Graphics Workshop

DOUBLE

HI-RES

Y i Y GRAPHICS IV

Using routines developed in the first three
parts of the series, this month’s column
presents a graphics utility that lets you
create Double Hi-Res pictures and block
shapes and save them to disk for later use
or editing.

by Robert R. Devine
1415 West 19th St.
El Dorado, AR 71730

y original plans for this issue were to
Mbegin work on some horizontal shift-

ing routines for use with Double Hi-
Res; however, I think we’ll put that discussion
off until next time.

Instead we'll look at a program that allows
you to create Double Hi-Res block shapes or
complete pictures, in black and white or full
color, directly on the Double Hi-Res screen.

[started out with the BLOCK SHAPE
MAKER program from Nibble Vol. 4/No. 5.
When I began the task, I figured “No sweat
— the program is already written — I'll just
change it over to Double Hi-Res.” However,
as it turned out, it wasn’t quite that simple.
All of the idiosyncrasies of Double Hi-Res,
and all of the soft-switch flipping to make
things work properly required so many modifi-
cations that little more than faint memories of
the original program remain.

The Double Hi-Res Palette Program

To use the Double Hi-Res Palette program,
you must first enter the program DHR
.PALETTE (shown in Listing 1) and save it
to a disk that contains the DHR.DRIVER pro-
gram presented in Double Hi-Res Graphics II.

We've presented the DHR DRIVER pro-
gram in Listing 2 for those of you who missed
it last time. To save it to disk use the
command:

BSAVE DHR.DRIVER,A$9283,L$37D

For more information on entering machine
language programs, see “A Welcome to New
Nibble Readers” in the beginning of this issue.

I would suggest leaving the ONERR GOTO
980 statement out of line 880 until you've
debugged your program. That prevents the
ONERR from trapping any typos you might
have made when entering the listing.

“...you can easily set
individual color blocks
to the desired color.”

When you first run the program you will be
asked if you want to work with a (B)lank
screen or an (E)xisting picture. If you want
to create a Block Shape Table or a new Double
Hi-Res picture you should select ‘B’. If you
want to borrow parts of an existing picture for
use as block shapes or if you want to continue
working on a picture that you've already
started, you should select ‘E".

Next you'll be asked if the picture is already
in memory (perhaps loaded or created by a
different program). If you answer ‘Y’ the pro-
gram will use whatever graphics are already
in memory. If you select ‘N’ you will see a
catalog of the disk and you will be asked the
name of the picture to load.

All Double Hi-Res pictures will be stored
in two disk files, each having “-PAGE1" or
*-PAGEIX" added to the file name. Enter the
name only; the DHR.PALETTE program will
take care of adding *“-PAGE]" or **-PAGEIX"
to the name.

You will then be presented with the Double
Hi-Res screen, either blank or displaying your
picture, as well as a text window that contains
a lot of useful information for help in shape
or picture creation. You are probably aware
that there are 16,384 bytes in Double Hi-Res
memory and 107,520 individual screen dots.

The information that appears at the bottom of
the screen will apply to the individual dot (bit)
of your current position on the screen. Here
is a list of information that is provided:

COLUMN=(0-79) This is your current
column position.

PAGE=(l or 1X) Indicates whether your
current position is in main or auxiliary
memory.

HPLOT ‘X'=(0-279) Shows the current
Applesoft HPLOT value for this point.

X=(0-559) Indicates the current Double Hi-
Res X-coordinate.

Y=(0-191) Indicates the current Y-coordinate
value.

ADDRESS= Is the address of the byte that
you are presently in.

BYTE VALUE= Shows the decimal value
that is stored in the byte.

BITS= Shows the pattern of the bits within
this byte (in reverse of normal order). The bit
that you are presently on will be shown in
INVERSE.

HL-HR =(0-39) Reveals the current address
offset of the present byte and is used to deter-
mine HR and HL in block shape creation.

COLOR BLOCK=(0-139) Shows which of
the 140 color blocks you are in, and can be
used to determine when you should move from
one color block to the next.

BIT#=(1-4) Indicates which of the four bits
within the current color block you are pre-
sently sitting on. By setting each of the four
bits according to the color pattern chart from
the May issue’s Part I, you can easily set in-
dividual color blocks to the desired color.

MODE=PLOT/NOPLOT/VISITING In-
dicates the present program drawing mode.

SPEED=FAST/SLOW Indicates whether
you are moving four dots or one dot per move.

With the foregoing information at hand you
should easily be able to control all aspects of
graphics creation on the Double Hi-Res
screen.

Choice of Commands

To move about the screen you should use
the four arrow keys on your //¢. You will note
that in line 320 the program interprets
CHRS$(32) as being the right arrow key. If you
check the manual, you'll find that a right arrow
key is CHRS$(21), not CHRS$(32). In Double
Hi-Res, CHR$(21) (< CTRL > U) turns off the
80-column card and Double Hi-Res. To allow
the use of the right arrow key, apparently it
is interpreted as CHR$(32) while in Double
Hi-Res.

The P key sets PLOT MODE in which the
cursor changes every bit to the value | as it
passes.

The N key sets NOPLOT MODE in which
the cursor changes every bit it encounters to
the value 0.

“The heart of the whole
program is contained in
one simple statement...”

The V key sets VISITING MODE (maybe
that’s stretching it a bit for a name) and allows
you to move about the screen without affect-
ing any of the bits that you pass over.

The G key scts the scrcen for FULL
SCREEN GRAPHICS and eliminates the text
window with all its useful information. You
may find that G mode is very useful when
drawing on the lower portions of the graphics
screen.

The T key restores the TEXT WINDOW
50 that you can see the screen information.

The S key scts SLOW MODE so that your
marker moves one dot per keypress

The F key sets FAST MODE for moving
four dots per move. This mode is useful in
moving quickly to different parts of the screen.
It will also aid in filling areas with the same
color block bit patterns (when moving
horizontally), as you will always stay on the
same bit in moving from one color block to
the next.

Typing < CTRL > S exits the drawing por-
tion of the program and allows you to save your
work to disk.

When you enter the saving portion of the
program you will be asked if you want to save
your work. If you answer “Y" you will be asked
whether you are creating a Block Shape Table
or a picture.

If you are creating a Shape Table, you will
need to enter the proper values for VT, VB,
HR, HL, and SHNUM, which you should
write down before entering this part of the
program. Let’s recap what these values are. ..

Every block shape is a rectangular block of
Hi-Res bytes, bounded on the top and bottom
by VT and VB respectively, and on the right
and left sides by HR and HL respectively.

VT is the topmost Y-coordinate which con
tains shape bytes. VB is the lowermost Y-
coordinate which contains shape bytes. The
proper values for VT and VB can be found
in the Y=(0-191) block at the bottom of the
screen.

HR is the rightmost address offset that con-
tains shape bytes. HL is the leftmost address
offset that contains shape bytes. The proper
values for HR and HL can be found in the HL-
HR =(0-39) block in the text area.

The value that you enter for SHAPE#
(SHNUM) indicates where in memory you
want to store the Shape Table, and is the high
byte of the hex memory address where the
shape will begin. SHNUM should be in the
range of 64 ($4000) to 146 ($9200). If the
SHNUM that you select doesn't allow enough
room under the driver, you will be directed
to set a lower value.

The shape is then SCANned into memory,
the screen erased, and your shape redrawn
using the DHR.DRIVER DRAW routine. I
you wish to save the shape to disk, simply give
it a name, and the shape will be saved and the
file locked.

If you're creating a Double Hi-Res picture
you will be asked to give it a name, after which
it will be saved in two separate disk files. The
portion of the picture from main memory wil
be saved in a file that has ~-PAGEI" append-
ed to the name, and the portion from auxiliary
memory will be in a file with *-PAGEIX"
added to the name. Both files will be locked
immediately after the save. The program wil
automatically check to make sure you don'
enter too long a name.

How the Program Works
Once you've gone through this program and
understand how it works, you should have &
pretty good idea about working with Double
Hi-Res. The program uses full and split screen
graphics, coordinate translations, soft-switch

flipping (lows of that), memory moves, and
turns Double Hi-Res and the 80-column text
display on and off.

The heart of the whole program is contained
in one simple statement HPLOT XC.Y which
does all the drawing for us. The trick, how-
ever, is determining just WHERE to do the
HPLOT; then checking all of the appropriate
flags to determine what effects this has had
in memory.

Here is what the various parts of the
program do.

Line 140 loads the DHR.DRIVER into
memory (you'll need the driver routines from
Parts I and II of the series), then sets HIMEM
to protect the driver and calls SETUP to
initialize the YTABLE pointers.

Lines 150-160 POKE a short machinc code
routine into memory. This code is used by the
program to determine the bit pattern in any
of the 16,384 Double Hi-Res screen bytes.

Lines 170-230 take care of getting the screen
set up the way you want it, either blank, with
whatever graphics happen to be in memory,
or by loading a picture from disk. In loading
apicture from disk, the PAGEIX picture is first
loaded onto PAGE], then HGR is used to move
it to PAGEIX. After this the PAGEI part of
the picture is loaded.

Lines 240-250 are the same translation
routines that we've used before. First they find
which column we're in (CX) and flip the
PAGE2 soft-switch to select main or auxiliary
memory (depending on whether the column
is odd or even). Then line 22 translates our
Double Hi-Res X-coordinate (0-559) to the
proper HPLOT X-coordinate (0-279) that we
need.

Line 260 turns on the extended 80-column
card and INITializes Double Hi-Res.

Line 270 scts the starting modes for the
program.

Line 280 uses the GET statement to get our
input. While the 80-Column Text Card Manual
errata sheet indicates that the Applesoft GET
is not supported by the card, I have not yet
experienced any incompatibilitics.

Lines 280-400 take your input, set the
proper flags, and flip the proper switches to
accomplish the various commands. Note that
the normal Hi-Res POKEs are used by lines
160-170 to switch between full screen and
mixed text/graphics. Line 195 turns the
80-column card and Double Hi-Res OFF, in
preparation for the picture saving part of the
program.

Lines 410-440 test to prevent the cursor from
moving off the screen, which would result in
a program error and subsequent CRASH.

Lines 450-460 handle the actual drawing.
If you're VISITING, the HPLOT is bypassed
so the screen is unaffected. If you're PLOT-
ting, the current bit is set to 1. A few extra
steps are taken to NOPLOT, as we first need
to go back to the last point and erase it before
moving forward to indicate the current marker
location.

Line 470 uses the YADDR routine to find
the address of our byte and stores the address
in B, with the value of the byte going into V.

Lines 480-560 begin printing the various
informational values at the bottom of the
screen. You should note the use of POKE 1403
statements (as required by the 80-column card)
in place of HTAB or POKE 36.

Lines 570-590 determine the bit pattern of
your present byte. First the byte value V is put
in memory location 251. Then the bit retriever
routine is CALLed eight times. Each time, one
bit is taken from location 251 and placed in
location 252, where it is tested and built, bit
by bit, into the B$ string.

Lines 600-620 print the proper bit pattern
“01234567 (the reverse of normal order)
and show the bit you're presently on, in
INVERSE.

Lines 630-660 print the balance of the
screen information and then jump back to line
90 where the next keyboard command is
obtained.

Line 670 is the beginning of the shape or
picturce saving routines. If you don't want to
save your work, execution jumps to line 790
where the program ends.

Lines 670-770 prompt you to enter the
proper values for VT, VB, HR, HL, and
SHNUM. The legal ranges for cach value are
shown. Before proceeding, a check is made
to be sure that, based on the size of the shape
and the SHNUM that you've sclected, there
is room for the Shape Table under the driver.
If you don't leave enough room. you will be
prompted to enter a lower value for SHNUM.

Line 790 handles the Shape Table creation.
Note that we have turned the card and Double
Hi-Res back ON, turned 80STORE ON, and
used SCAN to create the table.

Line 800 erases the shape from the screen
using the HGR routine, then reDRAWs the
shape using DRAW and the information con-
tained in the Shape Table that is now in
memory. Notice that we turned 80STORE
OFF before using the DHR.DRIVER’s HGR
routine. This is because the HGR routine
(which is really a memory move) will not
work with 80STORE ON. After making the
move (which erases PAGEIX) we turn
80STORE back ON so that the DRAW routine
will work.

Special Note: At this point, let’s look at the
last statement in line 800, POKE 49236,0.
Once you have the whole program in memory,
running properly AND SAFELY SAVED TO
DISK, try this experiment. Remove the POKE
492360 from line 800, then RUN the pro-
gram. First draw a small shape, and then enter
< CTRL > S to use the saving routines. Enter
the shape parameters. When asked if you want
to save the shape, answer ‘NO' You should
now see the screen go slightly bonkers and
everything will hang. Now press
<CTRL> <RESET> to recover control
and LIST the program. As you’ll quickly
detect, your program has been destroyed!!
The question of course is WHY??

You’ll notice that when you answered no,
execution jumped to line 800 where the
80-column card and Double Hi-Res were
turned OFF; then you went to line 970 which
simply CATALOGed the disk. There doesn’t
seem to be anything harmful in any of these
instructions. The method used to turn the card
OFF is the same as was used in line 390,
which didn't cause any problems. As it
happens it was the CATALOG that destroyed
the program.

Now go back to line 800 and you'll note that
the instruction just before the POKE 49236,0
(which we removed) was a CALL to our
DRAW routine, which executed properly and
drew the shape. Next, going back to the
DRAW routine (see Double Hi-Res Part II,
Nibble Vol. 5/No. 8 for the DRAW routine list-
ing), you'll find that when we leave the DRAW
routine the PAGE2 soft-switch is set to
PAGEIX. When using the 80-column card.
this soft-switch is used to select between main
and auxiliary memory. However, when the
card is OFF, this same soft-switch is used to
select between HGR and HGR2, or TEXT
page 1 and TEXT page 2.

When we turned the card OFF and CATA-
LOGed the disk, the catalog display that we
saw (what there was of it) was presented 10
us on TEXT page 2 because of the way our
soft-switch was set. If you refer to page 26 of
your Apple //e Reference Manual, you'll see
that TEXT page 2 resides in memory area
$800-$BFF, the same area of memory that
your program occupies. The catalog of the
disk was written on top of your program!!

The whole point of this discussion is to
demonstrate the importance of lcaving the
PAGE?2 soft-switch set properly when you exit
Double Hi-Res.

Lines 820-860 take care of saving your
shape to disk and locking the file.

Line 870 turns OFF the 80-column card and
Double Hi-Res.

Lines 880-920 save your Hi-Res picture
from main memory (PAGE! — odd columns)
and lock the file.

Line 930 moves the picture portion from
auxiliary memory into main memory. First
Double Hi-Res is INITialized, the PAGE2 soft-
switch is set to main memory, and 80STORE
is turned OFF. Then the HGR routine is modi-
fied to add the CLC (Clear Carry) instruction,
indicating that we want to move from PAGEIX
to PAGEI, and the actual move is made. Fi-
nally Double Hi-Res is killed again. The por-
tion of the picture from auxiliary memory
(PAGEIX — even columns) now resides in
main memory.

Lines 940-970 save the second half of your
picture to disk, lock the file, CATALOG the
disk, and end the program.

Line 980 protects the program from crash-
ing in the event of a disk error during a SAVE.

Disk errors could be caused by many things,

the most common being trying to reSAVE a
picture that's in a locked disk file. If this oc-
curs simply use a different file name.

In Conclusion

Since drawing on the Double Hi-Res screens
can be difficult, you should find this program
very helpful in block shape and picture
creation. The program does quite a job of
manipulating Double Hi-Res and the DHR
.DRIVER routines, so if you understand how
the various program parts work, you should
have no problem creating programs on your
own.

Next month we’ll begin work on develop-
ing Double Hi-Res shift animation routines
that will provide the smoothest horizontal
movement possible for any of your shapes.

LISTING 1: DHR.PALETTE

10 REM Arrmrrr T TSI IR Rty
20 REM - DHR . PALETTE »
30 REM + BY ROBERT DEVINE «
49 REM » COPYRIGHT (C) 1984 »
50 REM » BY MICROSPARC, INC =
60 REM +« LINCOLN, MA. 01773 =
70 REM FEARNKEI IR IISREIOR NN
140 PRINT CHR$ (4)"BLOAD DHR.DRIVER":

37507: CALL 37999: REM

TECT/SET-UP YTABLE

HIMEM :
LOAD DRIVER/PRO

FOR X = 768 TO 776: READ Y: POKE X,Y: NEXT

: REM POKE BIT RETRIEVER INTO MEMORY

DATA
TEXT : HOME :
HT 1984 BY MICROSPARC,

162,0,134,252,70,251,38,252,96
VTAB 22: PRINT "s: COPYRIG
INC. ==":

VTAB 5:

PRINT "WILL YOU WORK WITH (B)LANK SCREE

N": PRINT "OR (E)XISTING PICTURE 7" ;:

A%

180 PRINT : PRINT :

[F A$ =

GET

"B" THEN HGR : CALL

37928: GOTO 260: REM CLEAR DHR SCREEN

190
A$: PRINT :
HOME :

INPUT

200

PRINT "IS PICTURE IN MEMORY Y/N ?7";:
IF A$ = "Y"
PRINT CHRS (4)"CATALOG":
"WHAT IS PICTURE NAME 7" A$: ONERR

GET
THEN 260
PRINT :

GOTO 87@: REM IF 'FILE NOT FOUND ERROR'
OCCURS TURN DHR OFF - EXIT PROGRAM

219 PRINT CHR$ (4)"PR#3":

49235 ,0: HOME :

CALL 37953: POKE
CALL 37916: REM

INIT D

HR/MIXED TEXT/CLEAR TEXT WINDOW

220

PRINT CHRS$ (4)"BLOAD"AS$"-PAGE1X":

POKE

49236 ,0: POKE 49152,0: POKE 37948 ,56: CALL
37928: REM LOAD PICTURE TO AUXILIARY ME

MORY
230

PRINT CHR$ (4)"BLOAD'AS"-PAGE1":

GOTO 2

70: REM LOAD PICTURE TO MAIN MEMORY

240 POKE 49236,0:CX =
2 =

258 XC =

INT (CX / 2) THEN

(0-559) TO XC (0-279)

PRINT CHR$ (4)"PR#3":

CARD ON/INIT DHR

279 P = 3:CB = 1:F =
32: GOSUB 249: HCOLOR=

INT (X / 7):

INT (CX 7/ 2% «:X / 702 CXaXCim
(XC = 7 + .5): RETURN :

IF CX /
POKE 49237,90

INT
REM TRANSLATE X

CALL 37953: REM

1:X = @:Y = @: POKE 239,
P:X0 = X:YO = Y: GOTO
INITIALIZE PLOT MODE/COLOR BIT

IF A$ =
ENTER 'VISITING'

"V" THEN

CHR$ (11) THEN Y = Y - F: GOTO
CHR$ (10) THEN Y = Y + F: GOTO

CHR$ (8) THEN X = X - F: ON (F =

479: REM
/SPEED=SLOW
280 VTAB 15: GET A$: PRINT :
L =1: GOTO 510: REM
MODE -MOVEMENT WILL NOT AFFECT SCREEN
299 IF A$ =
410: REM MOVE UP
300 IF A$ =
410: REM MOVE DOWN
318 IF AS =
4) GOTO 410:CB = CB - 1: GOTO 419: REM
MOVE LEFT
320 IF AS$ =

MOVE RIGHT

CHR$ (32) THEN X = X + F: ON (F
= 4) GOTO 410:CB = CB + 1:

GOTO 410: REM

" R 2n
330 IF AS = "F" THEN F = 4: GOTO 519: REM 740 INPUT "WHAT IS THE SHAPE# (64-146) . SH

NUM: PRINT
CHANGE TO FAST
o)) 756 IF ((VB - VT + 1) = (HR - HL + 1)) - 2 +
S S g F s 1 Gao: iE: REW C SHNUM + 256 > 37506 THEN PRINT . FLASH
350 IF A$ = "G" THEN POKE 49234,0: GOTO 286 . gg{ch"SHﬁgﬁMIﬁBFEPE?STBEgclgcillogggE
. REM FULL SCREEN GRAPHICS SHADE WRs RETNET : GOTE 2el
360 IF AS = "T" THEN POKE 49235,0: GOTO 280 7680 PRINT "ARE ALL SHAPE PARAMETERS CORRECT

. REM RETURN TO TEXT WINDOW

370 IF A$ = "N" THEN P = @:L = @: GOTO 450: REM
ENTER NOPLOT MODE

380 IF A$ = "P" THEN P = 3:L = @: GOTO 450: REM
ENTER PLOT MODE

399 [F A$ = CHRS$ (19) THEN HOME : PRINT CHR$
(12); CHR$ (21): CALL 37966: GOTO 670: REM 790
READY TO SAVE WORK

400 GOTO 280: REM NO LEGAL COMMAND FOUND

? (Y/N)",. GET A$: PRINT : IF A$ < > "Y
" THEN 700

770 HIMEM: SHNUM - 256: REM RESET HIMEM TO
PROTECT SHAPE

780 POKE 251 ,SHNUM: POKE 252 ,VT: POKE 253 VB

POKE 254 HR: POKE 255, HL
PRINT CHR$ (4)"PR#3": CALL 37953: POKE
49153 ,0: CALL 3785@0: REM CREATE SHAPE T

ABLE
e fXx= ok 5 @ Soro 280 280 808 HGR : POKE 49152,8: CALL 37928: POKE 251
430 IFY < B THEN ¥ = B GOTO 280 ,SHNUM: POKE 49153,8: CALL 37780: POKE 4
. ' 9236 ,@: REM ERASE SCREEN AND DRAW SHAPE
440 IF Y > 191 THEN Y = 191: GOTO 280 FROM TABLE
450 GOSUB 249: ON L GOTO 470: HCOLOR= P: IF .
! -) 810 HOME : VTAB 21: PRINT "HERE IS THE SHAPE
57; 3 THEN HPLOT XC,Y:X0 = X:YO = Y: GOTO IN YOUR SHAPE TABLE.": PRINT "DO YOU WA
NT TO SAVE IT (Y/N) ?";: GET A$: PRINT
460 X1 = X:Yl = Y X = XO:Y = YO: GOSUB 24@: HPLOT 820 IF A$ = "N" THEN 878
XC.Y:X = X1:Y = Y1:'GOSUB 240: HCOLOR= 3 830 HOME : VTAB 22: INPUT "WHAT IS THE NAME
© HPLOT XC.Y:XO = X:YO = Y: REM NOPLOT 77 AS
MODE 840 HOME : VTAB 22: PRINT "SAVING SHAPE TO D
470 POKE 6,Y: CALL 37988:B = PEEK (38) + PEEK 1SK™
(39) » 256 + INT (XC / 7):V = PEEK (B) 850 PRINT CHRS (4)"BSAVE "A$" A"SHNUM = 256
488 VTAB 21: PRINT "COLUMN="CX" ".. POKE 140 SIETCOVR SOV A IY e CHR S THLTEIY) w2
3,12 lF.CX / 2 = INT (CX / 2) THEN PRINT 860 PRINT CHR$ (4)"LOCK"AS$S
PAGE=1X";: GOTO 500 870 PRINT CHR$ (12); CHR$ (21): CALL 37966:
499 PRINT "PAGE=1 " GOTO 970
508 POKE 1403.24° PRINT "HPLOT 'X'="XC" "; 880 PRINT : PRINT : INPUT "ENTER PICTURE NAN
POKE 1403,40: PRINT "X="X" ";: POKE 14 E: ".A$: ONERR GOTO 980
03 48: PRINT "v="Y" ";: POKE 1403 6@: PRINT 899 IF LEN (A$) > 23 THEN PRINT : FLASH : PRINT
ADDRESS="8" " “NAME IS TOO LONG": NORMAL : GOTO 880
510 VTAB 22 IF L =1 THEN PRINT "VISITING- 90@ PRINT : PRINT 'SAVING PICTURE FROM MAIN
MODE"; : GOTO 548 MEMORY "
520 IF P = 3 THEN PRINT "PLOT-MODE “.: GOTO 910 F$ = A$ + "-PAGE1": PRINT CHRS (4)"BSAVE
540 . "F$" A A$2000,L52000"
530 PRINT "NOPLOT-MODE *; 920 PRINT CHR$ (4)"LOCK"F$
540 POKE 1403 ,40: IF F = 1 THEN PRINT "SPEE 930 CALL 37953: POKE 49236,8: POKE 49152 ,8: POKE
D=SLOWN"® GOTO 560 37948 ,24: CALL 37928: CALL 37966: REM M
550 PRINT "SPEED=FAST" OVE PAGE1X TO PAGE1
560 VTAB 23: PRINT "BYTE VALUE="V" ":: POKE 940 PRINT : PRINT "SAVING PICTURE FROM AUXIL
1403,16: PRINT "BITS=";: REM PRINT VALU IARY MEMORY"
E OF BYTE N 950 F$ = A$ + "-PAGE1X": PRINT CHRS (4)"BSAV
570 POKE 251,V:BS$ = E"FS",AS2000,L52000"
580 FOR M = 1 TO 8: CALL 768: IF PEEK (252) 960 PRINT CHRS (4)"LOCK"F$
= 1 THEN B$ = BS + "1": GOTO 600 976 PRINT : PRINT CHRS (4)"CATALOG": END
590 B$ = B$ + "B

983 PRINT : PRINT "DISK ERROR OCCURED-TRY AG

AIN": GOTO 880: REM IF TRYING TO RESAVE

INTO LOCKED DISK FILE USE A DIFFERENT
PICTURE NAME

600 NEXT : FORM = 1 TO 8
6180 IF M = XC - (7 « (INT (XC 7 7))) + 1 THEN
[INVERSE : REM INVERSE FOR THE BIT WE'R

E ON
620 EEINLEx¥I?Spé?;TM312 © NORMAL PRINT KEY zﬁngST 4.0
630 POKE 1403,40: PR{NI, HL-HR=" [INT (XC / 7 DHR. PALETTE
)" ",: POKE 1483,52: PRINT "COLOR BLOCK=
INT (X 7 4)" CODE LINE# - LINE#
640 POKE 1403,70: IF CB =5 THEN CB = 1 | . . " cceaen | cmeaniaeoo-
650 IF CB = @ THEN CB = 4 9453 19 - 160
660 PRINT "BIT #":CB: GOTO 289 215197 170 - 260
670 HOME : VTAB 6: PRINT "WANT TO SAVE YOUR F323 279 - 360
WORK (Y/N) ?",. GET AS: PRINT : IF A$ = B15D 370 - 460
"N" THEN 97@ BE@7 478 - 560
680 VTAB 1@: PRINT " (S)HAPE TABLE or (P)ICTU 86EE 570 - 660
RE 7",: GET A$: PRINT : [F A$ < > "S" AND D5BB 670 - 760
A$ <« > "P" THEN 680 E4DA 770 - 860
699 IF A$ = "P" THEN 880 BIF9 870 - 960
709 HOME : INPUT "ENTER VT (8§ -39) ";VT: PRINT 374F 973 - 980

PROGRAM CHECK 1S : @F9B

710 INPUT "ENTER VB (VT-39) ";VB: PRINT
720 INPUT "ENTER HR (HL-39) ":HR: PRINT CHECK CODE 3.0
730 INPUT "ENTER HL (@ -39) " HL: PRINT PRINT
ON: DHR.PALETTE
TYPE: A

LENGTH: OE78
CHECKSUM: CD

LISTING 2: DHR.DRIVER

9283- A9
9288- A9
929@- 9F
9298- 8D
92A0- 64
92A8- 8D
92B0- BO
92B8- FF
92CO- A5
92C8- 69
92D@- FC
92D8- E3
92E@- E5
92E8- 65
92F@- A5
92F8- A9
93@0- FD
93¢8- 8D
9316- C9
9318- EF
9320- FF
9328- DA
9330- 7F
9338- F9
9340- F8
9348- @2
9350- C@
9358- 64
9360- 8D
9368- FA
9378- S5
9378- D@
9380- 04
9388- 06
9390- C6
9398- C@
93A0- 64
93A8- 8D
93B0- FA
93B8- 55

51
26
92
AB
93
BB
94
FQ
FC
A5
E6
30
E3
E3
FC
519
85
55
20
Fo
Fo
93
F@
4A
A5
E6
85
94
54
D@
Co
22
C4
Cc9
Fo
85
94
54
D@
Co

20
4c
8D
93
8D
93
E6
24
Fo
FD
FD
29
85
c9
18
8D
26
co
2B
ED
04
60
10
26
F9
FB
FA
A4
co
92
51

E6
FF
FF
Ca
FA
A4

co
92

51

92
9F
63
8D
73
60
FE
Cé
oa
Cco
69
85
FD
Cco
65
21

20
20
93
Cé
C5
A2
Cc9
F9
91

60
AS
FE
51

E6
26

FB
BO

F@
60

AS

FE

51

E6

26

92
92
93
BA
93
A5
E6
FE
Ccé
BF
A5
FC
60
BO
E3
Ca
64
2B
c8
06
FC
20
21

E8
26
A9
FC
A2
26
FB
91

88
DS
26

A9

FD
A2

26

FB
91

A9
8D
93
8D
FE
FF
c6
FC
BO
FC
A5
A5
09
85
85
94
93
c4
A5
BO
Al
90
EQ
E6
20
85
00
91

Al

26
co
E6
c5
20
85
00
91

Al

26

EA
72
60
AC
co
60
FF
c6
04
38
FD
FD
85
FC
FA
A4
8D
FE
26
DC
FA
ac
a7

FA
80
26
Al

26
FA
E6

FF

26

FD
8D
@6

Al

26

FA
E6

20
93
8D
93
27
A5
60
FD
E6
ES
38
18
FD
60
A5
FF
54
90
9
20
co
86
99
0@
01

20
FA
E6
8D
FA
Fo
AS

99
g1

29
FA
E6

8D
FA

93Co-
83C8-
9308 -
93D8-
93EQ-
93E8-
93FD-
93F8-
9400 -
9408 -
9410-
9418-
9420 -
9428-
9430-
9438-
9440-
9448 -
9450 -
9458 -
9460 -
9468 -
9470-
9478 -
9480-
9488 -
9490~
9498 -
94AQ-
94A8-
94B@-
94B8-
94C@-
94C8-
94D -
94D8 -
94EQ -
94ES8-
94F0-
94F8-
9500 -
9508 -
9510-

Do
04
26
Ccé
FA
A4
26
FB
E6
FF
26
FC
85
A9
85
A9
60
50
co
56
20
85
89
49
00
80
20
80
00
80
00
80
28
A8
28
A8
28
A8
28
A8
50
Do
50

LENGTH:

@2
ca
c9
60
A5
FE
81
8D
FA
Fo
A5
BO
43
20
3F
FF
8D
Cco
8D
co
58
26
85
85
@0
80
a9
80
29
80
00
80
28
A8
28
A8
28
A8
28
A8
50
Y
50

E6
FF
FF
A9
FD
A2
FA
55
Y
04
06
CA
A9
85
A9
85
5E
8D
9
8D
FC
B1
CE
EE
00
80
99
80
2o
80
00
80
28
A8
28
A8
28
A8
28
A8
50
D@
50

FB
B@
F@
20
85
00
E6
Co
B2
c4
co
60
a7
3D
[2}%]
3E
Co
57
Co
o0
60
EE
A9
A9
20
80
990
80
(<]
80
00
80
28
A8
28
A8
28
A8
28
A8
50
D2
50

9370

CHECKSUM

11

88
D9
04
8D
26
8D
FA
B1
E6
FF
FF
A9
85
85
85
38
8D
Cco
8D
co
A4
85
94
95
o0
80
20
80
20
80
(5]]
80
28
A8
28
A8
28
A8
28
A8
50
Do
50

ON

Cco
Cé
C5
g1
20
54
D@

FB
B@
Fo
o4
3F
43
3C
20
oD
60
51
8D
06
27
85
85
00
80
00
89
09
80
00
80
28
A8
28
A8
28
A8
28
A8
50
Do
50

DHR

TYPE: B

FF
26
FC
Cco
64
co
92
81
88
DD
84
85
D@
A9
85
11
ce
8D
ot
54
B1
60
CF
EF
00
89
20
80
00
80
09
80
28
A8
28
A8
28
A8
28
A8
50
0O
50

Fo
A5
BO
85
94
Bl
E6
FA
Co
Cé
C5
3D
QA
3F
42
C3
8D
5F
8D
Cco
CE
A9
A9
60
00
80
00
80
20
80
020
80
28
A8
28
A8
28

9518- DO
9520- 50
9528- DO
9530- 59
9538- DO
9540- 20
9548- 20
9550- 21
9568- 21
9560- 22
9568- 22
9570- 23
9578- 23
9580- 20
9588- 20
9599- 21
9598- 21
95AQ- 22
95A8- 22

95B@- 23
95B8- 23
95CO- 20
95C8- 20
95D@- 21
95D08- 21
95EQ- 22
95E8- 22
95F@- 23
95F8- 23

DO
50
D@
50
D2
24
24
25
25
26
26
27
27
24
24
25
25
26
26

27
27
24
24
25
25
26
26
27
27

D@
59
D@
50
Do
28
28
29
29
2A
2A
2B
2B
28
28
29
29
2A
2A

2B
2B
28
28
29
29
2A
2A
2B
2B

D@
50
(8]7]
50
D@
2C
2C
2D
2D
2E
2E
2F
2F
2C
2C
2D
2D
2E
2E

2F
2F
2C
2C
2D
2D
2E
2E
2F
2F

D@
50
Do
50
D@
30
30
31
31
32
32
33
33
32
30
31
31
32
32

33
33
30
30
31
31
32
32
33
33

DO
50
Do
50
DO
34
34
35
35
36
36
37
37
34
34
35
35
36

37
37
34
34
35
35
36
36
37
37

D@
50
DO
50
Do
38
38
39
39
3A
3A
3B
3B
38
38
39
39
3A
3A

3B
3B
38
38
39
39
3A
3A
3B
3B

D@
50
D@
50
D@
3C
3C
3D
3D
3E
3E
3F
3F
3C
3C
3D
3D
3E
3E

3F
3F
3C
3C
3D
3D
3E
3E
3F
3F

A8

28
A8
50
DO
50

DRIVER

KEY PERFECT 4 @

RUN ON

DHR.DRIVER

==cEemss=s==c—somwssss=scco=z

ADDR# -

9283 -
9203 -

9323

9373 -
93C3 -
Q413 .
9463 -

94B3

9503 -
9553 -
95A3 -
: 96FR3 " -
PROGRAM CHECK IS :

ADDR#
9202
9322

9372

93C2
9412

462
9482
2502

9552
95A2

95F2
95FF
2370

CHECK CODE 3 @

