
APPLE INFORMATION SERIES-VOLUME I 

-'ti 

JVinfried Hofacker. Ekkehard Floegel 

5 
& OTlIEI~ J\\YSrfElllES. 

~:!.. • . . 



APPLE INFORMATION SERIES-VOLUME I 

ffTinfried Hofacker. Ekkehard Floegel 

Charles Trapp - Editor 

David Moore - Technical Editor 

D. J. Smith - Additional Graphics 

H. _c. Penningt9n and D. J. Smith - Cover Design 

First Edition 
First Printing . 
June 1982 
Printed in the United States of America 

' Copyright© 1982 by W. Hofacker and E. Floegel 

ISBN 0 936200 05 7 

All rights reserved. No Part of this book may be reproduced by any 
means without the express written permission of the publisher. 
Example programs are for personal use only. Every reasonable effort 
has been made to ensure accuracy throughout this book, but neither 
the author or publisher can assume responsibility for any errors or 
omissions. No liability is assumed for ariy direct, or indirect, 
damages resulting from the use of information con'tained herein. 

Published by 

IJG Inc 
1953 West 
11th Street 
Upland,CA 
9178617141 
946-5805 

Apple and Apple II are registered trademarks of Apple Computer Inc. BYTE WIDE is a 
registered trademark of Mostek Inc. Radio Shack is a registered trademark of the Tandy 
Corporation. 



2 

IMPORTANT 

Read This Notice 

Any software or computer hardware modifications are done at your own risk. 
Neither the PUBLISHER nor the AUTHOR assumes any responsibility or liability 
for loss or damages caused or alleged to be caused directly or indirectly by applying 
any modification or alteration to software or hardware described in this book, 
including but not limited to any interruption of service, loss of business, anticipatory 
profits or consequential damages resulting from the use or operation of such 
modified or altered computer hardware or software. Also, no patent liability is 
assumed with respect to the use of the information contained herein. 

While every precaution has been taken in the preparation of this book, the 
PUBLISHER and the AUTHOR assume no responsibility for errors or omissions. 

The reader is the sole judge of his or her skill and ability to perform the 
modifications and/ or alterations contained in this book. 



Editor's Note 

ABOUT THE AUTHORS 

The authors have previously published several books in Germany, including: 
Programming in Basic and Machine Language with the ZX81, Pascal Handbook 
Programming in Machine Language with the 6502 (by E. Floegel), as well as 
Transistor Logic and Construction Handbook (2 volumes) and Basic for Laymen (by 
W. Hofacker). In addition, Winfried Hofacker operates a publishing firm (with 
offices in Holzkirchen, Bavaria and Los Angeles) specializing in computer books 
written in both English and German. 

This book is the first to be written in English by the two authors, and it had a 
spectacularly unlucky beginning as a result. Several chapters were composed 
verbally on the spot by the two authors in German, then dictated in literal English
German translation to the technical editor, who in turn, dictated into a cassette. 
Some weeks later the cassettes were typed into disk files by a person unfamiliar with 
computers, and the resulting manuscript given to myself was really unbelievable. 

f d like to say an especial word of thanks to Ekkehard Floegel, who spent a week 
helping me with the "too long German sentences" and numerous technical points, as 
well as his interesting stories of Bavaria. 

rd also like to thank: 
David Moore, for teaching me to speak English again when this project was 
completed; _ 
Nancy DeDiemar of Helen's Place and Enc Jorgensen of Clymer Publications, for 
their useful suggestions and the 'TLC' they gave our typesetting; 
Muriel Brock, for laying out the majority of the book; 
and all the fine folks of IJG, Inc., for helping in so many ways. 

Charles Trapp 
June, 1982 

The Custom Apple 3 



4 Contents 

Table of Contents 

General Information: 
The Tools You Will Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Reading Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Be Tolerant .......................................................... 14 
Those Colors: 
What They Mean and How to Read Them .............................. 15 
Copacetic Comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 
Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 17 
Converting Binary to Decimal ......................................... 20 
Digital Logic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Reading the Pins ..................................................... 25 
Wire-Wrapping Technique ............................................ 26 
Soldering Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Tips on Handling Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Introduction: 
Data Acquisition and Control Applications .............................. 33 
An AID and DI A Convertor . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Chapter One: 
The 6522VIA I/O Board .............................................. 35 
Programming the Ports of the 6522VIA Board .......................... 39 
Programming a Visual Display Indicator ...................... ·- ........ 39 
Using the LED Visual Display ......................................... 40 



Chapter One: 
Bar Graph 2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Programming the 6522 Internal Timer .................................. 41 
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Line Comments: Square-Wave Generator Using the 6522 ................. 42 
Another Project With the 6522 Timer .................................. 42 
Using the Timer as a Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Programming the Internal Shift Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
A Variable Duty-cycle Square-wave Generator ........................... 46 
Constructing the 6522 IIO Board ... l ••••••••••••••••••••••••••••••••••• 51 

Chapter Two: 
Sound and Noise Generation Using the AY-3-9812 ...................... 53 
How the Internal Registers Work ...................................... 55 
Programming the GI Soundchip ........................................ 57 
Programming an Example Gunshot ..................................... 60 
Program PIANO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
Sound Demo for the AY-3-8912 ....................................... 64 
Program Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
Assembling a Sound Generator Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Chapter Three: 
An 8-Bit DI A and AID Convertor ...................................... 67 
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 
Accuracy .......................................................... ,. . 7 5 
Quantizing Error ....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T6 
Conversion Rate I Clock Rate ......................................... 76 
Using Two DI A Convertors ............................................ 81 
AID Conversiop. with the ADC1210 .................................... 86 

Chapter Four: . 
An Eprom Burner for the Apple Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
Using the Eprom Burner .............................................. 98 
Using the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
Testing an Eprom ...... ; .................. : ......................... 100 
Programming the Eprom ............................................. 100 
Assembling the Eprom Burner Board ................................. 101 

The Custom Apple 5 



Chapter Five: 
Assembling an Eprom/RAM Board ................................... 113 
Bank-Select Circuitry and Programming ............................... 119 
How to Assemble the Board .......................................... 120 

Chapter Six: 
The Apple Slot Repeater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 
How to Assemble the Board .......................................... 124 

Chapter Seven: 
The Coupling of Two 6502 Systems ................................... 131 
Program Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

Chapter Eight: 
Connecting Other Microprocessors .................................... 135 
The 8212 8-Bit I/0 Port ............................................. 135 
The 8253 Programmable Interval Timer ............................... 136 
Mode 0: Interrupt on Terminal Count ................................. 139 
Mode 1: Programmable One-Shot ..................................... 139 
Mode 2: Rate generator .............................................. 139 
Mode 3: Square-wave Rate Generator ................................. 139 
Mode 4: Software Triggered Strobe ................................... 139 
Mode 5: Hardware Triggered Strobe .................................. 140 
Additional Information on the 8253 ................................... 140 
The 8255 Programmable Interface .................................... 141 
The Interface Adapter PIA 6821 ...................................... 148 
The Apple as a Logic Tester ......................................... 153 

Chapter Nine: 
The Control of Step Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
Glossary ........................................................... 184 

6 Contents 



The Tools You Will Need 

General Information 

For those of you who have not previously done many hardware modifications or 
detailed analyses of schematic diagrams, this general information section gives easy 
to understand tips on the tools you will need, logic diagrams, binary and decimal 
numbering systems, and wire-wrapping and soldering techniques. 

The Tools You Will Need 

Your basic APPLE II Computer, with some attachments and software, is a 
thousand-dollar item. So fll not encourage you to use dime-store tools. Buy the best 
you can afford, keep them clean, and reserve them just for use on the APPLE. Don't 
double up tools with the family auto. You may not need them all, but here is my 
customizer's toolbox: 

A medium-sized :flat-blade screwdriver and Phillips blade screwdriver 
(a reversible combination is ideal). With these you open cases and remove 
cabinets. 

A jeweler's set of flat and Phillips blade screwdrivers; hex nut drivers 
are optional. These drivers can be used to align tape heads, help make 
delicate wire bends, adjust trimmer controls and even repair watches. 

One very thin screwdriver for lifting integrated circuits out of sockets. 
This will be its only purpose, but the first time you break the pins off a $10 
jumper cable, you'll wish you'd used it! 

Small scissor-type cutters (manicuring types are excellent). These will be 
used for snipping leads in tight spots. 

Small diagonal wire cutters and/ or front- cutting' nippers'. Your general 
purpose cutters. They are fast and easy to use, but not to be used for heavy 
wire around the house. 

The Custom Apple 7 



The Tools You Will Need 

Needlenose pliers (two pairs, normal and 90-degree types). You'll need 
these for bending leads, also extracting bits and pieces you've dropped into a 
nest of wiring. 
An X-acto type knife, with a strong blade and handle you feel comfortable 
with. Since this will be used to cut delicate solder traces, you should be able 
to handle it deftly. I use a single edged razor blade, but have leather fingers! 

A scalpel, if you can get one. For very delicate trimming and scraping; a 
dental pick for pulling off solder balls or lifting parts off a board (get this item 
from an obliging dentist - they are often discarded when worn); tweezers 
and needle point hooks. The latter comes in handy for tracing incorrect wire
wrapping connections. 

Rat-tail, triangular, and flat files. These are only for sprucing up the 
cosmetics, so if you don't care how it looks, save a few bucks. 
A wire-wrapping tool. The decision on this can be tough. If you can afford 
it, get one of the electrically operated slit-and-wrap types, stay away from 
'just wrap' tools, since they depend on the sharpness and quality of the 
sockets; also they are useless for wrapping capacitors or resistors. I use a 
simple double-ended tool sold by Radio Shack for about $5. It wears out 
after a thousand or so connections, but it fits my hand well, and is not clumsy 
like some electric units. 
A soldering iron. The decision is not easy. Should you spend top dollar and 
get an expensive one or buy a cheap unit that can be discarded when it wears 
out? I use a $5 soldering iron which can be junked when it gets beat, but my 
editor uses the best he can get (a $30 temperature-controlled one). I file a set 
of $1 tips to my satisfaction, and lubricate the threads with white heat sink 
grease. This way I have a few different tips at my disposal. You never file 
plated tips. 
A Multimeter. The voltage regulators in your Apple are very good, so any 
problems will usually show up as gross errors. This offers you a way out of 
buying an expensive multimeter; for most of these projects, the $10 pocket 
variety will suffice. However, for lots of repair work a better meter is in order; 
I use a $40 type (not digital!) for my work. 
An oscilloscope. For the projects, no. But for repairs, yes. Don't panic 
thinking of a thousand dollars for a digital scope, because an old color 
television scope will do perfectly well; they can be found in the bargain bins 
for$ 50 to $100. If it saves you a $100 repair bill, you've paid for it. Mine is an 
old RCA type W0-90Q, built for early color TV, and just fine for the bulk of 
your Apple work. 

You will also need supplies in the tool box. Among these are: 

8 General Information 

Solder. Get the best you can afford. There's nothing so unpleasant as a great 
glob of the stuff between two traces on a board. Order the multicore ro'sin 
flux type, and stay away from most of the off-the-shelf stuff. Remember, 
multicore rosin type only, and the finer the gauge the better. Never use acid 
flux solder, as used by plumbers and electricians. 



Schematics 

Soldering wick. Marketed under the names Spirig, Solder Up and Solder 
Wick, it's a copper braid impregnated with soldering flux. When heated with 
the soldering iron it absorbs Solder off the board, thus freeing components. 
Don't do without this stuff unless you like fried circuit boards and burnt 
fingers. 

Wirewrap wire. Also called by the tradename Kynar, this is 28-or 30-gauge 
single-strand wire used to interconnect the pins of wire wra_p sockets. It 
comes in an assortment of colors; get them all, so you can keep data, address, 
power and ground lines separate. 

Multiconductor cable. The more flexible wire is easier on the coordination, 
but also the most expensive. Best buy is Spectra Twist, and its kin, from 
surplus houses. If you need jumper cables, buy them; Making a two-ended, 
40-pin jumper cable can be three hours of maddening work. 

Bus wire. This is solid, uninsulated stuff. A small roll will do for a lifetime. I 
use it for wiring, securing bulky capacitors to circuit boards, holding bundles 
of things together and for making special tools. , 

Miscellaneous. Sockets, perforated board, mounting hardware, and such 
will always be needed. 

Details about supplies needed for each project in this book will be presented 
with the project. Except for integrated circuits, most of the items are available right 
off the shelf at a local Radio Shack or other electroniCs supply house. 

Schematics 

Schematic drawings of electronic circuits are identical to maps. They show 
routes, direction, junctions, relative importance and functions of locales, two-way 
and one-way streets, traffic flow and congestion and so forth. At first, the symbols 
may seem like the mysterious hieroglyphics of a secret society, but their symbolism 
can soon become as familiar as a roadmap. Even strange places can be assessed 
from afar. 

The Custom Apple 9 



Schematics 

First, the symbols. A line is a wire running from some point in the circuit to 
another. Consider the sketches below: 

... -

-

The first drawing is a simple wire. The electrical path moves from one point to 
another, in either direction. By following the path of a wire point to another, in either 
direction. By following the path of a wire through a circuit, the pattern of connections 
can be discovered. When wires ~re forced to cross one another, but not to connect 
with each other, it must be made clear. On a roadmap, non·intersecti:rig roads are 
shown either by a break in one of the intersecting lines, or in showing interstate 
highways, merely by crossing one 'below' the other in a different color. 

Sketches b, c and d are the three ways of drawing wires which do not connect to 
each other. The first, simple crossing them, is the most common. The second 
method places a semicircular bump in the crossing path, and it used by Sams 
Publications in this country and commonly in Europe. Occasionally the broken path 
crossing shown in sketch d is used. 

When wires ponnect, a dot is used to clarify that a connection is to be made. 
Occasionally, you may come across earlier schematics which use the 'bump' method 
of showing unconnected wires. On these schematics, the lack of a bump indicates 
wires are connected. 

The wires (or patterns of copper etched on circuit boards) connect electronic 
components. Some of them are: 

RESISTOR TRANSISTORS 
CAPACITORS 

J_+J_ 
T T POLARIZED 

DIODE PNP NPN FET 

10 General Information 



Schematics 

Since this is a lesson in reading schematics and not electronic theory, I 
recommend that you turn to an excellent book by Forrest Mims, 'Engineer's 
Notebook', sold by Radio Shack, for an introduction to what each of these parts 
does. Briefly, the symbol for a resistor has the flavor of a long wire being 
compressed, meaning the electrical flow is somehow being resisted. The innards of a 
capacitor generally consist of metal foil separated by a non-conducting paper or 
plastic, and the capacitor's schematic symbol is fairly representative, with two 
plates facing each other but not joining. 

Some capacitors are designed to fit into a circuit in only one direction; these 
capacitors are identified on their bodies by a positive or negative sign. Another one 
direction (polarized) device is the diode. It consists of an arrowhead striking a 
barrier, implying that current may flow in the direction of the arrowhead, but not 
back across the plate. The body of a diode may have the diode symbol imprinted on 
it, or a band to indicate the 'barrier' end. 

The transistor usually has three connections (such connections are called 'leads' 
on small parts such as these). These leads are identified as collector, base and 
emitter or source, gate and drain, cdepending on the transistor type. This will be 
shown on the diagram, and the transistor will be imprinted with the information, or it 
will be provided on the package in which the transistor is sold. 

A few other symbols are: 

VARIABLE RESISTORS TRANSFORMER 

VARIABLE CAPACITOR 

CRYSTAL 

The first is a transformer, whose job it is to take current fed into' one coil and 
induce that current, into a second coil. An iron or f etrite center (the parallel lines in 
the symbol) aids in efficent transfer of that current. 

The next three symbols look like resistors and capacitors, which they are. The 
added arrows show that their values may be varied; hence, they are called variable 
resistors and variable capacitors. The variable resistor is best known as the volume 
control on a television, and the variable capacitor is found as the tµning control on a 
table radio. 

The Custom Apple 11 



Schematics 

The last symbol is a crystal, a piece of cut quartz capable of vibrating 
(resonating) under certain electrical conditions. Because a crystal is a very accurate, 
fixed, molecular device, it's capable of resonating (also called oscillating) at precise 
intervals. It is used for the master control of all pulses in the APPLE. 

A few directional symbols are now in order: 

GRWNDS POWER 

EAATH CHASSIS COMMON 

+5 

t T --<J 
PAD 

1 

The first are known as grounds, and they are used to indicate a potential of zero 
or neutral voltage. The first of the trio is an earth ground, commonly used in radio, 
television and hi-fi schematics, but purist use it only describe an actual connection 
to a ground spike or cold water pipe. The second is a chassis ground, indicating an 
electrical connection to the metal case which encloses the circuit. It is often (though 
incorrectly) interchanged with the earth ground. 

The last of the three grounds is a 'common' or neutral ground, and the one which 
is used to indicate the zero voltage line in the computer. All other voltages within the 
computer system are described in terms of their relation to this ground. 

'l'he next quartet of symbols indicate power. The up arrow generally points to an 
actual voltage value (such as +5 or +12). The horizontal line indicates merely a 
'high' is made to the normal positive power supply for the circuits in the system ( +5 
volts in the TRS-80). 

Non-positive voltages have no standard symbols. Negative (or below ground) 
voltages can have either a horizontal arrow or a down arrow, pointing to the voltage 
desired at that point. The schematic tells you that a connection is made to the 
voltage level shown. 

Another use of a horizontal arrow is to point to important connections to be made 
elsewhere on the schematic or on other sheets of the schematic. In the former case, 
the arrow is used because actually drawing the wire may clutter the schematic, 
making it illegible. When you see an arrow, be sure to find the other end of the 
connection described (indicating words such as 'clock', 'mem' or 'port FF' may be 
used as guides to where the connection is made). 

12 General Information 



Schematics 

Another useful symbol is the last of the group above, the pad. It indicates a 
significant connection, usually to another device or circuit board. Using this symbol 
makes it clear that the connection is to be made somewhere off the board on which 
you are working. 

The most common families of parts found in computer circuits are shown below: 

--.... D>i-----
ANO OR 

=:[) 
NANO NOR 

----1[:>>----
BUFFER (a) (b) 

--------1(:>~.-a~--------
INVERTER 

These symbols represent integrated circuits, those multiple lead, buglike 
packages that handle the bulk of the work in the computer. Briefly, these are logical 
building blocks. Sometimes there are several blocks in one integrated circuit, and 
these .various blocks may be scattered throughout the circuit diagram. This caI1 be 
confusing when actually building a circuit, but since pin (lead) numbers are given, 
you only have to remember where you put the part. 

c 

Basically, that covers reading a schematic roadmap. Below is a section of circuit. 
See how the logic elements are connected to each other. An arrowhead indicates a 
wire leading off the board, and power and ground connections are shown. The 
numbers on the logic elements are the pin numbers for the component connections: 

U1 =6522 
U2 = 2114 
U3 = 2114 
U4 = 4050CMOS 

PORTA 

-c oCA1 
eCA2 

.._..PAO 
-PA1 

RESET 
Device Select. 23 

CS2 

07 
06 
05 
04 
03 
02 
01· 

U1 

•2 

VIA 
6522 

RS3 

RS2 

25 

35 

36 

37 
U4 I +SV 

Pinout6522 
Pin out2114 
Plnout4060 

The Custom Apple 13 



Be Tolerant 

Be Tolerant 

Every electronic component is manufactured to work within specific limits, 
whether they be accuracy, temperature, speed, power use or other limit. These are 
the components parameters or tolerance. The circuits in this book have been 
designed to use the most conimortly available parts, so the matter of tolerances is 
rarely important. However, sometimes those tolerances are important, such as when 
talking about memory speed or power supply voltages. 

Power supply should be within five percent of the voltage specified; a supply 
indicated at five volts may vary only from 4.5 volts to 5.5 volts. By using the power 
supply regulators shown in the schematics, these voltages should not be of concern. 
Unless you are familiar with power supply design, do not attempt to use other 
methods of regulation. 

Very few of the resistors have tolerances noted on the schematics. The rule of 
thumb is one quarter watt at five percent, but if you can only obtain half watt units, or 
10 or 20 percent resistors, don't be concerned. The quarter watt resistors are a bit 
less costly and are a bit more aesthetically appealing. Consider also that if a resistor 
is specified as 1,000 ohms, a20 percent deviation gives arange of800 ohms to 1,200 
ohms. Thus, the standard values of 910 ohms or 1,200 ohms should do as well. 

Capaeitors are notoriously sloppy in their tolerances, especialy electrolytic 
types (those whose polarity is marked on the schematics). These normally vary from 
20 percent low to more than 100 percent high - thus, when a 500 microfarad 
capacitor is noted, it can range from 400 to 1,000 microfarads. Also, there is some 
revision in the standard numbering method used for parts values: 4 7 0 micro farads is 
now being called 500 microfarads, for example. So when you try to obtain a capacitor 
value marked in the parts list, remember that a nearby higher value is fine. 

Voltage parameters for polarized (electrolytic) capacitors are important. Never 
get an electrolytic capacitor with a value less than that specified, but do not hesitate 
to take one with a higher voltage parameter. That is, a capacitor specified at 4 7 
microfarads, 16 volts, can be replaced with one specified at50 microfarads, 35 volts. 
It may be physically larger, but it will work equally well. 

If you walkinto a store and hand the sales clerk a parts list, don't be surprised if 
you are askeda few more questions. You might be faced with chasing between parts 
which are identical asfa.r as the parts list in this book is concerned, but which include 
other parameters. 

Resistors can be carbon composition, carbon film, glass or wire-wound. These 
days, carbon film is common and cheap, and that's your first choice. Carbon 
composition is the next choice at a lower quality, and glass is excellent but at a higher 
cost. Forget wire wound, because they can contribute unwanted side effects. 

14 General Information 



Those Colors 

Ordinary capacitors are manufactured in many ways: ceramic, polstyrene, 
polyester, silver mica, polycarbonate and paper. For the bypass capacitors 
necessary for all the circuits in this book, ceramic types are your choice. Cheap, · Tf 
you get silver mica, so much the better, but you'll pay a price. Watch out for 
polystyrenes or polyesters if you plan to solder, because they are delicate and you 
can damage them with too much heat. Otherwise they are excellent, but quality 
overkill. Polycarbonates are slick types, and you might consider using these if you 
build the 8 ... track mass storage system. Run the other way if you see P!lPer 
capacitors. 

Electrolytic capl,\citors come in two basic types ...._, met;:tl cans (cover~d with 
plastic), and those manufactured using tantalum (an expensive metal of great 
strength and purity). For most digtal projects, choose the ordinary cans. Tantalums · 
of the same value, although smaller, high quality, and very pert look:ing, are costly 
and not required here. 

Digital integrated circuit part numbers are generic, which meansthat a 7 4LSOO 
circuit might be sold as an SN74LSOO or an NEC~74LSOO. The prefix characters 
refer to manufacturers. On the other hand, those p/lrts whose numbers contain \LS' 
may not be substituted by parts marked 'S' or 'C' or by those with no markings. 
741800 may not be replaced by 7400, 74SOO,or7 4COO, nor may they be exchanged 
for each other. When integrated circuits are specified, try not to substitute with 
other circuit 'families'. 

This section will not make you a master schematic reader; only practice will do 
that. Pick up copies of the Engineer's Notebook mentioned above, as well as Vllriotis 
of the project books sold by Radio Shack and others. 

Those Colors: What They Mean and How to Read Them 

The color codes used for resistors, capacitors and other parts are bro1Jght to you 
by the same folks that brought your phrases like 10W~40 and RS~232C: the 
standards-setting powers of the engineering industry. It becomes ap international 
shorthand. 

The colors are black, brown, red, orange, yellow, green, blue, purple, grey and 
white. If you can't immediately remember that, then pick llP a pjece of multi· 
conductor "rainbow" cable. The colors are all there in the same order. The table 
below p:resents the color codes and how they can be read on the bodies of resistors, 
capacitors and diodes. 

The Custom Apple 15 



Those Colors 

FIRST AND SECOND THIRD COLOR BAND 
COLOR BANDS 

BLACK 0 BLACK 0 
BROWN 1 BROWN x 10 
RED 2 RED x 100 
ORANGE 3 ORANGE x 1000 
YELLOW 4 YELLOW x 10,000 
GREEN 5 GREEN x 100,000 
BLUE 6 BLUE x 1,000,000 
VIOLET 7 SILVER 100 
GRAY 8 GOLD 10 
WHITE 9 

FOURTH COLOR BAND IS THE TOLERANCE 
GOLD = 5~ SILVER = 10% NONE = 20% 

What do these values mean? Resistance is a kind of objection to electron flow, 
measured in ohms (pronounced with a long O). The abbreviation is a Greek omega 
( n ). Thousands of ohms are kilo-ohms, or just kilohms and abbreviated K (kin 
Europe). Millions of ohms are megohms, abbreviated simply M. The ability of a 
resistor to withstand electrical current is measured in Watts (W). Most computer 
work is done with 1I4 Watt resistors. 

For resistors without color bands, the values are stamped on using R (instead of 
omega) for ohms, K and M. -

Capacitance is the inclination of a non-conducting object to store an electrical 
charge, measured in Farads. The abbreviation is a capital F. Since this is a very large 
amount of capacitance, real work is generally done in millionths of Farads, or 
microfarads (mF), and millionths of millionths of Farads, called picofarads (pF). 
Since many of the more popular capacitance ranges for computer work fall between 
these two figures, the abbreviation for thousandths of millionths of Farads, or 
nanofarads (nF) is common in Europe. The ability .of a capacitor to withstand 
voltage is measured in voltage tolerance (V). 

Capacitance is usually printed on the capacitor in mF; color bands are rare. 
Picofarads are marked "p"; the absence of an abbreviation indicated microfarads. 
Note that these capacitor "base values" are equivalent:· 18=20, 27=30, 39=40, 
47=50. 

16 General Information 



Copacetic Comprehension 

Copacetic Comprehension 

There will doubtless be a day when books like this will be unnecessary. Personal 
computers will probably develop into the appliance area, with programmers, 
hobbyists, hardware designers and language specialists present only in the distant 
background of the market. But until then, we are all faced with being either frustated 
users or solderer-programmers, tailoring machines according to our personal 
demands. 

To do this, certain skills are inevitably required. Among these are an understand
ing of non-decimal number systems, digital logic devices, machine-level languages, 
and a smattering of diagnostic sense. There are some fine books that cover all these 
topics, so this chapter will only deal with them as far as needed to put this book to 
work. Among them are: 

• Binary, decimal and hexadecimal number systems, how they arose, how and why 
they can be used, and where understanding them is essential. 

• Common digital logic devices that appear in the Apple and these projects, and 
how and where to use them. 

e Some of the basic elements of machine language, and a few personal considerations 
on where it is best applied, and when BASIC is a better choice. 

Number Systems 

Numbering is the single most overrated problem in computer programming. The 
answer (posed before the question) is this: numbers are merely counting names. 
That is, it makes no difference whether we think in tenths of a mile or eighths of an 
inch. Nor does it bother us that a day is made up of 24 hours, while an hour is 60 
minutes. That a year is 365 days frightens us not, nor that months are a motley 
collection sizes. 

In parking lots, does it bother us that our vehicle may be parked in Row N as 
opposed to Row 14? There is no mystery when we mark off points with four 
scratches and a crosshatch. And does a dozen always conjure up 'twelve', or is a 
dozen something we have understood since youth? 

Names are sizes are numbers; so it is with the number systems that we arbitrarily 
assign for the convenience of working with computers. When we are talking about 
electrical signals, it is clearest and easiest to think about ons and offs. Ons look pretty 
much like ones, and offs look like zeros. It's a nice, clean concept and one that 
illuminates the way we can refer to the machinery. 

The Custom Apple 17 



Number Systems 

There's more convenience to naming a computer data condition 10110100 than 
to calling it an on off on on off on off off. Were data the only consideration, the binary 
one and zero method might have been satisfactory, without resorting to other means 
of stroking our memories. 

Finding a location in a computer's memory is a much more difficult task. 
Although a memory location called ... 

111010001001101010 

... might be easier to think about than ... 

onononoff onoffoffoffonoffoffononoff onoff on 

... it could use another step forward. In music, a long string of sixteenth notes like 
this -

Illustration of Illegible Musical Notation 

- is broken up to make it legible, so it looks instead like this -

Illustration of Legible Musical Notation 

Likewise, that long binary string can be broken up from 1101000100110101 into 
convenient groups ... 

1101 0001 0011 0101 

... although the legibility is improved, the human spark, the ability to look and 
recognize (that aha!) is not there. So the next step is to set about naming the 
sections. Since these on-off conditions can be written down as binary numbers, why 
not write them down in their decimal equivalents? 

18 General Information 



Number Systems . 

The question is rhetorical, of course, because not only can it be done, it is done. 
The only question is how to do it. Were a computer capable of swallowing all sixteen 
of those binary digits (bits) in one gulp, that question might be easily answered by 
calculating the conversion of 1101 0001 0011 0101 using a binary-to-decimal 
conversion table. The result, we find, is 5355 7. 

But the computer, alas, cannot swallow all those bits in one bite ... it can only 
swallow one bite full of bits (pardon). In other words, though a computer may need 
numbers sixteen bits long, only eight data lines exist to carry that data. 
The component parts of the number 1101000100110101 are needed, eight bits at a 
time: 11010001 00110101. 

There's the mathematical rub. 11010001 is 209 decimal, and 00110101is 54 
decimal. This seems hardly related to 53,557. Another solution is necessary, and it is 
a naming system as much as a numbering system. It names each of the sixteen 
possible combinations of four binary digits: 

0000 is named 0 and is equal to decimal 0 
0001 is named 1 and is equal to decimal 1 
0010 is named 2 and is equal to decimal 2 
0011 is named 3 and is equal to decimal 3 
0100 is named 4 and is equal to decimal 4 
0101 is named 5 and is equal to decimal 5 
0110 is named 6 and is equal to decimal 6 
0111 is named 7 and is equal to decimal 7 
1000 is named 8 and is equal to decimal 8 
1001 is named 9 and is equal to decimal 9 
1010 is named A and is equal to decimal 10 
1011 is named B and is equa L to decimal 11 
1100 is named c and is equal to decimal 12 
1101 is named D and is equal to decimal 13 
1110 is named E and is equal to decimal 14 
1111 is named F and is equal to decimal 15 

This may seem overdone; but A, B, C, D, E, and Fare darn good names for binary 
values which exceed the number nine. If you don't have a name, make one up. For 
practical purposes, keep it within the symbols everyone has on the typewriter. · 

Back to the number 1101000100110101. Crack it into those four legible pieces 
(1101 0001 0011 0101), and it can be named D135. To convert it to decimal, 
remember the old rule: the 5 is in the ones place, the 3 is this time in the sixteens 
place, the 1 is in the two-hundred-fifty-sixes place, and the Dis in the four-thousand
ninety-sixes place. Thus, Dl35 is 5 plus 3 x 16 plus 1 x 256 plus (see the chart) 13 x 
4,096, or ... 53,557! 

The Custom Apple 19 



Converting Binary to Decimal 

So, now that long binary number can actually be digested by the computer as a 
byte of Dl and a byte of 35. After a while, the number system comes easily. My 
personal recommendation: work in it. Convert to decimal only when you absolutely 
must. Think in hexadecimal and binary. They are the tools with which you can speak 
to the computer. 

Throughout this book, numbers in hexadecimal are printed in BOLD. 

Converting Binary to Decimal 

In the grade school years, students used to learn that a number like 5,163 
contained a 3 in the ones place, a 6 in the tens place, a 1 in the hundreds place, 
and a 5 in the thousands place. It was to remind them that 5, 16 3 was really 3 
plus 60 (6 x 10) plus 100 (1 x 10 x 10) plus 5,000 (5 x 10 x 10 x 10). 

The way other number systems are written follows this same pattern for 
their own bases. In base eight the number 5,163 would have a 3 in the ones 
place, a 6 in the eights place, a 1 in the sixty-fours place, and a 5 in the five
hundred-twelves place. That means that 5,163 is really 3 plus 48 (6 x 8) plus 
64 (1 x8 x8) plus 2,560 (5 x8 x8 x8). But notice how that's decimal thinking! 
·Really in base eight there could be no '8' ... it would have to be called '10 '! 1, 
2, 3, 4, 5, 6; 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, and so on. So 5,163 in base 
eight is still 3 plus 60 plus 100 plus 5,000! 

The binary system sneaks in the same way. A number like 1101 0001 0001 
0011 turns into a 1 in the ones place, a 1 in the twos place, a 0 in the fours 
place, a 0 in the eights place, all the way up to a 1 in the thirty-two-thousand
seven-hundred-sixty-sevens place. In binary, the one on the far left is still a 1 
in the quadrillions place, don't forget. But the message is how to convert all 
this to decimal. And here it is: 

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1 
1 0 1 0 0 0 1 0 1 0 0 1 0011 

Just add the numbers: lxl + lx2 + Ox4 + Ox8 + lx16 ... +1times32,768 + 
41,619. Voila. No matter how long' the number is, and in whatever base: 

1. Start at the left and produce a chart of the base number's powers, starting 
with 0 (X to the 0 power is always 1). 

2. Lay the number to be converted underneath the base number chart. 

3. Multiply each base number power by the digit in its place. 

4. Sum the resulting numbers. 

20 6eneral Information 



Digital Logic Devices 

Does it work? Certainly. What is 163,341 in base 9? And in base 10? 

Base 9 powers: 5 4 3 2 1 0 
9 to that power: 59049 6561 729 81 9 1 
Number to convert: 1 6 3 3 4 1 
Multiplication: 1 x59049 6x6561 3x729 3x81 4x9 1 x1 
Subtotals: 59049 +39366 +2187 +243 +36 +1 
Converted result: 100882, base 10 

Base 7 powers: 5 4 3 2 1 0 
7 to that power: 16B07 2401 343 49 7 1 
Number to convert: 1 6 3 3 4 1 
Multiplication: 1 x16807 6x2401 3x343 3x49 4x7 1 x1 
Subtotals: 16807 +14406 +1029 +147 +28 +1 
Converted result: 32418, base 10 

Base 10 powers: 5 4 3 2 1 0 
10 to that power: 100000 10000 1000 100 10 1 
Number to convert: 1 6 3 3 4 1 
Multi p Li ca ti on: 1x100000 6x10000 3x1000 3x100 4x10 1 x1 
Subtotals: 100000+60000 +3000 +300 +40 +1 
Converted result: 163341 , base 10 

Digital Logic Devices 

The binary number system and digital logic devices were developed together as a 
way of solving a practical dilemma: how to mass produce computers which could 
work quickly and accurately, and yet be inexpensive. The problems of creating 
consistently accurate circuits, working with many different voltages levels, are 
formidable. Thus, simple yes-no, on-off logic was developed. 

The intimidating term Boolean algebra is being used for the first, and last, time in 
this book- right in this sentence. You'll probably hear the phrase from time to time, 
but no matter - it's a professional' s buzzword to keep the masses out. Forget it. 

Back to digital logic devices. The essence of digital logic is to evaluate binary, on
off input; sometimes to determine a pattern of similarity or difference, sometimes to 
sense a change and sometimes to search for a signal. An appropriate result is 
produced as a result of the lobical operation. 

One of the logic building blocks is called a gate. A gate electronically evaluates its 
input to determine the pattern of similarity and difference of signals, and produces a 
specific output. A simple gate is shown below: 

Simple AND Gate 

Its job is to determine if the first AND second inputs are both at the one (high) 
level. Only under that condition will its output produce a high (one) signal. The table 
below shows how this AND gate works. 

The Custom Apple 21 



Digital Logic Devices 

If input #1 is -

0 
1 
0 
1 

AND Gate Action 

AND Gate 

If input #2 is - The output result is -

0 
0 
1 
1 

a 
a 
0 
1 

The table is called a truth table, and its purpose is to present every possible input 
and output condition for a given gate. Below is an OR gate. Stated in words, if either 
the first OR the second input is high, the outp~t will be high. Examine the OR gate 
truth table; it really is quite logical. 

Simple OR Gate 

OR Gate 

Input 1 Input 2 Output 

0 0 0 
1 0 1 

--
0 1 1 
1 1 1 

OR Gate Action 

Given a huge set of interconnected gates and their known inputs, the final output 
of the group can be determined by using truth tables like these. Gates may have 
more than two inputs (some have sixteen), and may produce the opposite results 
from the two described above (NOT-AND and NOT-OR gates, known as NAND and 
NOR gates). Truth tables reveal how the integrated circuit's design engineer 
specified the pattern of binary logic inside the circuit. 

In this way, given a desired output and a known number of input signals, it is 
possible to determine what set of input values will trigger the desired output. 

There are a number of other types of digital circuits. Most are created out of 
gates like those described above, but their features are unique enough to think about 
them separately. Among these other digital logic circuits are buffers, flip-flops, 
counters, latches, multiplexers and shift registers. 

22 General Information 



Digital Logic Devices 

A buffer can be thought of as a two-input gate with both inputs tied together, like 
this: 

Buffer as (a) Two-input Gate, (b) Buffer and ( c) Inverting Buffer 

Its truth table is much simpler than that for two-input gates, because there are 
now only two input conditions. Either both inputs are high, or both inputs are low. 
Gates with 'true' outputs (AND, OR) will merely follow the input condition. When 
the inputs are high, the output is high; if the inputs go low, the output becomes low. 
Separate logic devices are manufactured that perform this 'follow-the-leader' 
function, and they are ca,lled buffers. They serve to isolate sections of a circuit, or 
rejuvenate a signal so it can feed many dozens of inputs in a large machine. 

When a buff er reverses the condition of its input, (a high input is output low, and 
vice versa), the device is called an inverter. This kind of circuit can save the day in 
some cases, as when trying to locate a given bipary number. Assume a circuit needs 
the binary number 1110 to turn on a pilot light. It is possible to choose four separate 
gates, each of which would provide an output matching the desired number. These 
would be connected through more gates, and eventually the number could be 
discovered when the final signal was triggered properly. One way of detecting 1110 
is shown below: 

1 
1 

1 
1 

1 

1 

0 1 

Bad Decoding Scheme for 1110 

The Custom Apple 23 



Digital Logic Devices 

24 

But, although this circuit works, economy of cost and space and simple clarity 
dictate another solution. The last input could be inverted before it is evaluated, 
resulting in a pattern (1111) which could be quickly recognized by a multiple-input 
gate. The result is electronic simplicity and legibility; an improved decoding circuit 
is shown below. The ultimate result is the same. 

1 
1 1 
1 

0 1 

Good Decoding Scheme for 1110 

A flip-flop is a 'black box' which provides two outputs. When an input value is 
high (one), the first output will be high, and the second will be low. When the input 
value switches low (zero), the outputs will reverse. In other words, two opposite 
outputs for the price of one. But there is another significant use of the flip-flop. 

Flip-flops also have an important input called a clock trigger, which is triggered 
only when its input returns to a given level. Only then will the outputs of the flip-flop 
reverse. That is, a given flip-flop clock may receive a 'zero' pulse. Its outputs will 
reverse. Then the zero pulse changes to a 'one' pulse. Nothing happens, but the trap 
is set to spring. When the one pulse changes back to a zero, the outputs reverse 
again. For every two changes at the clock, there will be but one change at the output. 
It takes four clock changes to produce two output changes. 

Why is this useful? Because it is electronic, binary division. The truth table here 
shows how it works. 

Binary Division with a Flip-Flop 
Output of First Flip-Flop Connected to Clock of Second 

Flip-Flops Change State Each Time Input Returns Low 

Clock F Li p-F Lop Second Clock Second Flip-Flop 
Input Output Input Output 

----
0 0 0 0 
1 0 0 0 
0 1 1 0 
1 1 1 0 
0 0 0 1 
1 0 0 1 
0 1 1 1 
1 1 1 1 

(Input) (Input/2) [Input/4) 

Binary Diuision with a Flip-flop 

General Information 



Reading the Pins 

Digital logic devices known as counters are combinations of gates and flip-flops 
that allow certain patterns be counted: Binary, Binary Coded Decimal (BCD, where 
the highest number is decimal 10), Gray code and others. 

Latches are very much like flip-flops, except that the input is 'captured' at the 
output by a trigger signal called an enable, a select, or a gating pulse. The input may 
change continuously, but the output only reflects the input when the enable is 
activated. Latches are very useful when hundreds of thousands of signals are flying 
around on one set of lines, and the computer must select only certain groups of 
signals. The cassette output of data is a latch; only the 500-baud (bits per second) 
pulses of data reach the cassette output, even though many different signals reach 
its input. 

Multiplexers are sometimes misunderstood, but mostly because of their formidable 
name. A traffic light is a multiplexer - it allows several streams of traffic to meet at 
one intersection, but only one stream to proceed. The multiplexer is the electronic 
equivalent, having several inputs. Gating signals select which of the inputs may 
reach the output. In a computer, this allows several devices to share a circuit (like the 
video, which must be sent to the screen, but also sends and receives characters from 
the rest of the computer). 

Finally, shift registers treat bits of data like a bucket brigade sends up water: it 
goes in one end, and at each electronic 'go!', the bucket is sent along one position. 
The dots which make up the video display are produced by circuits which shift them 
out to the screen one bit at a time, in synchronization with the monitor's sweeping 
electron beam. 

Reading The Pins 

Finding your way through digital circuits is much easier than finding your 
way through an ordinary table radio. Industry standards have made the 
process simple. Consumer integrated circuits are packaged in small, rectangu
lar, plastic or ceramic cases with anywhere from 8 to 40 external connections 
known as 'pins'. 

Earlier integrated circuits - and many of the audio types currently being 
produced - were packaged in small metal cans and looked like transistors, 
with many wires protruding from the bottom. The wires were arranged 
around a keying tab on the edge of the can, and numb~red like so: 

0 
0 8 

1 

Can-type IC Pin Numbering 

The Custom Apple 25 



Wire-Wrapping Technique 

As such circuits developed into more sophisticated and powerful devices, 
more pins were needed for input and output. A rectangular package was 
developed, but it was still numbered in a circle, starting (when looking down 
from the top) from left of the notch, so: 

7 6 

Dip-type IC Pin Numbering (8 Pins) 

All modern integrated circuits can be read from the top in this same way. 14-
and 16-pin types start from the top left and read around: 

16 15 14 13 12 11 10 

14 13 12 11 10 9 

4 6 7 

4 

14- and 16-Pin Dip IC Pin Numbering 

You can read the pinouts of 18-, 20-, 24-, 28-, and 40-pin circuits in the same 
manner. The highest numbered pin sits just opposite the lowest numbered 
pin. In the beginning this practice may seem confusing; it is. But after using 
the circuits - and counting their pins over and again- you will probably feel 
comfortable with the pin arrangement. 

Just one thing: when you assemble Apple add-ons, most of your work will be 
done from the bottom ... which means reading backwards! 

Wire-Wrapping Technique 

It's not without a bit of hesitation that I attacked many of the hardware projects 
presented in this book. Some are simple, but many, particularly those using memory 
circuits, need many connections. The wiring is not complicated, just tedious. 

If you work carefullly, all is likely to be well; but even a touch of haste will encourage 
confused connections. It is in these cases especially that wire-wrapping is the 
technique to use. 

26 General Information 



Wire-Wrapping Technique 

Wire-wrapping is not only easier than soldering, it is secure, simple, easier for 
correcting mistakes - and less costly. For wire-wrapping, you will need wire-wrap 
sockets, which are sold by most hobbyist supply houses including Radio Shack. 
Likewise, wire-wrap wire and a simple hand tool are used for the process. Here are 
the steps: 

1. The wire, still connected to the spool, is inserted in the V-shaped stripping 
slot. Insert beteen one half and one inch of wire. Pull downward from the V, and 
the wire will slip out, leaving a piece of insulation in the stripper, where it can be 
shaken out. 

1. Insert stripped wire. 

Stripped 
End 

2. Look carefully at the end of the wire-wrap tool. There is a small hole, meant to 
fit over the pins of a wire-wrap socket. Next to it is a half-circle, into which you 
must slide the stripped wire. The stripped portion will slide up a groove in the 
side of the tool, stopping where the insulation begins. 

2. Slip over pin. 
Hold wire firmly, 
and slide fully down. 

The Custom Apple 27 



Soldering Technique 

3. When the wire is in place, pull it sharply but gently upwards, and slide the tool 
on the wire-wrap socket. Holding the wire firmly, spin the tool in your hand. The 
wire will wind up on the socket pin, freeing itself from the tool. Remove the tool. 
The wire-wrapping is complete for that end of the connection. 

3. Sµir, iii re - wrap too L. 
~irE rises along pin. 

4. Cut the wire to a length that will comfortably reach its destination, and then 
some. Strip the end of it, and repeat the process above. The connection is 
complete. Don't forget to use different colors (white, yellow, red and blue are 
generally available). This will help you distinguish your connection patterns if 
changes become necessary. 

Soldering Technique 

4. Finished connection 
has no bare wire 
µrotruding. 

For projects from scratch, soldering should be considered the final process, the 
actions of a self-assured, confident hobbyist. For modifications, it is a necessity. In 
either case, and whether you are a micro-acrobat or distinctively clumsy like me, you 
can solder well. The requirements are patience and good solder. 

To start, make sure you are using an iron in the 25 to 40 watt range, never a 
soldering gun. The solder should be high quality, multicore solder. It is expensive, 
but will save many grief stricken hours tracing' cold solder joints', or removing globs 
of dull solder from between and under integrated circuits. 

28 General Information 



Soldering Technique 

1. Clean the soldering iron tip, and heat the iron. Flow fresh solder on the tip to 
'tin' the tip, which will help the solder flow from the tip of the iron to the part to 
be soldered. If the iron has been used, clean any encrusted material from the tip, 
and use coarse emery paper to shine the solder. If the point gets deformed, 
bent, or very corroded, file it sharp with a fine file, and re- tin the tip. 

1. Tin the tip. 

2. Keep an old sponge handy, slightly damp. Run the tip of the iron quickly over 
it as you solder to remove the excess flux. Always use a soldering iron holder 
(usually provided with an iron); if you don't, you'll wish you had the first time 
you burn a large hole in your imitation walnut, vinyl-topped desk. 

2. ~riny_solder, parts and 
1 ron 1 nto contact. 

3. In the olden days, the rule was 'heat the parts, not the solder'. Forget it. Make 
sure the iron is no hotter than 40 watts (and remember never to use a soldering 
gun) and that the parts you are about to solder are very clean. Place the iron 
against the part, making as much contact with it as possible along the angled tip 
of the iron. Place the end of the solder at the junction of the iron and the part, 
and flow just enough solder to make a clean, shiny, flowing connection. 

3. lift iron and 
solds~ simultaneously. 

The Custom Apple 29 



Soldering Technique 

4. Remove the iron immediately and let the part cool. If a wire is being soldered, 
hold it still until the solder becomes cloudy and cool, or else an incomplete 
connection may result. 

4. Finished 
solder connection. 

5. If solder bridges develop between connections that are very close together, 
don't try to suck up the solder with the iron; you can only overheat the parts that 
way, and end up with blobs of solder and flux. Instead, use solder wick or solder
up to remove the excess solder, and start again. Let the parts cool before 
soldering again (a half minute should be enough). 

[6A top view) 

5. Bad solder connection -
no contact with boaru 
(sideview). 

(68 sideview] 

6. Bao solder connection -
no contact with pin 

30 General Information 



Tips on Handling Integrated Circuits 

Tips on Handling Integrated Circuits 

In the early days of microcomputers, there was a lot of user hesitation about 
installing memory chips because of warnings about static electricity damaging the 
memory devices. At that time the fear was reasonable; but today (with just a little 
caution) there need be no problem. 

1. Never place any integrated circuit on highly charged plastic material, 
especially styrofoam. 

2. Handle memory chips, CPU's (such as the 6502), LSI devices (large-scale 
integrated circuits, usually those with 28 or 40 pins), or any marked MOS, 
CMOS or NMOS (metal-oxide semiconductors), with care. Hold them by their 
ends, never by the connection pins. 

3. Purchase a static-free workbench, which ~is a conductive cloth sheet with a 
wrist strap and safe grounding cable. These can be obtained from Wescorp for 
about $18. 

4. Ground your soldering iron to an earth ground but only through a series
connected one-megohm resistor- never directly! The grounding is not absolutely 
essential, but helps if you live in a very dry, static-producing environment. 

\ 

Grounding a Soldering Iron 

5. Work with any integrated circuits with the power off. Make sure the 
integrated circuit's ground and power pins are all connected (soldered min 
sockets) before turning on the juice! A difference of a mere half a volt between 
certain pins can kill an IC. 

6. Use high-quality sockets for integrated circuits wherever you c,an. This will 
not only keep excessive heat away from them, but will also save the day if one is 
damaged. Unsoldering a 40-pin integrated circuit is not pleasant. 

7. Above all, work slowly and carefully. By far the greatest villian is haste. Oh 
yes - do keep furry animals out of the area! 

The Custom Apple 31 



32 



Introduction 

Introduction 

Why expand the Apple Computing System at all? What proud Apple owner has 
never wished that the computer would do just this one more thing, to somehow be 
able to perform the magic necessary to do that certain thing that would just exactly 
fit your particular application. While there are a lot of interfaces and expansion 
modules available on the market, none was really designed with the particular 
application you had in mind. The purpose of this book is to provide ybu with an 
expansion module that will be flexible enough that you will be able to adapt it to 
any specific application you have in mind. Most people, when faced with the 
arduous task of trying to make their Apple do one particular thing that would 
make it perfect for their system, are really dismayed by how much special 
knowledge they would need and how really complex it appears. A lot of people will 
simply decide, "Oh well, I can probably get by without it." The authors, in writing 
this book, are providing a much better alternative to simply doing without that 
special little goodie you would like. They are going to lead you step by step through 
a series of projects and applications that will allow you to custom design exactly 
the piece of hardware you need for that special application you have been wanting 
to do ever since you got your computer. 

Data Acquisition and Control Applications. 

The Apple was originally called 'The Appliance Machine'; however, it was 
designed, at least to some degree, to also be used for data acquisition and control 
applications. The way the Apple is usually configured, you will find that there are 
four empty slots inside, and it would really be nice to utilize them in order to 
expand the capabilities of your Apple II Computer. 

An AID and DI A Convertor 

The analog to digital and digital to analog convertor will be one of the most 
important projects you can put together and one of the most useful applications 
presented in this book. The reason for this is that the real world is analog, not 
digital, but the computer deals exclusively with digital information. Examples of 

The Custom Apple 33 



Introduction 

34 Introduction 

analog would be temperature control and sensing, light control and sensors, and 
the measurement of voltage levels. Virtually any type of sensor could be hooked to 
an analog/digital convertor, allowing the computer to 'see' what's going on. 

There are things that would be really handy around the house: perhaps a hobby 
environment such as model railroad control, a burglar alarm system that could be 
monitored by your computer, and all of the peripheral devices that are already 
available for the computer user at home. This book will prove invaluable to people 
who have just bought a strange new device or a new printer, and wonder, "How can 
I hook that to my Apple?" This book will give you the opportunity to control even 
the most complex industrial or home applications at a very low price. Gastromatic 
is a relatively new application where the home computer can be used in lowering 
the energy costs of running your furnace. The ability to do this, before the advent 
of the small home computer, would have cost many thousands of dollars and been 
prohibitive for most people. With the interfaces and applications described in this 
book you will find you have the ability to control machines in a way that only a few 
years ago would have been absolutely impossible. Examples of this would be 
driving step motors, automatic monitoring and remote control of drive motors and 
fans, or the control of any machine that was previously controlled by mechanical 
means. The basic concept of this book is to vastly improve the Apple II Computer's 
ability to communicate with and control the real world. 



The 6522VIA 1/0 Board 

The 6522VIA 1/0 Board. 

The Apple II Computer, as configured at the factory, has practically no way to 
interface with the real world, with the possible exception of playing a game with 
the joysticks. Games are very impressive and fun, but after awhile you will begin 
to wonder, "Now how do I get this nifty little machine to do something practical 
and prove I didn't just waste my money on a game-playing machine?" One of the 
biggest problems with trying to use the game playing input ports for transfer of 
data is that they are limited to four bits or one nybble, which really limits the 
ampunt of data that can be transferred in a given period of time. Because of the 
severe I/0 limitations of the Apple computer, the authors intend to show you how 
to use the 6522 versatile application interface I/0 board to move large amounts of 
data in relatively short periods of time. Consequently, you will have the ability to 
do a great many of the things people said couldn't be done. 

One of the first problems you will encounter, which is not known to many people, 
is that the 6522 I/0 chip is not fast enough to pick up the clock pulse from the 6502 
microprocessor chip. In order to make the 6522 compatible with the 6502 
microprocesor, it is necessary to incorporate a time delay. We will use the small 
4050 CMOS chip. This solution will work in 99 3 of the cases. For that 1 3 of the 
time when it doesn't, never fear, there will be further help outlined later in the 
book. The 6522 I/O board also has lK of RAM built into it, of which 1/4 is usable 
at any time. These 256 bytes are suitable for applications such as a small 
machine-language monitor that you want to tuck safely out of BASIC's way. 

Figure 1. 2 demonstrates how you can use the lK byte RAM on your 6522 I/O 
board. On each board there are two 2114 lK by 4-bit static RAMs for your 
machine-language programs. But out of this lK RAM you can really only use 256 
bytes at a time. The addresses for that l/4K bytes of RAM depend on the slot in 
which the board is plugged. For instance, if you want to put a small 
machine-language program in the RAM on the board while it's plugged into slot 4, 

The Custom Apple 35 



The 6522VIA 1/0 Board 

36 Chapter 1 

Figure I. I The Four Empty S lots in the Apple 

you can write your program into the RAM area starting at C400. You need not be 
concerned about which 1/4 of the RAM your program is in, because you may select 
any 1/4 you wish by using the two switches on the I/0 board. Note that every l/4K 
block on each board is addressed using similar addresses (for example, 
C500-C5FF in slot 5). 

+5V 

Slot 2 Slot 3 Slot 4 Slot 5 l,5K l,5K 

256 256 256 256 

• A9 ~ 256 256 256 256 S2 

256 256 256 256 A8 /. C2FF C3FF C4FF C5FF • SI 
256 256 256 256 

C200 C300 C400 C500 -
Figure I . 2 Block Diagram of the I K On- board RAM S =SWITCH 

SI S2 

I. 1 /4 k off off 

2. 1/4 k on off 

3. 1/4k off · on 
\ 

4. 1/4k on on 

Suppose you need four different machine-language programs for a particular 
application. You could write these four routines into address C500-C5FF (with 
the I/0 card in slot 5) while setting the two switches to the four different positions. 
Then the four programs (each being 256 bytes or less) are in that lK RAM block. 
By setting the switches, you can now address four different programs in the same 
area of memory. 



'i 
The 6522VIA 1/0 Board 

Different l/4's of the lK RAM in 256 Byte chunks can easily be accessed 
by simply flipping the switches on the board itself. 

The clear area on the left side of the board is a prototype area free for you to use 
for your own experimentation and custom applications. The 6522 I/0 board can be 
programmed and controlled from virtually any language, whether it's store 
instructions from machine-language or POKE and PEEK commands used with 
the higher level languages. A section of this book is devoted to showing you how 
this is done, whether it's from machine-language, or a higher level language such 
as PASCAL or BASIC. The 6522 has two ports, A and B, and 8 bi-directional data 
lines. It also contains 2 timers, 1 eight-bit shift register, and 4 hand-shaking lines. 
The hand-shaking lines are used to communicate with the other devices that are 
capable of sensing a READY or NOT READY condition. 

1-TI,.,K. 
<5V __J l'. l 

~---------t--<f--------·----=-- . 

f1Hl R!W DEVSEL 

Figure 1. 3 Block Diagram of the 6522 Board 

Figure 1.4 Photo of the 6522 Board 

The Custom Apple 37 



The 6522VIA 1/0 Board 

38 Chapter 1 

board 6522 
in slot Hex Decimal 

from to from to 
2 COAO COAF -16224 -16209 
3 COBO COBF -16208 -16193 
4 coco COCF -16192 -16177 
5 CODO CODF -16176 -16161 

board RAM 
in slot Hex Decimal 

2 C200 C2FF -15862 -15617 
3 C300 C3FF -15616 -15361 
4 C400 C4FF -15360 -15105 
5 C500 C5FF -15104 -14849 

Figure 1. 5 Address Table 

Also, the addresses of the table in Figure 1.5 are from 0 to 15, or 00 to OF. The 
following table gives the relative memory addresses, depending on which slot the 
board is plugged into. 

Since the 6522 is memory mapped, the table above gives the actual memory 
addresses you use to communicate with and control the 6522 I/O board. 

-------+mo 

[Nl'\ll 
LATCH 

OATA 
Ill~ t=::===-====:;-;=>\ ~J.~' 

.,.. 
" "' rn 
·~ 
"' rn 

'" 

CHIP 
.a.CCISS 

Figure 1. 6 Block Diagram of the 6522 

DATA DIR 
IDDAAI 

14~,.~:~""" 
!NP\.11 
LAICH 

'----.,-,,,.___~ ~~.~T 

-r.~1A-oi"i.--
l'Jou11 

From '65112 Programming Manual' /iir Rockwell R6Sllll 

Microcomputa System. 



Programming the Ports of the 6522VIA Board 

Register Description SLOT 2 SLOT 3 SLOT 4 SLOT 6 

Desig. Write Read HEX DEC HEX DEC HEX DEC HEX DEC 

ORB/I RB Output Register "B" Input Register "B" COAO -16224 COBO -16208 coco -16192 GODO -16176 

ORA/IRA Output Register "A" Input Register "A" COAi -16223 GOBI -16207 COCI -16191 CODI -16175 

DDRB Data Direction Register "B" COA2 -16222 COB2 -16206 COC2 -16190 COD2 -16174 

DORA Data Direction Register "A" COA3 -16221 COB3 -16205 COC3 -16189 COD3 -16173 

TIC-L Tl Low-Order Latches Tl Low-Order Counter COA4 -16220 COB4 -16204 COC4 -16188 COD4 -16172 

· TIC-H Tl High-Order Counter COA5 -16219 COB5 -16203 COC5 -16187 COD5 -16171 

TIL-L Tl Low-Order Latches COA6 -16218 COB6 -16202 COC6 -16186 COD6 -16170 

TIL-H Tl High-Order Latches COA7 -16217 COB7 -16201 COC7 -16185 COD7 -16169 

T2C-L T2 Low-Order Latches T2 Low-Order Counter COA8 -16216 COBS -16200 coca -16184 CODS -16168 

T2C-H T2 High-Order Counter COA9 -16215 COB9 -16199 COC9 -16183 COD9 -16167 

SR Shift Register COAA -16214 COBA -16198 COCA -16182 CODA -16166 

ACR Auxiliary Control Register COAB -16213 COBB -16197 COCB -16181 CODB -16165 

PCR Peripheral Control Register COAC -16212 COBC -16196 co cc -16180 CODC -16164 

IFR Interrupt Flag Register COAD -16211 COBO -16195 coco -16179 CODD -16163 

IER Interrupt Enable Register COAE -16210 COBE -16194 COCE -16178 CODE -16162 

ORA/IRA Same as RegA Except No "Handshake" COAF -16209 COBF -16193 COCF -16177 GOOF -16161 

Figure I. 7 Register Addresses of the 6522 Board 

Programming the Ports of the 6522VIA Board. 

Ports A and B are programmed using the internal data registers DDRA and 
DDRB. If the bit is set to 1 in DDRA or DDRB, that means the corresponding line 
in Port A or Port B, respectively, will be used for input. If the bit in DDRA or 
DDRB is set to 0, it will signal the chip that the corresponding line in Port A or B, 
respectively, will be used for output. As an example, loading DDRA with 255 or FF 
will signal the chip that all lines of Port A are used for output. Loading either 
ol the data registers can be accomplished (in machine-language) by loading the 
Accumulator with the number desired, then storing it in that memory location. It 
can also be done from BASIC by POKEing the corresponding memory address 
with the number desired. Once the bits and the data registers are set, they will 
remain in the same configuration until the computer is forced through its 
power-up sequence. This can be accomplished by resetting the machine, by 
shutting it off and turning it back on, or by loading a new number into the data 
register. Upon reset or power-up of the computer all Port lines will set to 0. That 
will indicate all lines are to be used for input. They will remain in that state until 
altered by software running within the computer. 

Programming a Visual Display Indicator. 

To get you right into using the 6522VIA board, the first application will be a 
visual display indicator. We will show you how to light any configuration of 8 
LED's, depending on the conditions existing within the 6522VIA chip. In order to 
do this you will need 8 LED's plus 8 current-limiting resistors. 

Connect the anode of each LED to a corresponding bi-directional data line on 
the 6522. Connect the cathode of each LED through a 220 ohm limiting resistor to 
ground. 

The Custom Apple 39 



Using the LED Visuual Display 

40 Chapter 1 

GND I . CA1 
ei CA2 

PAO 
PA1 
PA2 TORA 

o.--e PA3 

PBO 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 

..._. PA4 
~ PA5 
~ PA6 
~ PA7 

-·- -- --- -- -
Figure 1.8 How to Connect LEDs to the Port 

Figure 1. 9 Bar Graph 1 

REM BARGRAPH 1 
REM BOAARD IN SLOT 4 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
210 
220 

DDRA = - 16189:TA = - 16191 
POKE DDRA,255 

A = 1 
POKE TA,A 
GOSUB 200 

A = A * 2 
IF A = 256 THEN A = 1 

GOTO 60 
REM TIME DELAY 
FOR I = 1 TO 50 
NEXT I: RETURN 

Using the LED Visual Display. 

I • CB1 
GND • CB2 

TORB 

This demonstration program assumes that the 6522 I/0 board is in slot 4. In line 
30 we assign a variable to the internal register DDRA. TA is also initialized to the 
memory location memory-mapped to Port A at this time. In line 40 the POKE 
statement sets all of the Port A lines to outputs. Line 50 assigns the value of 1 to 
the variable A to be used in line 60 to output the number 1 to Port A. Line 70 calls 
a time delay routine at line 200. This is necessary so that we can see the LED'S 
change. Through each loop of the program, the variable A will be shifted left one 
place in order to turn off the light that was on and to light the next one in sequence. 
The way this is set up only one light will be on at a time. Line 90 is used to 
re-initialize the variables to start the lights through their pattern again. 

Bar Graph 2 Demonstration 

This demonstration program will show you how to make a true bar graph 
display. This means that the highest light lit will cause all lights lower than it in the 
sequence to be on at the same time. Line comments of the Bar Graph 2 
demonstration program follow: 



Figure 1.10 Bar Graph 2 

LIST 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
200 
210 
220 

REM BARGRAPH 2 
REM BOARD IN SLOT 4 

DDRA = - 16189:TA = 
POKE DDRA,255 

B = l:A = 1 
POKE TA,B 
GOSUB 200 

A = A * 2:B = B + A 
IF A = 256 THEN 50 

GOTO 60 
REM TIME DELAY 
FOR I = 1 TO 50 
NEXT I : RETURN 

Programming the 6522 Internal Timer 

- 16191 

Up through line 40 the programs are identical. In line 50, A will be set to 1 as in 
the previous program, and variable B will also be set to 1. In line 60 the variable B 
will be output to Port A. The GOSUB 200 will still be a time delay as in the 
previous program. In line 80 the value of A is multiplied by two to shift it left. Then 
the variable B will be set equal to B plus A. The reason for this is to insure that all 
less significant lights will be lit whenever a more significant light is lit. Line 90 is 
used as a counter reset to re-initialize the variables when A reaches 256. 

Programming the 6522 Internal Timer 

The 6522 internal timer consists of two eight-bit latches and a 16-bit counter. 
The two latches are referred to as TlL/L and TlL/H. The 16-bit counter is divided 
into two eight-bit parts, referred to as TlC/L and TlC/H. The lower part of the 
counter TlC/L has a different function depending on whether you are reading or 
writing. Writing into TlC/L is the same as if you had written into TlL/L. It 
behaves much the same way as the memory location would. If you read TlC/L you 
will get the low byte of the counter. A write command to TlC/H will cause the 
counter to start. During this operation the contents of TlL/L are transferred to 
Tl C/L. The contents of the counter Tl C/L are decremented with each clock pulse 
received from B2. Each time the counter is decremented by one, a check is made 
to see if the counter has reached zero. If, after decrementing, the counter is zero, 
then one of two things will occur, depending on the operating mode that was set 
prior to initializing the counter sequence. Either an interrupt will be generated or 
bit 7 of Port B will be set. At this time the contents of TlL/L and TlL/H will be 
transferred into the counter again. This will have the effect of causing the timer to 
continously cycle. The operating mode is determined by setting bit 6 and bit 7 of 
the auxiliary control register ACR. The following table shows the different 
configurations possible and what the status of the operating mode is for each 
configuration. 

The Custom Apple 41 



Timer Operating Modes 

42 Chapter 1 

ACR7 ACR6 Mode 

0 0 Oneshot, only Interrupt, no Signal at PB7 

0 I Running Interrupts, no Signal at PB7 

I 0 Oneshot, Interrupt, negative Pulse at PB7 

I I Free running, square wave at PB7 

Figure 1.11 Operating Modes of the Timer 

Timer Operating Modes 

If bit 6 of the auxiliary control register is 1 and bit 7 is also equal to 1, then the 
operating mode of the timer will be in a free-running or continously cycling state. 
Every time the lower 8 bits of the timer register become zero, the polarity of the 
signal at bit 7 of Port B will reverse. This causes pin 7 of Port B to act as a 
square-wave generator. The value entered into the timer controls the duration of 
the cycle of the square wave being generated. For instance, if a 2 is placed in the 
timer, a square wave with a 2 microsecond positive peak followed by a two 
microsecond negative peak will be generated, giving you a full cycle of 4 
microseconds. The total square wave cycle generated will always be double the 
value placed in the timer. The following program listing is an example of making 
a square-wave generator using a 6522VIA board. The square-waves generated by 
this program will be 100 millisecond cycles. 

Line Comments: Square-Wave Generator Using the 6522. 

In lines 12-15 we use the pseudo-Op to equate and assign the values to the labels 
used in the program. In line 18 we set the operating mode with LDA COH. In lines 
20-22 we load the timer with the values to be used in this demonstration program. 
The timer will be loaded with C47F or 51023. Line 23 starts the timer. Note that 
in the listing, instead of putting 50,000 into the timer, we put 51023 in the timer. 
The reason for this is that the clock of the Apple II computer is not exactly one 
megahertz. You will be happy to hear that your Apple runs a little faster than 
advertised. Once the timer sequence has been initiated, the timer will continue to 
run without any help from the CPU and will run independently of whatever else is · 
going on in the machine at that time. It will continue to run until the computer is 
reset, or forced through its power-up cycle, or the registers are changed. Any one 
of these three conditions signal the timer to stop its free-running or continous 
cycling mode. If you wish to change the frequency at which the program is running, 
you only need to load the new values into the two latches, TlL/L and TlL/H. 
When you load in the new values, the cycle of the square-wave already being 
generated will be completed. But once the timer has reached zero, the new values 
will be accepted, and the new frequency will be generated. 

Another Project with the 6522 Timer 

In this application we will use the timer as a single-shot or mono-flop 
square-wave pulse generator. In order to do this we need to change the operating 
mode from its current value of CO to a new value of 80. The program listing to 
make the mono-flop or single-shot square-wave pulse generator follows: 



Another Project With the 6522 Timer 

Figure 1.12 Square-wave Generator 

0800 1 
0800 2 
0800 3 
0800 4 
0800 5 
0800 6 
0800 7 
0800 8 
0800 9 
0800 10 
0800 11 
0800 12 
0800 13 
0800 14 
0800 15 
0800 16 
0800 17 
0800 A9CO 18 
0802 8DCBCO 19 
0805 A94E 20 
0807 8DC4CO 21 
080A A9C4 22 
080C 8DC5CO 23 
080F 4C59FF 24 
0812 25 
0812 26 
Figure 1.13 M6noflop 

0800 1 
0800 2 
0800 3 
0800 4 
0800 5 
0800 6 
0800 7 
0800 8 
0800 9 
0800 10 
0800 11 
0800 12 
0800 13 
080 0 14 
0800 15 

,0800 A980 16 
'0802 8DCBCO 17 
0805 A94E 18 

'.0807 8DC4CO 19 
~80A A9C4 20 
:'080C 8DC5CO 21 
080F ADCDCO 22 
0812 2940 23 
0814 FOF9 24 

.0816 60 25 
.. 0817 26 
i,;.0817 27 

28 

DCM "PR#l" 

. 
' ;***************************** 
·* * ' ;* SQUAREWAVE GENERATOR WITH * 
;* A PERIOD OF 100.0 MS * 
·* * ' ·***************************** ' 
; 
; 
ACR EQU $COCB 
Tl CL EQU $COC4 
Tl CH EQU $COC5 
MONITO EQU $FF59 

LDA #$CO ;SET OPERATION MODE 
STA ACR 
LDA #$4E ;LOAD LO BYTE 
STA Tl CL 
LDA #$C4 ;LOAD HI BYTE 
STA Tl CH ;AND START TIMER 

. 
' 

JMP MONITO 

DCM "PR#l" 

; 
·***************************** ' ·* * ' ·* ' MONOFLOP/ONESHOT * 
·* * ' ·***************************** ' 

; 
ACR 
Tl CL 
Tl CH 
!FR 
; 

EQU $COCB 
EQU $COC4 
EQU $COC5 
EQU $COCD 

MONOFL LDA #$80 
STA ACR 
LDA #$4E 
STA TlCL 
LDA #$C4 
STA TlCH 

SET OPERATIONMODE 

M LDA !FR 
AND #$40 
BEQ M 
RTS 

END 

; LOAD LO BYTE 

; LOAD HI BYTE 
START TIMER IFR6 SET TO 1 

The Custom Apple 43 



Using the Timer as a Counter 

44 Chapter l 

Using the Timer as a Counter 

The timer can be used to count negative pulses which appear on bit 6 of Port B. 
Bit 5 of the ACR determines whether the timer will be used as a mono-flop 
square-wave pulse generator or as a pulse counter. If this bit is set to 1, the timer 
will be a pulse counter, and if the bit is set to 0, it will be a mono-flop pulse 
generator. The following program will illustrate how to use one of the timers to 
generate a pulse that can be counted by the other timer. If we connect pin 6 of Port 
B to pin 7 of Port B, and we use timer 2 as the counter and timer 1 as a free-running 
continous cycle pulse generator, we can create an ideal timer to measure the 
running time of various routines and programs. The following demonstration 
program to illustrate using the timer as a stopwatch will consist of two parts: a 
short BASIC program and a machine-language program. The machine-language 
part sets the operating mode and starts the timer with its address at C40C. The 
two programs are very similar. The part of the program that will have the elapsed 
time in it starts at C4C6. The time value is stored as one-hundredth of a second 
and is stored in C4FE and C4FF. The BASIC program accesses this data, using 
it to calculate the amount of time that has elapsed during the running of the 
program. The machine-language program we are describing is stored in the RAM 
on the interface board, currently in slot 4. This makes it completely independent 
of BASIC and the rest of the memory in the machine, so you don't have to worry 
about it being overwritten by the BASIC programs you have running. Line 1000 is 
the test subroutine that we are going to measure the execution time of. In line 100 
we start the time measurement. In line 110 we call the subroutine we are going to 
measure. When we return from the subroutine we call the routine to stop the timer; 
then the program goes to the routine that will calculate the amount of elapsed time 
that has occurred. Line 994 shows the routine that will calculate the time elapsed 
in hundredths of a second and then display it. 

Figure 1.14 BASIC 'Running Time' Timer 

1 REM RUNTIME TEST 
START = - 15348:FIN = - 15322:LO = 
HI = - 15105 

10 
15 
20 
25 
100 
110 
200 
990 
992 
994 
999 
1000 
1010 
1020 
1030 
1040 
1050 
1060 

- 15106 

D$ = CHR$ (4) 
PRINT D$;"BLOAD ETIME" 

CALL START 
GOSUB 1000 
CALL FIN: GOSUB 990: END 
PRINT "EXECUTION TIME="; 

H% = PEEK (HI) :L% = PEEK (LO) 
PRINT (H% * 256 + L%) / 100; 11 SECONDS" 
RETURN 

REM PROGRAM UNDER TEST 
Q = 2.5:B = l.2:C = 3.4 
E = 1 I Q 

FOR I = 1 TO 100 
A = (B + C) * Q 

NEXT I 
RETURN Listing Continued . . 



Programming the Internal Shift Register 

{;ontinued Listing 
CALL-lSl 

*C400LL 

C400- 20 oc C4 JSR $C40C ' 

C403- 4C S9 FF JMP $FFS9 
C406- 20 26 C4 JSR $C426 
C409- 4C S9 FF JMP $FFS9 
C40C- A9 EO LDA #$EO 
C40E- aD CB co STA $COCB 
C411- A9 01 LDA #$01 
C413- aD CB co STA $CO Ca 
C416- A9 00 LDA #$00 
C4la- aD C9 co STA $COC9 
C41B- A9 EC LDA #$EC 
C41D- aD C4 co STA $COC4 
C420- A9 13 LDA #$13 
C422- aD cs co STA $COCS 
C42S- 60 RTS 
C426- AD ca co LDA $CO Ca 
C429- aD FE C4 STA $C4FE 
C42C- AD C9 co LDA $COC9 
C42F- aD FF C4 STA $C4FF 
C432- 3a SEC 
C433- A9 00 LDA #$00 

C400.C443 

C400- 20 oc C4 4C S9 FF 20 26 
C40a- C4 4C S9 FF A9 EO aD CB 
C410- co A9 01 aD ca co A9 00 
C4la- aD C9 co A9 EC aD C4 co 
C420- A9 13 aD cs co 60 AD ca 
C42a- co aD FE C4 AD C9 co aD 
C430- FF C4 3a A9 00 ED FE C4 
C43a- aD FE C4 A9 00 ED FF C4 
C440- aD FF C4 60 
* 

Programming the Internal Shift Register. 

The internal shift register acts as a serial I/0 Port. You can pass parallel 
information from the CPU to it and have it output it serially to an external 
peripheral device, or you can input serial data and then give it to the CPU in 
parallel, 8 bits at a time. In order to make the shift register function in this manner 
you can use an,external clock, the clock of the CPU, or you could design your own 
timer clock pulse with the timer within the 6522. In this case the operating mode 
will be set by bits 2, 3 and 4 of the auxilary control register. The following table 
shows the different operating modes and the bit configuration that will set them. 

The Custom Apple 45 



Square-wave Generator 

46 Chapter 1 

ACR4 ACR3 ACR2 Mode 

0 0 0 Shift Register Disabled 

0 0 I Shift in under control of Timer 2 

0 I 0 Shift in at System Clock Rate 

0 I I Shift in under control of external input pulses 

Figure 1.15 Operating Modes of the Shift Register 

The pin designated as CB2 on a 6522 is used as a serial I/O pin. Through this pin, 
serial I/0 can be written to or read from the shift register. If you are going to use 
an external clock for your serial I/O you will need to feed the clock signal to CBl. 
In the internaldock you would use CBI as a strobe to synchronize the data coming 
out of CB2 or going into CB2. 

Whether CBl is used as a sync pulse, outputs a clock pulse, or accepts an input 
of an external clock pulse depends on the bit configuration of bits 2, 3 and 4 of the 
auxilary control register (ACR). If you use the timer as your internal clock, it will 
only be an 8-bit timer used in conjunction with the shift register. The lowest shift 
frequency would then be about 0.5 milliseconds because reads or writes to the shift 
register can onJy be done on every other occurance of zero. 

A Variable Duty-cycle Square-wave Generator. 

Changing the bit configuration and shift register will alter the duty cycle of the 
square-wave being generated. Changing the counter latch, T2L/L, allows you to 
change the clock frequency of the square-wave generator. The following program, 
written in FORTH, you can use to control the 8 output pins of Port A. This 
program in the FORTH language is included because FORTH is a very common 
language in control applications. Also, writing a program in FORTH is much easier 
than writing in machine-language, and much faster than a BASIC program would 
be. To demonstrate this program we will perform the following tasks. There are 8 
LED's connected to Port A of the 6522 chip. Instead of using LED's, any device 
could be connected provided there were an interface to assure the voltages were 
proper for operating the external device, without drawing too much current from 
the computer. The LED's are numbered from 1to8. LED 1 is controlled by bit 0 
of Port A, the least significant bit and LED 8 is controlled by bit 7, the most 
significant bit of Port A. This program will make it possible to turn the LED's on 
and off by simply typing the number of the LED followed by the word ON or OFF. 

The following is the line comments of the FORTH program. In the first line of 
the program wie define the word START. This will set the data direction register 
for Port A, located at memory address COC3, with 255, signaling that it is to be 
used for output. We put zero as the first element on the top of the stack. In the 
second line we define the word AN, and we put it into location COC 1. In the third 
line we define the variable NR as the number of the LED that should be switched 
on or off. Before calling NR, this number is on top of the stack. Entering the DO 
loop, the top of the stack is 1, and N is the upper boundary of the index limit of the 



Square-wave Generator 

Figure 1.16 Variable Square-wave Generator 

PR#l 

0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 A9FF 
0802 8DC8CO 
0805 A910 
0807 8DCBCO 
080A A90F 
080C 8DCACO 
080F 4C59FF 
0812 
0812 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27 

DCM "PR#l" 

; 
;***************************** 
·* * I 

;* VARIABLE DUTY CYCLE * 
;* SQUAREWAVE GENERATOR * 
·* * I 

·***************************** I 

ACR EQU $COCB 
T2LL EQU $COC8 
SR EQU $COCA 
MONITO EQU $FF59 
; 

; 

LDA #$FF 
STA T2LL 
LDA #$10 
STA ACR 
LDA #$OF 
STA SR 
JMP MONITO 

END 

;SET TIMER 2 FOR SLOWEST 
;FREQUENCY 
;SET OPERATION MODE 

;4 TIMES ZERO AND 4 TIMES 
;ONE TO THE SR 

***** END OF ASSEMBLY 

Figure 1.1 7 FORTH Listing - Lamp Driver 

START HEX 00 FF COC3 1 ! ; 
AN COC1 ! ; 
NR 1 0 2 UNDER SWAP DO 2* LOOP 2/; 
NEW 2 UNDER OR DUP; 
ON NR NEW AN; 
NEC 2 UNDER SWAP COMPLEMENT AND DUP; 
OFF NR NEC AN; 

START 
20N 
30N 
2 OFF 

loop. In the loop, the 1 on the top of the stack will be shifted left N number of times 
by multiplying by two, in order to indicate which LED is the target. For example, 
with N = 4 we set bit 4 of Port A to 1. This bit is assigned to LED 5. This is one too 
high, so we must shift right one time. This is done bydtviding by 2. If you switch on 
another LED, all LED's that are already on should stay on. To switch the lamp offit 

The Custom Apple 4 7 



~ ~
 

1:1
"' 

~
 .... {'I

) ,, 1--
1 

"'l
-j 

aq
· ~ ....

... .....
. 

Cl
o 

O
')

 
<:

;, 
1-.

.:i 
1-.

.:i 6 VJ
 

("
) 

~
 "' ;:i Q

 ""'
 

;:;
· 

u 
1 

; 
6

5
2

2
 

U
2

 •
 2

1
1

4
 

U
J
 a

 
2

1
1

4
 

U
4

 3
 

4
0

5
0

C
M

O
S

 

t-
C

 
11

1C
A1

 
e

C
A

2
 

-
P

A
O

 
-
-
P

A
1

 
-
-
P

A
2

 

Sc
he

m
at

ic
 o

f 
th

e 
65

22
 V

IA
 c

ar
d 

-
P

A
J
 

-
-
P

A
4

"
'
 

-
P

A
S

 
-
P

A
6

 
-
P

A
7

 
: ' 

;;
~;

~/
[ 

I 
I 1

11
11

 11
 II

 
I 

-
P

B
2

 
-
1

'8
3

 
-
P

B
4

 
.,,

...
_.

pe
s 

-
P

B
6

 
-
P

B
7

 
I 
~
 

"'C
E

l1
 

r-\
..J

JI
 

eC
 8

2
 

@
I)

 
e 
~ +

5V
 

25
 

I 

P
in

 o
u

t 
6

5
2

2
 

P
in

 o
u

t 
2

1
1

4
 

P
in

 o
u

t 
4

0
5

0
 

00
 

..0
 

i::::
 
~
 

>-:
 

qi
 ~ ~ (!

) ~
 

('C
 =
 

{'I
) "'!!
 

~
 .... 0 ~
 



Square-wave Generator 

>' ' 4 4 ------ -AGD ------ ------- - BGID ------------ : caD ------------ -- DCID oa - ------ -- 00 - .......... - - ECID 

~ ~ ~ ~ ~ ~ ~ =·-~-~t-1------~ ~ : : : : : : : IGD 
~ 00---•---1-• ~ - - - - - - - KGID 
J2~~ -~~~~-~--t• - :1~:7:-::::-::4::t:-::::-:::tt:-::::-:::4:-::::-:::L::GID:.J 

•. "'I'~ 0 /J \ 0-;;,: 

... _ .... 19 I~'~ ' ' , , I~ i~ '~ ~ ' .. ,.._;==============-

-

-- FGID --GCS> 

o~ ct Ot c 

(Bottom) 

Figure 1.19 Printed Circuit Board 

-6522 
1- -- -- -- -- -- --- -- -- -- -- -- -- -- -- -- -- -- --

ef 

5 

2114 
1 

Ir I 
1 

4050 

25 

(Top) 

The Custom Apple 49 



50 "Is written on a blank page to avoid confusion" is written on a blank page to avoid confusion ... 



Constructing the 6522 I/0 Board 

is necessary to complement the number used to switch it on; then erase the bit by 
doing an AND function to mask out the unwanted bit of the existing pattern. This is 
done in program part NEC. You can turn out LED 5 by typing in 5 OFF. The 
program is started by the word START, which initializes all of the ports of the 6522. 

In Figure 1.18 you see the complete schematic of the 6522 I/O board. The two 
RAM'S are located in the upper right hand corner (if you are holding the board as 
though you were plugging it into the machine). They are numbered U2 and U3. 
They are selected by the IL select line from the Apple. The 6522 is selected by the 
device select signal from the Apple computer. The select lines RSO to RS3 are 
connected to address lines AO to A3. The U4, as previously mentioned, gives us the 
time delay for the Phi 2 clock. The output lines are brought out to two different 
connectors. You can identify each set on the left hand side by looking at the 
schematic. 

Constructing the 6522 I/O Board. 

The I/O board is available in kit form from Technopak. A picture of parts 
placement is provided with all the parts in the places where they should go, and we 
recommend putting each IC in a socket. There are also two places where you will 
have to attach jumper wires as shown in the parts placement figure. 

TOP VIEW (COMPONENT SIDE) 

~6522 
1-.. -.. .. .... .. -•• 

Prototyping area • • .... 
9 • -. .. -/ .. ..... .. 

i .... 
connectors .... 

~·" -•• -.. -.. -e e .. ..... 
•• -•• -.... -... 

Pin 20 to 24 ---- 20 

ef MDF 22T 

Don't forget these two connectors 
on the solder side 

Figure 1.20 Component Layout 

5 

----
-----------.... -

10 

2114 2114 0@ 

Irr ·o D ~ 
4050 

24 

1iD 
25 

2 pol DIL 
switches 

2 x 2K7 

10 µF 
Tantal 
Capacitor 

The Custom Apple 51 



Constructing the 6522 I/ 0 Board 

Figure 1.21 Parts List for the 6522 J/O Board 

Oty Description 

I Capacitor tantal 10 µF/35V 
I DIP switch, 2 poles I 3 poles 
2 Connectors with 20 pin each, for port A and B connectors 
I 40 pin socket OIL 
2 18 pin socket DI L 
I 16 pin socket DI L 
I 6522 VIA (Rockwell) 
I 4050 Motorola 
2 2114 L RAM chips Synelec or Rockwell 
I 6522 I I I Board 

52 Chapter l 



Sound Generation 

Sound and Noise Generation Using the AY-3-8912 

The PSG (Programmable Sound Generator) generates sound or noise through 
mixing of three programmable square-wave frequencies and one noise generator. 
Using a D/A convertor, all three frequencies are output on three different 
channels. Each of the output channels can be connected to an amplifier separately, 
or all three channels can be tied together through one amplifier. The envelope of 
the output signal can be controlled by an envelope generator. All functions are 
controlled by 16 registers shown in the table in Figure 2.1. 

BIT 
B7 BS BS B4 B3 B2 B1 BO 

RO 8-BIT Fine Tune A 
Channel A Tone Period 

R1 4-BIT Coarse Tune A 

R2 
Channel B Tone Period 

R3 4-BIT Coarse Tune B 

R4 
Channel C Tone Period 

R5 4-BIT Coarse Tune C 

R6 Noise Period 5-BIT Period Control 

Tone 
R7 Enable 

A c B A 

R10 Channel A Amplitude L3 L2 l1 LO 

R11 · Channel B Amplitude L3 L2 L1 LO 

R12 Channel C Amplitude L3 L2 l1 LO 

R13 

R14 
Envelope Period 

R15 Envelope Shape/Cycle CONT. ATT. ALT. 'HOLD 

R16 IIO Port A Data Store 8-BIT PARALLEL I/O on Port A 

RH IIO Port B Data Store 8-BIT PARALLEL I/O Port B 

Figure 2.1 PSG Register Functions 

The generation of a single tone is performed by frequency division. A clock 
signal, which has to be applied to the chip, must first be divided by 16, and then it 
will be divided by 12 using a counter. This 12 bit word for channel A will now be put 
into register RO (8 lower bits), with the remaining 4 bits put into register Rl. For 
a given clock frequency you can calculate the tone period (tp) as follows: 

The Custom Apple 53 



Sound Generation 

54 Chapter 2 

tp = fclock/(fl< 16) 

f = the desired frequency 
fclock = clock frequency applied to the chip 
Both values used are in HZ 

Example: f = 440 HZ 
fclock = 1,000,000 HZ 
tp = L000,000/440*16 = 142.04 

If you convert 142 into a 12-bit binary number, you will get 8E (in HEX). With 
an 8E in register RO and a 0 in register Rl, you will get a signal with a frequency 
of 440 HZ. The rounding of 142.04 gives you an error of course, so the resulting 
frequency will be 440.14 HZ. The difference between the calculated and real 
frequency at different clock frequencies is shown in the following table: 

Frequency 1 MHz 1.78977 MHz 

1046.496 (C6) 1041.666 1045.428 

7040.00 (AS) 6944.444 6991.299 

Figure 2.2 Frequencies 

To calculate the HEX numbers for the different clock frequencies, you may use 
the following table: 

Figure 2. 3 Clock Frequencies 

LIST 

10 REM CALCULATING THE CONTENTS OF THE REGISTERS 
20 REM FOR THE PSG AY-3-8912 
30 REM CLOCKFREQUENCY lMHZ (FC) 
40 REM OUTPUT OF THE 12-BIT VALUES IN HEX 
50 REM DESIRED AND TRUE FREQUENCY IS PRINTED 
100 INPUT "F= ";F 
110 FC = 1000000 
120 TP = FC I (16 * F) 
130 MSD = INT (TP / 256) 
140 TP = TP - MSD * 256 
150 NSD = INT (TP / 16) 
160 LSD = INT (TP - NSD * 16 + 0.5) 
165 FI= FC / ((MSD * 256 + NSD * 16 +LSD) * 16) 
170 GOSUB 200 
180 END 
200 IF MSD > 9 THEN MSD = MSD + 7 
210 MSD = MSD + 48:A$ = CHR$ (MSD) 
220 IF NSD > 9 THEN NSD = NSD + 7 
230 NSD = NSD + 48:B$ = CHR$ (NSD) 
240 IF LSD > 9 THEN LSD = LSD + 7 
250 LSD = LSD + 48:C$ = CHR$ (LSD) 
260 PRINT F;" ";A$;B$;C$;" ";FI 
270 RETURN 



How the Internal Registers Work 

The next figure shows how to generate a clock frequency with a 3.579545 MHZ 
crystal. Then the signal is divided using the CMOS chip (4013). In most 
applications, it will be more than sufficient to use the 1 MHZ clock of your 
computer system. 

1 7897725MHz 

COMPUTER O 8948863MHz 

EITHER CLOCK I 
TO MICRO 

1SPEC DEPENDENT1 ----~ 

3 579545MHz 
CRYSTAL 

Di-------..-----------. 
10M 

4069 

I 20pF 

3000 

4069 

13 9 12 

4013 

467 
5 B 10 

-=-

4069 

11 

14 

PSG 

22 

1 7897725MHz 
CLOCK TO PSG 

4069 

·SV 

Figure 2.4 Clock Generator Circuit 

How the Internal Registers Work. 

The registers RO - R5 are used to program tone periods for the three channels A, 
B, and C. Register R6 is used to program the noise generator; therefore, you only 
have to use the 5 lowest bits of this register. The lowest noise frequency will be 
achieved by placing a IF into the lowest 5 bits (All 5 bits are 1). The highest 
possible noise frequency is created by using a 01 in that part of the register. The 
clock frequency is now divided, first by 16, then by the 5-bit word. The noise period 
may be calculated with the following equation: 

NP = fclock/( 16*fn) 

fclock = input clock frequency 
NP = noise period. 
fn = desired noise frequency 

With a clock frequency of 1 MHZ you can generate noise within a range from 2 
MHZ - 75 MHZ. Register 7 controls the sound and noise output of each separate 
channel. How the sound channels work with the sound or noise output is shown in 
the following chart: 

Bit 7 6 5 4 3 2 0 

1/0 
C l~se A IC So~nd A I 

Figure 2.5 

The Custom Apple 55 



How the Internal Registers Work 

56 Chapter 2 

When one bit of register A is set to zero (0) the appropriate channel is opened. 

Example: Sound on channel A = 00111110 = 3E 
Noise on channel B and 
Sound on channels A and C = 00101010 = 2A 

The two most significant bits are used for the data t'ransfer via the I/O port of the 
PSG chip. You don't need them for sound generation. Registers RS, R9 and RIO 
are responsible for the value of the sound output of channels A, B and C 
respectively. The first 4 bits set the volume to one of I6 different levels for each 
channel. This setting is not linear; rather, it is logarithmic. 

NORMALIZED 
VOLTAGE 

1V 

.707V 

.5V 

.303V 

.25V 

.1515V 

.125V 

15 

\ 
14 

13 

NOTE: THIS IS THE ENVELOPE 
ONLY-NOISE AND TONES 
ARE DISABLED. 

DECIMAL VALUE 
OF E3 E2 E1 EO 

/ 
(SEE AMPLITUDE 
CONTROL. 

12 SECTION 3.4) 

11 

10 

15 

14 

13 

12 

11 

10 

QL--~~~~~~~-..lll--..-..--~~~~~~~~-' 

1 .. 

Figure 2. 6 Envelope Period 

EP 
(1/fe) .1. EP 

. (1/fe) 

EP= ENVELOPE PERIOD 

If, in one of these registers, bit 5 is set to a logical I, the amplitude of that channel 
is controlled by the envelope generator, which can be programmed via registers 
Rll, RI2 and RI3. Rll and RIO form a I6-bit counter to generate the length of the 
period of the envelope. The clock frequency is divided by 256 and then by the 
contents of registers Rll and RI2. RI2 is now the least significant bit. 



Programming the GI Soundchip 

A 1 MHZ clock frequency gives you envelope periods from 0.06 HZ to 4000 HZ. 
To calculate the period use: 

EP = fclock/(256*fe) 

fe = frequency of the envelope 
EP = Envelope Period (or Duration) 

The 16 bit binary value for EP is written into registers RI l and Rl2. For that 
calculation, use the program above after changing line 120 to EP = FC/(256*F). The 
least significant bit of R 13 defines the configuration of the envelope. 

R15 BITS 

83 82 81 

A 
c l 
0 T 
N A E 
T T R 
I T N 
N A A 
u c T 
E K E 

0 1 

Figure 2. 7 Envelopes 

Bo 

H 
0 
l 
I) 

GRAPHIC REPRESENTATION 
OF ENVELOPE GENERATOR 

OUTPUT E3 E2 E1 IEO. 

EP IS THE ENVELOPE PERIOD 
(DURATION OF ONE CYCLE) 

The second waveform, with R13 = 04, generates a tone of increasing volume with 
a period of EP. At the end of period EP the volume will suddenly decrease. 

Programming the GI Soundchip. 

Control lines BDIR and BC2 are used to select a register. The third control line 
is connected to+ 5V. Data lines and control lines can be controlled by the 6522 VIA. 

The Custom Apple 57 



Programming the GI Soundchip 

In our application we used the Phi 2 clock of the 6502 microprocessor for our sound 
chip clock. 

The data lines, DAO - DA 7, are connected to Port A of the 6522. The control lines 
BC I and BDIR are hooked to PBO and PB 1. To feed the data into the appropriate 
register, you first have to send the address and data through the data lines. The data 
lines are controlled by the control lines BDIR and BC 1 (see Figure 2.8). 

a:: ('II 
PSG .,... PSG c u u 

m m al FUNCTION BDIR 

0 0 INACTIVE. - eeoM { ~5 BC2 
0 1 READ FROM PSG. - PROCESSOR 

1 0 WRITE TO PSG. BC1 

1 1 LATCH ADDRESS. 

ANALOG CHANNEL A, B, C (outputs): pins 4, 3, 38 (AY-3-8910) 
pins5,4, 1 (AY-3-8912) 

Figure 2.8 PSG Functions 

The number of the appropriate register is stored in the X register, and the data 
is stored in the accumulator of the 6502 CPU and then passed to the subroutine 
called OUT. 

Figure 2.9 Program OUT 

PR#l 

0800 
0800 
coco 
coco 
coco 
coco 
coco 
coco 
0800 
0800 A8 
0801 A9FF 
0803 8DC3CO 
0806 8DC2CO 
0809 8EC1CO 
080C A903 
080E 8DCOCO 
0811 A900 
0813 8DCOCO 
0816 98 
0817 8DC1CO 
081A A902 
081C 8DCOCO 
081F A900 
0821 8DCOCO 
0824 60 

58 Chapter 2 

1 DCM "PR#l" 
2 
3 ORG $COCO 
4 TORB EQU * 
5 TORA EQU *+!l 
6 DDRB EQU *+!2 
7 DDRA EQU *+!3 
8 
9 ORG $800 

10 OUT TAY ;<A> --> YREG 
11 LDA #$FF ;PORTA AND B ARE QUTPUTS 
12 STA DDRA 
13 STA DDRB 
14 STX TORA ;OUTPUT ADDRESS 
15 LDA #$03 ;BDIR UND BCl =l 
16 STA TORB 
17 LDA #$00 ;BDIR UND BCl =O 
18 STA TORB 
19 TYA ;<Y> --> AKKU 
20 STA TORA 
21 LDA #$02 ;BDIR=l BCl=O 
22 STA TORB 
23 LDA #$00 ;BDIR=O BCl=O 
24 STA TORB 
25 RTS Listing Continued . .. 

The PSG at this time is not enabled. When the address is outputted, BDIR and 
BCl go high for a very short period of time; when the data is outputted, only BDIR 
goes high. 



Programming the GI Soundchip 

Another way to program the PSG is to put the contents of the register into a 
table. Then you can use a program to write the values into the PSG. 
Continued Listing 

0825 26 ; 
0825 27 TAB EQU $1000 
0825 28 
0825 A200 29 LOAD LDX #$00 
0827 BD0010 30 M LDA TAB,X 
082A 200008 31 JSR OUT 
082D E8 32 INX 
082E EOlO 33 CPX #16 
0830 DOF5 34 BNE M 
0832 60 35 RTS 

The programs we have seen so far only affect the registers of the sound chip. To 
generate sound and noise you need a few more program parts. They will be 
comprised substantially of delay routines and checking procedures. Program 
WAIT in Fig. 2.11 shows such a delay loop. 

Figure 2. I I Program WAIT 

0833 36 
0833 38 37 WAIT SEC 
0834 48 38 W2 PHA 
0835 E901 39 W3 SBC #$01 
0837 DOFC 40 BNE W3 
0839 68 41 PLA 
083A E901 42 SBC #$01 
083C D0F6 43 BNE W2 
083E 60 44 RTS 
083F 45 
083F 46 

Example: Generating sound A with highest volume on channel A. 

Figure 2.10 Generating Tone A 

083F 47 
083F A98E 48 
0841 A200 49 
0843 200008 50 
0846 A93E 51 
0848 A207 52 
084A 200008 53 
084D A90F 54 
084F A208 55 
0851 200008 56 
0854 00 57 
0855 58 

LDA #$8E 
LDX #$00 
JSR OUT 
LDA #$3E 
LDX #7 
JSR OUT 
LDA #$OF 
LDX #8 
JSR OUT 
BRK 

;440 HZ AT FT=lMHZ 

;SOUND ONLY ON CHANNEL A 

;VOLUME SET TO MAXIMUM 

Via channel A, for approximately 1second,a440 HZ tone is outputted; after that 
a tone of 187 HZ is generated for 1 second (assuming the clock frequency is 1 
MHZ). We use it in the following program called SIREN. 

The Custom Apple 59 



Programming a Gunshot 

Figure 2. J 2 Program SIREN 

0855 
0855 
0855 A93E 
0857 A207 
0859 200008 
085C A90F 
085E A208 
0860 200008 
0863 A98E 
0865 A200 
0867 200008 
086A A900 
086C A201 
086E 200008 
0871 A9FF 
0873 203308 
0876 A901 
0878 A201 
087A 200008 
087D A94E 
087F A200 
0881 200008 
0884 A9FF 
0886 203308 
0889 18 
088A 90D7 
088C 

59 . 
' 60 

61 SIREN LDA #$3E 
62 LDX #7 
63 JSR OUT 
64 LDA #$OF 
65 LDX #8 
66 JSR OUT 
67 s LDA #$8E 
68 LDX #$00 
69 JSR OUT 
70 LDA #$00 
71 LDX #01 
72 JSR OUT 
73 LDA #$FF 
74 JSR WAIT 
75 LDA #$01 
76 LDX #$01 
77 JSR OUT 
78 LDA #$4E 
79 LDX #$00 
80 JSR OUT 
81 LDA #$FF 
82 JSR WAIT 
83 CLC 
84 BCC S 
85 

Programming a Gunshot. 

;ONLY CHANNEL A 

;VOLUME SET TO MAXIMUM 

; 440 HZ 

;WAIT FOR 350 MS 
; 187 HZ 

To simulate a gunshot, you only need the noise generator for the envelopes. We 
set up a table in memory, and if a button is pushed, the contents of the table are 
brought into the PSG. If you change the content of location 1006 (noise 
frequency) to 00 (highest noise period) and location IOOC to 40 (envelope 
approximately 2 seconds), you can simulate an explosion. 

Figure 2. I 3 Program GUNSHOT 

088C 86 i 
088C 87 KEY EQU $FD35 
088C 88 ; 
088C 202508 89 SHOT JSR LOAD 
088F 2035FD 90 JSR KEY 
0892 18 91 CLC 
0893 90F7 92 BCC SHOT 
0895 93 
0895 94 i 
1000 95 ORG $1000 
1000 000000 96 HEX 000000000000 ;NO SOUND 
1003 000000 
1006 OF 97 HEX OF ;MEDIUM NOISE FREQUENCY 
1007 07 98 HEX 07 ;NOISE ON ALL CHANNELS 
1008 101010 99 HEX 101010 ;VOLUME SET TO MAXIMUM 
lOOB 0010 100 HEX 0010 ;ENVELOP PERIOD 0.6 S 
lOOD 00 101 HEX 00 ;ONLY ONE CYCLE 

102 END 

60 Chapter 2 



Programming a Gunshot 

HEX dump of all the demo programs with the following starting addresses: 

Q83F ... SOUND 
0855 ... SIREN 
088C ... GUNSHOT 

OBOO- AB A9 FF BD C3 co BD C2 
OBOB- co BE Cl co A9 03 BD co 
OBlO- co A9 00 BD co co 9B BD 
OBlB- Cl co A9 02 BD co co A9 
0820- 00 8D co co 60 A2 00 BD 
0828- 00 10 20 00 08 E8 EO 10 
0830- DO F5 60 38 48 E9 01 DO 
0838- FC 68 E9 01 DO F6 60 A9 
0840- 8E A2 00 20 00 08 A9 3E 
0848- A2 07 20 00 08 A9 OF A2 
0850- 08 20 00 08 00 A9 3E A2 
0858- 07 20 00 08 A9 OF A2 08 
0860- 20 00 08 A9 8E A2 00 20 
0868- 00 08 A9 00 A2' 01 20 00 
0870- 08 A9 FF 20 33 08 A9 01 
0878- A2 01 20 00 08 A9 4E A2 
0880- 00 20 00 08 A9 FF 20 33 
0888- OB 18 90 D7 20 25 OB 20 
OB90- 35 FD 18 90 F7 90 
* 

11000.lOOD 

1000- 00 00 00 00 00 00 OF 07 
lOOB- 10 10 10 00 10 00 
* 

The Custom Apple 61 



Program PIANO 

Program PIANO 

This program simulates the sound of a piano. The keys 1 - 8 refer to the musical 
notes of the C scale. The table of that program is placed in memory area 1010 to 
1017. Each tone is mixed with atone of half the frequency and a tone which differs 
slightly from the basic tone. Then a descending envelope with about a 0.85-second 
period is superimposed. The program starts at 0900 and uses the routines OUT, 
LOAD and KEY. 

Figure 2.14 Program PIANO 

0800 1 DCM "PR#l" 
0800 2 . 

I coco 3 ORG $COCO 
coco 4 TORB EQU * 
coco 5 TORA EQU *+!l 
coco 6 DDRB EQU *+!2 
coco 7 DDRA EQU *+!3 
coco 8 ; 
coco 9 KEY EQU $FD35 
coco 10 . 

I 

0800 11 ORG $800 
0800 A8 12 OUT TAY ;<A> --> YREG 
0801 A9FF 13 LDA #$FF ;PORTA AND B ARE OUTPUTS 
0803 8DC3CO 14 STA DDRA 
0806 8DC2CO 15 STA DDRB 
0809 8EC1CO 16 STX TORA ;OUTPUT ADDRESS 
080C A903 17 LDA #$03 ;BDIR UND BCl =l 
OBOE 8DCOCO 18 STA TORB 
0811 A900 19 LDA #$00 ;BDIR UND BCl =O 
0813 8DCOCO 20 STA TORB 
0816 98 21 TYA ;<Y> --> AKKU 
0817 8DC1CO 22 STA TORA 
081A A902 23 LDA #$02 ;BDIR=l BCl=O 
081C 8DCOCO 24 STA TORB 
081F A900 25 LDA #$00 ;BDIR=O BCl=O 
0821 8DCOCO 26 STA TORB 
0824 60 27 RTS 
0825 28 ; 
0825 29 ; 
0825 A200 30 LOAD LDX #$00 
0827 BD5B08 31 M LDA TAB,X 

a· 

082A 200008 32 JSR OUT 
082D E8 33 INX 
082E EOlO 34 CPX #16 
0830 DOF5 35 BNE M 
0832 60 36 RTS 
0833 37 i 
0833 38 38 WAIT SEC 
0834 48 39 W2 PHA 
0835 E901 40 W3 SBC #$01 
0837 DOFC 41 BNE W3 
0839 68 42 PLA 
083A E901 43 SBC :fl:$01 
083C DOF6 44 BNE W2 
083E 60 45 RTS Listing Continued .. 

62 Chapter 2 



Program PIANO 

Continued Listing 
083F 46 
083F 47 i 
083F 2035FD 48 PIANO JSR KEY 
0842 290F 49 AND #$OF 
0844 AA 50 TAX 
0845 CA 51 DEX 
0846 BD6B08 52 LDA FTAB,X 
0849 8D5B08 53 STA TAB 
084C AA 54 TAX 
084D CA 55 DEX 
084E 8E5D08 56 STX TAB+2 
0851 4A 57 LSR 
0852 8D5F08 58 STA TAB+4 
0855 202508 59 JSR LOAD 
0858 4C3F08 60 JMP PIANO 
085B 61 
085B 62 ; 
085B 000000 63 TAB HEX 000000000000 ; FILLED BY PROGRAM 
085E 000000 
0861 0038 64 HEX 0038 ;SOUND ON ALL CHANNELS 
0863 101010 65 HEX 101010 ;VOLUME SET TO MAXIMUM 
0866 OOOAOO 66 HEX OOOAOO ;ENVELOPE DECAY 0.8 S 
0869 0000 67 HEX 0000 
086B EFD5BE 68 FTAB HEX EFD5BEB39F8E7F75 ;FREQUENCY TABLE 
086E B39F8E 
0871 7F75 

69 FIN END 

0800- A8 A9 FF 8D C3 co 8D C2 
0808- co 8E Cl co A9 03 8D co 
0810- co A9 00 8D co co 98 8D 
0818- Cl co A9 02 8D co co A9 
0820- 00 8D co co 60 A2 00 BD 
0828- SB 08 20 00 08 E8 EO 10 
0830- DO F5 60 38 48 E9 01 DO 
0838- FC 68 E9 01 DO F6 60 20 
0840- 3S FD 29 OF AA CA BD 6B 
0848- 08 8D SB 08 AA CA SE SD 
OSSO- 08 4A SD SF 08 20 25 08 
0858- 4C 3F 08 00 00 00 00 00 
0860- 00 00 3S 10 10 10 00 OA 
0868- 00 00 PO EF DS BE B3 9F 
0870- 8E 7F 75 

The Custom Apple 63 



Sound Demo for the AY-3-8912 

Figurr 2.15 BASIC Sound Demo 

100 POKE 687,169: POKE 
110 POKE 689,141: POKE 
120 POKE 692,169: POKE 
130 POKE 694,141: POKE 
140 POKE 697,96 

688,3 
690,192: 
693,0 
695,192: 

POKE 691,192 

POKE 696,192 

150 POKE - 16190,255: POKE - 16189,255 
200 DIM D(l4) 
210 HOME : HTAB (3): VTAB (5) 
220 PRINT '~SOUND DEM0 11 

230 FOR X = 1 TO 3000: NEXT 
240 READ G$ 
250 HTAB (3): PRINT G$ 
260 GOSUB 500 
270 FOR X = 1 TO 5000: NEXT 
280 IF G$ = "SUEF" THEN FOR X = 1 TO 10000: NEXT 
290 Y = Y + 1: IF Y < 5 THEN 320 
300 A= 7:D(A) = 255: GOSUB 1000 
310 Y = 0: RESTORE : GOTO 210 
320 A= 7~D(A) = 255: GOSUB 1000 
330 GOTO 240 
500 FOR A = 0 TO 13 
510 READ D(A) 
520 GOSUB 1000 
530 NEXT A 
540 RETURN 
1000 POKE - 16192,0: POKE - 16191,A 
1010 POKE 688,3: CALL 687 
1020 POKE - 16192,0: POKE - 16191,D(A) 
1030 POKE 688,2: CALL 687 
1040 RETURN 
2000 DATA 
2010 DATA 
2020 DATA 
2030 DATA 
2040 DATA 

"p I AN 0 I! , 2 0 0 , 0 , 2 0 l , 0 , l 0 0 ' 0 , 0 , 2 4 8 f 16 , 16 , 16 , 0 , 2 0 , 8 
"EXPLOSION",0,0,0,0,0,0,31,7,16,16,16,0,20,0 

"GUNSHOT 11 ,o,o,o,o,o,o,1s,7,16,16,16,0,16,0 
"LOCOMOTIVE",0,0,0,0,0,0,15,199,16,16,16,180,2,12 
!! S.URF II '0, 0, 0 , 0, 0 ,• 0, 31, 199,16,16, 16, 16, 255,60,14 

64 Chapter 2 

Sound-DEMO for the AY-3-8912 

This program shows you how to program the register in the GI sound chip in· 
BASIC. The contents of the registers RO - R13 are placed in data statements. The 
special feature of this program is that it contains a machine-language routine 
which supplies the pulse for bringing the information over to the sound chip. 
During program development, we found that a pulse which was generated with a 
POKE command in BASIC was too slow and caused unpredictable functions in the 
AY-3-8912 chip. 

Program Description: 

Lines 100 - 150 : Pokeing the machine-language 
Line 200 : Setting the data direction registers 
Lines 210 - 330 : Waiting loops and reading of the data 
Lines 1000 - 1040: Filling the registers with the data D(A) using the 
machine-language routine 
Lines 2000 - 2040 : Data for the different sounds 



100µ 
I 

NF 

Assembling the Board 

Assembling a Sound Generator Board 

To construct your sound generator board, you first have to assemble the 6522 
VIA board previously described in this book. Then you use the prototyping area on 
the left-hand side of the board to assemble the sound circuitry. Place the 
A Y-3-8912 sound chip so that the input lines DAO - DA 7 match with the outputs 
PAO - PA 7 of the 6522 VIA (See schematic). Next you cut the lines which connect 
the sound chip to the pins PBO - PB3 (four lines). Pin 20 of the sound chip has to 
be connected to pin 10 of the 6522; pin 19 to + 5V; pin 18 to pin I of the 6522; pin 
17 to + 5V; pin 16 to pin 34 of the 6522; pin 15 to pin 25 of the 6522; pin 6 to ground 
and pin 3 to + 5V. 

1 

DAo~r.r-~
DA1 
DA2 
DA3 

DA4 
DA5 

DA6 
DA7 

BC1 
BC2 

BDIR 
A8 

+5V 

Port A des 6522 

PBO 

PBB1 

RESET 
~--------....;;.J.LJ-~~~~~~~~~~~~....,. Takt 

ov 

Figure 2.16 Schematic of the Sound Board 

The Custom Apple 65 



Assembling the Board 

66 Chapter 2 

Component Side 
5V 

- - =Jumpers 

of MDF 22T 

Figure 2.17 Parts Layout of the Sound Board\ 1 5 10 25 

Pins 1, 4 and 5 are the common output of the A Y-3-8912. You can hook them to 
the next convenient foil on the PC board. From this foil, connect a lK resistor to 
ground. Then connect a 10,000 Ohm resistor with a 100 microfarad capacitor to the 
output which goes to your audio amplifier. At the 6522 VIA chip, connect pin 2 
with pin 20. On the component side of the PC board you need jumpers (see 
schematic) and a wire through the board to bring the + 5V supply voltage over from 
the soldering side. 



An 8-Bit DI A and AID Convertor 

An 8-Bit DIA and AID Convertor 

This chapter outlines an application using a digital to analog and analog to 
digital convertor. Our first project will be an 8-bit digital to anafog convertor using 
the Ferranti Digital to Analog convertor kit (ZN428E). If you want to use your 
Apple II personal computer for data acquisition, sensing conditions and 
controlling systems in the home or industrial environment, you will often have to 
convert a certain number-value into a voltage level (a digital/analog conversion). 
For instance, if you want to convert a certain voltage level with your program, you 
have to generate a digital number first, then convert this digital number into a 
voltage level. The value of the digital number has to be made such that after 
converting it, the appropriate voltage level is achieved. The opposite of this 
function is the analog to digital convertor, which converts a voltage level into a 
digital number. Those conversions can be performed with the digital-analog 
convertor (ZN428E). The conversion itself is accomplished by software in the 
computer. 

The picture below shows you the complete schematic of the 8-bit digital to 
analog and analog to digital convertor. In this project the 6522 VIA board is just 
the interface between the convertor and the computer. The data input lines of the 
ZN428E chip are connected with Port A of the 6522. Port line AO is connected with 
the least significant bit of the data line of the D to A convertor, and port data line 
A 7 is connected with the most significant bit or line of the digital to analog 
convertor. The 2N428E is enabled using pin PBO of the 6522 VIA board. When 
PBO . 0 all inputs of the digital/analog convertor can accept data from the computer 
through Port A of the 6522. If pin PBO goes high (which means PBO = 1) all inputs 
are locked immediately and must remain at that state until PBO becomes 0. The value 
which was applied last is then stored in the convertor. The output voltage range is set 
by an operational amplifier (one quarter of a TL07 4). The internal reference voltage 
(VRF) equaling 2.5 volts is used on the ZN428. Figure 3.2 is the block diagram, which 
shows how to set the output voltage range. 

The Custom Apple 67 



An 8-Bit D/ A and A/D Convertor 

'<!" 

" 0 
_J 

f-

~ 

NM<;"l!l<Dr--com 

2 
BITI BIT2 

LSB BIT3 
4 

ENABLE BIT4 

5 
UT 

co 

6 I 
IN w 

co 

VREF 
N 
'<!" 

7 z 
8 

OUT N 

LL 

::t 

390 

I
> ::> 
l!l c.. 
+ f-
·I· ::i 

0 0 

BIT5 

BIT6 

BITS 

vcc 
GND 

0 
co 
a.. 

16 

15 

14 

13 

12 

II 

10 

N 
N 
l!l 
<D 

11 

Figure 3.1 8-bit DI A and AID Conuertor Schematic 

68 Chapter 3 

> 
l!l 
+ 

" co 
a.. 

co 
.;-
'<!" 

z 

l!l <D 

> 
l!l 
+ 
+ 

0 

3.3 k 

'<!" 

" 0 
_J 

f-

~ 

f
::i 
a.. 
z 

2.2k 

I• 



An 8-Bit D/ A and AID Convertor 

The schematic in Figure 3.1 shows a circuit that will deliver an output voltage 
which is variable between 0 and + 5 or 0 and - 5. It cannot be an alternating voltage, 
and will always be either positive or negative. The formula for calculating this 
unipolar output voltage (VFS) is: 

VFS = (l + Rl/R2)*VRF 

The range of this voltage, calculated by the above formula, is between OV and the 
maximum value, (VFS). Resulting resistance, created by resistors Rl and R2 in 
parallel, should approximately equal the internal resistance of the converting 
network. This resistance should be approximately 4000 ohms. For an output voltage 
range between 0 and + 5 volts and a reference voltage of VRF = 2.5 volts, R 1 = R2 
= 8000 ohms. 

In our schematic R2 = 8200 ohms and RI is equal to the combination of the 4700 
ohm resistor and the 5000 ohm potentiometer in this series. With this configuration 
the maximum value of the output voltage is a + 5 volts. To achieve this you can use 
the following program: 

The ZN 428E is manufactured by Ferranti in the UK. 

ZN 428E 

Figure 3.2 DIA Block Diagram 

Figure 3.3 Conuertor Adjustment 

10 REM **************************** 
20 REM * CONVERTER ADJUST * 
30 REM **************************** 
100 REM PROGRAMMING THE PORTS 
110 REM PORTA SET TO OUTPUT 
120 POKE - 16189,255 
130 REM PORTB SET TO OUTPUT 
140 POKE - 16190,01 
200 REM OUTPUT OF NUMBERS 
210 INPUT " NUMBER=";Z 
220 POKE - 16191,Z 
230 PRINT "MORE (Y/N)";: GET W$ 
240 IF W$ < > "N" THEN 210 
250 END 

RI 

The addresses of Port A and Port B of the 6522 VIA are COC 1 and COCO when 
the board is plugged into slot 4 of the Apple. The equivalent decimal addresses are 
-16192 for Port A and -16191 for Port B. The addresses of the data direction 
registers DDRB and DDRA are COC2 (decimal is -16190) and COC3 (decimal is 

The Custom Apple 69 



70 

An 8-Bit DI A and A/D Convertor 

Chapter 3 

-16189) respectively. After starting our little program (Figure 3.3) the computer 
asks us to put in a number. If we type in 255, we set the convertor to its maximum 
output voltage. Next we use the 5000 ohm potentiometer to adjust the voltage 
down to + 5 volts minus 20 millivolts. which equals 4. 98 volts. To make this precise 
voltage adjustment we recommend using a digital voltmeter. Because+ 5 volts equals 
256. we can only come up to FF, which equals 255. Therefore we have to deduct the 
20 millivolts from the maximum value. These 20 millivolts correspond exactly to 
one LSB (least significant bit). If you answer the question 'number' from the 
program above with an input of zero, the output voltage must be zero. If you want 
to fool around a little bit, try a few other values like 128 or 64 and so on, and watch 
the output at pin 8 of the TL074 operational amplifier. With an input of 128, the 
output voltage should be 2.5 volts. 

Now we are going to show you the following three programs in 6502 
machine-code to demonstrate how your digital/analog convertor works in the 
Apple II computer: 

1. A sawtooth generator 

Figure 3. 7 Program SAWTOOTH 

0800 1 DCM "PR#l" 
0800 2 
0800 3 ; 
0800 4 ;***************************** 
0800 5 . * * , 
0800 6 ·* SAWTOOTH * ' 0800 7 ·* * ' 0800 8 ;***************************** 
0800 9 
0800 10 
0800 11 DDRA EQU $COC3 
0800 12 DDRB EQU $COC2 
0800 13 TORA EQU $COC1 
0800 14 TORB EQU $COCO 
0800 15 ; 
0800 A9FF 16 LDA #$FF 
0802 8DC3CO 17 STA DDRA 
0805 A901 18 LDA #$01 
0807 8DC2CO 19 STA DDRB 
080A A200 20 LDX #$00 
080C 8EC1CO 21 M STX TORA 
080F ES 22 INX 
0810 18 23 CLC 
0811 90F9 24 BCC M 
0813 25 

26 END 



An 8-Bit DI A and A/D Convertor 

2. A triangle generator 

Figure 3.8 Program TRIANGLE 

0800 1 DCM "PR#l" 
0800 2 
0800 3 i 
0800 4 ·***************************** ' 0800 5 . * * I 

0800 6 . * TRIANGLE * , 
0800 7 ·* * ' 0800 8 ·***************************** ' 0800 9 
0800 10 . , 
0800 11 DDRA EQU $COC3 
0800 12 DDRB EQU $COC2 
0800 13 TORA EQU $COC1 
0800 14 TORB EQU $COCO 
0800 15 
0800 A9FF 16 LDA #$FF 
0802 8DC3CO 17 STA DDRA 
0805 A901 18 LDA #$01 
0807 8DC2CO 19 STA DDRB 
080A A200 20 LDX #$00 
080C 8EC1CO 21 STX TORA 
080F EEClCO 22 Ml INC TORA 
0812 DOFB 23 BNE Ml 
0814 CEClCO 24 M2 DEC TORA 
0817 DOFB 25 BNE M2 
0819 FOF4 26 BEQ Ml 
081B 27 

28 END 

. . . .. . . : : .· . . . .. . . . 

3. A binary noise generator 

The Custom Apple 71 



An 8-Bit DI A and A/D Convertor 

72 Chapter 3 

Figure 3. 9 Program BINARY NOISE 

0800 1 DCM 11 PR#l 11 

0800 2 ; 
0800 3 i 
0800 4 ·***************************** I 

0800 5 . * * 
' 0800 6 ·* BINARY NOISE * g 

0800 7 ·* * , 
0800 8 ·***************************** ' 0800 9 
0800 10 
0800 11 DDRA EQU $COC3 
0800 12 DDRB EQU $COC2 
0800 13 TORA EQU $COC1 
0800 14 TORB EQU $COCO 
0800 15 
0800 16 ZAHL EPZ $10 
0800 A9FF 17 LDA #$FF 
0802 8DC3CO 18 STA DDRA 
0805 A901 19 LDA #$01 
0807 8DC2CO 20 STA DDRB 
080A 201308 21 M JSR RANDO 
080D 8DC1CO 22 STA TORA 
0810 18 23 CLC 
0811 90F7 24 BCC M 
0813 25 
0813 38 26 RANDO SEC 
0814 8511 27 STA ZAHL+l 
0816 6514 28 ADC ZAHL+4 
0818 6515 29 ADC ZAHL+5 
081A 8510 30 STA ZAHL 
081C A204 31 LDX #$04 
081E B510 32 Zl LDA ZAHL,X 
0820 9511 33 STA ZAHL+l,X 
0822 CA 34 DEX 
0823 10F9 3: BPL Zl 
0825 60 36 RTS 
0826 37 . 

' 38 END 

The following is a description of the listings of the above three programs: 

The sawtooth (Figure 3.7) is generated by incrementing the X register and 
storing the contents of that register in Port A of the 6522. The program starts by 
setting Port A and PBO of Port B as outputs. This is done by loading the 
accumulator with FF and storing this to DDRA, and loading the accumulator with 
a one and sending it to DDRB. 



An 8-Bit DI A and AID Convertor 

The triangle generator program (Figure 3.8) starts the same way as the previous 
program, setting the Ports A and B to the same values. Then a zero is stored in Port 
A. The triangle is generated by incrementing the contents of Port A until it is zero. 
Then the port will be decremented until it again reaches zero. This loop iis repeated 
indefinitely. 

The binary noise program (Figure 3.9) uses a subroutine called RANDO to 
generate a random number between 0 and 255. The program uses the memory 
locations defined by the labels ZAHL to ZAHL + 5 to shift and add certain 
numbers. These numbers are transferred to the 6522 and then to Port A, which is 
connected to the digital to analog convertor. 

You can easily generate other wave-form shapes when you set up your own tables. 
You can store the exact sequence of each value as numbers in a table in your Apple 
II computer. If you then pull these values out of the table, perhaps using a time delay, 
you can even generate very complex functions on your computer. 

Until now we have only discussed theZN428E digital to analog covertorin a digital 
to analog application. This powerful chip also allows you to construct an analog to 
digital convertor using special software within the Apple II. Digital computers 
operate with fixed voltages and can only recognize the binary digits, one and zero 
(low, high). Most of the signals around us are analog. If you think of such things as the 
temperature, pressure, light, sound intensity, and every signal which comes out of a 
transducer, these signals are voltages or currents in analog form. To feed that analog 
information into a computer, you have to convert the voltage level into digital 
information. 

Voltage Level 

SENSOR 
Analog I 
Digital 
Converter 

Figure 3.10 Block Diagram of the AID Conuertor 

Computer 

8 Bit Word 

There are several ways to convert an unknown voltage to a digital number. First 
there are integrating ADC's. These convertors use an analog integrator and a 
comparator. When the switch (S) in Fig. 3.11 is closed by a pulse, the integrator 
starts a ramp function. 

The Custom Apple 73 



An 8-Bit D/ A and AID Convertor 

74 Chapter 3 

UREF R 

..... 
• 

c 

INTEGRATOR 

Figure 3.11 Schematic of the Integrator/Comparator 

U uK 

COMPARATOR 

This voltage is compared with the unknown voltage, designated by U uK. When 
the ramp function voltage is equal to this voltage, the comparator switches from 
zero to one. The time between the start pulse and the switching of the comparator 
is measured with a digital counter. 

I 

startpu1se ____ n1---------1----

Rampfunction 

Comparator 

Figure 3.12 Digital Conversion with a RAMP Function 

This basic circuit is used in several ways, such as a single slope, dual slope, 
triple slope convertor. Another way to convert a voltage to a number uses a digital 
ramp function. 



Resolution 

UR 

Step 

t 

Figure 3.13 RAMP Function Waveform 

This ramp function is compared with the unknown voltage. 
When they are equal, counting stops and the number of steps is equal to the 
unknown voltage. This is a very slow conversion. A third method is the successive 
approximation method, which we use in our application. Details are discussed 
later. 

Today there are very cheap analog to digital convertors on the market. With a 
few resistors and a 555 timer circuit, you can even build one for less than five 
dollars. These convertors are not very precise and are used mostly for joysticks, 
paddles, and low quality temperature measurement and control applications. If 
somebody talks about analog to digital convertors, you always hear words like 
resolution, accuracy, linearity, settling time and clock rate. We will discuss the 
more important specifications here to give you a feeling of what an analog to digital 
convertor can do and what it cannot do. 

Resolution 

Resolution describes the amount of input voltage change that is required to 
increment the output of an A to D covertor between one code change and the next 
code change. A convertor with N switches can resolve one part in two to the Nth 
parts. 

The input signal is simulated approximately by a series of digital steps. 
Resolution may be expressed in full scale or in binary bits. For example: an ADC 
with 12-bit resolution could resolve one part in two to the twelfth, which means one 
part out of 4096 (or 1/4096) equals 0.0245 S'O of the full seal~. A convertor with ten 
volts full scale could resolve a 2.45 millivolt input change. If you now compare this 
with an 8-bit ADC, you will only have one part out of 256 (1/256), which equals 
0.3906 c( . On a ten-volt full scale this gives you a resolution of 39 millivolts. 
Resolution is a design parameter rather than a performance specification. It says 
nothing about accuracy or linearity. 

Accuracy 

Accuracy describes the difference between the actual input voltage and the full 
scale weighted equivalent of the binary output code. Included are quantizing 
errors and all other errors. A twelve-bit ADC is stated to be plus or minus one LSB 
accurate. This is equivalent to 0.0245 ~·~,or twice the minimum possible quantizing 
error of 0.0122 c( . 

The Custom Apple 75 



Quantizing Error 

76 Chapter 3 

Quantizing Error 

Quantizing error is the maximum deviation from a straight linear transfer 
function on a perfect ADC, as you will note in Figure 3.14 

111 

110 + 

IOI + 

100 + 

011 + 

010 '"' 

001 .. 
000 

1/2 LSB 

Offset on Zero 

Figure 3.14 Quantized Input Signal 

I 
I 

..l.. 
I 

Decision 
LEVEL 

I 
I 
I 

I I 
I I I I 

I I I 
I I I 
I I I 
I I I 

..l. ..L 
T 

2 3 4 5 

Analog Level in (V) 

The ADC quantizes the analog input into a finite number of output codes. 

Conversion/Clock Rates 

Conversion rate is the speed at which the ADC can make repetitive data 
conversions. It is affected by propagation delay in counting events, ladder switches 
and comparators. The conversion rate is specified as the number of conversions 
per second or as the number of microseconds to complete one conversion 
(including the effects of settling time). The clock rate is the minimum or maximum 
pulse rate at which ADC counters may be driven. 

The 8-Bit DIA and AID Convertor, Part Two 

For the analog to digital conversion we use a digital to analog convertor. 
Therefore, it must be supplemented by software in the computer itself. This 
program uses a technique called successive approximation. The unknown input 
voltage of the ZN428E is compared with one-half of the full range voltage. This 
voltage, in our case, is a positive 5 volts. If the input voltage is now higher than 
one-half of the full range, the computer starts another comparison with three 
quarters of the full range of the output voltage. If the input voltage is lower, a 
comparison with one quarter of the full range voltage will be performed. At the 
next comparison, the remaining interval is divided again by two and in this way the 
unknown voltage is approximated. 



An 8-Bit DI A and AID Convertor 

After eight comparisons, the conversion is finished. The input voltage is now 
recognized with a precision of ± 20 millivolts. 

5V 

2,5V 

DA-CONVERTER 

av 

COMPARATOR 

CONVERSION - TIME 

tes tee 
Figure 3.15 AID Conversion by Successive Approximation 

In Fig. 3.15 you can see the sequence of an analog to digital conversion utilizing 
a digital/analog convertor and a comparat9r. In the upper half is the output of the 
digital/analog convertor; in the lower-half the output of the comparator is shown. 
The conversion starts at time tcs. The state of the comparator prior to this time is 
undetermined. The input voltage is compared with 2.5 Volts and with a low level 
output from the comparator before the input voltage is accepted. First the input 
voltage is compared with 2.5V plus l.25V ( = 3. 7 5V). The comparator responds with 
a one, to show that this voltage is higher than the input voltage; so this voltage is not 
accepted. The second comparison is made with 2.5V plus 0.625V (= 3.125V). This 
voltage won't be accepted either, and the output of the comparator will be one. The 
next comparison voltage is then 2.5V plus 0.3125V (= 2.8125 Volts). The 
comparator accepts this voltage, responding with a zero at the output. In the 
computer, the acceptance of a voltage level is marked with a one. Up to this point, the 
four highest bits of the digital number are 1001. The conversion continues: accepting 

The Custom Apple 77 



An 8-Bit DI A and A/D Converto:r 

78 Chapter 3 

the next voltage level, refusing the next one. and accepting the two next ones. The 
whole digital number finally becomes 10011011 = 9B. This corresponds to a 
voltage of 3.099 Volts. Because of the quantization error, the level of the input 
voltage lies somewhere between 3.099 ± 20 millivolts. The conversion is completed 
at tee. 

If you want to measure a ten-volt input voltage. you have to use a voltage divider 
circuit, and your error will be doubled. ( ± 40 millivolts). The output signal of 
comparator C2 (see Figure 3.1) will be a positive to negative 12 volts. To connect that _ 
output to the PB7 input of the 6522 chip we have to convert that level into a TTL 
compatible level. The program you need to perform the analog to digital conversion 
will be found below. 

Figure 3.16 Successive Approximation Program 

0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 2000C4 
0803 200BC4 
0806 ADFFC4 
0809 20DAFD 
080C 00 
C400 
C400 
C400 
C400 
C400 A901 
C402 8DC2CO 
C405 A9FF 
C407 8DC3CO 
C40A 60 
C40B 
C40B 
C40B 
C40B A980 
C40D 8510 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

DCM "PR#l" 
; 
·*************************** ' ·* ' ;* ANALOG-DIGITAL-CONVER
;* SION BY SUCCESSIVE 
;* APPROXIMATION WITH A 

8-BIT DA-CONVERTER ·* ' ·* 

* 
* 
* 
* 
* 
* ' ·*************************** , 

DDRA EQU $COC3 
DDRB EQU $COC2 
TORA EQU $COC1 
TORB EQU $COCO 
VALUE EQU $C4FF 
Z EPZ $10 
PRTBYT EQU $FDDA 

' 

JSR INIT 
JSR CONVER 
LDA VALUE 
JSR PRTBYT 
BRK 
ORG $C400 

;SET THE 6522 PORTS 

INIT LDA #$01 
STA DDRB 
LDA #$FF 
STA DDRA 
RTS 

CONVERT 

CONVER LDA #$80 
STA Z Listing Continued ... 



An 8-Bit DI A and AID Convertor 

Continued Listing 

C40F A97F 39 LDA #$7F 
C411 8DC1CO 40 WO STA TORA 
C414 EA 41 NOP 
C415 EA 42 NOP 
C416 43 ;ONLY NECESSARY BECAUSE 
C416 44 ; OF SLOW COMPARATOR 
C416 EA 45 NOP 
C417 EA 46 NOP 
C418 ACCO CO 47 LDY TORB 
C41B 1002 48 BPL Wl 
C41D 0510 49 ORA Z 
C41F 4610 50 Wl LSR Z 
C421 B004 51 BCS FIN 
C423 4510 52 EOR Z 
C425 90EA 53 BCC WO 
C427 8DFFC4 54 FIN STA VALUE 
C42A 60 55 RTS 
C42B 56 
C42B 57 ; 

In lines 29 to 33 the data direction registers are set. The conversion program 
starts with line 37. We initialize memory location Z by setting bit 7 to logical 1. The 
first comparison takes place with 7F. If the input voltage is higher, no BPL will be 
taken in line 48. Then the OR instruction in line 52 will set the bit-7 of the 
accumulator to logical 1. After Z is shifted right one bit, it is equal to 40. By an 
EOR instruction, bit 6 in the accumulator will be cleared. The contents, which are 
now BF, are stored in Port A. Before you can read out the contents of Port B via 
the LDY instruction, the convertor must be allowed to settle. The ZN428E is very 
fast, so after 800 microseconds the new analog input can be read. But, on the other 
hand, the comparator built with the TL07 4 is slow. To solve that problem, you 
must insert four NOP instructions in the program. The conversion is finished 
when LSR Z brings the marked bit into the carry bit. 

Figure 3.17 Plotting Program 

10 REM ************************** 
12 REM * PLOTTING A CURVE * 
14 REM * ON THE APPLESCREEN * 
18 REM ************************** 
50 D$ = CHR$ (04) 
60 PRINT D$; ''BLOAD ADWC400. B" 
100 !NIT = - 15360:WA = - 15349 
110 VA = - 15105 
120 CALL !NIT 
200 HGR : COLOR= 15 
210 x = 0 
220 CALL WA 
230 W = PEEK (VA) 
240 P = 160 - w I 2 
250 HPLOT X,l? 
260 x = x + 1 
270 IF X < 280 THEN 220 
280 END 

The Custom Apple 79 



An 8-Bit DIA and AID Convertor 

80 Chapter 3 

The BASIC program in Figure 3.17 brings the converted voltage values onto the 
Apple screen. Since there are 255 different voltages, but only 160 pixels available 
for us to use in a vertical direction on the screen, we will divide each voltage value 
by two before displaying it. This means that we will be using only 127 pixel range 
to display all voltage values. The zero point of the graph is located 160 pixels down 
from the top of the screen. After each measurement, the X value will be 
incremented by one. If you want to reduce the measuring rate, you can insert a 
delay loop before line 270. 
Figure 3.18 ADW C400.B Program 

C400- A9 01 LDA #$01 
C402- 8D C2 co STA $COC2 
C405- A9 FF LDA #$FF 
C407- 8D C3 co STA $COC3 
C40A- 60 RTS 
C40B- A9 80 LDA #$80 
C40D- 85 10 STA $10 
C40F- A9 7F LDA #$7F 
C411- 8D Cl CO STA $COC1 
C414- 20 2A C4 JSR $C42A 
C417- AC co co LDY $COCO 
C41A- 10 02 BPL $C41E 
C41C- 05 10 ORA $10 
C41E- 46 10 LSR $10 
C420- BO OA BCS $C426 
C422- 45 10 EOR $10 
C424- 90 EB BCC $C411 
C426- 8D FF C4 STA $C4FF 
C429- 60 RTS 
C42A- A2 10 LDX #$10 
C42C- CA DEX 
C42D- DO FD BNE $C42C 
C42F- 60 RTS 

C400.C42F 

C400- A9 01 8D c co A9 FF 8D 
C408- C3 co 60 A9 80 85 10 A9 
C410- 7.F 8D Cl co 20 2A C4 AC 
C418- co co 10 02 05 10 46 10 
C420- BO 04 45 10 90 EB 8D FF 
C428- C4 60 A2 10 CA DO FD 60 
* 

The conversion program ADWC400.B (see Figure 3.18) is put into a little 
on-board RAM on the 6522 I/O board. It is safe and protected against any collision 
with the BASIC program there. If you have plugged the 6522 VIA card into slot 4 
of your Apple, the starting address of the program in the RAM area is C400. The 
subroutine INIT sets the data directional registers. WA is the conversion program. 
The converted value will be stored in the memory location C4FF, which equals 
decimal -15105 (see listing in Figure 3.17). From this location the value will be 
transferred to the BASIC program. Between the instructions STA $COC1 and 
LDY $COCO in program ADW C400-B, a time delay is inserted to give the 
comparator time to settle. If you use a faster comparator, like an LM393, for the 



Using Two DI A Convertors 

voltage comparison, you can eliminate this subroutine. Then after execution of the 
instruction STA $COC 1, you can get the result of the comparison immediately. If 
you use the circuit shown in Figure 3.19, then you must change the jump 
instruction in memory location C41A into a BMI $C41E instruction. The 
conversion time is then approximately 220 microseconds. 

PB7 v. 6522 

10 K +5V 

+5V OUTI 

IN-

VREF IN+ 

GND 

LM 393 

Figure 3.19 Block Diagram of the LM393 

For very precise analog to digital conversion, changes in the input voltage should 
not exceed half the amount of the least significant bit during the conversion time. 
In our case, this means that there must be no change of more than 10 millivolts 
during the conversion time. From this we can calculate the fastest allowed voltage 
change as 45.5 volts per second. With a signal amplitude of 2.5 volts, we only obtain 
an upper frequency limit of 3 cycles per second. We can only measure rather slow 
events. 

Using Two D/ A Convertors 

In many applications it is very useful to have two digital to analog convertors 
available at your computer. These applications may include plotting the results of 
a calculation on an X/Y plotter or an X/Y storage oscilloscope. Instead of looking 
at columns of numbers, you simply look at a picture and see what happens. Or, you 
may generate very complex wave forms for the control of several motors and 
robotics. This is illustrated in the following application in which the DC motor is 
driven by two amplifiers, Al and A2. The input voltage of these amplifiers is 
provided by the digital/analog convertors, DACl and DAC2 (See Figure 3.20). 

Then, for example, you can generate the following function of speed versus time. 

This system could be easily expanded to a digital control system. With an 
analog/digital convertor you can measure the intensity of light, temperature, 
pressure and so on. A computer calculates the necessary reaction of the system and 

The Custom Apple 81 



Using Two DI A Convertors 

82 Chapter 3 

DACI 

Figure 3.20 DC Motor Control 

SPEED 

RIGHT 

TURN 

LEFT 
TURN 

SPEED 

Figure 3.21 Speed/Time Function 

DC MOTOR 

DC POWER AMPLIFIER 

DIGITAL-ANALOG 
CONVERTER 

INTERFACECARD 

6522 

COMPUTER 

APPLE II 

DAC 2 

TIME 

then responds as described by the circuit above. For this application we use two 
ZN425E digital analog convertors which are mounted on the prototype area of our 
6522 1/0 board. 

The data lines of U2 in Figure 3.22 are connected to Port A, and the data lines 
ofU4 are connected to Port B ofthe.6522. The two operational amplifiers, U3 and 



OUT I 6 

Using Two DI A Convertors 

U5, measure the difference between the output voltage (Vout) and the reference 
voltage (Vref) from the ZN425E. The output voltage swing at pin 6 ranges from a 
+2.75 volts to -2.75 volts. The +2.75 volts is equal to an input of FF. From the 
keyboard the -2.75 volts is equal to 00. An output voltage of 0 volts is achieved by 
80 (or 128 decimal). In this demonstration we will consider three programs: one in 
BASIC and two in machine language. In the BASIC program (Figure 3.23) we will 
calculate a circle and use the two DAC's for plotting the values on the screen of an 
oscilloscope. 

LM 741 

I k 5 
GND 

Uout 

I 

2 
15 

16 
14 
3 

BIT 0 

2 

3 
U2 

ZN 425-E 4 
5 

13 2 
PAO 

12 3 
PAI 

II 4 
PA2 

10 5 
9 

PA3 
6 

7 
PA4 

7 
PA5 

6 
-5V 4 6 8 PA6 

8 7 5 9 
PA7 

UI 
+5V 6522 

I k 5 

13 10 
BIT 0 PBO 

12 II 
2 PBI 

UREF II 12 
15 U4 2 PB2 

6 16 ZN 425-E 
10 13 

3 PB3 
Uout 9 14 

14 4 PB4 
7 15 

3 5 PB5 
6 16 

PB6 -5V 4 6 
5 17 

PB7 
LM 741 8 7 

3.22 Connecting DAC ZN 425E's to the 6522 

In lines 10 and 20 we set the data direction registers, the value of TA to the 
address of Port A, and the value of TB to the address of Port B. In the succeding 
lines we calculate the values of a circle, whose center is at X = 128 and Y = 128. 
This is the zero volt point for both the X and the Y coordinates. In lines 130 and 135 
the calculated values for X and Y are POKEd into Ports A and B. The output voltage 
of Port B is connected to the X input of the oscilloscope, and the output voltage of 
Port A is connected to the Y input. When you look at the screen, you will see the beam 
wandering slowly around with a slight flickering in the two axes. This is due to the 
time delay between the two POKE instructions. You will notice that BASIC is not 
very fast. However, if you use an X/Y plotter instead of an oscilloscope, this would be 
the correct speed for plotting the values. Several changes can be made int.he program 

The Custom Apple 83 



Using Two DI A Convertors 

84 Chapter 3 

by changing line 110 to FOR T = 0 TO 360: STEP 2. This would cause you to 
get much closer steps and a rounder circle. If you change line 120 to read X = SIN 
(2*T*F), you can create a Lissajous (or 'figure-eight') figure with a frequency ratio of 
2 to 1. 

Figure 3.23 Program CIRCLE 

1 REM ************************ 
2 REM * PLOTTING A CIRCLE * 
3 REM ************************ 
10 POKE - 16190,255: POKE - 16189,255 
20 TA= - 1619l:TB = - 16192 
100 PI = 3.14159 
105 F = 2 * PI I 360 
110 FOR T = 0 TO 360 STEP 5 
120 X = SIN (T * F) 
122 x = x * 127 + 128 
125 Y = COS (T * F) 
127 y = y * 127 + 128 
130 POKE TB,X 
135 POKE TA,Y 
140 NEXT : GOTO 100 

Now let's take a look at the two machine-language programs. These programs run 
much faster. With the first one, we will plot a square on the screen of the oscilloscope. 
Figure 3.24 Plotting a Square 

0800 1 DCM "PR#l" 
0800 2 
0800 3 i 
0800 4 ·***************************** , 
0800 5 . * * , 
0800 6 ·* SQUARE * I 

0800 7 ·* * , 
0800 8 ·***************************** I 

0800 9 
0800 10 . , 
0800 11 DDRA EQU $COC3 
0800 12 DDRB EQU $COC2 
0800 13 TORA EQU $C0Cl 
0800 14 TORB EQU $COCO 
0800 15 ; 
0800 200608 16 JSR INIT 
0803 4COF08 17 JMP SQUARE 
0806 18 
0806 A9FF 19 INIT LDA #$FF 
0808 8DC3CO 20 STA DDRA 
080B 8DC2CO 21 STA DDRB 
080E 60 22 RTS 
080F 23 
080F 24 
080F AOOO 25 SQUARE LDY #$00 
0811 A200 26 LDX #$00 
0813 8EC1CO 27 STX TORA 
0816 8CCOCO 28 STY TORB 
0819 EB 29 Sl INX 
081A 8EC1CO 30 STX TORA Listing Continued ... 



Continued Listing 

081D EOFF 
081F DOF8 
0821 C8 
0822 8CCOCO 
0825 COFF 
0827 D0F8 
0829 CA 
082A 8EC1CO 
082D DOFA 
082F 88 
0830 8CCOCO 
0833 DOFA 
0835 FOD8 
0837 

31 
32 
33 S2 
34 
35 
36 
37 S3 
38 
39 
40 S4 
41 
42 
43 
44 ; 

45 

Using Two DI A Convertors 

CPX #$FF 
BNE Sl 
INY 
STY TORB 
CPY #$FF 
BNE S2 
DEX 
STX TORA 
BNE S3 
DEY 
STY TORB 
BNE S4 
BEQ SQUARE 

END 

The program in Figure 3.24 above starts by initializing the data direction 
registers and the subroutine in the program. Then it begins to draw a square 
starting in the lower left hand corner of the screen. By incrementing the X register 

· and storing that value to Port A, one side of the square will be drawn. After 
reaching FF the Y register begins to increment, and storing that value to Port B 
will cause the right side of the square to be plotted. The remaining sides of the 
square are drawn by decrementing first the X register and then the Y register, 
while storing those values in the appropriate Ports A and B. When you look at the 
screen you will see that the machine-language instructions are a lot faster than 
BASIC. You won't see the beam wandering around; you will see a very distinct 
fully-drawn square. 

Figure 3.25 Program RANDOM WALK 

0800 1 DCM "PR#l" 
0800 2 . 

I 

0800 3 ' . 
I 

0800 4 ·***************************** I 

0800 5 ·* * I 

0800 6 ·* RANDOM WALK * I 

0800 7 ·* * I 

0800 8 ·***************************** I 
) 0800 9 . 

I 

0800 10 ; 
0800 11 DDRA EQU $COC3 
0800 12 DDRB EQU $COC2 
0800 13 TORA EQU $COC1 
0800 14 TORB EQU $COCO 
0800 15 ; 
0800 16 ZAHL EPZ $10 
0800 17 ; 
0800 A9FF 18 LDA #$FF 
0802 8DC3CO 19 STA DDRA 
0805 8DC2CO 20 STA DDRB 
0808 201708 21 M JSR RANDO 
080B 8DC1CO 22 STA TORA 
OBOE 201708 23 JSR RANDO Listing Continued . .. 

The Custom Apple 85 



ND Conversion 

Continued Listing 

86 Chapter 3 

0811 8DCOCO 24 STA TORB 
0814 18 25 CLC 
0815 90Fl 26 BCC M 
0817 27 
0817 38 28 RANDO SEC 
0818 8511 29 STA ZAHL+l 
081A 6514 30 ADC ZAHL+4 
081C 6515 31 ADC ZAHL+5 
081E 8510 32 STA ZAHL 
0820 A204 33 LDX #$04 
0822 B510 34 Zl LDA ZAHL,X 
0824 9511 35 STA ZAHL+l,X 
0826 CA 36 DEX 
0827 10F9 37 BPL Zl 
0829 60 38 RTS 
082A 39 

40 END 

In the third program, 'RANDOM WALK' (Figure 3.25) we use the previously 
described subroutine RANDO for generating random numbers. These numbers 
are stored, one after the other, to Port A and Port B. When you look at the screen, 
you will see many points arranged in a square, moving right, as in 
molecular movement. The examples we have just discussed are only a few of the 
things that are possible when you have two digital to analog convertors 
to a computer. 

AID Conversion with the ADC1210 

The following description is an industrial application that was actually 
with a 12-bit analog to digital convertor. It was used for measuring a slowly 
voltage, once per second, with great accuracy. As we mentioned earlier, using 
12-bit ADC gives us much better resolution and accuracy than an 8-bit 

The complete schematic is shown in Figure 3.26 below. The outputs of 
ADC1210 are tied to the ports of the 6522. The least significant bits are 
to Port A, and the remaining 4 most significant bits to PBO through PB3 of 
B. On PB4 the start convert pulse (SC) is generated, while PB5 reads 
conversion complete signal (CC). The analog/digital conversion inside the 1210 
done in the same manner as we have done it with the eight-bit ADC and 
The ADC1210 also converts the analog signal to a digital number by 
approximation, but in this case it is being done by the hardware. It uses an 
clock, whose frequency must fall between 60 and 70 kilohertz. Therefore we 
the one megahertz machine clock by four stages of the frequency divider 
4024. The input frequency for the 1210 is then 67.5 kilohertz. The output level 
pins 1 through 12 of the 1210 is V + for a logical zero and zero for a logical 1. At ... 
input pins of the 6522 the voltage levels must not exceed the TTL voltage levels:!' 
Therefore the supply voltage, V +, which is internally equal to the reference voltag~~ 
is set to + 5.12 volts. This value is derived when the + 12 volts power supply of th~~ 
Apple is a voltage regulator, such as UA 78G, or any other adjustable voltag~ 
regulator. The exact voltage is adjusted by the 5000 ohm potentiometer (P 1 ). Wit~ 



~
 

::r
" 
~
 a =
 

fl
l 
~
 

0 9 ~ -~ 00
 

...;
:i 

~
 

oi
;• ~ ~ ~ ~ V
;i 

("
') ;:
i- @

 
~
 .....
 

1=
;• .s;,
 s. C

l) :i:
. t::1
 

("
J .._
 
~
 

.._
 

a 

JI
 .,

..
._

 _
_

 
IM

H
Z

 

2 

IN
 

R
S 

4
0

2
4

 
IC

4 

vs
s 

... 16 _
 __

_;. _
_

 
V

4
 

I 

67
.5

 k
H

z 

V
D

D
 

14
 

+
5

V
 

PA
O

 
I' 

P
A

I 
3 

P
A

2 
4 

65
22

 
P

A
3 

5 

IC
 5

 
P

A
4 

6 
P

A
5 

P
A

6 
P

A
7 

PB
O

 
P

B
I 

P
B

2 
P

B
3 

P
B

4 
P

B
S

 
P

B
6 

P
B

7 

r I (tg
CP

 
13

 
S

c 
14

 
cc

 

I I L
 

I 
-

V
+

(V
R

E
F

) 

22
 

--
---

--
-
-
-

-
-
-

--
--

--

A
D

C
 1

21
0 

IC
I 

23
 

20
0 

k 

,.
. 

R
I 

-
-

-
Th

.Ji
8 J

J
6

 
115

 p1
 X

-2
0

 _
J

 
12

 
M

S
B

 
:-

-
1

1
 C

l 

A
N

A
L

O
G

 

~N
+ 

IN
 

10
0 

PF
 
~
1
 k

 
0

-
+

5.
12

Y
-.

 J
4

 
,(

V
R

E
F

) 
R

2 

r3
 

I 
-

V
A

 

P
IN

 5
0 

=
+

1
2

V
 

3 
2 

U
A

7
8

G
 

4 I
C3 

1 l-
--

-.
..

~5
 k

 
..

..
 

C
2 

P
"p

F
/3

5V
 

~
 

~
 

a 0 =
 

<: ~
 

"'S
 

fl
l .....

 
0 =

 



88 

AID Conversion 

Chapter 3 

the configuration shown, we have a unipolar input voltage swing from zero to + 5.1 
volts at pin 19 of the ADC. In most cases the sensors will not directly supply this inpu 
voltage. For amplifying low voltages you can use an on-board quad op-amp 413 
configured as an instrumentational amplifier. 

R4 
The ADC 1210 is a product of National Semiconducto 

RB 

Rl2 
VEI 

R3 VE IC 2 4136 

J4 

VE2 

R5 

Figure 3.27 Instrumentation Amplifier Schematic 

If you make R4 equal to R5, and R6 equal to R7, R8, and R9, the gain factor is 
V = 1+2*R4/R3. The recommended values of R4 and R6 are 100,000 ohms. As w 

· have a differential input, the voltage Vl is: Vl = (1 +2*R4/R3)*(VE2-VE1). Ifyo 
choose 100,000 ohms for R4 and 2000 ohms for R3, you will have a voltage gain o 
V equals 100. The first stage of the amplifier is also a differential amplifier. With Rl 
= Rl 1 = Rl2 and Rl3 equal to 100,000 ohms, the voltage gain is one. Th 
potentiometer (P2) is used to adjust the output voltage level (VA) to the input rang 
of the ADC. 

Finally, we will lor: at pins PB6 and PB7 of the VIA 6522, which are tie 
together. On PB7 we will create a square-wave signal with a period of 0.1 seco:n 
from timer one. Timer two acts as a counter. It is set to 10 by the program an 
decremented every tenth of a second. When it reaches zero it is time to take a ne 
measurement. 

Now we will take a look at the program. This is divided into a BASIC progra 
part (Figure 3.28) and a machine-language part (Figure 3.29). 

Figure 3.28 BASIC ADC Input Program 

10 REM ************************* 
12 REM * ANALOG INPUT WITH THE * 
14 REM * ADC 1210 * . 
16 REM * RAGE 0 - 5.12 VOLTS * 
18 REM * 1 MEASUREMENT/SECOND * 
20 REM * STARTING WITH BUTTON l* 
30 REM ************************* 
100 MSB = - 15105:LSB = - 15106 Listing Continued. · 



AID Conversion 

Continued Listing 

105 FIN = - 15107 
106 DIM MW(SOO) 
107 I = 0 
110 INIT = - 15360:START = - 15248:MEASURE = - 15223:0FF = - 15200 
112 CALL INIT 
115 PRINT "START MEASUREMENT BY KEYPRESS" 
120 CALL START: GOSUB 1000: 
130 CALL MEASURE: GOSUB 1000 
140 IF I > 3 THEN CALL OFF: GOSUB 1500 
)45 PRINT A 
USO GOTO 130 
)60 END 
flOOO A = PEEK (MSB) * 256 + PEEK (LSB): 
)010 A= A * l.2942E - 03 
)020 MW(I) = A:I = I + 1 
.·j_030 RETURN 
µ500 IF PEEK (FIN) > 127 THEN RETURN 
)505 HGR : HCOLOR= 3 
fu506 HPLOT 1,159 TO 250,159 
~g.507 y = 25 
~510 FOR K = 0 TO I - l 
H520 HPLOT K,159 - Y * MW(K) 
~530 PRINT K~" ";A 
~i540 NEXT K 

50 END 

00- A9 20 LDA #$20 
02- 8D C2 co STA $COC2 
05- 8D co co STA $COCO 
08- A9 EO LDA #$EO 
OA- 8D CB co STA $COCB 
OD- A9 OA LDA #$0A 
OF- 8D C8 co STA $COC8 
12- A9 00 LDA #$00 
14- 8D C9 co STA $COC9 
17- 60 RTS 
18- EA NOP 
19- EA NOP 
lA- AD co co LDA $COCO 
lD- 29 10 AND #$10 
lF- DO F9 BNE $C41A 
21- AD co co LDA $COCO 
24- 29 OF AND #$OF 
26- 49 OF EOR #$OF 
28- 8D FF C4 STA $C4FF 
2B- AD Cl co LDA $C0Cl 
2E- 49 FF EOR #$FF 
30- 8D FE C4 STA $C4FE 
33- 60 RTS 
34- 20 00 C4 JSR $C400 
37- 20 70 C4 JSR $C470 

INIT 

Listing Continued ... 

The Custom Apple 89 



AID Conversion 

Continued Listing 

C43A- AD FF C4 LDA $C4FF 
C43D- 20 DA FD JSR $FDDA 
C440- AD FE C4 LDA $C4FE 
C443- 20 DA FD JSR $FDDA 
C446- 20 62 FC JSR $FC62 Not Used 
C449- 20 89 C4 JSR $C489 
C44C- 18 CLC 
C44D- 90 EB BCC $C43A 
C44F- 20 62 FC JSR $FC62 
C452- CA DEX 
C453- DO EB BNE $C440 
C455- 4C 59 FF JMP $FF59 
C45a- F7 ??? 
C459- F7 ??? 
C45A- F7 ??? 
C45B- FF ??? 
C45C- 7D FB FA ADC $FAFB,X 
C45F- FF ??? 
C460- A9 00 LDA #$00 
C462- aD co co STA $COCO 
C465- AO 05 LDY #$0~ 
C467- aa DEY 
C468- DO FD BNE $C467 
C46A- A9 20 LDA #$20 
C46C- 8D co co STA $COCO 
C46F- 60 RTS 
C470- AD 62 co LDA $C062 INIT 
C473- 30 FB BMI ~C470 
C475- A9 4E LOA #$4E 
C477- aD C4 co STA $COC4 
C47A- A9 C7 LDA #$C7 
C47C- ao C5 co STA $COC5 
C47F- 20 60 C4 JSR $C460 
C4a2- 20 lA C4 JSR $C41A 
C485- 60 RTS 
C486- EA NOP 
C487- EA NOP 
C4aa- EA NOP 
C4a9- AD ca co LOA $COC8 MEASURE 
C48C- DO FB BNE $C489 
C4aE- A9 OA LDA #$0A 
C490- ao ca co STA $COC8 
C493- A9 00 LOA #$00 
C495- 8D C9 co STA $COC9 
C498- 20 60 C4 JSR $C460 
C49B- 20 lA C4 JSR $C41A 
C49E- 60 RTS 
C49F- EA NOP 
C4AO- AD 62 co LOA $C062 OFF. 
C4A3- 80 FD C4 STA $C4FD 
C4A6- 60 RTS 
C4A7- 00 BRK 
C4Aa- 8D CB co STA $COCB 
C4AB- 60 RTS 

Listing Continued .. 

90 Chapter 3 



'(Bottom) 

'printed Circuit B oard 

1 

I I 

1 

AID C on version 

The C t us om Apple 91 



92 Chapter 3 "ls written on a blank page to avoid confusion" is written on a blank page to .avoid confusion . .. 



ND Conversion 

Continued Listing 
C4AC- FF ??? 
C4AD- BF ??? 
C4AE- FB ??? 
C4AF- BF ??? 
C4BO- DD A4 FF CMP 

]CALL-151 

*C400.C433 

C400- A9 20 SD C2 co SD co co 
C40S- A9 EO SD CB co A9 OA SD 
C410- cs co A9 00 SD C9 co 60 
C418- EA EA AD co co 29 10 DO 
C420- F9 AD co co 29 OF 49 OF 
C42S- 8D FF C4 AD Cl co 49 FF 
C430- 8D FE C4 60 
* 

C460.C4A6 

C460- A9 00 SD co co AO 05 S8 
C46S- DO FD A9 20 SD co co 60 
C470- AD 62 co 30 FB A9 4E SD 
C47S- C4 co A9 C7 SD cs co 20 
C4SO- 60 C4 20 lA C4 60 EA EA 
C4SS- EA AD cs CO DO FB A9 OA 
C490- 8D C8 co A9 00 SD C9 co 
C49S- 20 60 C4 20 lA C4 60 EA 
C4AO- AD 62 co 8D FD C4 60 
* 

The data of the ADC 1210 is transferred to the BASIC program via the memory 
locations C4FF (MSB) and C4FE (LSB). Another memory location, C4FD is 
used as a flag to stop the n{easurement. 

To start a measurement, we use the push button PO on the game I/O connecter 
of the Apple. By pressing this button the timers are set and the first measurement 
is taken. The value is stored in array MW(I). This array will contain all 
measurements. As they are taken they will be stored in the next higher sub-array. 
To figure the exact voltage that you have just measured, it is necessary to multiply 
it by a scale factor which is: A= Vref/4096 ( = 0.00125 volts with a reference voltage 
of 5.12 volts). 

The storing and calculating in the BASIC program takes about 4 tenths to 6 tenths 
of a second. The rest of the time the program waits in the subroutine MEASURE for 
the rest of the second to elapse. 

For this application, the I/O board was redesigned and made into a printed circuit 
instead of using the prototyping area. 

The following Figures 3.30 and 3.31 show the layout of the board and of the parts: 

The Custom Apple 93 



ND Conversion 

~~ n 
o-{liJ-o 

-v- ?r, 

q OJ . ~f '; 1 
§ 

~ 

~~ 
0 0 <,! <,! . . 
+ u 

Q 

0 . 
~ ~L~ ~ 

" 
u 

~ 

! 
~ 
~ 

~ill ~ lo ~ 
_,,--" J1 J 

0-0 

Q ~ T .,-/ 
W IRE CONNECTIONS 

C4 + 
o-t[}-cl 

0000000000000000000000000 

Figure 3. 30 Layout of the 1210 Board 

Figure 3.31 Parts 

R1 200k 
R2 1k 
R3 - R13 (See Text) 
R14,R15 4.7k 

C1 100 pF Ceramic 
C2 10 µF /35 V 
C3 0.1 µF 
C4 10 µF/35 V Tantal 

P1,P2 5k Trimmer 

IC1 ADC 1210 N.S. 
IC2 RC 4136 T.I. 
IC3 UA 78G Fairchild 

IC4 4024 
IC5 6522 
IC6, IC7 2114 
IC8 . 4050 Motorola 

s 2 Pole Dual In-line Switch 

- - ·---- - w 

94 Chapter 3 



l 
{-

*' ~' 

An Eprom Burner 

r-----------------------------------------------------------------------------t: 
~ 
f; 
~·· 

Ii 
I 
l' 
lt 
i 
I Ill ·-~, 

I 

An Eprom Burner For The Apple Computer. 

Why do you need an Eprom burner? The first major advantage, if you are into 
hardware at all, is that there comes a time when you realize how nice it would be 
to be able to put routines that are used most often in a nice safe spot (which the 
Eprom would allow you to do). If you decide to get into hardware development or 
special applications and control systems, you will be able to use your Apple 
computer with the 6522 and the Eprom burner circuitry to actually create your 
own microprocessor boards for specific applications. In this chapter we will deal 
with how to construct an Eprom burner circuit and tie it into your Apple computer 
system, allowing you to experiment with hardware development and system 
control applications. To build the Eprom burner we will use a card very similar to 
the 6522 I/O board described earlier. For this project, you won't need the 
additional RAM's that were on the original board. Because of the complexity of the 
circuits in this new project, we aren't going to start off by trying to modify the old 
board, but we will start anew with the overall schematic of the whole board, 
showing you how to construct the new circuits and add the extra components that 
will be necessary on the prototype side of the board. In this project, the prototype 
area of the board will be converted into an actual printed circuit board in order to 
make it permanent and reliable. This project, like all of the projects described so 
far, can be used in any open slot of the Apple computer. However, this chapter was 
written with the idea in mind that it would be placed in slot 4. If you wish to use 
the software and the board in another slot, you will have to modify the addresses 
in the program to point to the addresses of the other slots. 

For this project you will also need a 25-volt supply voltage for the full burning 
of the Eprom, and this can be accomplished by tying together three 9-volt batteries 
in series or building your own DC power supply. If you are going to use three 9 volt 
batteries in series, you will get 27 volts, but since the Eprom burner requires 25 
± 0.5 volts, it will be necessary to put three or four diodes in series. It would be 
advisable to check with a meter to insure that you do have the actual voltage you 
need. On the far left hand side of the board, in the prototype area, there are already 

The Custom Apple 95 



~
 

~
 

C
l 

=:
r' 
~
 

'1:
1 .....

 
~
 

~
 

""'
! *"" 

ci'Q
" 

\:::
 -., "" "'- '- ~
 

;:::;
 t<-1

 
'\:

) -., a ~
 to
 

\::
: -.,
 

;:::;
 "" -.,
 

C
/)

 .... II r:n
 

:le ~·
 

':f
' 

0 z 0 .,, ,, 

R
E

A
D

 

~
 

12
 

G
N

D
 

,.j
,. 

-l
 

...
...

. -
-
.,

 9
 

4 
vc
cO
E~

00
 

:r
o 

:i
t 

01
 
,
,
 

-
4

 
0

2
 

1
3

 
----

-+ 
0

3
 
E..1

H4E:
::::

::::
::~:

::::
::=:

::::
::::

::::
::::

___g
..::

 

V
p 

2.
71

6 

E
P

R
O

M
 

S
O

C
K

E
T

 

U
5

 

21
 

r:n
 

N
 

C
l)

 

:
:
e
-

-
· 

"'
ti 

fj
 

::D
 

=s
' 

0 
N

 
(;

')
 

::D
 

)>
 

s: $,
'; z C
l 

0
4

 
'J

i 
7 

0
5

 
16

. 
1

0
 

00
 
~ 

~ 
07

~ 
~
 

8 
12

 
A

O
 
[1

 
li
[ 

A
1 

6 
1

4
 

A
2

 
::5:

 
i5

 
A

3 
4 

16
 

A
4 

tr
. 

17
 

~I k
 -I 

I 
1

/6
7

4
L

S
0

4
 

-
A

1
0

n
1

9
 

v 
G

E
 

"""
"T

s - ::D m
 

)>
 

0 
A

7
 

A
B

 

A
9

 

A
1

0
 

R
P

R
O

G
R

A
M

M
IN

G
 

C
E

 
O

E
 

V
P

P
 

J 
R

E
A

D
 

L
 

L
 

+
5

V
 
J 

P
ro

g
ra

m
 

L-
-"

 
H

 
+

2
5

V
 

I 

+
5

V
 

: 
3 

x 
9

V
 b

at
te

ri
es

 
r 

V
er

if
y 

L 
L 

+
2

5
V

 

- - --
-

- --::
:::r

;:=
 

V
C

C
 

1
3

9
 

}1 
l2

0 
PA

O
 C

12
 

3
8

 

R
SO

 
37

 
A

O
 

R
S1

 
R

S2
 

R
S3

 

A
l 

3
6

 
A

2 
3

5
 

A
3

 

PA
7 

6
5

2
2

 V
IA

 

PB
O

 

3
3

 
D

O
 

32
1 

0
1

 
'3

1 
0

2
 

3
0

 
-4

 
D

3
 

'z
g 

I"
" 

04
 

r2
8

 
I"

" 
D

5
 

PB
7 

U
7 

27
 

,..
.. 

0
6

 
26

 I
 1

11
 D

7
 

D
E

V
 

iR
6 

S
E

L
 .R

ES
 0

2 
R

/W
 

j2
1 

1
2

3
 

134
 1

2
5

 
1

2
2

 

2 7 1
5

 

1
9

 

15
V

 
16

 

1
0

 

3
0

 

6
0

 

4 
2

D
 

5 
2

0
 

13
 

5
D

 
··

··
·-

--
-1

 
5

0
 

12
 

··
··

-
-
-
-
-
' 

9 
l/

O
S

T
R

O
B

E
 

4
0

 
C

lo
ck

 
·
·
·
-
-
-
•
-
-
-
-

fr
o

m
 

7
4

L
S

1
7

5
 
I 

A
p

p
le

 I
I-

B
us

 
U

G
 

P1
 u

. 
2

0
 

~
 

c 
(/) 

;:
i 

u 
...

+ 
::::.

:> 
-
·n

 
-(

])
 

&
 (/

) 
(]) 

O
' 

<
 

...,
 

0 
'J

i 
;::

:+
a.

. 
::::.

:> 
-
·
 

(J
O

 
0 

(]) 
a.

. 
.....

.. 
(]

) 
(
/)

 
(
/)

 

u
~
 

a 
o 

"d
 

;:+
· 

~ 
~ 

O
' 0

 
..., 

s 
~
 

a.
. 

:::
; 

u 
::::.

:> 
(]

) 
...

+
 

(]
) 

'<
 

::::.
:> 

0 
(/)

 
c 

'<
 

...
+ 

;:
i 

0 
(]

) 
(
/)

 
(]

) 
.....

.. 
a.

. 
a 

·
u

 
~
 

u c ...
+ a.
. c;·
 

a.
. 

(]
) 

(
/)

 

...
+ :::
; 

(]
) ..., (]
) 

::::.
:> ;:
i a.
. 

:::
; 

0 0 ;:;
;-'

 
...

+
 

:::
; 

(]
) 8 

;p.
 =
 

tr
j 

'1:1
 
~
 

0 9 o:i
 

~
 ~ ~ ~ 



An Eprom Burner 

The application described in this chapter will only work using the 2716 Eprom 
that has a single 5 volt power supply. The programming of the Eproms is 
performed utilizing the 6522 versatile interface adapter and a 74LS175 quad 
flip-flop. In order for data to be transferred to the Eprom that you wish to burn in, 
it is necessary to first make that data available to the CPU, which will then transfer 
it over the data lines to the 6522. With the software being used it is assumed that 
the 6522 VIA board (I/O board) will be in slot 4. The 6522 will store that 
information until the appropriate time and then ~ransfer it to the Eprom through 
Port A. In order to address the Eprom so that it knows information is coming, you 
must use the 7 least significant bits of Port B plus the 4 outputs of the 74LS175 
quad flip-flop. This allows you to address the 2K where the Eprom believes it is 
residing at the moment. We will explain more about Bit 8 of Port Ba little later. 
For now, just think of bit 8 as a pulse that will be made to go high for the required 
length of time to burn the information in. 

As we can only use 7 lines of Port B for addressing the Eprom, the remaining 4 
address lines are provided by a 74LS17 5 quad latch. The 8 lower bits of the address 
are first stored in Port B and in memory location LACL (see Fig. 4.5, subroutine 
EOUT). The higher address bits are stored in memory location LACH. Next, 
LACL is rotated left one time. The Bit 8 of that location is shifted into the carry 
bit. With a rotate left of LACH, the carry bit becomes the lowest address bit in this 
location. The following instruction creates a strobe pulse which stores the 4 
remaining bits in the quad latch. 

Now that we have the address stored in the 7 least significant bits of Port B and 
the four outputs of the flip-flops in the 74LS175, we need to get the data that we 
want to store in the address that we programmed. At this time the data we wish to 
transfer will be transferred to Port A of the 6522 by a store instruction. From this 
point on, the actual address is available at the Eprom pins (input pins), and the 
data is now also available to the Eprom from Port A. Transfer of the information 
concerning the address we want to burn in and the data we want burned in the 
memory location within the Eprom is accomplished by a pulse of specific duration 
(very close to 50 milliseconds). This is passed to the chip through the most 
significant bit of Port B to pin 18 of the Eprom socket. During the entire Eprom 
burning-in process, the voltage applied to pin 21 must be held at a constant 25 volts 
to insure a stable burn-in. 

To make the appropriate voltages available when needed, there are two switches 
on the far left-hand side of the prototype area. The reason for the two switches is 
safety. The bottom switch provides the 25-volt burn-in voltage, while the top 
switch is a safeguard to insure that you cannot remove the 5-volt operating voltage 
from the chip while the 25 volts is applied. When both switches are down, nothing 
happens. When the top switch is in the up position, it applies the 5-volt operating 
voltage to the chip in order to allow you to read or write. When the bottom switch 
is down, this is the read position, enabling you to read from the Eprom. When the 
bottom switch is up, provided the top switch is also up, you will obtain the 25 volts 
necessary to burn in the information you wish to the Eprom. The top switch is a 
double-pole double-throw. The bottom one is a single-pole double-throw switch. 

The Custom Apple 97 



Using the Eprom Burner 

98 Chapter 4 

In the schematic, the pin labeled CE is the chip-enable pin. In order to read from 
the Eprom, the CE pin must be low, and the pin labeled OE must also be low. The 
chip must be supplied with the 5-volt operating voltage at the same time that CE 
and OE are low in order to read. The programming voltage comes in through pin 
21 by having both Sl and 82 in the up position. 

One thing to note is that it is possible to verify what you are burning in. In order 
to verify, the CE and OE pins must be low, and the 25 volts used for burning in 
must be applied to the chip.You must not run a verifying cycle for very long, or you 
may damage the chip. However, if you use the software supplied, everything will 
be taken care of. It is only when you experiment with the software that these things 
become important. 

Using the Eprom Burner 

Once the board has been fully assembled according to the instructions given at 
the end of this chapter, it would be a good idea to inspect the board for solder 
bridges, little balls of solder, and bad places. Also examine it generally to be sure 
the chips are in the right orientation according to the diagram and that the 
jumpers are in place. Then you can put the Eprom burner into slot 4 of the Apple 
computer. The next step is to insure that both switches are in the down (or off) 
position. At this point you can place the Eprom into the Eprom socket without 
regard to whether the Apple is on or off as the switches (if they are both in the down 
position) isolate the Eprom socket from the rest of the computer, and it will not 
crash or reset. Unless you are sincerely interested in the operation of a burned-out 
Eprom, it is a very good idea to make sure that both switches are down and you 
have inserted the Eprom with pin 1 lined up with the 1 on the circuit board 
nose will point at the 6522 chip). If 82 (the bottom switch) is down and Sl (the top 
switch) is up, you can read the contents of the Eprom into the computer's RAM. 
The next step, performed by the software, is to read the Eprom into memory, or, 
in the case of a new Eprom, to see if it's fully erased. The software will do this 
you automatically and signal you as to whether the chip is fully erased or the read 
was succesful. 

Using the Software 

First you have to enter the monitor by a CALL-151 from BASIC. Then you 
this program from the Apple monitor by 800G. You will get a prompt at the 
of the screen indicating what you should do. By typing the first character of any 
the three words that appear at the top of the screen you will initiate that function. 
If you type an 'R' at this point, the entire contents of the Eprom will be read 
memory locations 4000 ~ 4 7FF. If you only want to read in one section on 
Eprom, you must start the program by 803G. If you do this, first change 
contents of several memory locations in memory so that the program will be able 
to find the parameters for reading or burning that section of the Eprom. 

The following tabl~ shows the addresses to place the starting location you wish 
to read from, the ending location you wish to read from, the starting address you 
wish the information to be written to, and the ending address it will be written to. 



10 SAEPL 

11 SAEPH 

12 EAEPL 

13 EAEPH 

14 SAPL 

15 SAPH 

16 EAPL 

17 EAPH 

Default Values: 

Figure 4.2 Table of the Addresses 

Using the Software 

Starting Address EPROM Low 

Starting Address EPROM High 

Ending Addreee EPROM Low 

Ending Address EPROM High 

Starting Address Program Low 

Starting Address Program High 

Ending Address Program Low 

Ending Address Program High 

10 = 00 
11 = 00 
12 = FF 
13 = 7F 

14 = 00 
15 = 40 
16 = FF 
17 = 47 

One of the nice features of this table is that you can select any free memory 
locations anywhere in RAM to read the information into or to store the 
information to be burned into the Eprom. The physical addresses for the Eprom 
are always in the range of 0000 to 07FF. Because these addresses are stqred in the 
6522 and the 7 4LS175 as described above, they don't correspond with the 
appropriate addresses in the computer. Because of the way they are stored they are 
not always the same addresses you would get if you did a PEEK to memory locations 
0000 through 07FF. You need to run the program that will enable the 6522 board in 
order to read the actual Eprom information at those addresses. 

For example, if you want to read the physical memory locations 05 to 15 of the 
Eprom, you must set the starting address as follows: SAEPL = 05 and SAEPH = 

00. The ending address is: EAEPL = 15, EAEPH = 00. 
Now you have to decide where the data from these memory locations should be 

placed. If you want them in 2005 to 2015, you have to set SAPL = 05 and 
SAEPH = 20. It is not necessary to set the ending addresses (EAPL and EAPH) 
because the program stops reading in memory location 0015. ·Once all of the 
memory locations have been initialized with the values you want, start the 
program by going to address 803. 

The Custom Apple 99 



Testing an Eprom 

100 Chapter 4 

Testing an Eprom. 

In order to be sure that you are going to get a clean burn in a new Eprom, it's a 
good idea to test it before use to insure that it really is empty or erased. All contents 
of every memory location within the Eprom must be FF in order to be burned. The 
software provided with this application will test the entire Eprom and assure that 
every byte within the Eprom is actually FF. If it finds one that is not, it will signal 
you with an error message: EPROM NOT ERASED. If you wish to test just one 
section of the Eprom, you can use the same procedure as just described by setting 
the starting and ending addresses and using 803G. If the program finds the 
Eprom completely erased and usable, it will give you the message: EPROM 
ERASED. 

Programming the Eprom. 

If you hit a B for burning the Eprom, the programming procedure will start. 
Before hitting B to start the actual burning-in process, you must be sure that both 
switches are in the up position. Since it requires 50 milliseconds to program each 
addessable byte within the Eprom, the entire burn-in procedure will take 
approximately 100 seconds. After each byte is burned into the Eprom, the software 
will do an automatic VERIFY of that byte to assure that it is there. If it finds while 
verifying that the byte in memory does not match the byte that was just read from 
the Eprom, it will generate an error message: EPROM NOT PROGRAMMED. If 
all goes well and every byte can be verified the message EPROM PROGRAMMED 
will appear at the end of the burning process. As described above, a program start 
of 800G will burn in the entire 2K of the Eprom. 

We can set the addresses to burn only a part of the Eprom in the same way we 
set the addresses for reading part of the Eprom. It is possible to burn only one 
single address of the Eprom. For example, if we want the program at addresses 
40GF to 4137 in the Eprom starting address 187, we have to set the addresses 
as follows: SAPL = GF, SAPH = 40, EAPL = 37, EAPH = 41, SAEPL = 87, 
and SAEPH = 01. It is not necessary to set the ending addresses (EAEPL and 
EAEPH), because the program will stop burning at address 4137. 

The following is a short summary of the steps required to perform the functions: 

1. Insert the board into slot 4, insuring that the computer has been turned off. 
2. Turn the computer on. 
3. Read in the program that is going to be doing the work. 
4. Insure that both switches on the board are in the down position. 
5. Insert the Eprom in the Eprom circuit on the board, insuring that the 

nose points to the 6522 chip, and pin 1 of the Eprom is on top of pin 1 
printed on the circuit board. 

6. Read into memory the program you want to burn into the Eprom. 
7. Flip the top switch (81),into the up position. 
8. Either go to memory location 800 to program the entire Eprom, or store 

the appropriate numbers in the memory locations and use 803G for 
programming a part of the Eprom. 



25V 

Assembling the Eprom Burner Board 

9. Be sure to test the Eprom to make sure it is completely erased and ready 
to burn-in. 

10. Flip 82 (the bottom switch) to the up position. 
11. Start the burning-in by either 800G or 803G. 
12. Upon completion of the burn-in, turn 81and82 down and remove the Eprom. 

Assembling the Eprom Burner Board. 

The first step is to assemble the right hand side of the board in the same manner 
as we have for the previous projects, such as the 6522 I/O board, but in this project 
it won't be necessary to mount the additional RAM as was done on the other 
boards. The next step is to mount all required sockets and solder them in. Install 
the textool zero insertion-force socket, with the handle pointing at the 6522 chip. 

Now you must provide a 25-volt power supply or use three 9-volt batteries in 
series. In the latter case, it will be necessary to install at least three diodes on the 
left hand side of the printed circuit board. 

View from the Component side 

6522 

J3 
Cl 4050 

C2 

~ 

//kf J
2 

20 '----

~-=.---::~ 

&74LSl75 <I: I 74LS04 < 

.______________~JI 11111111111111111111111 
Note: Jumpers Jl - J3 are on the solder side. 

J6 

View from the Solder Side 
J6 

30 29 28 27 26 

4. 3 Parts Layout 

The Custom Apple 101 



Assembling the Eprom Burner Board. 

102 Chapter 4 

Install the two switches, Sl and 82, making sure that you get the double-pole 
double-throw at the top and the single-pole double-throw at the bottom. The 
bottom set of contacts on Sl will be wired to the first three holes in triangular array 
closest to the left-hand side of the board. The top three leads of 81 will be put in 
the second three holes. If the leads don't reach, you can attach short jumpers to 
make the connections. Then connect your 25-volt power supply (or the three 
batteries in series) to the two holes marked on the schematic with + and - near 
switch 1 at the top of the printed circuit board. Attach the jumpers on both sides of 
the board. Be sure they are in the right position; then check them again. There are two 
jumpers to be installed on the front (or top) side of the board: JI and 12. 

Now turn the board over, and on the back (or bottom side) of the board install 13, 
4, 5 and 6. Pay particular attention to getting these in the right place. Now you need 
to mount two capacitors, Cl and C2. Cl goes between the two IC's, 74LS175 and 
74LS04. C2 goes in the right-hand bottom corner of the 6522 VIA board. Now you 
can plug in all of the IC'S into their respective sockets, making sure that the nose goes 
in the same direction as shown on the schematic and that pin 1 printed on the circuit 
board lines up with pin I on the IC's as you plug them in. 

Figure 4.4 Parts List for the Eprom Burner 

Qty Description 

Capacitor tantal 1 O µF /35V 

Capacitor 100 nF 

DPDT-Switch 

SPOT-Switch 

Diode 2N 4148 

r 4 pin socket OIL 
16 pin socket DIL 

18 pin socket OIL 

40 pin socket DIL 

24 pin socket TEXTOOL 

6522 (Rockwell) 

4050 (Motorola) 

74LS 154 

74LS04 

PC-Board EPROM-BURNER 

3 Diodes 2N 4148 see text 



Assembling th e Eprom B urner Board 

(Top) 

[Bottom) 

4· 6 Printed c · . ircuit Board 

The Custom A pple 103 



104 Chapter 4 "Is written on a blank page to m·oid confusion" is written on a blank page to auoid confusion. 



Assembling the Eprom Burner Board 

./ 

Photo of the Eprom Burner Board 

In the following Figure (4.5) the program for burning the Eprom and the hex 
codes of this program are shown. 

Figure 4.5 Eprom Program 

0800 1 DCM "PR#l" 
coco 2 ORG $COCO 
coco 3 TORB EQU * 
coco 4 TORA EQU *+ 1 
coco 5 DDRB EQU *+ 2 
coco 6 DDRA EQU *+ 3 
coco 7 Tl CL EQU *+ 4 
coco 8 Tl CH EQU *+ 5 
coco 9 ACR EQU *+ 11 
coco 10 PCR EQU *+ 12 
coco 11 IFR EQU *+ 13 
coco 12 i 
coco 13 i coco 14 STR EQU $C800 
coco 15 COUT EQU $FDED 
coco 16 RDCHAR EQU $FD35 
coco 17 HOME EQU $FC58 
coco 18 MONITO EQU $FF59 
coco 19 i coco 20 SAEPL EPZ $10 
coco 21 SAEPH EPZ SAE PL+ 1 
coco 22 EAEPL EPZ SAE PL+ 2 
coco 23 EAEPH EPZ SAEPL+ 3 
coco 24 SAPL EPZ SAEPL+ 4 
coco 25 SAPH EPZ SAEPL+ 5 
coco 26 EAPL EPZ SAE PL+ 6 
coco 27 EAPH EPZ SAE PL+ 7 Listing Continued . . . 

The Custom Apple 105 



Assembling the Eprom Burner Board 

Continued Listing 

coco 28 LAL EPZ SAEPL+!8 
coco 29 LAH EPZ SAEPL+!9 
coco 30 LACL EPZ SAEPL+!lO 
coco 31 LACH EPZ SAEPL+!ll 
coco 32 HFZ EPZ SAEPL+!l2 
coco 33 
coco 34 
0800 35 ORG $800 
0800 20C208 36 CS TART JSR DEF AU 
0803 201509 37 WSTART JSR INIT 
0806 A246 38 LDX #70 
0808 203B08 39 JSR TX TOUT 
080B 2035FD 40 JSR RD CHAR 
OBOE 8D4D08 41 STA SAVEC 
0811 20EDFD 42 JSR COUT 
0814 AD4D08 43 LDA SAVEC 
0817 C9D2 44 CMP #"R" 
0819 D006 45 BNE Ll 
081B 205B09 46 JSR LE SEN 
081E 4C59FF 47 JMP MON ITO 
0821 C9C2 48 Ll CMP #"B" 
0823 D006 49 BNE L2 
0825 20CB09 50 JSR PROGRA 
0828 4C59FF 51 JMP MO NI TO 
082B C9D4 52 L2 CMP #"T" 
082D DOD4 53 BNE WSTART 
082F 207709 54 JSR PRUEFE 
0832 A265 55 LDX #101 
0834 203B08 56 JSR TX TOUT 
0837 4C59FF 57 JMP MONITO 
083A 00 58 BRK 
083B 59 
083B 60 . 

I 

083B 8D4B08 61 TX TOUT STA SA VEA 
083E BD4E08 62 TX Tl LDA TEXT,X 
0841 FOO? 63 BEQ FIN 
0843 20EDFD 64 JSR COUT 
0846 E8 65 INX 
0847 18 66 CLC 
0848 90F4 67 BCC TX Tl 
084A 60 68 FIN RTS 
084B 0000 69 SAVEA HEX 0000 
084D 00 70 SAVEC HEX 00 
084E 71 
084E 72 
084E 8D8D 73 TEXT HEX 8D8D 
0850 C5DOD2 74 ASC "EPROM NOT EREASED " 
0853 CFCDAO 
0856 CECFD4 
0859 AOC5D2 
085C C5ClD3 
085F C5C4AO 
0862 AOAOAO 
0865 008D 75 HEX 008D 
0867 C5DOD2 76 ASC "EPROM NOT PROGRAMMED !I 

086A CFCDAO Listing Continued . .. 

106 Chapter 4 



Assembling the Eprom Burner Board 

Continued Listing 

086D CECFD4 
0870 AODOD2 
0873 CFC7D2 
0876 ClCDCD 

.0879 C5C4AO 
·o87C AOAOAO 
:.087F 008D 77 HEX 008D 
·.0881 C5DOD2 78 ASC "EPROM PROGRAMMED !I 

;/0884 CFCDAO 
887 DOD2CF 
88A C7D2Cl 
88D CDCDC5 
890 C4AOAO 
893 008D 79 HEX 008D 
895 C2A9D5 80 ASC "B)URNING T)ESTING R)EADING Ii 

898 D2CEC9 
89B CEC7AO 
89E D4A9C5 
8Al D3D4C9 
8A4 CEC7AO 
8A7 D2A9C5 
8AA ClC4C9 
8AD CEC7AO 
8BO AOAO 
8B2 00 81 HEX 00 
8B3 8D 82 HEX 8D 
8B4 C5DOD2 83 ASC 11 EPROM EREASED" 
8B7 CFCDAO 
SBA C5D2C5 
8BD ClD3C5 
8CO C4 
8Cl 00 84 HEX 00 
8C2 85 . 

I 

8C2 86 
8C2 87 ; 
8C2 A900 88 DEF AU LDA #$00 
8C4 8510 89 STA SAE PL 
8C6 8511 90 STA SAE PH 
8C8 8514 91 STA SAPL 
8CA A9FF 92 LDA #$FF 
sec 8516 93 STA EAPL 
BCE 8512 94 STA EAEPL 
8DO A907 95 LDA #$07 
8D2 8513 96 STA EAEPH 
8D4 A940 97 LDA #$40 
8D6 8515 98 STA SAPH 
8D8 A947 99 LDA #$47 
8DA 8517 100 STA EAPH 
8DC 60 101 RTS 

08DD 102 
8DD 103 ; 
8DD A518 104 EOUT LDA LAL 
8DF 8DCOCO 105 STA TORB 
882 851A 106 STA LACL 

08E4 A519 107 LDA LAH 
8E6 851B 108 STA LACH Listing Continued ... 

The Custom Apple 107 



Assembling the Eprom Burner Board 

Continued Listing 
08E8 261A 109 ROL LACL 
08EA 261B 110 ROL LACH 
08EC A51B 111 LDA LACH 
08EE 8DOOC8 112 STA STR 
08Fl 18 113 CLC 
08F2 60 114 RTS 
08F3 115 
08F3 116 
08F3 E618 117 NEXT INC LAL 
08F5 D002 118 BNE Nl 
08F7 E619 119 INC LAH 
08F9 E610 120 Nl INC SAE PL 
08FB D002 121 BNE N2 
08FD E611 122 INC SAEPH 
08FF A511 123 N2 LDA SAE PH 
0901 C513 124 CMP EAEPH 
0903 900C 125 BCC N3 
0905 F002 126 BEQ N4 
0907 BOOB 127 BCS N5 
0909 A510 128 N4 LDA SAE PL 
090B C512 129 CMP EAEPL 
090D F002 130 BEQ N3 
090F B003 131 BCS NS 
0911 20DD08 132 N3 JSR EOUT 
0914 60 133 NS RTS 
0915 134 
0915 135 ; 
0915 20S8FC 136 INIT JSR HOME 
0918 A900 137 LDA #$00 
091A 8DC3CO 138 STA DDRA 
091D AA 139 TAX 
091E A8 140 TAY 
091F A97F 141 LDA #$7F 
0921 8DC2CO 142 STA DDRB 
0924 A980 143 LDA #$80 
0926 8DCBCO 144 STA ACR ;PB7 MONOFLOP 
0929 60 145 RTS 
092A 146 
092A 147 . 

' 092A A510 148 START LDA SAE PL 
092C 8Sl8 149 STA LAL 
092E 851A 150 STA LACL 
0930 8DCOCO 151 STA TORB 
0933 A511 152 LDA SAEPH 
0935 8519 1S3 STA LAH 
0937 851B 1S4 STA LACH 
0939 261A 155 ROL LACL 
093B 261B 1S6 ROL LACH 
093D A51B 1S7 LDA LACH 
093F 8DOOC8 158 STA STR 
0942 60 lS9 RTS 
0943 160 
0943 161 
0943 C901 162 ERROR CMP #$01 
0945 D008 163 BNE El 
0947 A200 164 LDX #$00 Listing Continued . . · 

108 Chapter 4 



Assembling the Eprom Burner Board 

Continued Listing 

0949 203B08 165 JSR TX TOUT 
094C 4C59FF 166 JMP MONITO 
094F C902 167 El CMP #$02 
0951 D005 168 BNE E2 
0953 A218 169 LDX #24 
0955 203B08 170 JSR TX TOUT 
0958 4C59FF 171 E2 JMP MONITO 
095B 172 
095B 201509 173 LES EN JSR INIT 
095E A90C 174 LDA #$0C 
0960 8DCCCO 175 STA PCR ;OE=L LESEN 
0963 202A09 176 JSR START 
0966 ADClCO 177 LESl LDA TORA 
0969 9114 178 STA ( SAPL) , Y 
096B E614 179 INC SAPL 
096D D002 180 BNE LES2 
096F E615 181 INC SAPH 
0971 20F308 182 LES2 JSR NEXT 
097 4 90FO 183 BCC LESl 
0976 60 184 RTS 
0977 185 
>0977 201509 186 PRUEFE JSR INIT 
097A A90C 187 LDA #$0C 
097C 8DCCCO 188 STA PCR ;OE=L LESEN 
097F 202A09 189 JSR START 

';0982 ADClCO 190 Pl LDA TORA 
'0985 C9FF 191 CMP #$FF 
0987 FOOS 192 BEQ P2 

)0989 A901 193 LDA #$01 
t'09 8B 4C4309 194 JMP ERROR 
098E 20F308 195 P2 JSR NEXT 

,0991 90EF 196 BCC Pl 
~0993 60 197 RTS 

~~~~: 198 ; 
A90E 199 MONOFL LDA #$OE 

996 8DCCCO 200 STA PCR ;OE=H PROGRAMMIEREN 
999 A950 201 LDA #$50 
99B 8DC4CO 202 STA Tl CL 
99E A9C3 203 LDA #$C3 
9AO 8DC5CO 204 STA Tl CH 
9A3 ADCDCO 205 MOl LDA IFR 
9A6 2940 206 AND #$40 
9A8 FOF9 207 BEQ MOl 
9AA A90C 208 LDA #$0C 
9AC 8DCCCO 209 STA PCR ;OE=L 
9AF 60 210 RTS 
9BO 211 
9BO 212 ; 
9BO A200 213 CHANGE LDX #$00 
9B2 A004 214 LDY #$04 
9B4 B510 215 CAl LDA $0010,X 
9B6 851C 216 STA HFZ 
9B8 B91000 217 LDA $0010,Y 
9BB 9510 218 STA $0010,X 
9BD A51C 219 LDA HFZ 
9BF 991000 220 STA $0010,Y Listing Continued ... 

The Cu§tom Apple 109 



Assembling the Eprom Burner Board 

Continued Listing 

09C2 C8 221 INY 
09C3 E8 222 INX 
09C4 E004 223 CPX #$04 
09C6 DOEC 224 BNE CAl 
09C8 AOOO 225 LDY #$00 
09CA 60 226 RTS 
09CB 227 
09CB 228 i 
09CB 202A09 229 PROGRA JSR START 
09CE 20B009 230 JSR CHANGE 
09Dl A9FF 231 PRl LDA #$FF 
09D3 8DC3CO 232 STA DDRA 
09D6 BllO 233 LDA ( SAEPL) , Y 
09D8 8DC1CO 234 STA TORA 
09DB AA 235 TAX 
09DC 209409 236 JSR MONOFL 
09DF A900 237 LDA #$00 
09El 8DC3CO 238 STA DDRA 
09E4 8A 239 TXA 
09E5 CDClCO 240 CMP TORA 
09E8 FOOB 241 BEQ PR3 
09EA A902 242 LDA #$02 
09EC 4C4309 243 JMP ERROR 
09EF E610 244 PR2 INC SAE PL 
09Fl D002 245 BNE PR3 
09F3 E611 246 INC SAEPH 
09F5 20F308 247 PR3 JSR NEXT 
09F8 90D7 248 BCC PRl 
09FA A232 249 LDX #50 
09FC 4C3B08 250 JMP TX TOUT 
09FF 60 251 RTS 
OAOO 252 

253 END 

************************* 
* * 
* SYMBOL TABLE -- V 1.5 * 
* * 
************************* 

LABEL. LOC. LABEL. LOC. LABEL. LOC. 

** ZERO PAGE VARIABLES: 

SAEPL 0010 SAE PH 0011 EAEPL 0012 EAEPH 0013 SAPL 0014 SAPH 0015 
EAPL 0016 EAPH 0017 LAL 0018 LAH 0019 LACL OOlA LACH OOlB 
HFZ OOlC 

** ABSOLUTE VARABLES/LABELS 

TORB coco TORA CO Cl DDRB COC2 DORA COC3 Tl CL COC4 
Tl CH COC5 ACR COCB PCR co cc IFR COCD STR C800 COUT FDED 
RDCHAR FD35 HOME FC58 MO NI TO FF59 CS TART 0800 WSTART 0803 Ll 0821 
L2 082B TX TOUT 083B TX Tl 083E FIN 084A SAVEA 084B SAVEC 084D 
TEXT 084E DEF AU 08C2 EOUT 08DD NEXT 08F3 Nl 08F9 N2 08FF 
N4 0909 N3 0911 NS 0914 INIT 0915 START 092A ERROR 0943 

Listing Continued . . · 

110 Chapter 4 



Assembling the Eprom Burner Board 

ontinued Listing 

094F E2 0958 LES EN 095B LESl 0966 LES2 0971 PRUEFE 0977 
0982 P2 098E MONOFL 0994 MOl 09A3 CHANGE 09BO CAl 09B4 
09CB PRl 0901 PR2 09EF PR3 09F5 

TABLE STARTING ADDRESS:6000 
TABLE LENGTH:0212 

BR 

800- 20 C2 OB 20 lS 09 A2 46 
BOB- 20 3B OB 20 3S FD BD 4D 
BlO- OB 20 ED FD AD 4D OB C9 
BlB- D2 DO 06 20 SB 09 4C S9 
820- FF C9 C2 DO 06 20 CB 09 
82B- 4C S9 FF C9 D4 DO D4 20 
830- 77 09 A2 6S 20 3B OB 4C 
83B- S9 FF 00 BD 4B OB BD 4E 
840- OB FO 07 20 ED FD EB lB 
84B- 90 F4 60 00 00 00 BD BD 
8SO- cs DO D2 CF CD AO CE CF 
8SB- D4 AO cs D2 cs Cl D3 cs 
860- C4 AO AO AO AO 00 BD cs 
B6B- DO D2 CF CD AO CE CF D4 
870- AO DO D2 CF C7 D2 Cl CD 
B7B- CD cs C4 AO AO AO AO 00 
BBQ- BD cs DO D2 CF CD AO DO 
BBB- D2 CF C7 D2 Cl CD CD cs 
890- C4 AO AO 00 BD C2 A9 DS 
89B- D2 CE C9 CE C7 AO D4 A9 
BAO- cs D3 D4 C9 CE C7 AO D2 
BAB- A9 cs Cl C4 C9 CE C7 AO 
BBO- AO AO 00 BD cs DO D2 CF 
BBB- CD AO cs D2 cs Cl D3 cs 
sea- C4 00 A9 00 BS 10 BS 11 
BCB- BS 14 A9 FF BS 16 BS 12 
BDO- A9 07 BS 13 A9 40 BS lS 
BDB- A9 47 BS 17 60 AS lB BD 
SEO- co co BS lA AS 19 BS lB 
BEB- 26 lA 26 lB AS lB BD 00 
8FO- CB lB 60 E6 lB DO 02 E6 
8FB- 19 E6 10 DO 02 E6 11 AS 
900- 11 cs 13 90 oc FO 02 BO 
908- OB AS 10 cs 12 FO 02 BO 
910- 03 20 DD OB 60 20 SB FC 
91B- A9 00 BD C3 CO AA AB A9 
920- 7F BD C2 CO A9 BO BD CB 
928- co 60 AS 10 SS lB BS lA 
930- BD CO CO AS 11 BS 19 BS 
938- lB 26 lA 26 lB AS lB BD 
940- 00 CB 60 C9 01 DO OB A2 
948- 00 20 3B OB 4C S9 FF C9 
9SO- 02 DO OS A2 lB 20 3B OB 
958- 4C S9 FF 20 lS 09 A9 OC 
960- SD CC co 20 2A 09 AD Cl 

Listing Continued ... 

The Custom Apple 111 



Assembling the Eprom Burner Board 

Continued Listing 
0968- co 91 14 E6 14 DO 02 E6 
0970- 15 20 F3 08 90 FO 60 20 
0978- 15 09 A9 oc 8D cc co 20 
0980- 2A 09 AD Cl co C9 FF FO 
0988- 05 A9 01 4C 43 09 20 F3 
0990- OS 90 EF 60 A9 OE 8D cc 
0998- CO A9 50 8D C4 co A9 C3 
09AO- 8D C5 co AD CD co 29 40 
09A8- FO F9 A9 oc 8D cc co 60 
09BO- A2 00 AO 04 BS 10 S5 lC 
09B8- B9 10 00 95 10 A5 lC 99 
09CO- 10 00 cs E8 EO 04 DO EC 
09C8- AO 00 60 20 2A 09 20 BO 
09DO- 09 A9 FF 8D C3 co Bl 10 
09D8- 8D Cl co AA 20 94 09 A9 
09EO- 00 8D C3 co SA CD Cl co 
09E8- FO OB A9 02 4C 43 09 E6 
09FO- 10 DO 02 E6 11 20 F3 08 
09F8- 90 D7 A2 32 4C 3B 08 60 
OAOO- 12 
* 

112 Chapter 4 



An Eprom/RAM Board 

Assembling an Eprom/RAM Board 

If you have written and tested your machine-language program, and 
successfully burned your Eprom, it now contains the programs you need for your 
custom application. Now it's time to think about a place to plug in your 2716 
Eprom. The Apple II computer, as supplied by the manufacturer, has no possible 
way to plug in more Eproms. Therefore, we are going to show you a special board 
which you can plug into one of the empty slots in the Apple. This board will hold 
up to four 2716 Eproms or Eprom compatible RAMS. A complete schematic is 
shown below. 

GND 

·~1 38 
USER 1 39 

•f>O 40 
0EV1C[SELECT 41 

07 42 
06 43 
05 44 
04 
03 
02 
01 
DO 

+12V 

0 

25 +SV 
24 DMAOUT 
23 !NT OUT 
22 OMA 
21 ROY 
20 1/0 STROBE 
19 N.C 
18 A/W 
17 A15 
16 At4 
15 A13 
14 A12 
13 A11 
12 A10 

11 "" 10 AB 
9 A7 
8 AS 
7 A5 
6 A4 

' A3 
4 A2 
J A1 
2 AO 
1 110 SELECT 

Figure 5.1 Schematic of the Eprom RAM Board 

4 x 74 LS 00 

Vee 

GND 

Vee 

The Custom Apple 113 



An Eprom/RAM Board 

114 Chapter 5 

The BYTE WIDE concept recently introduced by Mostek has become very 
popular. BYTE WIDE allows you to use the same 24-pin sockets on your board to 
expand your Eprom capacity, or as an expansion of your RAM area. The Eprom 
compatible RAM's are available in IK by 8-bit or 2K by 8-bit configurations. The 
Apple computer has a total of 8 slots, numbered from 0 to 7. Slot 0 is reserved for 
memory expansion, such as a language card or a ROM card. Slot 1 is reserved for 
a printer-driver card. Slots 2 through 5 are available for user expansion. These are 
the slots used by the applications described in this book. Slot 6 is usually used for 
the first of two disk controller boards. Slot 7 is used in Europe for an interface card 
for the PAL or the_ SE CAM television s_.Ystems. As you can see, there are actually only 
four empty slots in the Apple that you can use. There is a small limitation. You may 
only address one 2K byte Eprom per slot, and each socket always has the same 
address, C800 to CFFF. This means you can only address 2K of Eprom or 
compatible RAM at a time. But our Eprom/RAM board allows you to use up to 
four 2K Eproms or RAMS. We use a specially developed bank-switching circuit to 
select one of these four Eproms and bring its contents into the range of C800 to 
CFFF. 

2k 2k 2k 2k 

EPROM/RAM 

'-------------..! 0000 

Figure 5.2 Memory Locations 



An Eprom/RAM Board 

Continuing from above, the Apple memory map shows you how the 2K bytes of 
Eprom could be brought in. Note that you can only have 2K byte at a time in the 
memory area C800 to CFFF. If you want to use four Eprom/RAM boards in all 
four of the slots, 2 through 5, you can have up to 16 Eproms in your Apple; however, 
you can only use one 2K byte Eprom at a time. In addition to the Eprom 
compatible 2K RAM, there is also a lK RAM available on the market, which has 
a 2716 compatible pin-out, such as the 4801 from Mostek. These are much cheaper 
than the 4802 (which has 2K of RAM). If you use a 4801 in the sockets of this 
Eprom/RAM board, you only have one half of the area C800 to CFFF available. 
The 4801 lK RAM chips are 2K RAM chips in which one of the internal RAM 
areas is defective. If you use one of these chips, you have to determine which side 
is usable by writing and reading into the memory locations. If you want to use a 
2716 Eprom and an Eprom compatible RAM together on the board, you will need 
to wire a jumper as shown in the following figure: 

Socket I 

Pin I 

Figure 5. 3 Parts Layout 

4 wire jumpers 

I wire jumper 
R/W --+Pin 18 \ 

l 3,3k 

Figure 5.4 also shows you how to place the components on your printed circuit 
board. The jumper wire is placed between pin 21 on the first Eprom/RAM socket 
and pin 18 of the 50 pin Apple connector. This jumper supplies the R/W signal to 
the RAM chip and allows reading and writing of that chip when activated. The. 
Eprom, since it can only be read, doesn't care if pin 21 is high or low. So once the 
jumper has been installed, you can use RAM's or Eproms in that socket without 
worrying about connecting or disconnecting it anymore. To use the Eprom RAM 
board with the Apple II, we also have to install four small jumpers in the area 
marked J2 (see Figure 5.4). The Eprom/RAM has another unique feature. It allows 
you to first test your programs in RAM, then burn them directly into an Eprom for 
future use in those same memory locations. 

The Custom Apple 115 



An Eprom/RAM Board 

SURVEY over the most common 

116 Chapter 5 

~ 

CE:PGM 

AQ 
THAU 

AlQ 

24 PIN MEMORY EPROMS & RAMS 

DEVICE 

4801 

4118 

4008 

2716 

2516 

3636 

4802/ 
4016 

58725 

CS*/S* 
OE* 
WE* 

TYPE MANUF SIZE 

RAM MOSTEK 1Kx8 

RAM MOSTEK 1Kx8 

RAM Tl 1Kx8 

EPROM INTEL 2Kx8 

EPROM Tl 2Kx8 

PROM INTEL 2Kx8 

RAM MOST/Tl 2Kx8 

RAM MITSU- 2Kx8 
BISHI 

= Chip Select (Low) 
= Output ENable (Low) 
= Write Enable (Low) 

PD 
PROG/(PE)= 

Power Down 
Program Enable 

Vpp 
L* 

Bytewide 

OUTPUT 
ENABLE 

POWER DOWN, 
PROGRAM 

LOGIC 

Y DECODER 

25V (Program Voltage) 
LATCH (LOW) 

EPROM· RAM· ROM 
OQ THAU 07 

~-vcc 
-GND 

16 JIM BIT 

CELL MATRIX 

GND 

Figure 5.4 BYTE WIDE's Eprom RAM Board 

PIN 18 PIN 19 

cs* NC 

cs* L* 

cs* AR 

CS*/ +12V 
PROG 

CS*/ AIO 
PROG 

CS3 CS2 

cs* AIO 

cs 10 

[QJ 
p::j 

PIN 20 PIN 21 

OE* WE* 

OE* WE* 

[OE* WE* 

AIO -5V 

OE* Vpp 

CSI*/ AIO 
PROG 

OE* WE* 

OE WE 

N Vee ,... 

21 

} 20 
SEE 

19 TABLE 
18 

w 



~ 
r-

@ 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

~~r-r.------r---r---r~~ 

• • • • • • • • • • • • • • • • • • 

·~ • 
.. • • • • • • • 

••• • •• 
•••• •• 

(Top) 

Printed Circuit Board 

(Bottom) 

0 
0 • • -~ .. ..- • =w +: • • 

• • • .. • • 
• .. '°'° • .. 

• 
'°"° • • .. 

0 
'°"° • • 

• • '°'° • '°'° • ..- 0 

• 0 

• • • 

.i •••• 1 
• 
~ • • • • :1 ~ ~ . • 

.~ .. t*~J 
• 

• 

1111ftm1111;1 -$-
The Custom Apple 117 . 



118 Chapter 5 "Is written on a blank page to auoid confusion" is written on a blank page to auoid confusion · . 



Bank-Select Circuitry and Programming 

Bank-Select Circuitry and Programming 

Because of the fact tliat you can only use the area C800 to CFFF for one Eprom 
at a time, a bank-switching circuit was developed to enable you to read the 
contents of any one of the four Eproms on the board. Through software, you can 
now select one of the Eproms by using the 74LS175 quad flip-flop. For example, if 
the Eprom RAM board is placed in slot two, you can select Eprom 1 on the board 
with the following machine-language instructions: 

LDA # 01 and ST A $C200. 

After these instructions, the Eprom in socket 1 will be accesible in memory area 
C800 to CFFF. If you want to select the Eprom in socket 2, enter instructions: 

LDA # 02 and STA $C200. 

DODD 

Figure 5. 5 Socket Numbering 

If you decide to plug your Eprom/RAM card into slot four, and you want to 
select the third socket, you must program LDA # 04 and ST A $C400. In 
general, the Eproms can be selected as follows: 

SLOT 2 SLOT 3 SLOT4 SLOT 5 SELECT 

LOA#OI LOA#OI LOA#OI LOA#OI 
EPROM I STA $C200 STA $C300 STA $C400 STA $C500 

LOA#02 LOA #02 LOA#02 LOA#02 
EPROM 2 STA $C200 STA $C300 STA $C400 STA $500 

LOA#04 LOA#04 LOA #04 LOA#04 
EPROM 3 STA $C200 STA $C300 STA $C400 STA $C500 

LOA #08 LOA#08 LOA #08 LOA#08 
EPROM 4 STA $C200 STA $C300 STA $C400 STA $C500 

Figure 5.6 Selecting Eproms 

The Custom Apple 119 



How to Assemble the Board 

120 Chapter 5 

The preceding table will make it easy to quickly look up instructions necessary 
to select any Eprom at any location. Since it is possible to have four boards, one in 
each slot with four Eproms on each board, it's possible to get a condition of 
jamming the data bus. To avoid this, a board must be shut off before turning on 
another board. The way to do this is to do a LDA #00 and STA $C200 to turn 
off the board in slot 2, for example. You could then select another board in another 
slot by loading A with the appropriate number of the Eprom you wish to access. 
You can also disconnect a board by pushing the reset button. 

Note: if you need more than 2K, you can make up to 32K available by using a 
supervisor program to turn on one board and then select one Eprom to allow the 
2K of instructions on the Eprom to execute. As long as the Eprom always comes 
back to the supervisor program, you can run through an entire 32K of 
machine-language or other higher level languages without having to access a disk 
drive or change your programming. 

How to Assemble the Board 

First solder all the sockets to the board for the integrated circuits. Then wire the 
necessary jumpers on the component side in the location marked J2 (See Figure 
5.7). 

J2 
Qi 

~ 
~. 

~ 

~ 
~ 

~ 

Figure 5. 7 Board Assembly 

If you also want to use RAM's, place a jumper wire from pin 21 of the 
EPROM/RAM board to pin 18 of the 50 pin Apple connector. It is also important 
to note that you must turn the board over to the solder side and cut the trace that 
leads from pin 24 to pin 21 of the first Eprom socket. Now place the integrated 
circuits in the appropriate sockets, making sure that pin 1 lines up with the pin 1 
on the board and that their noses are all in the same orientation, as shown in Figure 
5.4. 



The Apple Slot Repeater 

The Apple Slot Repeater 

This chapter describes an Apple computer "slot repeater" project. This will 
allow you to have your Apple all closed up, yet access the slots within the machine. 
A perfect example of this would be using the 6522 I/O board while you are trying 
to design some hardware for the prototype area and don't want to keep looking into 
the computer or opening it all the time. Your machine can sit there intact, and you 
can do all the work outside, where there is better light and more freedom (for 
making measurements and designing your circuits, for example). In order to make 
the Apple slot repeater card work, it will have to be connected to slot 7 within the 
computer by a 40-connector cable, which allows you to connect the 40-pin cable 
coming out of the Apple to a 40 pin-connector socket (dual inline socket) mounted 
on the repeater board itself. Inside the Apple we recommend using the 50-pin 
experimenter board, which can be purchased from almost any Apple dealer. The 
experimenter board has a 50-pin edge-card which fits into the slot, and can be used 
to solder the wires from the 40-pin cable to the appropriate locations on the 
edge-card. 

Figure 6.1 below shows the wiring sequence for the slot repeater. 

Not every line on the Apple bus will be brought out to the repeater board. Among 
the lines that won't be brought out are the power supply lines, as we wouldn't want 
to draw too much power from the Apple power supply. The repeater board has pins 
available for hooking-up an external power supply. The printed circuit board 
provides the appropriate circuitry for wiring up the sockets required for this slot 
repeater board, and it has been designed so that the addresses will be the same as 
they are inside the Apple computer itself. This way the experimenter will find that 
any experiments he tries will behave the same when he plugs them into the Apple 
as they do on the repeater board. 

The decoding of the addresses .mentioned above is performed in the circuit 
described in the schematic below. 

The Custom Apple 121 



The Apple Slot Repeater 

122 Chapter 6 

0 

GND 26 25 +5V 
27 24 
2S 23 

NMI 29 22 
IRO 30 21 
RES 31 20 1/0 STROBE 

32 19 
-12V 33 1S R/W 
-5V 34 17 A15 

35 16 A14 
36 15 A13 
37 14 A12 
3S 13 A11 
39 12 A10 

<f>o 40 11 A9 
DEVICE SELECT 41 10 AS 

D7 42 9 A7 
D6 43 s A6 
D5 44 7 A5 
D4 45 6 A4 
D3 46 5 A3 
D2 47 4 A2 
D1 4S 3 A1 
DO 49 2 AO 

+12V 50 1/0 SELECT 

0 
Figure 6.1 Connecting the Repeater Board 

~ROBE 1/0 

(C800 - CFF F) l 
}14 

Z1 
'----j zo 74LS138 (U6) 

,02 

A 11 
A12 
A13 

A14 

A15 

1/6 74 LS 04 

~ 

.... 

E2 A1 A2 A3 E3 

J5 
1 2 3 

] 
1 /4 74 LS OS (7408) 

Figure 6.2 Decoding the Addresses 

6 

AS 
A9 
A10 

-
..0'2 
A4 
A5 
A6 
A7 

,<\9 AS 
A10 A7 
A 11 A6 
A12 A5 
A13 A4 
A14 A3 
A15 AO 
NC A1 
NC A2 
NC RES 

¢J2 NC 
R/W NC 
D7 NC 
D6 D3 
D5 D2 
D4 D1 
GND DO 
GND DD 
GND NMI 
GND IRQ 

UJ . ~ ~ 
N M "<:I" 0 

~& ..J (.) • (.) ~ ~ UJ (.) ~~ ~· UJ (/) ' 
(/) 0 0 0 0 ·o 0 0 0 

0 
0 0 0 0 > en <( al (.) 

N M '<I' UJ 0 0 0 0 :::::- (.) (.) (.) (.) 0 () () (.) (.) 

Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4 
74 LS 13S (U3) ~o 74 LS 138 (U2) 

- -
E1 E2 A1 A2 A3 E3 E1 E2A1 A2 A3 E3 

l LJ 
..... ~ 3K3 .. 

__.,, 

+5V 

.... 
~ 

..... 
_,., 



The Apple Slot Repeater 

Address lines All through A15 are decoded by the 7 4LS138. This chip generates 
the select signal and the I/O strobe signal. Pin ZO enables, with an active low signal, 
a second 7 4LS138 which decodes the address lines A8 through AlO and generates 
the I/0 select lines for slots 1 through 4. These are, for example, the addresses 
CIOO to CIFF for the first slot. From this chip a third 74LS138 is enabled from 
ZO of the second chip. It decodes the address lines A4 to A 7. This creates a device 
select signal for the first four slots. For example, for slot one it would be C090 
through C09F. 

The following table will show how to look up all the addresses of the device 
select, I/O select and the I/O strobe. 

Slot 1/0 SELECT DEVICE SELECT 1/0-STROBE 

2 C200 - C2FF COAO- COAF C800 - CFFF 

3 C300 - C3FF COBO - COBF C800 - CFFF 

4 C400 - C4FF COCO - COCF C800 - CFFF 

5 C500 - C5FF CODD - CODF C800 - CFFF 
Figure 6.3 

On the memory repeater board, in the upper right-hand corner, there is a place 
to put in an 844 dual-inline female plug. However, this is for use by other 6502 
computers and cannot be used in conjuction with the Apple. Just to the left of that 
area is a small prototype area for experimenting, or for changes you might want to 
make with your slot repeater board. 

Figure 6.4 The Complete Schematic for the Slot Repeater 

The Custom Apple 123 



How to Assemble the Board 

124 Chapter 6 

How to Assemble the Board 

The first step is to mount all the female connectors and the sockets that will be 
required for the IC's used in this project. Then we connect the pins to the power 
supply. Next we can put on the capacitor Cl, resistor Rl, and the 50-pin female 
connector. The last step is to insert the I C's, making sure that they are lined up in 
the same manner as they are shown in the schematic (Figure 6.5). 

A, . J5 I z 
I . S-44 E CONECTOR 22 

~ PROTO-I I ~ PROT0-2 I ~ PROT0-3 I ...._· -----------------..J 

f 74~S~4 I f 74~~08 f 74L~~38 

JI 

• I 
J6 

~ 40 PIN CABLE TO THE APPLE II 
SLOT7 

50 • • I 

If. 74~~138 ~ 74~S~38 I 

Figure 6. 5 Parts Layout 

J2 J3 

50 · · I 50 • • I 

} 
+~ c R I 

I 3 K.Q 0 
10 uF 35V 

® 
GND 

® 
-12 

J4 ® 
-5 

50 • ·I @) 

+12 

® 
+5 



Qi 

o= C\I 

01 0 It) 
ca I 

C\I 
0,.. 0 It) 

+ + 

...... , r ....__. -$-t 0 ,.. 

li 
~ 

a. 

...... \ 
:IE 
a 
u 

: i' 
... 

''TJ 
.... 
; 

0 

~ 
0 

! 

0 
0 

0 

u 

...... 
J °' ,. 

,.. 
0 T 0 0 

0 • 

' 0 

.... 

-+ +-
Fig~re 6. 6 a To 'P of the Printed C. . ircuit Board 

The Custom Apple 125 



126 Chapter 6 "Is written on a blank page to avoid confusion" is written on a blank page to avoid confusion . .. 



·~ 
_.,.,_.;".~ ;!!!> 

...... 
a D 

@ 0 a 
@ 0 a g u .... 0 0 a fill g 0 0 a a D c 0 a a C1i 0 0 a 0 0 

D 0 0 Cir @ 

0 0 D a 
a D 

u. 0 0 a • 0 @ a D @ 0 0 a !ill D 0 0 a a 1111 0 0 
1111 a @ 0 a D 0 0 

ID D 

0 

II 
a a 0 
1111 0 0 
a 0 0 
!!II 

1 
@ 0 a a 0 0 
0 0 a 
0 0 a 
@ 0 a 

~ 
a 

C9 

3 
+e 
0 

~· 
, ... 

1 @ 0 0 
a 

0 0 !Ill 
@ @ 1111 

1 G 
0 @ a 
0 C!I 

0 0 @O 

0 @ 000 00 
@ 0 

0 ii!> 

0 @ 

0 0 

0 0 00 
@ 0 

0 0 

0 0 

0 @ 

0 0 

@ 0 

:_x 

Figure 6. 6 b Bottom of the Printed Circuit Board 

The Custom Apple 127 



128 Chapter 6 "Is written on a blank page to auoid confusion" is written on a blank page to avoid confusion . .. 



How to Assemble the Board 

Here is a photograph of a completed board to give you an idea of how it should 
look if you have assembled it properly. 

Figure 6. 7 Photo of the Completed Board 

Figure 6.8 Parts List 

Qty Description 

3 14 pin DI L sockets 

3 16 pin OIL sockets 

40 pin DI L socket 

capacitor 10µF/35V tantal 

3 74LSl:18 

74LS08 

74LS02 

74LS04 

4 50 pin edge connectors (available from MOLEX) 

Resistor 3 k I 0, 25W 

The Custom Apple 129 



NOTES 

130 Chapter 6 



The Coupling of Two 6502 Systems 

The Coupling of Two 6502 Systems 

Many of the better known home computers, such as KIM, SYM, AIM, AT ARI, PET, 
APPLE, OHIO, and VIC 20 have a 6502 microprocessor for their CPU. It is 
sometimes useful to connect two of these systems together to exchange data. This 
makes the transfer of machine-language programs easier, too. 

To define a common interface, we use the 6522 I/O card for each computer. The 
6522 card plugs directly into the Apple bus, but to use it with other computers, 
you'll need the expansion board described in Chapter 6. Figure 7.1 shows the 
coupling of an Ohio Scientific CIP with an Apple computer, and Fig. 7.2 the 
program for data exchange. 

Program Description 

The program in Fig. 7.2 consists of two parts: SEND APPLE-> OHIO and 
RECEIVE APPLE < - OHIO. 

The version shown is for the Apple II computer. Needless to say, the program for 
the Ohio is exactly the same except for the address of the monitor. 

To clarify the use of this program, an example of data transfer from the Apple to 
the Ohio is presented. In the Apple,the starting a~dress of the data (FROM) and the 
ending address (UNTIL) are set, and the program is started by SOOG. The Apple 
then waits in a loop until the Ohio is ready. 

In the Ohio, set the address (TO) where the data is to be stored. Then the 
program is started by jumping to location 842. The Ohio sends a 1 over PBO to the 
Apple, indicating it's ready, which will begin the data transfer. At the end of the 
data transfer, the Apple jumps to the monitor. The Ohio doesn't know that the 
Apple has finished, so the receiving program has to be interrupted by pushing the 
break key of the Ohio. 

The Custom Apple 131 



The Coupling of Two 6502 Systems 

40 Pin 
Cab le 

I 

I/0 Board --

1 x 

I/0 Board 

Cables to Connect 
the Two I/O Boards 

PAO - PA7 
PBO - PB7 

S Lot 4 in the.: 
App Le II 

Note: You'll need to remove the lid from 
your Apple to make this connection. 

Figure 7. I Block Diagram 

132 Chapter 7 

Sending data from the Ohio to the Apple is done in the same manner, but now 
the Apple performs the receiving program while the Ohio performs the sending 
program. 

This kind of data transfer program is very useful when you are developing 
programs for single-board computers like the SYM or KIM. The program can be 
developed and tested on the Apple with one of its powerful assemblers, then sent 
to a single-board computer without retyping the whole program. 

Figure 7. 2 Program Listing 

0800 l DCM "PR#l" 
0800 2 ;SEND APPLE-->OHIO 
coco 3 ORG $COCO 
coco 4 TORB EQU * 
coco 5 TORA EQU *+!l 
coco 6 DDRB EQU *+!2 
coco 7 DDRA EQU *+!3 
coco 8 MONITO EQU $FF59 
coco 9 
coco 10 VON EPZ $10 
coco 11 BIS EPZ $12 
coco 12 WO HIN EPZ $14 
coco 13 . Listing Continued . . · I 



The Coupling of Two 6502 Systems 

Continued Listing 
coco 14 
0800 15 ORG $800 
0800 AOOO 16 LDY #$00 
0802 A9FF 17 LDA #$FF 
0804 8DC3CO 18 STA DDRA 
0807 ADCOCO 19 M LDA TORB 
080A 2901 20 AND #$01 
080C DOF9 21 BNE M 
OBOE BllO 22 M.00 LDA (VON) ,Y 
0810 8DC1CO 23 STA TORA 
0813 A980 24 LDA #$80 
0815 8DC2CO 25 STA DDRB 
0818 A900 26 LDA #$00 
081A 8DCOCO 27 STA TORB 
081D EA 28 NOP 
081E EA 29 NOP 
081F EA 30 NOP 
0820 A980 31 LDA #$80 
0822 8DCOCO 32 STA TORB 
0825 E610 33 INC VON 
0827 D002 34 BNE MlO 
0829 E611 35 INC VON+l 
082B A511 36 MlO LDA VON+l 
082D C513 37 CMP BIS+l 
082F 90D6 38 BCC M 
0831 F002 39 BEQ M30 
0833 BOOB 40 BCS FIN 
0835 A510 41 M30 LDA VON 
0837 C512 42 CMP BIS 
0839 FOCC 43 BEQ M 
083B 90CA 44 BCC M 
083D A940 45 FIN LDA #$40 
083F 4C59FF 46 JMP MON ITO 
0842 47 
0842 48 
0842 49 ;RECIEVE APPLE<--OHIO 
0842 50 
0842 AOOO 51 LDY #$00 
0844 A901 52 LDA #$01 
0846 8DC2CO 53 STA DDRB 
0849 A900 54 LDA #$00 
084B BDCOCO 55 STA TORB 
084E EA 56 NOP 
084F EA 57 NOP 
0850 EA 58 NOP 
0851 ADCOCO 59 Ml LDA TORB 
0854 2940 60 AND #$40 
0856 F003 61 BEQ MO 
0858 4C59FF 62 JMP MONITO 
085B ADCOCO 63 MO LDA TORB 
085E 30FB 64 BMI MO 
0860 A901 65 LDA #$01 
0862 8DCOCO 66 STA TORB 
0865 ADClCO 67 LDA TORA 
0868 9114 68 STA (WOHIN) ,Y 
086A E614 69 INC WOHIN Listing Continued ... 

The Custom Apple 133 



The Coupling of Two 6502 Systems 

Continued Listing 
086C D002 70 
086E E615 71 
0870 A900 72 
0872 8DCOCO 73 
0875 FODA 74 
0 877 7 5 
0877 76 

77 

M2 

. 
' 

BNE M2 
INC WOHIN+l 
LDA #$00 
STA TORB 
BEQ Ml 

END 

************************* 
* * 
* SYMBOL TABLE -- V 1.5 * 
* * 
************************* 

LABEL. LOC. LABEL. LOC. LABEL. LOC. 

** ZERO PAGE VARIABLES: 

VON 0010 BIS 0012 WO HIN 0014 

** ABSOLUTE VARABLES/LABELS 

TORB coco TORA CO Cl DDRB COC2 
DDRA COC3 MONITO FF59 M 0807 
FIN 083D Ml 0851 MO 08SB 

SYMBOL TABLE STARTING ADDRESS:6000 
SYMBOL TABLE LENGTH:0092 

0800- AO 00 A9 FF 8D C3 co AD 
0808- co co 29 01 DO F9 Bl 10 
0810- 8D Cl co A9 80 8D C2 co 
0818- A9 00 8D co co EA EA EA 
0820- A9 80 8D co co E6 10 DO 
0828- 02 E6 11 A5 11 cs 13 90 
0830- D6 FO 02 BO 08 A5 10 cs 
0838- 12 FO cc 90 CA A9 40 4C 
0840- 59 FF AO 00 A9 01 8D C2 
0848- co A9 00 8D co co EA EA 
0850- EA AD co co 29 40 FO 03 
0858- 4C S9 FF AD co co 30 FB 
0860- A9 01 8D co co AD Cl co 
0868- 91 14 E6 14 DO 02 E6 lS 
0870- A9 00 8D co co FO DA CD 
* 

134 Chapter 7 

MOO 
M2 

OBOE MlO 082B M30 0835 
0870 



Connecting Other Microprocessors 

Connecting Other Microprocessors to the 6502 

In some cases it's very useful to connect circuits of other microprocessor families 
to the 6502 CPU to use their outstanding performance in an area where the 6502 
is weak. For example, there is an 8212 output port in the 80/85 family which is very 
cheap and has a fanout capacity of 15mA, with a low input load current of 0.25mA. 
This chip can be used to drive LED's or power transistors. We will discuss the 
connection of this chip to the 6502, as well as the connection of two other chips: the 
8253 (a programmable interval timer) and the 8255 (a programmable peripheral 
interface). 

The 8212 8-bit I/O Port 

The connection of the 8212 to the Apple bus is shown in Figure 8.1. 

DO 3 4 
5 DIO DO 0 6 DI DI I DOI 

D2 7 8 Dl2 DO 2 
D3 9 

013 iO 
DO 3 

04 
116 N f5 Dl4 .... DO 4 

D5 18 
DI 5 N 17 

00 DO 5 
D6 

20 19 
Dl6 DO 6 

07 
22 21 

DI 7 DO 7 23 
INT 

2 
MD 

DEVICE SELECT 13 
DSI DS2 

.0'0 
II 

ClR 
14 

STB 
12 24 GND GND vcc 

..... --ouTo 

OUT7 

Figure 8. I Apple Bus Connections 

The Custom Apple 135 



The 8253 Programmable Interval Timer 

R/W 
.00 

The 8 data lines, DO-D7, of the Apple bus are wired to the data input line 
DlO-Dl 7 of the 8212. The chip is selected by the DEV.SEL signal wired to the CS 
input. The second chip select input (CS2) is not used and is therefore wired t 
+ 5 V. The 8212 is used as an output device; therefore, the mode input (MD) is hig 
to enable the output buffers. The clock-pulse for the STB input is the Phi 0 clock fro 
the Apple bus. The output pins of the 8212 (DOO-D07) are left open. 

Outputting data from the Apple to the 8212 is very simple. The 8212 is placed o 
an experimenter board and put into slot 4. The DEV.SEL addresses are COC 
through COCF. A store command to one of these addresses will bring the data 
the coresponding output pin, DOO through D07. 

For example: 

LDA #SAA 
STA $COCO 

se~ds the pattern 10101010 on the output pins. In this configuration, no input t 
the 6502 is possible. There are further res'trictions in the use of the 8212. It ac 
only as an output device, and not like a memory location, as the 6522 does. It onl 
accepts store commands. Other commands, like INC $COCO, will not work wit 
the 8212. 

The 8253 Programmable Interval Timer 

The 8253 is a programmable interval timer or counter. It consists of 
independent 16-bit counters. This chip can solve most of the common problems i 
generating accurate time delays. The timer is set and started by software and ca 
be read by the CPU or by a software interrupt. In the meantime, the CPU is fre 
for other tasks. Figure 8.2 shows the pin ~onfiguration and the connection to th 
Apple bus. The chips of the 80/85 family have separate RD/WR signals, while th 
6502 CPU has only one R/W signal. With 3 gates of 74LSOO, the required RD/W 
signals are created from the R/W and Phi 0 clock signal. 

74 LS 00 ,--
' I 
I 

---, 
I 

--- _ _J 

DO 
DI 
D2 
D3 
D4 
D5 
D6 

D7 
AO 
Al 

42 
41 

2 

3 

41 
+5V 25 
GND 6 

8 
7 
6 
5 
4 
3 

2 

19 
20 
23 

22 
21 
24 

12 

DO 9 
DI CLKO 
02 10 

OUTO 
D3 

II 
D4 GA TEO 

M 
D5 U") 15 

N CLKI D6 00 
13 

D7 OUTI 
AO 14 
Al GATEI 

WR 18 
CLK2 

RD 17 
cs OUT2 

16 vcc 
GATE2 

GND 

DEVICE SELECT _J 
Figure 8.2 8253 Pin Connections 

136 Chapter 8 



The 8253 Programmable Interval Timer 

The three counters (0, 1 and 2) are identical in operation, so only one counter 
module will be discussed here. It consists of a 16-bit, pre-settable down counter, 
which can operate in either binary or BCD mode. The counter module has two 
inputs (a clock input and a gate input) and one output. It is controlled by a control 
word written to the control register. In Figure 8.3 the addressing of the counter and 
the control register is shown. 

cs RD WR Al AO FUNCTION 

0 I 0 0 0 LOAD COUNTER 0 

0 I 0 0 I LOAD COUNTER I 

0 I 0 I 0 LOAD COUNTER 2 

0 I 0 I I WRITE CONTROL WORD 

0 0 I 0 0 READ COUNTER 0 

0 0 I 0 I READ COUNTER I 

0 0 I I 0 READ COUNTER 2 

I x x x x DISABLE 3-STATE 

Figure 8.3 

The format of the control word is shown in Figure 8.4. The desired counter is 
selected with bits 6 and 7. 

BIT 7 6 5 4 3 2 0 

I sc 1 I sea R L 1 R LO I M2 I M 1 MO I BCD I 
Figure 8.4 Control Word Format 

Bit 7 = 0 
Bit 7 = 0 
Bit 7 = 1 
Bit 7 = 1 

Bit 6 = 0 
Bit 6 = 1 
Bit 6 = 0 
Bit 6 = 1 

; Select Counter 0 
,; Select Counter 1 
; Select Counter 2 
; Not Used 

Bits 4 and 5 control the READ/WRITE operation of the counters. 

Bit 5 = 0 
Bit 5 = 1 

Bit 4 = 0 
Bit 4 = 0 

Latched Reading 
Read/Write MSB Only 

Listing Continued . .. 

The Custom Apple 137 



The 8253 Programmable Interval Timer 

138 Chapter 8 

Continued Listing 

Bit 5 = 0 
Bit 5 = I 

Bit 4 = I 
Bit 4 = I 

Read/Write LSB Only 
Read/Write (LSB First - Then MSB) 

It's often necessary to read a counter on the fly, that is, reading the conten 
while the counter is still decrementing. To get stable results, a control word wi 
both bit 4 and bit 5 equal to 0 is written to the control register. The contents oft 
selected counter (set by bit 7 and bit 6) are latched when the write to the contr 
register is done, and can then be transferred into the computer by two consecuti 
Read operations. 

For example: 

LDA #$40 
STACTRL 
LDA Counter! 
STAMEM 
LDA Counter! 
STAMEM+l 

; Select counter 1, latched Read 
; Store (A) in the Control Register 
; Read LSB first 
; Save LSB 
; Read MSB Next 
; Save MSB 

After setting the control register to latched reading, there must be two read 
operations from the selected counter. If the control register is set for reading or 
writing only one byte (MSB or LSB), there is only one read or write allowed. 
Otherwise, if it is set for a two-byte read or write, there must be two read or write 
operations. In the first read/write the least significant byte is transferred to or 
from the counter/timer, and with the second, the most significant byte will be 
transferred. 

The next three bits of the control word define the operation of the counter. 
There are 5 different modes. 

Bti3=0 Brt2=0 Brtl=O 
Bit 3=0 Bit 2=0 Bit I= I 
Bit 3=X Bit 2= I Bit I =0 

Mode 0 Interrupt on Count Termination 
Mode I Programmable One-Shot 
Mode 2 Rate generator 

Listing Continued . .. 



Continued Listing 

Bit 3 = X Bit 2 = 1 Bit I = 1 
Bit3=1 Bit2=0 Bit 1=0 
Brt3=1 Brt2=0 Brtl=l 

The 8253 Programmable Interval Timer 

Mode 3 Square-wave rate generator 
Mode 4 Software triggered strobe 
Mode 5 Hardware triggered strobe 

Mode 0: Interrupt on Count Termination 

After setting and starting the counter, the output will be low. It will go high when 
the counter has reached zero; generating an interrupt. The counter will not stop; 
it will continue decrementing (or cycling) until it is reloaded. When you write the 
LSB to the counter, it will stop, and upon writing the MSB it will restart. 

Mode 1: Programmable One-Shot 

The duration of the one-shot pulse is determined by the value written to the 
counter. After the rising edge reaches the gate input, the output will go low and 
stay low until the counter reaches zero. A changing of the stored value during 
counting will not change the duration of the pulse, but the one-shot can be 
retriggered by a pulse at the gate input. The mono-flop then starts with the newly 
defined value. 

Mode 2: Rate Generator 

The counter acts as a divide-by-N counter. The output will go low for one clock 
period every time the counter reaches zero. Then the counter is automatically 
reloaded. Changing the counter value will not affect the present period, but the 
next period will be use the new value. 

Mode 3: Square-wave Rate Generator 

This mode is similar to Mode 2 except that the output will remain high for one 
half of the count duration and will go low for the second half. With even numbers, 
the counter is decremented by two until it reaches zero. Then the polarity of the 
output is changed;' the counter is reloaded and decremented by two again. With 
uneven numbers (during the first half period), the counter is first decremented by 
one, then by two until zero is reached or passed. Then the counter is reloaded, the 
polarity of the output signal changed, and the counter is decremented first by 3, 
then by 2 untill zero is reached or passed. 

Mode 4: Software Triggered Strobe 

After setting the mode, the counter will remain high untill the counter is loaded. 
Then the counter will start counting down and the output will go low for one clock 
period at zero-crossing. Reloading the counter will not affect the present period, 
but will change the next period. A low signal at the gate input will stop the counter. 
A reload of the counter can be done at this time. After a rising edge reaches the gate 
input, the counter will start with this new value. 

The Custom Apple 139 



Additional Information on the 8253 

140 Chapter 8 

Mode 5: Hardware Triggered Strobe 

The counter will start after a rising edge reaches the gate input. The output will 
go low for one clock period at zero-crossing. The counter is re-triggerable. The 
output will not go low until a full count after a rising edge at the gate input has 
occurred. 

Additional Information on the 8253 

Bit 0 of the control word defines whether a counter acts as a BCD or a binary 
counter. 

Bit 0 = 0 ; Binary counter (max count: 2 to the 16th) 
Bit 0 = I ; BCD counter (max count: I 0 to the 4th) 

Now we'll examine a demonstration program using counter 0 in the way shown 
in Figure 8.5. 

CLKO t--9 __ 0_o_i 40 J 
11 

GA TEO 
______ ...... _ +5V 

10 .. 
OUTOI----~ .... 

Figure 8.5 

For the clock frequency we use the Phi 0 signal at pin 40 of the Apple bus. First 
we use it as a divide-by-N counter. The following little machine-language program 
starts the counter. We assume that the 8253 is mounted on an experimenter board 
plugged into slot 4 of the Apple bus. 

The program in Figure 8.6 divides the clock frequency of the Apple by ten and 
produces negative pulses with a duration of 1 microsecond. Changing the values in 
memory locations 0806 and 080B will change the dividing ratio. 

The same program produces a square-wave generator when we change the 
control word to 00110110. 

In either case the counting can only be stopped by switching off the computer. 
The counter can't be stopped by using the reset key. 



Programmable Peripheral Interface 

8. 6 Demo Program 

800 
800 
800 
800 
800 
800 
800 
800 
800 
8·00 
800 
800 
800 
800 
800 A934 
802 8DC3CO 
805 A50A 
807 8DCOCO 
BOA A500 
BOC 8DCOCO 
80F 00 
810 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 

DCM "PR#l 11 

' ·***************************** ' ·* * 
' ;* THE 8253 AS DIVIDE BY N * 
;* COUNTER. N=lO * . * * ' ·***************************** ' 

CTRL EQU $COC3 
CO UNTO EQU $COCO 

DIVIDE LDA #%00110100 ; CONTROL WORD 
STA CTRL 
LDA $0A 
STA CO UNTO ;STORE LSB FIRST 
LDA $0 0 
STA CO UNTO ;STORE MSB 
BRK 

END 

The 8255 Programmable Peripheral Interface (PPI) 

The PPI 8255 is a general purpose I/0 device, designed for use with 80/85 
microprocessors. But, like the 8112 or the 8253, it can easily be adapted to a 6502 
CPU. The device has 24 I/0 pins, divided into two groups of 12 I/0 pins each. In 
group A there are 8 pins to Port A and 4 pins to Port B. Group B consists of 8 pins 
from Port C and 4 pins from Port B. These ports can be used in three different 
ways: 

Mode 0 = Basic input/output 
Mode l = Strobed input/output 
Mode 2 = Bi-directional bus. 

By writing a control word to the control register, the mode is set and the 
input/output definition made. 

Figure 8.10 shows the connection of the PPI 8255 to the Apple bus. Instead of 
using the R/W signal, the RW and the WE signals for the 8255 are created with a 
7 4LSOO NAND gate. 

The reset signal of the PPI 8255 is active high; therefore, the RES signal from 
the 6502 CPU is inverted with the remaining gate of the 7 4LS04. 

The Custom Apple 141 



Programmable Peripheral Interface 

142 Chapter 8 

1/2 x 7408 

DEVICE SELEC 

IO k 

IN 4148 

Figure 8.10 Connection of the 8255 

DO 

DI 

D2 

D3 

D4 

D5 
74 LS 00 D6 --, 

I D7 

L ___ _J 

I 220p 

+5V 

GND 

34 

35 

PAO 

PAI 

PA2 

PA3 

PA4 

PA5 

PA6 

PA7 

18 
PBO 

V'IR 
U) PBI 
LO 
N PB2 

"' 21 
PB3 ~ 

RD 22 
PB4 

PB5 

PB6 

RESET PB7 

17 
PCO 

AO 
PCI 

15 

Al 
PC2 

cs PC3 

PC4 

PCS 

vcc PC6 

GND PC7 

There is also another problem. The DEVSEL signal from the APPLE bus has to 
be made about 50to100 nanoseconds longer. This is done with two AND gates and 
an RIC delay circuit. The diode discharges the capacitor rapidly at the negative 
pulse, but the positive pulse is delayed by the RIC circuit. This circuit is only 
necessary with APPLE computers, and not with other 6502 systems. 

The addresses of the 3 ports and the control register are shown in Figure 8.11. 

- -- -cs WR RD AO Al FUNCTION 

0 I 0 0 0 READ PORT A 

0 I 0 0 I READ PORT B 

0 I 0 I 0 READ PORT C 

0 0 I 0 0 WRITE PORT A 

0 0 I 0 I WRITE PORT B 

0 0 I I 0 WRITE PORT C 

0 0 I I I WRITE CTR L-R EG. 

I x x x x DATA BUS 3-STATE 

0 I 0 I I ILLEGAL CONDITION 

0 I I x x DATA BUS 3-STATE 

Figure 8.11 Port Addressing 



Programmable Peripheral Interface 

After defining an I/0 pin as an output, a STORE command can be performed, 
or when a pin is defined as an input pin, a LOAD command can be performed. 
Figure 8.12 shows the control word for the mode and input/output definition. The 
control register is a write only register. A read command from the control register 
is illegal. 

07 06 05 I 04 03 02 l DI l DO J 

u 

Figure 8. I 2 Control Word Format 

Let's give an example with the PPI mounted on an experimenter board and 
plugged into slot 4. We will define Port A as an input, and Ports Band C as outputs 
in the basic input/output Mode 0. Next we have to write the control word 
(10010000 = 90) to memory location COC3. 

LDA #$90 
STA $COC3 

Now we can load input signals from Port A with the command LDA $COCO and 
store output signals with STA $COC 1 or STX $COC2 to Port B or Port C. 

Figure 8.13 shows the 16 combinations of the control word for Mode 0. For 
example: The control word for setting all ports to outputs is 10000000 = 80; or 
when ports Band Care inputs and Port A is output, then the control word is 8B. 

The Custom Apple 143 



Programmable Peripheral Interface 

07 06 05 04 D3 D2 DI DO PORT A PORT B PORT CL PORT CU HEX 

I 0 0 0 0 0 0 0 OUT OUT OUT OUT so 
I 0 0 0 0 0 0 I OUT OUT IN OUT SI 

I 0 0 0 0 0 I 0 OUT IN OUT OUT S2 

I 0 0 0 0 0 I I OUT IN IN OUT S3 

I 0 0 0 I 0 0 0 OUT OUT OUT IN SS 

I 0 0 0 I 0 0 I OUT OUT IN IN S9 

I 0 0 0 I 0 I 0 OUT IN OUT IN SA 

I 0 0 0 I 0 I I OUT IN IN IN SB 

I 0 0 I 0 0 0 0 IN OUT OUT OUT 90 

I 0 0 I 0 0 0 I IN OUT IN OUT 91 

I 0 0 I 0 0 I 0 IN IN OUT OUT 92 

I 0 0 I 0 0 I I IN IN IN OUT 93 

I 0 0 I I 0 0 0 IN OUT OUT IN 9S 

I 0 0 I I 0 0 I IN OUT IN IN 99 

I 0 0 I I 0 I 0 IN IN OUT IN 9A 

I 0 0 I I 0 I I IN IN IN IN 98 

Figure 8.13 Control Word Combinations 

Pressing the reset key will set all ports as input ports in Mode 0. Changing the 
mode of one register will also reset the other ports and the status flip-flops. 

There is another feature which can be done with the control word. The output 
lines of Port C can be set or reset by a single output instruction. The control word 
for this feature is shown in Figure 8.14. 

D7 D6 D5 D4 D3 D2 DI DO 

DON'T CARE 

BIT SET/RESET 
SET= I 
RESET= 0 

0 I 2 3 

0 I 0 I 

0 0 I I 

0 0 0 0 

~~~~~~~~~~~~~~~~-BIT SET FLAG 
ACTIVE= 0 

4 5 6 7 BITPORTC 

0 I 0 I 

0 0 I I 

I I I I 

Figure 8.14 Another Control Word Format 

144 Chapter 8 



Programmable Peripheral Interface 

The following two instructions set output line 7 of Port C to 1. 

LDA 
STA 

%00001111 
$COC3 

But this pin is only set to one when the port is set as an output port. 

In Mode 1, Port A and Port B can be used as input or output ports. The four-bit 
ports, CL and CU, are used for control functions and for the status of the 8-bit 
ports. An input control signal definition for Port A is shown in Figure 8.15 

INTRA 

PC7 ___ .,_ OBFA 

t----- ACKA 

STBA 

PC5 IBFA 

PCO · PC2 ,.__ __ ,._ 

Figure 8.15 Control Signal Definition 

Controlword: 

D7 D6 D5 D4 D3 D2 DI DO 

x x x 

DON'T CARE 

PCO - PC2 

I= INPUT 

0 =OUTPUT 

PORTS 
I =INPUT 
0 =OUTPUT 

GROUP B MODE 
0 =MODE 0 
I= MODE I 

MODEi 

SET MODE 

For this case the control word is B8. A low input signal at STEA loads the data 
into the input latch of Port A. This is indicated to the CPU by a high going signal 
at IBF (Input Buffer Full). If a read command occurs at Port A, the IBFA signal 
is reset. Figure 8.16 is a little demonstration program. The IBFA (PB4) signal is 
connected to pin 6 (PC6). This pin is programmed as an input. PC4 is normally 
high. 

Figure 8.16 Demo Program 

0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 A9B8 
0802 8DC3CO 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

DCM ''PR#l" 

, 
·***************************** ' ·* * ' ;* DATAINPUT VIA PORTA * 
;* PPI 8255 MODE 1 * 
·* * I 

·***************************** ' 

PORTA EQU $COCO 
PORTC EQU $COC2 
CTRL EQU $COC3 
MEM EQU $1000 
; 

DA TIN LDA #$B8 ; MODE 1 
STA CTRL Listing Continued ... 

The Custom Apple 145 



Programmable Peripheral Interface 

Continued Listing 

0805 ADC2CO 20 M LDA PORTC 
0808 2940 21 AND #%01000000 
080A FOF9 22 BEQ M 
080C ADCOCO 23 LDA PORTA 
080F 8D0010 24 STA MEM 
0812 60 25 RTS 
0813 26 

27 END 

After setting the mode, the program reads pin PC6 on Port C. As long as this pin 
is zero, the program stays in the loop. When data is stored in the output latches by 
a negative pulse on STEA (PC4), the program reads Port A and stores the contents 
in memory location MEM. 

In this demonstration program the computer waits in a loop until a data ready 
signal is received. During this time the computer won't do anything else. To avoid 
this problem, use the interrupt technique. The PPI 8255 performs this with an 
internal INTE (Interrupt Enable) flip-flop. 

The signal INTEA goes high when the following condition occurs: STB = 1, 
AND IBFA = 1 AND INTEA = 1. The setting or resetting of the INTEA flip-flop 
is controlled by setting or resetting PC4 by program. This does not affect the STB 
pulse. Figure 8.17 is a listing of a program routine which enables the interrupting of 
the processor. The starting address of INTE must be stored in 03FB and 03FC. 

Figure 8.1 7 Interrupt Demo Program 

0800 l DCM 11 PR#l" 
0800 2 
0800 3 ; 
0800 4 ·***************************** , 
0800 5 . * * ' 0800 6 ·* INTERUPTING THE 6502 BY * ' 0800 7 . * THE 8255 PPI * ' 0800 8 . * * ' 0800 9 ·***************************** ' 0800 10 
0800 11 
0800 12 PORTA EQU $COCO 
0800 13 CTRL EQU $COC3 
0800 14 MEM EQU $1000 
0800 15 AWAY EQU $2000 
0800 16 . 

' 0800 A9B8 17 INT LDA #$B8 
0802 8DC3CO 18 STA CTRL ;SET MODEl,PORTA INPUT 
0805 A909 19 LDA #$09 ;SET BIT 4,PORT C 
0807 8DC3CO 20 STA CTRL ;ENABLE INTERUPT 
080A 4C0020 21 JMP AWAY 
080D 22 
080D 23 
080D ADCOCO 24 INTE LDA PORTA 
0810 8D0010 25 STA MEM 
0813 40 26 RTI 
0814 27 
0814 28 

29 END 

146 Chapter 8 



Programmable Peripheral Interface 

When this signal is used with the 6502 processor, the polarity of the interrupt 
must be changed because the 6502's interrupt signal is active low. First Mode 1 is 
set; then bit 4 of Port C is set, which enables the INTEA flip-flop. Then the 
program jumps to another routine. When an interrupt occurs, the program jumps 
to the address derived from the interrupt vector, labeled (INTE), loads the 
contents of Port A, and stores that value in memory location MEM. It then returns 
to its previous task by an RTI. Port B can be controlled in the same manner. The 
STB pin for Port Bis PC2, the IBFB is PCl and the interrupt signal INTRB is 
PCO. The INTEB flip-flop is controlled by setting or resetting PC2. 

Figure 8.18 shows the Mode 1 output control signal definition. The OBF 
(Output Buffer Full) signal will go low when the CPU has performed a store 
instruction to Port A. 

PAO - PA7 
8 bit DATA Contro!word: 

D7 D6 D5 D4 D3 D2 DI DO 
INTEA 

PC4 ----- STB A 
PC5 

0 1/0 x x x 

~----- IBFA 

PC3 
~-~---INTRA 

PC6,7 ~-----

DON'T CARE 
D3 ° I, PC6, PC7 INPUT 

------- 03 c 0, PC6, PC7 OUTPUT 

~------- ~I PORT A INPUT 

---------- MODEl,GROUPA 

SET MODE 

Figure 8. 18 Output Signal Definition 

OBF is reset by an acknowledge input. This is a low going pulse, which informs 
the CPU that the peripheral device has received the data. The interrupt request 
line INTRA goes high when the INTEA flip-flop is enabled and OBF = 1 and ACK 
= 1. thus indicating that the peripheral system has taken the data. 

The interrupt enable flip-flop INTEA is controlled by setting or resetting PC6. 

Figure 8. 19 Data Output Program 

0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 
0800 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

DCM "PR#l" 

. 
' ·***************************** ' 
·* * I 

;* DATA OUTPUT VIA PORTA * 
;* PPI 8255 MODE 1 * 
·* * , 
·***************************** ' 

PORTA 
PORTC 
CTRL 
MEM 

EQU $COCO 
EQU $COC2 
EQU $COC3 
EQU $1000 

Listing Continued __ _ 

The Custom Apple 147 



The PIA 6821 

148 Chapter 8 

Continued Listing 
0800 16 
0800 17 i 
0800 A9AO 18 DA TOUT LDA #$AO ;MODE l 
0802 8DC3CO 19 STA CTRL 
0805 ADOOlO 20 LDA MEM 
0808 8DCOCO 21 STA PORTA 
080B ADC2CO 22 M LDA PORTC 
OBOE 2920 23 AND #%0100000 
0810 DOF9 24 BNE M 
0812 60 25 RTS 
0813 26 

27 END 

There are no restrictions for using both groups A and B. Group A (Port A and the 
upper part of Port C) can be programmed either as an input or an output. Likewise, 
group B (Port Band lower half of Port C) can be programmed as an input or an 
output, independent of the programming of Port A. Mode 2 combines the input 
control definition and the output control definition on Port A only. This port acts 
as a bi-directional input/output port controlled by bit 3 through bit 7 of Port C, as 
shown in Figure 8.20. 

PAO-PA? 8bitDATA 

PC? OBF A 

PC6--- ACKA 

PC3 !-------- INTR A 

PC4,5 

Figure 8.20 Control Definition 

Controlword: 

D7 D6 D5 D4 D3 D2 DI DO 

0 0 1/0 x x x 

DON'T CARE D3 =I, PC4, PC5 INPUT 
'-------- D3 = 0, PC4, PC5 OUTPUT 

'--------- = 0 PORT A OUTPUT 

~---------MODE 1,GROUPA 

~----------- SET MODE 

The input/output port is ~ally in tri-state. The data for input/output is 
strobed by the STEA or the ACKA signal. A low signal on the ACKA enables the 
tri-state buffers on Port A to send out data. A high signal on ACKA will put the 
buffer in a high impedance state. 

A low signal on the STEA will load data into the input buffers. The IBF A and 
the OBF A signal act in the same manner as described in the input or output control 
definition. Likewise, the input interrupt (INTE2) is controlled by setting or 
resetting PC4, and the output interrupt (INTEl) is controlled by PC6. 

The Peripheral Interface Adapter PIA 6821 

The 6821 is a universal interface chip which provides two bi-directional ports, A 



The PIA 6821 

and B; two control registers; and four interrupt lines, two of which are usable as 
peripheral output controls. Adapting to a 6502 system is very easy, because it has 
the same pin-out as the PIA 6520. The connection to the Apple bus is shown in 
Figure 8.21 

GND VSS 
33 
32 

DO 
DI 

31 
30 

D2 
D3 

29 
D4 

28 
D5 

27 
06 

26 
D7 

38 
IRQA 

37 IRQB N IRO 
00 36 

RSO \.Cl 

35 
AO LL__Jt---:::-1 
Al 

R/W 

00 
DEVICE SELECT 

Figure 8.21 Pin Configuration of the 6821 

2l 

25 
23 

24 

22 

20 

RSI 

R/W 
ENABLE 

CS2 

CSI 

cso 
vcc 

40 
CAI 

39 
CA2 

2 
PAO 

3 
PAI 

PA2 4 

5 
PA3 

6 
PA4 

7 
PA5 

8 
PA6 

9 
PA7 

10 
PBO 

PBI 
II 

PB2 
12 

PB3 
13 

PB4 14 
15 

PB5 
16 

PB6 
PB7 

17 

PB! 
18 

CBI 19 

The data direction for the two ports, A and B, is set by two data direction registers 
DDRA and DDRB, and controlled by the two control registers CRA and CRB. For 
these six registers there exist only two address lines, RSO and RSl. Therefore, the 
ports and the data direction registers have the same address. Bit two in the control 
register determines which one of the two registers is accessed. Figure 8.23 shows the 
internal addressing of the 6821. 

If bit two of the control register is a one, the port is accessed; if it is a zero, the 
data direction register is accessed. The following program in Figure 8.24 sets all 
lines of Port A to an output. For this program we assume that the 6821 is mounted 
on an experiment board and plugged into slot 4 of the Apple bus. 

The next figure (8.25) shows the format of the control word in the two control 
registers CRA and CRB. Bits 0 through 5 can be set or reset by the CPU; bits 6 and 
7 are read-only bits and are modified by external pulses at the CAl, CA2, CBl and 
CB2 inputs. Bits 0 and 1 of CRA, or CRB, determine whether an interrupt occurs 

The Custom Apple 149 



The PIA 6821 

150 Chapter 8 

BIT 2 OF SELECTED 

RSO RSI CRA CRB REGISTER 

0 0 I - PORTA 

0 0 0 - DORA 

0 I - - CRA 

I 0 - I PORTS 

I 0 - 0 DDRB 

I 0 -- - CRB 

Figure 8.23 Internal Addressing of the 6821 

at IRQA, or IRQB, respectively, or signal a "no interrupt" condition. For example, 
if bit 0 is 1, and bit 1is0, a negative transition will set bit 7 to 0, causing an interrupt 
at IR. The four possibilities are shown in Figure 8.26 and are the same for both 
control registers. 



The PIA6821 

Figure 8.24 Setting Port A to Output 

0800 1 DCM "PR#l" 
0800 2 
0800 3 ; 
0800 4 ·***************************** I 

0800 5 . * * I 

0800 6 ·* SETTING ALL PINS OF * I 

0800 7 ·* PORT A FOR OUTPUT * I 

0800 8 ·* * I 

0800 9 ·***************************** I 

0800 10 ; 
0800 11 ; 
0800 12 PORTA EQU $COCO 
0800 13 CRA EQU $COC1 
0800 14 ; 
0800 A900 15 OUTPUT LDA #$00 ;SELECT DATA 
0802 8DC1CO 16 STA CRA ;DIRECTION REGISTER 
0805 A9FF 17 LDA #$FF ; SELECT ALL PINS 
0807 8DCOCO 18 STA PORTA ;FOR OUTPUT 
080A A904 19 LDA #$04 ;SELECT POTRA 
080C 8DC1CO 20 STA CRA 
080F 21 
080F A9AA 22 LDA #$AA ;BIT PATTERN 
0811 8DCOCO 23 STA PORTA ;STORED IN PORTA 
0814 60 24 RTS 
0815 25 

26 END 

7 6 5 4 3 2 0 

I ~R1Q I !:2° CA2 I DORAi CA1 CAA 

I ~~a I ~~a CB2 I DDRB I I~ CB~ CAB 

Figure 8.25 Control Word Format 

CRAI CRAO INPUT AT CAI (CBI) IROA (IROB) 
(CRBI) (CRBO) 

NO 
0 0 t INTERRUPT 

BIT 7 = 0 
0 I t INTERRUPT 

I 0 j NO 
INTERRUPT 

J BIT 7 = 0 
I I 

INTERRUPT 

Figure 8.26 Control Interrupt Modes 

The Custom Apple 151 



The PIA 6821 

152 Chapter 8 

Bits 3, 4 and 5 control the interrupt lines, CA2 and CB2. If bit 5 is 0, both control 
registers perform the same function. Figure 8.27 shows the interrupt handling 
using CA2 or CB2, respectively. If CRA5 = 0, CRA4 = 1, and CRA3 = 0, a positive 
transition on CA2 will not cause an interrupt. 

CRA5 CRA4 CRA3 INPUT AT CA2 (CB2) IRQA (IRQB) 
(CRB5) (CRB4) (CRB3) 

0 0 0 t NO 
INTERRUPT 

BIT 6 = 0 
0 0 I t INTERRUPT 

' 
NO 

0 I 0 
INTERRUPT 

0 I I 
BIT 6 = 0 

j INTERRUPT 

Figure 8.27 Interrupt Handling 

If bit 5 is set to 1, the control registers (CRA and CRB) have different functions. 
The control register (CRA) uses both input/output lines (CAl and CA2) to 
perform handshaking while reading; the control register (CRB) performs 
handshaking while writing. In both cases, the lines CA2 and CB2 are outputs. The 
handshaking modes for reading are shown in Figure 8.28. 

CRA5 CRA4 CRA3 MODE FUNCTION 

I 0 0 
HANDSHAKE CA2 =INTERRUPT ON CAI 
READ CA2 = 0 AF- fE:R LOAD 

I 0 I PULSE 
CA2 = l.._S AFTER 
LOAD 

I I 0 CA2 = 0 

I I I CA 2 =I 

Figure 8.28 Reading Handshaking Modes 

With CRA3 = 0, CRA4 = 0, and CRA5 = 1, the output line is set to 1, and an~ 
interrupt occurs at CA 1. CA2 is reset after a LOAD instruction. If CRA3 = 3, a pulse 
of one machine cycle is created after a load instruction. 

CA2 can be set to zero with CRA4 = l and CRA3 = 0, or set to one with CRA4 

= 1 and CRA3 = 1. 

Figure 8.29 shows the handshaking modes while writing with CB2. With CRB5 
1, CRB4 = 0, and CRB3 = 0, CB2 is set to zero after a store instruction. 



The Apple as a Logic Tester 

CR85 CRB4 CRB3 MODE FUNCTION 

I 0 0 
HANDSHAKE CB2 = 0 AFTER STORE 
WRITING CB2 =I AT INTERRUPT CBI 

I 0 I PULSE 
CB2 = l__J AFTER 
STORE 

I I 0 CB2 = 0 

I I I CB2 =I 

Figure 8.29 Writing Handshaking Modes 

When an interrupt occurs on CBl, CAl is set to 1. If CRB4 = 0 and CRB3 = 1, 
a pulse of one machine cycle is created after a store instruction. CB2 can be set to zero 
with CRB4 = 1 and CRB3 = 0, and CB2 can be set to one with CRB4 = l and CRB3 
= 1. 

The APPLE as a Logic Tester 

The following program is an example of how the Apple could be used as a logic 
tester, or to demonstrate the operation of an integrated circuit. 

In this example we'll be using the 7 4LS190. This is a decimal up and down 
counter that used parallel I/0. The wiring diagram for connecting it to the 6821 is 
shown in Fig. 8.30. 

+5V 
-,.... 4, 

8 ~6 
GN vcc 15 2 

A PAO 

B 1 3 
PA 1 

c 10 4 
74LS190 PA2 

9 5 D PA 3 6821 

ENABLE 
4 6 

PA4 
5 7 

DOWN/UP PA 5 
11 8 

LOAD PA6 
14 9 

CLOCK PA 1 

QA 3 10 
PBO 

2 H 
QB PB1 

6 12 
QC 

13 
PB2 

7 
QD 

13 
PB3 

RIPPLE COUNT 
14 

PB4 
12 15 PBS MAX/MIN 

-
"""""""' 

Figure 8.30 Chip Connections 

The Custom Apple 153 



The Apple as a Logic Tester 

All input pins of the 74LS190 are connected to Port A of the 6821, and the 
output pins are connected to Port B. The connections from the 6821 to the Apple 
bus were shown earlier in Fig. 8.21. 

The program in Fig. 8.31 demonstrates the behavior (logic) of the counter. It 
uses the following subroutines: 

INIT- initializes the 6821. Port B is set to the input mode, and Port A is set to the 
output mode. A bit pattern (11010000) is stored in Port A. For the 7 4LS190 this 
means that LOAD, CLOCK and ENABLE inputs are high, the data inputs A, B, C, D 
and the DOWN /UP input are low. 

STATE - reads the output pins of the 7 4LS190 and displays them on the screen. 
For a low output an (L) will be displayed, and for a high output an (H) will be 
displayed. The outputs QA, QB, QC, QD, RC and MAX/MIN are displayed from 
left to right. 

CLOCK- creates one clock pulse and LOAD creates one load pulse for the counter. 
These are negative-going pulses. 

BSET - sets the input pins A, B, C and D. After a LOAD command, this state is 
transferred to the counter. 

USER- is the main program entry point. First the message (ENTER:) is printed on 
the screen. If you enter an (E), the computer responds with (E=) and you may 
input a value for (E). Entering an (L) enables the 7 4LS190, entering (H) disables it, 
and the state of the output pins are shown. Pressing ( C) causes the counter to count 
one pulse. (U) sets the counter to the UP mode, and (D) sets the counter to DOWN. 
With (S), the parallel inputs may be set. The computer responds with (ABCD=) and 
you can enter a combination of (H) 'sand (L) 's. Once all four bits have been entered, 
the pattern is transferred to the counter by typing (L). Hitting any other key causes 
the program to jump to the machine-language monitor. This program is very 
specialized, but other programs for testing and demonstrating digital circuits can be 
written to adapt this circuit to your application. 

Figure 8. 31 Demo Program 

0800 1 DCM "PR#l" 
0800 2 
0800 3 DUMMY EQU $1000 
0800 4 OUTCH EQU $FDED 
0800 5 RDCHR EQU $FD35 
0800 6 HOME EQU $FC58 
0800 7 CR EQU $FD8E 
0800 8 BEEP EQU $FF3A 
0800 9 
0800 10 PORTA EQU $COCO SLOT 4 
0800 11 PORTB EQU PORTA+2 
0800 12 CTRLA EQU PORTA+l 
0800 13 CTRLB EQU PORTA+3 
0800 14 
0800 15 ORG $800 Listing Continued .. · 

154 Chapter 8 



The Apple as a Logic Tester 

Continued Listing 
0800 16 
0800 4CBB08 17 JMP USER 
0803 BA 18 TX TOUT TSX OUTPUT OF TEXT 
0804 EB 19 INX TEXT MUST FOLLOW THE 
0805 BDOOOl 20 LDA $100,X SUBROUTINE CALL 
0808 8DlB08 21 STA ADR+l ENDING WITH HEX 00 
080B E8 22 INX 
080C BDOOOl 23 LDA $100,X 
080F 8DlC08 24 STA ADR+2 
0812 EE1B08 25 INC ADR+l 
0815 D003 26 BNE ADR 
0817 EE1C08 27 INC ADR+2 
081A AD0010 28 ADR LDA DUMMY 
081D FOOD 29 BEQ M 
081F 20EDFD 30 JSR OUTCH 
0822 EE1B08 31 INC ADR+l 
0825 DOF3 32 BNE ADR 
0827 EE1C08 33 INC ADR+2 
082A DOEE 34 BNE ADR 
082C AD1C08 35 M LDA ADR+2 
082F 48 36 PHA 
0830 AD1B08 37 LDA ADR+l 
0833 48 38 PHA 
0834 60 39 RTS 
0835 40 
0835 A900 41 INIT LDA #00 SELECT DATA 
0837 8DC1CO 42 STA CTRLA DIRECTION REG 
083A 8DC3CO 43 STA CTRLB 
083D 8DC2CO 44 STA PORTE PORT B INPUT 
0840 A9FF 45 LDA #$FF 
0842 8DCOCO 46 STA PORTA PORT A OUTPUT 
0845 A904 47 LDA #$04 SELECT 
0847 8DC1CO 48 STA CTRLA 
084A 8DC3CO 49 STA CTRLB 
084D 50 
084D A9DO 51 LDA #$DO 
084F 8D7808 52 STA MASK 
0852 8DCOCO 53 STA PORTA 
0855 60 54 RTS 
0856 55 ; 
0856 ADC2CO 56 STATE LDA PORTE OUTPUT THE STATE 
0859 8D7708 57 STA ASA VE OF THE 74190 
085C A208 58 LDX #$08 QA,QB,QC,QD,RC,MAX/MIN 
085E 6E77 08 59 so ROR ASA VE 
0861 B004 60 BCS Sl 
0863 A9CC 61 LDA #"L" 
0865 9002 62 BCC S2 
0867 A9C8 63 Sl LDA #eoHn 
0869 8E7608 64 82 STX XSAVE 
086C 20EDFD 65 JSR OUTCH 
086F AE7608 66 LDX XSAVE 
0872 CA 67 DEX 
0873 DOE9 68 BNE so 
0875 60 69 RTS 
0876 70 . 

' Listing Continued ... 

The Custom Apple 155 



The Apple as a Logic Tester 

Continued Listing 

0876 71 XSAVE EQU * 
0876 72 ASA VE EQU *+l 
0876 73 MASK EQU *+2 
087A 74 DPS $4 
087A 75 . 

' 087A AD7808 76 CLOCK LDA MASK CREATES ONE CLOCK PULSE 
087D 297P 77 AND #$7P 
087P 8DCOCO 78 STA PORTA 
0882 0980 79 ORA #$80 
0884 8DCOCO 80 STA PORTA 
0887 60 81 RTS 
0888 82 . 

' 0888 AD7808 83 LOAD LDA MASK CREATES ONE LOAD PULSE 
088B 29BP 84 AND #%10111111 
088D 8DCOCO 85 STA PORTA 
0890 0940 86 ORA #%01000000 
0892 8DCOCO 87 STA PORTA 
0895 60 88 RTS 
0896 89 G 

' 0896 A204 90 BSET LDX #$04 SETS A,B,C,D 
0898 8E76 08 91 STX XSAVE 
089B 2035PD 92 JSR RDCHR 
089E 20EDPD 93 JSR OUTCH 
08Al AE7608 94 LDX XSAVE 
08A4 C9C8 95 CMP #"H" 
08A6 D003 96 BNE Bl 
08A8 38 97 SEC 
08A9 BOOl 98 BCS B2 
08AB 18 99 Bl CLC 
08AC 6E7908 100 B2 ROR MASK+l 
08AP CA 101 DEX 
08BO DOE6 102 BNE BSET+2 
08B2 A204 103 LDX #$04 
08B4 6E7908 104 B3 ROR MASK+l 
08B7 CA 105 DEX 
08B8 DOPA 106 BNE B3 
08BA 60 107 RTS 
08BB EA 108 USER NOP 
08BC 109 
08BC 110 . 

' 08BC 2058FC 111 IN JSR HOME 
08BP 200308 112 JSR TX TOUT 
08C2 C5CED4 113 ASC "ENTER:" 
08C5 C5D2BA 
08C8 8DOO 114 HEX 8DOO 
08CA 203508 115 JSR INIT 
08CD 2035FD 116 INO JSR RDCHR 
08DO C9CC 117 CMP #"L" 
08D2 D006 118 BNE INl 
08D4 208808 119 JSR LOAD 
08D7 4C4709 120 JMP IN999 
08DA C9C3 121 INl CMP #"C" 
08DC D006 122 BNE IN2 
08DE 207A08 123 JSR CLOCK 
08El 4C4709 124 JMP IN999 
08E4 C9D3 125 IN2 CMP # "S" Listing Continued .. · 

153 Chapter 8 



The Apple as a Logic Tester 

Continued Listing 

08E6 DOlD 126 BNE IN3 
08E8 200308 127 JSR TX TOUT 
08.EB ClC2C3 128 ASC "ABCD= 11 

08EE C4BD 
08FO 00 129 HEX 00 
08Fl A900 130 LDA #$00 
08F3 8D7908 131 STA MASK+l 
08F6 209608 132 JSR BSET 
08F9 AD7808 133 LDA MASK 
08FC 29FO 134 AND #%11110000 
08FE 18 13S CLC 
08FF 6D7908 136 ADC MASK+l 
0902 4C4709 137 JMP IN999 
090S 138 ; 
090S C9DS 139 IN3 CMP # "U" 
0907 D008 140 BNE IN4 
0909 AD7808 141 LDA MASK 
090C 29DF 142 AND #%11011111 
090E 4C4709 143 JMP IN999 
0911 C9C4 144 IN4 CMP #"D" 
0913 D008 14S BNE INS 
091S AD7808 146 LDA MASK 
0918 0920 147 ORA #%00100000 
091A 4C4709 148 JMP IN999 
091D C9CS 149 INS CMP # "E" 
091F D020 lSO BNE IN6 
0921 200308 lSl JSR TX TOUT 
0924 CSBD 1S2 ASC nE=" 
0926 00 153 HEX 00 
0927 203SFD 1S4 JSR RDCHR 
092A 20EDFD lSS JSR OUT CH 
092D C9C8 1S6 CMP #"H" 
092F D008 1S7 BNE INSS 
0931 A910 1S8 LDA #%00010000 
0933 OD7808 159 ORA MASK 
0936 4C4709 160 JMP IN999 
0939 A9EF 161 IN55 LDA #%11101111 
093B 2D7808 162 AND MASK 
093E 4C4709 163 JMP IN999 
0941 203AFF 164 IN6 JSR BEEP 
0944 4CS9FF 165 JMP $FFS9 
0947 166 ; 
0947 8D7808 167 IN999 STA MASK 
094A 8DCOCO 168 STA PORTA 
094D 200308 169 JSR TX TOUT 
09SO 8D8DOO 170 HEX 8D8DOO 
09S3 20S608 171 JSR STATE 
09S6 208EFD 172 JSR CR 
0959 4CCD08 173 JMP INO 

174 END 

***** END OF ASSEMBLY 

Listing Continued. 

The Custom Apple 157 



The Apple as a Logic Tester 

Continued Listing 

************************* 
* * 
* SYMBOL TABLE -- V 1.5 * 
* * 
************************* 

LABEL. LOC. LABEL. LOC. LABEL. LOC. 

** ZERO PAGE VARIABLES: 

** ABSOLUTE VARABLES/LABELS 

DUMMY 1000 OUTCH FDED RDCHR FD35 HOME 
PORTA coco PORTB COC2 CTRLA CO Cl CTRLB 
M 082C INIT 0835 STATE 0856 so 
XSAVE 0876 ASA VE 0877 MASK 0878 CLOCK 
Bl 08AB B2 08AC B3 08B4 USER 
nn 08DA IN2 08E4 IN3 0905 IN4 
IN6 0941 IN999 0947 

FC58 
COC3 
085E 
087A 
08BB 
0911 

SYMBOL TABLE STARTING ADDRESS:6000 
SYMBOL TABLE LENGTH:0142 

!BR 

0800- 4C BB 08 BA E8 BD 00 01 
0808- SD lB 08 EB BD 00 01 SD 
0810- lC 08 EE lB 08 DO 03 EE 
0818- lC 08 AD 00 10 FO OD 20 
0820- ED FD EE lB 08 DO F3 EE 
0828- lC 08 DO EE AD lC 08 48 
0830- AD lB 08 48 60 A9 00 8D 
0838- Cl co SD C3 co 8D C2 co 
0840- A9 FF SD co co A9 04 8D 
OB4B- Cl co 8D C3 co A9 DO BD 
0850- 7B 08 8D co co 60 AD C2 
0858- co 8D 77 OB A2 08 6E 77 
OB60- 08 BO 04 A9 cc 90 02 A9 
OB68- CB 8E 76 OB 20 ED FD AE 
OB70- 76 08 CA DO E9 60 01 00 
OB7B- EO 01 AD 7B OB 29 7F BD 
08BO- co co 09 80 8D co co 60 
OB8B- AD 78 OB 29 BF 8D co co 
0890- 09 40 8D co co 60 A2 04 
OB98- BE 76 08 20 35 FD 20 ED 
OBAO- FD AE 76 08 C9 C8 DO 03 
OBAS- 3B BO 01 lB 6E 79 OB CA 
OBBO- DO E6 A2 04 6E 79 OB CA 
08BB- DO FA 60 EA 20 5B FC 20 
OSCO- 03 08 C5 CE D4 C5 D2 BA 
08CB- 8D 00 20 35 08 20 35 FD 
08DO- C9 cc DO 06 20 BB OB 4C 
OBD8- 47 09 C9 C3 DO 06 20 7A 

158 Chapter 8 

CR FD8E BEEP FF3A 
TX TOUT 0803 ADR 081A 
Sl 0867 S2 0869 
LOAD 0888 BSET 0896 
IN 08BC INO 08CD 
IN5 091D IN55 0939 

Listing Continued . . · 



The Apple as a Logic Tester 

Continued Listing 

08EO- 08 4C 47 09 C9 D3 DO lD 
08E8- 20 03 08 Cl C2 C3 C4 BD 
08FO- 00 A9 00 8D 79 08 20 96 
08F8- 08 AD 78 08 29 FO 18 6D 
0900- 79 08 4C 47 09 C9 D5 DO 
0908- 08 AD 78 08 29 DF 4C 47 
0910- 09 C9 C4 DO 08 AD 78 08 
0918- 09 20 4C 47 09 C9 C5 DO 
0920- 20 20 03 08 C5 BD 00 20 
0928- 35 FD 20 ED FD C9 C8 DO 
0930- 08 A9 10 OD 78 08 4C 47 
0938- 09 A9 EF 2D 78 08 4C 47 
0940- 09 20 3A FF 4C 59 FF 8D 
0948- 78 08 8D co co 20 03 08 
0950- SD SD 00 20 56 08 20 8E 
0958- FD 4C CD 08 FF FF FF FF 
* 

The Custom Apple 159 



'160 Chapter 8 



The Control of Step Motors 

The Control of Step Motors 

A step motor can be imagined as a mechanical digital to analog converter. The 
input is the number of pulses; the output is the same number of steps on a rotating 
shaft. The number of steps per revolution can vary. There are motors with 4 steps 
per revolution and a step angle of 90 degrees; others have up to 500 steps per 
revolution with a step angle of 0. 72 degrees. Another characteristic of step motors 
is the maximum number of steps per second. This could be some 100 steps per 
second up to 10,000 steps per second, depending on the mechanical dimensions of 
the motor. The third characteristic we will mention here is the maximum number 
of steps per second with which the motor can start, called the starting frequency. 
This frequency depends on the number of steps per revolution and the moment of 
inertia which the motor must overcome. Once started, the step motor can reach 
higher frequencies by slowly varying the number of steps per second. 

Step motors are used in a wide variety of applications, such as numerically 
controlled machines, digital plotters, medical equipment, and in various other 
cases where a rotating angle or linear length is controlled by a computer. In this 
chapter we will discuss some examples of controlling step motors with a computer 
program. It isn't important which motor is used. This depends on the mechanical 
environment. All these programs were tested with a step motor from SIGMA 
Instruments, having 200 steps per revolution, which gives a step angle of 1.8 
degrees. 

In Figures 9.1through9.4 the basic movement of a step motor is shown. We have 
two separately wound stators and a polarized rotor. With the switches (A and B) 
in the position shown, the rotor is in a stable position. 

When we change switch B from 1to0, the position shown in Fig. 9.1 is no longer 
stable. Another stable position results, as shown in Figure 9.2. 

The Custom Apple 161 



The Control of Step Motors 

162 Chapter 9 

0 + 

Figure 9.1 Step Motor Movement 

0 0 

Figure 9.2 Step Motor Movement 

The motor has turned one step to the right. When we change switch A from 1 to 
0, the motor makes one more step to the right. 



The Control of Step Motors 

0 0 + 

Figure 9.3 Step Motor Mouemmt 

0 0 

Figure 9.4 Step Motor Mouement 

If we now change switch B from 0 to 1, the step motor makes a third step to the 
right. When we then change switch A from 0 to 1, the motor reaches its starting 
position once again. This model represents a step motor with 4 steps per revolution 
and a step angle of 90 degrees. Figure 9.5 shows the timing diagram for right turns. 

The Custom Apple 163 



The Control of Step Motors 

164 Chapter 9 

switch,{',., 
0 

0 switch B 

I. 2. 3. 4. 5. step right 

Figure 9.5 Right Turn Timing Diagram 

To create left turns with our model, we first change switch A from 1 to 0, then 
switch B, and so on, as shown in Figure 9.6. 

I 

I I 

0 switch A 

0 switch B 

I. 2. 3. 4. 5. step left 

Figure 9. 6 Left Turn Timing Diagram 

Figure 9.7 shows the equipment for the experiments with a step motor. The I/0 
interface card is in slot 4 of the Apple bus. PBO and PBl are connected to the 
inputs of the power amplifier which drives the motor. 



The Control of Step Motors 

6522 

[> 0 PBI 

PBO 

I /0 Interface Card power amplifier steppermotor 

Figure 9. 7 Block Diagram 

In our first example, we used BASIC's POKE instructions. Figure 9.8 shows the 
program for a right turn; Figure 9.9 shows the program for a left turn. 

Figure 9.8 Right Turn Program 

LIST 

10 REM STEPPERMOTOR GOES RIGHT 
20 REM 
30 REM 
100 DDRB = - 16190:PB = - 16192 
200 POKE DDRB,3 
210 POKE PB,3 

.215 GOSUB 300 
220 POKE PB,l 
225 GOSUB 300 
230 POKE PB,O 
235 GOSUB 300 
240 POKE PB,2 
245 GOSUB 300 
250 GOTO 210 
300 FOR I = l TO 100: NEXT I: RETURN 

The Custom Apple 165 



The Control of Step Motors 

166 Chapter 9 

Between the single steps there is a delay loop on line 300. Changing the ending 
value of the loop changes the speed of the motor. 

Figure 9. 9 Left Turn Program 

LIST 

10 
20 
30 
100 
200 
210 
215 
220 
225 
23 0 
235 
240 
245 
250 
300 

REM STEPPERMOTOR GOES LEFT 
REM 
REM 
DDRB = - 16190:PB = - 16192 

POKE DDRB,3 
POKE PB,3 
GOSUB 300 
POKE PB,2 
GOSUB 300 
POKE PB,0 
GOSUB 300 
POKE PB,l 
GOSUB 300 
GOTO 210 
FOR I = l TO 100: NEXT I: RETURN 

Figure 9.1 0 Stepping Program 

LIST 

10 REM CHOOSING RIGHT OR LEFT TURN 
20 REM AND NUMBER OF STEPS 
30 REM 
40 REM 
100 INIT = - 15360 
110 RIGHT = - 15349:LEFT = - 15340 
120 ST = - 15331 
150 BEEB$ = "" 
200 CALL INIT 
210 INPUT "R)IGHT,L)EFT,E)ND: ";A$ 
220 IF A$ = "R" THEN CALL RIGHT: GOTO 250 
230 IF A$ = "L" THEN CALL LEFT: GOTO 250 
235 IF A$ = "E" THEN END 
240 PRINT BEEP$: GOTO 210 
250 INPUT "NUMBER OF STEPS:";N 
300 FOR I = l TO N 
310 CALL ST 
320 NEXT I 
330 PRINT : GOTO 210 



The Control of Step Motors 

Figure 9.11 Machine-language Version 

PR#l 

0800 1 DCM "PR#l" 
0800 2 
0800 3 ; 
0800 4 ·***************************** 

' 0800 5 . * * 
' 0800 6 ;* MACHINE-ROUTINES FOR * 

0800 7 ;* CONTROLLING STEPPER MOTORS* 
0800 8 . * * 

' 0800 9 ·***************************** 
' 0800 10 

0800 11 ; 
0800 12 DDRB EQU $COC2 
0800 13 PORTB EQU $COCO 
0800 14 ACR EQU $COCB 
0800 15 Sl EPZ $1E 
0800 16 
C400 17 ORG $C400 
C400 18 ; 
C400 A983 19 INIT LDA #$83 
C402 8DC2CO 20 STA DDRB 
C405 A900 21 LDA #$00 
C407 8DCBCO 22 STA ACR 
C40A 60 23 RTS 
C40B 24 
C40B 25 i 
C40B A902 26 RIGHT LDA #$02 
C40D 851E 27 STA Sl 
C40F A900 28 LDA #$00 
C411 851F 29 STA Sl+l 
C413 60 30 RTS 
C414 31 
C414 32 i 
C414 A901 33 LEFT LDA #$01 
C416 851E 34 STA Sl 
C418 A900 35 LDA #$00 
C41A 851F 36 STA Sl+l 
C41C 60 37 RTS 
C41D 38 
C41D 39 . 

' C41D A51E 40 STEP LDA Sl 
C41F 4903 41 EOR #$03 
C421 851E 42 STA Sl 
C423 451F 43 EOR Sl+l 
C425 8DCOCO 44 STA PORTB 
C428 851F 45 STA Sl+l 
C42A 60 46 RTS 
C42B 47 
C42B 48 
C42B A51E 49 CHANGE LDA Sl 
C42D 451F 50 EOR Sl+l 
C42F 8DCOCO 51 STA PORTB 
C432 A51E 52 LDA Sl 
C434 4903 53 EOR #$03 Listing Continued. 

The Custom Apple 167 



The Control of Step Motors 

Continued Listing 

C436 851E 
C438 60 
C439 
C439 

54 
55 
56 
57 

58 FIN 

************************* 
* * 
* SYMBOL TABLE -- V 1.5 * 
* * 
************************* 

STA Sl 
RTS 

END 

LABEL. LOC. LABEL. LOC. LABEL. LOC. 

** ZERO PAGE VARIABLES: 

Sl OOlE 

** ABSOLUTE VARABLES/LABELS 

DDRB 
LEFT 

COC2 PORTB COCO ACR COCB INIT 
C414 STEP C41D CHANGE C42B FIN 

SYMBOL TABLE STARTING ADDRESS:6000 
SYMBOL TABLE LENGTH:0062 

C400 RIGHT C40B 
C439 

In this program, machine-language is used for setting the starting conditions for 
right or left turns. The timing sequences are also generated by machine-language. 
This routine is called STEP and is shown in Figure 9.11 

This tricky program is explained in Figure 9.12. 

Figure 9.12 

ACCU S1 S1 + 1 PORT B 
xx 01 00 00 Starting condition left 

LDASI 01 
EOR #03 10 
STASI 10 
EOR Sl+I 10 
STA PORT B 10 I. Step 
STA Sl+I 10 

LDA SI 10 
EOR #03 01 
STASI 01 
EOR Sl+I I I 
STA PORT B I I 2. Step 
STA Sl+I I I 

LDASI 01 
EOR #03 10 
STASI 10 

168 Chapter 9 



Continued Listing 
EOR Sl+I 0 I 
STA PORT B 
STA Sl+I 

LDASI I 0 
EOR #03 0 I 
STASI 
EOR Sl+I 0 0 
STA PORT B 
STA Sl+I 

The Control of Step Motors 

01 3. Step 
01 

01 

00 4. Step 
00 

The stsrting condition is set for a left turn. The first four steps are 
demonstrated. The sequence of steps is the same as shown in Figure 9.6 with 
switch A equal to PBl, switch B equal to PBO, and starting with step 3 of the 
diagram. 

The next BASIC program makes the step motor continuously perform the same 
movement. The following sequence is programmed: 200 steps to the left, wait, 100 
steps to the right with the same speed, and then 100 steps to the right with a slow 
speed. 

Figure 9.13 Continuous Movement Program 

LIST 

100 
110 
120 
130 
200 
210 
220 
225 
230 
240 
250 
260 
270 
280 
299 
300 

INIT = - 15360 
RIGHT = - 15349:LEFT = - 15340 
ST = - 15331 
CHANGE = - 15317 

CALL INIT 
CALL RIGHT 
FOR I = 1 TO 200: CALL ST: FOR K = 1 TO 5: NEXT K: NEXT I 
GOSUB 300: REM WAIT 
CALL CHANGE 
FOR I = 1 TO 100: CALL ST: FOR K = 1 TO 5: NEXT K: NEXT I 
FOR I = 1 TO 100: CALL ST 
FOR J = 1 TO 20: NEXT J 
NEXT I 
CALL CHANGE: GOTO 220 
END 
FOR J = l TO 2000: NEXT J: RETURN 

The subroutine CHANGE is used for changing the direction of the step motor. 

Now we will use another language, PASCAL, for the control of step motors. In 
this high-level language, we write the same machine-language routines as in 
BASIC, but this time they are prepared for linking to a PASCAL program. 

The PASCAL program is shown in Figure 9.15. 

The Custom Apple 169 



The Coia.trol of Step Motors 

170 Chapter 9 

Figure 9.14a Machine-language Subroutine 

PAGE - 0 
Current memory available: 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 
COC2 
coco 
COCB 
COC4 
co cs 
0013 
C400 

2 blocks for procedure code 

Figure 9. J 4b Machine-language Subroutine 

00001 
Current memory available: 
0000 
0000 
0000 68 
0001 8S 00 
0003 68 
0004 8S 01 
0006 A9 83 
0008 8D C2CO 
OOOB A9 co 
OOOD 8D CBCO 
0010 A9 00 
0012 8S 17 
0014 8S 14 
0016 A9 02 
0018 8S 13 
OOlA 
001A AS 01 
001C 48 
OOlD AS 00 

# 
# 
# 
# 

# 
# 
# 

86S7 

;MAKRO POP 

.MACRO POP 
PLA 
STA %1 
PLA 
STA %1+1 
.ENDM 

. 
' .MACRO PUL 
LDA %1+1 
PHA 
LDA %1 
PHA 
.ENDM 

RETURN 
DDRB 
TORB 
ACR 
TlL 
TlH 
Sl 
ZAHL 

.EQU 0 

.EQU OCOC2 

.EQU OCOCO 

.EQU OCOCB 

.EQU OCOC4 

.EQU OCOCS 

.EQU 13 

.EQU OC400 

80S3 words left 

.PROC INIT 
8004 

POP RETURN 
PLA 
STA RETURN 
PLA 
STA RETURN+l 

LDA #83 
STA DDRB 
LDA #OCO 
STA ACR 
LDA #00 
STA Sl+4 
STA Sl+l· 
LDA #02 
STA Sl 
PUL RETURN 

LDA RETURN+l 
PHA 
LDA RETURN Listing Continued ... 



The Control of Step Motors 

Continued Listing 

OOlFI 48 # PHA 
00201 60 RTS 
00211 

Figure 9. I 4 c M achinc-language Subroutine 

00001 .PROC RIGHT 
Current memory available: 8004 
00001 POP RETURN 
00001 68 # PLA 
00011 8S 00 # STA RETURN 
00031 68 # PLA 
00041 8S 01 # STA RETURN+l 
00061 AS 17 LDA Sl+4 
00081 FO** BEQ L 
OOOAI AS 13 LDA Sl 
OOOCI 49 03 EOR #03 
OOOEI 8S 13 STA Sl 
00101 A9 00 LDA #00 
00121 8S 17 STA Sl+4 
00141 L PUL RETURN 
0008~< OA 
00141 AS 01 # LDA RETURN+l 
00161 48 # PHA 
00171 AS 00 # LDA RETURN 
00191 48 # PHA 
OOlAI 60 RTS 
OOlBI 

Figure 9. I 4d Machine-language Subroutine 

0000\ .PROC LEFT 
Current memory available: 8004 
00001 POP RETURN 
00001 68 # PLA 
00011 8S 00 # STA RETURN 
00031 68 # PLA 
00041 8S 01 # STA RETURN+l 
00061 AS 17 LDA Sl+4 
00081 DO** BNE LL 
OOOAI AS 13 LDA Sl 
OOOCI 49 03 EOR #03 
OOOE\ 85 13 STA Sl 
0010\ 8S 17 STA Sl+4 
00121 LL PUL RETURN 
0008* 08 
00121 AS 01 # LDA RETURN+l 
00141 48 # PHA 
OOlSI AS 00 #· LDA RETURN 
00171 48 # PHA 
00181 60 RTS 
00191 
00191 

Figure 9.14e Machine-language Subroutine 

00001 .PROC STEP 
Current memory available: 8004 
00001 
00001 POP RETURN 

The Custom Apple 171 



The Control of Step Motors 

Figure 9.14{ Machine-language Subroutine 
0000 68 # PLA 
0001 8S 00 # STA RETURN 
0003 68 # PLA 
0004 8S 01 # STA RETURN+l 
00-06 AS 13 LDA Sl 
0008 49 03 EOR #03 
OOOA 8S 13 STA Sl 
oooc 4S 14 EOR Sl+l 
OOOE 8D coco STA TORB 
0011 as' 14 STA Sl+l 
0013 PUL RETURN 
0013 AS 01 # LDA RETURN+l 
OOlS 48 # PHA 
0016 AS 00 # LDA RETURN 
0018 48 # PHA 
00191 60 RTS 
OOlAI 

Figure 9.14g Machine-language Subroutine 

00001 .PROC WAIT,l 
Current memory available: 8004 
00001 POP RETURN 
00001 68 # PLA 
00011 8S 00 # STA RETURN 
00031 68 # PLA 
00041 8S 01 # STA RETURN+l 
00061 68 PLA 
00071 8D OOC4 STA ZAHL 
OOOAI 68 PLA 
OOOBI 8D 01C4 STA ZAHL+l 
OOOEI CE OOC4 Ll DEC ZAHL 
00111 DOFB BNE Ll 
00131 AD 01C4 LDA ZAHL+l 
00161 FO** BEQ L2 
00181 CE 01C4 DEC ZAHL+l 
OOlBI 18 CLC 
OOlCI 90FO BCC Ll 
OOlEI L2 PUL RETURN 
0016* 06 
OOlEI AS 01 # LDA RETURN+l 
00201 48 # PHA 
00211 AS 00 # LDA RETURN 
00231 48 # PHA 
00241 60 RTS 
002SI 
002SI .END 

, 
Figure 9.15 PASCAL Control Program 

PROGRAM SPEED; 
USES APPLESTUFF; 
VAR N,R,I,K,L,X,PD:INTEGER; 

CH:CHAR; 
DIR:BOOLEAN; 

PROCEDURE !NIT; 
EXTERNAL; Listing Continued ... 

172 Chapter 9 



Continued Listing 

PROCEDURE STEP; 
EXTERNAL< 

PROCEDURE RIGHT; 
EXTERNAL; 

PROCEDURE LEFT; 
EXTERNAL; 

PROCEDURE WAIT( W:INTEGER); 
EXTERNAL; 

BEGIN 
INIT;RIGHT; 
WRITE( 'L=') ;READLN(L); 

REPEAT 
PD:=PADDLE(O); 

BEGIN 
STEP; 
WAIT ( L+PD) ; 

END; 
UNTIL KEYPRESS; 
END. 

The Control of Step Motors 

With this program, the speed of the step motor is controlled by paddle 0 via the 
game connector. The basic speed is read from the keyboard (READLN(L)), and 
changes are made by changing the value of paddle 0. We declare all 
machine-language routines, which we will use as external routines. We give them 
the same names as shown in the assembler routines in Figure 9.14. The procedure 
WAIT will pass one parameter from the main program to the machine-language 
routines. This is the sum of two integers (L and PD) and is equal to the delay time 
between two steps of the motor. This parameter of the main program is passed to 
the machine subroutine via the stack. The number of parameters has to be given 
after declaring the name of the procedure. 

The declaration .PROC WAIT,1 means that one 16-bit number is passed to the 
routine. After POPping the RETURN address from the stack, the 16-bit number 
is POPped from the stack (low-order byte first) and is stored in memory locations 
ZAHL and ZAHL + 1. 

The next program. TIM. uses timer 1 of the 6522 as a square-wave generator in the 
free-running mode. The frequency of the square-wave is determined by a number 
written to the timer latches. The conditions for the timers are set in such a manner 
that when the number 200 is written to the timer, a square-wave of 200 cycles per 
second is created. The timimg sequence for the step motor shown in Figures 9. 5 and 
9 .6. created previously by software. is now done by the hardware. 

The Custom Apple 173 



The Control of Step Motors 

17 4 Chapter 9 

The program asks for a starting frequency. If you input the number 200, a 200 
steps per revolution motor will perform exactly one revolution per second. When 
you enter a new speed of rotation, the step motor will not reach this speed by a 
linear function, but by the function given in Figure 9.17. 

Figure 9.17 Step Motor Acceleration 

Figure 9.18 Machine-language Subroutine 

PAGE - 0 
Current memory available: 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 
00001 

8657 

;MAKRO POP 

.MACRO POP 
PLA 
STA %1 
PLA 
STA %1+1 
.ENDM 

.MACRO PUL 
LDA %1+1 
PHA 
LDA %1 
PHA 
.ENDM 

Time 

Listing Continued . .. 



The Control of Step Motors 

Continued Listing 

00001 
00001 0000 RETURN .EQU 0 
00001 COC2 DDRB .EQU 0COC2 
00001 coco TORB .EQU ococo 
00001 COCB ACR .EQU OCOCB 
00001 COC4 TlL .EQU OCOC4 
00001 co cs TlH .EQU ococs 
00001 COC3 DDRA .EQU OCOC3 
00001 CO Cl TORA .EQU OCOCl 
00001 COC6 Tl LL .EQU OCOC6 
00001 COC7 TlHL .EQU OCOC7 
00001 0010 H .EQU 10 
00001 
2 blocks for procedure code 8029 words left 

00001 .PROC TIMEINIT 
Current memory available: 7980 
00001 POP RETURN 
00001 68 # PLA 
00011 8S 00 # STA RETURN 
00031 68 # PLA 
00041 8S 01 # STA RETURN+l 
00061 A9 03 LDA #03 
00081 8D C3CO STA DDRA 
OOOBI A9 10 LDA #10 
OOODI 8D C2CO STA DDRB 
00101 A9 co LDA #OCO 
00121 8D CBCO STA ACR 
OOlSI A9 00 LDA #00 
00171 8D Cl CO STA TORA 
OOlAI A9 03 LDA #03 

Listing Continued ... 

Continued Listing 

OOlCI 8D ClCO STA TORA 
OOlFI PUL RETURN 
OOlFI AS 01 # LDA RETURN+l 
00211 48 # PHA 
00221 AS 00 # LDA RETURN 
00241 48 # PHA 
002SI 60 RTS 
00261 
00261 

Listing Continued ... 

The Custom Apple 175 



The Control of Step Motors 

Continued Listing 

00001 .PROC SETTIMER,l 
Current memory available: 79SO 
0000 POP RETURN 
0000 6S # PLA 
0001 SS 00 # STA RETURN 
0003 6S # PLA 
0004 SS 01 # STA RETURN+l 
0006 6S PLA 
0007 SD C4CO STA TlL 
OOOA 6S PLA 
OOOB SD cs co STA TlH 
OOOE PUL RETURN 
OOOE AS 01 # LDA RETURN+l 
0010 4S # PHA 
0011 AS 00 # LDA RETURN 
0013 4S # PHA 
0014 60 RTS 
OOlS 
OOlS 
OOlS 
OOlS 

Listing Continued .. 

Continued Listing 

00001 .PROC CHANGETIME,l 
Current memory available: 79 so 
0000 POP RETURN 
0000 6S # PLA 
0001 SS 00 # STA RETURN 
0003 68 # PLA 
0004 8S 01 # STA RETURN+l 
0006 AD coco LDA TORB 
0009 29 10 AND #10 
OOOB BS 10 STA H 
OOOD AD coco L LDA TORB 
0010 4S 10 EOR H 
0012 FOF9 BEQ L 
0014 6S PLA 
OOlS 8D C6CO STA Tl LL 
OOlS 6S PLA 
0019 SD C7CO STA TlHL 
001C PUL RETURN 
OOlC AS 01 # LDA RETURN+l 
OOlE 48 # PHA 
OOlF AS 00 # LDA RETURN 
0021 48 # PHA 
0022 60 RTS 
0023 

176 Chapter 9 



The Control of Step Motors 

The lower the speed of the motor, the greater the change of speed can be. When 
a new speed is entered, the program determines if it has to go to higher speeds 
(PROCEDURE GOHIGHER) or to go to lower speeds (PROCEDURE 
GODOWN). When the given frequency is reached, a new frequency can be 
entered. The CPU of the Apple is only used when changes of the step-rate are 
made. When there are no changes, timer 1 of the 6522 stays in the free-running 
mode, and the CPU is free to perform other tasks. This program uses more 
machine-language programs, as shown in Figure 9.18. The PASCAL program is 
shown in Figure 9.19. 

Figure 9.19 PASCAL Control Program 

PROGRAM TIM; 
CONST A=lE6; 
VAR I,J,K,L,F,R,OLD,NEW,DESTINATION:INTEGER; 

CH:CHAR; 

PROCEDURE TIMEINIT; 
EXTERNAL; 

PROCEDURE SETTIMER(T:INTEGER); 
EXTERNAL; 

PROCEDURE CHANGETIME(T:INTEGER); 
EXTERNAL; 

PROCEDURE STOP; 
EXTERNAL; 

PROCEDURE GODOWN(VAR AL,NE:INTEGER); 
PROCEDURE DOWN(STEP:INTEGER); 

BEGIN 
WHILE AL>DESTINATION DO 
BEGIN 

IF AL-DESTINATION<STEP 
THEN BEGIN 

AL:=DESTINATION; 
R:=AL; 

END ELSE 
BEGIN 

AL:=AL-STEP; 
R:=AL; 

END; 
IF R <> 0 THEN 
BEGIN 
F:=TRUNC(l/R*A); 
CHANGETIME(F); 
END; 

END; 
END; ( * DOWN *) 

BEGIN 
IF AL>l500 THEN Listing Continued ... 

The Custom Apple 177 



The Control of Step Motors 

Continued Listing 

BEGIN 
REPEAT 

IF NE>l500 THEN DESTINATION:=NE ELSE DESTINATION:=l500; 
DOWN(l); 

UNTIL AL=DESTINATION; 
END; 

IF(AL<>NE) AND (AL>lOOO) THEN 
BEGIN 

REPEAT 
IF NE>lOOO THEN DESTINATION:=NE ELSE DESTINATION:=lOOO; 
DOWN( 2) ; 

UNTIL AL=DESTINATION; 
END; 

IF(AL<>NE) AND (AL> 500) THEN 
BEGIN 

REPEAT 
IF NE> 500 THEN DESTINATION:=NE ELSE DESTINATION:= 500; 
DOWN(5); 

UNTIL AL=DESTINATION;; 
END; 

IF (AL<>NE) AND (AL> 100) THEN 
BEGIN 

END; 

REPEAT 
DESTINATION:=NE; 
DOWN(lO); 

UNTIL AL=DESTINATION; 

END; ( * GODOWN *) 

PROCEDURE GOHIGHER(VAR AL,NE:INTEGER); 
PROCEDURE UP(STEP:INTEGER); 

BEGIN 
WHILE AL<DESTINATION DO 
BEGIN 

IF DESTINATION-AL<STEP 
THEN BEGIN 

AL:=DESTINATION; 
R:=AL; 

END ELSE 
BEGIN 

AL:=AL+STEP; 
R:=AL; 

END; 
IF R <> 0 THEN 
BEGIN 
F:=TRUNC(l/R*A); 
CHANGETIME(F); 
END; 

178 Chapter 9 

Listing Continued ... 



Continued Listing 

END; 
END; (* UP *) 

BEGIN 
IF AL<SOO THEN 
BEGIN 

REPEAT 

The Control of Step Motors 

IF NE<SOO THEN DESTINATION:=NE ELSE DESTINATION:=SOO; 
UP ( 10) ; 

UNTIL AL=DESTINATION; 
END; 

IF(AL<>NE) AND (AL<lOOO) THEN 
BEGIN 

REPEAT 
IF NE<lOOO THEN DESTINATION:=NE ELSE DESTINATION:=lOOO; 
UP ( 5) : 

UNTIL AL=DESTINATION; 
END; 

IF(AL<>NE) AND (AL<l500) THEN 
BEGIN 

REPEAT 
IF NE<l500 THEN DESTINATION:=NE ELSE DESTINATION:=l500; 
UP ( 2) ; 

UNTIL AL=DESTINATION;; 
END'; 

IF (AL<>NE) AND (AL<2000) THEN 
BEGIN 

REPEAT 
DESTINATION:=NE; 
UP (1) ; 

UNTIL AL=DESTINATION; 
END; 

END; (* GOHIGHER *) 

BEGIN 
TIMEINIT; 

WRITE( 1 STARTING FREQUENCY=') ;READLN(K); 
F:=TRUNC(l/K*A); 
SETTIMER(F); 
OLD:=K; 

REPEAT 
WRITE( 1 NEW FREQUENCY? 1 ) ;READ(CH); 

IF CH <> 1 N1 THEN 
BEGIN 

WRITE(' =1 ) ;READLN(K); 
NEW: ==K; 
IF NEW>OLD THEN GOHIGHER(OLD,NEW) ELSE GODOWN(OLD,NEW) f 
WRITELN( 1 THE END 1 ); 

END; 
UNTIL CH= 1 N1 ; 

END. 

The Custom Apple 179 



The Control of Step Motors 

Finally, we will use a third language for controlling the step motor. This 
language is FORTH. The program is shown in Figure 9.20. The definition of the 
verbs begins with the word START. PBO and PBl of the 6522 are set for outputs 
(assuming the 6522 board is in slot 4, as usual). The S means STORE only to Port 
B. The verbs RIGHT and LEFT set the starting conditions for a left or right turn. 
The following verb STEP is the FORTH implementation of the machine-language 
program in Figure 9.11 and is explained in Figure 9.21. 

Figure 9.21 Definition of Step 

TOS (Top of Stack) 
Figure 9.20 FORTH Program .J, 

( *************************** 01 00 

* STEPPER MOTOR CONTROL * 00 01 SWAP 

**************************** 00 01 II 03 
00 10 EOR 

HEX 00 10 10 DUP 1. STEP 
FORGET STEPS 10 00 10 ROT 

STEPS ; 10 10 00 ROT 10 
START 0003 COC2 DEC 10 10 EOR 
s coco ! ; 10 10 10 DUP 
RIGHT 01 00 ; 10 10 s 
LEFT 02 00 . , 
STEP SWAP 03 EOR DUP 10 10 SWAP 

ROT ROT EOR DUP 10 10 II 03 
s ; 10 10 EOR 

WAIT 20 0 DO LOOP ; 10 01 01 DUP 2. STEP 
GO 0 DO STEP WAIT LOOP ; 01 10 01 ROT 

O"I 01 10 ROT II 
01 II EOR 

01 II II DUP 
01 II s 
II 01 SWAP 

II 01 II 03 
II 10 EOR 

II 10 10 DUP 3. STEP 
10 II 10 ROT 
10 10 II ROT 01 

10 01 EOR 
10 01 01 DUP 

10 01 s 
01 10 SWAP 

01 10 II 03 
01 01 EOR 

01 01 01 DUP 4. STEP 
01 01 01 ROT 
01 01 01 ROT 00 

01 00 EOR 
01 00 00 DUP 

01 00 s 
180 Chapter 9 



The Control of Step Motors 

We consider only the two lowest bits of the number on top of the stack. The top 
of stack (TOS) is represented in the rightmost column. We start with the direction 
RIGHT. After running for the first time through STEP, a lOB is stored in Port B. 
As we continue to run through STEP, we store an llB, then an OlB, and then a 
OOB. At the end of the fourth step, we have the same starting conditions as for the 
first step. Looking at Figure 9.5, we start here with step 4; then step 5 follows, 
which is the same as step 1, and so on. 

In the program a wait loop follows with the verb WAIT. This is a constant time 
delay between each step. The last verb(GO) is the main loop which uses STEP and 
WAIT. Before calling this verb, the number of steps must be on top of the stack. 
With the following input, the step motor makes 100 steps to the right: 

START 
RIGHT 
100 GO 

First we set the starting conditions, next we define the direction, and finally, 
we'll tell the program how many steps the step motor has to perform. 

As we have seen, a step motor can be easily controlled by a computer, creating 
many possible applications. One last application should be mentioned here. With 
a step motor it is possible to create a very exact number ofrevolutions per second. 
The timer of the 6522 is controlled by the quartz of the computer. The number of 
revolutions is therefore controlled in the same manner. This is very important in 
testing mechanical vibration equipment. The accuracy of the number of 
revolutions per second is approximately 10 to the minus 6th. That accuracy 
couldn't be duplicated by an ordinary electric motor. 

The Custom Apple 181 



Appendix 

182 Appendix 

PARTS SUPPLIERS 

The Four Stars 

Digi-Key Corporation, Hiway 32 South, P. 0. Box 677, Thief River Falls, MN 
56701. 800 346-5144. COD, check, money order, credit cards. Volume discounts over 
$100; shipping, insurance prepaid. 

This company is in my opinion the hobbyist's best. Shipping is fast (five 
days from ordering to my door in Vermont), and most items are in stock. 
Their catalog is monthly, and items not stocked are not listed. All 
merchandise is prime; no bubble packs. 

QT Computer Systems, 15335 S. Hawthorne Blvd., Lawndale, CA 90260. 800 
421-5150. COD under $100, check, money order; credit cards preferred. Quantity 
discounts, no insurance. 

A good hobbyist catalog similar to Digi-Key, with competitive prices. This is 
a new company, but they are already beginning to make a mark for 
promptness, exceeding courtesy, and prime parts. Their catalog is very 
complete and quite up-to-date. 

Advanced Computer Products, 1310 E. Edinger, Santa Ana, CA 92705. 800 
854-8230. COD, check, money order, credit cards. Volume discounts, no insurance. 

One of the best catalogs in the business, prompt, but be wary of 
substitutions in orders. Specify voltages of devices and check upon receipt. 
Expect harrassment from Customer Service. Otherwise, they have what you 
can't get anywhere else. 

Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002. 415 594-8097. 
COD, check, money order, no credit cards. No discounts, no insurance. 

One almost wonders why to put J ameco in with the four best, but their 
selection is contemporary and their response prompt. They have items 
others don't have in stock for the popular computer hobbyist. Bubble pack 
stuff on retail store racks at Lafayette Radio and others. Highest prices in the 
business. 



Appendix 

And Others 

Jade Computer Products, 4901 West Rosecrans Ave., Hawthorne, CA 90250. 
800 421-5500. No CODs; checks, money order; credit cards preferred. Quantity 
discounts; insurance under 5 0 lbs. 

This company works hard at immediate hobbyist needs and some unusual 
items. Get their catalog, but consult monthly ads in electronics magazines for 
hot items. 

Priority One Electronics, 16723C Roscoe Blvd., Sepulveda, CA 91343. 800 
423-5633. No CODs; check, money order, credit cards. Quantity discounts, insurance. 

Priority deals for the most part in larger items for computer hobbyists, with 
only a token selection of small parts. This company concentrates on boards, 
naked disk drives and heavier hardware. 

Hobbyworld Electronics, 19511 Business Center Dr., Northridge, CA 91324. 
800 423-5387, (800 382-3651 in CA). COD ($1.25 extra), check, credit cards. No 
discounts, no insurance. 

Hobbyworld is the computer hobbyist's pop culture. It stocks all the hot 
items with a high turnover. Look to them for low prices on items you need 
right away. 

Electrolabs, P. 0. Box 6721, Stanford, CA 94305. 

The best part is always their funny and schizophrenic catalog with an honest 
selection and a wealth of good information. For example ... 'Save yourselve 
$6.75 and use a 25 cent transistor the next time you're looking for a 
temperature probe.' Also, 'TTL family rules of Incest are great.' The 
shipping was always prompt and the merchandise prime. 

Not Recommended 

Active Electronic Sales, P.O. Box 1035, Framingham, MAOl 701. 617 879-0077. 
Minimum $10, handling $2, check (wait to clear), money order. No discounts, no 
insurance. 

This group claims to be 'The World's Largestlnternational Semiconductor 
Distributor', which implies lots of stock, in stock. No way. All my orders have 
been returned 25 percent filled, with 50 percent errors. 

The Custom Apple 183 



Glossary 

184 Glossary 

GLOSSARY 

access 
The operation of seeking, reading or writing data on a storage unit (in this case, the diskette). 

access time 
The time that elapses between any instruction being given to access some data and that data 
becoming available for use. 

address 
An identification (number, name, or label) for a location in which data is stored. 

algorithm 
A computational procedure. 

alphanumeric (characters) 
A generic term for numeric digits and alphabetic characters. 

alphanumeric string 
A group of characters which may include digits, alphabetic characters, punctuation characters and 
special characters, and may include spaces. (Note: a space is a 'character' to the computer, as it must 
generate a code for spaces as well as symbols.) 

ASCII 
Abbreviation for American Standard Code for Information Interchange. Pronounced: 'ass-key'. 
Usually refers to a standard method of encoding letter, numeral, symbol and special function 
characters, as used by the computer industry. 

assembly language 
A machine-oriented language for ·programming mnemonics and machine readable code from the 
mnemonics. 

base 
Quantity of characters for use in each of the digital positions of a numbering system. 

base 2 
The 'binary' numbering system consisting of more than one symbol, representing a sum, in which the 
individual quantity represented by each figure is based on a multiple of 2. 



Glossary 

base 10 
The' decimal' numbering system- consisting of more than one symbol, representing a sum, in which 
the individual quantity represented by each symbol is based on a multiple of 10. 

base 16 
The 'hexadecimal' numbering system - consisting or more than one symbol representing a sum, in 
which the individual quantity represented by each symbol is based on a multiple of 16. 

binary 
See 'base 2' 

bit 
A single 'binary' digit whose value is 'zero' or 'one'. 

Boolean 
This word isn't really here (for you folks who paid attention to the general information section). A 
form of algebra applied to binary numbers which is similar in form to ordinary algebra. It is especially 
useful for logical analysis of binary numbers as used in computers. 

'BOOT' - BOOTSTRAP 
A machine language program file that is put onto every diskette by the 'FORMAT' routine. This 
routing is invoked when reset or power-on occurs. It automatically loads the necessary programs 
(SYSO/SYS) to cause the computer to respond to the DOS commands; i.e., the machine is 
'BOOTSTRAPPED' or 'BOOTED' into operation. 

buffer 
A small area of memory used for the temporary storage of data to be processed. 

buffer track 
A track on a diskette used for the temporary storage of data or program material during a recovery 
process. 

bug 
A Software fault that results in the malfunction of a program. May also refer to hardware 
malfunctions. 

byte 
Eight 'bits'. A 'byte' may represent any numerical value between 'O' and '255'. 

command file 
A file consisting of a list of commands, to be executed in sequence. 

contiguous 
Adjacent or adjoining. 

control code 
In programming, instructions which determine conditional jumps are often referred to as control 
instructions and the time sequence of execution of instructions is called the flow of control. 

CRC error 
Cyclic Redundancy Check. A means of checking for errors by using redundant information used 
primarily to check disk 1/0 while verifying. 

data base 
A collection of interrelated data stored together with controlled redundancy to serve one or more 
applications. The data are stored so that they are independent of programs which use the data. A 
common and controlled approach is used in adding new data and in modifying and retrieving existing 
data within a data base. A system is said to contain a collection of data- based information if they are 
disjoint in structure. 

The Custom Apple 185 



Glossary 

186 Gfossary 

data-base management system 
The collection of software required for using a data base. 

data element 
Synonymous with 'data item' or 'field' 

data type 
The form in which data is stored; i.e., integer, single precision, double precision, 'alphanumeric' 
character strings or 'strings'. 

DEC 
Initials for Directory Entry Code. 

decimal 
See 'base 10'. 

direct access 
Retrieval or storage of data by a reference to its location on a disk, rather than relative to the 
previously retrieved or stored data. 

DIRECT STATEMENT (IN FILE) 
A program statement that exists in the disk file that is not assigned a line number. 

DIRECTORY 
A table giving the relationships between items of data. Sometimes a table or an index giving the 
addresses of data. 

displacement 
A specified number of sectors, at the top or beginning of the file, in which the' bookkeeping' and file 
parameters are stored for later use by various program modules. 

distributed free space 
Space left empty at intervals in a data lay out to permit the possible insertion of new data. 

double precision 
A positive or negative numeric value, 16 digits in length, not including a decimal point (Example: 
99999999999999.99). 

DUMP 
To transfer all or part of the contents of one section of computer memory or disk into another section, 
or to some other computer device. 

embedded pointers 
Pointers in the data records rather than in a directory. 

entity 
Something about which data is recorded. 

EOF 
Initials for' end of file'. It is common practice to say that the EOF is record numbernn or that the EOF 
is byte 15 of sector 12. Hence, it is a convenient term to use in describing the location of the last 
record or last byte in a file. 

extent 
A contiguous area of data storage. 



Glossary 

file 
A collection of related records treated as a unit; The word file is used in the general sense to mean any 
collection of informational items similar to one another in purpose, fcprm and content. 

file parameters 
The data that describes or defines the structure of the file. 

FILE SPEC 
A file specification and may include the 'file name', the 'the file name extension', 'password', and' disk 
drive' specification. 

field 
See 'data item'. 

file area 
The physical location of the file, on the disk, or in memory. 

header record 
A record containing common, constant or identifying information for a group of records which follow. 

hexadecimal 
See 'base 16' 

index 
A table used to determine the location of a record. 

indirect addressing 
Any method of specifying or locating a storage location, whereby, the key (of itself or through 
calculation) does not represent an address. For example, locating an address through indices. 

IN STRING 
Refers to the capability of locating a substring of characters that may exist in another character 
string. An example would be: Substring 'THE' String 'NOW IS THE TIME'. AnINSTRINGroutine 
would locate the substring and return its starting position within that string. In this example, it would 
return a value of eight. 

integer 
A natural or whole number with no decimal point. 

inverted file 
A file structure which permits fast spontaneous searching for previous unspecified information. 
Independent lists or indices are maintained in records' keys which are accessible according to the 
values of specific fields. 

inverted list 
A list organized by a secondary key - not a primary key. 

IPL 
Initials for Initialize Program Loader; a program usually executed upon pressing of the 'RESET' 
button. 

key 
A data item used to identify or locate a record or other data grouping. 

label 
A set of symbols used to identify or describe an item, record, message or file. Occasionally, it may be 
the same as the address in storage. 

The Custom Apple 187 



Glossary 

188 Glossary 

least significant byte 
The significant byte contributing the smallest quantity to the value of a numeral. 

list 
An ordered set of data items. A 'chain'. 

load module 
A program developed for loading into storage and being executed when control is passed to the 
program. 

logical 
An adjective describing the form of data organization, hardware or system that is perceived by an 
application program, programmer, or user; it may be different than the real (physical) form. 

logical data-base description 
A schema. A description of the overall data-base structure, as perceived for the users, which is 
employed by the data base management software. 

logical file 
A file as perceived by an application program; it may be in a completely different form from that in 
which it is stored on the storage units. 

logical operator 
A mathematical symbol that represents a mathematical process to be performed on an associated 
operand. Such operators are 'AND', 'OR', 'NOT', 'AND NOT' and 'OR NOT'. 

logical record 
A record or data item as perceived by an application program; it may be in a completely different 
form from that in which it is stored on the storage units. 

LSB 
See least significant byte. 

machine-language 
See assembly language. 

maintenance of a file 
(1) The addition, deletion, changing or updating of records in the database. 
(2) Periodic reorganization of a file to better accommodate items that have been added. 

monitor 
A program that may supervise the operation of another program for operation or de bugging or other 
purposes. 

most significant byte 
The significant byte contributing the greatest quantity to the value of a numeral. 

MSB 
See most significant byte. 

multiple-key retrieval 
Retrieval which requires searches of data based on the values of several key fields (some or all of 
which are secondary keys). 

nibble 
The four right most or left most binary digits of a byte. 

null 
An absence of information as contrasted with zero or blank for the presence of no information. 



Glossary 

on-line 
An on- line system is one in which the input data enter the computer directly from their point of origin, 
and/ or output data are transmitted directly to where they are used. The intermediate stages such as 
writing tape, loading disks or off-line printing are avoided. 

on-line storage 
Storage devices and especially the storage media which they contain under the direct control of a 
computing system, not off-line or in a volume library. 

operating system 
Software which enables a computer to supervise its own operations, automatically calling in 
programs, routines, language and data as needed for continuous throughput of different types of 
jobs. 

parity 
Parity relates to the maintenance of a sameness of level or count, i.e., keeping the same number of 
binary ones in a computer word to thus be able to perform a check bsed on an even or odd number for 
all words under examination. 

pointer 
The address or a record (or other data groupings) contained in another record so that a program may 
access the former record when it has retrieved the latter record. The address can be absolute, 
relative, symbolic, hence, the pointer is referred to as absolute, relative, or symbolic. 

primary entry 
The main entry made to the directory. 

random access 
To obtain data directly from any storage location regardless of its position, with respect to the 
previously referenced information. Also called 'direct access'. 

random access storage 
A storage technique in which the time required to obtain information is independent of the location of 
the information most recently obtained. 

read 
To accept or copy information or data from input devices or a memory register; i.e., to read out, to 
read in. 

record 
A group of related fields of information treated as a unit by an application program. 

relational operator 
A mathematical symbol that represents a mathematical process to perform a comparison describing 
the relationship between two values (e.g.< less than ... > greater than ... equal ... and combinations 
thereof). 

search 
To examine a series of items for any that have a desired property or properties. 

secondary index 
An index composed of secondary keys rather than primary keys. 

sector 
The smallest addressable portion of storage on a diskette. 

seek 
To position the access mechanism of a direct-access storage device at a specified location. 

The Custom Apple 189 



Glossary 

190 Glossary 

sequential access 
Access in which records must be read serially or sequentially one after the other; i.e., ASCII files, 
tape. 

single precision 
A positive or negative numerical value of 6 digits in length, not including a decimal point (Example: 
99999.9). 

sort 
To arrange a file or data in a sequence by a specified key (may be alphabetic or numeric and in 
descending or ascending order). 

source code 
The text from which executable code is derived. 

system file 
A program used by the operating system to manage the executing program and/ or the computer's 
resources. 

sub-strings 
See INSTRING 

table 
A collection of data suitable for quick reference, each item being uniquely identified either by a label 
or its relative position. 

token 
A one byte code representing a larger word consisting of 2 or more characters. 

track 
The circular recording surface transcribed by a read/write head on the disk. 

transaction 
An input record applied to an established file. The input record describes some 'event' that will 
either cause a new file record to be generated, an existing record to be changed or an existing record 
to be deleted. 

transparent 
Complexities that are hidden from the programmers or users (made transparent to them) by the 
software. 

vector 
A line representing the properties of magnitude and direction. Since such a 'line' can be described in 
mathematical terms, a mathematical description (expressed in numbers, of course) of a given 
'direction' and 'magnitude' is referred to as a 'vector'. 

verify 
To check a data transfer or transcription. 

working storage 
A portion of storage, usually computer main memory, reserved for the temporary results of 
operations. 

write 
To record information on a storage device. 

zap 
To change a byte or bytes of data in memory on on diskette by using a software utility program. 



& r 

!JG INC. has become a world wide recognized leader in computer publishing. We take pride 
in publishing only the best in computer oriented books and software. If you have an idea, and 
really know your subject, we would like to talk with you. 

Qualifying manuscripts once submitted, will be read and evaluated by our professional 
editorial staff (who are themselves published authors), and a few selected writers will be 
invited in for a personal evaluation of their work. 

Contact Mr. Harvard Pennington or Mr. David Moore. 

1953 West 
11th Street 
Upland,CA 
91786 (714) 
946-5805 



c mp 
oft 

BOOKS 

ter 

TRS-80 Disk & Other Mysteries. H. C. Pennington. 
The "How to" book of Data Recovery. 128 pages. $22.50 

Microsoft Basic Decoded & Other Mysteries. 
James Farvour. The Complete Guide to Level II 
Operating Systems & BASIC. 312 pages. . ...... $29.95 

The Custom TRS-80 & Other Mysteries. 
Dennis Bathory Kitsz. The Complete Guide to 
Customizing TRS-80 Software & Hardware. 
336 pages .................................... $29.95 

BASIC Faster & Better & Other Mysteries. 
Lewis Rosenfelder. The Complete Guide to BASIC 
Programming Tricks & Techniques. 290 pages .... $29.95 

Electric Pencil Operators Manual. Michael Shrayer. 
Electric Pencil Word Processing System Manual. 
123 pages .................................... $24.95 

The Custom Apple. Winfried Hofacker & Ekkehard 
Floegel. The complete guide to customizing the Apple 
Software and Hardware. Available July 1 982 ..... $24.95 

Add $4.00 shipping and handling charge per item. 

s 
I 

n 

ntSI(' Et,i.fl'J;;u 
A.\1J llE'i"l'l';Jl 

._\:_· OTHU~ .\\YSTfRIES 

Price,; Subject to f'hangl' without notirf' 

SOFTWARE 
BFBDEM. Lewis Rosenfelder. Basic Faster & Better 
Demonstration Disk. 121 Functions, Subrountines & 
User Rountines For the TRS-80 Model I & II. 
Available in DISK ONLY ....................... $19.95 

BFBLIB. Lewis Rosenfelder. Basic Faster & Better 
Library Cisk. 32 Demonstration Programs. Basic 
Overlays. Video Handlers. Sorts & more for the Model I 
& IL Available in DISK ONLY .................. $19.95 

Electric Pencil. Michael Shrayer. 
Word Processing System. Available in DISK ..... $89.95 
STRINGY FLOPPY or CASSETIE ............... $79.95 

Red Pencil. Automatic Spelling Correction 
Program. For use with the Electric Pencil 
Word Processing System. Available in 
DISK ONLY .................. $89.95 

Blue Pencil. Dictionary- Proofing 
Program. For use with the Electric Pencil 
Word Processing System. Available in 
DISK ONLY ................... $89.95 

California residents add 6% sales tax. Canadian residents add 20% for exchange rate. 

~Inc.• 1953 West 11th Street. Upland, California 91786 USA• (714) 946-5805 



I 0 




	Editor's Note
	Table of Contents
	General Information
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Appendix
	Glossary



