
WOZ Disk Image Reference
Created by John K. Morris

jmorris@evolutioninteractive.com

Version 1.0.1
May 20, 2018

The most recent version of this document can be found at:

http://evolutioninteractive.com/applesauce/woz_reference.pdf

This document is hereby placed into the public domain and
dedicated to the Apple][community.

Many thanks to the people who helped me prepare this document for release:
John Brooks, David Brown, Bill Martens, Sean McNamara

Antoine Vignau, Olivier Galibert and 4am  

mailto:jmorris@evolutioninteractive.com

Why yet another Apple II disk image format?

This is probably the question many of you reading this document are asking. It basically
comes down to the simple fact that none of the currently existing formats accurately represent
the way data is encoded on an Apple II floppy disk. There is a place for a format that is an
accurate representation of a bitstream that is also the exact length of a track so that it can be
looped correctly. And since we are creating a format, it is also a great time to ensure that we
organize the data in the image file in a way that allows for easy unpacking with as little
memory and processing overhead as possible - this provides more performant usage in
hardware and software emulators.

What benefits come with using the WOZ format?

We seem to be doing just fine with the current file formats, why would we want to support
the WOZ format? The big benefit is being able to successfully run copy protected software if
you follow the emulation guidelines presented in this document. The second benefit is that
the WOZ format is actually much simpler to implement than many of the other disk image
formats. WOZ files also contain metadata about the disk image - such as disk name, product
name, publisher, system requirements and language - that you can use to display additional
information in your emulator.

Implementation Details

Integrating WOZ support with your product is more than just loading data from a new type
of container. It is also about how that data is used. Yes, it is possible to just shovel bits from
the WOZ right into your bitstream, and many disk images will work just fine like that. But, by
taking the following guidelines into account, your implementation will enable disk
functionality that is also compatible with all copy protection schemes. Yes, this means you can
run copy protected software in system and disk drive emulators without the need to crack it first!

Cross-Track Synchronization

When Steve Wozniak was hacking up Shugart drives to make the Disk II, one of the parts that
he threw away was the sync sensor. The sync sensor involved a light source on one side of the

WOZ Disk Image Reference � of �2 15

disk with a sensor on the other. This sensor would allow the drive to know when it made a
full revolution, as the disk media itself had a hole that would let the light pass though as it
passed the sensor. It really wasn’t a necessary part for Wozniak’s soft-sectored design that
was going to be used for storing data on the disk.

A NORMAL UNSYNCHRONIZED DISK VS A SYNCHRONIZED ONE.

When it came to businesses designing copy protection schemes, this was something that they
could use to their advantage. The professional disk copiers could easily write out all tracks
synchronized with each other, something that your average Apple II floppy drive couldn’t do.
Then, the software would read a known sector on a specific track and, when it jumped to a
neighboring track, it could make sure that the first sector it encountered there was the one it
expected. Later protection schemes even made track widths which were almost 2 standard
tracks wide and were accurate to within 1 bit. As much as the disk copy programs tried, they
could only sync up tracks by sheer luck.

To circumvent these kind of copy protection checks, the WOZ format uses a Track Map (see
the “TMAP Chunk” section below). This allows us to assign a track image to any number of
quarter tracks on a disk. An entire disk could even be a single track if we wanted.

There are a couple of rules to follow with regards to changing tracks within the emulator:

Firstly, if the tracks you are changing between have matching values in the TMAP, then don’t
change the track data. This will prevent any hiccups in the bitstream and can be a good
performance gain to boot.

WOZ Disk Image Reference � of �3 15

The second rule is that you need to maintain a bit pointer into your bitstream. You always
need to know which bit you are on. When you do change tracks, you need to start the new
bitstream at the same relative bitstream position - you cannot simply start the pointer at the
beginning of the stream. You need to maintain the illusion of the head being over the same
area of the disk, just shifted to a new track.

Also be sure to account for the fact that track lengths are inconsistent on a disk due to
fluctuations in drive speed. Something like this works well to maintain the relative position if
your environment can work with 32-bit or greater values:

new_position = current_position * new_track_length / current_track_length

Remember to maintain the bit position even when on an empty track (TMAP value of 0xFF).
Since the empty track has no data, and therefore no length, using a fake length of 51,200 bits
(6400 bytes) works very well.

Freaking Out Like a MC3470

On the Apple II, floppy disk data is written to the disk based on a 4µs clock. Whenever there
is a 1 bit to write, the polarity of the magnetic flux under the drive head is transitioned from
its current state to the opposite. If a zero needs to be written out, the 4µs clock is skipped (no
transition occurs).

The MC3470 chip is the heart of the Apple II floppy drive. It reads the magnetic flux pattern
off the disk and sends out a pulse for every flux transition it sees. This gives us back our 1 bits
and our 0 bits come from the 4µs clock going by with no pulse.

One of the nice features of the MC3470 is that it has an internal amplification system to adapt
to the varying magnetic strengths of each disk. If it has a hard time reading the disk, it can
turn up its amp until it finds the signal. It allows the drive to read a wide assortment of disks.
The Apple II uses GCR encoding to store bits on the disk. It is a very efficient system that was
used widely on many platforms, because it doesn’t use clock bits to frame up your data bits,
giving you more room to write data. This technique also has a drawback though, which is
never being able to record more than two 0 bits in a row. It is why data on an Apple II is
stored as nibbles instead of plain binary bytes.

One very popular copy protection is referred to as “fake bits” or “weak bits” - this technique
is actually an exploit against the MC3470. It comes from the idea of what happens when we
make it read more than two 0 bits in a row. What happens is that our poor MC3470 thinks that

WOZ Disk Image Reference � of �4 15

it is doing a bad job reading the disk and keeps trying to turn up its amp to find the flux
signal. It does this until it gets to the point that it amplifies background electrical noise so
much that it thinks that it sees a transition and sends out a false pulse, which the computer
happily records as a 1 bit.

So, how can this failure be used as copy protection? The software developers simply put these
blank fake bit areas on the disk where the software knows where to find them. It then reads
some good nibbles followed by the fake bits area. This gives us some good nibbles followed
by some random valued nibble. This in itself is not particularly useful until you do it multiple
times and see that the random nibble changes every time you read it! If the value keeps
changing, then you know that it isn’t a copy of the disk. How does it know that? Because
programs like Copy II+ and Locksmith will read those same good nibbles followed by the
random nibble, and then they will promptly write out all of the nibble values that they
captured, thinking that they are all good. The random nibble is no longer random, it will
never change from the value that has been captured, and now the copy protected software
will know that it is actually a copy.

So how does the WOZ format deal with this? Well, the first part of the problem isn’t taken
care of within the WOZ format itself. The WOZ format is an offshoot of the Applesauce
Floppy Drive Controller project. The Applesauce has a way to determine when it is seeing
these fake bits and changes the fake bits back to the 0 bits that existed on the original disk.

Now that we are back to having long runs of 0s in the bitstream, we now need to emulate the
MC3470 freaking out about them. The recommended method is that once we have passed
three 0 bits in a row from the WOZ bitstream to the emulated disk controller card, we need to
start passing in random bits until the WOZ bitstream contains a 1 bit. We then send the 1 and
continue on with the real data.

Of course, coming up with random values like this can be a bit processor intensive, so it is
adequate to create a randomly-filled circular buffer of 32 bytes. We then just pull bits from
this whenever we are in “fake bit mode”. This buffer should also be used for empty tracks as
designated with an 0xFF value in the TMAP Chunk (see below).

When Off Isn’t Really Off

Turning on the floppy drive motor and getting the disk up to its 300 RPM speed isn’t a
particularly fast operation. When it came to DOS, it used a simple mechanism to read a file:
turn disk on, read data, turn disk off. This turned out to be a fairly slow process as it kept

WOZ Disk Image Reference � of �5 15

needing to spin up the disk when you were accessing multiple files. So, a simple hardware
optimization was created that would use a timing circuit to delay the turning off of the motor
for a period of 1 second. This way if you were reading a bunch of files in a row, the motor
wouldn’t actually turn off between them and you could access the files much quicker. Pretty
clever!

When it came to the copy protection arms race, a mechanism as clever as this would of course
end up being weaponized. In order to discourage people from boot tracing their software,
several protections took to the idea of turning off the floppy drive motor before trying to read
some sectors. The developers knew that the disk would still have almost 5 full revolutions
before actually turning off, so it wasn’t a problem. But, if the crackers stopped program
execution in this area, then they would lose access to the next sectors being read since the
drive would turn off automatically after 1 second.

Therefore, a 1 second delay after accessing the “drive motor off” soft-switch at $C088,X needs
to be implemented to allow software to continue reading sectors.

Abusing Disk Controller Soft Switches for Fun and Profit

The floppy drive is accessed by using the soft switches associated with the floppy disk
controller card. These are in the range $C0x0-C0xF, with the value of x being $8 + the slot
number. All of these switches have a specific function like turning the motor on/off, reading/
writing data, or controlling the head stepper motor phases. But due to the way the circuit was
laid out on the disk controller card, they also have some unexpected behaviors. Many copy
protection schemes relied on these undocumented side effects.

As referenced in the previous section, when you access $C088,X it begins the timer to turn off
the drive motor. But, it also returns the value of the data latch! Why would it do that?!? It
does this for one simple reason, the low bit of the address line (A0) is connected through a
NOT gate to the Output Enable line of the data latch. Therefore every soft switch on an even
address should actually return the value of the data latch.

Another nuance that needs to be implemented is that reading $C08D,X will reset the
sequencer and clear the contents of the data latch. This is used to great effect in the E7
protection scheme to resynchronize the nibble stream to make timing bits become valid data
bits.  

WOZ Disk Image Reference � of �6 15

WOZ File Format Specification

A WOZ file uses a chunk-based file binary format that provides future-proof expandability in
a way that is safe for older software which may not recognize newer data chunks.

All data is stored little-endian.

WOZ files begin with the following 12-byte header in order to identify the file type as well as
detect any corruption that may have occurred. The easiest way to detect that a file is indeed a
WOZ file is to check the first 8 bytes of the file for the signature. The remaining 4 bytes are a
CRC of all remaining data in the file. This is only provided to allow you to ensure file
integrity and is not necessary to process the file. If the CRC is 0x00000000, then no CRC has
been calculated for the file and should be ignored. The exact CRC routine used is shown in
Appendix A, and you should be passing in 0x00000000 as the initial crc value.

After the header comes a sequence of chunks which each contain information about the disk
image. Using chunks allows for the WOZ disk format to provide forward compatibility as
chunks can be added to the specification and will just be safely ignored by applications that
do not care (or know) about the information. For lower-performance emulation platforms, the
primary data chunks are all located in fixed positions so that direct access to data is possible
using just offsets from the start of the file.

All chunks have the following structure:

Byte Value Purpose

0 57 4F 5A 31 The ASCII string ‘WOZ1’. 0x315A4F57

4 FF Make sure that high bits are valid (no 7-bit data transmission)

5 0A 0D 0A LF CR LF - File translators will often try to convert these.

8 xx xx xx xx CRC32 of all remaining data in the file. The method used to
generate the CRC is described in Appendix A.

Offset Size Name Usage

+0 4 bytes Chunk ID 4 ASCII characters that make up the ID of the chunk

+4 uint32 Chunk Size The size of the chunk data in bytes.

+8 … Chunk Data The chunk data.

WOZ Disk Image Reference � of �7 15

To process the file, you start at the first Chunk ID which will be located at byte 12 of the file,
immediately following the header. You read the Chunk ID and the Chunk Size following it. If
you want to process this chunk, then your file pointer will be at the start of the data. If you
don’t care about this chunk, then skip the number of bytes as Chunk Size indicates and you
will now be at the next Chunk ID.

while(data_stream.availableToRead() > 8) {
 uint32_t chunk_id = data_stream.readU32();
 uint32_t chunk_size = data_stream.readU32();
 switch(chunk_id) {
 case INFO_CHUNK_ID:
 // read the INFO chunk
 break;
 case TMAP_CHUNK_ID:
 // read the TMAP chunk
 break;
 case TRKS_CHUNK_ID:
 // read the TRKS chunk
 break;
 case META_CHUNK_ID:
 // read the META chunk
 break;
 default:
 // no idea what this chunk is, so skip it
 data_stream.skip(chunk_size);
 }
}

WOZ Disk Image Reference � of �8 15

INFO Chunk

The first chunk in an Applesauce file is always an ‘INFO’ chunk. This contains some
fundamental information about the contained image. The data of the ‘INFO’ chunk begins at
byte 20 of the file and is 60 bytes long (pad chunk with zeros to full length).

The chunk is versioned to allow for adding additional info in the future. The “Vers” column
in the table above indicates at which version the data field became available. When reading
data from the chunk, make sure that value you are looking for actually exists within the
version of the chunk you are reading.

TMAP Chunk

The ‘TMAP’ chunk contains a track map. This allows you to map physical drive tracks with
the track data contained within the image file ‘TRKS’ chunk. This system is used because, on
a 5.25 drive, the physical drive head is larger than the width of the written track and so the
track is also visible from neighboring quarter tracks. For example, the data of track 1.00 is
actually visible while reading from track 0.75 or 1.25. Instead of storing copies of track data
for every possible quarter track, we use the map to point multiple quarter tracks to a single
track image.

Byte Offset Type Vers Name Usage

12 uint32 ‘INFO’ Chunk ID 0x4F464E49

16 uint32 Chunk Size Size is always 60.

20 +0 uint8 1 INFO Version Version number of the INFO chunk.
Current version is 1.

21 +1 uint8 1 Disk Type 1 = 5.25, 2 = 3.5

22 +2 uint8 1 Write Protected 1 = Floppy is write protected

23 +3 uint8 1 Synchronized 1 = Cross track sync was used during imaging

24 +4 uint8 1 Cleaned 1 = MC3470 fake bits have been removed

25 +5 UTF-8
32 bytes

1 Creator Name of software that created the WOZ file.
String in UTF-8. No BOM. Padded to 32 bytes
using space character (0x20). 
ex: “Applesauce v1.0 ”

Track 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Maps 00 00 FF 01 01 01 FF 02 02 02 FF 03 03

WOZ Disk Image Reference � of �9 15

The data of the ‘TMAP’ chunk begins at byte 88 of the file and is 160 bytes long.

Each map entry contains an index number for the track data contained within the ‘TRKS’
chunk. If the map entry is 0, then the correct track data to be using is the first entry in the
‘TRKS’ chunk. Any blank tracks are given a value of 255 (0xFF) in the map and the emulator
should be outputting random bits in this case.

The mapping changes slightly between 5.25 and 3.5 disks. This is the format for the table for
the layout of a 5.25 disk. The table only shows to track 35, but can also accommodate 40 track
disks. All unused map entries should have a 255 (0xFF) value.

This is the mapping for 3.5 disks:

Byte Offset Type Name Usage

80 uint32 ‘TMAP’ Chunk ID 0x50414D54

84 uint32 Chunk Size Size is always 160.

88 +0 uint8 Track 0.00 Index of TRKS entry to use for Track 0.00.

89 +1 uint8 Track 0.25

90 +2 uint8 Track 0.50

91 +3 uint8 Track 0.75

92 +4 uint8 Track 1.00

… … …

228 +140 uint8 Track 35.00

Byte Offset Type Name Usage

80 uint32 ‘TMAP’ Chunk ID 0x50414D54

84 uint32 Chunk Size Size is always 160.

88 +0 uint8 Side 0, Track 0 Index of TRKS entry to use for Side 0, Track 0.

… … …

167 +79 uint8 Side 0, Track 79

168 +80 uint8 Side 1, Track 0

… … …

247 +159 uint8 Side 1, Track 79

WOZ Disk Image Reference � of �10 15

TRKS Chunk

The ‘TRKS’ chunk contains the data for all of the unique tracks. Each track has a fixed length
of 6656 bytes and are tightly packed into the chunk. The data of the ‘TRKS’ chunk begins at
byte 256. For more efficient track data copying, all track data starts on 256 byte boundaries
relative to the file start. Starting locations of tracks can be calculated using (tmap_value *
6656) + 256.

The structure of the TRK type in the previous table is as follows:

The bitstream data is the series of bits recorded from the floppy drive and normalized to 4µs
intervals. The bits are packed into bytes, but the bytes will not necessarily be representative of
nibble values as timing bits are also represented within the bitstream. When processing the
bitstream, the order of bits within each byte is high to low, meaning the high bit goes first and
the low bit is last. Since this bitstream is the flow of data directly from the floppy drive, it will
need to pass through a Logic State Sequencer as found on the Disk II Interface Card, Apple
5.25 Drive Controller Card or IWM chip to create nibbles. But, due to the fact that the

Byte Offset Type Name Usage

248 uint32 ‘TRKS’ Chunk ID 0x534B5254

252 uint32 Chunk Size

256 +0 TRK Track 00 First track in track array. TMAP value of 00.

6912 +6656 TRK Track 01 Second track in track array. TMAP value of 01.

13568 +13312 TRK Track 02 Third track in track array. TMAP value of 02.

… … …

Offset Size Name Usage

+0 6646 bytes Bitstream The bitstream data padded out to 6646 bytes

+6646 uint16 Bytes Used The actual byte count for the bitstream.

+6648 uint16 Bit Count The number of bits in the bitstream.

+6650 uint16 Splice Point Index of first bit after track splice (write hint). If no
splice information is provided, then will be 0xFFFF.

+6652 uint8 Splice Nibble Nibble value to use for splice (write hint).

+6653 uint8 Splice Bit Count Bit count of splice nibble (write hint).

+6654 uint16 Reserved for future use.

WOZ Disk Image Reference � of �11 15

bitstream timing has already been normalized, you can use a very lightweight
implementation of one. The Logic State Sequencer performs the function of converting the
bitstream to a nibble stream as well enforcing the proper nibble timing that many copy
protection schemes will check.

If you are creating a floppy drive emulator for use with a real Apple II, then you will simply
be stepping to the next bit in the bitstream every 4µs. If the bit has a 1 value, then you send a
1µs pulse on the RDDATA line.

If the Cleaned value of the ‘INFO’ chunk is 1, then any fake bits generated by the MC3470
during the imaging process will have been removed and replaced with 0 bit values (see the
Implementation Details section for proper handling of these).

The Splice information in the TRK structure is used when writing the track to a physical
floppy disk. It points to the bit where you should start the write stream. To ensure a clean gap
1, you are also provided with a nibble value and bit count for the nibbles that you should be
writing as the leader before the write stream. For a normal DOS 3.3 disk, the leader would be
128 FF/10 nibbles.

WOZ Disk Image Reference � of �12 15

META Chunk (optional)

The ‘META’ chunk contains metadata for the disk image and its existence is optional in the
WOZ file. The metadata is stored as a tab-delimited UTF-8 list of keys and values. Rows are
separated by a linefeed character (‘\n’ 0x0A) and columns by the tab character (‘\t’ 0x09)

This is the list of standard metadata keys. Multiple values are pipe-separated.

Byte Offset Type Name Usage

- uint32 ‘META’ Chunk ID 0x4154454D

- uint32 Chunk Size Length of the metadata string in bytes.

- +0 String Metadata Metadata string in UTF-8. No BOM.

Key Purpose Example Value

title Name/Title of the product. Prince of Persia

subtitle Subtitle of the product.

publisher Publisher of the software. Brøderbund Software, Inc.

developer Developer of the software. Pipe-
delimited list if needed.

Jordan Mechner

copyright Copyright date. Free form text
allowed.

1989
1987 Muse Software

version Version number of the software. Free
form text allowed.

1.0
19870115P

language Language (see table A) English

requires_ram RAM requirements (see table B) 64K

requires_machine Which computers does this run on?
Pipe-delimited list. (see table C)

2+|2e|2c|2gs

notes Additional notes.

side Physical disk side formatted as:
“Disk #, Side [A|B]”

Disk 1, Side A

side_name Name of the disk side. If the disk side
is named on the label like Player,
Town, Dungeon, etc then it goes
here.

Front

contributor Name of the person who imaged the
disk.

Mr. Pirate

image_date ISO8601 date of the imaging. 2018-01-07T05:00:02.511Z

WOZ Disk Image Reference � of �13 15

If a standard key has no value, then the value will be an empty string. Key names are case-
sensitive. Values cannot contain pipe, linefeed or tab characters. It would also be a good idea
to keep all values as ASCII-friendly as possible to ensure compatibility with the widest range
of devices that will consume these files. No duplicate keys are allowed and key order does
not matter. Standard keys that have values laid out in the tables below cannot have values
other that those shown below. Implementors are free to add additional keys to the metadata
as long as they follow the same rules laid out here.

TABLE A - LANGUAGES

TABLE B - REQUIRES_RAM

TABLE C - REQUIRES_MACHINE

English Spanish French German

Chinese Japanese Italian Dutch

Portugese Danish Finnish Norwegian

Swedish Russian Polish Turkish

Arabic Thai Czech Hungarian

Catalan Croatian Greek Hebrew

Romanian Slovak Ukranian Indonesian

Malay Vietnamese Other

16K 24K 32K 48K

64K 128K 256K 512K

768K 1M 1.25M 1.5M+

Unknown

2 2+ 2e 2c

2e+ 2gs 2c+ 3

3+

WOZ Disk Image Reference � of �14 15

Appendix A: CRC Routine

The integrity of the WOZ files are protected by a standard 32-bit CRC. The routine that has
been chosen for use originated with Gary S. Brown in 1986 and is implemented as follows:

static uint32_t crc32_tab[] = {
 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};

uint32_t crc32(uint32_t crc, const void *buf, size_t size)
{
 const uint8_t *p;

 p = buf;
 crc = crc ^ ~0U;

 while (size--)
 crc = crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);

 return crc ^ ~0U;
}

WOZ Disk Image Reference � of �15 15

