INT Returns the largest whole number less than or equal to
the argument value.

RND Generates a random number.

SGN Returns -1 if the argument is negative; returns 0 if the
argument is 0; returns 1 if the argument is positive.

ABS Returns the absolute value of an argument.

SQR Returns the positive square root of the argument.
EXP Raises e (2. 718282) to the power indicated by the

argument.

LOG Returns the natural logarithm of the argument.

CONV& Returns the long integer value of the argument.

CONV Returns the real value of the argument.

CONV$ Returns the string value of the argument.

CONV% Returns the rounded integer value of the argument.

To give you an idea of how string functions are used m Business
BASIC, here are a few examples:

>PRINT ASC < "F" >
)70

>PRINT CHR$<70>
>F

>PRINT LEFT$<"APPLE".4)
>APPL

>PRINT RIGHT$<"APPLE".4)
>PPLE

>PRINT MID$("APPLE",2•3)
>PPL

122 I Apple Ill User's Guide

Table 6-3. Business BASIC String Functions

Function

LEN

STR$

VAL

CHR$

ASC

HEX$

TEN

LEFT$

RIGHT$

MID$

INSTR

SUB$

Purpose

Returns an integer value equal to the length of a string
expression.

Evaluates an arithmetic expression and returns the value
as a string equivalent.

Evaluates a string expression and returns the real number
or integer equivalent.

Evaluates an arithmetic expression and returns a one
character string equal to the ASCII value of the ex
pression.

Returns the ASCII character code equal to the first
character of a string expression.

Returns a four-character string equal to the hexa
decimal value of the arithmetic expression.

Returns the decimal value equal to the last four charac
ters (representing a hexadecimal number) of a string
expression.

Returns a string that's composed of the leftmost charac
ters of a string expression. The length of the returned
string is specified by an integer in the argument.

Returns a string that's composed of the rightmost charac
ters of a string expression. The length of the returned
string is specified by an integer in the argument.

Returns a string that's composed of characters in the
middle of a string expression. The length of the returned
string is specified by two integers in the argument that
specify the starting and end position of the mid string.

Returns the integer position within a specified string of a
substring that's included in the argument.

Lets you replace a part of a string with a specified
substring.

Chapter 6: Programming in Business BASIC I 123

Defining Your Own Functions

If a function you want to use from within a Business BASIC program
isn't part of the "standard" set, you can define your own using the DEF
FN (define function) statement. Here's an example that, once defined,
can be called from anywhere else within the program and will take the
value of a variable, find its square root, and multiply it by 20:

>10 DEF FN Finagle(X)=(SQR<X>>*20
>20 INPUT "WHAT NUMBER? ";X
>30 PRlNT FN Finagle<X>
>40 GOTO 20
>RUN
WHAT NUMBER? 45.34
134.67
WHAT NUMBER?

Line 10 defines the function, named "Finagle." It can be called from
anywhere in the program by FN Finagle and used repeatedly.

Although this may not sound like a practical example, you'll find
numerous occasions when you want to do the same thing over and over
again in a program.

Advanced Programming
In Business BASIC 7

The transfer of data to and from the computer is done with a variety
of statements, known collectively as input/output statements, or I/0
statements, for short. Most of the time, you'll be receiving data from the
keyboard and sending it out to the video display. But you'll also want to
send data to a floppy or hard disk as well as to a printer. In this chapter,
we'll look at the many ways I/0 is performed in Business BASIC, and
we'll see how to use some of Business BASIC's advanced features.

FORMATTING TEXT ON THE SCREEN ____ _

We've used Business BASIC's PRINT statement mimerous times in
the last chapter. The PRINT statement displays text on the screen, and
by now you probably take it for granted. However, PRINT is a powerful
tool for formatting data on the video .screen-putting it into a form that
is easy to use and interpret.

As you have undoubtedly realized by now, the simplest way to display
text on the screen is to follow the reserved word PRINT with the text in
quotes. For example:

>PRINT "This is the Apple III"
This is the Apple III

To display the contents of a variable, just type the variable name after
PRINT:

>PRINT Sales
31243.78

(In this case, the variable "Sales" was set to this value previously.)
Let's see what else PRINT can do. A normal PRINT statement ends

125

126 I Apple Ill User's Guide

with a line feed and carriage return, meaning that the next PRINT
statement starts printing at the beginning of the next line. Here's an
example:

>NEW
)10 REM A Quick Counting Program
>20 FOR X=l TO 10
)30 PRINT X
>40 NEXT X
>50 END
>RUN
1
2
3
4
5
6
7
8
9
10
)

Using Semicolons

You can eliminate the carriage return at the end of a line by typing a
semicolon ; at the end of your PRINT statement. For example, in the
previous program change line 30 to the following:

)30 PRINT X;
>RUN
12345678910

The semicolon tells Business BASIC to print the next character at the
next available position on the screen. As you can see, there aren't any
spaces between the individual pieces of data. If you want spaces, you'll
have to add them by using a literal (a string in quotation marks):

)30 PRINT X" ";
>RUN
1 2 .3 4 5 6 7 8 9 10

Whenever the printed data extends past the eightieth column of the
screen, the display automatically wraps around to the next line. For
example, run the following program:

>NEW
)10 FOR X=1 TO 2 40
) 20 PRINT " X" ;
>3 0 NEX T X
)40 END

Chapter 7: Advanced Programming in Business BASIC I 127

>RUN
xx xx xxxxxxxxxxxxxxxxxx xx
xxx xxxxxxxxxxxxxxx xxxx
xxx xxxxx

Since there are 240 characters that this program prints out, you can
see how the automatic carriage return works.

Using Commas

The video display screen that you use with your Apple III is divided
into five 16-character-wide tab fields. As you'll see shortly, you can
change the preset tab stops. However, when you use a comma after your
PRINT statement, each piece of data is printed at sequential tab stops
(after the first print position). Try the following:

>NEW
>10 FOR X=1 TO 5
)20 PRINT X,
)30 NEXT X
)40 END
>RUN
1 2 3 4 5

The tab stops are located at columns 16, 32, 48, 64, and 80. If the data to
be printed at the last stop (80) is more than a single character, the
entire number or string is printed on the next line.

TAB and SPC

Although you can use semicolons, commas, and spaces (" ") to format
text with PRINT statements, Business BASIC offers you a number of
other ways to do it.

You can specify exactly where to position the tab stops using the TAB
statement. TAB tells Business BASIC where to begin printing the next
character. Let's use an example:

>NEW
)10 Sales=31243.78
>20 Employees%=45
)30 Name$="John Smith"
>40 PRINT Sales;TAB<11>;EmployeesY.;TAB<24>;Name$
>SO END
>RUN
31243.78 45 John Smith

The number in parentheses specifies the column number to print the
next item in.

128 I Apple Ill User's Guide

SPC is short for "space" and works in a similar manner. The differ
ence is that it tells Business BASIC how many spaces to leave between
items.

For example, change line 40 in the previous program to the following
and run it:

>40 PRINT Sales;SPC<4>;Employees%;SPC;Name$
>RUN
31243.78 45 John Smith

Each SPC statement can specify a maximum of 255 spaces, but you
can string several SPC statements together to move the printing posi
tion down the screen:

>PRINT SPCC255>SPCC255>SPCC100>;"Hello"

In this example, "Hello" is printed 610 character positions from the
beginning.

ADVANCED FORMATTING-PRINT USING ___ _

Although PRINT, TAB, SPC, and the associated punctuation (, and ;)
help you format information, PRINT USING allows you much greater
control over the format of data.

At first glance, PRINT USING seems complicated. The easiest way to
understand it is to think of creating a template (called a format specifi
cation) that tells Business BASIC how to format groups of text or
numbers.
· To see the power behind PRINT USING, let's first look at how a
group of numbers are printed out using a standard PRINT statement.
Type this program:

NEW
10 REM Display numbers
20 FOR X==l TO 5
30 READ Number
40 PRINT Number
50 NEXT X
60 DATA 134.56,45000,3213,-.09,7654.34
70 END
RUN
34.56
5000
213
.09
654.34

Chapter 7: Advanced Programming in Business BASIC I 129

Although all the numbers are listed, it's difficult to interpret the rela
tionships among them. If you are talking about money, you can add a
dollar sign in front of each number by changing line 40 to

>40 PRINT "$";Number
>RUN
$134.56
$45000
$3213
$-.09
$7654.34

This may help, but what you really want to do is have all the decimal
points lined up. That's where the PRINT USING statement comes in.
For example, change line 40 to the following:

>40 PRINT USING "$5#.2#";Number
>RUN
$ 134.56
$45000.00
$ 3213.00
$ -0.09
$ 7654.34

The results are much easier to read. The string in line 40 is the for
mat specification that tells Business BASIC how to print the data. Let's
look at it more closely.

The dollar sign tells Business BASIC that it should place a dollar sign
before all the numbers; "#" is a place holder, and the number 5 before it
reserves five places to the left of the decimal point. (The longest number
in the DATA list contains five digits to the left of the decimal point.)
The "2#" tells Business BASIC to reserve two digits to the right of the
decimal point since we're talking about money. Numbers with more
than two digits to the right of the decimal point are automatically
rounded off.

You can also type all the individual place holders. In this case, line 40
would become

>40 PRINT USING "$###*#.##";Number

Whether you type out all the place holders or use a number to specify
the number of places is purely a matter of choice. Although using
numbers is the shortest way (and important when you're trying to save
memory space), typing the whole line of place holders lets you visualize
how the final printed version will look.

130 I Apple Ill User's Guide

IMAGE

Although you can include your template within a PRINT USING
statement, there's a handier way to do it, especially if you'll be using
several different formats within the same program. IMAGE statements
set up templates that can be referred to later. For example, add a new
line to the previous program and change line 40 as follows:

l15 IMAGE $5#.2#
l40 PRINT USING 15;Number

This is the way your new program will look:

10 REM Display numbers
15 IMAGE $5#.2#
20 FOR X=l TO 5
30 READ Number
40 PRINT USING 15;Number
50 NEXT X
60 DATA 134.56,45000,3213, - .09,7654.34
70 END

The PRINT USING statement in line 40 refers back to line 15 for its
template. If you want to use several different formats at various places
in your program, you can use several IMAGE statements and refer to
them by line number.

IMAGE is also useful for cases where you want to use several formats
in a single line. Here's an example:

l10 IMAGE $6#.2#, 6#.4#
l20 A=23.456
)30 8=8422.32
l40 PRINT USING 10; A,B
)50 END
>RUN
$ 23.46 8422.3200

The PRINT USING statement in line 40 must have two real numbers
to print since the IMAGE statement in line 10 specified two numbers.
Notice that in the case of the first number, the three digits to the right
of the decimal point are rounded when the image you specify is shorter
than the number.

There are a few rules to remember when using an IMAGE statement:

In an IMAGE statement, quotation marks are not required around
the format specification.

IMAGE must be the only statement in a Business BASIC program
line.

Chapter 7: Advanced Programming in Business BASIC I 131

IMAGE cannot be used for immediate execution, though PRINT
USING spec can be.

Formatting Numbers

PRINT USING uses three different characters to reserve spaces for
digits:

Reserves a space for one digit. (Leading zeroes aren't printed.)

& Reserves a space for either a digit or a comma (for long numbers).
At least five spaces to the left of the decimal point must be
reserved.

Z Reserves a space for one digit. (Leading zeroes are printed.)

We've already used the"#" to indicate spaces, but you can also use"&"
and "Z." Let's use a few examples to clear up what can be a very confus
ing concept.

The only difference between "&" and "#" is that the ampersand (&)
causes commas to be inserted into long numbers. For example, try the
following:

>10 REM Display numbers
>20 FOR X=1 TO 5
>30 READ Number
)40 PRINT USING "$5~.2~";Number
)50 NEXT X
>60 DATA 134.56,45000,3213,-.09,7654.34
>70 END
>RUN
$ 134.56
$!!!!!!!!!
$ 3,213.00
$ -0.09
$ 7.654.34

If you don't leave enough spaces for the numbers in a PRINT USING
statement, you'll get what amounts to an error message -a line of!!!!!.

Let's look at what happened. The second piece of data in the DATA
statement is 45000. Although that's a five-digit number, it becomes six
characters long when you add the comma. Since the format specifica
tion only allowed for five characters, an error resulted.

Our point here is that while you're designing displays using PRINT
USING, you'll have to make absolutely sure that you allow for the lon
gest number in the program.

We can solve the previous problem by changing line 40 to

132 I Apple Ill Use(s Guide

)40 PRINT USING "$68c.28c";Number
>RUN
$ 13'4. 56
$45,000.00
$ 3,213.00

-0.09
$ 7,654.34

When used in a format specification, a "Z" is similar to a "#" except
that a "Z" causes a number to be printed with leading zeros. To see this,
change line 40 in the previous program to

)40 PRINT USING "$6Z.2Z";Number
>RUN
$000134.56
$045000.'00
$003213.00
$0000-0.09
$007654.34

So far, we've covered how PRINT USING is used with fixed-point
numbers. In the Apple III, a fixed-point number is any number that
isn't displayed with an exponent. Integers, long integers, and real
numbers are all fixed-point numbers.

In addition to the characters that specify the digits"#," "&,"and "Z,"
there are also seven other characters used with fixed-point numbers in
PRINT USING statements:

+ Reserves a character position for the sign.

Reserves a position for the minus sign. (Only used if the number
is negative.)

$ Reserves a position for the dollar sign.

* * Replaces leading space with asterisks.

+ + Reserves the rightmost print positions for signs and dollar signs
(if there are any).

Minus sign printed only if the number is negative.

$$ Reserves the rightmost print position for a dollar sign and+/
sign (if there are any).

Let's look at how a few of these characters are used.
A "+" causes a plus sign to be printed in front of all positive numbers

and a minus sign to be printed in front of all negative numbers. To see
this, change line 40 in the previous example to the following:

)40 PRINT USING "$+5#.2#";Number
>RUN
$+ 134.56

Chapter 7: Advanced Programming in Business BASIC I 133

$+45000.00
$+ 3213.00
$- 0.09
$+ 7654.34

A "-" causes a minus sign to be printed m front of all negative
numbers. For instance, change line 40 to

>40 PRINT USING "$-54t.2tt";Number
>RUN
$ 134.56
$ 45000.00
$ 3213.00
$- 0.09
$ 7654.34

Using "-" in the format specification causes the minus sign to be
printed off to the far left, instead of directly in front of the number.

Using"**" in PRINT USING causes asterisks to be printed instead of
leading spaces. To see this, change line 40 to

>40 PRINT USING "**54t.2tt";Number
>RUN
U134.56
45000.00
*3213.00
*U-0.09
*7654. 34

Scientific Notation

Scientific notation is a shorthand for specifying very large numbers.
(See Chapter 6 for a more complete explanation.) You use scientific
notation in a PRINT USING specification by using "E" and specifying
either a single digit or none to the left of the decimal point. In addition,
there must be three or four digits allowed for the exponent. Here are
two examples:

>PRINT USING "tt.3tt3E"J231.23423
2.312E+2
>PRINT USING ".3tt3E";231.23423
.231E+3

The number in front of the "E" in each of the examples must be
included to specify the number of digits in the exponent. Note, however,
that two character positions are always occupied by the "E" and a sign.
Therefore, you must always specify three or four digits in the exponent.

134 I Apple Ill User's Guide

Engineering Notation

Engineering notation is similar to scientific notation, except that the
exponent is forced to be a multiple of 3. You specify engineering notation
by using "E" and specifying three digits to the left of the decimal point.
Digit positions are only important to the left of the decimal point. You
can use either a "#" or a "Z" to indicate digit positions. In this case, the
"Z" causes leading zeroes to be printed.

For example:

>PRINT USING "34t.4Z4E";1234.34
1.2343E+03
>PRINT USING "3Z.34t4E";.02314
023. 140E-03 ,

SCALE

The SCALE function is used with PRINT USING to shift the decimal
point in a number left or right. It uses two arguments in parentheses.
SCALE takes ten raised to the power of the first argument and multi
plies it by the second argument. Here's an example:

>PRINT USING "84t.34t";23145.67
23145.700

>PRINT USING "84t.34t";SCALE<3,23145.67>
23145700.000
>PRINT USING "$84t.24t";SCALE<-3,23145.67>

23.15

You can see that SCALE essentially moves the decimal point left or
right depending on its first argument.

When would you use SCALE? As we mentioned earlier, Business
BASIC works much faster with integers than with real numbers. To
take · advantage of this fact, you could convert dollars and cents into
cents to do a numeric calculation and then use SCALE in a PRINT
USING statement to print out the results with the decimal point posi
tioned correctly.

PRINT USING with Strings

Although PRINT USING is handiest when you're printing out
numbers, a few of its special features are useful for formatting text on
the screen. There are three PRINT USING elements that work with
strings:

Chapter 7: Advanced Programming in Business BASIC I 135

A Left-justify

R Right-justify

C Center

You use PRINT USING with strings by specifying the length of the
field followed by "A," "R," or "C" to specify whether the text will be
left-justified, right-justified, or centered within the field. For example,
suppose you want to center a string in the middle of the screen (80
characters):

>PRINT USING "BOC"; "The Apple III"
The Apple I II

If you use several fields in an IMAGE statement, each subsequent
field starts where the preceding one left off. To see this, try the
following:

>10 IMAGE 5A, 5C, 5R
>20 PRINT USING lO;"The","Apple","III"
The Apple III

"5A" prints "The" left-justified in a five-character field; "5C" prints
"Apple" centered in a five-character field; and "5R" prints "III" right
justified in a five-character field.

Thus, you can see that PRINT USING is by far the most powerful way
of formatting text. The best way to find out about it is to experiment.

CHR$- PRINTING CHARACTERS
IN ASCII _____________ _

CHR$ allows you to generate both visible and invisible characters
from within a Business BASIC program. The "beep" is an example of
an invisible (or non-printing) character, and a double quote mark is an
example of a visible character. You can do this because the Apple III
stores characters as a series of ls and Os. The standard code for storing
characters is called ASCII, which is short for American Standard Code
for Information Interchange. CHR$ lets you specify the ASCII code
number for a particular character.

Because the Apple III has nearly all of the visible characters of the
ASCII character set on the keyboard, you won't need to use CHR$ too
often for generating characters. One exception is the double quote. You
can't include a double quote within a text string because Business
BASIC will interpret the second double quote as the end of a string. By

136 I Apple Ill User's Guide

using CHR$(34)-the ASCII code for a double quote is 34-you can
print it. Here are two examples of the same string, one with and one
without quotes:

>PRINT "The Rain in Spain"
The Rain in Spain
>PRINT CHR$(34>;"The Rain in Spain";CHR$(34>
"The Rain in Spain"

You can also use CHR$ to send a "beep" to the built-in speaker. You
might do this to call attention to something in your program. The
ASCII code for the beep is 7, so the statement you would use is

>PRINT CHR$(7)

You'll find a complete list of the ASCII codes in Appendix J. Codes 0
through 31 are' invisible codes that don't appear on the screen. Many of
them are used to control the console. Codes 32 to 127 are visible charac
ters, nearly all of which can be generated from the keyboard.

DISPLAYING TEXT __________ _

Although the numerous variations of PRINT and PRINT USING are
the most versatile way of formatting characters on the screen, there are
a number of additional Business BASIC statements that control how
characters appear on the screen.

HOME

You may have noticed that your screen display can become crowded
after you've been working for a while. For example, it can get messy
after a long listing.

To clear it, just type HOME. This will clear the screen and position
the cursor in the upper left-hand corner of the screen.

INDENT

INDENT is a reserved variable that controls how program statements
and FOR-NEXT loops are indented from the line numbers. As we saw
in the last chapter, indentation allows a more readable program by set
ting off FOR-NEXT loops so that they can easily be spotted in a long
program.

Chapter 7: Advanced Programming in Business BASIC I 137

Let's review. Here's a short program using a FOR-NEXT loop:

>NEW
>5 REM This is a short program
>10 FOR x~1 TO 100
>20 PRINT X/2
>30 NEXT X
)40 END

But something different happens when you print it out. Type LIST
and you'll see

5 REM This is a short program
10 FOR X=1 TO 100
20 PRINT X/2
30 NEXT X
40 END

Business BASIC automatically does the indenting (the default value is
2), but you can change the indentation with an INDENT command. For
instance:

> INDENT=5
>LIST

5 REM This i~ a short program
10 FOR X=1 TO 100
20 PRINT X/2
30 NEXT X
40 END

Changing the reserved variable INDENT results in more indentation.
Notice that in addition to the indented FOR-NEXT loop, the beginning
of the program lines are also indented farther from the line numbers.
(You could use an INDENT command within a program, but it makes
more sense to use it in the immediate mode.)

INDENT stays at the value you've set until you assign it a new value
or turn the Apple III off. When you boot up the system, INDENT
returns to its default value of 2.

OUTREC

OUTREC lets you control the number of spaces that will print out on
one line on a printer. For instance, many printers do not have automatic
wraparound but just run off the end of the paper, dropping the end of
the line. Let's use an example. If you type OUTREC=40, the printer
will do a line feed and carriage return after every 40 characters.

138 I Apple Ill User's Guide

WINDOW

If you think of your video display as a "window" into the computer,
you'll quickly understand what the WINDOW command does. The nor
mal window fills the entire screen, but the WINDOW command lets you
specify a much smaller window or one that's just about any size you
might want.

The normal window is 80 columns wide by 24 lines deep. To make it
smaller, you could type

WINDOW 20,5 TO 60,18

To help you understand what's going on here,

20 is the starting column number of the new window

5 is the starting row number of the new window

60 is the ending column number of the new window

18 is the ending row number of the new window.

The new window would appear as shown in Figure 7-1.
If you type CAT you'll see the listing appear only in the middle of the

WINDOW 20.5 to 60.18

r------==='-J t ~
Starting
column
number

Starting
row

number

Normal text window of 80 columns by 24 lines

Figure 7-1. Changing the display window

Ending Ending
column row
number number

80

Chapter 7: Advanced Programming in Business BASIC I 139

screen. WINDOW is handy for customizing the look of a program,
although you'll have to do some planning with graph paper to get the
window to appear exactly where you want it to. For instance, you might
want the first messages of a program to appear in the middle of the
screen. If you want to change things back to normal, just type TEXT.

TEXT

TEXT restores the size of the video display window to normal (80
columns by 24 lines). If you used the WINDOW command to change the
screen, TEXT will return it to normal. TEXT will also cancel the
graphics modes (a subject covered in Chapter 8).

VPOS and HPOS

Although WINDOW changes the display area on the video display,
you can also change the position of the cursor within that window by
using VPOS and HPOS.

VPOS stands for vertical position, and HPOS stands for horizontal
position. Although it's possible to use values of 0 to 255 for each of these,
numbers higher than 80 (for HPOS) and 24 (for VPOS) don't make
much sense since the display is 80 characters wide by 24 lines deep.

As an example, VPOS = 8 and HPOS= 20 would move the cursor
down to the eighth line and twentieth column on the display, as shown
in Figure 7-2.

Since both statements are reserved variables, you can also find out
where the cursor is currently positioned by typing PRINT HPOS or
PRINT VPOS.

INVERSE and NORMAL

There will be times when you want to highlight a section of text. A
handy way to do this is with the INVERSE command. When used
within a program, it makes all subsequent characters appear as black
characters on a white (or green) background.

The NORMAL command returns things to "normal." To see how it
works, type in the following program and run it:

)10 REM INVERSE VS. NORMAL TEXT
>20 INVERSE
>30 PRINT "THIS IS INVERSE TEXT";
)40 NORMAL: PRINT
) 50 PRINT "NOW IT" S BACt< TO NORMAL"
>60 END

140 I Apple Ill User's Guide

80

Figure 7-2. Positioning the cursor

Note that in this example, the extra PRINT statement in line 40 acts
like a RETURN and leaves a space before the next line of text.

WORKING WITH FILES
IN BUSINESS BASIC _________ _

There are a number of different types of files that you will be working
with in Business BASIC. Recall from Chapter 3 that a file is an organ
ized collection of information. This information may reside on a device
like a floppy disk drive or a hard disk drive. In addition, the Apple III
treats each device connected to the computer as a file. File devices
include the keyboard and screen (the console), floppy disk drives, the
Profile disk drive, and so forth.

While the programs that you write can be saved in files called pro
gram files, there are several kinds of files that can be created from
within a Business BASIC program. These are used to store the data
(text and numbers) that your program operates on.

Chapter 7: Advanced Programming in Business BASIC I 141

Naming Files

Let's review a bit. In the Apple III, a file is referred to by its filename
or paihname. As we explained in Chapter 3, a filename begins with a
letter and can be as many as 15 characters long. The filename of a
device begins with a period. Some examples are .PROFILE, .Dl, and
.CONSOLE.

A pathname is the "path" the computer takes to find the file. A path
name begins with a slash (/) and a volume or device name, followed by
the names of any subdirectories leading to a particular file.

PREFIX$

As you've found out by now, a full pathname can be quite long. Refer
ring to a file by typing something like the following every time is
time-consuming:

.PROFILE/Inventory/Appliances/Refrigerators

But there's a shorthand way to specify a pathname: you can assign the
pathname to the reserved variable PREFIX$. For instance, typing

>PREFIX$=.PROFILE/Inventory/Appliances/Refrigerators

lets you refer to the pathname by using PREFIX$ from anywhere
within the program. When you boot your Business BASIC disk,
PREFIX$ is automatically set to the name of the vohtme in the boot
device (for instance, /BASIC). You can find out what that is by typing

>PRINT PREFIX$

"/BASIC" is the default value assigned to PREFIX$ by the Business
BASIC disk. If you enter a pathname that croes not begin with a"." or a
"/", Business BASIC automatically "assumes" that you want to use the
prefix that's stored in PREFIX$. For instance, if you have a file named
"CHECK.BALANCE" all you need to do to run it is type

> RUN CHEC~:. BALANCE

Business BASIC uses the pathname stored in PREFIX$ as a prefix to
any filename you specify. Since "/BASIC" is the default PREFIX$,
RUN CHECK.BALANCE is equivalent to

>RUN /BASIC/CHECK.BALANCE

You have to specify the complete path name if you don't want to use the
pathname stored in PREFIX$.

142 I Apple Ill User's Guide

CREATE

CREATE is used to create files. You specify the file you want to create
using the pathname and the type of file you want to create. You can
create three types of files in Business BASIC:

Text

Data

Catalog.

In Business BASIC programs, the most common types of files you'll
be using will be text and data files.

Text files are comprised of text -strings of ASCII characters.
Numbers stored in a text file are converted to strings. Data files usually
contain numeric information that can be assigned to a numeric variable
within a Business BASIC program; however, data files can also contain
strings. Text files are used when you are working with lots of strings;
data files are more appropriate when you are working with numbers. A
catalog file contains a directory or subdirectory of files.

Text and data files are used to store the data that a program uses. All
of the programs that we've worked with so far either have had the data
contained in a DATA statement or have gotten information from the
keyboard using an INPUT statement. However, when you are working
with large amounts of data, it is easier to store the data in a file separ
ate from the main program.

For example, if you have a program to balance your checkbook each
month, it would be impractical to have to keep changing DATA state
ments each time you want to record a check. By keeping the informa
tion for each month's checks in an individual data file, you can avoid
having to change the main program at all. Separate data files also make
the data accessible to a number of different programs. For instance, you
could have separate programs to balance the checks, prepare monthly
statements, and so on. To create a text file on your BASIC disk you'd use
a command like this one:

)CREATE "/BASIC/Instruct/", Tf::XT

The quotation marks are required when you use a CREATE state
ment in a program, but they aren't required for immediate execution.

Don't forget that you can leave off the pathname that's stored in
PREFIX$. Therefore, if you haven't changed PREFIX$ after booting
the system, the following CREATE statement will do exactly the same
thing:

Chapter 7: Advanced Programming in Business BASIC I 143

>CREATE "Instruct"~ TEXT

You can also create a catalog file for a new subdirectory named
"Games" by typing

>CREATE "Games"~ CATALOG

or

>CREATE "/BASIC/Games/"~CATALOG

Specifying the Size

The data in a file is organized into units called records. The size of a
record in Business BASIC can be anywhere from 3 to 32767 bytes. With
one exception (see "Random Access Files" later in this chapter) you
won't have to worry about the size of each individual record. If you don't
specify the size of a record when you create a file, it's automatically set
to 512 bytes. Here's an example of how you specify the size:

>CREATE "Instruct"~TEXT~1028

This creates a file named "Instruct" with records that are each 1028
bytes long. A record size is only required for a random-access file
(which we'll talk about later in this chapter).

If you create a catalog file, the default record size is also 512 bytes
enough for 12 files in your subdirectory. If you think you'll have more
than 12 files in the subdirectory, specify a larger size. (1028 will allow
you to include about two dozen files.)

MANAGING FILES __________ _

There are a number of commands in Business BASIC that let you
organize and keep track of the files you've created. The job of managing
the files on your disks is often referred to as housekeeping.

CATALOG

When you boot the Business BASIC disk, you see a listing on your
video display of all the files contained on your Business BASIC disk.
This is the equivalent of typing CAT (or CATALOG) in immediate
mode.

Just typing CAT displays the root directory of the specified disk (see

144 I Apple Ill User's Guide

Chapter 3). If you want to see the contents of a subdirectory, you specify
the pathname. For example,

>CAT /BASIC/Games

or

>CAT Games

will show you the list of files in the "Games" subdirectory.

Types of Files

When you boot the Business BASIC disk, you'll see quite a few files of
different types. We talked about the three (text, data, and catalog) that
you can create in Business BASIC. But Table 7-1 contains a complete
list of the other types you might run into.

Deleting Files

It's good programming practice to do occasional housekeeping and
remove files or subdirectories that you're not using anymore. This is

Table 7-1. Types of Disk Files

File type Contents

BAD A damaged area of the disk that's been locked out by
the operating system.

BASIC A BASIC program created with the SAVE statement.

BINARY An assembly language file.

CAT A root directory or subdirectory.

DATA A Business BASIC data file.

FONT A file that contains type font information.

FOTO A graphics "picture".

PASCOD A Pascal program file.

PASDTA A Pascal data file.

PAS TXT A Pascal text file.

RESERV Reserved for future use.

SYSTEM An SOS program file.

TEXT A Business BASIC text file.

UNKNWN A Business BASIC data or text file that was opened
but not written to.

Chapter 7: Advanced Programming in Business BASIC I 145

done using the DELETE command. Storing files that you don't need
wastes valuable storage space on your disks.

You can delete individual files or entire subdirectories; however, it's
important to remember that you must delete all the individual files
within a subdirectory before you delete the subdirectory.

Here are some examples of how DELETE is used:

>DELETE /BASIC/Instruct

or

>DELETE Instruct

deletes the file named "Instruct".
If you have a subdirectory named "Games" and you've deleted all the

individual files within the subdirectory, you can enter

>DELETE /BASIC/Games

or

>DELETE Games

to delete the entire subdirectory.

Changing File Names

You can use RENAME to change the names of files, volumes, and
subdirectories. The form of the command is

RENAME old name, new name

Suppose you wanted to change the name of a file named "Instruct" to
"Documents". You would use the command

>RENAME Instruct,Documents

Protecting Files- Lock and Unlock

It's relatively easy to accidentally erase an important file. Once it's
gone, there's no way you can get it back unless you've made a backup
disk. That's why it's important to protect files. You do this using the
LOCK command. Once a file is locked, you can't delete, rename, write
to, or save to that file name until you unlock it with the UNLOCK com
mand. Here's an example:

)LOCK /BASIC/Instruct

or

146 I Apple Ill User's Guide

)LOCI< Instruct

locks the file, and

>UNLOCK /BASIC/Instruct

or

>UNLOCK Instruct

unlocks it. A locked file is listed in the catalog with an asterisk (*) in
front of the file type.

Remember you can lock the entire contents of a floppy disk by placing
a tab over the write-protect notch on the disk.

USING FILES IN PROGRAMS _______ _

To help you understand how to use a file in a program, you can com
pare it to using the common file folder found in every office filing
cabinet. Before you use the information in the folder, you have to open
the file; and before you can put the folder away, you have to close it.
Much the same thing must be done with Business BASIC files.

OPEN#

You open a Business BASIC file by using the OPEN# statement. In
Business BASIC, you can have as many as ten files open at the same
time. You follow OPEN# with a number from 1 to 10 (which assigns the
file a number you can refer to from that point on) and the pathname.
Here are a few examples:

110 OPENtH, • Console •
120 OPEN*2, .Printer
130 OPEN*3 , Instruct
140 OPEN*4, Widgetcount

OPEN# Options

You can also specify how the file you've opened will be used. There are
three options:

AS INPUT The file can only be read from.

AS OUTPUT The file can only be written to.

Chapter 7: Advanced Programming in Business BASIC I 147

AS EXTENSION Lets WRITE# or PRINT# add information
to the end of the existing file.

Here are some examples:

100 OPEN~1 AS INPUT, Instruct
110 OPEN~2 AS OUTPUT, .Printer
120 OPEN~3 AS EXTENSION, Videogame

If you don't specify an option, the file you open can be written to and
read from as long as the type of file supports reading and writing. For
instance, you can only send data to a printer.

CLOSE and CLOSE#

You must close all open files with the CLOSE or CLOSE# statement
before ending the program. If you don't close the files, you lose the
information you put into it (like an open office file results in papers
scattered on the floor). Closing a file can be done in one of two ways:

CLOSE Closes all open files.

CLOSE# Closes the specified file number.

SEQUENTIAL- AND RANDOM-ACCESS FILES __ _

There are two different types of data files: sequential- and random
access. What differentiates the two is the method in which the files are
stored. Sequential-access files allow you to read and save information
sequentially, while random-access files allow you to select files at ran
dom to read or write. In the following sections, we'll cover both types in
detail.

Sequential-Access Files

Recall that information in a file is organized into units called records.
In a sequential file, these records are stored sequentially. In order to
locate a record in a sequential file, you must search through the file
from the beginning until you find the record that you want. A good
example of sequential file storage is a cassette music tape. In order to
find the song you want to hear, you must search through the tape from
the beginning.

148 I Apple Ill User's Guide

Sequential-access files are the most efficient way to store data, since
regardless of how much data is stored in each record, there is no
"wasted" space on the disk.

There are, however, a few major disadvantages. A sequential access
can take a long time. If you only have a small file with a few records,
that's not a problem. But if you have disk full of data, it can take a long
time to find a specific record. In addition, you can only add data to the
end of a file; and it's often impossible to change individual records. For
this reason, sequential files are best for storing data that you won't want
to change in the future.

There are a few rules you should remember when you're working
with sequential files:

When you first open a sequential file, data is read from or written
to the beginning of the file. Each subsequent time you read from or
write to the file, the access begins where the last one left off.

When you open a file with the option AS EXTENSION, any new
information is written at the end of the file. Each additional access
starts where the previous one left off.

Random-Access Files

A random-access file is made up of records that are each exactly the
same size. In a random data file, each record is broken up into units
called fields, with each field containing a number or a string. Random
text files, on the other hand, simply consist of a series of bytes with each
byte representing a single string character.

To visualize a random-access file, you can think of a floppy disk
divided into sections that are all the same length. Since each record
takes the same amount of space (whether or not it's filled with data), you
can easily select a record by number without having to search through
any others.

You use CREATE in exactly the same way whether you're creating a
sequential- or random-access file. However, if you don't specify the size
of a record when you create a file you'll be using for random-access,
Business BASIC will automatically assign each record a length of 512
bytes.

If you're concerned about saving memory space, planning the record
size is important. Using data that's much smaller than the record size
wastes memory space. The size of the record has to be large enough to

Chapter 7: Advanced Programming in Business BASIC I 149

contain all the data that you'll be writing into the record. Here's the
number of bytes that each type of data in a random-data file requires:

Integer

Real number

Long integer

String

3 bytes

5 bytes

9 bytes

Length of string plus two bytes.

For instance, if you're storing check information in a record, you must
figure the maximum size of each individual entry (field) and add them
up to get the total number of bytes per record. For example:

Check Number: 0000 (3 bytes)

Amount:

Date:

Payee:

00000.00 (5 bytes)

MM/DD/YY (10 bytes)

Longest entry (25 bytes)

In this case, the amount of memory required for each record of the
file (43 bytes) is much smaller than the default value of 512 bytes. To
save memory space you could specify a record size of 43 bytes in the
CREATE statement used to create the file.

If you'll be accessing a random text file, it's a good idea to plan the
size of a record so that it can contain the longest line of text you'll be
saving.

Here are several important points you should remember about
random-access files:

When you access a random record, reading or writing begins at the
first field of the record.

If a field won't fit into the space remaining in a record of a data file,
it's written into the next record. However, if a field is too big to fit
in a record, you'll get an "?OUT OF DATA" error.

GETTING INFORMATION
INTO FILES ____________ _

Business BASIC uses three statements to write information into a
file:

PRINT# writes information to a text file.

150 I Apple Ill User's Guide

PRINT# USING writes formatted information to a text file in the
same way as PRINT USING writes to the screen.

WRITE# writes information to a data file.

PRINT#

PRINT# allows you to send ASCII data to a text file, printer, or other
file device. One line of text is sent to the file for each expression you
specify. The following program creates a sequential-access file and
writes information to it:

10 REM Sequential Text File Example
20 CREATE "T.FILE", TEXT
30 OPEN*1 AS OUTPUT, "T.FILE"
40 FOR RECORD=! TO 20
50 PRINT*l; "THIS IS NUMBER ";RECORD
60 NEXT RECORD
70 CLOSE *1
80 END

To create a random-access file with PRINT#, you need to specify the
record number in the PRINT# statement. For instance, changing line
50 to the following:

50 F'RINT#1,RECORD; "THIS IS NUMBER ";RECORD

will create a program that begins writing the data in record 1 and ends
with record 20. Anytime you specify a record number in a PRINT#
statement, Business BASIC will automatically create a random-access
file.

NOTE: In this example you would also want to specify a much
smaller size for each record in order to save space. Since you need 17
bytes for the string (string length plus 2) and 3 bytes for the integer,
changing line 20 to

20 CREATE "T.FILE", TEXT, 20

will save a great deal of space.

PRINT# USING

PRINT# USING writes formatted data to text files in the same way
PRINT USING writes to the screen. The same characters used to create
the format specification in PRINT USING statements will work with
the PRINT USING# statement. Refer to the discussion of PRINT
USING earlier in this chapter for a list of these characters.

Chapter 7: Advanced Programming in Business BASIC I 151

WRITE#

WRITE# writes information into a data file as opposed to PRINT#,
which writes information into a text file. Let's modify the previous
example to create a sequential data file:

10 REM Sequential Data File Example
20 CREATE "D.FILE", DATA
30 OPEN*l AS OUPUT~ "D.FILE"
40 FOR RECORD=l TO 20
50 WRITE*l; "THIS IS NUMBER ",RECORD
60 NEXT RECORD
70 CLOSE*l
80 END

Note that the CREATE statement in line 20 creates the DATA file
and the WRITE# statement in line 50 writes information into the file .
To create a random-access data file, you would specify a record number
in the WRITE# statement.

When you use the WRITE# statement to write information to a file in
a random-access manner, the new information replaces the previous
information in the record.

GETTING INFORMATION
FROM FILES ____________ _

Once you've entered data into a file, you obviously need a way to get it
out. Business BASIC uses the following statements to read data from a
file:

INPUT# reads information from a text file.

READ# reads information from a data file.

INPUT#

You use INPUT# to read information from a text file. For each vari
able, INPUT# reads a single line of ASCII text. Let's write a program
to retrieve the text we stored earlier with PRINT#. To review, here's
what the original program looked like:

10 REM Sequential Text File Access
20 CREATE "T.FILE", TEXT
30 OPEN*1 AS OUTPUT, "T.FILE"
40 FOR RECORD=l TO 20

152 I Apple Ill User's Guide

50 PRINTtt1; "THIS IS NUMBER ";RECORD
60 NEXT RECORD
70 CLOSEt+1
80 END

Assuming you entered and ran this program, you'll have a sequential
text file called "T.FILE" on your disk. Here's a program that will read
the text from the file, into the Apple III's memory and display it on the
video screen:

10 REM Read T.FILE
20 OPENt+1 AS INPUT, "T.FILE"
30 ON EOFt+1 GOTO 70
40 INPUTt+1; ERIN$
50 PRINT ERIN$
60 GDTD 40
70 CLOSEt+1
80 END

>RUN
THIS IS NUMBER 1
THIS IS NUMBER 2
THIS IS NUMBER 3
THIS IS NUMBER 4
THIS IS NUMBER 5
THIS IS NUMBER 6
THIS IS NUMBER 7
THIS IS NUMBER 8
THIS IS NUMBER 9
THIS IS NUMBER 10
THIS IS NUMBER 11
THIS IS NUMBER 12
THIS IS NUMBER 13
THIS IS NUMBER 14
THIS IS NUMBER 15
THIS IS NUMBER 16
THIS IS NUMBER 17
THIS IS NUMBER 18
THIS IS NUMBER 19
THIS IS NUMBER 20

This program sets up a loop to read a record and print it out until the
end of the file (EOF) is reached.

If you created a random-access text file, you'll need a slightly differ
ent program to retrieve the data from the file. Just as specifying a
record number for PRINT# tells the program where to start writing
data, including the record number in an INPUT# statement tells Busi
ness BASIC where to start reading data. You must specify the
number(s) of the record(s) you want to read. Assuming you created a
random-access file that started writing text data at record 1, the follow
ing program will retrieve the data:

Chapter 7: Advanced Programming in Business BASIC I 153

10 REM Retrieve Random Text
20 OPENtt1 AS INPUT, "T.FILE"
30 FOR COUNT=! TO 20
40 INPUTttl,COUNT; MESSAGE$
50 PRINT MESSAGE$
60 NEXT COUNT
70 CLOSE#1
80 END

Note that you must specify the number of every record you want to
retrieve. The most logical way to do this is to use a FOR-NEXT loop
with the index variable as the number of the record you want.

READ#

READ# works like INPUT# except that it retrieves information from
a data file. Although reading a data file is similar to reading a text file,
there are a few subtle differences. Let's review the program we used to
generate a sequential-access data file.

10 REM Sequential Data Access
20 CREATE "D.FILE", DATA
30 OPENttl AS OUTPUT, "D.FILE"
40 FOR RECORD=! TO 20
50 WRITEttl; "THIS IS NUMBER ",RECORD
60 NEXT RECORD
70 CLOSEtt1
80 END

It's important to remember that unlike the program that created the
text file, this program creates a file where the data is stored as two
separate fields -a string and an integer. Therefore, you'll need a pro
gram that retrieves and prints out both fields.

10 REM Retrieve Sequential File
20 OPENtt1 AS INPUT, "D.FILE"
30 FOR COUNT=1 TO 20
40 READtt1; MESSAGE$,NMBRX
50 PRINT MESSAGE$,NMBRX
60 NEXT COUNT
70 CLOSEtt1
80 END

This will print out the entire contents of the file we created.
If you created a random-access data file, you'll have to include a

record number in the READ# statement in order to read the data from
the file. One way to read the data is with the following program:

10 REM Retrieve Random Access Data File
20 OPENtt1 AS INPUT, "D.FILE"

154 I Apple Ill User's Guide

30 FOR RECORD=1 TO 20
40 READ-1,RECORD; MESSAGE$,NMBR~
50 PRINT MESSAGE$,NMBRY.
60 NEXT RECORD
70 CLOSEtt1
80 END

Directing Output- OUTPUT#

In Business BASIC, all output is normally sent to the video display.
However, there might be times when you want to keep a record of the
screen output on a disk file or send it to a printer. You can do that using
the OUTPUT# statement.

Suppose you want the printer to print everything that would normally
be displayed on the screen. You can use the following statements:

10 OPEN*1 AS OUTPUT,.Printer
20 OUTPUT-1

It's not really necessary to use the option "AS OUTPUT" since the
printer is an output device only. However, it's good programming prac
tice to specify the type of file when you open one.

DETECTING THE END OF A FILE _____ _ _

There are times when it is useful to detect the end of a file, particu
larly when you are reading a sequential file. In Business BASIC, the
ON EOF# and OFF EOF # statements allow you to control the detection
of the end of file (EOF) condition.

ON EOF#

This statement tells Business BASIC what to do if it reads past the
end of a file. If you haven't used the ON EOF# statement, you'll get an
"?OUT OF DATA" error if Business BASIC tries to read past the end of
a file. Most of the time, you'll want the program to branch to a location
or print out a more detailed message on the screen, such as

220 ON EOFI2 GOTO 100

or

310 ON EOFI4 PRINT "No More Data - Aborting"

Chapter 7: Advanced Programming in Business BASIC I 155

Note that you cannot use a RESUME statement with ON EOF# like
you can with ON ERR.

OFF EOF#

OFF EOF# cancels the last ON EOF# statement that was executed. If
an end of file is encountered by Business BASIC after the OFF EOF#,
the error message is displayed and the program stops. To cancel the ON
EOF examples in the previous section, you'd use

250 OFF EOF#2

350 OFF EOF#4

RUNNING A PROGRAM
AUTOMATICALLY ___________ _

There are several ways to make a program execute automatically.
You can use a CHAIN statement in one BASIC program to execute a
second BASIC program. You can also execute a series of RUN com
mands stored in a text file using the EXEC command.

CHAIN

Even though the Apple III has a tremendous amount of space avail
able for Business BASIC programs, you eventually might want to run a
program that is larger than the memory you have.

To do this, you can break the program into smaller sections and run
each section using the CHAIN statement.

CHAIN is used in one program to load and run a second program.
CHAIN automatically loads and runs the program you specify without
changing the values of variables or closing any files. You can specify the
program to be run by typing CHAIN and the pathname. For instance:

2310 CHAIN .01/CheckBal2

You can also specify where the second program should start running
by typing a comma and a line number after the pathname:

2310 CHAIN . 01/Checkbal2,300

156 I Apple Ill User's Guide

EXEC

EXEC (for execute) allows you to run a series of programs or execute
a number of commands automatically. Normally, the only way you could
execute a series of commands would be to enter one command, wait for
it to finish, enter another command, and so on.

For example, you could use EXEC to run a series of different pro
grams and then produce a catalog listing. The equivalent commands in
immediate mode might be

RUN FirstProgram

RUN SecondProgram

RUN ThirdProgram

CAT

To use EXEC you need to create a text file containing all the com
mands you want your Apple III to perform. Once you've created the text
file, you type EXEC followed by the name of the text file you've created.

EXEC tells Business BASIC to execute the commands stored in the
text file. From that point on, Business BASIC ignores anything you type
in from the keyboard with the exception of CONTROL c, which stops the
process. CONTROL c, a STOP statement, an end of a file, or an error all
cause control to return to the keyboard.

Creating an EXEC File

In order to create a "command file" to use with EXEC, you have to
write a short program that creates a text file. Here's an example:

10 REM Make up text file for Exec
20 OPENttl AS OUTPUT,"TEXT.FILE"
30 INPUT"Enter Text String: ";TXT$
40 IF LEN<TXT$)a0 THEN 60
SO PRINTttl;TXT$:GOTO 30
60 PRINT"Closing Text File":CLOSE
99 END

Line 20 opens a file named "TEXT.FILE" (you can name the file any
thing you want by changing the name in quotation marks) that takes the
text strings entered in line 30. Line 40 shows how you can use the LEN
function to wait for a RETURN without data. When the program gets a
RETURN without data, it closes the file and ends the program.

Chapter 7: Advanced Programming in Business BASIC I 157

We suggest that you carefully type in this program and save it on your
disk by typing

>SAVE TEXT.FILE.MAKER

(or whatever name you want to call it). When you run this program, it
will create a file named "TEXT.FILE" that "collects" the command
lines you entered.

You can enter any valid Business BASIC statement in the text file. A
sample run might be something like the following:

>RUN TEXT.FILE.MAKER
Enter Text String: RUN FirstProgram
Enter Text String: RUN SecondProgram
Enter Text String: RUN ThirdProgram
Enter Text String: CAT

· Enter Text String: {RETURN pressed here}
Closing Text File
)

To use the file that you've created, you would enter

>EXEC TEXT.FILE

At this point, the three programs you specified would run in sequence
followed by a catalog listing.

You can also use conditional statements to make one program
dependent on the result of another program. For instance, you could put
the following in "TEXT.FILE":

RUN FirstProgram
IF Value%=1 THEN RUN SecondProgram: ELSE RUN ThirdProgram

In this case, if the value of the variable Value% in the first program is
equal to 1, the second program is executed; otherwise, the second pro
gram is skipped and the third program is executed.

You can also include EXEC within a program to run other programs;
however, EXEC within a program must be followed by an END state
ment, although you can still use an END statement later in the pro
gram. For example:

80 EXEC TEXT.FILE:END

158 I Apple Ill User's Guide

RUNNING ASSEMBLY LANGUAGE
FROM BUSINESS BASIC ________ _

Business BASIC allows you to run assembly language subroutines
from within a Business BASIC program. If you're not familiar with the
term, assembly language is a programming language that is very close
to the machine language of the Apple III. Assembly language is advan
tageous because its programs run very fast and take up very little
memory space. However, unless you're an experienced assembly lan
guage programmer, it can be difficult to use.

Your Business BASIC master disk has a number of assembly lan
guage subroutines (small programs written in assembly language).
These subroutines, called external routines, are stored in the files that
have the .INV extension. Most of the .INV files have a file with an iden
tical name and the extension .DOC. These are document files that
explain what the subroutines do and how they're used. To read the .DOC
files, just run them using the RUN command.

You can also write your own assembly language subroutines and use
them with Business BASIC.

Using External Routines

There are four statements in Business BASIC that allow you to use
external subroutines:

INVOI<E

F·ERFORM

EXFN

EXFN/.

INVOKE

INVOKE is used to load assembly language subroutines into Business
BASIC. You type it, followed by the pathname of the external subrou
tine. For example,

INVOI<E /BGRAF.INV

loads a subroutine named BGRAF.INV. You can also load a number of
subroutines by separating their pathnames with commas:

INVOKE /BGRAF.INV,.D2/PRINT,.PROFILE/CRUNCH

Chapter 7: Advanced Programming in Business BASIC I 159

INVOKE erases any subroutines that you previously loaded into
memory. Using INVOKE without a pathname erases any subroutines,
freeing up memory space for programs.

Passing Arguments

An external assembly language subroutine is in many ways similar to
a Business BASIC subroutine that you call with a GOSUB statement.
There is, however, one major difference. An internal subroutine (called
with a GOSUB) has access to all the constants and variables within the
program. However, because a subroutine you use with INVOKE is
external to the Business BASIC program, you must let the subroutine
know where the information to work on resides and where to put the
new information it processes. This is done using an argument list. The
external subroutine uses the argument list to communicate with the
main Business BASIC program (the calling program).

There are two kinds of external subroutines that can be called from a
Business BASIC program: procedures and functions. It might be help
ful to think of the connection between the subroutines and the main
program as a one-way and two-way street. An external function is a
two-way street, taking data from the main program and returning data
to it. A procedure is a one-way street, in that it takes data from the main
program but doesn't return a result.

The exact arguments passed to and from an external subroutine vary
depending on what the subroutine and the calling program require.
(We'll explain using external subroutines in more detail in the next
chapter.)

PERFORM

PERFORM executes the subroutine that you specify, provided it's
been loaded into memory by the INVOKE statement. If the subroutine
requires arguments, the argument list is enclosed in parentheses, with
individual arguments separated by commas. For instance:

PERFORM Special<1234.67,Widgets>

In this example, "Special" is the name of the assembly language subrou
tine. The real number 1234.67 and the value of the variable Widgets is
passed to the subroutine.

A real number or single variable argument is passed to an external
subroutine by using the value or the name of the variable in the

160 I Apple Ill User's Guide

argument list. If you're passing an integer or long integer to an external
routine, the character that specifies the variable type must precede the
argument. A "%" specifies an integer, and " & " specifies a long integer.
Here's an example:

PERFORM Special<'l.Employees,~Population>

In this case, the value of the integer "%Employees" and the long integer
"&Population" is passed to the subroutine.

You can also pass the address (location in memory) of an argument to
a subroutine by using an "@" sign. For instance,

PERFORM Special<123.43,@Widgets>

passes the address of the variable Widgets to the routine.

EXFN.

EXFN. is similar to PERFORM, except that it's used with an exter
nal function, which returns a value.

The syntax for EXFN. is a bit different from the PERFORM state
ment. Here's an example:

120 PRINT EXFN.Interest<.015,'l.Period)

We'll assume that "Interest" is an external subroutine (function) that
calculates the interest on a loan. This statement would pass the interest
rate (.015) and the value of an integer variable named "%Period" to the
function and print out the value that's returned from the function.

As you can see, you can use EXFN. as part of a Business BASIC
statement. Also, just like PERFORM, you can use an"@" to specify the
address of a variable.

EXFN%

As you might guess, EXFN% is similar to EXFN., except that the
value returned to the Business BASIC program is an integer.

FINDING THE BUGS __________ _

There will be times when you spend a great deal of time typing in a
Business BASIC program but get nothing but error messages when you

Chapter 7: Advanced Programming in Business BASIC I 161

run it. The process of finding and correcting the mistakes is called
debugging.

Business BASIC is very helpful in debugging, usually giving you spe
cific error messages and line numbers where errors occurred. (See
Appendix B for a full list of Business BASIC error messages.)

TRACE and NOTRACE

The TRACE command helps you isolate an error by telling you which
line is being executed at any given moment. You start the process by
typing TRACE at the Business BASIC prompt prior to running a pro
gram. From that point on a"#" will be printed followed by the number
of the line that is being executed.

You can turn off the tracing by typing NOTRACE at the Business
BASIC prompt.

Handling Errors- ON ERR and OFF ERR

When an error occurs in a running program, you receive an error
message and the program stops, returning you to immediate mode.
However, there will be times when you want a program to report the
errors and somehow keep running.

The ON ERR statement allows a program to branch to a subroutine
when an error occurs. Within the subroutine you can generate your own
error message and execute any error-handling procedures that are
necessary. When you are through, you can return to the main program.
Here's an example:

10 REM Error Handling
20 ON ERR GOSUB 100
30 PRINT"Type a whole number on the keyboard"
40 INPUT XY.
50 PRINT"You Typed ";XY.
60 GOTO 10
70 END
100 REM Error Handling Subroutine
110 PRINT"You can only type a whole number, try again"
120 RESUME

This program lets you know if you type anything other than a whole
number. If you enter anything other than an integer, the program
branches to the subroutine starting at line 100. The RESUME state
ment returns the program back to the point where the error was found.

162 I Apple Ill User's Guide

OFF ERR is used to cancel the last ON ERR statement, allowing you
to branch to different error subroutines in different sections of the
program.

OPTIMIZING PROGRAMS ________ _

One of the goals of writing a program is to have it run as fast as
possible and occupy as little memory space as possible. You won't have
to worry about optimizing short programs, but as you become proficient
in Business BASIC and write longer and longer programs, you'll be
concerned about conserving memory space.

Remember that some of the things you do to make programs run fas
ter take more memory space, while some of the space conservation mea
sures will -make the program run slower.

Here are a few suggestions for making your programs run faster.

Avoid using constants whenever possible. You should assign the
value of a constant to a variable immediately (for example, Inter
est=.01525), and use the variable for the value throughout the pro
gram. This is important if you repeatedly use an integer value in a
real expression. Business BASIC needs more time to convert the
integer to a real number than to look up the value of the variable.

Variables that are referenced often from within a program should
be assigned a value as early as possible. Business BASIC keeps a
sequential list of variables in its memory; each time the variable is
referenced, it must look up its value by going through the list. If the
value of an often used variable is at the top of the list, the program
will find it faster.

Put often used subroutines as near as possible to the beginning of
the program. Each time Business BASIC encounters GOSUB or
GOTO statements that reference a line number less than the cur
rent line number, it starts at the beginning and searches through
the entire program until it finds the subroutine or line number it
wants.

Saving Space

Here are a few hints for making your program fit into less memory
space:

· Use INPUT instead of DATA statements whenever possible, since

Chapter 7: Advanced Programming in Business BASIC I 163

the data stored in a DATA statement can take up a great deal of
space.

Use external data files instead of including the data in the program.

Use arrays of integers instead of arrays of real numbers whenever
possible.

Assigning constants to variables speeds up the program and also
saves space in most cases because the memory space for the con
stant is allocated only once rather than for each occurrence of the
constant.

Use the same variables as often as possible. If you've used a variable
to store a temporary result that you no longer need, reuse it when
you need a variable to store a new value. (If you're reassigning the
value of a string variable, use a FRE statement to reorganize the
unused memory space.)

If you repeat the same series of calculations often, use a subroutine.
Rewriting the same routine over and over again uses a great deal of
memory space.

Although it's sometimes handier to use "1 " as the first index vari
able in an array, use the "0" element (for example A(O)) that all
arrays have.

Use short variable names.

Memory Space

When you need to save memory space, it's handy to know how much
space the Apple III uses to store programs and data.

Storage space (like memory) is given in bytes. A 128K Apple III has a
total of 131,072 bytes of storage space; a 256K system has 262,144. The
Business BASIC interpreter and the operating system take up nearly
70K of space -leaving about 60K of memory space for you to use in a
128K system and about 192,000 in a 256K system. A 60K program
would be quite long. (As you can see, if you have a 256K system, you
don't have to worry too much about saving space. But remember that
the program you write just might be run on a 128K system.) You can
find out how much memory space you have left by typing PRINT FRE.

Here's a summary of how much space the various elements of Busi
ness BASIC use:

Constants. Constants use one byte per digit.
Numeric Variables. One byte is used for each character of the

variable name. Four bytes are used for a real number, one byte for the

164 I Apple Ill User's Guide

type, and one byte for "linking" (attaching) to memory. (Integers use
two bytes for the value; long integers use eight bytes.)

Strings. Strings are stored in two parts: a three-byte string descrip
tor, describing the length of the string and where it is located in
memory, and one byte for each character in the string.

String Variables. Stored as a three-byte string descriptor, string
variables use one byte for each character of the string name, one byte
for each character of the string, plus five additional bytes.

Arrays. Arrays use two link bytes, one type byte, one byte for each
character of the array name, one byte for the number of dimensions,
and two bytes per dimension. Each element of an integer array takes
two bytes; each element of a real integer takes four bytes; each element
of a long integer array eight bytes, and each element of a string array
three bytes per character.

Creating Graphics
And Sound 8

One of the Apple III's most important and impressive features is its
ability to create a wide range of high-resolution graphics. You can
create your own graphics from Business BASIC by using the .GRAFIX
device driver and the library of assembly language graphics routines
stored under the name BGRAF.INV on your Business BASIC disk. It
isn't necessary for you to know anything about assembly language pro
gramming, since all you need to do is use the INVOKE and PERFORM
statements to call assembly language subroutines. (If you need a review,
see Chapter 7.)

The Apple III's .AUDIO driver also lets you create a wide range of
tones that you can string together into "music." This capability is also
contained in assembly language subroutines that you can call from
Business BASIC. Later in this chapter, we'll take a close look at using
the audio driver.

Before we get started, make sure you have the .GRAFIX and .AUDIO
drivers installed on your Business BASIC working disk. If you don't, get
out your master disk and see Chapter 4 for instructions on how to install
a device driver.

You need a color video monitor to create the most eye-popping graph
ics, but don't despair if you don't own one. You can still create impres
sive graphics with a monochromatic display. Even if you don't have a
color display, you can still create color graphics for use when you pur
chase one.

Although creating graphics is a simple matter from Business BASIC,
using the advanced features of the graphics driver requires ;:t lot of pro
gramming experience. In this chapter, we'll concentrate on the "basics."
(For additional information, see Volume 2 of the Apple Business BASIC
Reference Manual.)

165

166 I Apple Ill User's Guide

APPLE Ill GRAPHICS __________ _

The Apple III has four graphics modes, as shown in Figure 8-1.

Mode 0. This mode is 280 dots across by 192 dots high. You can
only create black-and-white graphics in mode 0. (These
graphics display in black-and-white on a color monitor.)

Mode 1. This mode is also 280 by 192 dots; however, 16 colors are
available, although there are some restrictions.

Mode 2. This is the highest-resolution, black-and-white mode; it
is 560 dots across by 192 dots high.

Mode 3. This is the unlimited 16-color mode that is 140 dots
across by 192 dots high.

The individual points of the Apple III graphics display are part of an
x-y coordinate system. The x-coordinates are those on the horizontal axis
and y-coordinates are points on the vertical axis. The origin is the dot in
the lower left-hand corner and has the coordinates 0,0. Figure 8-2 shows
the x-y coordinate system for mode 0.

Mode 0: Black-and-White

I·
1192 .J 280

Mode 1: 16 Colors (limited)

I·
1m

·I 280

Mode 2: Black-and-White I~ 1192
·I 560

Mode 3: 16 Colors

1-
1192

·I 140

Figure 8-1. The four graphics modes

Chapter 8: Creating Graphics and Sound I 167

(0,191) (279,191)

y

(0,0) (279,0)

------------X----------~~

Figure 8-2. x-y coordinates in graphics mode 0

GRAPHICS DISPLAY BUFFERS _______ __

The graphics commands you'll be using don't operate directly on the
video display. Instead, the graphics are "created" in special areas of
memory called display buffers, which are set aside to hold the graphics
data. Once an image has been stored in a display buffer, you need to
execute a command to display the image on the screen.

You can use several display buffers; the exact number depends on the
graphics mode you're using and whether your Apple III has 128K or
256K of RAM (random-access memory). You can display the contents of
one buffer while a program is creating an image in another buffer.

APPLE Ill COLORS __________ _

Depending on which mode you use, the Apple III can produce graph
ics in 16 colors. To use the graphics routines, you'll need to refer to the
colors by number (0-15). The color numbers are listed in Table 8-1.

168 I Apple Ill User's Guide

Table 8-1. Graphics Mode Colors

Number Color

0 Black
1 Magenta
2 Dark Blue
3 Purple
4 Dark Green
5 Gray 1
6 Medium Blue
7 Light Blue
8 Brown
9 Orange
10 Gray 2
11 Pink
12 Green
13 Yellow
14 Aqua
15 White

If you're using a monochrome video display in graphics modes 1 or 3,
you'll see these colors as 16 sequential shades of gray ranging from
black (0) to white (15). If you're using a monochrome video display in the
black-and-white only modes (graphics mode 0 or 2), all the colors other
than black (0) will be automatically converted to white.

Working With Color

'Yhen you create color graphics, you can select both the pencolor used
for creating images (lines and dots) and the jillcolor that's used as the
background. The fillcolor is also used to erase an image by "filling in"
areas that you've already plotted.

Another term you should know is the viewport-the screen area on
which you create graphics. When you first use the graphics driver, the
viewport is automatically set to the entire screen area. However, you
can change it by using the VIEWPORT procedure.

Although using the pencolor and fillcolor for plotting is the simplest
way to create graphics with the Apple III, you can also use a color table
to define what happens when you plot over a line or point you've already
drawn. A transfer option allows you to change how the color table is
used.

Chapter 8: Creating Graphics and Sound I 169

GRAPHICS ROUTINES _________ _

The BGRAF.INV module has a wide choice of procedures and func
tions you can invoke from Business BASIC to create graphics. These
procedures and functions will be explained as we go along, and a
detailed reference is included in Appendix F. ~re is a list of the rou
tines in BGRAF.INV:

INITGRAFIX Resets graphics defaults.

GRAFIXMODE Sets the mode and selects the display buffer.

GRAFIXON Displays the currently used graphics buffer on
the video display.

PENCOLOR Selects the color used for plotting.

FILLCOLOR Selects the erase color.

SETCTAB Changes the color table.

XFROPTION Transfer option.

VIEWPORT Sets the graphics area of the screen.

MOVETO Moves the cursor to the coordinates you specify.

MOVEREL Moves the cursor relative to the current cursor
position.

DOTAT Draws a dot at the coordinate you specify.

DOTREL Draws a dot relative to the cursor position.

LINETO Draws a line from the current cursor position to
the coordinates you specify.

LINEREL Draws a line relative to the current cursor position.

FILLPORT Erases the viewport.

XYCOLOR A function that returns the color at the coordi
nates you specify.

XLOC A function that returns the x-position of the cursor.

YLOC A function that returns the y-position of the
cursor.

NEWFONT Changes the character font.

SYSFONT Returns to normal type font.

DRAWIMAGE Displays a previously created graphics image on
the screen.

GSAVE Saves a graphics image you've created to disk.

170 I Apple Ill User's Guide

GLOAD Loads a previously created graphics image from
memory.

RELEASE Releases graphics memory space for running
non-graphic Business BASIC programs.

GETTING STARTED WITH .GRAFIX ______ _

Before you can create graphics, you'll have to start the .GRAFIX
driver by opening a file. Use the OPEN# command and open a file like
the following:

>OPEN#l,".GRAFIX"

Remember, you can use any file number from 1 to 10, depending on
whether you have any other files open in your Business BASIC pro
gram. Next, you'll need to invoke the graphics module by typing

>INVOKE "BGRAF. INV"

The disk drive light will come on for a few seconds and the graphics
subroutines will be loaded into the Apple III's memory.

When you open the .GRAFIX driver, a number of default conditions
are set as follows:

Graphics mode 0 (280 X 192, black-and-white)

Display buffer 1

Full screen viewport (x=O to 279, y=O to 191)

Cursor in the lower left-hand corner

Pencolor=15 (white)

Fillcolor=O (black)

Normal color table

Normal transfer function

Standard text font

You can change any of these by using the procedures in the Business
BASIC graphics module. If you wish, you can change the default~ by
editing the .GRAFIX driver (see Chapter 4).

INITGRAFIX -Initialization

When you're working with graphics, you can at any time reset four of
the graphics parameters to their default condition by typing

>PERFORM INITGRAFIX

Chapter 8: Creating Graphics and Sound I 171

Following the execution of INITGRAFIX, the viewport is set to the full
screen, the cursor is positioned in the lower-left corner, and the color
table and the transfer option are set to normal.

Choosing Mode and Buffer

The GRAFIXMODE procedure lets you change the graphics mode or
the display buffer you're working with. Remember though, that since
GRAFIXMODE is an extern11l procedure (:see Chapter 7), you'll have to
"pass" the values of variables using arguments. If you wanted to change
the graphics mode to 1 and use the second buffer, you could do some
thing like the following:

>MODE=l
>BUFFER=2
>PERFORM GRAFIXMODE<'l.MODE,'l.BUFFER>

NOTE: All graphics procedures require the arguments to be inte
gers. Therefore, you must precede a variable name with a percent sign.

Displaying Results

The GRAFIXON procedure ·displays the contents of the graphics
buffer you've selected with GRAFIXMODE (or the default). Even after
you've selected a new graphics mode and buffer, your Apple III screen
will still display the previous screen until you type

>PERFORM GRAFIXON

Until you actually create an image, what you see is a screen that's
nothing but the group of random dots that were in the graphics memory
when you opened the graphics driver. You should make it standard
operating procedure to use

>PERFORM FILLPORT

to fill in the viewport with the screen color you've selected. You can use
FILLPORT anytime you want to erase a graphics screen and start
anew.

Returning to Text Mode

Returning from a graphics mode to Business BASIC's normal text
mode is simply a matter of typing

>TEXT

172 I Apple Ill Use(s Guide

Although you won't see the command as you type the characters, as soon
as you press RETURN you'll be returned to the text mode.

SETTING THE VIEWPORT _________ _

As we explained earlier, the viewport is the area on the screen in
which graphics appear. It's similar to the WINDOW statement in Busi
ness BASIC. When you start the graphics driver, the default condition
gives you a viewport that fills the entire screen and gives you (in mode
0) an x-axis (horizontal) that extends from 0 to 279 and a y-axis (verti
cal) that extends from 0 to 192.

You can change the dimensions of the viewport by using the VIEW
PORT procedure. It has four arguments, which we'll call LEFT,
RIGHT, BOTTOM, and TOP. Here's a short program that will generate
a smaller viewport:

>LEFT=SO
>RIGHT=200
>BOTTOM=40
>TOP=150
>PERFORM VIEWPORT(%LEFT,%RIGHT,/.BOTTOM,/.TOP>

This series of commands will set the left boundary of the viewport to
x=50, the right boundary to x=200, the top boundary to y=150, and the
bottom boundary to y=40. You can return the viewport to normal by
typing

>PERFORM INITGRAFIX

CHOOSING THE PENCOLOR _______ _

To help you further understand how graphics are created, you must
become acquainted with the foreground and background. The back
ground is the screen you'll be "drawing" on. Normally it is black when
you are in a black-and-white graphics mode. The foreground is the color
you'll be "drawing" with. The PENCOLOR procedure is used to choose
the foreground color. The color numbers used with PENCOLOR are the
same as those listed in Table 8-1. In modes 0 and 2 (black-and-white
only), all colors except 0 (black) are converted to white. If you're using a
black-and-white video display with the color modes, you'll see the colors
as varying shades of gray. The higher the color number, the lighter the
shade of gray.

Chapter 8: Creating Graphics and Sound I 173

The default pencolor is 15 (white). You use the PENCOLOR proce
dure to change the pencolor. For instance,

>PERFORM PENCOLOR(%9)

will change the pencolor to orange if you're in one of the color modes or
white if you're using the black-and-white mode. You can change the
pencolor at any time.

FILLCOLOR

As you might guess, the FILLCOLOR procedure sets up the color
used for "filling in" (or erasing) shapes and areas that you've already
created. Normally, the fillcolor is the same color as the background
color.

For instance, in a color graphics mode,

>PERFORM FILLCOLOR<%9)

will set the fillcolor to orange. To erase something you've already
created, use the FILLPORT procedure to fill in the viewport with the
fill color.

MOVING THE CURSOR ________ _

In order to create graphics, you need to move the cursor around the
graphics screen. This can take some getting used to since you can't
actually see an image until you use the GRAFIXON procedure. When
ever you enter one of the graphics modes, the cursor is at the lower
left-hand corner of the graphics screen (the origin). There are two
procedures that move the cursor without drawing anything, MOVETO
and MOVEREL; two procedures that move the cursor and draw dots,
DOTAT and DOTREL; and two procedures that move the cursor and
draw lines, LINETO and LINEREL. Let's look at each of them.

MOVE TO

The MOVETO procedure moves the cursor to the x-y coordinates you
specify. It has two parameters: the x-coordinate and the y-coordinate.
Here's an example:

>PERFORM MOVET0<%100,%120>

174 I Apple Ill User's Guide

This moves the cursor to x=100 and y=120. Note that the cursor is
moved to this position, regardless of where it is on the graphics screen.
Although the cursor is at the new position, you can't see it (even if you
use PERFORM GRAFIXON). Business BASIC's graphics cursor is
always invisible.

MOVEREL

The MOVEREL procedure moves the cursor relative to its current
position. It also has two parameters specifying how far to move the cur
sor in the x and y direction. Assuming the cursor is at 100,120, you
could move it to x=80, y=160 by typing

>PERFORM MOVEREL<X-20,%40)

DOT AT

The DOTAT (dot at) procedure is similar to MOVETO except it draws
a dot at the final cursor position. (The dot is the color of pencolor.) Try
this example:

>PERFORM DOTAT<XBO,X130)

This places a dot at x= 80, y=130. To see for yourself, type

>PERFORM GRAFIXON

You'll see a small dot on the screen. Type TEXT to return to the Busi
ness BASIC screen.

DOTREL

Like MOVEREL, the DOTREL procedure moves the cursor relative
to the present cursor position. In addition, it draws a dot. Let's put a
second dot on the screen:

>PERFORM DOTREL<XSO,X-60>

This places a dot at x=130, y=70. (Use PERFORM GRAFIXON and
TEXT to confirm that the dot is there and to return to the text screen.)

LINETO

The LINETO procedure draws a line from the present cursor posi-

Chapter 8: Creating Graphics and Sound I 175

tion to the new coordinates you specify. Let's draw a line from the dot
we just drew to a point in the upper right-hand corner:

>PERFORM LINETOCX200,X170)

LINEREL

The LINEREL procedure moves the cursor to a position relative to
the current cursor location and then draws a line between the old and
new cursor position. Now let's draw a line back to a position in the
lower left-hand area of the screen:

>PERFORM LINEREL<X-lBO,X-160)

SAVING AND RETRIEVING GRAPHICS ____ _

Once you have created a graphics image, you can save it in a Business
BASIC file. Images saved in this way can be loaded from within any
Business BASIC program.

GSAVE

GSAVE works almost exactly like Business BASIC's SAVE com
mand. However, since it's part of the graphics module, you'll need to use
it with the PERFORM command. For instance, to save the lines we
created a few paragraphs ago, you can type

>PERFORM GSAVE. "DEMO.GRAPHIC"

The rules for naming your graphics file are the same as for naming
any other Business BASIC file. When you type CAT, you'll see your file
saved with the type FOTO. (All graphics are saved with the FOTO
type.) GSAVE saves not only the graphics, but also all the parameters
such as mode, color, and so forth.

GLOAD

To transfer a graphic image into the current graphics buffer you use
the GLOAD command. But remember that if you're including a graph
ics image in the middle of a "standard" Business BASIC program, you'll

176 I Apple Ill User's Guide

need to open a file for graphics and invoke the graphics module. Here's
an example:

>340 DPEN*1, 11 .GRAFIX 11

) 35(1 I NVDI<E II BGRAF. I NV II
>360 PERFORM GLOAD. 11 DEMO.GRAPHIC"
)370 PERFORM GRAFIXON
>380 FOR X=1 TO 1000
)390 NEXT X
>400 TEXT: PERFORM RELEASE

When used in the middle of a program, these lines would open a file
for graphics, ' invoke the graphics module, load the demonstration
graphic, display it for a few seconds, and then return to the text
(nongraphics) mode.

RELEASE

If you're observant, you noticed that the last statement in the short
program we just used was PERFORM RELEASE. This Business
BASIC statement should be used when you're exiting the graphics
mode. As you might guess, RELEASE "releases" memory space that is
reserved for graphics.

Each time you change the graphics mode or the display buffer, addi
tional memory space is set aside. Although the memory of your Apple
III is large by personal computer standards (especially if you have a
256K machine), if you use lots of graphics and have a large program,
you could eventually run out of space. Therefore, it's good programming
practice to use RELEASE each time you leave the graphics mode.

NOTE: RELEASE "reclaims" graphics memory in steps. The first
RELEASE statement reclaims 16K of buffer space, and each subse
quent release reclaims 8K. If you were using the maximum amount of
graphics memory (32K), you'd need to use PERFORM RELEASE three
times.

Closing the Graphics Driver

If you leave the graphics mode and do not plan to return, you should
close the file that contains the graphics driver. You could change the
previous example to

Chapter 8: Creating Graphics and Sound I 177

>340 OPENtt1, ".GRAFIX"
> 350 INVOKE ,·, BGRAF. I NV"
>360 PERFORM GLOAD. "DEMO.GRAPHIC"
>370 PERFORM GRAFIXON
>380 FOR X•1TO 1000
>390 NEXT X
>400 TEXT: PERFORM RELEASE
>410 CLOSEtt1

CLOSE#l in line 410 closes the graphics file. If you need to use
graphics again from within the same program, you need to reopen the
file and invoke the graphics driver once again. Doing so would restore
the default graphics mode conditions.

Note that we still had to use RELEASE to reclaim the graphics
memory for program use since closing the graphics file doesn't do that.
You must, of course, use RELEASE before you close the file.

Remember that it isn't absolutely necessary to close the graphics file
if you won't be doing additional graphics, but it's a good programming
practice to do so. Any time you use RUN, LOAD, or NEW statements,
all open files are automatically closed.

ADVANCED GRAPHICS PROCEDURES ____ _

Until now, we've shown you how to create simple dot and line graphics
from Business BASIC. But there are a number of advanced procedures
that allow you to customize how the graphics will look.

SETCTAB

When a line you've drawn crosses over another line in one of the color
graphics modes, it's drawn over the line it crosses. (You don't have to
worry about this in the black-and-white graphics modes since all lines
will be black or white.) For example, if you draw a purple line, and then
draw a brown line that crosses it, the brown line appears on top of the
purple line. (The point where the lines intersect is changed to brown.)
The SETCTAB procedure lets you set up a color table that specifies
what should happen when a line of one color crosses a line of another
color or when a dot of one color is plotted over a dot of another color. For

178 I Apple Ill User's Guide

instance, you might want to have a new line crossing under another line
and not change the original color where the lines intersect.

SETCTAB has three parameters:

The source color (current pencolor or fillcolor).

The screen color (color of the existing dot or line that will be plotted
over).

The color that will result when a dot or a line is plotted over a dot or
line of a different color.

Since there are 16 source colors and 16 screen colors, you have a total
of 256 color combinations.

If you want to have a yellow line (13) show medium blue (6) where it
crosses an orange area (9), you could use something like the following:

>PERFORM SETCTAB<%13,%9,%6)

Here 13 is the color of the source, 9 is the color of the screen, and 6,
the color of the result.

If you don't use the SETCTAB procedure, the color of the intersection
where two lines cross will be the color of the most recently drawn line.

XFROPTION - Black and White

XFROPTION is similar to SETCTAB in that it specifies what
happens when one color is plotted over another. However, because of its
many options (and the strange things that can happen when multiple
colors are plotted with it), XFROPTION is used with black-and-white
graphics.

XFROPTION has only one argument: the number specifying the
option. There are eight options (0-7), as shown in Table 8-2.

The PERFORM XFROPTION statement tells Business BASIC to use
the transfer option you specify from that point on as you proceed with
plotting. For instance,

>PERFORM XFROPTION<Y.1>

means that all plotting from that point on will use the overlay option. If
you want to return to the normal replace option, you'd need to type

>PERFORM XFROPTION<Y.O>

Let's look at the options more closely.

Replace (0). This is the default option for graphics. When you plot a

Cnapter 8: Creating Graphics and Sound I 179

Table 8-2. XFROPTION options

Option
Number Transfer Option Result Color

0 Replace Source color
1 Overlay (Source color) OR (Screen color)
2 Invert (Source color) XOR (Screen color)
3 Erase (NOT Source color) AND (Screen color)
4 Inverse Replace (NOT Source color)
5 Inverse Overlay (NOT Source color) OR (Screen color)
6 Inverse Invert (NOT Source color) XOR (Screen color)
7 Inverse Erase (Source color) AND (Screen color)

line on the screen, it ignores whatever other color is on the screen and
draws the line in the color you specify.

Overlay (1). Allows you to plot over an existing background or fig
ure without erasing the background or figure.

Invert (2). Primarily used to plot white lines through a white or
black area. White lines drawn through a black area will show up
white, and white lines drawn through a white area will show up
black. Plotting the same white line twice will erase the line.

Erase (3). A white line crossing a white area turns to black. (It's
called "erase" because it is used to erase a white area.) All other com
binations of lines and backgrounds have no effect.

Inverse Replace (4). Converts a white line to black and a black line
to white, then plots over the existing screen.

Inverse Overlay (5). Converts a white line to black and a black line
to white, then plots over the existing screen without erasing the exist
ing figures or background.

Inverse Invert (6). Primarily used to plot black lines through a
white or black area. Black lines through black areas show up white,
and black lines through white areas show up black.

Inverse Erase (7). A black line will appear anywhere a line crosses
a white area.

To get an accurate picture of the result, you need to work with the
binary representation of the colors. In this case, the binary representa
tion for black is 0000 0000, and white is 11111111. Notice that Table 8-2
expresses the resulting color in terms of a logical equation. If you com
bine the binary representation for the source color and the screen color

180 I Apple Ill User's Guide

using the operations shown in Table 8-2, you will be able to predict what
happens when you plot one color over another.

Admittedly, XFROPTION is a difficult procedure to understand.
You'll seldom have any use for it unless you're an experienced pro
grammer creating complicated graphics.

READING THE CURSOR LOCATION _____ _

The graphics module has three functions that let you read the location
of the cursor and the color of the dot at the cursor location. Besides
allowing you to keep track of the cursor's position and color while you're
creating graphics, these functions are essential for programs such as
games that require the computer to know where the cursor is.

Since they are external functions, you'll need to use the external func
tion statement (EXFN%) in order to use them.

The function XYCOLOR returns the color of the dot at the current
location of the cursor. For instance, try these statements:

>COLOR%=EXFN%.XYCOLOR
>PRINT COLOR%

The XLOC function returns the x-coordinate of the cursor; YLOC
returns the y-coordinate. You can use statements like the following to
find the coordinates:

>X%=EXFN%.XLOC:Y'l.•EXFN'l..VLOC
>PRINT "THE CURSOR POSITION IS ";XY.","Y%

MIXING TEXT AND GRAPHICS ______ _

As you know, a graph without labels is essentially useless; you need to
be able to print regular text with your graphics. That's easy to do in
Business BASIC with PRINT#. Since we've already opened the .GRAFIX
device driver as file number 1, PRINT#l will allow you to print text on
a graphics screen.

All you need do is move the cursor to where you want the text to
appear and use PRINT#. Here's an example:

>PERFORM MOVETO<Y-50,%100)
> PRINTtU "APPLE I I I GRAPHICS"
>PERFORM GRAFIXON

Chapter 8: Creating Graphics and Sound I 181

(Type TEXT to return to the text screen.) You'll notice that the size of
the characters is considerably different from text mode characters. In
fact, the size of text characters varies from graphics mode to graphics
mode. Here's the maximum number of text characters you can display
on one line in the various modes:

Mode 0 40 characters

Mode 1 40 characters

Mode 2 80 characters

Mode 3 20 characters

Note that although PRINT# for graphics follows all the rules for a
normal PRINT statement (you can use TAB, SPC, commas, and semi
colons), it does not recognize the edge of the screen. If you use PRINT#
for characters beyond the edge of the screen, they'll be lost. (To refresh
your memory, in text mode letters are automatically wrapped around to
the beginning of the next line when they reach the right edge of the
screen.)

Text characters appear in the color set by the PENCOLOR proce
dure. We strongly suggest that you use white characters most of the
time, since they're the most readable. Although you can use other colors,
certain combinations are sometimes difficult to decipher.

BEYOND SIMPLE GRAPHICS- BIT ARRAYS ___ _

Up to now, we've created simple graphics using the graphics driver.
With some careful planning, you can create impressive graphics using
the procedures and functions described. However, there are still a
number of graphics procedures not yet explained. Business BASIC lets
you store images as bit arrays-the actual arrays of ls and Os that
make up a "picture." The .GRAFIX driver has a number of procedures
that let you work with bit arrays.

The DRAWIMAGE procedure displays a graphic image that you've
previously created and stored in a bit array.

The NEWFONT procedure lets you change the type styles of text that
you mix with your graphics by using a custom font you've stored as a bit
array.

The SYSFONT procedure returns the graphics font to the standard
character set.

NOTE: Even though storing an image as a bit array allows you to do

182 I Apple Ill User's Guide

a number of advanced graphics, creating, storing, and using a bit array
requires quite a bit of programming experience and an intimate knowl
edge of the binary and hexadecimal numbering systems. Since this
book is designed for the average Apple III user, a discussion of bit
arrays is beyond our scope. If you're interested in learning more, see
Volume II of the Apple Business BASIC Reference Manual.

CREATING MUSIC WITH THE APPLE Ill ____ _

By this point, you're probably well aware of the "beep" that the Apple
III produces when you make an error. However, your Apple III is capa
ble of creating more than a single beep. You can control the volume,
frequency, and duration of the tone to create music.

In order to produce tones, you'll need to have the .AUDIO device
driver installed on your Business BASIC disk. (If it isn't installed, see
Chapter 4.) You send data to the .AUDIO driver in the form of special
characters. After the tone or succession of tones is generated by the
speaker, the .AUDIO driver immediately returns control to the Business
BASIC program. In that way, it differs from the .GRAFIX driver,
which requires a TEXT command to return control to Business BASIC.

Audio Parameters

In order to produce music, you must send the audio driver four
parameters:

Mode. This tells the driver that you're requesting a tone. The
number you must use for the mode is 128.

Volume. How loud the tone will be. There are 64 volume levels
ranging from 0 (volume off) to 63 (loud).

Count. The pitch of the tone. The range of count is 18383 to 100. The
higher the count, the lower the pitch, giving you a range from 31 to
5000Hz (cycles per second). Use this formula to determine the count:

50900
frequency = ---

count (18383 to 100)

This produces a seven-octave range-from C three octaves below
middle C to E-flat four octaves above middle C.

Time. The length of the tone. The range is from 0 (no tone) to 300

Chapter 8: Creating Graphics and Sound I 183

(about five seconds). Use the following formula to determine the dura
tion of a tone in seconds:

duration = time (0-300)
60

Making Music

The technical details of how an audio driver produces tones are
beyond the scope of this book. (For detailed information, see Apple's
Standard Device Driver's Manual.) The audio driver only produces
tones when it receives a six-character string, one character each for the
mode and volume and two characters each for the count and time. If
you're not an experienced programmer, converting the count and time
to byte values can be difficult and time-consuming. Instead, here's a
subroutine that you can plug into any program in which you want to
create tones. It does all the necessary conversions for you.

)500 OPEN4t1 AS OUTPUT,".AUDIO":MOOE'Y.=128
>510 PRINT4t1;CHR$(MOOE'Y.>;CHR$(VOL'Y.>;
)520 PRINT4t1;CHR$<CNT'Y.-256*INT<CNT'Y./256>>;CHR$(INT<CNT'Y./256>>;
>530 PRINT4t1;CHR$(TIME'Y.-256*INT<TIME'Y./256>>;CHR$(INT<TIME'Y./256>>;
>540 CLOSE4t1:RETURN

This subroutine makes all the necessary ASCII and other conversions
so that you can enter VOL%, CNT%, and TIME% directly in your pro
gram and use a GOSUB statement to produce the tones. (We suggest
you carefully copy this program. The semicolons are very important.
Then SAVE it on your BASIC disk under a logical name. That way,
every time you create a BASIC program in which you want to create
tones, all you have to do is merge it into your program using LOAD. We
used arbitrary line numbers for the subroutine, but you can choose your
own. You can also use file numbers other than 1 if you wish.)

Using this subroutine to create music is a simple matter of using
FOR-NEXT, DATA, and READ statements. Here's an example of a
short program that runs through eight octaves of C:

10 VOL'Y.=30:TIME'Y.=10
20 FOR X=1 TO 8
30 READ CNT'Y.
40 DATA 15564,7782,3891,1946,973,486,243,122
50 GOSUB 500
60 NEXT X
70 END
500 OPEN4t1 AS OUTPUT,".AUDIO " :MODE%=128

184 I Apple Ill User's Guide

510 PRINTI1;CHR$<MODE%l;CHR$<VOL%>;
520 PRINT11;CHR$<CNT%-256*INT<CNT%/256ll;CHR$(INT<CNT%/256ll;
530 PRINT11;CHR$(TIME%-256*INT<TIME%/256>l;CHR$<INT<TIME%/256>>;
540 CLOSEI1:RETURN

This program plays each tone with the same volume and duration,
but you can also vary them. Here's the same program that varies the
duration for a miniature piece that might be called "The Call of the
Wild Programmer."

10 VOL%=30
20 FOR x~1 TO 8
30 READ TIME%,CNT%
40 DATA 25,15564,5,7782,15,3891,5,1946,30,973,20,486,1,243,100,122
50 GOSUB 500
60 NEXT X
70 END
500 OPEN4H AS OUTPUT, " • AUD I 0" : MODE%= 128
510 PRINTI1;CHR$<MODE%>;CHR$ <VOL%>;
520 PRINTI1;CHR$<CNT%-256*INT<CNT%/256>l;CHR$<INT<CNT%/256ll;
530 PRINT11;CHR$<TIME%-256*INT <TIME%/256l>;CHR$(INT <TIME%/256>>;
540 CLOSEI1:RETURN

As you can see, the possibilities are almost endless. You can vary the
volume as well. If you're musically inclined, your Apple can become a
versatile music maker.

Converting Count to Notes

You have to enter a COUNT value in order to produce tones with your
Apple III. To do this, you have to know which count values correspond to
standard notes. Table 8-3 shows the count values and the notes they cor
respond to.

Finally, if you want to create a certain frequency in Hz, you can use a
variation of the formula we used earlier in this section:

Count = . 50900
Frequency

Chapter 8: Creating Graphics and Sound I 185

Table 8-3. Count Values for Creating Notes

Octave 1 2 3 4 5 6 7 8

B 8245 4122 2061 1031 515 258 129
A# 8735 4368 2184 1092 546 273 136
A 9255 4627 2314 1157 578 289 145
G# 9805 4902 2451 1226 613 306 153
G 10388 5194 2597 1298 649 325 162
F# 11006 5503 2751 1376 688 344 172
F 11660 5830 2915 1457 729 364 182
E 12353 6177 3088 1544 772 386 193
D# 13088 6544 3272 1636 818 409 204 102
D 13866 6933 3467 1733 867 433 217 108
C# 14691 7345 3673 1836 918 459 230 115
c 15564 7782 3891 1946 973 486 243 122

Middle C is 1946.

Business BASIC
Quick Reference A

This appendix is a complete reference to Business BASIC with com
mands and statements listed alphabetically. Although we suggest you
thumb through it now, you'll find it most helpful when you're writing
programs to jog your memory on particular commands and statements
and to see how they're used.

In this appendix, we use a standard method to present the form of
each statement and function in Business BASIC. Listed here are the
punctuation, capitalization, and other conventions we used.

{}

[]

Braces indicate repeatable items. One of the enclosed
items must be present. (Braces don't appear in actual
Business BASIC statements.)

Brackets indicate that the enclosed' items are optional.
(Brackets don't appear in actual Business BASIC state
ments.)

A vertical slash separates alternative items, any one of
which can be used.

Ellipses indicate that the preceding item can be re
peated. (Ellipses don't appear in actual Business BASIC
statements.)

Line numbers All statements except those marked "immediate mode
only" can be used in deferred execution with line num
bers.

UPPERCASE Uppercase words and letters must appear exactly as
shown.

Italics Generic terms are italicized. You'll have to supply
the exact wording or value(s) according to the follow
ing generic definitions.

187

188 I Apple Ill User's Guide

The following italicized generic terms are used in statements and
functions:

const

expr

expr$

exprnm

jilenum

line

memloc

message

pathname.

recnum

statementlist

var

varnm

var(sub)

Any numeric or string constant.

Any numeric string, relational, or Boolean constant,
variable, or expression; any valid combination.

Any string constant, variable, or expression.

Any numeric constant, variable, or expression.

A specified disk file (1-10) created by an OPEN#
statement.

Any BASIC program line number.

Any memory location.

Any text string enclosed in quotes.

The name of and "path" to a specified file. (See
Chapter 3.)

A record number in a disk file.

One or more Business BASIC statements.

Any numeric, constant, or string variable.

Any numeric variable name.

Any subscripted integer, numeric, or string variable.

BUSINESS BASIC STATEMENTS
AND FUNCTIONS __________ _

ABS

Returns the absolute value of an arithmetic expression.

Format: ABS(expr)

Examples:

>PRINT ABS<23.67)
23.67
>PRINT ABS<-23.67)
23.67

Appendix A: Business BASIC Quick Reference I 189

Arithmetic Operators

Business BASIC has nine arithmetic operators. The operands can be
real numbers, integers, or long integers (up to 19 digits in length). Long
integers cannot be mixed with real numbers or integers.

Operator Operation

+ Positive number
Negative number

1\ Exponentiation
* Multiplication
I Division
MOD Modulo*
DIV Integer division*
+ Addition

Subtraction
*Used with long integers only.

Arrays

An ordered collection of individual variables. All the variables in an
array must be of the same type. The array name is any legal variable
name, with the last character the type of variable within the array as
follows:

%Integer
& Long Integer
$String

Each element of the array is numbered, with the first element num
bered as 0. To access any element of an array, specify the name of the
array followed by the subscript (the number of the element within the
array).

An array can have one, two, three, or more dimensions, and the
number of elements in any array is limited by the available memory. If
you use an array without using a DIM statement (see DIM), Business
BASIC creates an array with 11 elements per dimension, numbered
0-10.
Examples:

>PRINT WIDGETS/.(8)

>MONTH$<7>="JULY"

>PRINT SALES<3,4>

190 I Apple Ill User's Guide

ASC

Returns the ASCII value (in decimal) of the first character of a string
expression.

Format: ASC(expr$)

Example:

>PRINT ASC<"APPLE">
65

ATN

Returns the arctangent of an arithmetic expression. The value
returned is in radians.

Format: -ATN(expr)

Example:

>PRINT ATN<.5643>
.513756

BUTTON

Returns a value depending on how the switch of a game paddle is set.
BUTTON(O) and BUTTON(l) refer to the paddle connected to PORT B
on the rear panel of the Apple III. BUTTON(2) and BUTTON(3) refer
to the paddle connected to PORT A. In all cases, if the switch on the
paddle is closed (pushed in), a value of 255 is returned; otherwise, a 0 is
returned.

Format: BVTTON(O<=expr<=3)

Example:

100 IF BUTTON<0>=255 GOTO 200

CATALOG (or CAT)

Displays a list of files on the indicated volume or subdirectory.

Format: CAT[ALOG] [pathname]

Examples:

CAT

CAT .02

Appendix A: Business BASIC Quick Reference I 191

CHAIN

Loads and runs the program or portion of a program you specify
without clearing any variables or closing any files from the previous
program.

Format: CHAIN palhname [,line]

CHAIN is primarily used for breaking a large program up into
smaller pieces that can be run in sequence.

Example:

110 CHAIN .02/LINK.FENCE

CHR$

Returns the character corresponding to the ASCII code of the expres
sion. Valid numbers are 0 through 255.

Format: CHR$(integer)

Example:

>PRINT CHR$ < 120>
X

CLEAR

Sets all numeric variables to 0, clears all string variables, clears all
BASIC pointers and stacks, and closes any open disk files.

Format: CLEAR

CLOSE and CLOSE#

Closes all open files or specified file number.

Format: CLOSE[# jilenum]

Examples:

)780 CLOSE

>540 CLOSE#2

192 I Apple Ill User's Guide

CONT

Resumes execution of a program that's previously been halted by
STOP, END, or CONTROL c.

Format: CONT

[CONTROL] [5], [6], [7], [8], [9]

When entered from the numeric keypad only, the following combina
tions perform special functions:

[CONTROL 51 switches off the video screen. This allows programs to
run faster since it takes a great deal of microprocessor time to "refresh"
the screen. Pressing [CONTROL 51 a second time turns the screen back on.

[CONTROL 61 clears the typeahead buffer. For example, if you typed in
a command while Business BASIC was running a program, the com
puter would complete what it's doing and then look at the typeahead
buffer to see if you've typed in a command. If you change your mind
before BASIC looks at the typeahead buffer, typing [CONTROL 61 will
clear the buffer.

[CONTROL 71 turns output to the video screen off (although what was
on the screen will remain there). A second [CONTROL 71 resumes output.

[CONTROL 81 makes the system ignore all special formatting ASCII
control characters sent to the screen. A second [CONTROL 81 resumes
normal operation.

[CONTROL 91 clears the screen buffer. A second [CONTROL 91 resumes
normal operation.

CONV

Returns the real value of an arithmetic expression.

Format: CONV(expr)

Example:

>PRINT CONV(34.23>
34.23

Appendix A: Business BASIC Quick Reference I 193

CONV$

Returns a string value of an expression.

Format: CONV$(expr)

Example:

>PRINT CONV$(34.23>
34.23

CONV&

Returns the long integer value of an expression.

Format: CONV &(expr)

Example:

>PRINT CONV&<34.23>
34

CO NV%

Returns an integer value of the expression, rounded off to the nearest
whole number.

Format: CONV%(expr)

Example:

>PRINT CONV%<34.23>
34

cos
Returns the cosine of an angle given in radians.

Format: COS(expr)

Example:

>PRINT COS<2.435>
-.760579

CREATE

Creates directories, subdirectories, and text or data files. If you'll be
using the file for random access, you can specify the length (in bytes) of

194 I Apple Ill Use(s Guide

each record in the file. If the length isn't specified, each record is 512
bytes.

Format: CREATE pathname,CATALOGITEXTIDATA [,expr]

Examples:

100 CREATE BASIC/GAMES/Spacedodgers,DATA

110 CREATE Address.Book,TEXT,200

DATA

Creates a list of values to be assigned in a READ statement.

Format: DATA const [,const] ...

Example:

110 DATA 23.45,"Flytrap",23156

DEF FN

Defines functions to be used within programs.

Format: DEF FN name= expr

Example:

100 DEF FN Compute.Int=Period/./Princ*Int

DEL

Deletes specified program line(s).

Format: DEL line [TOI,I - line]

Examples:

DEL 110

DEL 100 TO 160

DEL 100, 160

DEL 100-160

Appendix A: Business BASIC Quick Reference I 195

DELETE

Removes a subdirectory or file. A subdirectory can only be deleted
after all its files have been deleted.

Format: DELETE palhname

Examples:

DELETE Int~st~ate

DELETE /BASIC/Games

DIM

Allocates space for an array.

Format: DIM var(i nteger[,i nteger] ...)

Examples:

100 DIM WidgetsXC100,10,3J

110 DIM ReceivablesC200,200J

The maximum number of elements in an array depends on the avail
able memory. If you refer to an array before using DIM, Business
BASIC automatically creates an array with eleven elements (Q-10) per
dimension.

ELSE

Gives the program a command if the conditions of an IF-THEN
statement are not met.

Format: ELSE exprjline

Example:

200 IF DAY$="Thu~sday" THEN GOSUB 600:ELSE GOTO 140

END

Stops program execution.

Format: END

Example:

99 END

196 I Apple Ill User's Guide

EOF

End of file. When Business BASIC encounters an end of a file, an
error occurs and the number of the file is assigned to the reserved vari
able EOF. You can keep the program from stopping by using a state
ment that tells Business BASIC what to do when it encounters an end of
file. (See ON EOF.)

ERR

Error. When Business BASIC encounters an error, the code number
of the error is assigned to the reserved variable ERR. You can "handle"
an error (and keep the program from stopping) by using a statement
that tells Business BASIC what to do when it encounters an error. (See
ON ERR.)

EXFN.

Executes an assembly language function loaded by the INVOKE
statement and returns a real number.

Format: EXFN.pathname[(expr l@var[{,expr l,@var}])]

Example:

>PRINT EXFN.Intrst<36>*.022

EXFN%

Executes an assembly language function loaded by the INVOKE
statement and returns an integer.

Format: EXFN%.pathname[(exprl @var [{ ,exprl ,@var}])]

Example:

>PRINT EXFNX.Inven~675>1MonthsX

EXP

Raises 2. 718282 to the power indicated by the expression.

Format: EXP(expr)

Example:

>PRINT EXP<9>
8103.08

Appendix A: Business BASIC Quick Reference I 197

FOR-NEXT

FOR starts a loop that repeats a set of instructions. The variable is
incremented or decremented until the given value is reached.

Format: FOR varnm=exprnm TO exprnm [STEP exprnm]

STEP is optional and increments (or decrements) the variable by the
specified integer.

Example:

>10 FOR X=5 TO 30 STEP 5
> 20 PRINT X-1;
>30 NEXT X
)4(1 END
>RUN
4
9
14
19
24
29

FRE

A reserved variable that stores the amount of remaining available
memory (in bytes). Used to check the amount of space remaining in
memory. Each time FRE is used, storage space for string variables is
reorganized to recover space that isn't being used.

Format: FRE

Example:

>PRINT FRE
)196051

The amount of free memory depends on the size of the Apple III's
memory and the program in memory.

GET

Assigns a character or number from the keyboard to a variable.

Format: GET var

198 I Apple Ill User's Guide

Example:

>10 PRINT "Press a key"
)20 GET KEY$
)30 PRINT "You pressed ";KEY$
>40 END
>RUN
Press a key
You pressed D

GOSUB

Causes the program to branch to the indicated line. When RETURN
is encountered, the program returns to the line number following the
GO SUB.

Format: GOSUB line

Example:

80 IF Payment<100.00 THEN GOSUB 200

GOTO

Causes the program to branch to the indicated line.

Format: GOTO line

Example:

100 ·IF X/.=10 THEN GOTO 140

HEX$

Returns a four-character string that's the hexadecimal (base 16)
equivalent of the expression.

Format: HEX$(expr)

Example:

PRINT HEX$<726)
0206

The range of numbers which can be converted to hexadecimal is
-65535 to 65535.

Appendix A: Business BASIC Quick Reference I 199

HOME

Immediate mode only. Clears the screen and moves the cursor to the
upper left-hand corner.

Format: HOME

HPOS

Sets the horizontal position (column) of the cursor in the range of 0 to
255. (See VPOS.)

Format: HPOS=exprnm

Example:

100 HPOS=40

lf..GOTO

Causes the program to conditionally branch to a specified line
number if the specified conditions are true. Identical to using a
combination of IF-THEN and GOTO statements.

Format: IF expr GOTO line

Example:

40 IF MOUSETRAP%<2.5>=2500 THEN GOTO 100

If.. THEN

Causes the program to execute given instructions if specified condi
tions are true.

Format: IF expr THEN statement

Example:

200 IF Answer$="Y" THEN PRINT "That•s all folks!":END

IMAGE

Allows you to specify a format to be used in a PRINT USING state
ment. IMAGE is optional and allows you to use the same format several
times in a program.

200 I Apple Ill User's Guide

Format: (See Chapter 7.)

Example:

20 IMAGE 5#.3#,BOC
100 PRINT USING 20; 2357.6432, "The Apple III"

INDENT

A reserved variable that defines the number of spaces to indent a
FOR-NEXT loop. If you don't use an INDENT statement, the default
value is 2.

Format: INDENT=exprnm

Example:

>INDENT=5

INPUT

Accepts input from the keyboard and assigns the value(s) to indicated
variables.

Format: INPUT ["prompt" .1;]var[,var]

Example:

50 INPUT "Enter- Today's Date <MM/DD/YY> ";Date$

INPUT#

Reads a line of text for each variable in a list. You define the file
· you're reading from by specifying a file number from 1 to 10. (The file

must have previously been opened with the OPEN# statement.) In a
random-access file, you can specify the record number to begin reading.

Format: INPVT#filenum[,recnum[;var {,var}]]

Examples:

40 INPUT#1,54;Scor-e$

INSTR

Searches for a substring within a string and returns a number
representing the position of the first character of the substring.

Appendix A: Business BASIC Quick Reference I 201

Format: INSTR(expr$,expr$[,expr])

Example:

>PRINT INSTR<"Business BASIC","nes")
5
>PRINT INSTR<"Business BASIC","nes",6)
(l

The optional number tells INSTR at which character position to start
searching. If Business BASIC doesn't find the string you specify, it
returns a 0.

INT

Returns the largest whole number less than or equal to the value of
the argument.

Format: INT(expr)

Examples:

>PRINT INT<23.499)
23
>PRINT INT<23.5)
23

INTEGER

Any positive or negative number without a decimal point in the range
of - 32768 to + 32767.

INVERSE

Sets a reverse screen (black letters on a white background) for all
subsequent characters. (See NORMAL.)

Format: INVERSE

Example:

100 INVERSE: PRINT "Inverse Te}:t": NORMAL

INVOKE

Loads assembly language subroutines into memory.

Format: INVOKE pathname[{,pathname}]

202 I Apple Ill User's Guide

Example:

>INVOKE BGRAF.INV

KBD

A reserved variable that contains the ASCII value of the last key
pressed.

LEFT$

Returns a string (of the specified length) that's composed of the
leftmost characters of a string expression.

Format: LEFT$(expr$,exprnm)
Example:

>PRINT LEFT$("Business BASIC",3)
Bus

LEN

Returns an integer equal to the length of a string expression.

Format: LEN(expr$)

Example:

>PRINT LEN<"Business BASIC">
14

The maximum string length is 255 characters.

LET

Assigns the value of an expression to a variable name.

Format: [LET]

Example:

>LET Days%=263

>Days%=263

Since LET is optional, these two expressions are equivalent.

Appendix A: Business BASIC Quick Reference I 203

LIST

Lists (on the output device) the current program (or specified part of
the program) in memory.

Format: LIST [line] [TO I .1- [line]]

Examples:

LIST

LIST 20 TO 100

LIST 20,100

LIST 20-100

LIST 20-

LIST -100

LOAD

Loads a BASIC program from a disk file into memory.

Format: LOAD pathname

Example:

LOAD /BASIC/Games/Spaceblaster

LOCK

Immediate mode only. "Locks" a file so that it can't be accessed or
deleted. (UNLOCK reverses the action.)

Format: LOCK pathname

Example:

lLOCK .02/Secret.File

LOG

Returns the natural logarithm of an expression.

Format: LOG(expr)

204 I Apple Ill User's Guide

Example:

>PRINT LOG<.23145/6.3)
-3.30394

LONG INTEGER

Integers up to 19 digits long. Long integer variables must end with &
(ampersand) and can be in the range from -9223372036854775808 to
922337203685477580~

MID$

Returns a substring from a given string. The first integer specifies
the position of the first character to be returned and the second
(optional) the length of the substring.

Format: MID$(expr$,exprnm[,exprnm])

Examples:

>PRINT MID$("Business BASIC",5)
ness BASIC
>PRINT MID$< "Business BASIC'', 5, 6)
ness B

NEW

Immediate mode only. Erases the current program and all its
variables from the Apple III memory and closes all open files.

Format: NEW

NORMAL

Returns the video display mode to a "normal" (white on black) display
after an INVERSE command.

Format: NORMAL

NOTRACE

Immediate mode only. Cancels TRACE. (See TRACE.)

Format: NOTRACE

Appendix A: Business BASIC Quick Reference I 205

OFF EOF#

Cancels an ON EOF# statement.

Format: OFF EOF#

Example:

100 ON EOF#2 PRINT "END OF FILE":GOTO 300

200 OFF EOF#2

ON EOF#

Executes the given statement if BASIC reads past the end of a speci
fied file.

Format: ON EOF # jilenum statementlwt

Example:

100 ON EOF#3 PRINT "OUT OF DATA":GOSUB 300

ON ERR

Executes the given statement if BASIC encounters an error. Nor
mally used to branch to an error-handling routine.

Format: ON ERR statementlwt

Example:

20 ON ERR GOTO 670

OFF ERR

Cancels the most recent ON ERR statement.

Format: OFF ERR

Example:

20 ON ERR GOTO 670

100 OFF ERR

206 I Apple Ill User's Guide

ON KBD

Instructs BASIC to execute a list of statements when any key on the
keyboard is pressed.

Format: ON KBD statementlist

Example:

60 ON KBD GOTO 100

OFF KBD

Cancels the last ON KBD command.

Format: OFF KBD

Example:

60 ON KBD GOTO 100

200 OFF I<BD

ON-GOSUB

Used to specify a subroutine location the program should branch to
when it encounters a specified value.

Format: ON expr GO SUB line [,line] ...

Example:

10 ON Days% GOSUB 100,200,300,400,500,600,700

In this example, the program will branch to 100 if Days% is 1; 200 if
it's 2, and so forth.

ON-GOTO

Works exactly like ON-GOSUB, except the program branches ~o the
line number you specify.

Format: ON expr GOTO line [,line] ...

Example:

230 ON Days% GOTO 100 ,200.300 .400,500,60 0,700

Appendix A: Business BASIC Quick Reference I 207

OPEN#

Opens specified file(s) for access.

Format: OPEN#jilenum[AS INPUTIAS OUTPUTIAS EXTEN
SION], pathname[,exprnm]

Examples:

100 OPEN#1 ~ 11 8ear·i ght 11

150 OPEN#2 ~ 11 Bear· 1 eft 11

200 OPEN#3 AS INPUT, 11 .CDNSDLE 11

250 OPEN#4 AS CJUTPUT~ 11 .PRINTER 11

You can use any number from 1 to 10 as the file reference number. As
many as ten files can be open at the same time.

OUTPUT#

Directs all screen output to the file you specify.

Format: OUTPUT#jilenum

Example:

100 OUTPUT #1

Typing OUTPUT#O returns screen output to the video display.

OUTREC

A reserved variable that contains the maximum length of lines output
when using LIST. The value of OUTREC must be greater than the
value of INDENT (see INDENT).

Example:

100 OUTREC=BO

POL

Returns the vertical and horizontal position (0-255,0-255) of a joystick
connected to PORTS A or B on the rear case of the Apple III.

Format: PDL(O< = expr< =3)

208 I Apple Ill User's Guide

Example:

20 VPOS=<PDL<Ol/lOl:HPOS=<PDL(ll/30)

This example positions the cursor within the visible screen area
according to the setting of the paddles.

PERFORM

Executes an assembly language procedure that you've previously
loaded with an INVOKE statement.

Format: PERFORM pathname[(exprl@memloc[{,expri@memloc}])]

Example:

120 PERFORM Interest(Period%,Prin,@Xl

The argument list passes data to the procedure. The "@" passes the
address of the variable to the procedure.

POP

Allows you to exit from one level of nested subroutines. When Busi
ness BASIC executes a POP statement, the current return address
pointed to by the program stack pointer is removed from the stack. In
the following example, POP in line 320 allows the program to branch
back to line 60 instead of returning to the subroutine at line 220. If POP
isn't used, the program will execute an infinite loop.

Format: POP

Example:

50 GOSUB 200
60 PRINT"Program Finished":END
200 PRINT"Subroutine 200"
210 PRINT"Going to subroutine 300"
215 GOSUB 300
220 REM This line is never e>:ecuted"
230 GOTO 200
300 "Subroutine 300"
310 PRINT"Using POP to avoid retLwn to line 220"
320 POP
330 REM Line 320 removes the pointer to line 220
340 RETURN

Appendix A: Business BASIC Quick Reference I 209

PREFIX$

A reserved variable that contains the most recently assigned path-
name prefix.

Example:

>PRINT PREFIX$
/BASIC/

PRINT

Displays characters on the output device.

Format: PRINT { Ll;] [expr]} Ll;]
Examples:

PRINT Rate%

PRINT Rate'l./3*12.093

PRINT "Message"

PRINT "Message";

PRINT "Message",

PRINT USING

Same as PRINT except that it formats the text using format specifi
cation characters.

Format: (See Chapter 7.)

Example:

>PRINT USING "5#.2#";765.569

765.57

PRINT#

Sends ASCII data to the text file you specify. (The file must have been
opened by the OPEN# statement.)

Format: PRINT #jilenum [, recnum] [;expr[... ;expr] [;]]

210 I Apple Ill User's Guide

Example:

430 F'RINT#1;"This is ASCII te:-:t"

In a random-access file, you can also specify the record number the
text should be written to.

Example:

430 F'RINT#1,150;"This is ASCII te:-:t"

PRINT# USING

Same as PRINT# except it formats the data sent to the specified file.

Format: (See Chapter 7.)

Example:

300 F'RINT#l USING "SOC "; "This te>:t is center-ed"

Like PRINT#, you can also specify the record number in a random
access file.

Example:

300 PRINT#1, 30 USING "SOC"; "This is center-ed te:-:t"

READ

Assigns values to variables from corresponding values m a DATA
statement.

Format: READ var [{var}] ...

Example:

50 READ Rate,Per-iodX,Pr-inciple

READ#

Retrieves information from the data file you specify. (The file must
have been opened by the OPEN# statement.) You can also specify the
record number in a random-access file.

Format: READ# jilenum[,recnum][;var[{,var}]]

Example:

300 READ#1, Message$,Employees%

Appendix A: Business BASIC Quick Reference I 211

REAL NUMBERS

Any positive or negative number in the range of -1. 7E38 to+ 1. 7E38.

REC

Returns the number of the record being accessed in the specified file.

Format: REC

Example:

100 PRINT REC

REM

Identifies a remark. Anything after REM is ignored by the program.

Format: REM message

Example:

100 REM This line is ignored by the program

RENAME

Immediate mode only. Changes the names of volumes, subdirectories,
and local files.

Format: RENAME old paihname,new paihname

Example:

>RENAME OLDFILE,NEWFILE

RESTORE

Lets you read the same data more than once by telling the Apple III to
move its internal pointer back to the beginning of the list of data.

Format: RESTORE

Example:

50 READ A$,B'Y.,C
60 DATA "Nonsense",2387,98653.67
70 RESTORE
80 READ X$,Y'Y.,Z

212 I Apple Ill User's Guide

RESUME

Restarts program execution after an error-handling subroutine.

Format: RESUME
Example:

10 ON ERR GOSUB 300
20 INPUT"Type a whole number-";NMBR%
30 PRINT"You typed ";NMBR%
40 END
300 REM This is an er-ror- handling subr-outine
310 PRINT"You Goofed!!! Tr-y again!"
320 RESUME

RETURN

Returns program execution to the statement after the last GOSUB
executed.

Format: RETURN

Example:

50 GOSUB 200
60 PRINT "Returned fr-om subroutine"
70 END
200 REM This is the subroutine

250 REM This is the end of the subroutine
260 RETURN

RIGHT$

Returns a string of specified length that's composed of the rightmost
characters of a given string expression.

Format: RIGHT$(expr$,exprnm)

Example:

>PRINT RIGHT•<"Business BASIC",6>
BASIC

Appendix A: Business BASIC Quick Reference I 213

RND

Generates a random positive number less than 1.

Format: RND(exprnm)

Examples:

>PRINT RND<1>
.894111
')PRINT RND <2>
.324093

As long as the argument is greater than zero, RND generates a dif
ferent random number each time you use it. RND(O) generates the same
random number every time, although the number will differ each time
you boot the system.

RUN

Immediate mode only. Starts execution of a program.

Format: RUN [pathname[,line]]l[line]

Examples:

RUN /BASIC/Games/Spaceblaster

RUN /BASIC/Games/Spaceblaster,300

If you use a number, Business BASIC starts running the program at
that line.

SAVE

Writes a copy of the current program in memory to a disk file.

Format: SAVE pathname

Examples:

SAVE Interest.Calc

SAVE /BASIC/Games/Spaceball

SCALE

Used with PRINT USING to shift the decimal point of a displayed
value left or right.

214 I Apple Ill Use(s Guide

Format: SCALE (varnm,exprnm)

Example:

100 PRINT USING "$10#.##";SCALE<-3,Inc:ome>

This example moves the decimal point of the variable "Income" three
places to the left.

SGN

Returns -1 if the expression is negative, 0 if it's 0, and 1 if it's
positive.

Format: SGN(expr)

Examples:

>PRINT SGN(345.34-675.23>
-1
) PRINT SGN <0)
0
>PRINT SGN<-2315.67+4000.0021)
1

SIN

Returns the sine of an angle given in radians.

Format: SIN (expr)

Example:

>PRINT SIN<8.3425)
. 883029

SPC

Used with PRINT to define the number of spaces before the next
character is printed.

Format: SPC(expr)

Example:

>PRINT "The";SPC<4>;"Apple";SPC<4>;"III"
The Apple III

Appendix A: Business BASIC Quick Reference I 215

SQR

Returns the positive square root of an expression.

Format: SQR(expr)

Example:

>PRINT SQR(72651)
269.538

STEP

Lets you increment or decrement steps in a FOR-NEXT loop.

Format: STEP(exprnm)

Example:

10 FOR X=2 TO 20 STEP 2
20 PRINT X
30 NEXT X
40 END

STOP

Halts program execution and returns to immediate execution.

Format: STOP

STR$

Returns the value of an expression as a string.

Format: STR$(expr)

Example:

>PRINT STR$(9823.426>

9823.426

SUB$

Lets you replace any part of a string with a substring.

Format: SUB$(var,expr[,expr])=expr$

216 I Apple Ill User's Guide

Example:

>10 STRG$="SOFTWARE"
>20 SUBS<STRGS,l> ="HARD"
)30 PRINT STRG$
)40 END
>RUN
HARDWARE

Note that in line 20, the "1" indicates the digit position in the original
string where the new string is placed.

SWAP

Exchanges the value stored in two variables.

Format: SWAP var,var

Example:

)10 A$="Alpha":B$="Beta"
)20 SWAP A$,B$
)30 PRINT A$,B$
>40 END
>RUN
Beta Alpha

TAB

Used in PRINT statements to define the number of spaces from the
left margin for printing.

Format: TAB(exprnm)

Example:

)PRINT TAB<S> "HERE"

HERE

TAN

Returns the tangent of an angle given in radians.

Format: TAN (expr)

Example:

>PRINT TAN<9.234>
-.193127

Appendix A: Business BASIC Quick Reference I 217

TEN

Returns the decimal equivalent of the last four hexadecimal numbers
of a string expression.

Format: TEN(expr$)

Example:

>PRINT TEN< "4DFF")
19967

TEXT

Clears any text or graphics modes in use and sets the display to the
normal full-screen text mode.

Format: TEXT

TRACE

Immediate mode only. Prints a "#" followed by the number of each
program line as it executes. NOTRACE turns it off.

Format: TRACE

TYP

Tells BASIC what type of data will be read from a file.

Format: TYP(jilenum)

For a data file, TYP returns the following values:

jilenum Meaning
0 Undetermined
1 Real
2 Integer
3 Long Integer
4 String
5 End of file

For a text file, TYP always returns an 8.

Example:

100 ON TYP GOTO 300

218 I Apple Ill User's Guide

UNLOCK

Immediate mode only. Unlocks a locked file so that it can be accessed.
(See LOCK.)

Format: UNLOCK paJ;hname

Example:

>UNLOCI< .02/MOUSE.GAME

VAL

Evaluates a string expression and returns the value as a real number
or integer.

Format: VAL(expr$)

Examples:

>PRINT VAL< "2345" >

2345

VPOS

Sets the vertical position of the cursor. (See HPOS.)

Format: VPOS = exprn

Example:

lCl VPOS=12

The valid range is 0 to 255.

WINDOW

Sets the position and size of the text window.

Format: WINDOW exprnm,exprnm TO exprnm,exprnm

Example:

>WINDOW 23,10 TO 70,25

Appendix A: Business BASIC Quick Reference I 219

The first pair of coordinates specifies the upper left-hand corner of
the text window; the second pair, the lower right-hand corner. In this
example

23 is the starting column number of the window.
10 is the starting row number.
70 is the ending column number.
25 is the ending row number.

WRITE#

Sends data to the data file you specify. (The file must have been
opened by the OPEN# statement.) You can also specify the record
number for a random-access file.'

Format: WRITE# jilenum[,recnum][;expr[{expr}]]

Examples:

50 WRITE# 1; SALES

60 WRITE#1,200;SALES

Business BASIC
, Error Messages

Apple III Business BASIC handles errors in one of two ways:

B

1. If an ON ERR statement was executed, an error condition causes
the statement referred to in the ON ERR statement to be executed.

2. If an ON ERR statement was not executed or an OFF ERR was
executed, an error condition causes the program to stop, an error
message is displayed on the screen, and the Business BASIC
prompt reappears.

The following pages contain a list of all the possible error messages
you might see and an explanation of what they mean. ·

?BAD PATH ERROR

Business BASIC was unable to find the file you specified because it
either doesn't exist or you entered it incorrectly.

?BAD SUBSCRIPT ERROR

You attempted to reference an array element that's outside the bounds
of the array.

?CAN'T CONTINUE ERROR

You attempted to use the CONT (continue) statement after modifying a
program. You can only use CONT if the program is unchanged; how
ever, you may modify the values of variables.

221

222 I Apple Ill User's Guide

?DATA WON'T FIT ERROR

You attempted to write more data to a record in a disk file than would
fit.

?DEVICE NOT FOUND ERROR

There are three possible reasons for this error:

1. The device isn't connected.

2. The system isn't configured for the device.

3. You entered the device name incorrectly.

?DISK FULL ERROR

There is no space left on the disk you specified.

?DIVISION BY ZERO ERROR

Although it is not illegal to divide a number by zero, the result (infinity)
is too large to be stored in memory.

?DUPLICATE FILE ERROR

You attempted to create or rename a file using the name of an existing
file.

?EXTRA IGNORED

You supplied more values than an INPUT statement called for.

?FILE LOCKED ERROR

You attempted to modify a file that was locked.

?FILE NOT FOUND ERROR

You attempted to access a file that doesn't exist or you entered the name
of the file incorrectly.

?FILE NOT OPEN ERROR

You attempted to access a file before it was opened with an OPEN
statement.

Appendix B: Business BASIC Error Messages I 223

?FILE TOO LARGE ERROR

The file is larger than the limits set for Apple III files.

?FILES BUSY ERROR

~ou attempted to delete or rename a file while it was open.

?FORMULA TOO COMPLEX ERROR

There are two possible reasons for this error:

1. Parentheses are nested more than 14 deep.

2. You attempted to evaluate an arithmetic expression where more
than 14 operations had to be defined due to rules of precedence.

?ILLEGAL DIRECT ERROR

You attempted to use statements in immediate mode that can only be
used for deferred execution. The statements that can only be used for
deferred execution are

INPUT
DEF FN
GET
RE'SUME

ON ERR
ON KBD
ON EOF#

?ILLEGAL QUANTITY ERROR

The parameter passed to a function was out of range. Some possible
reasons for this error are

1. You used a negative array subscript (for example, WIDGETS(- 3)).

2. You used the LOG function with a negative or zero argument.

3. You used the SQR function with a negative argument.

4. You used one of the following statements with an expression whose
value was outside the allowable range:

MID$
LEFT$
RIGHT$
VPOS
HPOS

SPC
WINDOW
TAB
SUB$
CHR$

HEX$
TEN
INSTR
SCALE
ON ... GOTO

224 I Apple Ill User's Guide

5. You opened a file with a record length less than 3.

6. You specified a file number less than 1 or greater than 10.

7. You used a repeat value greater than 255 in a PRINT(#) USING
statement or an IMAGE specification.

?INVOKE ERROR

You attempted to INVOKE a non-invokeable (non-assembly language)
file.

?1/0 ERROR

Input/Output to or from a peripheral failed, with either a mechanical
or electrical problem causing a loss of data. Check all connections. If
you still have problems, see your dealer.

?NEXT WITHOUT FOR ERROR

There are three possible reasons for this error:

1. You nested loops improperly. The control variables in a NEXT
statement must be listed in the reverse order from the way they
were encountered in FOR statements.

2. The control variable you specified in a NEXT statement doesn't
correspond to the variable in a FOR statement.

3. You attempted to execute a NEXT statement before a FOR
statement.

?NOT SOS ERROR

The disk you attempted to access was not written in Apple III SOS
format.

?OUT OF DATA ERROR

There are two possible reasons for this error:

1. A READ statement was executed when all the data elements in a
DATA statement had already been read.

2. A READ# statement encountered the end of the file or a WRITE#
statement attempted to write a field that was larger than the file's
record size.

Appendix B: Business BASIC Error Messages I 225

?OUT OF MEMORY ERROR

There are four possible reasons for this error:

1. There isn't any memory available for a file buffer.

2. Your program is too large for available memory.

3. An invoked file won't fit into available memory.

4. Too much space was used by the variables.

·?OVERFLOW ERROR

The result of a calculation was too large (larger than 1. 7E38) to be
represented in Business BASIC.

?PATH NOT FOUND ERROR

Part of the pathname you specified was invalid; either it doesn't exist or
you entered it incorrectly.

?RANGE ERROR

You specified an illegal range in a DEL or LIST statement.

?REDIM ERROR

After you defined an array, you used another DIM statement to define
the same array.

?REENTER

The value given for INPUT is the wrong type.

?RETURN WITHOUT GOSUB ERROR

More RETURN or POP statements were executed than GOSUB
statements.

?SOS CALL ERROR

An error that Business BASIC doesn't recognize occurred within the
operating system.

226 I Apple Ill User's Guide

?STACK OVERFLOW ERROR

There are three possible reasons for this error:

1. You nested FOR-NEXT loops more than 9 deep.

2. You nested subroutines more than 23 deep.

3. More than 27 subroutines were entered from ON KBD statements
prior to a RETURN.

?STRING TOO LONG ERROR

The string you entered is more than 255 characters long.

?SYNTAX ERROR

This error can be caused by any of the following:

1. Missing parenthesis in an expression.

2. Illegal character in a statement.

3. ON not followed by GOTO or GOSUB.

4. IF not followed by THEN or GOTO.

5. Arithmetic operation on a string.

6. A digit as the first character of a variable name.

7. You attempted to use something other than a real number for a
user-defined function.

8. Variable name over 64 characters long.

9. Bad specification in an IMAGE specification.

10. Bad AS option for OPEN#.

11. Bad operator.

12. Following DEL with something other than a digit.

13. Anything that's not syntactically correct.

?TYPE MISMATCH ERROR

This error can be caused by any of the following:

1. The left-hand side of an assignment statement was a numeric
variable and the right-hand side was a string, or vice versa.

2. A function which expected a string argument was given a numeric
one, or vice versa.

3. Exponentiation with long integers.

Appendix B: Business BASIC Error Messages I 227

4. You specified a non-BASIC file when the program expected a
BASIC file.

5. You used a non-real variable when a real was expected.

6. You used strings in an IF-THEN statement.

7. You specified an incorrect IMAGE specification for a string or
number in a PRINT (#) USING statement.

8. You used READ# to read numeric data when the data was a
string, or vice versa.

?UNDEF'D FUNCTION ERROR

You attempted to reference a user-defined function that was never
defined.

?UNDEF'D STATEMENT ERROR

There are three possible reasons for this error:

1. You attempted to branch to a line number that doesn't exist from a
GOTO, GOSUB or IF-THEN statement.

2. A ,PRINT USING statement refers to an IMAGE statement that
doesn't exist.

3. IMAGE isn't the first statement in a line.

?VOLUME NOT FOUND ERROR

The volume name you specified in an input/output statement doesn't
exist.

?WRITE PROTECT ERROR

The disk's write-protect notch is covered.

BUSINESS BASIC ERROR CODES ______ _

When Business BASIC detects an error, the r eserved variable ERR
will contain an error code number. You can see the code by typing

PRINT ERR

228 I Apple Ill User's Guide

Here's what the codes mean:

1 NEXT WITHOUT FOR
2 SYNTAX
3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL QUANTITY
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED STATEMENT
9 BAD SUBSCRIPT

10 RANGE
11 INVOKE
12 STACK OVERFLOW
13 REDIMENSIONED ARRAY
14 DIVISION BY ZERO
15 ILLEGAL DIRECT
16 TYPE MISMATCH
17 STRING TOO LONG
18 FORMULA TOO COMPLEX
19 CAN'T CONTINUE
20 UNDEFINED FUNCTION
22 SOS CALL
23 FILES BUSY
24 NOT SOS
25 I/0
26 FILE TOO LARGE
27 WRITE PROTECT
29 BAD PATH
30 FILE NOT FOUND
31 PATH NOT FOUND
32 VOLUME NOT FOUND
33 DUPLICATE FILE
34 DISK FULL
35 FILE LOCKED
36 FILE NOT OPEN
37 DEVICE NOT FOUND

253 EXTRA IGNORED
254 REENTER
255 BREAK(CONTROL C)

Business BASIC
Reserved Words c

The following is a list of the reserved words in Apple Business
BASIC. Note that some must end with a left parenthesis to be consid
ered reserved words. For example, AND is an illegal variable name,
but ABS is not.

Material in this appendix is copyright 1983, Apple Computer, Inc.,
and used with permission of Apple Computer, Inc., 20525 Mariani,
Cupertino, CA 95014.

ABS(DEF GOTO
AND DEL HEX$(
AS DELETE HOME
ASC(DIM HPOS
ANT(DIV IF
BUTTON(ELSE IMAGE
CAT END INPUT
CATALOG EOF INSTR(
CHAIN ERR INT(
CHR$(ERRLIN INVERSE
CLEAR EXFN INVOKE
CLOSE EXFN% KBD
CONT EXP(LEFT$(
CONV(EXTENSION LEN(
CONV$(FN LET
CONV%(FOR LIST
CONV&(FRE LOAD
COS(GET LOCK
DATA GO SUB LOG

229

230 I Apple Ill User's Guide

MID$(
MOD
NEW
NEXT
NORMAL
NOT
NOTRACE
OFF
ON
OPEN
OR
OUTPUT
PDL(
PERFORM
POP
PREFIX$
PRINT
READ

REC(
REM
RENAME
RESTORE
RESUME
RETURN
RIGHT$(
RND(
RUN
SAVE
SCALE(
SGN(
SIN(
SPC(
SQR(
STEP
STOP

STR$(
SUB$(
SWAP
TAB(
TAN(
TEN(
TEXT
THEN
TO
TRACE
TYP(
UNLOCK
USING
VAL(
VPOS
WINDOW
WRITE

System Error Messages D

System errors may occur when you first start up the Apple III or
when you use the System Configuration Program or the Filer. Material
in this appendix is copyright 1983, Apple Computer, Inc., and is used
with permission of Apple Computer, Inc., 20525 Mariani, Cupertino,
CA, 95014.

ERRORS DURING STARTUP ________ _

Errors that may occur during the startup process are divided into
two groups: diagnostic messages and SOS errors.

Diagnostic Messages

When you turn on your Apple III, it performs a number of diagnostic
checks on its hardware. If any of these tests fails, you will get one of the
following diagnostic messages. If you get one of these messages, see your
dealer. Do not use the computer: a defective computer could erase data
from your disk.

RAM The test of the Apple III's random-access memory failed. The
pattern on the screen indicates which component is faulty. See your
dealer.

ROM The test of the Apple III's read-only memory failed. See your
dealer.

ACIA The test of the Asynchronous Communications Interface
Adapter (ACIA), which controls the RS-232-C serial port, failed. See
your dealer.

231

232 I Apple Ill User's Guide

VIA The test of the Versatile Interface Adapters (VIAs), which
control various internal functions in the Apple III, failed. See your
dealer.

A/D The test of the Analog-to-Digital converter, which controls the
joysticks, failed. See your dealer.

ZP The Zero Page test, which determines whether the Apple III's
memory addressing circuitry is operational, failed. See your dealer.

505 Errors

If the Apple III passes the diagnostic test, it tries to boot the disk in
the built-in drive. If an error occurs during the boot process, a message
is displayed (in black characters on a white background) in the middle
of the video screen, the Apple beeps, and the system waits for you to try
again. Any . boot error is a fatal error: you must insert a proper boot
disk, hold down the CONTROL key, and press the RESET button to reboot,
generally with a different disk.

The following errors can be· produced during a bootstrap operation:

(Blank screen) The disk in the built-in disk drive is not a boot disk.
Insert a proper boot disk into the built-in disk drive, hold down the
CONTROL key, and press RESET to attempt to reboot.

RETRY The disk boot failed. Either there is no disk in the built-in
disk drive; or the disk is unformatted; or the data on the disk has been
destroyed; or the disk is not inserted straight. Remove and reinsert the
disk, making sure it is straight. If the error occurs repeatedly, place a
known good boot disk in the built-in drive, close the door, and attempt to
reboot. If the error occurs with several boot disks, see your dealer.

DRIVER FILE NOT FOUND There is no file name SOS.DRIVER
listed in the volume directory of the boot disk. SOS cannot operate with
out device drivers, and the drivers must be stored in a file with this
name in the volume directory of the disk.

DRIVER FILE TOO LARGE The SOS.DRIVER file is too large to
fit into the system's memory along with the interpreter. Use the System
Configuration Program to remove one or more drivers from this file.

EMPTY DRIVER FILE The SOS.DRIVER file contains no device
drivers. SOS requires at least one device driver, usually .CONSOLE, to
operate most interpreters.

INCOMPATIBLE INTERPRETER The interpreter is either too
large or specifies a loading location that conflicts with SOS. This error

Appendix D: System Error Messages I 233

usually occurs when trying to load an older interpreter with a newer
version of SOS.

INTERPRETER FILE NOT FOUND There is no file named
SOS.INTERP listed in the volume directory of the boot disk. SOS can
not operate without an interpreter, and the interpreter must be stored
in a file with this name in the volume directory of the disk.

INVALID INTERPRETER FILE The SOS.INTERP file is not in
the proper format for an interpreter file. This error occurs when a file
that is not an interpreter is assigned the name SOS.INTERP and the
system is then booted.

INVALID DRIVER FILE The SOS.DRIVER file is not in the
proper format for a driver file. Make sure that the file was either
created by the System Configuration Program or obtained from a valid
Apple III boot disk.

I/0 ERROR The loader has encountered ari I/0 error while trying to
read the kernel, interpreter, or driver file from the disk in the Apple
III's internal disk drive. Make sure the disk is correct and properly
inserted in the drive. If the error occurs with several boot disks, see
your dealer.

KERNEL FILE NOT FOUND There is no file named SOS.KER
NEL listed in the volume directory of the boot disk. The files SOS.
KERNEL, SOS.INTERP, and SOS..DRIVER must all be present in the
volume directory of a disk to be booted.

ROM ERROR: PLEASE NOTIFY YOUR DEALER Your Apple
III contains an older version of the bootstrap ROM, which is not sup
ported by this version of SOS. Your Apple dealer should be able to
replace the ROM at no cost. If you receive this message, contact your
dealer or the nearest Apple Service Center.

TOO MANY BLOCK DEVICES The SOS.DRIVER file contains
too many block device drivers. Use the System Configuration Program
to remove one or more of the block device drivers from this file.

SCPERRORS ________________________ _

These errors are reported during the operation of the System Configu
ration Program.

No device drivers have been read You're not allowed to proceed
until you've read at least one device driver.

234 I Apple Ill User's Guide

Errors in Reading Driver Files

Illegal wildcard Either two wildcards were used where only one is
allowed, or a wildcard was used when only a single file is allowed (for
example, you can't send a directory listing to multiple files).

Invalid pathname The specified pathname violates the syntax rules
for pathnames. A common error is more than 15 characters in a local
name.

Pathname too long The specified pathname has more than 80 charac
ters.

Errors in Editing System Parameters

File contents incorrect The character set or keyboard set contains
invalid data.

Slot number may not be altered for this driver This driver works
only if its device is in a particular slot.

Errors While Generating System

'I.:hese errors will not prevent SCP from generating the system configu
ration, but they indicate that the system may not work.

Character set not loaded Use the Edit System Parameters option to
set the required items.

Duplicate driver names Use the Edit Driver Parameters option to
change the driver name.

Keyboard layout not loaded Use the Edit System Parameters option
to set the required items.

One or more drivers require slot assignments Use the Edit Sys
tem Parameters option to set the required items.

System parameters are not set Use the Edit System Parameters
option to set the required items.

FILER ERRORS ____________ _

The following errors are reported during the operation of the Filer:

Bad disk medium/drive The disk has been physically damaged and
is unusable, or the disk drive is malfunctioning.

Appendix D: System Error Messages I 235

Blocked volume name expected You specified a character device
name when a block device name was expected.

Cannot read source disk The disk that you are trying to make a
copy of is unreadable. Make sure you have specified the proper source
and destination drives and that the disk is correctly inserted in the
source drive.

Command requires SOS-format disk This command (for example,
Make a subdirectory) works only on SOS disks, not on UCSD-format
disks.

Device dependent error #N See the manufacturer's documentation.
The specified device is not connected to the system or is turned off.

Device not configured into the system The driver for the specified
device is not in the system configuration.

Device not on line The specified device is not connected, not turned
on, or (if a block device) has an open door or contains no volume or an
unformatted volume.

Directory already exists The specified operation will create a direc
tory with the same name as one that already exists. As this operation
will delete the old directory, you will be asked to confirm your intention.

Directory full The specified operation would put more files into a
directory than it can hold. One solution is to make a larger subdirectory
and copy the files to it.

Disk drive not present/not configured You specified a disk drive
that you either have not physically installed in your system or have not
configured your Utilities disk to recognize. Make sure that your daisy
chain cables are connected securely-, and use the System Configuration
Program to configure your boot disk for the proper number of disk
drives.

Error #N Internal program error. The number "N" is returned by
the language interpreter. See the manual for the language.

File already exists SOS does not allow two files to use the same
pathname. The specified operation will create a file with the pathname
of a file that already exists, or it will change the pathname of one exist
ing file to that of another. If this happens, you will be asked for confir
mation, and if you give it, the old file of the pathname will be deleted so
that the new file can use the pathname.

File expected This operation works only on files, and you specified
something that was not a file.

236 I Apple Ill User's Guide

File or blocked volume expected This operation works only on files
or block devices, and you have specified a character device.

File or character device expected This operation works only on
files or character devices, and you have specified something else, like a
block device.

File open: access not permitted This error usually occurs when you
have tried to delete a file that is open for access, such as a program that
is executing. If you tried to delete SYSTEM.STARTUP from a boot
disk while that file's program was running you would get this error.

Formatter device driver not present in system The formatter
device driver for a drive must be configured into the system before a
drive can be used for formatting or copying volumes. These drivers can
be found in the SOS.DRIVER file on the Utilities disk.

Illegal disk format for this operation Either you tried to do some
thing to an SOS disk that can only be done to a UCSD disk, or you tried
to do something to a UCSD disk that can only be done to SOS disks.

Illegal character in volume name The volume name ,must contain
only letters, numbers, and periods; the first character must be a letter.

Illegal device name The device name must start with a period, fol
lowed by a letter, followed by no more than 13 letters and numbers.

Illegal volume name length The volume name must not exceed 15
characters.

Illegal wildcard Either two wildcards were used where only one is
allowed, or a wildcard was used when only a single file is allowed (for
example, you can't send a directory listing to multiple files).

Invalid copy The specified copy operation (for example, copying a
subdirectory to itself) is impossible.

Invalid number The number violates a syntax rule, usually because
it contains a space or a comma.

Invalid pathname The specified pathname violates the syntax rules
for pathnames. A common error is more than 15 characters in a local
name.

I/0 error during format operation Unidentified input/output error,
such as an open drive door, no disk, or an unformatted disk.

I/0 error Unidentified input/output error, such as an open drive
door, no disk, or an unformatted disk.

Medium is write-protected or not present The disk you are trying
to format or copy onto is write-protected or is not present. If you wish

Appendix D: System Error Messages I 237

to destroy the information on a write-protected disk, remove the disk
from the drive, peel off the small tab that covers the write-protect
notch, and reinsert the disk. If the disk is not write-protected, the drive
may be configured but unplugged.

Not enough memory (too many files at once) The specified direc
tory is too large to read into memory.

Not enough memory to do copy The volume directory has filled all
available memory, leaving no room for storing information to be copied
to another volume. The usual causes are too many device drivers con
figured into the system and too large a directory to fit into memory.
The solution may be to remove some drivers from SOS.DRIVER. See
the Standard Device Drivers Manual for details.

No room on volume The specified operation would try to put more
information on a volume than it can hold.

Pathname too long The specified pathname has more than 80
characters.

Root directory expected This operation works only on a volume or
root directory, and you specified something else (for example, Verify
works only on volumes, not files).

Subdirectory expected This operation works only on subdirec
tories, and you have specified something else.

Subdirectory not found The specified subdirectory is not on the
specified volume or device.

Unable to read file or directory A file or directory contains invalid
data.

Volume already on line The specified volume has the same name as
another volume already in the system. If you copy the Utilities diskette
to a volume in another drive and then try to read the directory of the
copy, you will get this error.

Volume not found The specified file was not in any of the devices
known to the system, or the specified device has no volume in it.

Write-protect error The file or volume specified is write-protected
and cannot be deleted or written to.

GENERAL ERRORS __________ _

SYSTEM F AlLURE Indicates a catastrophic failure of SOS, from
which the only recovery is to reboot your system. System failures are
rare and can usually be attributed to sudden hardware failure or an

238 I Apple Ill User's Guide

unknown error in the operating system or language interpreter. If you
receive the same system failure at the same place in the same program
more than once, your program has probably encountered an error in the
language or operating system. Report such errors to your dealer, and
fill out a User Input Report, so that they can be corrected in a future
release of SOS.

01: Reentrant system call.
02: Interrupt not found.
03: Too many nested interrupts.
04: Unable to allocate NMI.
05: Event queue overflow.
06: Stack overflow.
07: Invalid request code.
08: Reserved.
09: Memory size less than 64K bytes.
OA: Invalid volume control block.
OB: Invalid file control block.
OC: Invalid allocation blocks.
OD: Pathname buffer overflow.
OF: Invalid buffer number.
10: Invalid buffer request.

Console Reference E

Material in this appendix is copyright 1983 by Apple Computer, Inc.,
and is used with permission of Apple Computer, Inc., 20525 Mariani,
Cupertino, CA 95014.

KEYBOARD CODES _________ _

The ASCII codes and symbols for the keys of the Apple III (shown in
Figure E-1) are listed in Table E-1. The modifier keys that do not gen
erate ASCII codes operate as described in Table E-2. The special keys
listed in Table E-3 generate the codes shown.

Figure E-1. Apple III keyboard

240 I Apple Ill User's Guide

Table E-1. Standard Key Codes

Key ASCII Codes and Symbols

Label Alone SHIFT CONTROL Both

1! 49 1 33! 49 1 33!
2@ 50 2 64@ 50 2 0 NUL
3 # 51 3 35 # 51 3 35 #
4 $ 52 4 36 $ 52 4 36 $
5% 53 5 37% 53 5 37%
6 (\ 54 6 94 (\ 54 6 30 RS
7& 55 7 38 & 55 7 38 &
8 * 56 8 42 * 56 8 42 *
9 (57 9 40 (57 9 40 (
0) 48 0 41) 48 0 41)
-- 45- 95- 45- 31 us
=+ 61 = 43 + 61 = 43 +
\I 92\ 1241 28 FS 127 DEL
Q 113q 81 Q 17 DC1 17 DC1
w 119w 87 w 23 ETB 23 ETB
E 101 e 69 E 5 ENQ 5 ENQ
R 114r 82 R 18 DC2 18 DC2
T 116 t 84 T 20 DC4 20 DC4
y 121 y 89 y 25 EM 25 EM
u 117u 85 u 21 NAK 21 NAK
I 105 i 73 I 9 HT 9 HT
0 111 0 79 0 15 SI 15 SI
p 112p 80 p 16 DLE 16 DLE
[{ 91 [123 { 27 ESC 27 ESC
]} 93] 125) 29 GS 29 GS
' ~ 96' 126 ~ 96' 126 ~
A 97 a 65 A 1 SOH 1 SOH
s 115s 83 s 19 DC3 19 DC3
D 100 d 68 D 4 EOT 4 EOT
F 102 f 70 F 6ACK 6 ACK
G 103 g 71G 7 BEL 7 BEL
H 104 h 72 H 8 BS 8 BS
J 106 j 74 J 10 LF 10 LF
K 107 k 75 K 11 VT 11 VT
L 108 I 76 L 12 FF 12 FF ..

59; 58: 59; 58: '.
'" 39' 34" 39' 34"
z 122 z 90 z 26 SUB 26 SUB
X 120 X 88 X 24 CAN 24 CAN
c 99 c 67 c 3 ETX 3 ETX
v 118v 86 v 22 SYN 22 SYN
B 98 b 66 B 2 STX 2 STX

Appendix E: Console Reference I 241

Table E-1. Standard Key Codes (continued)

Key
ASCII Codes and Symbols

Label Alone SHIFT CONTROL Both

N liOn 78 N 14 so 14 so
M 109m 77M 13 CR 13 CR
,< 44' 60< 44' 60<
. > 46 . 62 > 46. 62 >
/? 47 I 63? 47 I 63?

Table E-2. Modifier Keys

Key Modifies

SHIFT Standard keys, by keyboard layout table
CONTROL Standard keys, by keyboard layout table
OPEN APPLE Special and standard keys (sets high bit)
CLOSED APPLE Special and standard keys (auto-repeat)
ALPHA LOCK Standard keys, alphabetic only

Table E-3. Special Key Codes

Label Code Name Label Code Name

ESCAPE 27 ESC 1 49 1
TAB 9 HT 2 50 2
RETURN 13 CR 3 51 3
ENTER 13 CR 4 52 4
spacebar 32 SPACE 5 53 5
LEFT ARROW 8 BS 6 54 6
RIGHT ARROW 21 NAK 7 55 7
UPARROW 11 VT 8 56 8
DOWN ARROW 10 LF 9 57 9
- (minus) 45 - 0 0 0

242 I Apple Ill User's Guide

CURSOR COMMAND KEYS _______ _

To enter cursor move mode, press ESCAPE once.
While the cursor move mode is active, the cursor appears as an

inverse video plus sign. Table E-4 identifies the actions of the keys that
may be used in cursor move mode.

To leave cursor command mode, press any key not listed.

CONSOLE CONTROL KEYS _______ _

A console control command is issued by holding down the coNTROL

key while typing the appropriate digit on the numeric keypad. Typing
the control sequence on the main keyboard will not work. The functions
of the console control commands are listed in Table E-5.

Table E-4. Key Functions in Cursor Move Mode

Character Function

LEFT ARROW Move cursor one space left
or CONTROL H

RIGHT ARROW Move cursor one space right
or CONTROL U

UP ARROW Move cursor one line up
or CONTROL K

DOWN ARROW Move cursor one line down
or CONTROLJ

H or h Home cursor

S or s Clear entire viewport

P or p Clear to end of viewport

Lor I Clear to end of line

V or v Reset viewport to maximum size (full screen)

Tort Set top-left corner of viewport

B orb Set bottom-right corner of viewport

Appendix E: Console Reference I 243

Table E-5. Console Control Commands

Keystroke Function

-
CONTROL 5 Toggle Vide? Output. Turns the video display off and on.

Program execution continues unaffected. If a program re-
quests input from the console with the video display off, it is
turned back on.

CONTROL 6 Flush type-ahead buffer. Any characters you have typed that
have not yet been transferred out of the type-ahead buffer
are discarded.

CONTROL 7 Suspend Screen Output. If you type this console command
while the Apple III is sending output to the screen, output
and program execution will stop. To continue, type the con-
sole command again.

CONTROL 8 Display Screen Control Characters. When you type this con-
sole command, the console driver will stop responding to con-
trol characters in the data sent to the display and will instead
display their abbreviations. To restore normal operation, type
the console command again.

CONTROL9 Flush Output. All characters sent to the screen after you type
this console command will be ignored. Program execution
will continue, but no output will be displayed. To restore nor-
mal operation, type the console command again.

SCREEN CONTROL CODES, _______ _

The screen control codes used to control the console screen are listed
in Table E-6. You can use these codes with the CHR$ function explained
in Chapter 7. The arguments color, mode, and move are defined in
Tables E-7, E-8, and E-9. The x, y, and shift arguments are single char
acters with values from 0 to 255. The argument shift is interpreted as
two's complement.

244 I Apple Ill User's Guide

Table E-6. Screen Control Codes

Code Name Args Function

00 NUL No operation
01 SOH Save and reset viewport
02 STX Set upper-left corner of viewport
03 ETX Set lower-right corner of viewport
04 EOT Restore viewport
05 ENQ Turn cursor on
06 ACK Turn cursor off
07 BEL Sound the bell
08 BS Move cursor left
09 HT Move cursor right
10 LF Move cursor down
11 VT Move cursor up
12 FF Home cursor
13 CR Return cursor
14 so Turn screen off
15 SI Turn screen on (enable text mode)
16 DLE mode Set text mode
17 DC1 Set normal text
18 DC2 Set inverse text
19 DC3 color Set foreground color
20 DC4 color Set background color
21 NAK move Cursor movement controls
22 SYN Synchronize screen
23 ETB shift Horizontal shift
24 CAN X Horizontal position
25 EM y Vertical position
26 SUB xy Absolute position
27 ESC No operation; reserved for future use
28 FS Clear viewport
29 GS Clear to end of viewport
30 RS Clear line
31 us Clear to end of line

Appendix E: Console Reference I 245

Table E-7. Color Codes

Name Number Name Number

Black 0 Brown 8
Magenta 1 Orange 9
Dark Blue 2 Gray 10
Lavender 3 Pink 11
Dark Green 4 Green 12
Gray 5 Yellow 13
Medium Blue 6 Aqua 14
Light Blue 7 White 15

On a black-and-white monitor, the colors appear as a gray scale: color 0 is
black, color 15 is white, and the colors in between represent progressively
lighter shades of gray.

Table E-8. Screen Modes

Mode

0
1
2

Table E-9. Cursor Movement Options

Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Char

0
1
2
3
4
5
6
7
8
9

<

>
?

Scroll

no
no
no
no
no
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes

Operation

40-column black and white
40-column color (or gray scale)
so-column black and white

Wrap

no
no
no
no
yes
yes
yes
yes
no
no
no
no
yes
yes
yes
yes

New Line

no
no
yes
yes
no
no
yes
yes
no
no
yes
yes
no
no
yes
yes

Advance

no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes
no
yes

Graphics Reference F

The following is a brief summary of the graphics procedures and
functions. The graphics screen modes are defined in Table F -1, the color
numbers are defined in Table F-2, and the transfer options are defined
in Table F -3.

Table F-1. Graphics Screen Modes

Mode Operation

0 280 by 192, black-and-white
1 280 by 192, limited color
2 560 by 192, black-and-white
3 140 by 192, full color

4 280 by 192, black-and-white, alternate screen
5 280 by 192, limited color, alternate screen
6 560 by 192, black-and-white, alternate screen
7 140 by 192, full color, alternate screen

Table F-2. Color Codes

Name Number Name Number

Black 0 Brown 8
Magenta 1 Orange 9
Dark Blue 2 Gray 10
Lavender 3 Pink 11
Dark Green 4 Green 12
Gray 5 Yellow 13
Medium Blue 6 Aqua 14
Light Blue 7 White 15

On a black-and-white monitor, the colors appear as a gray scale:
color 0 is black, color 15 is white, and the colors in between
represent progressively lighter shades of gray.

247

248 I Apple Ill User's Guide

Table F-3. Transfer Options

Option Function

0 Draw Color ("Draw")
1 Draw Color OR Screen Color ("Add")
2 Draw Color XOR Screen Color ("Invert")
3 (NOT Draw Color) AND Screen Color ("Remove")
4 (NOT Draw Color)
5 (NOT Draw Color) OR Screen Color
6 (NOT Draw Color) XOR Screen Color
7 Draw Color AND Screen Color

GRAPHICS PROCEDURES AND FUNCTIONS __ _

INITGRAFIX

Resets grapbics defaults as follows:

Full screen viewport (x=O to 279, y=O to 191)

Cursor in the lower left-hand corner (x=O, y=O)

Normal color table

Normal transfer function

Format: PERFORM INITGRAFIX

GRAFIXMODE

Sets the graphics mode and selects the display buffer.

Format: PERFORM GRAFIXMODE(%Mode, %Buffer)

GRAFIXON

Displays the currently used graphics buffer on the video display.

Format: PERFORM GRAFIXON

PEN COLOR

Selects the color used for plotting.

Format:_ PERFORM PENCOLOR(%Color)

FILL COLOR

Selects the erase color.

Format: PERFORM FILLCOLOR(%Color)

Appendix F: Graphics Reference I 249

SETCTAB

Changes the color table.

Format: PERFORM SETCTAB(%Sourcecolor, %Screencolor,
%Resultcolor)

XFROPTION

Transfer option.

Format: PERFORM XFROPTION(%0ption)

VIEWPORT

Sets the graphics area of the screen.

Format: PERFORM VIEWPORT(%Lejt, %Right, %Bottom, %Top)

MOVETO

Moves the cursor to the coordinates you specify.

Format: PERFORM MOVETO(%X-coordinate,%Y-coordinate)

MOVEREL

Moves the cursor relative to the current cursor position.

Format: PERFORM MOVERE L(o/dnX-coordinate, o/an Y-coordinate)

DOT AT

Draws a dot at the coordinate you specify.

Format: PERFORM DOTAT(%X-coordinate,% Y-coordinate)

DOTREL

Draws a dot relative to the cursor position.

Format: PERFORM DOTREL(o/anX-coordinate, o/an Y-coordinate)

LINE TO

Draws a line from the current cursor position to the coordinates you
specify.

Format: PERFORM LINETO(%X-coordinate, % Y-coordinate)

250 I Apple Ill User's Guide

LINEREL

Draws a line relative to the current cursor position.

Format: PERFORM DOTREL(o/onX-coordinate, o/onY-coordinate)

FILL PORT

Erases the viewport of any current graphics.

Format: PERFORM FILLPORT

XV COLOR

A function that returns the color of the current cursor location.

Format: var%=EXFN%.XYCOLOR

XLOC

- A function that returns the x-position of the cursor.

Format: var%= EXFN%.XLOC

YLOC

A function that returns the y-position of the cursor.

Format: var%= EXFN%. YLOC

NEW FONT

Loads a new character font.

Format: PERFORM NEWFONT(@Font%(0, 0), % Width, %Height)

SYSFONT

Returns to normal type font.

Format: PERFORM SYSFONT

DRAWl MAGE
Displays a previously created bit image on the screen.

Format: PERFORM DRAWIMAGE(@BLOCK%(0, 0), %Row bytes, %Skip
X-coordinate, %Skip Y-coordinate, %bitswidth, %bitsheight)

Appendix F: Graphics Reference I 251

GSAVE

Saves a non-bit-image graphic to disk.

Format: PERFORM GSAVE."pathname"

GLOAD

Loads a previously created non-bit-image graphic into memory.

Format: PERFORM GLOAD. "pathname"

RELEASE

Releases all graphics memory space.

Format: PERFORM RELEASE

Printer Reference G

The following information can be used with the System Configuration
Program to modify the printer configuration block for the .PRINTER
driver. The bytes of the printer configuration block are defined in Table
G-1. The values for speed and communications format are defined in
Tables G-2 and G-3.

Material in this appendix is copyright 1983 by Apple Computer, Inc.,
and is used with permission of Apple Computer, Inc., 20525 Mariani,
Cupertino, CA 95014.

Table G-1. Printer Configuration Block

Byte Meaning

00 Printer Speed
01 Communications Format
02 Carriage Return Delay
03 Line Feed Delay
04 Form Feed Delay

253

254 I Apple Ill User's Guide

Table G-2. Printer Speed

Value Speed

03 110 baud (Teletypewriter speed)
04 134.5 baud
06 300 baud (A common telecommunications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
OA 2400 baud
oc 4800 baud
OE 9600 baud

Table G-3. Communications Format

Value Format

22 7 bits, odd parity
26 7 bits, even parity
2A 7 bits, mark parity
2E 7 bits, space parity
00 8 bits, no parity
42 6 bits, odd parity
46 6 bits, even parity
4A 6 bits, mark parity
4E 6 bits, space parity

RS-232-C Reference H

The following information can be used with the System Configuration
Program to modify the configuration block of the .RS232 driver. The
configuration block is defined in Table H -1. The values for Baud rates
and data formats are defined in Tables H-2 and H-3.

The configuration block is normally set-up as shown in the right-hand
column of Table H -1. You can change the handshake protocol using the
values shown in Table H-4. The configuration blocks for some common
RS232 devices are shown in Table H -5.

Material in this appendix is copyright 1983 by Apple Computer, Inc.,
and is used with permission of Apple Computer, Inc. , 20525 Mariani,
Cupertino, CA 95014.

Table H-1. .RS232 Configuration Block

Parameter N arne Byte Possible Values Normal Mode Value* .

Baud rate 00 (see Table H-2) 06 (300 baud)
Data format 01 (see Table H -3) 22 (7 bits, odd parity)
Carriage return delay 02 00-FF 00 (no delay)
Line feed delay 03 00-FF 00 (no delay)
Form feed delay 04 00-FF 00 (no delay)

Communications
protocol 05 80, 40, 00 00 (no protocol)

Control character 1 06 00-7F 13 (DC3; "XOFF")
Control character 2 07 00-7F 11 (DC1; "XON")
Maximum buffer level 08 01-FF DF (223 characters)
Minimum buffer level 09 00-FE 84 (132 characters)
Data block length OA 01-FF 50 (80 characters)
Hardware

handshake OB 00, 80 00 (mode disabled)

*Default mode and values

255

256 I Apple Ill User's Guide

Table H-2 . . RS232 Baud Rates

Value Speed

03 110 baud (Teletypewriter speed)
04 134.5 baud
06 300 baud (A common telecommunications speed)
07 600 baud
08 1200 baud (A common printer speed)
09 1800 baud
OA 2400 baud
oc 4800 baud
OE 9600 baud

Table H-3. RS232 Data Formats

Value Format

22 7 bits, odd parity (odd number of 1s)
26 7 bits, even parity (even number of 1s)
2A 7 bits, MARK parity (parity bit always 1)
2E 7 bits, SPACE parity (parity bit always 0)
00 8 bits, no parity
42 6 bits, odd parity (odd number of 1s)
46 6 bits, even parity (even number of 1s)
4A 6 bits, MARK parity (parity bit always 1)
4E 6 bits, SPACE parity (parity bit always 0)

Table H-4 . . Values for Optional Protocols

Hardware
Byte XON/XOFF ENQ/ACK Handshake

05* 80 (XON/XOFF) 40 (ENQ/ ACK) 00 (no protocol)
06 13 (DC3; XOFF) 05 (ENQ)** (not used)
07 11 (DC1;XON) 06 (ACK) (not used)
08 01-FF (DF) (not used) 01-FF (DF)
09 00-FE (84) (not used) 00-FE (84)
OA (not used) 01-FF (not used)
OB 00 00 80

*The values of bytes 00 to 04 do not depend on mode.
**For ETX/ACK protocol; this is 03 (ETX).

Appendix H: RS-232-C Reference I 257

Table H-5. Values for Some Common Devices

Device and characteristics
(baud. bits. parity. protocol)

Default values
(300. 7.odd.no protocol)

Another Apple III
(9600. 7.odd.hdwr handshake)

Apple II
300. 7. SPACE.no protocol)

DEC LA120 terminal
(1200. 7.SPACE.XON XOFF)

DEC VT100 terminal
(9600. 7.SPACE.XON XOFF)

SOROC IQ120 terminal
(9600. 7.MARK.no protocol)

Qume Sprint 5 printer
(1200. 7.odd.hdwr handshake)

Qume Sprint 5 printer
(1200. 7.odd.ETX ACK)

HP 7225 Plotter
(2400. 7.SPACE.

hdwr handshake)

Device configuration block byte:
00 01 02 03 04 05 06 07 08 09 OA OB

06 22 00 00 00 00 13 11 DF 84 50 00

OE 22 00 00 00 00 XX XX XX XX XX 80

06 2E 00 00 00 00 XX XX XX XX XX 00

08 2E 00 00 00 80 13 11 DF84 XX 00

OE 2E 00 00 00 80 13 11 DF 84 XX 00

OE 2A 00 00 00 00 XX XX XX XX XX 00

08 22 00 00 00 00 XX XX DF84 XX 80

08 22 00 00 00 40 03 06 XX XX 6E 00

OA 2E 00 00 00 00 XX XX DF 84 XX 80

Audio Reference I

Generating a tone is accomplished by sending the six-character string
shown in Figure I-1 to the audio driver (.AUDIO). The parameters
mode and string are single characters whose ASCII values fall within
the ranges shown in Table I -1. The parameters count and time are two
byte integers, with the low-order byte sent first. The actual value of a
two-byte integer is obtained by adding the ASCII value of the low-order
character to the ASCII value of the high-order character times 256.
Table I-1 shows the acceptable ranges for the parameters count and
time.

The relationship between the count parameter and the frequency of
the resulting tone is given by the formula:

509000
count =---

freq
freq = 509000

count

The values of the count parameter for the notes of the tempered (12
tone) scale are listed in Table I-2. Middle C corresponds to the value
1946. Note that the lower the number, the higher the pitch.

The relationship between the time parameter and the duration of the
resulting tone is given by the formula:

duration=
time

60

Material in this appendix is copyright 1983, Apple Computer, Inc.,
and is used with permission of Apple Computer, Inc., 20525 Mariani,
Cupertino, CA, 95014.

259

260 I Apple Ill User's Guide

Character: 1 2 3 4 5 6
Maximum Value: 128 63 255 63 44 1
Meaning: Mode Volume Count Time

Figure 1-1. Audio parameters string

Table 1-1. Range of Audio Parameters

Variable Range

Mode 128
Volume 0 to 63
Count 100 to 16383
Time 0 to 300

Table 1-2. Count Parameter Values for the 12 Tone Scale

Lowest Octave Highest

Pitch 1 2 3 4 5 6 7 8

B 8245 4122 2061 1031 515 258 129
A# 8735 4368 2184 1092 546 273 136
A 9255 4627 2314 1157 578 289 145
G# 9805 4902 2451 1226 613 306 153
G 10388 5194 2597 1298 649 325 162
F# 11006 5503 2751 1376 688 344 172
F 11660 5830 2915 1457 729 364 182
E 12353 6177 3088 1544 772 386 193
D# 13088 6544 3272 1636 818 409 204 102
D 13866 6933 3467 1733 867 433 217 108
C# 14691 7345 3673 1836 918 459 230 115
c 15564 7782 3891 1946 973 486 243 122

ASCII Character Codes J

The range of standard ASCII codes extends from 0 to 127. In Apple
Business BASIC, the codes from 0 to 31 specify the control characters
shown in Table J -1. Codes from 32 to 126 are used to specify the
numbers, letters, and symbols shown in Table J-2. Apple Business
BASIC also accepts codes from 127 to 255.

Material in this appendix is copyright 1983 by Apple Computer, Inc.,
and is used with permission of Apple Computer, Inc., 20525 Mariani,
Cupertino, CA 95014.

261

262 I Apple Ill User's Guide

Table J-1. ASCII Control Characters

Hex a- Keyboard Comments
Decimal decimal Character Action and Notes

0 00 Null CONTROL@ Null
1 01 SOH CONTROL A
2 02 STX CONTROL B
3 03 ETX CONTROL C Halts execution
4 04 ET CONTROL D
5 05 ENQ CONTROL E
6 06 ACK CONTROL F
7 07 BEL CONTROL G Beeps speaker
8 08 BS CONTROL H Backspace,

(same as-)
9 09 HT CONTROL I Horizontal tab

10 OA LF CONTROL J Linefeed
11 OB VT CONTROL K Vertical tab
12 oc FF CONTROL L Form feed
13 OD CR CONTROL M Carriage return

(same as
RETURN)

14 OE so CONTROL N
15 OF SI CONTROL 0
16 10 DLE CONTROL P
17 11 DC1 CONTROL Q
18 12 DC2 CONTROL R
19 13 DC3 CONTROLS
20 14 DC4 CONTROL T
21 15 NAK CONTROL U
22 16 ' SYN CONTROL V
23 17 ETB CONTROL W
24 18 CAN CONTROL X Cancels line being

edited
25 19 EM CONTROL Y
26 1A SUB CONTROL Z
27 1B ESC ESCAPE Cursor control and

editing
28 1C FS CONTROL SLASH
29 1D GS CONTROL RIGHT

BRACKET
30 1E RS CONTROL A

31 1F us CONTROL SHIFT
UNDERLINE

Appendix J: ASCII Character Codes I 263

Table J-2. ASCII Letters, Numbers, and Symbols

Decimal Hexadecimal Character Keyboard

32 20 Space Spacebar
33 21 ! !
34 22 " "
35 23 # #
36 24 $ $
37 25 % %
38 26 & &
39 27 ' '
40 28 ((
41 29))
42 2A * *
43 2B + +
44 2C ' '
45 2D - --46 2E
47 2F I I
48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A
59 3B ' '
60 3C < <
61 3D = =
62 3E > >
6~ 3F ? ?
64 40 @ @

65 41 A A
66 42 B B
67 43 c c
68 44 D D
69 45 E E
70 46 F F
71 47 G - G
72 48 H H
73 49 I I
74 4A J J
75 4B K K

264 I Apple Ill User's Guide

Table J-2. ASCII Letters, Numbers, and Symbols (continued)

Decimal Hexadecimal Character Keyboard

76 4C L L
77 4D M M
78 4E N N
79 4F 0 0
80 50 p p

81 51 Q Q

82 52 R R
83 53 s s
84 54 T T
85 55 u u
86 56 v v
87 57 w w
88 58 X X
89 59 y y

90 5A z z
91 5B [[
92 5C \ \
93 5D]]
94 5E 1\ ' -95 5F - -
96 60 ' '
97 61 a a
98 62 b b
99 63 c c

100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69 i i
106 6A j j
107 6B k k
108 6C l l
109 6D m m
110 6E n n
111 6F 0 0

112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u

Appendix J: ASCII Character Codes I 265

Table J-2. ASCII Letters, Numbers, and Symbols (continued)

Decimal Hexadecimal Character Keyboard

118 76 v v
119 77 w w
120 78 X X

121 79 y y
122 7A z z
123 7B { {
124 7C I I
125 7D l l
126 7E ~ ~

Apple II Emulation K

Packed with your Apple III is a disk marked "Apple II Emulation."
When you use this disk, your Apple III will emulate an Apple II, allow
ing you to run most programs written for the Apple II. (We'll talk about
the limitations shortly.)

When you boot from the Apple II Emulation disk, you turn your
Apple III into the equivalent of an Apple II Plus with 48K of RAM,
Applesoft II BASIC, a 16-sector Disk II controller card, and a serial
card. With a few changes to the program, you can also emulate an
Apple II with Integer BASIC, or either an Apple II or Apple II Plus
with a communications card.

NOTE: When you use the Apple II Emulation disk, most of the
advanced features of the Apple III won't be available to you. Also, you
can't use the disk to emulate an Apple II with a Language Card, Apple
soft card, or an Integer BASIC card.

Equivalent Slots

The Apple II Emulation disk sets up the Apple III's built-in disk
drive as the equivalent of drive 1 (slot 6) on the Apple II. An additional
Disk III is set up as the equivalent of drive 2 (slot 6).

In addition, the RS-232-C port of the Apple III will act like an Apple
II serial card plugged into slot 7 or an Apple II communications card
plugged into slot 5.

267

268 I Apple Ill User's Guide

USING APPLE II EMULATION _______ _

Boot the Apple II Emulation disk just like any standard Apple III
disk. After a few seconds, you'll see a menu that says

Apple II EMULATION MODE

lRETURNI- BOOT Apple II DISK

lESCAPEI- CONFIGURATION MENU

You'll find that the majority of Apple II programs will run with no
modifications needed. Thus, all you need to do is remove the Apple II
Emulation disk from the built-in drive, insert the Apple II program you
want to run, and press RETURN.

If the program doesn't run, reboot the Apple II Emulation disk and
press ESCAPE to get to the configuration menu.

Apple II Emulation Options

Once you load the Apple II Emulation disk and press ESCAPE, you'll
see a screen with six options. To select an option, use the four arrow
keys. (If you're not sure what you need, see the documentation with your
Apple II software.)

The six options are as follows:

1. LANGUAGE. Choose Applesoft or Integer BASIC. Both emulate
an Apple II with an Autostart ROM. Integer BASIC includes Pro
grammer's Aid #1.

Remember that you can only have one language in memory
at a time.

2. CARD. A serial card sends data in one direction (out). It's nor
mally used for a printer. A communications card is used for two
way communications using a modem.

3. BAUD RATE. This is the rate at which the Apple sends and
receives data. A rate of 1200 is usually standard for a printer. Use
either 300 or 1200 for a modem, depending on the speed of
the modem.

4. LINE FEED. If your printer automatically sends a line feed
after a carriage return, disable the line feed. If the line feed needs
to come from the computer, enable it to do so.

Appendix K: Apple II Emulation I 269

5. LINE WIDTH. Set the length of the line to be printed. Since
most Apple II programs use a 40-column line, 40 is a good choice.
A width of 80 is "standard."

6. CARRIAGE RETURN DELAY. Set this to ON if your printer
needs extra time to return the print head to the left margin before
it starts to print.

Once you've selected the options, all you need to do is remove the
Apple II Emulation disk, place the Apple II software in the built-in
drive, and press RETURN. Remember that the next time you boot the
emulation disk, everything will be returned to the default (normal)
values. If you want to save the configuration you've set up, hold down the
CLOSED APPLE key and press RETURN.

EMULATION LIMITATIONS ________ _

Since the Apple III doesn't work exactly like an Apple II, there are a
few limitations to keep in mind.

Software

You can only have one version of BASIC (either Applesoft or Integer
BASIC) in memory at one time. To change BASICs, you'll have to reboot
the Apple II Emulation disk.

You can't run Apple II Pascal programs that require the Language
card. You can, however, run programs that use the Pascal Run-Time
System.

Apple II emulation uses Apple II DOS 3.3. If you have DOS 3.2 disks,
update them using the Apple II's FID and MUFFIN programs. If your
disks are copy-protected, you can still run DOS 3.2 disks in the Apple II
emulation mode by using the DOS 3.3 BASICS disk after you boot the
Apple II Emulation disk.

Peripherals

You can't use the Apple II Language System, Applesoft II Card, or
Integer BASIC card in the Apple III.

If your Apple II program requires a serial card in a slot other than 7
or a communications card in a slot other than 5, it won't run on the
Apple III in emulation mode.

270 I Apple Ill User's Guide

Since the Apple III doesn't have a cassette interface, any BASIC
commands that use the cassette interface won't work.

The Apple II emulator recognizes Apple III joysticks as Apple II
game paddles. However, since the Apple III uses a modified form of the
Apple II's paddle-reading routines, an Apple II program that uses cus
tom routines won't work in Apple II emulation mode.

Video

The Apple III's RGB (red-green-blue) output doesn't generate color
output when used in emulation mode. You can only get color using the
standard video output.

When high-resolution graphics are displayed, dots on the left border
of the screen will flicker.

Keyboard

When you are in Apple II emulation mode, certain symbols can't be
generated by pressing the associated keys on the Apple III keyboard.
The affected keys are

@" &(*): +=- "'

In addition, a few keys on the Apple III keyboard produce characters
that the Apple II can't produce. When they're pressed while you're using
the emulator, you'll see different characters on the screen. Refer to the
Apple III Owners Guide for a list of these keys.

FINAL THOUGHTS __________ _

Despite the long list of limitations, you'll find that most Apple II pro
grams will run in emulation mode with few, if any, problems. If you are
writing a program from scratch, the best bet is to use Business BASIC
and write them specifically for the Apple III.

Index

A
ABS, 121, 188
Acoustic couplers, 17
AND, 105
Applications programs, 12
Applications software, 59
Argument list, 159
Arguments, 120

passing, 159
Arithmetic operators, 103, 189
Array dimensions, 101
Array name, 100
Arrays, 100-02, 189-90

bit, 181-82
dimensions of, 101
element of, 100, 189
subscript of, 100, 189

ASC, 122, 190
ASCII character codes, 261-65
ASCII codes, 240
ASCII control characters, 262
ASCII letters, 263-65
ASCII numbers, 263-65
ASCII symbols, 240, 263-65
Assembly language, 158
Assignment statements, 107-08
ATN, 121, 190
Audio, 259-60
Audio parameters, 182-83

count, 182
mode, 182
range of, 260
time, 182-83
volume, 182

Audio parameters string, 260

B
Background (in graphics), 172
Backups, 32-37

how to make, 35-37
BASIC, Business, introduction to,

77-93
Baud rates, 256
Bit arrays, 181-82
Blank disks, formatting, 37-38
Block devices, 40
Boolean expressions, 105-06
Boot disk, 61
Booting, 4
Booting the system, 30
Branching, 110-12

computed, 118-19
conditional, 110, 111-12
unconditional, 110

Buffer, 29
display, 167
typeahead, 29

Business BASIC
commands in, 85-91
control keys for, 91-93
deferred execution of, 80, 83-84
error messages for, 82, 221-28
immediate execution of, 80
introduction to, 77-93
PRINT, used with, 81-82
statements in, 85-91
syntax of, 78-79

271

272 I Apple Ill User's Guide

BUTTON, 190
Bytes, 10

c
Cassettes, 15
CAT, 89, 138, 190
CATALOG, 41, 143, 190
CHAIN, 155, 191
Character devices, 40
Character set, 72-74
CHR$, 122, 135-36, 191
CLEAR, 108, 191
CLOSE, 147, 191
CLOSE#, 147, 191
Color codes, 245, 247
Colors, 167-68
Commands, 77
Commas, 127
Comment field; 69
Communications format, printer,

254
Communications software, 17
Compilers, 12
Composite video, 7
Computed branching, 118-19
Conditional branching, 110, 111-12
Configuration block, 69-70

printer, 253
.RS232 driver, 255

Console, 27, 239-45
Console control keys, 242-43
Constants, 95

numeric, 95
string, 95

CONT. 91, 192
CONTROL C, 91-92
Control characters, ASCII, 262
Control keys, 91-93

console, 242-43
CONTROL 5, 92,192,243
CONTROL6, 92, 192,243
CONTROL?, 93,192,243
CONTROLS, 93, 192, 243
CONTROL9, 93, 192,243
Controllers, 3
CONV, 121, 192
CONV$, 121, 193
CONV &, 121, 193
CONV%, 121, 193
Copying files, 51-52
Correcting errors, 28-29
cos. 121, 193
COUNT, 184

Count parameter values, 260
CREATE, 142-43, 193-94
Cursor, 3
Cursor command keys, 242
Cursor movement options, 245
Cursor move mode, 84-85

D
Data, 79
DATA, 108, 194
Data formats, 256
Default, 49
Deferred execution, 80, 83-84
DEF FN, 123, 194
DEL, 87-88, 194
DELETE, 145, 195
Deleting files, 52-53, 144-45
Devices, 35-36, 40

listing configured, 57
Device drivers, 13, 30, 57, 60-62
Device handling utilities, 56-58

configured devices, listing, 57
copying volumes, 56
date, setting, 57-58
formatting disks, 56
renaming volumes, 56
time, setting, 57-58
verifying volumes, 57

Device name, 34, 67-68
Device subtype, 68
Device type, 68
Diagnostic messages, 231-32
DIM, 102, 195
Directories, 41-42
Disk

boot, 61
floppy, 4, 14-15
formatting blank, 37-38, 56
hard, 1, 15
how to care for, 30-32 ·
system, 29"30

Disk care, 30-32
Disk drives, 4
Disk III, 14, 21
Disk III drives, 72
Display buffers, 167
DOTAT, 169, 174, 249
DOTREL, 169, 174, 249
DRAWIMAGE, 169, 181, 250
Driver status, 68-69

active, 68-69
inactive, 68-69

Duofile, 14, 15

E
Editing programs, 84
ELSE, 195
Emulation (of Apple II), 267-70

keyboard options, 270
limitations, 268
options, 269-70
peripherals, limitations, 268
software, limitations 268
video options, 270 '

END, 91, 117, 195
Engineering notation, 134
EOF, 196
ERR, 196
Error codes, 227-28
Error messages, 82

in Business BASIC, 221-28
system, 231-38

Errors
correcting, 28-29
Filer, 234-37
general, 237-38
SCP, 233-34
SOS, 232-33

ESCAPE, 27
EXEC, 156-57
EXFN, 160, 196
EXFN%, 160, 196
EXP, 121, 196
Expansion slots, 3
Exponent, 97
Expressions, 103-06

Boolean, 105-06
nesting of, 104
precedence in, 103-04
relational, 104-05

External routine, 158
External subroutine, 159

F
Field, 46, 148

comment, 69
tab, 127

File, 140-55
how to copy, 51-52
how to delete, 52-53, 144-45
how to rename, 53-54, 145
permanent, 39
protecting, 145-46
random-access, 148-49
sequential-access, 147-48
temporary, 40
types of, 144

Index I 273

Filename, 40-41, 141
Filer, 42, 48-49, 51-56

copying files with, 51-52
deleting files with, 52-53
error messages for, 234-37
renaming files with, 53-54
set prefix option, 55-56
su~directories, creating, 54
wnte-protection option 55

Fillcolor, 168 '
FILLCOLOR, 169, 173, 248
FILLPORT, 169, 250
Floppy disks, 4, 14-15
FOR, 113
FOR and NEXT statements, 113-15
Foreground (in graphics), 172
Format specification, 128
Formatting, 125
Formatting blank disks, 37-38, 56
FOR-NEXT loop, 114-15, 197
FRE, 88, 197
Function, 119-23, 159

G

numeric, 120
string, 120-22

General errors, 237-38
Generating the system, 74-75
GET, 110, 197-98
GLOAD, 170, 175-76, 251
GOSUB, 198
GOTO, 110-11, 198
Graphics, 165-81, 247-51
Graphics mode, 8, 166
Graphics routines, 169-70
Graphics screen modes, 247
GRAFIX, 170-72
GRAFIXMODE, 169, 171, 248
GRAFIXON, 169, 171, 248
GSAVE, 169, 175, 251

H
Hard disk, 1, 15

Profile, 15-16, 22-25
HEX$, 122, 198
Hierarchical storage system, 42
HOME, 136, 199
HPOS, 139, 199

IF-GOTO, 111-12, 199
IF-THEN, 111-12, 199
IF-THEN-ELSE, 112

274 I Apple Ill User's Guide

IMAGE, 130-31, 199-200
Immediate execution, 80
Immediate mode, 79
INDENT, 136-37, 200
Index variable, 113
Infinite loop, 111
INITGRAFIX, 169, 170-71, 248
INPUT, 109-10, 200
INPUT#, 151-53, 200
Input/output, 125
INSTR, 122, 200-01
Instructions, 79
INT, 121, 201
Integer, 96, 98, 201
Integer variables, 96
Interface, 6

RS-232-C serial, 6
Internal subroutine, 159
Interpreter, 12, 77
INVERSE, 139-40, 201
INVOKE, 158-59, 201-02

J
Joysticks, 5

K
KED, 202
Keyboard, 3-4, 27-29
Keyboard codes, 239-41
Key codes, 240

special, 241
Keypad, numeric, 92

L
Languages, 12-13
LEFT$, 122, 202
LEN, 122, 202
LET, 107, 202
Line number, 79, 85-86
LINEREL, 169, 175, 250
LINETO, 169, 174-75, 249
LIST, 86-87, 203
Literal, 82
LOAD, 90, 203
LOCK, 145, 203
LOG, 121, 203-04
Logical operators, 105
Long integer, 96, 98-99, 204
Long integer variables, 96
Loop

infinite, 111
nested, 114-15

M
Machine language, 12
Manufacturer ID, 71
Memory, 10-12

random-access, 3, 10
read-only, 11

MID$, 122, 204
Mode, 7

cursor move, 84-85
graphics, 8, 166
immediate, 79
screen, 245
text, 8

Modem, 17, 26
Modifier keys, 241
Modulator, rf, 6
Modulo, 103
Monitor III, 6-7
MOVEREL, 169, 174, 249
MOVETO, 169, 173-74, 249
Music, 165, 182-85

N
Nested loops, 114-15
Nested subroutines, 117
Nesting, 104
NEW, 87, 88, 108, 204
NEWFONT, 169, 181, 250
NEXT, 113
NORMAL, 139-40, 204
NOT, 105
NOTRACE, 161, 204
Null line, 88
Numeric functions, 120, 121
Numeric keypad, 92

0
OFF EOF#, 155, 205
OFF ERR, 161-62, 205, 221
OFF KED, 119, 206
ON EOF#, 154-55, 205
ON ERR, 161-62, 205, 221
ON-GOSUE, 118-19, 206
ON-GOTO, 118-19, 206
ON KED, 119, 206
ON KED GOTO, 119
OPEN#, 146-47, 207
Operands, 103, 189
Operating systems, 13
Optimizing programs, 162-64

saving space, 162-63
OR, 105
Origin, 166

OUTPUT#, 154, 207
OUTREC, 137, 207

p

Parameters, 67
audio, 182-83
system, 71-74

Parameter values, count, 260
Passing arguments, 159
Path, 42
Pathname, 42, 141
PDL, 207-08
Pencolor, 168
PENCOLOR, 169, 172-73, 248
PERFORM, 159, 208
Peripherals, 17-18, 20, 22
Permanent file, 39
POP, 208
Prefix, 55
PREFIX$, 141, 209
PRINT, 81-82, 209
PRINT#, 150, 209-10
Printer, 16, 25-26

Silentype, 5
speed of, 254

Pr!nter configuration block, 253
Prmter reference, 253-54
Printer speed, 254
PRINT USING, 128-29, 209
PRINT# USING, 150, 210
Procedure, 159
Profile hard disk, 15-16, 22-25
Program, 83-88

applications, 12
deferred execution of, 83-84
definition of, 83
editing of, 84
optimizing of, 162-64
System Configuration, 13, 44,

62-63, 65
Prompt, 46
Protecting files, 145-46
Protocols, 256

RAM. See Random-access memory
Random-access files, 148-49
Random-access memory (RAM), 3

10 '
READ, 108, 210
READ#, 153-54, 210
Read-only memory (ROM), 11
Real numbers, 96, 97-98, 211

Real variables, 96
Rear panel, 4-6
REC, 211
Records, 143

Index I 275

Relational expressions, 104-05
RELEASE, 170, 176, 251
REM, 85-86, 211
RENAME, 145, 211
Renaming files, 53-54, 145
Reserved variable, 136
Reserved words, 99-100, 229-30
RESET key, 4

used like CONTROL C, 92
RESTORE, 109, 211
RESUME, 212
RETURN, 212
Rf modulator, 6
RGB, 1, 7
RIGHT$. 122, 212
RND, 121, 213
ROM. See Read-only memory
RS-232-C, 255-57
RS-232-C serial interface, 6
.RS232 configuration block, 255
RUN, 90-91, 213

s
SAVE, 89, 213
Saving space in programs, 162-63
SCALE, 134, 213-14 '
Scientific notation, 96, 133
SCP. See System Configuration

Program
Screen control codes, 243-45
Screen modes, 245
Semicolons, 126-27
Sequential-access files, 147-48
Serial interface, RS-232-C, 6
SETCTAB, 169, 177-78, 249
Set prefix, 55-56
SGN, 121, 214
Silentype Printer, 5
SIN, 121, 214
Slot assignments, 72
Slot number, 71
Software, 12-13

applications, 59
communications, 17
system, 59, 88

Sophisticated Operating System
(SOS), 13, 29, 59

device manager of, 60
error messages of, 232-33

276 I Apple Ill User's Guide

SOS (continued)
file manager of, 60
interrupt manager of, 60
memory manager of, 60
SOS.DRIVER, 60
SOS.KERNEL, 60
utility manager of, 60

SOS. See Sophisticated Operating
System

Sound, 165, 182-85
SPC, 128, 214
SQR. 121, 215
Statements, 77
STEP, 113-14, 215
STOP, 91. 215
Storage system, hierarchical, 42
STR$, 122, 215
String, 96, 99

audio parameters, 260
String constant, 95
String functions, 120-22
String variables, 96
SUB$, 122, 215-16
Subdirectories, 42

how to create, 54
Subroutine, 116-17

external, 159
internal, 159
nested, 117

SWAP, 107-08, 216
Syntax, 78-79
SYSFONT, 169, 181. 250
System Configuration Program

(SCP), 13, 44, 62-63, 65
error messages, 233-34

System disks, 29-30
System error messages, 231-38
System parameters, 71-74

character set, 72-74
Disk III drives, number of, 72
slot assignments, 72

System software, 59, 88
System unit, 1, 9

T
TAB, 127, 216
Tab fields, 127
TAN, 121, 216
Template, 128
Temporary file, 40
TEN, 122, 217
TEXT, 139, 171-72, 217
Text modes, 8

TRACE, 115, 161, 217
Transfer option, 168, 248
Truth tables, 106
TYP, 217
Typeahead buffer, 29

u
Unconditional branching, 110
Unifile, 14, 15
Unit number, 71
Universal Parallel Interface Card,

25-26
UNLOCK. 145, 218
Unpacking, 19
Utilities, 44, 46-48

device handling, 56-58

v
VAL, 122, 218
Variable, 95-97

index, 113
integer, 96
long integer, 96
real, 96
reserved, 136
string, 96
types of, 96-97

Variable name, 95-96
Version ID, 71
Video, composite, 7
Video display, 6-9
Viewport, 168
VIEWPORT, 168, 169, 172, 249
Volume name, 34, 43, 49
VPOS, 139, 218

w
Warm boot, 4
Wildcards, 47-48
WINDOW, 138-39, 218-19
Word wrap, 28
WRITE#, 151. 219
Write-protection, 33-34, 55

X
XFROPTION, 169, 178-80, 249
XLOC, 169, 250
XYCOLOR. 169, 180, 250
X-y coordinate system, 166

y

YLOC, 169, 250

The Osborne/McGraw-Hill Guide to Your Apple® Ill

All the information you need for trouble-free set-up and operation
of your Apple® Ill and its peripherals- plus a section focusing on
Business BASIC programming- is included in this easy-to-understand
reference guide.

The Osbome/McGraw-Hill Guide to Your Apple~ Ill is the single best
source to show you how to:

• Use your microcomputer, printer, Profile hard disks1 floppy disk
drives and modem

• Develop practical programs with Business BASIC
• Create graphics and utilize the sound capabilities of your system
• Understand and install the Apple Ill SOS operating system.

Even if you're a beginQing computerlrtser, The Ost)c)rne/McGr~~·Hill
Guide,to Your Apple® Ill, with its quick reference guide to Business
BASIC and its comprehensive index and appendix for ease of use, will
help you get your Apple Ill up and running in no time at all.

Apple is a registered trademark of Apple Computer, Inc.

ISBN 0-88134-101-0

	The Osborne/McGraw-Hill Guide to Your Apple III
	Contents
	Introduction
	Chapter 1: Introducing the Apple III
	Chapter 2: Getting Started With the Apple III
	Chapter 3: Files, Paths, and Utilities
	Chapter 4: System Configuration Program
	Chapter 5: Getting Stared With Business BASIC
	Chapter 6: Programming In Business BASIC
	Chapter 7: Advanced Programming In Business BASIC
	Chapter 8: Creating Graphics And Sound
	Appendix A: Business BASIC Quick Reference
	Appendix B: Business BASIC Error Messages
	Appendix C: Business BASIC Reserved Words
	Appendix D: System Error Messages
	Appendix E: Console Reference
	Appendix F: Graphics Reference
	Appendix G: Printer Reference
	Appendix H: RS-232-C Reference
	Appendix I: Audio Reference
	Appendix J: ASCII Character Codes
	Appendix K: Apple II Emulation
	Index

