Second Feature

DOS 3.3 ProDOS
0 0)
0 0

Improve both your program’s read-
ability and its execution speed by using
labels in your GOTO and GOSUB state-
ments. This handy ampersand utility is
all you need for the task.

by Comelis Bongers
Erasmus University

Postbox 1738

3000 DR Rotterdam
The Netherlands

ne of the most severe limitations of

Applesoft is its lack of label support.

In Pascal and most other program-
ming languages, subroutines can be called by
name, for example, CALL PRINTPAGE. In
most versions of BASIC. including Applesofi,
the corresponding statement would be some-
thing like GOSUB 63241.

The obvious advantage of using names
rather than line numbers in subroutine calls
is that they make programs considerably
easier 10 read. This is especially pertinent 1o
longer programs, since short programs usually
do not need many GOSUB statements. When
you are working on a long program, say five
10 ten pages, the only way to maintain control
is to modularize the program. Such programs
will, therefore, contain many subroutines that
handle user input, errors, disk access, etc. A
randomly chosen line from a large program
may then very well read:

3540 GOSUB 230 . GOSUB 300
:GOSUB 41530

which stands for get user input, format it and
write it to disk.

Lines like this are not a problem when the
program is being developed, but if it is up-
dated a month after completion, there is a
good chance that the programmer will have
forgotten what GOSUB 41530 does and will
have to search through the listing. Of course,
this trap can be avoided by inserting REM
statements behind every GOTO/GOSUB state-
ment. Unfortunately, although this method is
theoretically sound, few people apply it in
practice, as it is tedious and time-consuming.

A more logical solution is to work with
labels rather than line numbers. The function
of the subroutine can then be summarized in
the label name. For example, the statement
GOSUB USER INPUT clearly indicates the
subroutine’s function.

Strangely enough, Applesoft allows names
in the CALL statement (you can specify
CALL DISKIO if the variable DISKIO is ini-
tialized to the proper value), but not in the far
maore common GOSUB and GOTO statements.
It's hard to guess why labels are not supported
by BASIC, for the implememtation is rather
simple and requires only moderate overhead.

Now you can work with labels in Applesoft;
the program AMPERGO (Listing 1) can
handle GOSUB, GOTO, ON-GOTO/GOSUB
and LIST statemcnts with label references. To
use AMPERGO in your program, simply
BRUN AMPERGO and follow the syntax
rules described below.

Syntax of the Statements
Supported by AMPERGO

& GOSUB and & GOTO
The GOSUB statement may be specified in
three different forms:

& GOSUB line number
& GOSUB label
& GOSUB (expression)

The & statement transfers control (o the
AMPERGO routine. All keywords and text
behind the ampersand (&) up to the next colon
(:) or end of line symbo] are analyzed and sub-
sequently processed by AMPERGO,

The first statement above, & GOSUB line
number, is identical to the normal Applesoft
GOSUB statement and is only included in
AMPERGO for completeness.

The second statement, & GOSUB label, is
the most important; execution of this statement
transfers control to the line that contains the
label statement that matches the label specified
behind the GOSUB keyword. The label state-
ment has the following format:

& > label

This statement must be the firs: statement of
a program line — in other words, the state-
ment must immediately follow the line
number.

An example of an & GOSUB application
is presented in AMPERGO.DEMOI (Listing
2). The & GOSUB statement and the & >
label statement may be followed by other
statemments on the same line, provided a colon
is used as separator (see lines 270 and 310).
Note also that the & > label statement has
no effect on program execution; Applesoft
simply skips the statement just as it skips a
DATA statement (see line 230).

A label must satisfy two conditions. The
first and most important condition is that the
first character of a label must be a letter. If
the label consists of more than one character,
the second character must be either a letter,
u digit, or @ blank. Hénce. the first two char-
acters of a label must satisfy the same condi-
tions as the name of a rcal variable in
Applesoft, There arc no restrictions on the re-
maining characters. For instance, labels such
as PP?, PRODUCT# and GOLA(10) are cor-
rect, but the labels P%, #PRODUCTS and
A(10) are incorrect.

Unfortunately, Applesoft sometimes con-
verts parts of labels that satisfy the above con-
ditions to tokens. This happens if Applesoft
recognizes a keyword in the label. This would
be the case, for instance, if you used the label
FRE. Although FRE is syntactically correct,
AMPERGO will not accept it as a label since
FRE is tokenized to a one-byte value (upon
input of the line containing FRE), and this
value does not correspond to a letter. A simi-
lar problem arises if you use the label GATE,
in which Applesoft recognizes the keyword
AT, In this case, the second and third charac-
ters of the label will be converted to a token.

Yaou can aveid problems of this kind by en-
closing in quotation marks any labels that con-
tain a keyword that starts in the first or second
position. Thus the line,

50 & GOSUB "FREE SPACE"
:GOSUB "GATE"

and the corresponding label instructions,

200 & > "FREE SPACE": . .,
300 & > "GATE": . ..

are correct. Note that **quoting’”’ a labe] is also
necessary if you want to use blanks in the
label. For example, GOSUBP ARITY will
be parsed by Applesoft as GOSUB PARITY.
If you quote the label (i.e., & GOSUB
“PARITY?"), all blanks will be kept in
position and none will be removed.

The second condition a label must satisfy
is that it may not contain commas. Although
commas are not allowed, no explicit check is
performed because the comma is used as a
label separator in the & ON-GOTO/GOSUB
statement. If a comma is included in a label,
the part of the label behind the comma will
be ignored. So if you specify:

& GOSUB MAR,JO

AMPERGO will search for the label statement
& > MAR rather than for & > MAR,JO.

By the way, the name you use for a label
does not influence any Applesoft variables
with the same name. For example, the values
of the variables EVA, EVA% and EVA$ will
not be affected by execution of the statement
& GOSUB EVA.

The third form of the & GOSUB statement
is & GOSUB (expression). The expression
may be either a numerical or a string expres-
sion and must be enclosed in parentheses. If
the result of the evaluation is numerical,
AMPERGO will interpret it as a line number
and execute a GOSUB to this line number.
Hence,

10 A=100 : & GOSUB (A)

will execute the subroutine at line 100. Thus,
the statements at line 10 above have the same
effect as the Applesoft GOSUB 100 statement.

On the other hand, if the expression evalu-
ates to a string, this string will be interpreted
as a label. So, if you specify:

100 AS = "KEES": & GOSUB (A$)

a GOSUB will be done to the line starting
with:

& > KEES

Note that the quotation marks in A$ =
“KEES’’ serve only as terminators in the
assignment and are not a part of the label.

The label that results from evaluation of a
string expression must also satisfy the two
conditions mentioned above: the first two
characters must form a syntactically correct
name of a real variable and the label may con-
tain no commas.

One application of the indirect GOSUB state-
ment is to use it instead of the Applesoft ON-
GOSUB statement. A common situation is,
for example,

1. Display menu

2. Get user choice in the variable A

3. ON A GOSUB 1000,2000,3000,4000,
5000

The ON-GOSUB statement can be replaced
with & GOSUB (1000x%A), which will save
some memory and speed up execution. The
indirect GOSUB statement is extremely handy
in some applications. However, I am not par-
ticularly enthusiastic about this construction,
since things can go terribly wrong if you
renumber a program containing such
statements.

Since the syntax of & GOTO is identical
to that of & GOSUB, it need not be discussed
separately here.

& ON-GOTO/GOSUB

AMPERGO also supports the Applesoft
equivalent of the ON-GOTO/GOSUB state-
ment. In the AMPERGO statement & ON-
GOTO/GOSUB, you may use line numbers,
labels or expressions. Line 110 below is a cor-
rect & ON-GOSUB statement.

100 A$="JANJAAP" : A=200
- A%=300

110 & ON K GOSUB (A$) , JANJAAP
(A) ,400, (A%)

If K=1 or 2, the subroutine starting with the
label statement & > JANJAAP will be exe-
cuted; if K=3, the subroutine at line 200 will
be executed; if K=4, the subroutine at line
400 will be executed; and if K=35, the subrou-
tine at line 300 will be executed. If K> 5, con-
trol will pass to the statement following the &
ON-GOSUB statement (similar to the Apple-
soft ON-GOSUB).

When used with labels, AMPERGO's &
ON-GOTO/GOSUB statement offers an attrac-
tive alternative to the Applesoft ON-GOTO/
GOSUB statement, since just a quick glance
is needed to determine which subroutines are
invoked by its execution. This is illustrated
by the following statement:

100 & ON CHOICE GOSUB DISPLAY,
EDIT, ADD, "TRANSFORM" ,
"SAVE"

& LIST

The final option of AMPERGO is the &
LIST statement. Let me first explain how
LIST fits into the GOSUB, GOTO, ON-
GOTO/GOSUB pattern. When I had substi-
tuted & GOTO/GOSUB and & ON-GOTO/
GOSUB statements in some large programs,
everything worked as expected and the listings
were much easier to read. However, on edit-
ing these programs, I soon discovered that
something was still wrong. Though the labeled
subroutines made it easier to follow the flow
of program execution, the lack of line num-
bers made it difficult to actually find the
labeled routines for editing.

The search for subroutines took so much
time that I decided to add the & LIST option
to AMPERGO. The & LIST option lists lines
containing label statements, so that you can
easily find the location of particular subrou-
tines. As with & GOSUB and & GOTO, you
must specify either a line number, a label or
a quoted expression behind & LIST.

For example, if you specify & LIST
MARIJO the line containing the label state-
ment & > MARJO will be displayed (if pres-
ent). If you want to list more than one line,

" the final character of the & LIST statement

must be a comma, for example & LIST
MARIJO,.

Note that & LIST does not support multiple
arguments, so the statement:

& LIST labell,label2

will list only the line containing the label state-
ment & > labell.

Benefits and Drawbacks
of AMPERGO

Let us consider some of the advantages and
disadvantages of using the AMPERGO rou-
tines instead of their Applesoft equivalents.
An obvious disadvantage is that — apart from
the overhead of AMPERGO itself (451 bytes)
— a program containing & GOSUB/GOTO
statements will usually occupy more memory.
Assuming the average length of a label is 8
characters, there is a fixed overhead of 11

characters for the label statement:

@+1(&+1(>)+1(0)

Seven additional bytes may be needed (but not
always) for the label-pointer, for a total of 18
bytes of overhead per subroutine. If the aver-
age length of a line number is 3, there is a
net overhead of 8 + 1 (&) -3 = 6 bytes per
& GOTO/GOSUB statement. Overall, this
implies that working with & GOTO/GOSUB
statements increases program length by a
maximum of:

18 * number of subroutines + 6 * number
of & GOTO/GOSUB statements

This demonstrates that, especially in large
programs, it is not advisable to use & GOTO/
GOSUB statements indiscriminately at every
GOTO/GOSUB. My own strategy is to avoid
long jumps (i.e., 10 GOTO 63200) and use
the normal Applesoft GOTO for short jumps.
For all subroutine calls, I use the & GOSUB
label or the & ON-GOSUB labell label2,...
construction. [n my experience, the time gain
realized when editing or updating these more
readable programs amply compensates for the
reduction in ‘‘free memory'’ caused by the
overhead of AMPERGO and the & GOSUB/
GOTO statements.

As to the benefits of AMPERGO, apart
from improved readability, AMPERGO pro-
vides faster program execution. The reason
for this phenomenon is that, for each label,

a pointer to the line containing the correspond-
ing label statement is stored in the program’s
variable space.

The first time an & GOTO/GOSUB state-
ment is encountered, AMPERGO searches the
program for the line with the matching label.
If the line is found, the program sets a pointer
in the variable space to the start of the line.
The next time the & GOSUB label statement
is executed, AMPERGO will detect that the
variable space contains a pointer associated
with the label following the & GOSUB state-
ment. AMPERGO will then check whether
this label is identical to the label specified in
the label statement on the line referenced by
the pointer. If so, the GOSUB statement is
executed immediately; if not, the program is
again searched for the matching label.

The pointers generated by AMPERGO are
stored in a way that is completely transparent
to the user; that is, the user cannot access the
pointers and they will not be affected by any
Applesoft actions. Still, the pointers are stored
in the normal BASIC variable space, which
you can also use simultaneously for program
variables. This is possible because Applesoft
uses only three of the five bytes allocated for
storage of the string descriptor. The remaining
two bytes are not used by Applesoft and pro-
vide us with the room needed to store a two-
bytc pointer.

This is how it works. [f AMPERGO cn-
counters a label (or an cxpression that evalu-
ates to a label) following an & GOSUB
statement, the label is interpreted as the name
of a string variable. AMPERGO then orders
Applesoft to search the variable space for a
string variable with this name. (If it is not
present, Applesoft will create one.) Next,
bytes 4 and 5 of the string descriptor storage
arca are checked to see if these are zero; if
$0, AMPERGO concludes that the specified
label has not yet been referenced. AMPERGO
then searches the program for the correspond-
ing label statement and stores the pointer to
the line containing this label statement in bytes
4 and 5 of the string variable.

On the other hand, if bytes 4 and S of the
string variable are not zero, & GOLA re-
trieves the label-pointer from these bytes and
checks to see if the line referenced by the
label-pointer contains a label (statement) that
matches the label specified in the & GOSUB
statement. If the labels are identical, control
is transferred to the statement following the
label statement; if not, the program searches
for the label once again.

Note that the fact that label-pointers are
stored in normal string variables implies that
not every label requires seven bytes in the
variable space for the label-pointer. For
example, in AMPERGO.DEMOIL the label
DIGIT and the string variable DIG$ are used.
Since the first two characters of DIGIT and
DIGS are the same, the label-pointer can be

stored in the storage area of DIG$ and thus
requires no extra room.

It is worth stressing that unnecessary label
searches may occur if you use two (or more)
labels in which the first two characters are
identical. The reason for this is that in Apple-
soft only the first two characters of a variable
name are significant. So, if you use the labels
TEST1 and TEST2, the string variable TES
will alternately be used to store the pointers
to the corresponding label statements.

See, for example, AMPERGO.DEMO?
(Listing 3). If line 110 is executed,
AMPERGO will search for the label TEST2
and subsequently store the pointer to line 120
(where TEST2 is located) in the string vari-
able TES. Upon execution of line 120,
AMPERGO will detect that the string variable
that corresponds to the label TESTI (i.e.,
TES$) contains a pointer. However, this
pointer does not point to the right label state-
ment (i.e., the pointer points to line 120), so
the program is searched for the label TEST1
and the pointer to line 110 (in which TEST|
occurs) is stored in TE$. When line 110 is
exccuted, the same thing happens again, and
SO on.

Although exccution will not give rise to any
errors (since AMPERGO checks labels before

control is transferred), you will get the most
out of AMPERGO if you make sure that the
first two label characters differ. When in
doubt, check whether execution of a particular
& GOSUB/GOTO label statement forces a
search through the program (rather than an
immediate transfer of control) by PEEKing
location 255. If AMPERGO searches the pro-
gram for a particular label, location 255 is set
to 255 ($SFF); if not, location 255 is set to
zZero.

As the program output of AMPERGO
.DEMO 2 will show, each time an & GOTO
statement is executed, the program searches
for one of the labels, TEST1 or TEST2. This
problem has been eliminated in AMPERGO
.DEMO3 (Listing 4). Note that the only dif-
ference between the two programs is that the
label TEST2 has been replaced by the label
TTEST2 (line 120). When you run the
program, the value 255 will be output twice,
indicating that AMPERGO performed two
searches through the program. This is correct,
for the program contains two different labels.
The rest of the output values will be zero,
which signals that AMPERGO has jumped
directly to the correct line(s).

Now for the happy conclusion! It is no
longer necessary to position the most fre-
quently used subroutines near the start of your
program (or just below the caller). This has
been the rule in Applesoft to get a reasonable
execution time for large programs, since

Applesoft starts its search for line numbers
specified in GOTO/GOSUB statements at the
beginning of your program. Another reason
to position frequently called subroutines near
the beginning of the program was that, for in-
stance, evaluation of GOSUB 100 takes less
time than GOSUB 50000, as more digits must
be processed in the latter case.

With AMPERGO, it doesn’t matter where
subroutines are positioned in the program. As
long as the first two characters of your labels
are unique, the program will be searched one
time only for each label, after which the label-
pointer will be used.

However, execution speed of AMPERGO
statements will depend on the number of ac-
tive variables. If there are many variables, the
search for a particular label-variable will, on
the average, last longer. Fortunately, the num-
ber of variables in a large program is usually
much smaller than the number of program
lines. A program consisting of 500 program
lines will usually have considerably less vari-
ables, say 100. (The number of arrays is not
relevant.)

I tested AMPERGO on a program of this
size. The time required to execute an
8-character GOSUB label statement varied —
depending on the position of the label-variable
in the variable space — between 1.7 milli-
seconds (if the label-variable was the first
variable referenced in the program) and 5 milli-
seconds (if the label-variable was the last
(101st) variable referenced).

The execution time of the original Applesoft
GOSUB statement depends on the number of
lines Applesoft encounters before it finds the
line for which it is searching. In this case, exe-
cution time does not depend on the number
of variables. If the number of lines between
the GOSUB statement and the target line
equals 30, execution time of a GOSUB state-
ment is about 3 milliseconds. If the number
of lines equals 100, execution time increases
to 7 milliseconds, and if the number of lines
equals 250 or 500, the execution times are 15
milliseconds and 29 milliseconds, respectively.

Roughly speaking, these figures indicate
that for execution speed there is a break-even
point between & GOSUB and the Applesoft
GOSUEB if the distance between the source and
destination is about 20-30 lines. If the distance
increases, AMPERGO's execution time re-
mains constant, but Applesoft’s execution
time increases linearly with the distance. If
you want to see the difference between Apple-
soft and AMPERGO execution speed. load
your largest Applesoft program and note the
number of the last line of the program. Next,
enter the following lines (here we assume that
the largest line number is 29999):

0 FOR I=1 TO 500:GOSUB 30000
:NEXT :STOP

1FOR I=1TO 500: & GOSUB LABEL
:NEXT:STOP

30000 PRINT "A"; :RETURN

30001 & > LABEL: PRINT "A";
:RETURN

Type RUN 0 and RUN 1. You can cvaluate
the respective performances of Applesoft and
AMPERGO by watching the speed at which
the characters are printed on the screen.

Usc of the AMPERGO statements provides
still another advantage that may not be readily
apparent. AMPERGO lets you write position
independent BASIC subroutines. For exam-
ple, when you overlay the last part of a main
program with a new module, this module will
usually use routines from the part of the main
program that is not overlayed. You will get
into trouble if you change the line numbers
in the first part (the main program), for this
implies that you have to change all corre-
sponding line number references in all your
modules.

A similar problem arises if you work with
a library of BASIC subroutines. When you
change line numbers in one or more of the
library routines, all the other routines — and
possibly some main programs too — have to
be checked to see if the line number references
are still correct. Depending on the number of
library routines and their internal structure,
this may be a lot of work.

Using label references eliminates all of
these problems, for no matter where your
routines are positioned in the program,
AMPERGO will find them.

Error Messages
AMPERGO can return three error mes-
sages. These and their most probable causes
are outlined in Table 1.

The Machine Language Program

Entering the Program

To use AMPERGO, simply enter the pro-
gram shown in Listing 1. If you have an
assembler, use it to enter the source code and
assemble. If you do not have an assembler,
the hex code may be entered directly in the
Monitor as described in ‘A Welcome to New
Nibble Readers’” in the beginning of this issue.
You may then save the program on disk with
the command:

BSAVE AMPERGO,A$9400,L%$1C3

The program can be installed with the
BRUN command. This command loads
AMPERGO and executes an initialization rou-
tine that sets HIMEM to $9000 and installs
the & vector. Note that the string pointers are
also reset to the value of HIMEM, so if you
want to install AMPERGO from within an
Applesoft program, insert the BRUN com-
mand as the first line. AMPERGO makes
extensive use of Applesoft routines; it assumes
that these are in ROM or in the Language
Card.

Acknowledgement: My thanks to Hans
Geilenkirchen for proofreading the first draft
of this article.

Table 1: Errors When Using AMPERGO

Syntax Error

® No ampersand (&) or “‘greater than™ (>) symbols were specified in an

AMPERGO statement.

® The first two characters of a label do not form a legal Applesoft name of a

real variable.

® The label contains a keyword that starts in the first or second position (insert

quotation marks around the label).

Illegal Quantity Error

® The length of the label equals zero (i.e., & GOTO (AS$), where A$ is empty).
® The expression evaluates to a negative number (i.e., & GOTO (—1)).

Undefined Statement Error

® No “‘matching’’ label was found. Check your program for the presence of
the corresponding label statement and see if the labels are identical.
® No > symbol was specified in the label statement.

9408 A9 00
9492 85 73
9404 85 6F
9406 A9 90
9408: 85 74
94PA: 85 70
940C: A9 17
94QE: 8D F6 93
9411: A9 94
9413: 8D F7 @3
9416: 60

9417: A2 90

VNV & WN -

LISTING 1: AMPERGO

AMPERGO
BY CORNEL IS BONGERS
COPYRIGHT (C) 1984

BY MICROSPARC, INC
CONCORD, MA 81742

MERL IN ASSEMBLER
SYNTAX : & GOSUB LABEL/(EXPRESSION)

: & ON A GOSUB LABEL/(EXPRESSION)
: & LIST LABEL/(EXPRESSION)

R EEEE

ORG $9400

+« ZERO PAGE ADDRESSES

TEWP1 = 306 :POINTER TO LABEL
VALTYP = $11 : TYPE EXPRESSION

L INNUM = 350 (LINE NO FROM LINGET
TXTTAB - $67 {POINTER TO START OF PROGRAM
FRETOP = $6F ;BOTTOM OF STRINGPOOL
MEMS1Z = $73 i HIMEM

CURLIN = $75 ;CURRENT LINE NUMBER
DESCPTR = SAQ :POINTER TO DESCRIPTOR
SIGN = 3A2 :SIGN MFP ACCU

LONTR = $98B 1 SEARCH POINTER
TXTPTR - $B8 s TEXTPOINTER

TEMPS = SFA : TEMPORARY

TEMP7 = SFE ;LIST FLAG

« TOKENS

GOTOT = 171

GOosuBT - 176

ONT = 180

LISTT = 188

GRTT = 207 ;> TOKEN

AMPT = 175 :& TOKEN

« APPLESOFT ROUTINES

CHARGET

= $B1 yGET NEXT CHARACTER
CHARGOT = $B7 ;GET CURRENT CHAR
DATA = $D995S ;DATA HANDLER
NEWSTT = $D.'D2 :RESTART APPLESOFT
GOTO = $DS3E ;GOTO HANDLER
PARCHK = $DEB2 LEVALUATE EXPR AND CHECK ()
CHKSTACK = $D3D6 :CHECK STACK
GETADR = SE752 ;CONVERT FAC TO INTEGER
PTRGET = SDFE3 1 EVALUATE NAME
FREFAC = SE6O0 ;FREE TEMP DESCRIPTOR
GETBYT = $E6F8 .CONVERT ASCII'S TO INTEGER
ADDON = $0998 CIXTPTR=TXTPTR+Y
LISTP1 = sDheDa .1 TH PART LIST HANDLER
LISTP2 = SD6DA ;2 TH PART LIST HANDLER
SYNT = SDEC9 :SYNTAX ERROR
UNDEFS = $D97C . UNDEF INED STATEMENT
ILLQ = $E199 : ILLEGAL QUANTITY ERROR
« & VECTOR, INPUT BUFFER
-
BJP = $3F5 ;& VECTOR
1BUFP = $2FC ; INPUT BUFFER (LAST PART)

.
« INITIALIZATION
.

BEGIN LDA
STA
STA
LDA
STA
STA
LDA
STA
LDA
STA
RTS

#BEGIN

MEMS1Z SET HIMEM

FRETOP :AND BOTTOM OF STRINGPOOL
#>BEGIN-$400 ,LEAVE SPACE FOR PRODOS BUFFERS
MEMS1Z+1
FRETOP+1
HSTART
BJP+1
H>START
BJP+2

;SET & VECTOR

« MAIN PROGRAM
START

LDX #3009

9419:
9418B:
941D:
941F:
9422
9425:
9426
9428
942A;
942D:
942F .
9431 :
9433:
9435:
9436:
9438:
943A:
943C:
943E:
9441 :
9442:
Q444
9446
9448:
944A:
9440
9450
9452
9454 :
9456 :
9458 :
945A:
945¢C:
945E :
9461 :
9463 :
9464 :
9466
9467 :
9469:
946A:
946C:
946D:
946F:
9478:
9473:
9475:
9477:
947A:
947B:
947C:
947E:
947F:
9481:
9482:
9484
9485:
9487
9488:
9489:
948C:
948E:
9490
9492:
9494;
9497:
9498.
949B:
949D:
949F:
Q4A2:
94A5:
94A8:
94AA:
94AC:
94AE:
94B1:
94B3:
94B5:
9488
94BA:
94BC:
94BE:
94CO:
94c3
94C6:
94C9:
94CC:

94D2:
94D4
9406
9409
94DA.

94DC
94DE
94EQ
94E1
94E2
94E4
94E6
94E8
94EA
94EC
Q4EE
94F1
94F4
94F5
94F7
94F8
94FA
94FC:
94FE
9500
9r@2:
9584
9506:
9508:
950A:

A5
a3
D2
75
76
B8
B9

2}
E6

D9

20
DE

D3

94

D7

06

<]

D9

DE

E7

DS

ole}
E6

20

95
a2

197
188
189
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
139
159
151
152
153
154
155
156
157

159
166
161
162
163
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
200
201

TRNXTL
CCSEARCH

NOF IND
L1ss

EXGOTSUB
GOT

GETA

LISTH

GOSUBH

LISTH2

NODDEC

LISTALL
GOTOH

NODIG

SYN
ILL
UNDEF
STRING

STXTP

NOIND

DATAMO

DECXX

DEC

TAY
JSK
cpY
BEQ
JMP
JuP
JSR
LDX
STX

JMP
CMP
BNE
JSR
BIT
BMI
BIT
BMI
JSR
JMP
JMP
Jmp
JMP
JSR
LDY
LDA
STA
DEY
BNE

LDA
BEQ
TAX
INX
STX
LDA
STA
LDA
STA
LDY
LDA
STA
DEY
BNE
DEX
BEQ
LDA
BEQ
cmP
BEQ
cMp
BNE
INC
BNE
INC

TEMP7 CLEAR LIST FLAG

HONT ;ON TOKEN 7

LISS ;BRANCH IF NOT

CHARGET ;ADVANCE TEXTPOINTER

GETBYT ;CONVERT ON VAR TO INTEGER
:SAVE TOKEN BEHIND VAR IN Y

DESCPTR+1 ;COUNT !

EXGOTSUB JEXECUTE GOTO/GOSUB IF CNTR=8

CHARGET ;SEARCH FOR NEXT COMMA

NOF IND iRTS IF NO CORRESP. LABEL

N, 1 COMMA 7

CCSEARCH ;CONTINUE SEARCH IF NOT

TRNXTL i TRY NEXT ONE
:BACK TO BASIC

HLISTT (LIST TOKEN ?

LISTH :BRANCH IF SO

H#GRTT i 'GREATER THAN' TOKEN ?

GOT :TRY GOTO [F NOT

DATA :PROCESS AS DATA STATEMENT
:GET TOKEN FROM Y-REG

#GOTOT :GOTO TOKEN ?

GOTOH iBRANCH IF SO

#GOSUBT ;GOSUB TOKEN ?

GOSUBH ;BRANCH IF SO

CHARGOT ;FOR FUTURE AMPERSOFT EXT

SYNT ;SYNTAX ERROR (CONNECT)

#$01
(TXTPTR) .Y ;CHECK ON EOL/E0S

GETA i SYNTAX ERROR IF EOL
Nl
GETA {OR EOS
TEMP7 |SET LIST FLAG
H$O3
CHKSTACK {CHECK ON STACK OVERFLOW
TXTPTR+1
TXTPTR PUSH STACKPOINTER
CURLIN+1 PUSH CURRENT LINE NUMBER
CURLIN
#GOSUBT
;PUSH GOSUB TOKEN
GOTOH JEXECUTE A GOTO
TEMP7 (LIST FLAG ON 7
LISTH2 :BRANCH [F SO
NEWSTT :JMP TO BASIC (NO RTS)
;PULL GOSUB TOKEN
CURLIN :RESTORE CURRENT L INE NUMBER
CURLIN+1
TXTPTR JRESTORE TEXTPOINTER
TXTPTR+1
(PULL EXSTMNT 'S RETURN ADDRESS
DATA (SET TXTPTR TO END INSTRUCTION
TXTPTR
NODDEC [TXTPTR=TXTPTR- 1
TXTPTR+1
TXTPTR
CHARGOT (GET LAST CHAR
iSAVE IT
CHARGET ;RESTORE TEXTPOINTER
A% ;CONMA ?
LISTALL ;BRANCH IF SO
LISTP2 JLIST LINE
LISTP1 ;LIST FROM CURRENT LINE
CHARGET :GET CHAR BEHIND GOTO/GOSUB
#3500
TEMP7+1 1SET SEARCH INDICATOR
NODIG :BRANCH IF NO DIGIT
GOTO {EXECUTE APPLESOFT'S GOTO
#'(:PARENTHESIS ?
NOIND JBRANCH IF NOT
PARCHK :EVALUATE EXPRESSION
VALTYP ;STRING EXPRESSION 7
STRING {BRANCH IF SO
SIGN JRESULT MUST BE POSITIVE
ILL (ERROR IF NOT
GETADR :CONVERT FAC TO INTEGER
GOTO+3 LEXECUTE APPLESOFT'S GOTO
SYNT :SYNTAX ERROR
1LLQ ; ILLEGAL QUANTITY ERROR
UNDEFS JUNDEF INED STATEMENT
FREFAC \FRE TEMP DESCRIPTOR
#$02

(DESCPTR) ,Y [SET TEXTPOINTER TO START
TXTPTR-1,Y ;OF LABEL

STXTP
(DESCPTR) .Y .GET LENGTH
JMUST BE <> @
TEMPS ;SAVE LENGTH+1
TXTPTR ;SAVE TEXTPOINTER IN TEMP1
TEMP1
TXTPTR+1
TEMP1+1
#304
DATAS-1.Y INIT LABEL VARIARLE
IBUFP-1 Y
DATAMO
:COUNT # OF CHARS
ADDDOL :BRANCH [F END OF LABEL

(TXTPTR) ,Y [GET NEXT CHAR

ADDDOL (EOL/EOS SYMB 1S TERMINATOR
'

ADDDOL

N . QUOTE ?

NOSKIP .BRANCH [F NOT

TXTPTR .ADVANCE TEXTPOINTER

DECXX

TXTPTR+1

950C:
950E:
9510:
9512:
9515:
9516:
9518
951A
951C:
9S51E:
9520
9522:
9525,
9527
9529
9528
9520
952F
9531: Bl
9533:
9535:

9537:
9538:
953A.
953C:
953F:
9541:
9543:
9546
9548:
954A.
954C:
954E:
9550
9551
9553

9555:
9556
9558:
955A:
955C:
955D
955F

9561

9563

9564
9566
9568
956A
956C :
956E
9576
9572
9575
9577
9579
9578
957¢C
957D
957F

9581 :
9583
9585 :
9587
9589:
958A:
958C:
958E:
9590
9592:
9594 :
9596:
9598
959A
959C:
959E:
O5A8:
95A1 :
95A2:
95A4 :
95A6
95A8:
95AA:
95AC:
95AE :
9580
9582
95B4 -
9585 :
9586
95B9 .
958BC:
95BE :

95BF
95C2:

--End assembly--

451 bytes

Erenre a

82

DF

95

95

9B
75
50
9B

51

95

98
B7
F6

D9
ee

20 24

202
203
204
285
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
279
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293
294
295
296
297
298
299
300
301

302
303
304
305
306
397
308
309
310

NOSKIP

ADDDOL

LABEL INI

UPDATE

-

* SEARCH :
« EXIT WITH CC

SEARCH

CNTSR1

» COMPARE .

BNE
CMP
BEQ
STA
INY
CPY
BNE
LDA
STA
LDA
STA
JSR
STA
STY

LDA
STA
STA
INY
LDA
STA
STA
RTS

LDX
LDA
LOY
STX
STA
LDA
BEQ
JSR
BCS
LDY
LDA
TAX
INY
LDA
BNE

DECXX (ALWAYS

#, ;COMMA 1S SEPARATOR

ADDDOL

IBUFP.Y ;SAVE FIRST 2 CHARACTERS
;OF LABEL IN INPUT BUFFER

H$02

DECXX

#<IBUFP

TXTPTR JSET TXTPTR TO INPUT BUFFER

#>1BUFP

TXTPTR+1

PTRGET .SEARCH LABEL VARIABLE

DESCPTR .SAVE POINTER TO DESC

DESCPTR+1

TXTPTR ;CHECK TEXTPOINTER

H#<IBUFP+3

SYN JSYNTAX ERROR IF ILLEGAL LABEL

#304

(DESCPTR) .Y ;PNTR TO GOTO/GOSUB PRESENT 7

LABEL INI :BRANCH IF NOT

LOWTR+1 :COPY POINTER IN LOWTR
(DESCPTR) .Y

LOWTR

CIMPARE :CONPARE LABELS

#8092 . PREPARE FOR UPDATE

UPDATE .BRANCH IF MATCH

SEARCH :SEARCH PROGRAM FOR LABEL
UNDEF :UNDEFINED STMNT IF NOT FOUND
TEMP7+1 ;SET SEARCH INDICATOR TO $FF
#3044

LOWTR+1

(DESCPTR) ,Y ;SAVE POINTER TO START LINE
i IN VARIABLE SPACE

LOWTR

(DESCPTR) .Y

(LOWTR) , Y
CURL IN
L INNUM

. INSTALL NEW LINE NO
:SAVE [N LINNUM TOO FOR LIST

(LOWTR) , Y
CURL IN+1
L INNUM+1

{BACK TO CALLER

FIND MATCHING & > LABEL LINE

IF NO MATCH. ELSE CS

TXTTAB (GET PNTR TO START PROGRAM
TXTTAB+1
#301
LOWTR :UPDATE SEARCH POINTER
LOWTR+1
(LOWTR) .Y [END OF PROGRAM 7
MISMATCH JEXIT WITH €C IF SO
CIMPARE :COMPARE LABELS
MATCH :BRANCH IF EQUAL
H$90
(LOWTR) .Y

(GET POINTER TO NEXT LINE
(LOWTR) .Y
CNTSR1 | ALWAYS

CHECK ON & > AND COMPARE LABEL BEHIND
~ & GOTO/GOSUB WITH LABEL BEHIND & >

UPDATE

» TXTPTR TO END OF & > STATEMENT IF MATCH
« EXIT WITH

CIMPARE

CMPNXT

MISMATCH
ADD
MATCH

DATAS

-

LOY
LDA
CmpP
BNE
INY
LDA
CMP
BNE
LDA
ADC
STA
LDA
ADC
STA
LDX
LDY
INY
DEX
BEQ
LDA
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
cLc
RTS
JSR
JSR
8NE
RTS

ASC
DFBE

CC IF NO MATCH, ELSE CS

#3904
(LOWTR) .Y ;LOWTR POINTS TO START LINE
HANPT :& TOKEN 7
MISMATCH :BRANCH 1F NOT
(LOWTR) .Y
HGRTT ; '"GREATER THAN' TOKEN ?
MISMATCH :BRANCH [F NOT
LOWTR ;NOW COMPARE LABELS
#3$85 iCARRY 1S SET
TXTPTR JINIT TXTPTR TO LOWTR+6
LOWTR+1
#3090
TXTPTR+1
TENPS ;GET LENGTH OF LABEL
H$FF
ADD JREADY IF AT END OF LABEL
(TEMP1) Y ,GET CHAR OF LABEL
ADD :BRANCH 1F EOL
LA :COLON ?
ADD ;BRANCH IF EOS
LN ; COMMA 7
ADD :END REACHED IF SO
(TXTPTR) .Y ;COMPARE WITH CURRENT LABEL
CMPNXT 1 CONT COMPARISON IF MATCH
: INDICATE FAILED SEARCH
ADDON . UPDATE TEXTPOINTER
CHARGOT ;MUST POINT TO : OR @
W ISMATCHK :ELSE NO MATCH
(RTS WITH CARRY SET
Y
$00

- END OF PROGRAM

KEY PERFECT 4.0

RUN ON
AMPERGO
CODE ADDR# - ADDR#
2428 9400 944F
26A8 9458 - 949F
26E1 Q4AB8 - O4EF
2853 94F@8 - 953F
235F 9540 - 958F
17C6 9590 - 95C2
PROGRAM CHECK IS : @1C3

CHECK CODE 3.9

ON: AMPERGO
TYPE: B

LENGTH: @1C3
CHECKSUM: 3F

LISTING 2: AMPERGO.DEMO1

REM cxesesssrsrnrssnnnssene

REM « AMPERGO . DEMO1 .

REM « BY CORNELIS BONGERS «

REM « COPYRIGHT (C) 1984 .«

REM « BY MICROSPARC, INC.

REM « CONCORD, MA 01742 »

REM svvvvvansnssonssosrunens
PRINT CHRS (4)"BRUN AMPERGO"
REM

REM MAIN PROGRAM (ADD TWO DIGITS)

REM
& GOSUB INIT
& GOSUB USER INPUT :FDIG = DIG

& GOSUB USER INPUT

PRINT PRINT "THE SUM OF ";

PRINT FDIG;" AND ":DIG:" IS ":FDIG + DIG
END

REM

REM USER INPUT

REM

& > USER INPUT

PRINT PRINT "ENTER A DIGIT ";

& > DIGIT: GET DIGS

CALL CLREOS

& GOSUB CHECK

IF NOT ER THEN PRINT DIG$: RETURN

& GOSUB "ERROR":
REM

REM CHECK INPUT
REM

& > CHECK:ER = @
LET DIG = VAL (DIGS):

& GOTQ DIGIT

IF (DIG) THEN RETURN

330
349
350
360
3790
380
390
400
410
420
430
440
450

460
470
480
490

IF DIG$ < > "@" THEN ER = 1
IF DIG$ = CHR$ (3) THEN STOP
RETURN

REM

REM INITIALIZE

REM

& > INIT: TEXT : HOME

LET CLREOS = - 958: RETURN
REM

REM ERROR HANDLER

REM

& > "ERROR"

LET HPO = POS (8) + 1:VPO = PEEK (37) +

1

HTAB 10: VTAB 24: INVERSE
PRINT "NOT A DIGIT, REENTER";
HTAB HPO: VTAB VPO: NORMAL
RETURN

LISTING 3: AMPERGO.DEMO2
18 REM

txsarsaasTsaNNNIONRIR N,
20 REM « AMPERGO . DEMO2 .
30 REM « BY CORNELIS BONGERS =
49 REM « COPYRIGHT (C) 1984 =«
50 REM « BY MICROSPARC, INC «
60 REM « CONCORD, MA. D1742
79 REM sremssrnnsssnnnssrnnnsss

80 PRINT CHR$ (4)"BRUN AMPERGO"
90 REM THIS PROGRAM FORCES CONTINUOUS LABEL

SEARCHING
106 & GOTO TEST1: REM INIT LOC 255 TO 255
110 & > TEST1:. PRINT PEEK (255): & GOTO
TEST2
120 & > TEST2: PRINT PEEK (255): & GOTO
TEST1
LISTING 4: AMPERGO.DEMO3
1O REM sssssssunvsosnntorncsisns
20 REM . AMPERCO.DEMO3 .
30 REM « BY CORNELIS BONGERS =«
46 REM « COPYRIGHT (C) 1984 .
50 REM « BY MICROSPARC, INC
60 REM + CONCORD, MA. B1742 .
70 REM sseesessssvonasesnssnsss

B@ PRINT CHRS (4)"BRUN AMPERGO"
99 REM THIS PROGRAM USES THE LABEL-POINTERS
106 & GOTO TEST1: REM INIT LOC 255 TO 255

116 & > TEST1: PRINT PEEK (255): & GOTO
TTEST2

120 & > TTEST2: PRINT PEEK (255): & GOTO
TEST1

