RP - RESPIRATION PROGRAM SIDE ________________________________________ HOLT RINEHART WINSTON BIOLOGY PHOTOSYNTHESIS version 1.00 compiled 7-14-87 _______________________________________ Designed and developed by: Prentice Associates, Inc. 670 Centre Street Boston, MA 02130 FG8`0($ p,&"ųųೳŪŪųųij  !"#$%&'()*+,-./0123456789:;<=>?   1 '" *"( (9"1 ( ,.(0# 2  /#0/#0 *?'#07#00/0/'#07#0:"4<*55/**5/*%5/)1/)1/)1/)'#0/#0*5/*75/**5/*:5//#0/#0'#07#0:::*::'#07#0"):$(%"%:$(%"%$$2%4%$$2%4%$(2()!)E(!8b $!H(+ "@H !D)"E` @ $ C ` DQ &J80^݌Hh ü ü݌ ռ ռ ռA ļD ļ? ļAEDE?HJ>h Լ ռ ռ ռ`HJ>݌h Hh݌`葠葠ȔЖȔЖȠHIHHHHhHH݌hHhHh݌H6 " V ,^" fvvAO^ fA⠏ V 6  ^Z ( ,'" V   6( 6,^" ^V ^ Z  OK^ V0 } } AfA( ,'" V   F( 6*( ,<" O0 ,>"  O0 NL,HV PH fAl Z v נv TfvvvvA( "  f( ,A,ZB ,Av pf( ,a,zB,av p f Bad offsetfAv( n ^ f v( r ^ j fAf j fA fAf j fAϢfAϢfA(  fAn r rn r fA r =M^ } n = ^ fA r =M ^ } n =^ fAϢwwfAϢwfAϢwfAϢwwfAvqHfAO |O fvAAGfAG fvALLOT Bio223y,,T,Tdisk from th۠^MXYPA( ,0,9B  Bad index,0v ,g^ zA v^ } fA v^ }  fA fvXaYaA! ,V v  ^ fA! ,V v  ^ p * fAy ~, V 5 .^ V 5 H^ y ~* f%BRACANL ,v , A#Olv  } y ~* A#l* A,A#l}  } y ~* A#lp * A,} HzA,1" A, v v  O } v ( ,'"   ' expected'lV v |O0 * ,, O0 fv03'JS'M5DTˣRWXȤY+M-WBGA ( 9 "v " } p  f,^  BAD COMMANDfDOFORA A zA ( fyw} p* jzBv:BvN dJGxFGi dJGFGJu BF IJ8 BF I`8AHBh NAuHBuh N`v v  a vڧvvvvvvvvvv` 6e`v ڧʭɧ ڧ L, CE/aA` ЧV v fZEIANL ,ԧ Ч 5 dԧ %ԧ d5 dԧ0 * ԧ Ч ԧ d( ԧ0 } HzvEIANL Ч 5 d* %Ч 5 d* } HzATH ? (  Ab |zA,ҧ z!OVERLAY 5 236(" ,)j% * 9z*S237DELAvl+SHOpV  ,U5 5  ,N99HNfAuHNHN9HNfAuHNHN9HNfAuHNHN99HNfAhHfAQ Q fvAAfA fvALLOT Aj163A+RdzAzzATzA^MXYPA( ,0,9B  Bad index,0v  ^ zA@ ^ } fA@ ^ }  fA@ fv7XaYaAť ,V v ^ fAť ,V v ^ p Υ fAy L, V 5 ҥ^ V 5 ^ y L* fɥBRACAN ,v  Aǥ+Rv  } y L* AǥΥ AХAǥ}  } y L* Aǥp Υ AХ} HzA,1" AХ@ v v  R@ } v ( @,'"   ' expected' v Q0 Υ ,, Q0 fv0٤'SͣMۣDUTqRWXlY+-BGA (( 9 "v " } p  f,^  BAD COMMANDf8DOFORA Aơ WzA ( {z} p* 'lz!OVERLAY ,ϥ HC HC 169} ,å C ɥ^ ɥC pɥ( إ " 0zAR,ޥ إ VzA",ޥ إ VzAR,ޥ إ NzA",ޥ إ NzAQ ,å Q ,ǥ zAإ z0OVERLAY , zA ڥ234z0OVERLAY 234BEGIN 3 */ + TO CPTIME esponds Sա-OǢ v'&5%?$S# A, ,^ t( v  ,^ }  0 zv\YVSPMIEA=94/*% STGPOv-A +Rޡ} ^ Rn n ,Rn RfA,\y  ( 䡢 fv     Ak ,w ^ *^ ^ zAZ 0 zAn ,-^ n ޡzA,*w ^ +fN, 5 , ,^ *5 ,^ w ^ +~N* z!OVERLAY p f Bad offsetfA(  ^ (  179 ^  fA  fA fA  fAuHNfAufA(  fA  r r fA  ^ }  ^ fA  ^ }  ^ fAuHN99HNfAuHNHN9HNfAuHNHN9HNfAuHNHN99HNfAhHfAQ Q fvAAfA fvALLOT Aj163A+RdzAzzATzA^MXYPA( ,0,9B  Bad index,0v  ^ zA@ ^ } fA@ ^ }  fA@ fv7XaYaAť ,V v ^ fAť ,V v ^ p Υ fAy L, V 5 ҥ^ V 5 ^ y L* fɥBRACAN ,v  Aǥ+Rv  } y L* AǥΥ AХAǥ}  } y L* Aǥp Υ AХ} HzA,1" AХ@ v v  R@ } v ( @,'"   ' expected' v Q0 Υ ,, Q0 fv0٤'SͣMۣDUTqRWXlY+-BGA (( 9 "v " } p  f,^  BAD COMMANDf8DOFORA Aơ WzA ( {z} p* 'lz0OVERLAY ,ϥ HC HC 169} ,å C ɥ^ ɥC pɥ( إ " 0zAR,ޥ إ VzA",ޥ إ VzAR,ޥ إ NzA",ޥ إ NzAQ ,å Q ,ǥ zAإ z0OVERLAY , zA ڥ234z0OVERLAY 234BEGIN 3 */ + TO CPTIME esponds 9@ |I;dX$.,\.1e{3K58 "<=u?AABnXDFF\GEHGIK3KAtL:M- XZcZ2\m\i\bU]i]e#^f^_`` hLkYNnCoaq$swLi{‚j\ƅ)`@ H$HP @$  @A2@ @ 00 `0px<8|@As ?A@ B@ @G@~@ "8 @TUT| " 0U $FF`b0@` @ 3 H$ H@d D"Ap 8p@@@xAx`@`  @`Ѐ@  BЀ x>Օ ()( " )(  c` 0*9 HC  J C0c %H @L @!h<@ H$HP @  @H D 0@BB  @@C@@ A  `@p0@A@px@@@ C  PU@  `0  U@&qc $H 1D @H  $P @   D D 8@@`  @@<?0x  x? ԀH  @1Յ` ( " ( x @  *fF $ ` `@  (P# C@@F H$ ;hV`p|~r?x|p`#`?OUG` @ey|~y}@xx@ ?Cuo? ꪺ `p|~~|p``CO?`~~|s ??  `h(*0z~*( *.;zb?/jz|~n8B*~ #>.* J/8<* 8n;o>*# ~?/*"( S@x~B x@ ysy|xz* *('gs`p|~~|p` z~|`Յߗ ׅ"@x?'?O?x@ |rʳμϮДԑхԔ  ԐԕєՐ ԐԕЅĄԕՅ!Еє P|}|UT\_W\|P!}\qeUAw]G}wWEU} W}~w_]uUG7}T_]) T@px|xg?p|xp@"|?_PSO|0 ?Uy}~}aA~?p~~p ?y? 꺮 @px|~~|xp@|'|?|r˧? ?? `H(*n*(x` (.?jp> bh:~x* ?kck(+#{>*J .8'+bx>~;nx* !{o{;/" Rp~x*~pscsy|zj* *#g@px|~~|xp@ !r|C| ?"? p>O?'??~p ~y뎽ёĔ  ~x ՐԕѕԐ ԅՐŔ!ѐД @t]w?w]UW^WUpwt@ |yQEU_Gw_UDEWU!_Uy>w_~yUP_?tx_( `Nꂸ쬋ȸꧾʎȸɢ ʸ쫪㿺 ⼫ʈꨋʈ￸#"ּԌљӝ؅ՀӝѝѽєՅLJѝԔؗՕ ѝѿՅ ѽѽџӽՕǟĄՅӽՕM릘ˉꧻ ⯋ʈ ⎺ꨎꣻ꣢ʌ Ύ菾#!ѕЀއѽѽНџՀѿӽŁՀ џОܔՅ ՟Мџѝ݁Օ ӓՅЀߜѝőՕѐџהőՕ P`(~x`@p|8>?@`@ p||p@ @x|p@'?(`8>p<x|>?~xp| @'?|p@`x~ 0<?@`@a a@x~x`p p~O~x`&'p?|@<|x|>|px~  P 0p x?`@?C@0~ C ?" `yՁxՕ ՕO `ԅ ~?9 p x?x@x <` g "Ԕ@pԕ`<Օ ՕO@Օ ` Е ?7X! ~xp|@`pxp`@ `@ @`?||x~ C@0~ """"|p@ Ox|`@ >O ""Օ""  |px~ @`pxp` x@ @`x0~~x| <` !!!x`@ `<?p@>O@G Ѐ !Օ!  !P@px|<|xp@&><>  |pp@@|?  `px?| G~ Օ?ׄOxgp`p  |||w?{}g|w}?q~|M `@Ac1pPT@Օ{|~]w?xꪠ~xp ~`x`誨ʂ~q?~ s_w~q|@??7}a@8{zt@  `*zp `|}{wLp|҂~򪊂x~`sm]s?Gq@ ՀՑՁ~x? ՔՕĝՀՇ?wx~ q_c={~yྟ|?o~_Gx?as 0@ACa ǟ@@PTU`@g~ՕՅ~f}~vn;Ox~@ %~p~xp~ p~@x` Lꪢ?~so~` Ox?oy?A~g@`?=}~?{~?xhQݽհՕ 0 Ç ÃŁǁՀϏԔЁ ՅЅŅŕ  ŕ`@#@OÚꨠ Հ сŅՀ  Հ Հ 꾃ξ  @@M@Đ@߀շ ԂД@ÇԅЇĔ` ŕՕŕđ ą@!@KꎃÆꨪЀчՀ`Ձ ꚎŠۛΆð @,``s ?  a| @` p`p@0 @ p@;N@ @3 0@@@ /8X@p ?q f`wx @1 0@` `@:L` c `@  x|`3=`FF>~ 0X<@ ? 103|0 a| @` p`p@0 @ p@`#~%@0 @`>@3 0@F @ "`p 8X@p 8~?D|f 0xp   f10~x`wx @1x 0@` `@00"0 0$` ``@<@c ` @  8@ x|`~|36`F0X<@ ?  a| @` p`p@0 @ p@`#~.@`@3 0@@@ "`p 8X@p 8~?D|0xp f`wx @1x 0@` `@00"0 05`@<c `@  8@ x|`~|36 |@`  |pp`p  ||  @  |p~?@p @~|` ` xpp  ? x |   x| ` @~@`7@  Ă `@`8$B@ŀ@@ ~(D @K`p`   @ @0DQ@  ’> @8,$B> ?Б0 ($D @J  ` @ @p@C`7@  IJ @@BbBD@꫰ @뮶ႈx`  @K`pՃ| Ս@ @pݝ 01Q@  ²> @`@BBD> ?@ #  @Jā Ճ յ `@   @.P#|~f @`@0p`p`|~?gG?x~{ xx|~|f~p~xCO ?`WST@`x|p`@O@` `xwo~}Gŕac~x|?|pĀx#?8 8$bx `@0p`px|~'8x`?~p~w_~~|~|~xpq?|_X |_ST@`pxp?O`@ `p~o_>}s|q|~|x`?<0?  8P#p~f `p@0p``@@}s?ō_?_ow?x|~ ?|`?xx  8P#p~f p`0p`x|~>s`?x~{y`@`p@O ?`WST`pHxpO@` `xwo~}OՕŇ?~|?|pĀ>|pA 8$bx `p`Pp`px|~?~p~w_ ~x@`p| |_ST@`x|p`|O`@ `p|o_>}s?`@|~>x`??`~  8P#x|L@@`x|O?p{|w? ?spxpL|`?|q1 |@.&'()(@px`@A~@`~o_>{o?G|px|p@??qG~p?1q1$Dp @@p|<Op@|g=~o? |pxpx|p`c~x?1 x>&'(@`8p`~@@x_>}w_x`?>xa qP#`|L @@ 8x0?px~_y~_?s x1 |@.&'()()(#~ `o^}{?>|<>^@x?>x`?a~1q1$Dp @@ C~?gy?o? |'xw?1 p>&'()()"px@@|o^={g?>|<>^nqx| |pp~p qP#`|L `@`@`p|g@?p?s|w?s@`1 |@.&'()(@`p`?~@`~o^={?|x?|?~x`1q1$Dp @`@ `@`x|>?|o=o?|@ `?x?1 p>&'()()@px`@x@@xo_={g@x|>x`>~A>| q0  80@@ `Cx@ 0@`@Lga`  x`| 0pxg|`0p p   ` `@ `N`pp `~?p0`@Gc1@0  0 ฆ|8@`O|?x8 0  88?  `G@oc ` a 8`| 0`@pxp0|`p|0p   `x`p{ x0`|@g1@0  0 0``x078@O`8 0  8>0 C80 A `@c `  8`| x~ |`|c   ``~`p0 x0`@Cg1@0 y 0`|8@xO?C; 0  80@x@l`@Oga`  x`| 0|`0pwp   ` ` f`pp f?p0`@NGc1@0  0 ฆx8@`?x8 0  8@sxA_?  `G@oc ` aC 8`| 0`c|`p|   `8{cn`pa x0`|@g1@0 _C 0 0`8@?On8 0  8>` ?80 A@ `@c `  8`|  |`c   ``8f>`p0 O@x0`@Cg1@0 y 08@xO?C; %h( (#* (( (*("*$   *   (*  |~|`@0p` }||c~p I~`n o|s յ꪿0q@_բꨫx\ Հ*~{`x8x8| x `DH`@@p~|xp`C@_wx|~x cfr|f ? O/c9s?gs{yqAPT@`tv~ys@0q@ DQ Up=0` |=|??_+*UEUU p7L1`|G'SUj*.1UTUTDPU  pcN-2j *+,)% *)5TP@A 0@$ *+*( TETPUTU@!PETU@TUETUAUTPT! =|fc>xB~x@ p Lp>?w?yG?|0s07xO@0sO`_~TQ`@q<O00 05~pp` ?s??_opxp ?>3|x~|xp`p|A}?`?a , L~? L~~OC?/+*BswO'H@`2pMq?~xp0`Tu! *0 @@<@*U` *"* 0`@ 0`O x?0`jJ*-UTXj *h  B0`C 5U UTRZJhp`@-U (  ( !( *( ( ** "* "   *  Մԅ  *~|x@p0p@ }q~pyO?| յI~F^O_yG?ժ g 9@_`ժꪠg`w/|s| g s@;~sOg 0O0_@TQg|`O`0 50sfx@?_`x`r|fY~|~|xp`pO{}<0y$b720?G~O?/+*of? l0`e|?|xp`XV *a0  @`wo*U^ *("  @0`39HRcjJ *-UW\r *L aC 5U UTRZJH`@/X'((( !   %((($!   ")' ! %&$!  #(АȪА H  ߓ !τ(pp p``@ 0  0(pp p`GG`@  0  0(pOnGp9 ;:1p`G\]`@ 0L0(p *p) *!p`GTUTG`@ *#( *(#0LQTUTQ 0(pЃp p`''`@Ќ 0  0(pPUPp p`'(*('`@@UP 0 !*) 0h08<>?><8033  xzx32`08<>?><8033xzx3 2`h9***Ҩ*ժ*2)))҂)Հ)h9*;*n*R*w*2)))҂)Հ)h&(* ( *( + *( * " **"(* "( "("*"  (* ("(*("(" * *(* * *  " * * * ( (   * *  (*( *  *( *    *( (   (* " *( (  * **  "( ( " ** "*  (  (* "(* *"(  (  *( ( **  *  *  * 'UTU(U U@P TUTQUTUTP@P UU UTQUU UEUUPUQT U@PEA@EA@EUTUDQEUEQTETQUP@PTAPTUUQPEPTU@QA@T@TU@AT@ @EUTUPTATTU@UT@UA@@PAUTP@@P@PTU@U@UAU@TUTTP@@TP)@ &(* ( *( * * * " ** (* * (* "("*(  ( * (" ( (" *(* (* *  " * (*  "( (  ( *   * (*( * *( *  (  *   *  (*    *(  ** (* (  (  **( *(  ( *  " (* *( (*  ( **   *( *(*&UTU&U UP T UQEUPTUTP@T UU UQEUU UTUTUEUEQT U@A@DA@EUATDQEDQTUEQUP@QP@PTUTAUPQA@PTU@PE@PUPAUP @AUTU @PTAQUPU@T@TUPA@P@QUTP@PD@PPTUU@UUP@UPT@@PT@' P    (   ( *(      @@@ @@ @P  P UTT@U@ T@$     (**  * (    @ @ @ @ P P U U @ @$ @  Օ     ՕԀ  @@ՕՕhЄ% Ё+/171-)Ё ! ! )-171/+ % &,0220.(   (.0220,&  0 @@ @@   Ё   h Հ@ Ԁ  Ԁ Հ  Ł     Հ h#@@  Հ@@Ԫ     Ѐ#  АРŁ ժ  @     ЁŐĐĀЀ    ĄĐĔՕԐ @ ńЁĐЀ    Ё ĐЀ    ŀԄ ĄՕ  H5 *(*  * D  * *(  PTUTP@@PPUP ZUTP@@P3 *( ( T$ (  *(  PTUTP@@P@@T@U ( ZUTP@PT0 (*(  "*"(* (" (QAQEEUAUTPU ( * *(  *(* *"(" (QEDETU@@T ( *@UTU@UTUPEUTQEuDEQUTPUETATUTUTQ   * **"(*"( "?/*"((*(** * *@P@U@U@U@UTQPEApqTEQTUEPUQUPUE  ( ** *(* (*"(" ?!" ((* **)*(hR (* ( ( (*  *(* * *   * * (  * *  (*( *  *( *    *( (   (* " *( (  * **  "( ( " ** "*  (  (* "(* *"(  (  *( ( **  *  *  * QUUPU @PEA@EA@@P@U@PT P@PTAPTUUQPE PTU@QA@T@TU@AT@ @EUTUPTATTU@UT@UA@@PAUTP@@P@PTU@U@UAU@TUTTP@@TP)@ Q(* (* ( ( *(* (* *  (*  "(  *   * (*( * *( *  (  *   *  (*    *(  ** (* (  (  **( *(  ( *  " (* *( (*  ( **   *( *(*OTUTUU U@A@DA@@P@PTU P@QP@PTUTAUPQA @PTU@PE@PUPAUP @AUTU @PTAQUPU@T@TUPA@P@QUTP@PD@PPTUU@UUP@UPT@@PT@' ((*  *(  **UTUU UUU(*  *(  **UTUU U UU h* *( * " **"(* "( "("*"  (* ("(*("(" * *(* * *  " * * * ( (  @P TUTQUTUTP@P UU UTQUU UEUUPUQT U@PEA@EA@EUTUDQEUEQTETQUP@PTAPTUUQPE* * * " ** (* * (* "("*(  ( * (" ( (" *(* (* *  " * (*  "( (  (P T UQEUPTUTP@T UU UQEUU UTUTUEUEQT U@A@DA@EUATDQEDQTUEQUP@QP@PTUTAUPQA*( * * *(/ @TPTUTETUQUPUPPTPTP@PP@UUTEUTTEP@@P@UT@TP@U@@P EETEUTPQA@U@P@@PTP@U@DAEAEUTUD PPUPEP@QEAQP@TU@PDUQ@UTU@TA@AUQ@P@@ PUETEP@PEP@@U@APUPTTEPPAUPPU@TUPU@UAUUAUTEUDP @TUUT TQTU @P@UTUTUUEPUTP%EUKh    (n{oj*"* (* !*. j (  *j*:?+ * :*(!"+"b !: * *~*nxJ*(*   *#  j /* *z:+:.+z:z*.z+:< * >* (*"' ((  h(h *n?+n*:/+:z*o'( hn*   (;{ :(*{:*:o?o?.(" DI %;L]gw'IZm-\e.S~$-0=kpv| !'4? #(Dd8Yw):\|#Gjnu~2Rt6Yt3W{8Uq?c > M k  7 Z |  # 1 D S ` m t    . = J Q b q ~   ! + 3 @ O a t z  '6CRao} -<Jn9Jr8Tbo<_@d)Hm=Uz$Jp<^f2Fl 0Sx!Df#FXs 4Y~+Ms "(4Y&IRv# 9 Z y !,!C!g!!!!! ")"H"l"""""""#"#@#a#q##### $($7$<$A$F$H$J$o$$$$$%:%^%%%%%%&3&>&`&{&&&&'-'O'd'l's'w''''''((A(]((((()7)Y)`))))))*>*B*F*J*j***** +/+Q+q+++++,',L,n,,,,,$-H-i-|---- ...6.\.}....."/B/h/o/w////////////050Y0~000000 1+1N1t11111242W2r2~222222223@3O3r333334$4F4e4444445?5c55555 6,6Q6t66666797;7_7t7w777788 8@8b8888899)9O9r9z9999 :+:?:e:::::;,;L;a;;;;;<$2>X>l>>>>>?? ?'?M?r????? @D@i@v@@@@A$AGAmAAAAAAB;B`BBBBBBC6C;C^CCCCCCD=DaDDDDDEE4EYE`EEEEEF6FZF{FFFFG)GKdKKKKK L,L=LbLLLLLM=M^MkMrMMMMMMMMMMMMM NN&N+N8NGNVNcNrNNNNNNNNNNNNO"O0O>ONO[OjOyOOOOOOOOOOPP!P.PBPKPXPjPqPPPPPPPPPPPQQQ6Q9Qqdqqqqqqqqqqqqqq r)rHrirrrrrrs9sQstssssst:tAtetmttttttu2uXuouuuuuv:v^vvvvvw*wNwswwwwwwx%xHxnxxxxx y1yVyzyyyyzzz;zWznzzzzzz{.{Q{s{{{{{|||||B|c|p|||||}}=}E}O}W}_}j}q}y}}}}}}}}}}}}!~@~]~~~~~~"Fa=Gjǀ؀ #ELr܁ EkЂ,PmÃ#IfԄ*Qq(Mq@bˇ4Zs{{:*"* * 09;:+* *(* 0zonbn.nh.ln("* *"*(  k +( *1]UUPEEPL\]QTP@uteUDTQTEU@ptVwWTGwsw5UQUQUQ1_]UTUUAAEq_U]UETE`@p|tGtLwUEUQUQUT]]U]UQ'`8,( ( njh*(*"( (@`@xnhnlnhj*(*(  * B~?;+*"* * " ?{;8;"(.(  *(* `oOnl.* *(* (*0?;9;8;:;9;+;2# "* "."  wgQUTUQPD@ pvueuDtPD@=]UQUEUEU|\_U]UEUTQ]Q]\UQQU@wWUAUTUUwy|wPUEUTEU@qx\_\TP]UUEUEUEUwtwWwUWTUB h յ{;*"խ ? ~z* h( ( (*"(z~_wёД}GPQPA՟UT]?EPuw Ԫ  ;:(`ժ  ? ~>z* a( (* (ڪ:~ _Đwݯ  APAG|U7@T  h)! )  !) )) !)!)yٕ (*" * (* *    `P* *"   (*"*"(*  *Ј* (** * (*(" (**jz:"    +Օ+**(*     ( @RForward@LBack?HelpCTRL ZZoomType Y for yes or N for no.Use @U @D and RETURN to select.Type number and press RETURN.Do you think that plant growthrequires energy (Y/N)?Right.Do you think that breathingWrong.Do you think that barkingDo you think that thinking That's right. A cell's growth, a flower's blossoming, a gymnist'sleap -- all activity requiresenergy.Actually, all of these require!energy. Living things need energy!to control and fuel activities. A"cell's growth, a gymnist's leap, a#flower's blossoming -- all activityrequires energy.!Sunlight is the source of energy.Plants and other photosyntheticorganisms convert sunlight intousable energy.$They combine sunlight with compounds such as water and carbon dioxide%from the environment. The end product is GLUCOSE.#This is the glucose molecule. It is"a carbohydrate because it consistsof:CarbonHydrogenOxygen Energy is stored in the bonds ofthe glucose molecule. It is#released when the bonds are broken.!How do you think animals get thisenergy?!Animals get energy from the foodsthey eat. Energy is measured in!calories. Different foods providedifferent amounts of energy.Which of the foods listed aboveprovides the most energy?$Animals, plants, and other organisms#convert food into energy in a care-!fully controlled way. They do not"release all the energy at once. Ifthey did, they would burn.Special molecules control the#release of energy in the cell. What!do you think these molecules are?LipidsEnzymes Carbohydrates"Right. ENZYMES regulate the break-down of glucose molecules.#Some of the energy produced is lost#as heat. The rest is stored for use by the cells.$No. ENZYMES are specialized proteinsthat act as catalysts in living#things. They regulate the breakdown!of glucose molecules. Some of the#energy is lost as heat. The rest isstored for use by the cells.The energy from the glucosemolecule is captured in another"chemical bond. This bond is formedbetween an ADP molecule and a#PHOSPHATE. These are always present in cells.The result is ATP, ADENOSINE!TRIPHOSPHATE. When the cell needs#energy, it uses ATP. It removes the%third phosphate, releasing energy and leaving ADP. ATP is made and used constantly."If you did nothing but rest for 24hours, you would still use the#energy of 88 pounds of ATP. Jog for 20 minutes and you'll consume 22pounds of ATP.ATP is a versatile carrier of!energy. It does a variety of workfor cells. It can make muscles contract.Nerve cells use ATP when they#transmit impulses, creating thoughtand registering sensation.#Plants use ATP to grow and blossom."ATP and the energy it contains are!essential to all aspects of life.FOODCALORIES Cheeseburger563Plum368 oz Fruit yogurt239 1 cup Oatmeal104Chicken drumstick761 oz Swiss cheese1171/2 cup Greenbeans18 0X0j'H^C' M eS fM e'N' MFdDFdMEb'C'+M eS dM e'NH<2'Y0b-MEBSGEMDC'C'+ M ED FM E'C' MdDSfEMfA'N'Mg Dfe -MF SHaMG 'N'MGBDFDMDC'CH'X1K MdCSfDMgB'N'+Mg Sha- B101'Adenine' M ES FMaF'C'+MeCSiDMfA'H'X2c-MBETGKMDC'C'+ M eS dM e'H'-M ES DM E'OH'Y2B-MF WT MF 'C'+ M eS dM e'H'-M ES DM E'OH'-MEcRHjMBe'C'+ MecSrgMf 'O'Mg SrG-MEBSJEMEB'H'X3E-MEbSJjMEc'C'+ M ES DM E'H'-M eS dM e'H'- B023'Ribose'MF SG MF 'O'X4d ME SE ME 'P'+M ED FM E'O'Y4F-M eS fM e'OH' -ME SE MF 'O' MIB'~'MBcMF 'P'+ M ED FM E'O'-M eS fM e'OH' -ME SE MF 'O' MIB'~'MBcMF 'P'+ M ED FM E'O'-M eS fM e'OH'-ME SE MF 'OH'X5IB045'3 Phosphates'0'C'+MdDSdDMeB'H^O' -MddSddMeb'H'-MDdSIiMDd'C'X0 Y0 M eS eM e'C'+Me Se Me 'H^O' -M eS eM e'H' -ME SE ME 'H'G0MF SQ MG 'O'MDDSIIMDDX0 Y0 G0'C'+ MDdSDdMDd'OH' -MDDSDDMEB'H'-MdDSiIMdD'C'+ McdSbdMae'H'-MBESBDMBE'OH'-Mf Ss Me 'C'+ MCdSBdMAe'OH' -MbESbDMbE'H' -MddSiiMdd00'H' M ES DM E'O' ME SD ME 'H'0'O' ME DD ME 'C' ME DD MF 'O'0'H' M ES EM E'C'+ Me Se Me 'H'- ME SE ME 'H'- M ES EM E'C'+ ME DD MF 'O'- M ES EM E'O' ME SE ME 'H'M ES EM E'CoA' H@2O and CO@2#Human cells, dog cells, leaf cells,$and yeast cells; protozoa, platypus,#pomegranate, and pig cells all havesomething in common.!These cells and most others break$down glucose to release energy. They%do so through a process called CELLU-LAR RESPIRATION.'Cellular respiration takes place in the$CYTOPLASM and MITOCHONDRIA of cells. EMPTY LINE$The above mitochondrion is part of a$yeast cell. Do you think that scien-%tists can learn about cellular respi-%ration in humans by studying cellularrespiration in yeast (Y/N)? That's right. Guess again."At the biochemical level, many as-$pects of yeast cells and human cellsare surprisingly similar.#Cells can convert glucose into use-#able chemical energy with oxygen or"without. When they use oxygen, the"process is called AEROBIC RESPIRA-#TION. When they don't, it is calledANAEROBIC RESPIRATION.&Which type of respiration do you thinkyour cells use? AnaerobicAerobicBothRight. Not totally."Aerobic respiration is the primary pathway humans use. However, the#first part of respiration is always#anaerobic, and some human cells can function for a short while using!completely anaerobic respiration.&Which type of respiration do you thinkyeast cells use?%That's partially correct. Yeast, likehumans, use both anaerobic and$aerobic respiration. This makes them%similar to human cells. However yeast!cells can survive without oxygen.#Right. Yeast, like humans, use both"anaerobic and aerobic respiration. This makes them similar to humancells. However, yeast cells cansurvive without oxygen.$Here is a typical yeast cell. Do youthink it is a prokaryote or a eukaryote? Prokaryote Eukaryote#Right. The NUCLEUS is the best clue No. The NUCLEUS is the best clue&that yeast is a eukaryote. As in other%fungi, protists, plants, and animals,%a double membrane bounds the nucleus.#It encloses genetic material in theform of chromosomes.$Another characteristic of eukaryotes%is the presence of mitochondria. Some$cells contain thousands of mitochon-"dria. Each mitochondrion is a mini!power plant that generates usableenergy.!The rod-shaped mitochondrion is a$double-membrane organelle. The outer$membrane separates the mitochondrionfrom the cell's cytoplasm."The inner membrane resembles folds!of ribbon. The long, inward foldsare called CRISTAE.%The cristae are bathed in the MATRIX.%The matrix is the enzyme-rich, liquid"contents of the mitochondrion. The#enzymes in the matrix contribute to"the chemical reactions of cellular respiration.&Reactions take place along the surface"of the cristae. Found here are the$chemicals necessary for the ELECTRON%TRANSPORT CHAIN, a chain of moleculesthat act as electron carriers.#ATP SYNTHETASE, an important enzyme#that forms ATP, is also found alongthe surface of the cristae."The membrane also contains ENZYMES!essential to aerobic respiration."Whether it takes place in yeast or$humans, respiration starts with GLY-$COLYSIS. Glycolysis converts glucose$into pyruvic acid. It takes place in"the cytoplasm and does not requireoxygen."Aerobic respiration requires threeadditional steps.1. Pyruvic acid enters the$cell's mitochondria. It is convertedinto a substance called ACETYL- COENZYME A.%2. Acetyl coenzyme A enters the KREBS"CYCLE where it is broken down into&carbon dioxide, water, and two energy-$carrying molecules, NADH and FADH@2.$3. The energy-carrying molecules en-%ter the electron transport chain. The!energy is converted into ATP, the!usable chemical energy that fuelsall cellular activity.Would you like to review these steps (Y/N)?!Anaerobic respiration also begins%with glycolysis. When yeast cells use#anaerobic respiration, they convert pyruvic acid into ethyl alcohol,%carbon dioxide, and ATP. This process!is called ALCOHOLIC FERMENTATION. PYRUVIC ACIDCO@2+ ETHYL ALCOHOL+ ATP LACTIC ACID$In animals, anaerobic respiration is%called LACTIC ACID FERMENTATION. Lac-!tic acid and energy are produced.Human cells use lactic acid fermentation when they need more!oxygen than is available, such as%during strenuous exercise. The build-"up of lactic acid can cause musclefatigue.#Which process do you think producesmore usable energy?Aerobic respirationAnaerobic respiration!No. Aerobic respiration is a more&Right. Aerobic respiration is the most%efficient way of supplying cells withthe energy they need. Whether they are capturing prey,growing, or pressing keys on a computer, all living things need$appropriate energy to fuel activity.Which of the following providesusable energy?CO@2ATPGlucoseRight.%No. Glucose contains energy that mustbe converted into ATP.#No. CO@2 is a waste product. ATP isbiologically usable energy.!Every cell in your body is an ATPfactory. Your cells constantly"convert the energy in glucose into"the energy in ATP. The first stagein this process is GLYCOLYSIS.Glycoloysis takes place in the#cytoplasm of cells. Here, a brew of"enzymes, phosphates, and electron-$carrying molecules oxidizes glucose.$C@6H@1@2O@6 + 2 NAD@W+@Z + 2 ADP + 2PO@4 (Glucose)@R'2 C@3H@3O@3 + 2 NADH + 2 H@W+@Z + 2 ATP(Pyruvic acid)The above equation summarizes glycolysis. Is any usable energyproduced (Y/N)?#That's right. Some ATP is produced.No. Some ATP is produced.!Do you think that any ATP is usedduring glycolysis (Y/N)?!Yes, it is. The work of producingATP itself requires energy.ATP SCOREBOARDUSEDMADEGAIN24$During glycolysis, the cell uses two!molecules of ATP. But it produces#four. The net gain is two molecules%of usable energy. Press @R to see the"series of chemical transformationsthat is glycolysis.'1. Glucose enters the cell's cytoplasm.#It immediately picks up a phosphate"from ATP. An enzyme catalyzes thisreaction. Press @R to see. %2. The resulting molecule, GLUCOSE-6-#P, is a six-carbon sugar. An enzyme%converts this molecule into FRUCTOSE-$6-P, another six-carbon sugar. Press @R to see.!3. Fructose-6-P gains a phosphatefrom ATP. Press @R to see.#4. The resulting molecule, FRUCTOSE#DIPHOSPHATE, breaks into two three-%carbon molecules of PGAL (phosphogly-%ceraldehyde). Each PGAL has one phos-phate group. Press @R to see.!What catalyzes this and the othersteps of glycolysis?EnzymesOxygenATPYes. Enzymes catalyze theseNo. Enzymes catalyze these reactions."Both molecules of PGAL undergo the"same transformations. Watch one ofthem.No. For each of the two#5. In the fifth step of glycolysis,PGAL picks up an unattached$phosphate. The enzyme that catalyses$this reaction works with a COENZYME.%The coenzyme is the hydrogen acceptor"NAD@W+@Z. It picks up two hydrogen$ions and becomes NADH@2. NADH@2 is a!potential source of ATP in cells.!Press @R to see these transforma-tions.6. The PGAL has now become DPG!(diphosphoglycerate). Note that aHIGH-ENERGY BOND holds the newphosphate to the molecule. When an enzyme breaks this high-energy bond, it transfers the#phosphate to ADP. What is produced?AMPADPATPRight. For each of the two PGAL!molecules, one molecule of ATP is"formed. Remember, you are watching"the pathway of just one of the twomolecules of PGAL.#7. The remaining three-carbon mole-%cule is called 3-PHOSPHOGLYCERATE. An!enzyme moves the phosphate to themiddle carbon. Press @R to see. 8. The molecule is now called 2-PHOSPHOGLYCERATE. In the next#transformation, an enzyme removes a%molecule of water. The phosphate bond$becomes a high-energy bond. Press @Rto see.$9. The molecule is now PEP (Phospho-!enolpyruvate). Finally, an enzyme$transfers the phosphate from the PEP#molecule to ADP. The result is ano-$ther molecule of ATP plus a molecule!of pyruvic acid. Press @R to see.%Remember, two molecules of ATP and of#pyruvic acid are actually formed at this stage, one each for the twomolecules of PGAL.!Glycolysis is complete. Would you!like to review the process (Y/N)?%To recap, glycolysis uses enzymes and#energy to transform one molecule of#glucose into pyruvic acid, ATP, andNADH@2.%The ATP formed during glycolysis does important work for the cell. The"NADH@2 provides hydrogen and elec-$trons for building molecules. It may#also help produce more ATP later incellular respiration."Remember, each molecule of glucosemakes a net contribution of two%molecules of ATP to the cell's energystore.GLUCOSE GLUCOSE-6-P FRUCTOSE-6-PFRUCTOSEPGALDPG3-PHOSPHOGLYCERATE2-PHOSPHOGLYCERATEPEP PYRUVIC ACID DIPHOSPHATENAD@W+@Z Fumarate. Succinate. Alpha-keto-%glutarate. These may sound like words#in a magician's spell, but they are$really the names of molecules formedduring the Krebs Cycle.#The Krebs cycle is the second stage"of cellular respiration in aerobic organisms. The Krebs cycle makes electrons available for the final stage of"aerobic respiration. Electrons re-%leased during the cycle attach to two%ACCEPTOR MOLECULES, NAD@W+@Z and FAD. EMPTY LINE In the process, the breakdown of$glucose that began during glycolysis#is completed. Glucose is now broken$down all the way into carbon dioxide"and water, and some ATP is formed.What is the end product of glycolysis?Carbon dioxide Pyruvic acidRight.Wrong."Pyruvic acid is the end product of glycolysis.!directly into the Krebs cycle. It"first loses a carbon dioxide. What#remains is an acetyl group attachedto Coenzyme A."This transformation, like those of the Krebs cycle itself, releases#electrons and H@W+@Z. Both are cap-tured by the acceptor molecule NAD@W+@Z. However, pyruvic acid doesn't go"The Krebs cycle takes place in the!mitochondria of cells. Most of ittakes place in the matrix, theliquid, inner-chamber of themitochondrion.The Krebs cycle begins with the!introduction of acetyl Coenzyme A%(acetyl CoA). What follows is a cycle"of eight chemical transformations."At four critical points, electrons#and H@W+@Z are released to acceptormolecules. In addition, ATP is"formed. Press @R to see when these important products are released. Also, carbon dioxide is released!at two points in the Krebs cycle."Press @R to see when it is formed.$To learn more about the Krebs cycle,"move the cursor from one number to!the next. Press RETURN to select.Press @R when you are done.!1. In the first step of the Krebs"cycle, acetyl-coA gives its acetyl$group to OAA (oxaloacetic acid). Thenew molecule is citric acid. #2. An enzyme transforms citric acidinto isocitric acid. !3. An enzyme transforms isocitric"acid into alpho-ketoglutaric acid.Carbon dioxide, electrons, and%H@W+@Z are released. NAD@W+@Z acceptsthe H@W+@Z, becoming NADH@2. 4. In another enzyme-controlled!reaction, alpha-ketoglutaric acid#releases carbon dioxide and H@W+@Z.!Once again, NAD@W+@Z picks up theions and electrons."The remaining molecule attaches to!coenzyme A, forming succinyl CoA. %5. Succinyl CoA loses CoA. It becomes%succinic acid. This reaction releases"enough energy to form one moleculeof ATP.!6. Succinic acid loses H@W+@Z and#electrons. It becomes fumaric acid.&The acceptor molecule FAD picks up the$ions and electrons, becoming FADH@2.7. Fumaric acid gains H@2O. Itbecomes malic acid.%8. In the final reaction of the Krebs%cycle, malic acid releases H@W+@Z and&electrons. It becomes oxaloacetic acid%(OAA). NAD@W+@Z picks up the ions and"electrons to form another molecule of NADH@2.%What do you think happens to the OAA?It feeds into the next stage ofcellular respirationIt perpetuates the Krebs cycle"Yes. The OAA joins with the acetyl!No. The OAA joins with the acetylgroup from another molecule of!acetyl CoA. It forms citric acid,perpetuating the Krebs cycle.$The Krebs cycle completes the break-%down of glucose begun during glycoly-sis. In the process, NADH@2 and"FADH@2 are produced for use in the#final stage of aerobic respiration.#During the last stage, the Electron"Transport Chain, the cell producesover 90 percent of the ATP that"results from cellular respiration."Take a deep breath. The oxygen you inhale is essential for the last#stage of aerobic respiration -- theelectron transport chain (ETC).%The ETC is a series of reactions that#take place in the inner membrane of%mitochondria. Oxygen is the last mol-ecule in the chain.#The ETC uses electrons and hydrogen$ions released during the Krebs Cycleto drive the formation of ATP. What Krebs cycle product carries electrons and H@W+@Z to the ETC?CO@2H@2ONADH@2%No. CO@2 is a waste product that will$be exhaled. NADH@2 is a hydrogen and electron acceptor. So is FADH@2,#another product of the Krebs Cycle.!No. H@2O is important in both the"Krebs Cycle and the ETC, but it is#not an acceptor molecule. NADH@2 is#the hydrogen and electron acceptor.$So is FADH@2, another product of the Krebs Cycle.Right. NADH@2 is a hydrogen and electron acceptor. So is FADH@2,#another product of the Krebs Cycle.%NADH@2 and FADH@2 both pass electrons"and hydrogen ions to the ETC. When"they do, they initiate a series of%reactions that produces 90 percent ofthe body's ATP. Let's see how.You can think of the ETC as amolecular bucket brigade that#passes electrons along. Press @R tosee.#As the electrons pass from molecule%to molecule, energy is released. This$energy transports hydrogen ions from%the matrix through the inner membrane!of the mitochondrion. Press @R tosee.$The hydrogen ions accumulate outsidethe membrane. Their controlled"passage back into the matrix fuels!the formation of ATP. Press @R tosee."Notice that the hydrogen ions pass%back through special channels. These$channels contain ATP SYNTHETASE, the#important enzyme that catalyzes ATP formation from ADP and phosphategroups.!Not all of the hydrogen ions pass$through the ATP synthetase, however.#At the end of the ETC, each pair of$energy-depleted electrons joins with#two H@W+@Z and oxygen to form H@2O.Press @R to see.$Because oxygen is the final electron!acceptor, the ETC cannot function without it.%Would you like to review the steps of$electron transport in greater detail(Y/N)?"The coupling of electron transport%with the passage of H@W+@Z out of and into the mitochondrial matrix is"the CHEMIOSMOTIC HYPOTHESIS. It is%scientists' best guess at how the ETC"functions in the formation of ATP.#Three ATP form for each molecule of NADH@2 that enters the ETC. EachFADH@2 accounts for 2 ATP."Therefore, the 10 NADH@2's and two%FADH@2's released during aerobic res-$piration account for 34 ATP. Is this$all of the ATP formed during aerobicrespiration (Y/N)?!That's right. Some ATP was formed!No. Remember, some ATP was formed#directly during both glycolysis and the Krebs Cycle. The above chart$summarizes the total number of ATP's%formed from each molecule of glucose. Aerobic respiration is almost 20#times more efficient than anaerobic%respiration! The next time you take a#deep breath, think about the oxygen$and the energy it liberates from thefoods you eat.%1. NADH@2 from the Krebs Cycle enters$the ETC. It gives its two hydrogens#to the first acceptor molecule. The%NAD returns to the Krebs Cycle. Press @R to see.%2. The first acceptor molecule passes"two electrons to the next carrier.$It also releases two H@W+@Z into the"outer compartment of the mitochon-drion. Press @R to see.$3. As the electrons pass through the next two molecules, they releaseenergy. This energy is used to$transport two H@W+@Z from the matrix%to the outer compartment. Press @R tosee.#4. FADH@2 contributes its hydrogens$and electrons directly to the fourth"acceptor molecule. This results in%another two H@W+@Z reaching the outer#compartment. The FAD returns to theKrebs Cycle. Press @R to see. 5. The electrons from the NADH@2"continue along the ETC. The energy they release transports two more H@W+@Z to the outer compartment.Press @R to see.$6. The energy-depleted electrons and$two H@W+@Z from the matrix join with%oxygen to form H@2O. Press @R to see.#7. The H@W+@Z that have accumulated%in the outer compartment pass through"the ATP synthetase, catalyzing the"formation of ATP. Press @R to see. Would you like to review the ETC again (Y/N)?H@W+@ZH@W+@Z H@W+@ZO@2FADH@2e@W-@ZH@2O0'C'+MdDSdDMeB'H^O' -MddSddMeb'H'-MDdSIiMDd'C'X0 Y0 M eS pM e'C'+ Me Se Me 'H' -M eS eM e'H'-ME SE MF 'OH'X1GY1 G0MF SQ MG 'O' MDDSIIMDD'C'+ MDdSDdMEb'H'-MDDSDDMEB'OH'-MdDSiIMdD'C'+ McdSbdMae'H'-MBESBDMBE'OH'-Mf Ss Me 'C'+ MCdSBdMAe'OH' -MbESbDMbE'H' -MddSiiMddG1'H' Mb SE ME 'P'G0'C'+ MdDSdDMeB'H' -MFbSTjMG 'O'ME STJMFC'C'X0 Y0 MDDSDDMFB'OH'G0MDcSFfMCd'C'+MD SD MF 'OH'X1GY1 -Me Sd Mf 'H' -M eS eM e'H'G0MdCSiIMdD'C'+ McdSbdMae'H'-MBESBDMBE'OH'-Mf Ss Me 'C'+ MCdSBdMAe'OH' -MbESbDMbE'H' -MddSiiMdd0'H' M ES EM E'C'+ME SD MF 'O'X0 Y0 ME SE ME 'P' -Me Se Me 'H'-M ES EM E'C'+ME SD MF 'OH'X2 Y2 -Me Se Me 'H'-M ES EM E'C'+ ME DD MF 'O'-M ES EM E'H'X1 Y1 G1'H''O' MJC'~'MIc'P'G1'O'MJC'~'MIc'P'G1'OH'G0'O'ME SE ME 'P'G2'OH'G0'OH'G2'O'ME SE ME 'P'G0'OH'Mf Sd MeEX3 Y3 S EG2ME SE ME 'P'G3D EG2MJC'~'MIc'P'G3D EG2Mf Sd G2MJC'~'MIc'P'G2Mf Dd G0'H'Mf Sd G3S EOxaloacetic acid + Acetyl CoA@R@U@D Citric acidH@2OCoAIsocitric acid+ NADCO@2Alphaketoglutaric acid + NADH@2!Alphaketoglutaric acid + NAD@W+@ZSuccinyl CoA + NADH@2 + CO@2Succinyl CoA + ADP + P@Zi@W @RADPP@Zi@WATPSuccinic acid + CoA + ATPSuccinic acid + FADFumaric acid + FADH@2Fumaric acid + H@2O Malic acidMalic acid + NAD@W+@ZOxaloacetic acid + NADH@2#Organisms need ATP to carry out the!variety of activities involved in%staying alive. When an organism needs#extra energy, its metabolism speeds&up to produce more ATP. In making ATP,%the organism consumes oxygen. This is'aerobic respiration. If an animal needs!more ATP than aerobic respiration#can provide, it uses an alternativepathway: anaerobic respiration.'In this lab, you will monitor the shift%from aerobic to anaerobic respirationin two human subjects.$PURPOSE: To test the effects of dif-"ferent energy needs on the rate of"aerobic respiration in a white ratand a white mouseMETHOD: Oxygen consumption is a#reliable measure of rate of aerobic"respiration. In this lab, you will"measure oxygen consumed by a white!rat or a white mouse running on a%treadmill at various speeds. You will"determine whether one or the other$animal requires more oxygen per gram!of body weight to meet its energyneeds.%SET-UP: Your set-up includes a tread- mill contained in a vessel and a#manometer for measuring oxygen con-#sumption. Would you like to see the set-up (Y/N)?"HYPOTHESES: Select a hypothesis totest: Both animals increase oxygen use$with increased demand, but the mouse consumes more oxygen per gram ofbody weight than the rat. Both animals increase oxygen use"with increased demand, but the rat consumes more oxygen per gram ofbody weight than the mouse. Both animals increase oxygen use"with increased demand, and consumeabout the same amount of oxygenper gram of body weight. PROCEDURE:1. Choose an organism.2. Choose a speed.3. Run the experiment.4. Record your results. 5. Run the experiment again at adifferent speed. Complete fivetrials. 6. Select the other organism andrepeat the experiment.ANIMALSPEEDRUNGRAPH?HELP White ratWeight: 384 grams White mouseWeight: 21 grams$If you change the animal before com-"pleting five trials, you will lose#the data for your current series of%trials. Are you sure that you want to change (Y/N)?Press SPACE to see choices andRETURN to select.0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.0km%When you press @R the experiment will$begin. Read the scale on the manome-ter to measure oxygen consumed.#This trial is complete. Record your numeric data.Enter data and press RETURN.!You have completed this series of!trials. Would you like to compareyour data to the ideal (Y/N)?Press SPACE to see choices andRETURN to select.$Do you want to run another series of trials (Y/N)?$You have not completed enough series#to draw reasonable conclusions. Are%you sure that you want to exit (Y/N)?$You must select both an animal and aspeed before you can run the experiment.$You must select an animal before youcan run the experiment.&You must select a speed before you canrun the experiment.Press @R to continue.ml O@2/gkm/hr%The range of possible readings is 0.0to 8.0 ml. of oxygen consumed.#Press @R to reenter data or press ? for help.$You have not conducted enough trials#to draw reasonable conclusions. Are%you sure that you want to exit (Y/N)?%You have not run any experiments. Are%you sure that you want to exit (Y/N)?%The range of possible readings is 0.0to 5.0 ml of CO@2 produced.Do your results support yourhypothesis (Y/N)?#Right. Which of the remaining hypo-theses do your results support? No. The first hypothesis is sup-$ported. Both animals increase oxygen$consumption with increased activity,"but the mouse uses more oxygen pergram of body weight.!No. Your hypothesis is supported. PURPOSE: To monitor the level of!lactic acid in the blood of human$subjects doing exercise for variablelengths of time RATIONALE: A rise in lactic acid"levels in the blood indicates that$skeletal muscles are using anaerobic%respiration as a means of meeting theneed for rapid ATP formation.METHOD:$To measure lactic acid in blood in a$real lab, you would add the hydrogen"acceptor NAD@W+@Z and an enzyme to$the blood. NAD@W+@Z reacts with lac-!tic acid to form pyruvic acid and#NADH@2. An increase in NADH@2 means$an increase in lactic acid. The com-$puter will simulate this process foryou.In this lab you will:%1. Read the absorbance of NADH@2. You do this by exposing the blood to!light of a wavelength that NADH@2#absorbs. The higher the absorbance,the more NADH@2.$2. Consult a table to convert absor-!bance of NADH@2 into the level of lactic acid.%SET-UP: Your set-up includes a tread-%mill on which your subject will exer-$cise, and a lab with a light source,"a tube of blood, and an instrumentthat measures light absorption. Would you like to see the set-up(Y/N)? HYPOTHESES: An unfit individual will produce"higher levels of lactic acid for a!longer period of time than will afit individual.$A fit individual will produce higher"levels of lactic acid for a longerperiod of time than an unfit individual.#An unfit individual and a fit indi-"vidual will show similar levels oflactic acid over time. PROCEDURE:1. Select a subject.2. RUN the experiment."3. Watch the timer. Press SPACE tostop exercise and sample blood.$4. Read the meter to determine light'absorbed. Then use the table to convert"absorbance values into lactic acidlevels. Record your results. #5. Run 5 trials at different times.!6. Repeat the experiment with theother subject.SUBJECTRUNGRAPH?EXITFit individualUnfit individual%You can let your subject exercise for%up to 90 minutes. Press SPACE to stop%the exercise and take a blood sample.  #Your blood sample has been treated.#Press @R to measure light absorbed.Record your numeric data.Enter data and press RETURN.%Use the above table to convert absor-&bance to milligrams of lactic acid per'deciliter (dl) of blood. Enter results. $You must select a subject before youcan run the experiment.%If you change the subject before com-"pleting five trials, you will lose#the data for your current series of%trials. Are you sure that you want to change (Y/N)?%The range of possible readings is 0.0&to 2.0. Press @R to reenter your data.!You have completed this series of#trials. Select the other subject tobegin your next series.%Graphs of your results will appear on%the next screen. Review them careful-ly before proceeding.Do your results support yourhypothesis (Y/N)?%SUBJECT: Lets you select either a fit%individual or an unfit individual forthis experiment.&ANIMAL: Lets you select either a whitemouse or a white rat.!SPEED: Lets you set the speed, in"kilometers per hour, at which youranimal will run.#Glycolysis is an anaerobic process.!Its end product, pyruvic acid, is#sometimes broken down anaerobically and sometimes aerobically. Yeast!are capable of both anaerobic and%aerobic respiration. In this lab, you"will explore the rate of anaerobic"respiration in this organism under#different conditions. You will mea-"sure the end products of anaerobic respiration.%PURPOSE: To test the ability of yeast%to anaerobically metabolize a varietyof sugars and sugar substitutes#METHOD: Add a sugar or a sugar sub-$stitute to yeast cells, then measure$CO@2 production over time as a means#of measuring anaerobic respiration.#SET-UP: Your set-up includes a cul-#ture of yeast cells, flasks of test#solutions, and a manometer for mea-!suring CO@2 production. Would you!like to see the set-up now (Y/N)? HYPOTHESES:Select a hypothesis to test:"Yeast will ferment all sugars, butnot sugar substitutes. Yeast will ferment some, but not"all, of the sugars and none of thesugar substitutes.$Yeast will ferment all of the sugars!and all of the sugar substitutes. PROCEDURE:1. Select a sugar.2. RUN the experiment.$3. Record your results in the table.4. Repeat the experiment with a$different sugar or sugar substitute.5. Complete six trials for bestexperimental results. RATIONALE: If yeast ferments the&sugar or sugar substitute, it produces#CO@2. The CO@2 forces the liquid in%the fermentation chamber up the mano- meter, where it can be measured.SUGARRUNGRAPH?EXITGlucoseSucroseLactoseRibose AspartameMannitolGlucose is a six-carbon sugar.Sucrose is a 12-carbon sugar.Lactose is a 12-carbon sugar.Ribose is a five-carbon sugar. Aspartame is a sugar substitute.Mannitol is a sugar substitute.$Press @R to release yeast cells into the flask. Read the manometer tomeasure production of CO@2.Press @R to begin.Press RETURN to cancel."You must select a sugar before youcan run the experiment."You have not conducted any experi-$ments. Are you sure that you want to exit (Y/N)?$You have not conducted enough trials#to draw reasonable conclusions. Are%you sure that you want to exit (Y/N)?%Do these data support your hypothesis(Y/N)?#Which two sugars can yeast ferment?ml CO@2!SUGAR: Lets you select a sugar orsugar substitute to test.$RUN: Tells the computer to begin the experiment.!GRAPH: Lets you go back and forthfrom a table to a graph showingexperimental results.%EXIT: Tells the computer that you arefinished with the lab.ELECTRON TRANSPORT CHAIN$Many organisms, including all plants and animals, need oxygen to live$because oxygen is the final electron"acceptor in the Electron Transport#Chain (ETC). If the ETC is blocked,#insufficient ATP is formed, and the$organism dies. In this lab, you will$study the effect of various substan-ces on the ETC in mitochondria.&PURPOSE: To test the effect of varioussubstances on the ETC$RATIONALE: As the ETC functions, ADP#and phosphate bind to form ATP. You$can therefore follow the activity of"the ETC by measuring the amount of"free phosphate. You measure the a-%mount of free phosphate by monitoringits light absorption. METHOD:$1. Expose a solution of mitochondria"and succinate to light. As the ETC%accepts electrons from the succinate,"phosphate binds with ADP and lightabsorption decreases. 2. Add various substances to the mitochondrial solution to see if#absorbance remains stable, thus in-#dicating that the ETC is inhibited.$SET-UP: Your set-up includes a light#source, a tube containing mitochon-!dria and succinate; an instrument#that measures light absorption; and"substances to add to the mitochon-$dria. Would you like to see the set- up (Y/N)? PROCEDURE:1. Run a control to determinebaseline absorbance levels.2. Select a substance.3. RUN the experiment.4. Read the meter to measure$absorbance, and record your results.%5. Repeat the experiment with another substance.6. Complete six trials for bestexperimental results."All of the poisons but none of the!antibiotics will inhibit the ETC.#Some of the poisons but none of the!antibiotics will inhibit the ETC.#Some of the poisons and some of the!antibiotics will inhibit the ETC.CONTROL SUBSTANCERUN?EXIT%Your control run will provide data on light absorbance when the ETC is functioning.Press @R to begin.%Record your results. You will compare!absorbance values for the rest of%your trials with this value to deter-mine whether or not the ETC is functioning.You have already run a control.Control AntimycinArsenicBotulin Carb monoxCurareCyanide PenicillinRotenone Antimycin AArsenicBotulinCarbon monoxideCurareCyanide PenicillinRotenone!Antimycin A is an antibiotic that"controls the growth of some fungi.Arsenic is a poison used as aninsecticide and weed killer.$Botulin is a food poison produced bycertain bacteria."Carbon monoxide is a poisonous gasproduced during combustion.&Curare, an ancient poison, is a muscle'relaxant sometimes used during surgery.#Cyanide is a poison produced duringmany industrial processes. Penicillin is an antibiotic that%prevents the growth of some bacteria.%Rotenone is a poisonous plant product!used to kill rodents and insects.%When you press @R the experiment will&begin. Read the meter to measure light absorbed."You must select a substance beforeyou can run the experiment.%You have completed this trial. Recordyour results in the table.are out of range%The range of possible readings is 0.0 to 2.0 nm.Press @R to reenter data.!The range of possible values is 0to 60.%Each mark on the manometer represents#0.1 milliliter. When the experiment!begins, the manometer fluid is at#the 0.0 ml mark. During the experi-"ment, oxygen is consumed, allowing fluid to enter the manometer. To$measure how much oxygen is consumed,%read the fluid line at the end of the%experiment. Record your answer with a%digit both before and after the deci-mal point, e.g., 0.1 ml.You have not conducted the full#number of trials. Are you sure thatyou want to exit (Y/N)?#Yes. Some, but not all, poisons andantibiotics inhibit the ETC.Right. Which of the remaininghypotheses is correct? No. Your hypothesis was correct.Some, but not all, poisons andantibiotics inhibit the ETC.#No. That hypothesis is not correct.%Some, but not all, of the poisons andantibiotice inhibit the ETC.$Yeast ferment only two of the sugars"and none of the sugar substitutes.%Both animals increase oxygen consump-%tion with increased activity, but the"mouse uses more oxygen per gram of body weight.&The Krebs Cycle is the second stage ofcellular respiration in aerobic$organisms. It is closely linked with'the Electron Transport Chain (ETC), the#final stage of aerobic respiration."For the Krebs Cycle and the ETC to"function, an organism must consume$oxygen. The more energy the organism#needs, the more oxygen it must con-'sume. In this lab, you will monitor how%rate of oxygen consumption changes as%energy needs change for a white mouseand a white rat.%Each mark on the manometer represents#1.0 milliliter. When the experiment!begins, the manometer fluid is at#the 0.0 ml mark. During the experi-ment, CO@2 is produced, pushing$fluid into the manometer. To measure#how much CO@2 is produced, read the#fluid line at the end of the exper- iment. Record your answer with a%digit both before and after the deci-mal point, e.g., 0.1 ml.GlucoseSucroseLactoseRiboseAspart.Mannitolt.Mannitolntensities of light"SET-UP: Two set-ups are available.!One lets you count the bubbles of#oxygen produced. The other lets youmeasure volume of oxygen in a#manometer. Do you want to see theseset-ups (Y/N)?"HYPOTHESES: Select a hypothesis totest: Rate of photosynthesis increasescontinually as light intensity Rate of photosynthesis increases$as light intensity increases until amaximum level is achieved.Rate of photosynthesis isindependent of light intensity. PROCEDURE:A. Choose a set up.B. Choose a light intensity.C. Run the experiment. Observeoxygen production.D. Record your results."E. Repeat the experiment at a dif- ferent light intensity. Complete!five trials for good experimentalresults. increases.SET-UPLIGHTGRAPHRUNEXIT?TABLETEMP"This set up lets you count bubbles of oxygen.Press SPACE to see choices andRETURN to select.The experiment simulates lightexposure for one minute.#This set up lets you measure volume#of oxygen produced. The oxygen willdisplace water in the tube.This experiment simulates lightexposure for one hour.You will have better data from which to draw conclusions if you"try different values with this set#up. Do you still want to change the set up (Y/N)?LIGHT INTENSITY: Botanists use"microEinsteins (uE) to measure the"intensity of light hitting a leaf.#In shade, leaves receive 100 uE; infull sun, 2000 uE.!When you press @R, the experimentwill begin. You must count thebubbles of oxygen.Press @R to begin.!When you press @R, the experiment#will begin. You will read the scale"on the manometer to measure oxygen produced.Would you like to compare yourexperimental results with the ideal (Y/N)?!You have completed this series of!trials. Would you like to compareyour data to the ideal (Y/N)?#This trial is complete. Record your numeric data.Enter data and press RETURN.!Do you want to run another seriesof trials (Y/N)?Press @R to continue.!You must select both a set-up and$a light intensity before you can runthe experiment.The number of possible oxygenbubbles is 0 to 40.Press @R to reenter data.!The range of possible readings is0.0 to 1.0 ml.!Press @R to reenter data or press ? for help.You have not conducted enoughtrials to draw reasonable"conclusions. Are you sure that youwant to exit (Y/N)?!You have not run any experiments."Are you sure that you want to exit(Y/N)?Do your results support yourhypothesis (Y/N)?Right. Which of the remaining#hypotheses do your results support?Which of the above graphs best#represents the relationship betweenlight intensity and the rate ofphotosynthesis?!Right. These results best support"which of the following hypotheses:"No. The correct graph is number 2.#These results best support which ofthe following hypotheses:Right.#Now here's a thought to ponder: Why%does the rate of photosynthesis level off? Could you increase the rate%further by changing another variable?!This hypothesis is only partially correct. Greater light intensity increases rate of photosynthesisonly to a point, then the rate levels off.No. The second hypothesis is correct. Greater light intensity increases rate of photosynthesisonly to a point, then the rate levels off.No. Your hypothesis isProcedureSet Up: Lets you choose your instrument.Light: Lets you select a light intensity.!Table/Graph: Lets you go back andforth from a table to a graph"showing your experimental results. Run: Tells the computer to beginthe experiment.!Exit: Tells the computer that youare finished with the lab.#Press P to review the procedure forrunning this experiment.!Each mark on the manometer repre-sents 0.1 milliliter. When the"experiment begins, water fills the manometer up to the 1.0 ml mark.During the experiment, oxygen displaces some of this water. To measure how much, read the water"line at the end of the experiment.Record your answer with a digit!both before and after the decimalpoint, e.g., 0.1 ' !"#$%&'()11 1}11 1UKNl1}1HMO HO-HCellular RespirationG# HP-H;<The Energy of GW RespirationG}hiWW>4#F8eA<Introduction toGWCellular RespirationG}hiWW>4$8&A< GlycolysisG}h iWW>4%8A< Krebs CycleG}h iWW>4&8A<Electron TransportGWChainG}hiWW>4_'8AjMKcd HMOxHMO HQa CEWEWEWEef6daMFOa CEWEWEWEW EW EW EefKd HMkOaFOFHQa C EW EWEWEWE I[2aMFOa C9E8EWEWEWEefd HMkOaFOp HM8 ONHDGLUCOSEGN8HQ#H AnaerobicG(jHENERGYGHQ#HAerobicGjHENERGYGaCEWEWEWEWEWEef HMkOaMFOp HM8 ONHDGLUCOSEGN`*HMO`ID FaCEWEW1 1( I;< EW> 18&A< EW> 18A< EW> 18ABaMFO8HQ(jHENERGYGHQjHENERGYGaC9 E8 F\aMFO 1aEWEWEWEWEWEef HMkOaMFOp HM8 ONHDGLUCOSEGN`*HMO`ID FaCEWEW1 1( I;< EW> 18&A< EW> 18A< EW> 18ABaMFO8HQ(jHENERGYGHQjHENERGYGaC 19EWEWEWEWE8EWEWEWEWEefd HMkOaFOFHQ`*HMO`ID FaCEWEWE1 1( I;<EW> 18A<EW> 18ABhaMFOAHM%O=HNUCLEUSGaC 19E8EWEW EW EW EW EefZdaMFO#HMOH MITOCHONDRIONGaC EWEWEWEWEWEefd HMkOaFOFHQ #HOUTER MEMBRANEG  HMOaCEWEWEWEe HMkOFHQAHM%O=HNUCLEUSGfMdaMFONaOHMONKHCRISTAEGaCEWEWEefdN{<HMON58HMATRIXGaMFOaCEWEWEWEWEWEe HMkOaFOFHQ #HOUTER MEMBRANEG  HMONaOHMONKHCRISTAEGfd HMkOaFO !HQ 1aC EW!EW"EW#EW$EnHELECTRON TRANSPORT CHAINGHM Oe HMkOaFOFHQ #HOUTER MEMBRANEG  HMONaOHMONKHCRISTAEGfQdaMFOC%EW&EW'Ev_HATP SYNTHETASEG HMOefvdaMFOaC(EW)Ee HMkOaFO !HQnHELECTRON TRANSPORT CHAINGHM Ofd HMkOaFO*HQM? HGLUCOSEGNN) HbONaCEWEWEWEWEWEe HMkOaFO !HQnHELECTRON TRANSPORT CHAINGHM Ov_HATP SYNTHETASEG HMOf^N) HbON2#H PYRUVIC ACIDGN)#HbONaMFOaCEWEef&aMFOaC EW EW EW EefJaMFON)#HbON54H ACETYL-CoAGN)4HbOefdN)4HbON RHKREBSG \HCYCLEGNEH2ONaC EWEWEWEefaMFONEH2ON?HELECTRONGIHTRANSPORT SYSTEMGN<H:ONaCEWEWEWEWEefMaMFON<H:ONbHATPGaCEWE I[93( yd HMkOaFOC7HE IF IE I E I!EaEWEWEWEWEWEefcd HMkOaFOC7HE IF I"E I!ECaEWEWEef1daMFOaCEWEWEWEWEW Eef HMkOaFOMp H8 ONHDGLUCOSEGN8HQHQ7iH? GiH? G*HMO`ID FaC EW EW1( I;< EW>8A< EW>8ABaMFORHS(iHENERGYGaC 9E8EWEWEe HMkOaFOC7HE IF I"E I!ECf5tKcd}1 HMOxHO1VHQVHQ 1:1aCEWEWEWEef{d4$ !HQnHELECTRON TRANSPORT CHAINGHM O_HOXYGENG]HOaCEWEWEWEefd4$*HQM? HGLUCOSEGN<H;OEH2ON RHKREBSG \HCYCLEG?HELECTRONGIHTRANSPORT CHAINGbHATPGNaC EW EW Eef 1aMFON<H;OEH2ONbHATPG*HMO`ID FaC EW EW1( I;<EW> 182A<E<  H> 18A<EW> 18ABwCaMFOYHEa9EWEWEWE9EWEWEWEWEWE9EWEWEef9aMFOeH!FaCEWEW EW!EW"Eefd4$ !HQaCEWEWEWEUNsdHF\sdHM( OclHF IFDH4H+H4HDHefdckHM- OaMFOaCEWEWEWEW EW EUZH!F I!FDHXHNXHM O4H+HHN!F4HDHDHXHNXHM O4H+HHN!F4HDHefdaMFO-THADPGW+ GWP GaC EW EW EWEWEUiH!FxH!FH!FH!FH!FH!F(11 QH!F HM O \ 1 1 d98Q'HM  OnZH!F \Q1H  O}ZH!F \Q<H  OZH!F \QFH  O6dH-THM"O-_HATPGZH!F \QPH  OZH!F \QZH  OZH!Fe4$ !HQfZaMFOaCEWEWEWEWEWEe4$ !HQH!FH!FfPaMFOaCEWEWEWE 1WE1WEU DH!F IHMOHNHM O+H4HDHNZH#F DHM O IHMOe4$ !HQiH!FxH!FH!FH!FH!FH!FH!FH!FfCdNaMFOaCEWEWEWEW EW!E I[93<d4$ <H CM  (CxHAdenosine triphosphateGxHMOaCEWEWEWEWEWEe4$ !HQfd4$F(H M2PFH1ATP SCOREBOARDG1P2H1 GF I = 3 ATPGJ?HMOPHH1 G!F I = 2 ATPGaCEWEW Eef4$F(H MFPFH1ATP SCOREBOARDG1P2H10 GF I = 30 ATPGJ?HMOPHH2 FADH2G I = 4 ATPGJUHMOP]HTOTAL G I = 34 ATPGaC EW EW EW EWE I[-d4$AH MZPFH1ATP SCOREBOARDG1K#H GlycolysisG I = 2 ATPGE0HMOK9H Krebs cycleG I = 2 ATPGEFHMOKOHETCG: I = 34 ATPGE\H MOKfHTOTAL G% I = 38 ATPGaC9E8EWEWEWEWEefYd4$1VHQVHQ 1:1aCEWEWEWEWEWEef5cd4$ !HQa CEWEWEWEWEUNsZHF\sZHM( OdlHF GFDHe4$ !HQ30fdaMJFOdjH2 Oa CEWEWEW EW EUZH!F I!FDHiHN!F I!FDH4HefdaMJFOa C EW EW EWEWEWEU4H+HXHNXH2O+HNH!F I!F+H4He4$ !HQDHNfdaMJFOa CEWEWEWEWEWEUZH!F\YHM( OiHF FADG4HHNH!F I!F4He4$ !HQiH!F I!F4HNfdiHM2 OaMJFOa CEWEWEWEWEWU4HHN!F I!F4HDHe4$ !HQH!F I!F4Hf9daMJFOa CEWEWEU DH!FIHMODHHNMH( O4HDHN DHM OIHMOZH!Fe4$ !HQiH!F I!FH!F I!FH!F I!F4HfdZHM( OaMFO-THADPGW+ GWP Ga CEW EW!EW"EU(11 QH!F HM( O \ 1 1 d98Q'HM  OnZH!F \Q0H  O}ZH!F \Q:H  OZH!F \QDH O6dH-THM"O-_HATPGZH!F \QNH OZH!F \QXH OZH!Fre4$ !HQiH!F I!FH!F I!FH!F I!F4Hf4aMJFOa C#EW$E I[93<3u HMkOaFO5KN1HMO HO-HCellular RespirationG# HKP-H;<Lab: Pathways of GW Cellular RespirationGhiWW>4xz8^A<Review of CellularGW RespirationGhiWW>48$A?5AjKN1HMO HO-HCellular RespirationG# HAP-H;<Lab: Anaerobic GW Respiration in YeastGhiWW>4j8`A<Review of GlycolysisGhiWW>4684A?5AjKN1HMO HO-HCellular RespirationG# HKP-H;< Lab: Aerobic GW RespirationG}hiWW>4T8kA< Review of theGW Krebs CycleG}hiWW>4J(86A?5AjKN}11HMO HO-HCellular RespirationG# HAP-H;<Lab: Electron G TransportGh iWW>4>8iA<Review of the GElectronGW Transport ChainGhiWW>48$A?5AjKcd HMOxHO< H Q CMFH(2H|HaCEWEWEWEWEefd4$*HQM? HGLUCOSEGH GLYCOLYSISGIHETCGN RHKREBSG \HCYCLEGNEH2ONaCEWEWEW EefddaMFONEH2ONnaHe-G\HNAD+GWFADGaC EW EW EW EWEWefaMFO\HATPGW#FAH# FaCEWEWEWEWEe\H<O*HQM? HGLUCOSEGH GLYCOLYSISGIHETCGN RHKREBSG \HCYCLEGNEH2ONf4$HD GLYCOLYSISGMdHPO2HF IF IF HF=HMO@J4OFIO[HN ? GN*HMO`ID FaCEWEW1( I;<EW>8A<EW>8AB aMFO[HM<O[H F H FfHMOiJ9ONIOaC 9E 9EWEWEe4$*HQM? HGLUCOSEGH GLYCOLYSISGIHETCGN RHKREBSG \HCYCLEGNEH2ONf?d4$ CMH   6-HQ6%HCoAG&HMON(HFNM-H 'HM+-PH ACETYL GROUPGaCEW EW EW EW Ee4$*HQM? HGLUCOSEGH GLYCOLYSISGIHETCGN RHKREBSG \HCYCLEGfaMFO&HMO(HFlPHM"ONnRHNAD+GNPH)ONRHFNaC EWEWEWEWEefXd4$FHQN{<HMON58HMATRIXGaCEWEWEWEWEef=d4$<H QxH Acetyl CoAGaCEWEWEW EefaMFOaC EW EW EW EWEUxHMd O<H QxH Acetyl CoAG:HF_HFmHATPGcH!F HFefaMFOaCEWEWEUxHMd O:H%O_H%OmH OcH%O H%O<H QP&HM  OOxH Acetyl CoAG:HF_HFmHATPGcH!F HF7JHFZiHFefAd4$ 1<H QxH Acetyl CoAG* HMO HD FWDFaCEWEWEWEs#HN;<b5H> N438mA<_QH> N4r38WA<vaH> N438AA<aH> N4D48+A<QH> N448A<9H> N448A<%H> N4I58A<> N458A?N8 AB 1Nd 14$*HQM? HGLUCOSEGH GLYCOLYSISGN RHKREBSG \HCYCLEGnaHe-G\HNAD+GWFADGaCEWEWEWEWEef@aMFOIHETCGbHATPGaCEWEWEW Eef5]4$ 1(H#CE IEIWWWE I+ GEaCEWEWEWEWEe5f5C4$ 1<H#CE IE IEaCEWEWEe5f54$ 1(H#CE I E H+ G  HEIWWW E I+ G EaC EW EW EW EW EWEe5f5M4$ 1H#C EWWWIE I EaCEWEWEWEWEe5f"aMFOaCEWEWEe5f5=4$ 1H#CEWWWIEaCEWEWEWEe5f5H4$ 12H#CE IEWWWIEaCEWEWEWEe5f5L4$JFO 1(H#CE IE IEaCEW Ee5f5Q4$ 12H#CE IEWWIEaC!EW"EW#EW$EW%EW&Ee5feaMFO*HMO`ID FaC'EW1( I;<(EW)EW>8A<*E>8AB<aMFOaC 9,E 9+EW-EW.EW/Eef5MKcd HMOxHMO HQaCEWEWEWEefaMFO 1*HMO`ID FaCEWEW1( I;<EW J>8A<EW>8A< EW>8AB4$ 1 <H CM  ;HOHGvHAdenosine diphosphateGvHMO\vHM O?H+HH G;HO GM(vHAdenosine triphosphateGvHMOaC 9 E 9  EWE 9  EW Eefd4$*HQM? HGLUCOSEGH GLYCOLYSISGN( H#ONIHETCG RHKREBSG \HCYCLEGaHATPGaCEWEWEWEWEefNd4$FHQ H CYTOPLASMGP#HMOaCEWEWEWEef4$HD GLYCOLYSISGMdHPO2HF IF IF HF=HMO@J4OFIO[H F H FfHMOiJ9ONIOaC EW EW E I[MaMFOXHMN#ONaC9E8EWEWE I[dC4$2HMFO7!HMO75H-O4 I-O4 I-OFIHO4 IO4 IO1N;%HE1A9HE IE IENaCEWEefbaMFONKLHF, IF, IFNaCEWEW EW EW EW EefKd4$_IHM"C HFaCEWEWEWEWEU"C HM<OaMFO \HF I#FM%H#F0H#FHM O HFaCEWEWEW EW EUk HMKOaMFOHP2O2HEO"CM HFaC EW EU HMPOaMFO \&HF I#F"CM2H#F=H#F&HM O HFWFaC EWEWEWEWEUaMFO HkOFH"CM' H'  HF 1*HMO`ID FaCEWEW1( I;<EW>8A<EW>8A<EW>8AB@ 1aMFOaC 9E8EWEWEWEWEefXaMFO HkOxH"CM'  HFaCEWEWEWEefBaMFOVHFaCEWEWEWEW EW EUu HMPOaMFO \"CM2VHF IF HFaC EW EW EWEef|THMZOaMFO*HMO`ID F 1aCEWEWEW1( I;<EW>A<EW>AB 1 HMPOaMFOUHF \"CYH sUH<OM5UH#F I#F HFaC 9F 9EWEWEWEWEef8aMFOUHZOaCEWEWEWEUj HM OaMFO"C6M8 HFaCEWEW EW!EW"EW#EUj HM OaMFO"C:M< HFaC$EW%EW&EW'EW(EW)EU HMPOaFO7HF"C> M@7HM<O7HF I#F HFaC*EW+EW,EW-EW.EW/E I[93;d4$HD GLYCOLYSISGMdHPO2HF IF IF HF=HMO@J4OFIO[H F H FfHMOiJ9ONIOaCEWEWEWEef1daMFOaCEWEWEWEW EW EefdC4$2HMFO7!HMO75H-O4 I-O4 I-OFIHO4 IO4 IO1N;%HE1A9HE IE IEKLHF, IF, IFNaC EW EW EWEe4$HD GLYCOLYSISGMdHPO2HF IF IF HF=HMO@J4OFIO[H F H FfHMOiJ9ONIOf5ocdK HMOxHMO5HMOHD FbH7QaCEWE1[\9!W(  HE\ 18W(  HE\aM2O8NH8QaEWE[\9!W(  HE\ 18W(  HE\aM2OTH9QaEWE[\9!W(  HE 1\8W(  HE\KaM FOa9EW EW EW E8 EW EWEWEWEWEefdK HMOxHMO H,QKHLightGKH+QxHLeafGdH-Q^H FCaEWEWEWEefdCKHM O HMPLO^HMU OdHMdOxHM OaMFOKH+Qp#H/Q2HGlucoseGP7HM#OaEWEWEWEefd HMlOaMFO_IHM"CC HFaEWEWE< IE\WE\WEeaM FO HMlOf!CaMFOaEWEW Eef}EH HMlO CMP(Hx2HUZHH(<HFH(HdHPH (HPHdPHefxdaMFO.HMOCa EW EW1P I;< From waterGW>8%A< From foodGW>8A`ID FBd 1 HMlOaMFOHCE  H M"ON#HEWEWEW EW EW EWEHEN H M5O#HEWEWEW EW EWEWECa EW EWEWEeaMFO HMlO CMP(Hx2HUZHH(<HFH(HdHPH (HPHdPHf* 1#H1.GW2.GW3.GW4.GW5.GW6.GW7.GWaM FO)HMO`ID FaCEWEY IZ*\CN8HE8HEN\Id HMlOaMFO-H*QCaEWEWEWEWEef HMlOaMFO.HMO< H.Q H? G#HMO#0HMO 1CaEWEWEW1( I;<EW>3O8%A<EW>3N8A`ID FB 1HEnzymeGaM FOiFHM CHGlucoseGHMO0HMOaCEWEW EW EW Eef< H.R<HpNH\HM2 O#0HO#HOH2 OHO0HOM< HSnIH CAH  \3QaM FOHEnzymeG_FHM CHGlucoseGHMO0HMOaC EW EWEWEWEWEef< H.R<HfNH\HMO0HMOH7 O< HSHEnzymeGdEHM CAH  \d HMlOaMFO <H CM  ;HOHGFHAdenosine diphosphateGCaEWEWEWEWEWE CMefFHM OM?HHM2<O;HO G+HH GM(CFHAdenosine triphosphateGaMFOaEWEW EW EW EefFHM O?H;HOHG+HH GHM2<OFHAdenosine diphosphateGaMFOCa EW EWEWEWEWEefDd HMlOaMFOZH0QCaEWEWEWEefZH1Q\Sd HMlOaMFOFH2QiH Nerve cellGCaEWEWEefXNMFH 1PO\PO IPO\1*:PON\5d HMlOaMFObH4QCaEefb&H5Q\pH6Q\:d HMlOaMFO-H*QaC EW Eef5cdKN HMO2HLAB: AEROBIC RESPIRATIONGWW IGCEWEWEWEWEWEWEWEW EW EW EW EW EefdK 1 HMO H$CEWEWEWE. HMO  HEWEWEWEWE I[94re 1RdK HMO H$CEWEWEWEW EW EW EW EW EWEefdK HMO.HMO  H$CEWE  H1 1;<1. GEWEWEWEW J<2. GEWEWEWEW J<3. GEWEW EW!EHD F ?AB 1" 1vdK HMO H$C"EWW#EW J$EW J%EW J&EW J'EW(EW)EW J*EW+Eef!K4i1!"HH4g{rNa JM <OH O HMO H%Cg;<E h>4]X8A I<E h>4Z8A I<E h>4[8aA I<E h>4%[8AA I<E h>4]f8!A I<.F h>3_8AjHM<O/98a J'CEWEWEWEWE I[.954ir HMrO(HMUO7HMO+HPOa JM <O1HMOJH9Qa J'CEWE8Qa J&CEWE 1 H)CD EWD ET 987 :a JM <O 1&918?$9 1}8 1}15 93[a JM <OHM2OHM2P.HMO`ID FNHkm/hrG(C1 HM O ET 9  |8R 9 1  91 8' 9  1  &91 888N1 NHM<O5HM<O HMrO;HmNH YOUR RESULTSGN(HMUOnoqpFHMO`ID* FUN#91#54g5HM<O 09AHHMO*Ca JEWEWE`ID EU5 09<HHMO*Ca J EW E`ID EU5 09<HHMO*Ca J EW E`ID EU54\3^H0 GR HMwO HD8FWD8Fa J)CEWEWET: 958HM<OHM OH"H:H<vN 1wa JM <O*HMO`ID)CEa JEWENxN9 4^88NwHM<O5HM<O9a J)CEWEW E[94`!93;bNa JM <OHHMO`ID* Fa JYou are now ready to do G your next GWseries of trials. GU4i1! 1!t3g5YNa JM <OHMO` HD+CEWDEa JEWET95?:KNM HOFHMO`ID* FHCCEWEWEWEWEWEWEWEW EW EW EWU4g59+a J+CEW E I[94i3I3VW!093a J*CEWEWE I[9 4i3I83VWa J+CEWEWE I[9 4i3I83VW1#a JM <OHHMO`ID* F HMrONH IDEAL RESULTSGN(HMUO-HNM<O;HmnoNU3%[Kd HMObdINCEN IE( HMOJHMO`ID* FHThe next screen will display GgraphsGWof your trials. GStudy them before GWyou answer the G concluding G questions.GUK HMdO HMOqHMO"Hu:pmnqpPHDN9 MouseG8RatGN"Hu:0mnqpHDN9 MouseG8RatGN 1 sHYOUR HYPOTHESIS:GW H$C"9EWEWEWE"9EWEWEWE"9EWEW EW!EW  H:CEWE I[."098 sHMPOHHMO`ID* F sH"99 Right.G8No.G8EFFCWEWEWEWEU3IK HMO*HMO H,CEWEWW1I$C;<EWEWEWEW J<"9EWEW EW!E8EWEWEWE`ID F ?AB 1a JM FOHHMO`ID* Fa J9 Right.G8*No. The first hypothesis is Gcorrect.GU3IK HMOHO"HQ"HW2H8.0GWKH4.0GWbH0.0GJHQ2H MANOMETERG7HMOvH TREADMILLG{HMO{HOHHMO`ID* FU5 HMT#O HMP!P;  H<CommandsGLh>4h8WA H< ProcedureGLh>9484Ni8$A H<TheoryGLh>468AjKNM HOHO HrO(HMUO"HQJH9Q8QW2H8.0GWKH4.0GWbH0.0G7HMO+HPOHM#OH0 GHmin.GHM2OHM2P 9 NH( FHkm/hrGNN7HMO*HPO*HN*F*H( O*H*F&9 NyzN5KNM HOFHMO`ID* FH3C EW EW J EW EW EW J;CEWEW JEWEWEW JEW EWU5K HMOFHMO`ID* F H$C"EWW#EW J$EW J%EW J&EW J'EW(EW)EW J*EW+EU51111 1 1 5|cdKN1" HMOHDLAB: GLYCOLYSISGWW I4CEWEWEWEWEWEWEWEW EW EW EeftdK HMO H4C EW EWE. HMO  HEWEWEWEWE I[94PvkdK HMO H4CEWEWEWE. HMO  H*EW+EW,EW-EW.EefdK HMO.HMO  H4CEWE  H1 1;<1. GEWEW J<2. GEWEWEW J<3. GEW EHD F ?AB 1" 1edK HMO H4C"EWW#EW J$EW J%EW J&EW'EW J(EW)Eef$K4Wz1!4w{r2H:HUvNa JM <OH O HMO2H5Cg;<E h>4{m8A I<E h>4n8A I<E h>4Ow8aA I<E h>3iq8AAj 93nHM<Oa JM <O HMO HMPP.HMO`ID F6C1 a JM O%HMF O Ea J7 FT 9  |8R 9 1  91 8' 9  1  &91 888eN1NHM<O3w`HM<O9?HHMO9Ca JEWE`ID* FU54$o3KpR HMwO HD8FWD8F 1a J8CEWEWE 1T: 958HM<O2H:HUvN 1a JM <O*HMO`ID)CEa JEWEICNxN9 4lpN88NwHM<O5HM<O93q5YNa JM <OHMO` HD+CEWDEa J EW ET95?:KNM HOFHMO`ID* FHHCEWEWEWEWEWEWEWEW EW EW EWU4w5u90a J9CEWEWE I[94Wz3I3l93a J9CEWEWE I[9 4Wz3I83lQK HMObdINCEN IE( HMOqHMO7HMZOD#HMO~HPOKHNSugarGH( OH:FF*HUvICyzN vHYOUR HYPOTHESIS:GW H4C"9 EWE"9EWEWE"9 EW EW  H:CEWE I[."098 sHMPOHHMO`ID* F sH"9*9 Right.G8No.GWFFWFF8EFWFFWFFU3tK HMO*HMO H,CEWEWW1(I4C;<EWEWEW J<"9EW EW!E8 EWE`ID F ?AB 1uaM FOHHMO`ID* Fa9 Right.G8*No. The first hypothesis is Gcorrect.GUK HMO*HMO H:CEWW(I6C11;<EW J<EW J<EW J<EW J ?0$ /9 F]9  1$18 1%8@`ID FBaMFO$%&9 %1$1%1$a$%09 Right.G8,No. Yeast ferment glucose G and sucrose.GHHMO`ID* FU3IK HMOHO2H QdcH0.0GdKH3.0Gd;H5.0GHQFHSUGARGA#HMO}2H MANOMETERGx7HMOvHYEASTG{HMO{HOHHMO`ID* FU5 HMT#O HMP!P;  H<CommandsGLh>4Oy8WA H< ProcedureGLh>94f84y8$A H<TheoryGLh>468AjKNM HOHO HrO(HMUO2H QdcH0.0GdKH3.0Gd;H5.0GHQ7HMO+HPO9=HMUOHMUPH6CN ENN7HMO*HPO*HNSugarG*H( O*H:F&9NICyzN5xKNM HOFHMO`ID* FH;CEWEW JEWEW JEW EWU5K HMOFHMO`ID* F H4C"EWW#EW J$EW J%EW J&EW'EW J(EW)EU51111 1 1 5cdKN HMOHDLAB: ANAEROBIC RESPIRATIONGWW I#CEWEWEWEWEWEWEW EW!EW"EW#EW$EW%EefqdKNr HMO H-CEWEWEWE. HMO  HEWEWEWEW EWefJdK HMO H-CEWEWEW EW!EW"EW#E[94tRdK HMO H-C EW EW EW EWEWEWEWEWEWEef[dK HMO H-CEW JEWEWEWEWEW JEWEWEefdK HMO.HMO H4CEWE H1-C;<1. G%EW&EW'EW(EW J> 1"8`A<2. G)EW*EW+EW,EW J> 1"82A<3. G-EW.EW/E> 1"8AHD FBdK HMO 1 H-C0EWW1EW J2EW J3EW4EW J5EW6EW7EW8EW J:EW J;EW<E 1efK41!{r47Na JM <OH O HMOH.Cg;<E h>4~8A I<E h>4€8A I<E h>4v8aA I<E h>48AA I<E h>38!AjHM<O/98a J1CEWEWEWEWE I[.954r HMrO(HMUO7HMO+HPOa JM <O1HMO,H9Qa J/CE8Qa J/CE 1 H)CD EWD ET 987 :a JM <O 1&918It9 1'}8 1'}1HMcOHMcPHN'9 /F8/FN5`HM<O9?HHMO1Ca JEWE`ID* FU54$3텨 1R HMwO HD8FWD8Fa J0CEWEWEWET: 958 1HM<OyH _OH,H8HHMOa J0CEWEHD* FUHM<O HrO H(QM H'QNpHD2.0Gp.HD1.5GpGHD1.0Gp[HD0.5GpjHD0.0GN-H&Q\M HN2HM"O@2H"ONN2HM"O@2H"ON 1HMFO'HMOHD0 Fa J0CEW~9Ta JM <O9HMO`IDBFa JBCEWEU8_HM<O HrO  HAbs.G<I Lactic acidG HM|O# HnO  H 10.0GPI0 GW I0.2GPI6 GW I0.4GPI12GW I0.6GPI18GW I0.8GPI24GW I1.0GPI30GW I1.2GPI36GW I1.4GPI42GW I1.6GPI48GW I1.8GPI54GW I2.0GPI60GW I 1a JM <O'HMO`ID0C Ea J ABSORBANCE: GW EW EW EW ENxN9Wa JM <O9HMO`IDBFa JBCEWEU838Nw 1HM<O37HM<O9a J)CEWEW E[94!93шa JM <OHHMO`ID* Fa J2CEWEWEUt! 1!11(1 1 14751#a JM <OHHMO`ID* F HMrONH IDEAL RESULTSGN(HMUO-HNM<O;HmnoNUa JM <O3vHM<O;Hm HMrONH YOUR RESULTSGN(HMUOnoqpFHMO`ID* FUN#91#5475a JM<O!09-a J)CEWEW E I[943ш9+a J+CEW E I[943I3}a J+CEWEWE I[9 43I83}Kd HMObdINCEN IE( HMOJHMO`ID* FH3CEWEWEUK{ HMdO HMOqHMO"Hu:rmnqpNbHD9 UnfitG8FitGN"Hu:2mnqpHDN9 UnfitG8FitGNef 1a J-CYOUR HYPOTHESIS:GW J"9%EW&EW'EW(E"9)EW*EW+EW,E"9-EW.EW/E HIs your hypothesis correct? G[ 1"9a JM FOa J9 Right.G8uWrong. Your hypothesis was Gcorrect.GWThe fit subject produces G less lactic GWacid than the unfit subject.Gef*"98K HMO H,C"98|9wNo. That hypothesis is not Gcorrect.GWThe fit subject produces lessG lactic acid GWthan the unfit subject.Gef"/98 H,CEWE  H1-C;<%EW&EW'EW(EW J<"9-EW.EW/E8)EW*EW+EW,E.HMOHD F ?AB`JM O 9 Right.G8*No. The first hypothesis G is correct.Gef3IrKNM HOHO HrO(HMUO7HMO,H'9Q8Q7HMO+HPON,Hmin.G,H Lactic acidG:H<vyzNHM#OH0 GHmin.G9PHMcOHMcPHN'9 /F8/FN5 HMT#O HMP!P;  H<CommandsGLh>4)8HA H< ProcedureGLh>48$A H<TheoryGLh>48Aj37KNM HOFHMO`ID* FH3CEWEWEW J;CEWEW JEWEWEW JEW EU5K 1 HMOFHMO`ID* F H-C0EWW1EW J2EW J3EW4EW J5EW6EW7EW8EW J:EW J;EW<EU 15K HMOHOHHMO`ID* FHQZ(HSUBJECTGX-HMOldH TREADMILLGjiHOU K HMOHOHHMO`ID* F H(QM H'QNpHD2.0Gp.HD1.5GpGHD1.0Gp[HD0.5GpjHD0.0GN-H&QZHLIGHTGxHBLOODGZxHMETERG7HMO+HPOU51'11(11 1 5dcdKN HMO(HLAB: G;C EWW I EW EW EWEWEWEWEWEWEetdKN;C HMO HEWE. HMO  HEWEWEWEWEWEWEWEefIK HMO H;C(EW)EW*EW+EW,EW-EW.E[944[dK HMO H;CEWWEW EW!EW"EW#E H$EW%EW&EW'EefdK HMO*HMO H4CE HE H1<C;<1. GEWE H<2. GEWE H<3. GEWE ?AHD FB 1"dK HMO 1 H;C/EWW0EW1E H2E H3E H4EW5E H6EW7E H8EW9E 1efK1)1{r41NaM <OH O HMO H=Cg;<E h>48A I<E h>4'8A I<E h>48hA I<E h>48HA I<E h>3F8(AjKNM HOHO HrO(HMUO7HMO+HPOMH'QNpHD2.0Gp9HD1.5GpRHD1.0GpfHD0.5GpuHD0.0GNH)Q8H!Q7HMON,H SubstanceG,HAbs.G:HZv?CyzNHMxOMHxP)&9,NH&9 ?F8 ?& FN5>C)&90HHMOHD* Fa EU5RHMrOaEWEWEW HDEWD8FT: 9581&3)9HHMOaYou must run a control Gbefore GWyou can pick a substance G and run the GW experiment.GHD* FU5NHMtOL HMyON HMt PO HMt P.HMOHD F1&1)?CaMOTHMl O& Ea@&FW@&FT 9&9 1&&1&82 9&&91&& 1&8 :88f3a)9HHMOa)9FYou must run a control G before you GWcan run the experiment.G8AFWAFHD* FU59^HHMOaYou have completed this G series ofGWtrials.GHD* FU543DM&|aMdORHMwOaACEWEWE HD8FWD8FT: 958N?H OC<H#OMHNN?H OC<H#ONaMdOa&9>CEWEWEWEW E8ACEWEW?CNxN9(BCaMdOEWEWWEU8w 11)5K HMOHOHHMO H)QM H'QNpHD2.0Gp.HD1.5GpGHD1.0Gp[HD0.5GpjHD0.0GN-H!QZHLIGHTGvHEXTRACTGZxHMETERG7HMO+HPO`ID* FU5yHM<O9]HHMOaYou have completed this Gseries of trials. G`ID* FU35 HMT#O HMP!P;  H<CommandsGLh>4a8MA H< ProcedureGLh>4Q8)A H<TheoryGLh> 418Aj3KNM HOFHMO`ID* F HCONTROL: Lets you establish Gbaseline data.GW JSUBSTANCE: Lets you select a G poison or an GWantibiotic to test.GW J;CEWEW JEW EWU5K HMOFHMO`ID* F H;C/EWW0EW1E H2E H3E H4EW5E H6EW7E H8EW9E 1U5Kd HMOqHO H<CYOUR HYPOTHESIS:GW J"9 EWEWW"9 EWEWW"9 EWEWW tHIs your hypothesis correct? G[ tHMFO tHEC9&"9 EWE8EW EW E8"9EWEWE88=dHNCEN IE( HMOU3IK HMO.HMOHD F HECEWEWW I1<C;<EWEW J<"9 EWE8 EWE ?ABT`JM (O 9 Right.G8*No. The first hypothesis G is correct.Gef3IWaM<O9Ba+C9 EW E8DCEWEWE I[943I3"11(11 1 5