DISASSEMBLY LINES

FLASIH! ProDOS 8
SUPPORTS FILE
RECOVER

Sandy delves into the ProDOS code that
handles file deletion, destruction and
truncation.

hen man bites dog, that's news. When Apple Com-
puter abandons its masochistic stance on file deletion,
that’s a miracle. Well, my dear readers. a latter-day
saint moving among the programmers in Cupertino has restored order
and sanity 1o ProDOS 8. Whereas PRODOS version 1.2 and its fore-
bears irrevocably mangled files in the process of deleting them,
PRODOS version 1.3 and its progeny preserve the integrity of deleted
files. Now, programs to “‘undelete™" files and to scavenge damaged
disks may be written with relative case, provided that you under-
stand the anatomy of healthy and deleted files. To that end, this edition
of D/L deals with file deletion and volume bit map manipulation by
the ProDOS machine language interface (MLI), and the next install-
ment of D/L introduces a utility that resurrects deleted ProDOS files.
Before commenting upon the disassembled ProDOS DELETE and
DESTROY code. let's briefly review how information is stored
on a disk. For more complete details. several references are avail-
able [1-3].

DISK ORGANIZATION

A block 1s the basic unit of data storage on ProDOS disks. Each
block consists of two 256-byte pages. On magnetic media (floppy
and hard disks), blocks 0-1 house the loader code. which transfers
the PRODOS file from disk to random access memory (RAM). Most
clectronic disks (RAM disks) cannot be booted directly, and thus
contain dummy loader blocks. Block 2 is the key block (first block)
of the volume directory. Blocks 3-5 are also reserved for volume
directory usage. The volume bit map (VBM) begins on block 6 in
accord with a pointer in the volume directory header. Depending
upon the size of the disk, the map extends a variable number of
blocks. All other blocks are allocated and deallocated as files are
created. expanded, truncated and deleted. The above block layout
holds for all current versions of ProDOS.

I'he VBM keeps track of whether each block on the volume is
free or reserved. Each VBM byte represents eight blocks. The high-
and low-order bits correspond to the lowest and highest numbered
blocks, respectively, as shown in Example 1.

A set bit denotes a free block, whereas a clear bit means that the
block is reserved. Example 1 shows the state of the sccond VBM
byte: blocks 8-13 arc occupied and blocks 14-15 are free.

EXAMPLE 1: Byte 1 of the Volume Bit Map

Bit 7 6 5 R 3 2 1 0
Block 8 9 A B Cc D E F

State 0 0 0 0 0 0 1 1

Apple 5 1/4-inch disks are usually formatted for 280 blocks, Divid-
ing this number by 8 gives a value of 35, the number of VBM bytes
needed on a mini-floppy disk. Here, only a small portion of one VBM
block 1s required. Apple 3 1/2-inch disks hold 1,600 blocks and
demand 200 VBM bytes. Still, less than onc VBM block is needed.
A hard disk formatted for 10 megabytes contains 20,000 blocks and
must have 2,500 bytes in a S-block VBM. So, the larger the disk,
the more space is occupied by the VBM.

FILE ORGANIZATION

Although many data types exist, files are grouped into two struc-
tural categories: directory and nondirectory files. A description of
each variety follows.

Directory Files

The first four bytes of each directory file block contain the numbers
of the preceding (bytes 0-1) and succeeding (bytes 2-3) blocks in
the file. A zero value means that no backward or forward link exists.

FIGURE 1: File Entry

FIELD ENTRY
LENGTH OFFSET
1 byteH$tarage.type name. length | $00

$01
15 bytes file. name :
| $OF

1 byte file.type | s10

| $11
2 bytes key.pointer | $12
| $13
2 bytes blocks . used | s14
$15
3 bytes EOF :
‘ $17
[s18

4 bytes creation
$1B

1 byte version n $1C
1 byte min.version $1D0
1 byte access | $1E

$1F
2 bytes aux.type $20
$21
4 bytes last .mod :
$24
$25
2 bytes header.pointer $26

The key blocks of volume directory and subdirectory files house
the volume directory header and subdirectory header, which detail
many important attributes of the directories. A prior D/L installment
contains graphic illustrations of headers [4]. Under current ProDOS
convention, cach header and file entry in a directory consists of 39
bytes, and 13 entries fit into one directory block. These values are
obtained by reading the header and are not carved in stone.

Figure 1 illustrates the composition of a file entry. It is taken from
the previously-noted article [4] and patterned after (interpretation:
“*stolen from’’) a chart in one of my favorite manuals. [1] The dia-
gram will stand you in good stead as we dissect the file deletion code.
Pay particular attention to the high-order nibble of the first byte in
the file entry, which specifies one of five storage types:

D = Subdirectory file
3 =Tree file

2 = Sapling file

1 = Seedling file

O « Deleted file

Since only four blocks are reserved for it, no more than 51 files
can fit into a root directory. If you seem to be missing one file (i.e.,
4 x 13 = 52), remember that the header counts as one entry. In con-
trast, the size of a subdirectory file is limited by available disk space
and by a generous maximum of 65,535 files.

Nondirectory Files

Standard or nondirectory files hold various types of data and are
organized quite differently from directory files. The three storage
types detailed below are determined by the location of the end-of-
file (EOF) marker, rather than by the amount of data in the files.
A primer on sparse files explains this apparent discrepancy [5].

Seedling File (0 < = EOF < = $200) This smallest file type does
not cxceed one block and cannot contain more than 512 ($200) bytes.
The single data block is necessarily the key block of the scedling file.

Sapling File ($200 < EOF < = $20000): When the EOF is moved
beyond the 512th byte, the file has grown to sapling size. An index
block, now the key block, is created to store the numbers of data
blocks. Index blocks are segmented into two pages of 256 ($100)
bytes apiece. The least significant byte (LLSB) of a block number is
saved in the first page. and the most significant byte (MSB) is held
in the corresponding position of the second page. For example, if
the first two data block numbers in an index block were $FF and
$100. bytes 0-1 of the index block would contain FF and 00, respec-
tively, and bytes 256-257 would hold 00 and 01, respectively. Get
it? Be sure you've got it

Because an index block can house the numbers of 256 (S100) data
blocks. the maximal size of a sapling file is 131,072 ($20000) bytes.

Tree Files (520000 < EOF < $1000000) When sapling size is ex-
ceeded, a tree file is formed. A masier index block, the new key
block, records the numbers of up to 128 index blocks. Theoretically,
the top size of a tree file is 16,777, 216 ($1,000,000) bytes, which
translates to 16 megabytes. Since the final byte of a tree file is reserved
for the EOF, maximum data size is really one byte less than just
stated.

To create a file with 16 megabytes of potential space. type the
following command from Applesoft:

BSAVE BIG.EMPTY.FILE,A$2000,L1,BSFFFFFF

Despite holding a single datum, the resulting sparse file is prepared
Lo receive 16,777,215 data bytes, as shown under the ENDFILE
column when the CATALOG command is issued.

Here is a mini-quaz for some of my more enthusiastic readers: Why
must room be reserved for the EOF in a tree file but not in a sapling
or seedling file? Drop me a note just to let me know that you're still
alive and kicking.

BASIC INTERPRETER DELETE CODE

The DELETE command issued from BASIC causes the named
file to be removed from the directory. Whereas many ProDOS BASIC
interpreter (BI) commands are complex [6], DELETE is the sim-
plest of all because it relies upon the machine language interface (MLI)
to do all the dirty work (lines 110-111). If we are going to under-
stand the mechanics of file deletion. we'll have to invade that bas-
tion of ProDOS power, the MLI.

MLI STORAGE SPACE

The bulk of the ProDOS kernel resides in the first bank of the
language card. also known as bank-switched memory. As scen in
the “‘equate’” section of Listing 1, the MLI is chock-full of storage
areas. Several buffers pertinent to the DESTROY code are touched
upon here:

1. Zero Page 1/0 Storage — When communicating with a disk deviee
driver, critical data is stored in $42-$47. A whilc back, when
we built a RAM disk in the pages of D/L. this process was out-
hined [7]. Because zero page data is used by the System Monitor
and by many programs, the ML saves these locations when called
and restores them on exit.

2. File Control Block (FCB) Table — In keeping with the maximum
number of open files, up to cight 32-byte active FCBs may exist
in the 256-byte FCB Table. Each FCB stores data relating to file
identification, composition, and location.

3. Volume Control Block (VCB) Tuble — Again. a 256-byte arca
1s segmented into eight 32-byte VCBs. Volume names and other
data are held in cach VCB.

4. Volume B Map Block Buffer — A S12-byte buffer is reserved
for an image of the current VBM block.

S. Primary Block Buffer — This 2-page multipurpose buffer usually
contains an image of a file block. For directory files. it is used
to manipulate header and file entry information. For nondirec
tory files, it holds an image of an index block.

6. Variable Data Area — File header and ID data are saved here.

7. File Entry Buffer — This 39-byte segment houses an image if it's
a file entry.

8. Variable Work Area — Much of the data n this work area is
detailed in lines 78-103.

MLI DESTROY CODE

Owr tale of destruction begins at line 400 of Listing 1, the entry
point to the MLI DESTROY command. After securing the file en-
try and copying it to the file entry buffer, data is extracted from the
file entry and errors are reported (lines 400-401). If an unused FCB
can be grabbed (lines 402-404). the work area is told that no free
blocks are needed (lines 405-407), and the count of free blocks on
the current volume is checked (lines 408-409). Since no blocks are
requested. the code in lines 410-411 should be bypassed. If the de-
stroy bit of the access code [4] is not enabled, an error is flagged

A latter-day saint moving among the
programmers in Cupertino has restored
order and sanity to ProDOS 8.

(lines 412-416). If the file is not locked. the integrity of the disk
device is ensured (lines 417-419). After transferring data from the
file entry buffer to the work area (lines 420-423), the storage.iype
nibble is tested. Directory file entries are routed to line 477, while
standard file entrics arc passed to line 435.

DESTROYING DIRECTORY FILES

After rechecking for a directory file storage.type (lines 477-478),
line 479 calls RDVBMBLK (lines 278-296) to read the appropriate
VBM block into the VBM block buffer. This subroutine first indexes
the current VCB and uses CKPTVBM (lines 306-313) to ensure that
the contents of the VBM block buffer are written to disk if another
VBM block is needed. Should a new VBM block be required,
DORDVBM (lines 317-347) resets values in the VCB and sets the
zero page 1/O storage locations for a direct READ call to the disk
device driver via DOIO (lines 377-394). At this point, a VBM block
and the key block of the directory file are in their respective block
buffers.

Because unlocked directory files can be deleted only if they contain
no active file entrics, an empty target filc is cnsured (lines 487-492).
If the file is deletable, the first byte (i.c., storage.type/name.length)
of the directory header is zeroed (line 493). and the key directory
block is written back to disk (line 494). If the directory encompasscs
more than one block (lines 496-498), the key block is freed in the
VBM (line 502) and the block number designated by the forward
link 1s read into the primary block buffer. Iteration of this process
occurs until all blocks held by the directory file are marked free in
the VBM. FRVBMBLK, the subroutine that releases blocks, is con-
sidered in a separate section. If the directory file occupies a single
block (lines 499-500), control passes to line 447. There the target
VBM bit is turned on, thus releasing the block, and the first byte
of the file entry is zeroed. We'll discuss this further in the following
paragraphs.

Destroying Nondirectory Files

After saving the siorage.type (multiplied by 16) of the file (line
435). several locations in the work area are zeroed (lines 436-440),
the byte offset into the block 18 maximized (lines 441-442), and the
Destroy flag is cnabled (line 443). Line 444 calls TRUNCEOF (lines
528-538), the subroutine that shortens or destroys files, depending
upon the state of the Destroy flag. TRUNCEOF determines the
storage type of the target file and routes flow to the correct handler.
In this article. we shall concentrate on destruction, not truncation,

although the full code and commentary arc provided in Listing 1.
Keep in mind that, when a standard file is destroyed, the first byte
in the file entry 1s zeroed. index blocks are altered, and the file count
is decremented in the header of the parent directory — but not a single
datum of file content is obliterated. If this were not so. file recovery
would be impossible.

If a seedling file is found, TRNCSEED (lines 643-662) reads the
key block, a data block. into the primary block buffer. Because the
byte offset into the block points beyond the last block byte, the con-
tents of the data block remain intact. This would not be the case if
truncation were taking place.

If the target file is a sapling, TRNCSAP (lines 616-639) reads the
key block, an index block, into memory and calls FREIXBLI (lines
699-723) to do the hatchet job. Rather than zero the entries in the
index block as did version 1.2 of the MLI, the latter subroutine swaps
the MSBs and LSBs, so that the MSBs appear in the first page of
the index block and the LSBs occupy the second page.

Once again, data is not destroyed. so deleted files can be recon-
structed. FREIXBLI begins by saving the entry block number on
the stack and freeing the indexed data blocks in the VBM. DOIX-
BYT (lines 727-736) swaps the MSB and [.SB bytes in the index
block.

In version 1.3 of PRODOS, a 65C02/65802/65816 instruction
snuck into the listing (line 730). causing the operating system to bomb
on 6502 machines. Version 1.4 squashes this bug simply by sub-
stituting a 6502 opcode.

FREIXBLI continues swapping index block bytes until all but the
first entry are processed. After writing the index block back to disk,
the initial entry is swapped by DEMFITYP (lines 672-694), a subrou-
tine that demotes the file type from tree to sapling. sapling to seedling,
or scedling to deleted.

When destroying a tree file, TRNCTREE (lines 544-612) is
invoked. Because sparse files contain discontinuous data, all 128
potential index blocks are examined in the master index block. The
latter block is read into memory and the numbers of the active (non-
zero) subindex blocks are stored in the work area device table until
the table is full (holds eight block numbers) or the EOF 1s reached.
Each subindex block 1s:

1. Read into memory

2. Altered by FREIXBLK (lines 698-723), which swaps all entries
in the subindex block

3. Writien back 1o disk

When all entries in the work area device table have been handled,
the process 1s tepeated until each and every subindex block has been

‘ L hen a standard file is destroyed,

not a single datum of file context is
obliterated.

inverted. TRNCTREE ends by swapping all entries in the master
index block and exits via TRNCSAPI and TRNCSEEI.

VOLUME BIT MAP MANIPULATION

Because of its importance for authors of ProDOS utilitics (cspe-
cially me), I have included code that allocates blocks in the VBM
as well as the subroutine used by the DESTROY Command Handler
to free blocks in the VBM.

Freeing a Block in VBM

FRVBMBLK gets the ball rolling by storing the MSB and LSB
of the block to be freed in VBMSRCH and the stack, respectively
(lines 119-120). After ensuring that the number of the target block

does not exceed the number of blocks on the disk (lines 121-123,
125). the bit position of the target block within the target byte is deter-
mined. This is donc by using the three low-order bits of the target
LSB as an index into a table of byte masks (line 742). The result
is saved in VBMBIT (lines 124, 126-130).

With the target MSB and LSB now in VBMSRCH and the Accum-
ulator, respectively, the block number is divided by eight to find the
target byte position in the VBM (lines 131-137). Representng the
byte offset in the arget VBM page, the resulting LSB is stored in
VBMBYOFS (line 138). The MSB divided by two denotes the block
offset in the VBM, which remains in VBMSRCH (line 139). The
page of the target VBM block is determined by picking up the Carry
bit from the divide operation and saving it in VBMBUFPG (line 140).

With the block, page, byte and bit offsets of the target VBM block
tucked away in the work area, the rest is not difficult. It the last-
used VBM block holds our target bit (lines 144-148). control passes
to line 160: otherwise, the last-used block is checkpointed and the
target VBM block is read into memory (lines 149-156). Using
VBMBUFPG, VBMBYOFS and VBMBIT, the target map bit is
turned on (lines 160-168) and the VBM flag is set high to indicate
that, when the next checkpoint is performed, this block must be writ-
ten to disk (lines 169-171). After incrementing the count of freed

Mu: programs to “undelete” tiles

and to scavenge damaged disks may be
written with relative ease.

(not free) blocks in the work area (lines 172-174). the Carry flag
is cleared 1o signal successful liberation of a block in the VBM (line
175). and FRVBMBILK returns to its caller.

Reserving a Block in VBM

ALVBMBLK reads the block pomnted to by the VOB into the VBM
block buffer (lines 185-186) and searches for the first byte that con
tains a set bit indicating an unused block (lines 189-198). This is
the target VBM byte. If the current VBM block is full (lines 199-
201), GETVBMBL (lines 262-274) checkpoints the block and reads
the next VBM block into memory. If the end of the VBM has heen
reached. a VOLUME FULL error code is returned.

Calculating the block number represented by the first set bit in
the target byte is the inverse of the process detailed in the prior section.
Using two hytes of a work area Accumulator, multiplying the byte
offset plus page offset by cight gives the base number of the block
represented by the target byte (lines 206-216). To find the exact block
number. a set Carry flag is used as a byte marker (line 220). and
bits in the target byte are rotated left until a set bit pops into the
Carry flag (lines 221-229). With cach rotation, the base block number
is bumped by onc. When the free block is detected. a series of right
shifts restores the target byte to its original form except that the tar-
get bit is now clear, signaling a reserved block (lines 230-237)

ALVBMBLK ends by setting the VBM flag (lines 235-240), sub-
tracting one from the free (not freed) block count in the VOB (lines
244-251), and returning with the allocated block number in the work
area Accumulator (lines 255-258).

AULD LANG SYNE

We meet again in 1988, the year of the giant RAM. At that time
I will present a ProDOS file recovery utility that you will want to
keep ever at hand. 1 wish you, me, and the staff at Nibble a happy
and fulfilling New Year.

REFERENCES

1. ProDOS 8 Techmcal Reference Manual, Reading, MA: Addison-
Wesley Publishing Company, Inc. 1987.

2. Lude, Garv. Apple ProDOS: Advanced Features For Program-
mers. Bowic, MD: Brady Communications Company. Inc. (a
Prentice-Hall Publishing Company). 1985,

3. Worth. Don. and Pieter Lechner, Bencath Apple ProDOS. Chats-
worth, CA: Quality Software. 1984,

4. Mossberg, S. *Disassembly Lines: The CAT and CATALOG
Commands.” Nibble, May 1986, pp. 114-128.

5. Mossberg, S. “*Apple Tutorial: Sparse Files " Nibble, June 1987,
pp. 72-87.

6. Mossberg. S.. Dissassembly Lines. Vol. 4. Concord, MA: Nibble
Publications. 1986.

LISTING 1: DESTROY

Note: This code aiready axisits in the ProO0OS MLI There 13 no need 1o type it i

1 sessacsscescbesssssarscsssssertsrisesrane
2 DESTROY

3 ODELETING PreDOS FILES

4 . MLl version 1 3/1 4

5 . BI version 1 1

6 Interpreted by Sandy Mossberg

7 +« Meriin Pro

a Copyright (C) 1987

9 by NicroSPARC. Inc

10 . Concora. MA 01742

11 .

O B L

13 xc nandle 65€CO2 opcades

14

15 -« Zero Page (ZP) 1/0 Locations tor Disk Device Driver
16

12 DOCHMDNUM = $42 .command code

18 DOSLTDRV = 3543 device code (DSSS @P00)

19 DOBUFPTR - $44 butfer pointer

20 DOBLKNUM = 146 Lbigck number

21

22 « BASIC Intcrpreter (B1) Global Page

23

24 GOSYSTEM - SBE7Q execute call to ML1

25

26 « System Globa!l Page

27

23 SYSERR = $BFQ9 .system grror handiar

29 SYSDEATH = $BFOC :system death handler

30 SERR = $BFOF .errar code

31 DEVNUN = $BF30 .device code (D3SS 0000)
32

33 « File Contro! Block (8 FCBs In FCB Table)

34

ELY WRITFILG = SDBIC cweite thag (Ml=nrite PlLzno wrt)
36

37 « Volume Control Block (8 VCBs in VCB Table)

38

39 VCUNUN = $D910 iunit nusber of volume

a0 VCTOTBLK = 50912 ;total block count In volume
41 VCFREBLK = sD914 .free block count in volume
42 VCVBNOFS « SD91A iblock offsct to multiblock VBN
43 VCONXTVEM = SD9IC .next VBW block to get

44

a5 + Volume Bit Map (VBM) Bliock Buffer

16

7 Vamsur B SDARO .VBN Buffer

43

49 +« Primary Block Buffer

50

51 PBLKBUF = SDCO0 (Primary block Dulfer

52 PBFWDPTR = sDCP2 .formare pointer

53 PBSTYPNL = SDCOs 1StOrage. type /name iongth
54 PBFILCNT = sDC2s ifile.count

55

5% .« ML) Proper

57

58 TOBLKIO = SDEES ipertorm 1,0 via device handler
89 UPDATDIR = SEAB2 .update directory

60 GFILENT = SES93 get file entry

61 GFREBLK = $E959 .get tree block(s) «f available
&2 GETFCB = SEF9B .get s FCB

63 STATCALL = SFA3E \Mmake status call

64

65 « Variable Data Area

66

67 VOFILENT = SFEa7 tila count

68

69 « File Entry Bufter

70

71 FESTYPNL = SFES53 .storage.type/name length
72 FEKEYPTR = SFEGA :key.pointer

73 ACCESS = SFE7L (@ccess EAA3: BC 98 FE 187 STY VBMBUFPG iset 1st page

74 EAAG B9 00 DA 188 2 LDA VBMBUF .Y et VBN byte in Ist page
75 . Variaole Work Area: EAAS. DO 1A 189 BNE :8 e block found in this byte
76 EAAB. CB8 199 INY
77 acc = SFETA (4-byte accumulator EAAC: D@ F8 191 BNE 12 ;loop back until Ist page done
78 VCBOFFS = SFESS ;offset Into VCB table EAAE: EE 98 FE 192 INC VBMBUFPG ibump to 2nd pege
79 FCBOFFS = SFEB6 ioffset into FCB table EAB1: EE 97 FE 193 INC VBMPGOFS ump page of fset into VBM
B0 FBLKNEED = SFEBS inumber of free blocks required EAG4 B9 00 DB 194 3 LDA VBMBUF +256 .Y t VBM byte In 2nd page
81 FCBOPFLG = SFEBB 1=closed)| EAB7 DO OC 195 BNE 5 ifree block found in this byte
82 VBNEIT = SFEBF ‘bit to free in target VBN byte EABY C8 196 INY |
83 VBNSRCH = SFE98 inumber of VBM blocks to search EABA: D@ F8 197 BNE :3 ;1oop back until 2nd page done
B4 YSAV = SFES! .save Y-Reg EABC: EE 97 FE 198 INC VBMPGOFS ;bump page offset into VBM |
B85 VBNBYOFS = SFE96 (VBM by offset In page EADF: 20 28 EB 199 JSR GETVBMSL iget another VBN block
B6 S = SFE9Y (VEM pa, offset EAC2. 90 0D 200 BCC 1 ino error so |loop back
87 VBNBUFPG = SFE98 :VBM bufter page EAC4. 60 201 4 RTS ierrar
es VBNFLG = SFE99 (VMB flag (Ml=write PL=no mrite) 202
B9 VBMOVNUN SFE9A (VBM device coce 203 . Calculate block numver represented by lst set VBM bit
98 VBNBLKNW SFESB VEM block number
91 VBMBLOFS SFESD iblock offset for muitiblock VBM| EAC5: BC 96 FE 205 5 STY VBMBYOFS .ssve byte offset into VBM page
92 TOTFRFLG = SFEAE 1170 transfer-occurred flag EAC8 AD 97 FE 206 LDA VBMPGOFS ;(page of {setebyte. . of fsat).8+
93 KYBLKPTR = SFEB3 ineéw key block pointer EACB 8D 7B FE 207 STA ACCsl ; bit position=block number
94 STORTYP = $FEBS inew storage type EACE: %8 208 TYA . represented by target VBM bit
95 VWFREBLK « SFEBG icount of freed blocks EACF 9a 209 ASL
96 EOFBLKNN = SFEBB (EOF block number (MSB/LSB) EADO: 2€ 78 FE 210 ROL ACC+l
97 EOFBLKOF = SFEBA (EOF byte offset into block EAD3: DA 211 ASL
98 iMSBrpage,LSB=0fT50t (nto page EADA: 2E 78 FE 212 ROL ACC+1
99 EOFNIX - SFEBC {EQF ster index counter EAD7 . PA 213 ASL
100 DEVTBLIX = SFEBD ;index into Device Table (belom)| FAD3: 2F 78 FE 214 ROL ACCs1L JACCs1=block number (MSB)
101 DEVIBL « SFEBE ;holds #s of 8 blocks to free EADB: AA 21% TAX X=incomplete block number (LSB)
102 DOSTYRYFLG = SFEEB ;destroy flag (l=set @=clear) 216
103 217 .« Allocate block by clearing 1st set bit in VBM
104 === - 218
105 « BI DELETE COMMAND HANDLER >>> B1 CODE (v1.1)| EADC: 38 219 SEC mark byte position to return to
= EADD AD 88 FE 220 LDA VBNBUFPG .get buffer page
08RG $AD70D in low RAM EAED FO @5 2 BEQ 6 con lst buffer page
EAE2: B9 @2 DB 222 LDA VBNBUF3256.Y ;get targat byte from 2nd page
AD7D: A9 CI 109 DELETCMD LDA Wsc1 .DESTROY code EAES: B0 @3 223 BCS 7 4 calways
AD7F: 4C 70 BE 110 JMP GOSYSTEN .execute command EAE7: B9 @9 DA 224 6 LDA VBNBUF .Y :get target dyte from 1st page
| 111 = = EAEA: 2A 235 =7 ROL rotate the sucker
112« FREE A BLOCK IN VOLUME BITMAP: >>> MLI CODE (vl 37/1.8 EAEB: B0 03 226 BCS B until a set bit pops out
113 EAED ES 227 INX :bump block number (LSE) mith
114 0RG SEAIA cin 1st bank of "language card EAEE: 00 Fa 228 BNE (3§ each shift & always loop back
115 EAFD: aA 229 8 LSR :shift back to origemal position
116 « Calculate target byte and bit in VBM EAFL: 90 FD 238 Bcc 8 thus clearing set target bit
117 EAF3: BE 7A FE 231 STX ACC ACC=block number (LSB)
EAIA: BE 90 FE 118 FRVBMBLK STX VBMSRCH :save target block number (WSB) EAF6. AE 98 FE 232 LDX VBNBUFPG get buffer page
EAID: 48 119 PHA .save target block number (LS8) | EAF9: DO @5 233 BNE 9 on 2nd buff. page
EAIE. AE 85 FE 120 Lox VCBOFFS cindex current VCB EAFB: 59 @0 DA 234 STA VBNBUF ¥ return altered byte to lst page
EA21: BD 13 D9 121 LOA VCYOTBLK41 X .compare total blocks on EAFE: FO @3 2315 BEQ 110 Lalways
EA24: CD 90 FE 122 CNP VBNSRCH . volume with nusber of EBQO: 99 @@ DB 236 9 STA VBNBUF+256,Y :put altered byte on 2nd page
EA27: 68 123 PLA . blocks requested | EBE3: A9 80 237 10 LDA 1580 indicate that on checkpoint
EA28: 9@ 6F 124 BCC FRVBMG iblock # larger than volume size| EB@S: @D 99 FE 238 ORA VBWFLG this block should be
EA2A: AA 125 TAX :save target block number (LSB) EBOGS. 8D 39 FE 238 STA VBWFLG mritten to disk
EA28: 29 07 126 AND ¥7 .calculate bit number within | 240
EA2D: AB 127 TAY - rget block VBM byte 241 « Do VCB housekeoping:
EA2E: B9 F4 FD 128 LDA VBMSKTBL.Y . using bit lookup tadle 242 |
EA31. 8D 8F FE 129 STA VBMBIT ;save bit position In VBN block EBEB: AC 85 FE 243 LOY VCBOFFS index current VCB
EA34: BA 130 TXA (mith target block number In EBGE. B9 14 D9 244 LDA VCFREBLK Y subtract one from free
EA3S: 4E 90 FE 131 LSR VBMSRCH ; VBMSRCH (MSB) and A-reg (LSE) €811 €9 @1 245 sB8C " block count in VCB
EA38: 6A 132 ROR . divide by 8 to find target FB13: 99 14 DS 246 STA VCFREBLK .Y
EA39: 4E 90 FE 133 LSR VBMSRCH : byte position in VBM | EB16 B0 08 247 8cs 11
EA3C: ®A 134 ROR EB18 B9 15 D9 248 LDA VCFREBLK+1,Y
EA3D: 4E 92 FE 135 LSR VBMSRCH ;we now have byte position (NSE& EB1B: £9 00 249 $B8C e :pick up carry |
EA4Q: 6A 136 ROR i and LS8) EBID: 99 15 D9 250 STA VCFREBLK«1.Y |
EA41: BD 96 FE 137 STA VBMBYOFS isave byte offset in our block 251 |
EA44: 4E 90 FE 138 LSR VBMSRCH iconvert to block offset in VBM 252 o+ Return with allocated block number in 3ccumulator:
EA47: 2E 98 FE 139 ROL VBMBUFPG isave page in target block 253 |
149 EB20: 18 254 11 cLe ;signal no error
141 . Get target VBM block into buffer EB21: AD 7A FE 255 DA ACC :block number (LS8)
142 EB24: AC 7B FE 256 LDY ACC+) block number (MSB)
EA4A: 20 43 EB 143 JSR RDVBMBLK iread VBM block £B27: 60 257 RTS
EA4D: BB 48 144 BCS FRVEMS ;read error 258 e-cccscvesccsssessscnnsasccnanan
EA4F: AD 90 FE 145 LDA VBMBLOFS :get block offset 259 . GET NEXT VOLUME I"'HAP BLOCK
EA52: CD 92 FE 146 CMP VBMSRCH 260 o--c-cemescmsiiieciecaninaianaas
EASS: FO 16 147 BEQ FRVEM) ;et required block EB28. AC 85 FE 261 GETVODL Loy vcoons ;index current YC8
EA57: 20 76 EB 148 JSR CKPTVBM inot proper block so checkpoint EB2B: B89 13 D9 262 Lba VCTOTBLK«1.Y
EASA:- BP 38 149 BCS FRVEMS iarror EB2E: 4A 263 LSR .calculate total number
EASC: AD 98 FE 150 LDA VBMSRCH EB2F: 4A 264 LSR . of blocks in VBN
EASF . AE 85 FE 151 LOX VCBOFFS iindex current VOB and store EB30: 4A 265 LSRR }
EA62 9D 1C D9 182 STA VCNXTVBM. X : VBM block offset in VCB EB31: 4A 266 LSR
EASS: AD 9A FE 1S53 LDA VBNOVNUM ;get device code for VAM EB32: D9 1C D9 267 CM° VCNXTVBM,Y (have we exceeded this number?
EAGB: 20 87 EB 154 JSR DORDVEBN iread VBN block EB35: FO 38 268 BEQ DFULLERR :yes. so disk full error
EAGB: 80 2A 155 BCS FRVBMS iread error EB37: B89 1C D9 269 LDA VCNXTVBM.Y :no.
186 EB3A: 18 270 cLe . %o
167 « Free a block in VBM buffer: E83B: 69 0! 271 ADC &1 ; add one to indicate
188 EB3D: 99 1C D3 272 STA VCNXTVBM,Y | next VBM block to get
EAGD: AC 96 TE 159 FRVBM] LDY VBNBYOFS (g®t byte orfsEt intd DIOCK EBAD: 20 /% kB 273 JSH CKI’IVII :checkpoint old block
EA7D: 4E 98 FE 160 LSR VBNBUFPG 1st page.CS=2nd page 224, es-=vy-emeceve ..
EAJ3. AD BF FE 161 LDA vBwNsIT iget bit position In byte 275 . READ VOLUNE BHW BLOCK
EA76. 90 08 162 BCC FRVEBM2 iwe're In lst page 276 e-cemeemmmeeemeeeeeeeaen cerreaaas
EA7B. 15 0@ DB 163 ORA VBNBUF4256.Y :2nd page: free target block EB43: AC B5 FE 277 RDMLN Loy VCBOFFS ,index current VCB
EA7B 99 00 DB 164 STA VBNBUF+256.Y ;| by setting target bit in VBN| EB46: B9 10 DS 273 LDA VCUNUM. Y
EAJE: 80 08 165 BCS FRVEM3 ialways : CD 9A FE 279 CNP VBNMDVNUM
EABD: 19 00 DA 166 FRVBM2 ORA VBNBUF .Y :1st page free target block FO QE 280 BEQ 1 :VBM for this unit already read
EAB3: 99 00 DA 167 STA VBNBUF Y . by setting target bit In VBM EB4E: 20 76 EB 281 JSR CKPTVBM :checkpoint VEM of another unit
EAS6. A9 8O 168 FRVBM3I LDA #38@ .indicate that on checkpaint EB51: BO 1lE 282 8cs RISI@ iercor
EABB: @D 99 FE 169 ORA VBNFLG this block should be EBS3: AC 85 FE 283 LDY VCBOFFS Lindex current VCB
EABB: 8D 99 FE 179 STA VBNFLG written to disk EBS56: B9 1@ D9 264 LDA VCUNUM, Y (get new VBN unit number
EASE: EE B6 FE 171 INC VWFREBLK cadd to freed block count EB59: 8D 9A FE 285 STA VBMDVNUN :save new VBN unit number
EA91: DO 03 172 BNE FRVBM4 EBSC: AC 99 FE 286 1 LDY VBMFLG
EA93: EE B7 FE 173 INC VWFREBLK+] EBSF: 30 05 287 sl 2 ‘bitmap block already changed
EA96. 18 174 FRVBM4 CLC :signal no error EB61: 20 87 B 288 JSR DORDVEM .read VBN block
EAS7 60 175 FRVBNS RTS EB64: B2 0B 289 BCS RTS1@ ierror
EAS8. A9 5A 176 FRVEBMS LDA FS5A :VBM error code EB6G6: AC 85 FE 250 2 LDY VCBOFFS .index current VC8
EASA: 38 177 SEC isignal error EB69: B9 IC D9 201 LDA VONXTVBM.Y :get biock offset into VBM
EA98: 6590 178 EB6C: Oa 292 ASL :double it
179 EB6D: 80 97 FE 293 STA VBMPGOFS :save page offset into VEM
180 EB70: 18 294 cLC :signal no error
181 EB71: 6@ 295 WTSI. RTS
182 . G-t first set bit (). e. free block) In VEM OBE. wacmimmesomSe e e e =
183 297 .+ SET DISK FULL ERROR
EASC: 20 43 EB 184 ALVBMBLK JSR ROVBMBLK iread VBM block 298 e---cimeecceieccccccmeeen e
EASF: BO 23 185 BCS o iread error EB72: A9 43 299 WULLERR LoA S4B :disk full error code
EAAL: A@ 20 186 1 Loy "o iindex 1st byte

LISTING 1: DESTROY: (continued) F94E: DO 2E 410 BNE SECRTSI no. fatal error
F950: AD 71 FE 411 1 LDA ACCESS icheck file access attridute
F953: 29 B0 412 AND 380
EB74 38 300 SEC (signal error F955 DO 05 413 8NE 2 .destroy bit enabled
EB7s: 69 301 RTS F957: A9 4E 414 LDA R34E ;access error code
02 ecccceccieiciiciaiiia e F959: 20 09 BF 415 JSR SYSERR ihancle arror
303 « CHECKPOINT VOLUME BITMAP FOR DISK WRITING: F95C: AD 30 BF 416 :2 LDA DEVNUN icheck device
304 FI5F: 20 3E F4 417 JSR STATCALL ; status
EB76: 18 305 CKPMU cLe ssume nNo error F962- BO 1A 418 BCS SECRTS1 (device status error
EB77 . AD 99 FE 306 LDA VBMFLG (Bt VBM write-needed flag F964. AD 64 FE 419 LDA FEKEYPTR icopy key block number
EB7A: 10 F5 307 BPL RTS10 .write not necessary F967: 8D B3 FE 420 STA KYBLKPTR of file from File
EB7C: 20 D1 EB 308 JSR WRVEMBLK inrite VBM block to disk FI96A: AD 65 FE 421 LDA FEKEYPTR+1 ; Entry Buffer to
EB7F: BO FO 309 BCS RTS10 nrite error F96D: 8D BA FE 422 STA KYBLKPTR+1 ; Variable Work Area
EB81: A9 00 1@ LDA vo F970: AD 53 FE 423 LDA FESTYPNL (EOt Storage.type’name
EB83. BD 99 FE 311 STA VBNFLG cclear write-needed flag F973: 29 Fo 424 AND #SF@ ;isalate storage type-16
EB8E: 60 312 RTS F375 C9 4@ 425 cwe 540
313 e-ccccccccccccccccccceeeneeenaa F977. %0 @7 426 BCC DSTRYFIL inondirectory file
314 . PREPAHE TO READ \JOI.UIE BITMAP BLOCK F979: 4C DE F9 427 JMP DSTRYDIR .directory file
BlE e-= s e e s e S s e e F97C: A9 52 428 3 LDA #8150 itile open error code
EB87: 8D 9A FE 316 DORDVEM STA VBNDVNUN save device code F97€: 38 429 SECRTS1 SEC isignal error
EBBA: AC 85 FE 317 Loy VCBOFFS index current VCB F97F 60 430 RTS
EBBD: B9 1C D9 1318 LDA VCNXTVBN.Y get next VBM block from VCB 43] eccccccmcccccccicacccniaaaiaans
EB90: 8D 9D FE 319 STA VBNBLOFS . and save in work area 432 . oesnov NON-DIRECTORY FILE
EB93: 18 320 cLc (VBM4VCB block offsetss 4383 er-vcccccccccccccecccenaaeaaaes
EB94: 79 1A D9 321 ADC VCVBMOFS .Y . VBM block to get F9BO: 8D BS FE 434 DSTRYFIL STA STORTYP dve storage. type«lé
EB97: 8D 9B FE 322 STA VBNBLKNN :save block number (LS8) F9B3: A2 @5 435 LDX 5 ndex 5 bytes after STORTYP
EB9A: B9 1B D9 323 LDA VCVBMOFS+1.Y [F9B5: A9 @9 436 LDA ¥ o the 5 bytes
EB9D: 69 00 324 ADC "o pick up carry | F987. 9D 85 FE 437 1 STA STORTYP,.X ero: VNFREBLK (LS8 MS8)
EB9F: 8D 9C FE 325 STA VBMBLKNM+L save block number (MSB) F98A: CA 438 DEX § EOFBLKNM (LSB NSB)
EBA2: A9 01 326 LOA M1 ;set read command F98B: DO FA 439 BNE (2] EOFBLKOF (LSB)
27 F9BD: A9 @2 440 LDA ¥2 et 3200 bytes as
328 FO9BF: BD BB FE 441 STA EOFBLKOF+1 the byte offset
329 F992. EE EB FE 442 INC DSTRYFLG et the destroy flag
: 85 42 330 MBHLK STA DDCMDNUM ;save ZP coswmand number F995. 20 44 FA 343 JSR TRUNCEOF itruncate file at EOF
: AD 30 BF 31 DEVNUM F9938 CE EB FE 444 DEC DSTRYFLG iclear the destroy flag
: 48 332 NA (save entry device code on stack F998 B@ F1 445 BCS SECRTS1 runcation error
: AD 9A FE 333 LoA VBMOVNUM | F99D: AE B4 FE 446 DSTRYFIl LDX KYBLKPTR«1l designate key block as
8D 30 BF 334 STA DEVNUM (86t new device number FOA@: AD B3 FE 447 LDA KYBLKPTR . block to be freec
AD 98 FE 335 LoA VBMBLEKNM FOA3: 20 1A EA A48 JSR FRVEMBLK ree key block in VBM
: 85 46 336 STA DOBLKNUM ;set 2P block number (LSB) F9A6: B@ D6 449 BCS SECRTSI ;arror
AD 9C FE 337 LDA VEMBLKNM« 1 F9AB A9 00 50 LDA "o ltvo storage type/name length
85 a7 338 STA DOBLKNUM41 set ZP block number (MSB) F9RAA 8D 53 FE 451 STA FESTYPNL . to indicate file deletion
AD 82 EA 339 LoA FRVEN242 ipoint to VBM butfer F9AD. CD 47 FE 452 CMP VDFILONT .decrement file
: 20 OF EB 340 JSR poro itead the block F989: D? 03 453 BNE i1 . count in
© AA L TAX isave error code F982: CE 48 FE 454 DEC VDFILCNT+1 : Variavle
68 342 PLA F985 CE 47 FE 455 1 DEC VDFILCNY : Data Area
8D 30 BF 343 STA DEVNUM .festore entry device code F98B 20 76 EB 456 JSR CKPTVEM icheckpaint VBM
9% o1 344 BCcC Eh § .no error F98B. 88 C1 457 BCS SECRTSI .ckeckpoint ecror |
8A 345 TXA L1ead error, restore error code F98D 20 C3 F9 458 JSR UPDVCBFR ;update free block count in VCB
60 346 l RTS | FOCR: aC B2 E4 459 JWP UPDATDIR 0963(! directory
347 460
348 46]
349 462 .
EBCY. 85 46 350 INLKAX STA DDBLKNUN FOC3 AC 85 FE 463 UPDVCBFR LDY VCBOFFS iget file index into FCB
EBCB. 86 47 351 STX DDBLENUM4 1 F9C6 AD B6 FE 4d64 LDA VWFREBLK ;add blocks freed to
EBCD: 20 D9 EB 352 JSR READBLK FO9C9: 79 14 D9 465 ADC VCFREBLK,Y ;| total free blocks
EBDO - 60 353 RTS FOCC: 99 14 D9 4é6 STA VCFREBLX,Y
L R i i O R R FOCF: AD B FE 467 LDA VWFREBLX+1
355 . R"E VOLUME BITMAP BLOCK F9D2. 79 15 D9 468 ADC VCFREBLK+L .Y
356 #meee-emmemeeeeeeeeeeeeeean. FODS. 99 15 D9 469 STA VCFREBLK+1.Y
EBDL . A9 82 357 MIDLK LDA 42 cset write code FODB . AS 00 470 LDA ¥ istart next search for free
EBD3: DO CF kL] BNE RAVEBMBLK always FODA 99 1C D9 471 STA VCNXTVBM.Y : blocks at beginning of VBW
F900D: 60 ar2
473
474
EBD5 . A9 @2 5 475 .
EBD7: DO @2 363 BNE RABLX almays FODE: C9 DO 476 OSYRYDIR cne vsDd isubdirectory file code«16
FOE@: D@ 48 ar7 BNF 16 ;not subdirectory file
FOE2: 20 43 E8 478 JSR ROVBNBLK iread VBN block
F9ES. BO 45 479 BCS 8 iread error
EBD9 A9 @1 F9E7. AD 64 FE 480 LDA FEKEYPTR icopy key block pointer
F9EA: B5 46 431 STA DODBLKNUM : from File Entry Buffer
FIEC: AD 65 FE 482 LDA FEKEYPTR41 ; into 2P
FOEF: B5 47 483 STA DDBLKNUM+1 . block number location
EBDB B5 42 F9F1: 2@ D9 EB 484 ISR READBLK cread key block
EBDD: A9 OC F9F4: B2 36 485 BCS 8 iread error
F9F6: AD 25 OC 486 LDA PBFILCNT
F9FS: DA 05 487 BNE L idirectory not empty
. F9FB: AD 26 DC 488 LDA PBFILOI'TO!
EBDF . 08 376 DOIO PHP isave entry status reg FOFE. F@ 05 489 BEQ :directory empty
EBER 73 377 SET ;disable interrupte for 170 FAOD: A9 4E a0 1 LDA lilt Laccess @rror code
EBE1 85 45 378 STA DOBUFPTR41 ;save 1/0 buffer (MSB) FAO2: 20 09 BF 461 JSR SYSERR ‘handle error
EBE3: A9 @0 379 LDA e ialmays zero FAOD5: 8D 04 DC 492 :2 STA PBSTYPNL ;zero storage.type/name. length
EBES: B85 44 el STA DOBUFPTR i 1/0 buffer (LSB) FAOB: 20 D5 EB 493 JSR ARITBLK imrite key block back to disk
EBE7. 8D @F BF 381 STA SERR .zero global page error location| FAOB B@ IF 454 acs -5 imrite error
EBEA. A9 FF 382 LDA #SFF iindicate that FABD: AD 02 DC 455 :3 LDA PBFWDPTR Morward link (LSB)
EREC: 8D A6 FE 283 5TA IOTFRFLG t 1/0 occurred FAIQ: €O 02 DL 106 <up P”ﬂm’l
EBEF: AD 10 BF 384 LOA DEVNUM FAL3: D@ 04 497 BNE imore file blocks to free in VBM
EBF2: 85 43 385% STA DOSLTORY iset ZP device code FALS: C9 00 498 CNP IB
EBF4: 20 E4 DE 386 JSR TOBLKIO .do 170 FAL7: FO 84 499 BEQ DSTRYFIL1 ino more tile blocks to free
EBF7. B0 03 387 acs 1 :1/0 error FA19: AE 03 DC 500 4 LDX PBFWOPTR41 .forward link (MSB)
EBF9. 28 388 PLP restore entry status reg FAIC: 20 1A EA SO! JSR FRVBMBLK free block in VBW
EBFA 18 388 cLe .signal no error FAIF: BO 08 592 BCcS 5 ;error
EBFR 60 LT RTS FA21: AD 02 DC 503 LDA PEFWOPTR (get next file
EBFC: 28 %1 1 PLP irestore entry status reg FAZ4: AE 03 DC %04 LDX PBFWOPTR+41 | block to free
EBFD. 38 392 SEC :signal error FA27: 20 C9 EB 505 JSR RDBLKAX iread dlock
EBFE: 60 393 RTS FA2A: 90 El 506 acc :3 iloop back ‘til all blocks nud
394 . FA2C: 60 s97 'S RTS
395 « MLI DESTROY COMNAND MANDLER FA2D: A9 4A 508 6 LDA ¥S4dA ;incompatible file format code
396 . L - FA2F: 20 €9 BF 509 JSR SYSERR ‘handle error
397 ORG $F932 S10 o--c-iicciimcicicceeneanaaaaaian
398 511 .« SET ﬂl?[occuc-mm FLAG
F932. 20 93 ES 399 MLIDSTRY JSR GFILENT iget file entry 812 ercsseressenvesarssooocesaanaaan
F935: BO 47 400 BCS SECRTS1 ierror FA32: 48 513 PHA isave entry A-reg
F937: 20 98 EF 401 JSR GETFCB ;get FCB FA33: 98 514 TYA
FQ3A: AD 88 FE 402 LDA FCBO"LG FA34. 48 515 PHA (save entry Y.reg
F930: DO 30 403 BNE ifile open error FA35: AC 86 FE 516 LDY FCBOFFS ;get flle index into FCB
FO3F: A9 00 404 LDA lO FA38: 89 1C D8 517 LDA WRITFLG.Y
F941: 8D 88 FE 405 STA FBLKNEED iindicate no free FA3B: 09 80 518 ORA #5890 iturning on bit 7 sets
F944: BD 89 FE 406 STA FBLKNEED+l : blocks needed FA3D: 99 I1C D8 519 STA WRITFLG.Y : mrite-occurred flag
F947: 20 59 E9 407 JSR GFREBLK icalculate VCB free block count = FAde: 68 528 PLA
F94A: 98 04 408 B8CC 1 no error FA4) AS 521 TAY irestore entry Y-reg

F94C: €S 48 409 CNP ¥348 idisk device full error code? FAQ2: 68 522 PLA (restore entry A-reg

LISTING 1: DESTROY: (contnued)

FA43

FA4a
FA47
FA49
FALB
FALD
FALF
FASL:
FAS3:
FASS:
FASS
FASS:

FASE .
FAGO:
FA63:
FAGE:

FAC9

FACD
FADO
FAD2
FADS
FADY
FADA
FADC
FADF
FAEL
FAEQ
FAES:
FAEQ
FAES:
FAEE
FAFD
FAF1
FAFA

FAFG
FAFS
FAFB -
FAFE
FAFF ¢
FBol:
FBO4

FBO9
FBOS
FBOE:
FB19
FBl13:
FB15s
FB18
FBIA
F8LD:
FBIF:
FB22:
FB24:

60

Ll
13
<6
F7

BC

FE

8
FA

FE
F8

FE
FE

]

o0
FE

FE

FE
FE

FE

FE
FE

FE

23]

FE

FB
EB

E8

F8

F8
FE

FB
B

523
524
525

YRU’C!OF

LOA
CupP
BCC
cwp
BCC
cwp
BCC
LDA

t storage types«l6é

#s2e

1 iseedling file

¥s30

2 :sapling file

¥s4p
TRNCTREE tree file

ysoc .death code
SYSDEATH iarrgh!

TRNCSEED :go to seedling truncate
TRNCSAP g0 to sapling truncate

. AIIOI antries

TRNCTREE

1

CLCRTS)
RTS1

« Alter entries after EOF

TRNCTREL

LDA
STA
JSR
BCS
LoY
cPy
BEQ
LDX
LDA
STA
ORA
BEQ

STA

Loy

'n subindex blocks .

N128 iup to 128 subindex block
EOFMIX . numbers in master index block
ROKEYBLK ;read master index block
RTS1 itead error
EOFMIX (Y=master index block EOF
EOFBLXKNM
TRNCTRE] :at EOF in master index dlock
7 .handie up to 8 subindex blocks
'!LK!UF Y .copy subindex block entry
DEVTBL . (LSB) to Device Table
nmuﬁ»zu,v

;zero entry found
PELKBUF4256.Y iCopy subingex Dlock entry
DEVTBL+8. X {MSB) to table

ireduce counter
5 :8 block nuebers copied

;index next lower subindex entry
EOFBLXNM
inot at EOF so loop back
;at EOF s0 fill remainder of
" . Device Table with zeros
DEVTBL X
DEVTBL+8 X
“ ;1oop back until table full
i$3ve Index to next
EOFMIX i subindex block entry
L handle up to 8 subindex bDlocks
DEVTBLIX isave index to subindex table
DEVTBL , X ;copy subindex block entry (LSB)
DOBLKNUM ; to ZP block number (LSB)
DEVTBL+B X
1 izero entry found so exit
DEVTBL+B X :copy subindex block entry
DDBLKNUN+ 1 (MSB) to 2P block number (ISD)
READBLK cread subindex block
RTS1 .read error
FREIXBLK ree subindex block
RTS1 ;error
NRITBLK n'llc altered sunindex biock
RTS1 iwrite error
DEVTBLIX (restore Iindex to subindex table
ireduce index
cop back until table completed

et master index block again
:signal no error

in master index block

EOFBLKNN start at one entry beyond EOF

: In master index block
FREIXBL] 1 all entries beyond EOF
RYS1 error
WRITBLK cwrite master block back to disk
RTSIL .write error
EOFBLKNM (it EOF in 1st subindex block
i . then demote tree to sapling
PBLKBUF.Y :get subindex block number (LSB)
DOBLKNUM : which contains EOF
PBLKBUF+256 .Y
CLCRTS1 inone found

PBLKBUF+256.Y get subindex block number

DOBLKNUM 1 (MSB) which contains EOF
READBLK ireac final subindex block and
TRNCSAP L treat it as sapling file
DENFITYP ,demote tree to sapling file
ITSl ierror

ROKEYBLK ad key index block
RTS1 iread error
EOFBLKNM+1 :start at one entry beyond EOF
i in index block
1 ino blocks to free
FREIXBL1 :free all entries beyond EOF
RTS1 ierror
WRITBLK cmrite index block back to disk
RTS1 mrite error

t last

index black in file

3 ;1ast index block empty
PBLKBUF .Y .get last data block number
DDBLKNUN : (LSB) in tile
PBLKBUF +256 .Y
CLCATS] none founo
PRLYXDUF+2%6 Y get last data block number
DDBLKNUMS L . (MSB) in file
READBLK (read last data block
TRANCSEEL and handle it as seedling

FB25:
FB28

FB2A:
FB20:

FBSA
FBSD
FBED

FE8E:
FB9l
FB94

FBC7:
FBCA:
FBCC:
FBCD:
FBCF :
FBD2
FBDRS
FBD8
FBO9
FERC

FOF4:
FOF7

End assembly,

2883

c?
B5

B85
1]

o0
45

47

91
0a
0o
04
[
(3
[
1A
oA
91
c7

E0

47

80 a2
10 98

FE

FE
nc

FE
£8

FE

FE
FE
f8
FE

FE
EB

g8a

EA

FE
F8

20
04

741
2 a

1181

END OF LISTING 1

:3 LDA
JSR
BCS

TWSEEO JSR
TRNCSEE] lDV
BE

DEY

3

aee
. READ KEY BLOCK

WKEV'ILK LoA
LDX
JNP

EOFBLKNN :it more index blocks,
12 : them tile is tree,
DWIYYP

; else demote to seedling

RDKEYBLK :read key data block
RTS2 .read error
EOFBLKOF+1 get EOF page
4§ (EOF in 1st page
.reduce offset
(EOF on page boundary
EQFBLKOF ;get EOF offset in 2nd page
" ;zero required bytes in 2nd page

PBLKBUF +256 .Y

;1oop back until done

EOFILKOFA] :get EOF page

;EQF In page 2 so skip lst page
EOGBLKOF ;get EOF offset in ist page
PBLKBUF .Y :zero required bytes in lst page
3 :loop back unti| done
WRITBLK iwrite block back to disk

.signal no error

KYBLKPTR
KYBLKPTR+1
RDBLKAX rood block In A, X-regs

. DENTE FILE TYPE

Gesesssceenan

DEMFITYP LDX
TXA
PHA
LDA
PHA
JSR
PLA
STA
PLA
STA

LDA

KYBLKPTRe1 get hcy index block number intol
X-regs and save on stack

KYBLKFTR
FRVBMBLK ~free block in VBM

‘restore key index block
DOBLENUN . number from stack and

; stutf in 2P block number
DOBLKNUM4 L
1 ierror
PELKBUF :1st index block In old key
KYBLKPTR : block becomes new key block
PALKBUF+256
KYBLKPTR<1
ne calter lst entry In
00IXBYT old key Index block
STORTYP get old storage type and
818 reduce It to reflect
STORTYP demoted storage type
WRITBLK write block back to disk

« FREE INDEX
.
FREIXBLK LDY
FREIXBL1 LDA

PHA
LDA

PHA

1 STY
LDA

Cwp

BNE

cwP

BEQ

2 LDX

" ;enter here to free entire block

DOSLKNUM ; and here to free partial block
150ve block number on stack

DOBLKNUM+

YSAV :save index to index block

PBLKBUF .Y .get block number (LSB)

PBLKBUF 4256 .Y

2 inonzero entry for processing

10

iskip zero entry
PﬂLKWFdS‘ Y .get block number (MSB)
FRVBMBLK ifree block in VBM
4 Jerror
YSAV jrestore index to index block
DOIXBYT ;alter index block
A
:signal no error
save possible error code
restore block number from stack
DOBLKNUMN+ L
DDBLKNUN

restore possidle error code

. ZERO OH SWAP BYTES IN INDEX BLOCK

VBMSKTBL HEX

DSTRYFLG ‘get value of cestroy flag

1 destroying means Swapping
truncating means zeroing
you devil you! (BEQ in vl 4)
’lLKI\le!S Y .prepare to invert

PBLKBUF . Index block entry
F‘LKW!JM,Y (set new NSB
PBLKBUF .Y iset new LSB

SFOF4

80,40 .28.10.08.04.02 01

bytes, Errora. 0

&

