GRAPHICS WORKSHOP -1
HPLOT ANIMATION

HPLOT Animation

by Robert R. Devine
P.O. Box 10
Adona, Arkansas 72001

INTRODUCTION

The age of the personal computer is here
and thousands of proud new Microcomputer
owners are being added to the list every day
With the dawn of this new age has come an
abundance of software products to feed these
hungry devils. For many of us, once the
glamour of those prepackaged disks has
worn off, we ask ourselves, can | write a pro-
gram using graphics like that?

If you have reached that point, you've
probably already experimented with shape
tables, and Applesoft's DRAW and XDRAW
routines. They do very well on small shapes,
especially when a series of small (but differ-
ent) shapes are needed. The main problem
with DRAW becomes apparent when you
begin to draw and manipulate larger shapes.
DRAW s simply too slow. A large shape table
can take lots of memory. A vector shape table
(the kind described in the Applesoft manual)
is difficult and time consuming to create, and
is very difficult to modify if you make an error,
or want to change it. While they are hard to
create, the routines to manipulate them are
built into your Apple, so frequently they will
still be the best way to go.

| here are two other methods of shape cred-
tion that are commonly used: the HPLOT
shape, and the BLOCK or BYTE shape. In this
article we will deal with the HPLOT shape,
and in future articles we'll take a look at
BLOCK shapes.

HPLOT shapes work bestwhen alarge area
needs to be covered, or when a large shape
consisting of many straight lines is needed.
For want of a better name they're called
HPLOT shapes, because they make use of the
Applesoft HPLOT and HPLOT TO (HLINE)
routines in the creation of shapes.

In this discussion we will first show how to
create a HPLOT shape. Then we will develop
a machine language driver to manipulate our
shapes. This driver will be simply a tool, and
you can use il in your own programs. Qur
finished driver will have many entry points
which can be used in the creation, testing,
and manipulation of our shapes Several points
within the driver can also be modified by our
CALLing program to change its functiohs.

Finally, we'll try to demonstrate the driver's
logic in terms of Applesoft, and see what
approaches work. and some that won't.

CREATING SHAPES

Let’s start out by looking at different meth-
ods for creating a shape.

There are two basic ways that you can
define an HPLOT shape. The firstis to define
a solid shape (Figure 1) where all points
within the shape are hghted. The second
method is to define an open shape (Figure 2)
where only the outline of the shape is il-
luminated.

22
24
26
28
30

10
12

14

O oo a

20
22
FIGURE 1
SOLID SHAPE

18
8
0

22
4
8

30

FIGURE 2
OPEN SHAPE

Thesolidshapeintfigure 1 isonly 20 points
wide by 12 points high, but it would require an
80 to 100 byte vector shape table (depending
on how you defined it), using the DRAW
command. It's small enough that DRAW
might still be the best way to go, but if you
make it much larger, the amount of memory
required. not to mention the efforts involved,
will quickly double or triple. And of course, If
you make an error...you'd better begin
again.

This 1s where you will begin to find that
HPLOT shapes are a better way 10 go. In our
discussion of HPLOT shapes, we will be
working with the shape defined infigure 1. An
ahen spaceship no less!!

OPEN SHAPES

Drawing an OPEN shapefigureis probably
the easiest way to proceed. It may run faster
thana solid shape since there are often fewer
points to define. However, an open shape
may lack the desired level of detail. In an
OPEN shape, a starting point (X,Y coordinate)
is defined, (in our example itis 10,35) and a
point is HPLOTed. Then another point is
selected (such as 29,35). and a line is drawn
between the two points. Linesarethen drawn
around thefigure, always using the end of the
last line as the starting point of the next line,
until the figure is complete. This really
amounts to nothing more thana connect-the-
dots picture from a childs tun book.

SOLID SHAPES

Creating a SOLID shape is much the same
as with an open shape, exceptthatratherthan
starting the next line where the last line left
oft, both the starting and ending points for
each line are defined. You'll note that since
we are able to lift our electronic pencil off the
paper, it was possible to add windows to fig-
ure 1, while figure 2 was simply dissected by a
straignt line

CREATING HPLOT SHAPES

For the balance of this discussion we will be
dealing in terms of SOLID shapes, and using
figure 1inourexamples. Ourassembly driver
will be ableto handle OPEN or SOLID shapes,
but 10 keep things simple, we will stick with
SOLID shapes for now. You may in fact use
both types of shapes in the same program
and still CALL or JSR the same drawing rou-
tines. More details later

SOME BASIC RULES
Let's take a moment lo establish some
basic rules that we'll use when defining
HPLOT shapes and HPLOT shape tables

1. Never allow yourshape to have more than
85 points.

2. Never define your original shape so thal
any horizontal coordinate is greater than
255.

3. Never define your original shape closerto
the left or right edges of the screen than
you expect your maximum movement in-
crement to be In other words, if you
expect to move 10 points per move (a
rather large move), con't define any X-
coordinate lessthan 10 (en aright moving
object), or greater than 269 (on a left mov-
ing shape)

4. All HPLQOT shape tables are 256 bytes
long. regardless of the number of points in
the shape.

5. Try to make a habit of always placing the
leftmost and rightmost endpoints of your
shape in the same place within each of
your tables, so that you can always find
the present location of your shape.

HOW AN HPLOT TABLE IS ORGANIZED

Okay, let's create the HPLOT shape table
for figure 1. I've found that using the Apple-
soft DATA statement is very handy here. The
FIRST element of your table must be the
number of points to be defined in the shape. If
you defined figure 1 the same way I did. you'll
come up with 16 horizontal lines and 32 end-
points. When working with SOLID shapes
there will always be an even number of end-
points When working with OPEN shapes
there may be an odd or even number of end-
points. and you must specify a point every
time you see i, even ifyou're redrawing from
or to a previously plotted point

After the number of points is entered, the
firstX (horizontal) coordinateis specified, fol-
lowed by a 0. Next the Y (vertical) coordinate
iIsentered, then back to the next X coordinate,
another 0, the next Y coordinate, and sc on
until the table is complete

Thereascnforthe 0 after each X coordinate
nas to do with a different way of entering
numbers when they're greater than 255 (ji.e
Rule #2), and will make your table easier to
enter for use with our assembly driver

KEEPING TRACK OF YOUR SHAPE

There is one major difference between
HPLOT and VECTOR shapesthatyou'll need
to get used to in order to work with HPLOT
shapes. Consider this question...Where is
the shape that's in tne shape table?

With a VECTOR shape, the shape IS any-
where you say that it is in the DRAW state-
ment. (Relative to the X,Y coordinates given.)

With an HPLOT shape the shape IS exactly
wherever the data within the table says that it
is, and can't be drawn anywhere elsc.

To move a VECTOR shape and keep it on
the screen, we manipulate it and test the
values for our X/Y coordinates. However to
do the same thing with an HPLOT shape we
manipulate and test the data (line endpoints)
within ourshapetable. We'll need to place the
right and/or leftmost endpoints somewhere
that we can find them in our table. Perhaps
the first line of your shape extends from one
endpointto the other. At any rate, you should
know, and keep a note as to where this infor-
mationis located in your shape data. You can
then PEEK at your table to find these end-
points for your tests.

CREATING FIGURE 1
Nowexamine Listing1 and we'll see how to
begin putting it together. The DATA state-
ments in lines 2000-2010 represent the com-
plete shape for Figure 1. That's certainly a lot
easierthattrying to putthe shape togetherby
the vector method from the Applesoft Manual.

Line 1900 reserves memory for the shape
table and then READS the DATA statements
and POKEs them into memory

Now type lines 1000-1145 into your Apple
and SAVE the partial program on disk, Don't
typeinlines 10-20 orlines 1210-1285 just yet.
Having typed in these lines, now type in the
following immediate execution command:

HGR:HCOLOR=3: GOSUB 1900: GOTO 1000
<Return_>

It you did everything night your shape
should now be on the screen. If the program
so fardoesn't look very efficient, that's okay
The line numbers, variable names, and logic
used are meant to simulate those of the
assembly driver which we'll use later.

A special note at this time. You'll see that
this routine is designed to draw solid shapes
by going back to a new starting point after
drawing each line If we changed the jump in
line 1140 from 1015 to 1075, the routine would
instead draw an open shape which has the
effect of filling in the windows of the space
ship. This is the same approach that we'll use
to change our assembly routine for drawing
either type of shape, a task which can be
performed with one simple POKE.

Now typein the remainder of the program,
lines 10-20 and 1210-1285. Lines 1210-1285
will move your shape 1 increment to the right.
Again, these lines are compatible with our
Assembly Driver (laterinthis article) and they
correspond to the MOVER1 routine.

Lines 10-20 physically move the shape
across the screen.

When you RUN this program your shape
will move from left to right across the screen.

Yes, | know it's slow, but remember we're still
working in Applesoft, Atthis point it would be
agood idea to closely examine the Applesoft
program lines to be sure you understand
what's happening and nhowthe routine works.

From now on we'll be working with the as-
sembly driver which 1s based on the princi-
ples used in the routine which wenow havein
memory. To save yourself a little work later,
I'd suggestthat you SAVE this Applesolt rou-
tine to disk.

RULES 1 AND 4

Inside your Apple, there are memory
"PAGES". Every page is 256 bytes long, and
each of our shapes will take up one complete
page. For instance, the memory area from
$800 — $8FF (hex) is one page, and SE00 —
SEFF is another page. We will always begin
our shape tables at the firstbyte of each page.
For convenience we will number our shapes
with the decimal number of the memory page
that they appear on. For instance the first
available page is $800 and the last available
page is $9300 (shape #147). Note: 147 is the
decimal equivalent of $93. Also note that
shape #147 can only have 83 points so that it
doesn’t averrun aur machine language driver
which starts at S93FA.

The reason for the 1 page limitis that after
BASL orthe Y-register (our element pointers)
exceeds 255 it will roll over to 0, which points
us back at the first byte of our table. If we kept
trying to plot points, we'd end up with a real
mess.

PLACING SHAPES IN MEMORY
Where is the best place in memory to store
your shapes? Good question. Obviously you
can't store them on your Hi-Res pages. The
assembly driver sits just under DOS. Building
shapes down from our driver is the best way
to go, protecting them by setting HIMEM
under the lowest shape.

WHAT IF YOU NEED MORE THAN
85 POINTS?
1 85 points won't do the job, here are a few
suggestions....

1. Thinksmaller! (Smaller will alsorun faster)
2. Break your shape into 2 separate shapes.

3. Sometimes, drawing vertical rather than
horizontal lines will help, or vice versa

4. Never allow your shape to have an X-
coordinate greaterthan 255. This way you
can eliminate all the 0's in your table, and
draw 127 points. You would of course
need to modify the driver.

5. Modity thedrivertoincrement BASH when
the element pointer reaches 255.

Now try these tricks after saving Listing 1
on your disk. First enter HGR:HCOLOR=3,
then type this line. FOR X=1 TO 50:HPLOT
X,0 TO X,50:NEXT <_Return>>. You got a big
white square, right? But then you already
knew that. You covered an area 50 points high
and 50 vertical lines wide, requiring 100
endpoints.

Now type HGR again and try this: FOR X=1
TO 50 STEP 22HPLOT X,0 TO X,50:NEXT.
This time you covered the same area with
only 25 lines, requiring only 50 endpoints;
however, the color changed to green.

Finally enter HGR again, and try this: FOR
X-2TO50STEP 2:HPLOT X,0 TO X,50:NEXT.
Again you covered the same area with only 50
endpoints, but now the color isblue. Theidea
is this, if you can live with green or blue for
your shape, draw every other vertical lineand
you can reduce the numberof points needed.
When the lines are on odd numbered coordi-
nates the color will be green; when they are
on even numbered coordinates the color will
be blue.

THE HPLOT DRIVER

At this point | think it would be a good idea
if we stopped long enough to enter and save
the driver. The assembly source-code listing
shown was created with the S-C assembler. If
you don't have an assembler, you can simply
enterthe Hex bytes as listed. To enter the Hex
bytes, you'll first need to enter the Monitor
with CALL-151. Thenenter 93FA:FA A9 008D
54 CO0 etc until you've filled about 4 lines on
the screen. Then press RETURN, enter an-
other colon (:), and fill up another 4 lines
Repeat the process until the entire listing i1s
entered.

Tosave the completed driver to disk. enter
BSAVE H/P DRIVER $93FA,A$93FA,L$207.
Before we get into working with the driver,
you might take a few minutes to look over the
summary that follows. The names of all the
routines, as well as their functions and entry
points, are listed in Table 1. You'll also find a
list of all the POKEs that you may need to use
with the driver in Table 2.

For more information on entering machine
language code directly into memory, see the
Letters section of this issue.

HOW THE DRIVER WORKS

Thedriverlisting is heavily documented, so
even those of you who don't write machine
language should be able to follow the listing
with little trouble. All the routines work with
the same approach as the Applesoft program
that we've already tried out. Basically each
routine sets up at the first byte of the page
where the shape is found (your shape# told it
which page), gets the number of points, and
puts that value in the counter.

The balance of the routines are used to
increment the pointers which, one-by-one,
step through all the elements in the table,
each time checking the counter to see if all
the points have been processed. The move
routines add to or subtract from the incre-
ment, depending on the direction of travel.
The DRAW/ERASE routines first HPLOT a
point, then drop through and HPLOT TO the
next point, at which time a check is made (line
1140) to see if we're drawing SOLID or OPEN
shapes, and the appropriate jump is made;
eilher Lo HPLOT where a new line is started,
or HPLOT TO where we continue drawing
from our present point.

THE DRIVER IN MEMORY

We'll be making use of our driver from now
on.soyou should have itin memory. Because
ofitslocation, just below DOS, you can safely
enterany Applesoft program without damage
to the driver. The one exception has to do
with strings. DO NOT execute any siring or
CHRS$() type statements unless you've first
protected the driver, and your shapes, by set-
ting HIMEM. Strings are stored at the top of
memory, right where the driver is. To protect
the driver and subsequent shapes, type
HIMEM:37120 <Return>.

ENTERING SHAPES

Now let's create an HPLOT TABLE of figure
1. To save some work, let's reload the Apple-
soft program we were playing with earlier,
and delete all the lines except the DATA
statements in lines 2000-2010. This is the
same table our machine language routines
will use. Let's store our shape on memory
page $147, the same page where our driver
starts. We'll start the shape at $9300 hex and
call it shape #147. To place the table in
memory enter this line:

100 FOR X=37632 TO 37728:READ A:POKE
X,A:NEXT

37632 is the decimal equivalent of $9300,
and 37728=37632 + (# of points)*3. When you
RUN this line, your table will be stored in
memory as shape #147. At this point you
should save it to disk with BSAVE SHAPE
#147,A$9300,LS61. Believe it or not, you've
just saved your first HPLOT table, and are
ready to use the routines available in the
assembly driver!

DRAWING SHAPES ON THE SCREEN

Forthe balance of our discussion it will be
necessary that you keep the driver in memory,
aswellasashapeto work with. In order touse
any of the driver routines you must always
POKE the shape number into location 251:

To view your shape enter HGR:POKE
251,147:CALL 38102, and maaqically your
shape should appear. It wasn't even neces-
sary to set HCOLOR. POKE 251,147 entered
our shapef and CALL 38102 is our DRAW
routine. Now enter CALL 38095. You say the
shape disappeared? Of course it did, CALL
38095 is our ERASE routine.

DRAWING AT X-COORDINATES GREATER
THAN 255

What if you really wanted your original
shape to appear on the right side of the
screen, buthad only defined itonthe left side
(to be consistent with Rule #2)? Believe me,
consistency was a good choice.

Remember all this stuff you keep reading
about the number 255. It seems that this is
some magical number with powers that make
it an immovable object!!! That's because you
can’t store any number greater than 255 in 1
byte. A number larger than 255 (up to 65535)
needs 2 bytes, and since your screen is 279
points wide, we must allow for X-coordinates
being 2 byte numbers. That's the reason for
allthoseextra0'sin your table. If forinstance
you hadselected an X-coordinate of 267, you
would have needed to enter the number
$0108, the hex equivalent of 267. The 0 in
your table would have become a 1, and the X
byte would need to be 11, because 11 is the
decimal equivalent of $0B. For simplicity,
we'll keep our X-coordinate under 255.

USING A MOVE ROUTINE

Our shape presently is positioned from
horizontal X-coordinates 10-29. Now that it's
in memory, let's MOVE it to coordinates 248-
267. We want to MOVERIight 238 points, since
267-29-238. To use any of the movement or
animation routines in the driver you must
POKE the MOVEment INCRementinto memo-
ry location 207:

POKE 207,INCRement

Enter POKE 207,238, and then CALL 38167
whichisthe MOVERight 1 incrementroutine.
This time, when you CALL 38102 your shape
will appear on the right side of the screen.

Wasn't it much easier to let your Apple do
all the figuring?

SETTING SHAPE TYPE

Thedriveris presently setfor SOLID shapes.
To change to OPEN shapes POKE ($9515)
38165,226. To change back to SOLID shapes
POKE 38165,204. This POKE is only needed
when changing from one shape type to
another.

SHAPE ANIMATION

By now you should be familiar with our
DRAW and ERASE routines, which are used
by simply POKEing the shape # into memaory
location 251, and CALLing the desired routine.

TABLE 1
HPLOT DRIVER SUMMARY

Routine Call Hex
Name Address Address
FLPDN1 37882 S93FA
37891 $9403
FLPDN2 37907 $9413
37916 $941C
FLPUP1 37932 $942C
37941 $9435
FLPUP2 37957 $9445
37966 S944E
REVDIR 37982 $945E
GODOWN 38049 $94A1
GOuP 38072 $94B8
ERASE 38095 $94CF
DRAW 38102 $94D6
MOVER1 38167 $9517
MOVELT1 38196 $9534 M
MOVEL2 38225 $9551
MOVER2 38268 $957C
FLIPR1 38312 S95A8
38321 $95B1
FLIPR2 38334 S95BE
38343 $95C7
FLIPL1 38356 $95D4
38365 $95DD
FLIPL2 38378 $95EA
38387 $95F3

Routine function

Display page 1-Move shape down on page 2
Secondary enlry point

Display page 2-Move shape down on page 1
Secondary entry point

Display page 1-move shape up on page 2
Secondary entry point

Display page 2-move shape up on page 1
Secondary entry point

Reverse physical appearance of shape left-right
Move shape down 1 Y-INCRement

Move shape up 1 Y-INCRement

Erase shape

Draw shape

Move shape right 1 INCRement

ove shape left 1 INCRement

Move shape left 2 INCRements

Move shape right 2 INCRements

Display page 1-Move shape right on page 2
Second entry point

Display page 2-Move shape right on page 1
Second entry point

Display page 1-Move shape left on page 2
Second entry point

Display page 2-Move shape left on page 1
Second entry point

TABLE 2

SPECIAL POKES TO MODIFY THE FUNCTIONS OF THE DRIVER

POKE 38096,COLOR
POKE 38103,COLOR

Use these values for color
0($0)-BLACK
213 ($D5)-BLUE2
POKE 251 SHAPE#

POKE 207 INCRement
FLIP routines.

POKE 253.YINCRement
routines.

POKE 38165,204
POKE 38165,226
POKE 252,0
POKE 2521

POKE 38333,96
POKE 38377,96

POKE 38333,234
POKE 39377,234

POKE 37906,96
POKE 37956,96

POKE 37906,234
POKE 37956,234

To animate our shapes. we will use the 4
MOVE routines which will MOVE our shape 1
or 2 INCRements left or right. Bear in mind
that the MOVE routines have no effect on
your graphics display; they simply modify the
contents of the shape table in preparation for
the next DRAW or ERASE command. Before
you use any MOVE routine you must first
specify the INCRement by POKEing memory
location 207.

ToMOVE our shape to the RIGHT we'll use
the MOVER1 and MOVER2 routines, and to
MOVELEFT we'll use MOVEL1and MOVEL2.

127 ($7F)-WHITE 42 (S2A)=-GREEN

Set background (ERASE) color.

Set shape color

170 (SAA) RED 85 (§55)=BLUE

Set shape #, required forALL routines
Set # of points to move left/right, required for ALL MOVE and

Set # of points to move up/down, required for ALL GO and FLP

Set DRAW/ERASE routines to handle SOLID type shapes.
Set DRAW/ERASE routines to handle OPEN type shapes.
Tell REVDIR that endpoints are in X-coordinates 1 & 2.
Tell REVDIR that endpoints are in X-coordinates 1 & 3.

Break the horizontal FLIP routines
into 4 separate segments for multiple shape use.

Set the horizontal FLIP routines for
single shape flip animation

Break the vertical FLIP routines
into 4 separate segments for multiple shape use.

Set the vertical FLIP routines for
single shape flip animation.

SIMPLE ONE PAGE ANIMATION

The same basic principles that you've
probably used with VECTOR shapes will be
the same ones you'll use with HPLOT shapes,
except that instead of incrementing or de-
crementing the X value used in the DRAW
AT X,Y, you will instead increment or
decrement your shape location by using the
MOVE routines. Let's try out a simple test
where we move our shape back anc forth
across the screen. First BLOAD the H/P
DRIVER and your shape into memory, and
then enterand RUN the program in Listing 2.

Inline 100 we set the necessary POKEs for
the driver. The balance of the program simply
ERASEs the shape and tests to see if we're at
the edge of the screen. If we're not at the
edge, we MOVE theshapeand DRAW it. Ifwe
are at the edge, we simply MOVE in the other
direction and then DRAW. Spend a few min-
utes playing with the routine. You'll note that
lines 120 and 170 protect you from going off
the screen regardless of the INCRement that
you set.

The one major problem with our testis that
there is still quite a bit of flicker, as the shape
is erased and redrawn. Part of this is due to
the fact that the shape actually spends more
time in the ERASE state than it does in the
DRAW state. We could help things quite a bit
by including a slight delay between DRAW
and ERASE, but that would slow things down,
and we're trying to keep our routines as fast
as possible

The solution to the problem is to only dis-
play your shape in the DRAW mode, and to
never let anyone see our ERASE actions.
Here's where we really start getting into the
good stuff!!

HI-RES PAGE FLIPPING

As you probably know by now, your Apple
has 2 Hi-Res screens. The first is called Page
1 (HGR), and the second is called Page 2
(HGR2)

When you select one of these pages with
HGR or HGR2, you are telling your Applethat
you wish to graphically display the contents
ot aspecificarea of Hi-Res memory. Youaiso
tell it that any graphics commands that it
encounters are to be executed upon the
selected Hi-Res page.

The most important concept that you'l
need to understand 1s this: You don’t need to
have a Hi-Res screen visibly displayed on the
screen to draw on it. There 1s absolutely noe
restriction that prevents you from drawing or
erasing a shape on one Hi-Res screen whilg
you display the other Hi-Res screen

This is all accomplished with what are
referredto as soft switches. Thereare several
soft switches; however there are only 3 that
we will be concerned with

WHICH PAGE WILL WE DRAW ON?

The first switch we need to be aware of s
located at memory location SE6 (decimal
230). The value stored in this location tells
your Apple which Hi-Res pageto DRAW on. [
the value stored there is $20 (decimal 32) then
your Apple will DRAW on page 1 Howeverif
the value is $40 (decimal 64) it will CRAW on
Hi-Res Page 2

For those of you who like to contemplate
new ideas. here's an idea to play with: If you
were to store a $60 (decimal 96) in this loca-
tion you would DRAW on PAGE 3 ($6000-
$7FFF). While you can't display page 3, you
could DRAW there, and then using the Moni-
tor MOVE command, move page 3 onto one
of the other 2 pages for display Again you
should remember that the page we re DRAW-
ing on. can be independent of the page we're
displaying at any particular moment

WHICH PAGE WILL WE DISPLAY?

The next two switches that we'll need to
learn about arc located at $C054 (decimal
49236) and $C055 (decimal 49237). These
switches tell your Apple which page to DIS-
PLAY. If we want to look at a page we would
puta0into one of these locations. The com-
mand POKE 49236,0 displays Page 1, and
POKE 49237.0 displays page 2. Your Apple
will display whichever page whose switch
was accessed last.

With the information in hand as to which
page to DISPLAY, and which page to DRAW
on, it 1s now possible for us to display one
page, while we draw on the other.

LET'S PLAY WITH SOME PAGE FLIPPING
First let's draw something on each Hi-Res
page and see what it looks like with page flip

100 HCOLOR-3: HGR: HPLOT 50.50 TO
50,60: REM DRAW A 1 ON PAGE 1

110 HGR2: HPLOT 100,50 TO 110,50 TO
110,55 TO 100,57 TO 100,60 TO 11060:
REM DRAW A 2 ONPAGE 2

120 POKE 49236,0: REM DISPLAY PAGE1

130 POKE 49237,0: REM DISPLAY PAGE 2

140 GOTO 120

When you RUN this littie program we first
clear each Hi-Res page and draw a numbet
onthepage. After thatwesimply loop through

lines 120-140, over and over again. While it
appears that we keep drawinga1anda2on
thescreen you'llnote thatthere arenograph-
ics drawing commands in either ot these
lines. All were doing 1s popping back and
forth from one page to the other and looking
at what's drawn on that page.

You should also note one other very
important difference between using these
"soft switches" to change pages. and using
the HGR or HGR2 commands. The stand-
ard Applesoft graphics commands set all
switches to DRAW and DISPLAY the se-
lected page, but they also ERASE whatever
was drawn on the page when the HGR or
HGR2 command s given. Using the soft
switches does not erase the page.

When using PAGE FLIP animation we ai-
ways do the ERASEing. MOVEing. and re-
DRAWingonthe hidden page before we flip 1t
into view. In this way the viewer always sees
the graphics in the DRAW state, and never in
the ERASE state

If your graphics display contains back-
ground graphics, you will need to draw them
on BUIH pages so that the user will be
unaware that page-flip is being used.

Now let's take a look at how we might use
our FLIP routines to move our shape across
the screen.

Lel's see how we would move our shape to
the right using page-flip armation. For the
moment we'll also assume that we're using
FLIPR1, which simply means that the EX-
POSED PAGE s Page 1 and the HIDDEN
PAGE s Page 2. FLIPR2 does exactly the
same thing except that pages 1 and 2 are
reversed

A. This is what we first see (find) when we
enter a FLIP routine Here we SEE the shape
at X=20 on the displayed page; however the
shape is also drawn at X=10 on the hidden
page NOTE: The shape tablecoordinatesare
those of the EXPOSED page.

B. Here we need to move backward 1
increment (since our direction of travel is
right, backwards would be left). Now that
we've moved back, we're at the same X ccor-

dinate as the shape on the hidden page, at
which point we ERASE the shape

C. Now we need to move forward 2 incre-
ments sothatourshapeis1increment ahead
of theshapewhich we'restill looking at on the
exposed page. Now thatour snape isatX=30
we DRAW it on the HIDDEN PAGE

D. Step D is really the same as STEP A,
except that we've exchanged pages The
Hidden page is now exposed, and the ex-

posed page is now hidden. The shape that we
SEE on the screen 1s now at X=30, and the
shape on the mdcen page s at X-20. To con-
tinue moving across the screen GOTO STEP
B.

Above we see a pictonal representation of
PAGE-FLIP animation. Now let's see how we
would goabout wnting ashort program, using
our driver. that will accomplish the task

After you have the driver and your shape in
memory, type in and RUN the program in
Listing 3 and you'll see your shape move
smoothly (without so much as a flicker) back
and forth across the screen. This routine is
very similar to our previous test, except that
instead of CALLing ERASE, MOVE, and
DRAW, we're letting the FLIP routines do that
foruse. The HPLOT 50,50 to 50,60 in line 100
simply draws a 1 on page 1 so that you can
see that wé really are page flipping.

KEEPING ON THE SCREEN

As you ran the last test. your shape moved
from left to night, and then came back the
other way. However, when it got to the left
edge of the screen the program hung up,
right? Without knowing it, we just broke rule
#3, which said you should never try to DRAW
the shape closer to the edge of the screen
than 1 INCRement. The only way to recover is
tohitRESET and thenenter 3D0G. You'll also
need to reload your shape since your table
has been destroyed

Here's what happened. Our leftmost X-
coordinate started at 10, and as we moved
nght it went to 14, 18, 22 and so on. On the
return trip it dropped from 18, 14,10, 6 to 2
Whenitwas at6, our test inline 140 let it make
1 more move (we're testing for 0+4=4) and it
dropped to 2. Now when it came 1o line 140
again we were sent te line 120, which is our
FLIPR1 routine. If you remember step B in our
example, you'll note that the first thing our
FLIP routines do 1s move backwards to erase
our shape. In this case moving backwards
from 2 meant moving off the screen to -2.

HI-RES ANIMATION USING PAGE FLIPPING

EXAMPLE: Moving our spaceship from left to right, moving 10 points per move.

10
20
30
40
—— 10

o
33 Q

20

o O
™ <

(

o
@

0'—‘!-— 20
s)
1 E i |
¥ 1
& —H

B TXTE R ISR IR N |

-}
40
Pt 20
@-————f————30
PRl | SR,

1

| P

The fix is easy. Reload your shape. Type
POKE 207,6, and CALL 38196. What we've
done is to move the starling position of our
shapefrom 10 to 4 to that our line 140 test will
properly reverse us. Now RUN the program
again and everything should work perfectly

You should notice that page flipping is
simple with the driver. In fact it took fewer
commands to write our page-flip test than it
didwith our one-page test. The movement of
our shape is much smoother as well

To save yourself prablems in the tollowing
tests, I'd suggest that you reload the shape
Then type POKE 207,6:CALL 38196 again,
and reSAVE your shape at the new co-
ordinates

MULTIPLE SHAPE ANIMATION

At this point we looked at how to animate
shapes on one page and on two pages using
page-flip. Now let's see how we might move
more than one shape on the screer

The first thing that you'll need to do is
create another shape. |'d suggest that you
create another version of figure 1. This time
however, you should run the new shape from
vertical coordinates 30-41 and horizontal
coordinates 253-272. (With these coordinates
our future tests won't crash.)

Let's call this shape #146, which means
youll start your table at $9200 (37376
decimal).

Here’s the easy way to do it. First be sure
thatthe driver and SHAPE #147 are in memo-
ry,and then Type HGR: POKE 251,147:CALL
38102 This should put our present shape or
the screen at Y coordinates 10-21, and X
coordinates 4-23. (You did move and reSAVE
It as we suggested, didn't you?)

Cc
GRAPHICS PAGE

B
EXPOSED

HIDDEN GRAPHICS PAGE

Now type POKE 253,20:CALL 38049 which
will move the shape DOWN 1o coordinates
30-41. We haven't discussed vertical move-
ment yet, but if you look at the driver sum-
mary you'll find that POKE 253,YINCR
handles vertical movement, and CALL 38049
moves our shapes DOWNWARD on the
Screen

If you want to make sure the shape made
the trip safely, enter CALL 38102 again to see
the shape in its new iocation

Now enter POKE 207,249:CALL 38167. By
now you should recognize that this will move
the shape right 249 points. One last time,
enter CALL 38102 to be sure the shape made
the trip okay.

Now thatwe have the shape table where we
wantit. the problem is that it's on the wrong
page! No big deal, let's move it to the correct
page with your Apple's Monitor MOVE com-
mand. To do so, first enter CALL-151 to get
into the Monitor Thenenter9200<9300.9360M
< RETURN > and your shape will move where
we wantit.

Finally enter 3D0G to return to Applesoft
and save the shape with BSAVE SHAPE
#146,A89200,L861. This may seem like a
round-about method, but it made use of new
parts of the driver and a Monitor command
To be sure you did everything correctly, type
HGR to clear the screen, and then POKE
251,146: CALL 38102. You should have been
able to CALL your shape as SHAPE #146.

DIFFERENCES WITH MULTIPLE
SHAPE ANIMATION
With multiple shape animation you'll need
to ERASE, MOVE, and DRAW all the shapes
being ammaled, on the hidden page, before

PAGE FLIP

flipping it into view. If you don't do this, the
viewer will see all our back 1, forward 2,
maneuvers on both screens for each shape

MODIFYING THE FLIP ROUTINES

As the FLIP routines are presently written
we first display page 1 and draw page 2, at
which time we FLIP the pages and display
page 2 while drawing page 1. What we need to
do is break out of the FLIP routine after our
move on page 2 so that we can repeat the
process with our other shape(s), before ex-
changing pages.

To do this we will replace the NOP (NO
oPeration) codes inlines 1656 and 1856 with
RTS (ReTurn)codes, elfectively breaking the
2 FLIP routines into 4. This is accomplished
withthefollowingtwo POKEs: POKE 38333,96
and POKE 38377,96 Toreplace the NOPs for
single shape use, Type: POKE 38333,234 and
POKE 38377,234.

A SAMPLE TWO SHAPE ANIMATION
ROUTINE

Ta run the next test, you'll need to be sure
that you have the driver as well as both
shapes in memory (SHAPE #146 and SHAPE
#147). Then simply enter the program in List-
ing 4 and RUN it.

You can see from this program how a mul-
tipleshape routine CALLs the firstand second
parts of the FLIP routines separately to get
the needed effect.

ALTERNATE ENTRY POINTS
As you looked at the driver summary, you
probably noticed that all of our FLIP and FLP
(for vertical flipping) routines showed a

secondary entry point. We didn't use them in
our test. However now is a good time to see
what they do. ‘

If you'll take a moment to look at the driver
source-code, you'll see that the first thing
thatis doneineach partofa FLIP routineis to
set the numbers of page to display and the
page on which to draw. The tirst time we set
up to work on a page we need to execute
those instructions (i.e. lines 220,260,330, and
370). However it we're coming to the same
page set-up again we really don’t need to
waste execution time repeating the same
instructions. So in our example we could
have substituted the secondary eniry points
in our CALLs in lines 240, 280, 350, and 390.

THE REVDIR ROUTINE

Now let's take a look at a specialized rou-
tine that we haven't talked about before. So
far we've only been dealing with nice sym-
metrical shapes, bul what about when you
need anon-symmetrical shape thatrequiresa
left-facing and right-facing version of the
same shape? This is where REVDIR ccmes in
very handy. You could create separate shape
tables for each version, butthat takes memory,
and REVDIR can help.

HOW REVDIR WORKS

REVDIR physically reverses the shape from
left to right, creating a backwards version of
your shape using the following formula: (Left-
most point+Rightmost point)-Present point-=
New location of point.

First it adds the leftmost and rightmost
points in your shape. Then it steps through
the shape, subtracting every X-coordinate
from this value to establish a new X-co-
ordinate.

RESTRICTIONS ON THE USE OF REVDIR

Inorderto use REVDIR we need to return to
the topic of defining exactly where in your
shape the routine will look to find the needed
points. Searching tor the information would
take too long, so we have established RULE
#5.

If you're going to use REVDIR to reverse
your shape thenyou MUST define yourshape
in the following manner (otherwise it will
simply destroy your shape):

5A. TheFIRST line in your shape table must
extend from the rightmost coordinate to the
leftmost coordinate of the shape. This line
may be horizontal or slanted.

OR...

5B. The FIRST X coordinates in each of the
first two lines must be the extreme endpoints
of the shape. In other words, if the first X
coordinate in the table [the first line being
drawn) is on the leftmost side, then the first X
coordinate (of the second line) must be on
the rightmost side. These lines may be hori-
zontal, vertical, or diagonal. Bear in mind that
ina SOLID shape these will be the first points
of the first and second lines. Howeverwith an
OPEN shape these will actually be the start-
ing points of the tirst and third lines. At any
rate they must be the FIRST and THIRD X
coordinates in the table.

Before using the REVDIR routine you must
tell the routine how you defined your shape
so it'll know where to get the endpoints.

If you defined you shape according to
option A, enter POKE 252,0

If you defined your shape according to
option B, enter POKE 252,1.

PUT IT ALL TOGETHER
By now you should be familiar with just
about all of the routines in the driver. While
we haven't directly looked at the routines for

vertrcal movement, they work the same way
as the horizontal movement routines, except
that you POKE your increment into memory
location 253 instead of 207.

To getan overallview of the driver abilities,
let's try to create a routine that directly or
indirectly makes use of every driver routine
This will also help detectany bugsortyposin
your driver.

Let's make a program that does the follow-
ing: First, we'll manipulate 3 shapes on the
screen. The first shape will be our shapeship
(shape #147) which we'llmove back and forth
across the screen. Next we'll make a simple
arrow that will always travel the opposite
direction from ourspaceship, and which we'll
REVERSE at each side of the screen so that
it's always pointed in the proper direction.
We'll callthe arrow shape #146 _Finally. create
a simple rectangle which will travel up and
down on the screen. This way we’ll always
have 3 shapes moving, all in difterent direc-
tions. The rectangle will be called shape #145
In addition we'll define our shapes #145 and
#146 as OPEN shapes, which means thatwe'll
also need to keep track of what type of shape
we'redealing with. Since our two new shapes
will be rather simple, we'll create them within
our program

THE THREE SHAPE PROGRAM

Once you've typed the program Listing 5
into memory, you'll need to load the driver
and shape #147, which should be at X-
coordinates 4-23.Then simply RUN the
program

The program is heavily REMed so you
should be able to follow it. You'll note that
we've used lhe secondary entry points for
shapes #145 and #146. Basically what we're
doing is POKEIng the shape#, setting our

LISTING 1 LISTING 2
19 HGR : GOSUB 19@0: INCR = 16 90 SHAPE = 147:INCR = 4: HGR
1S IF BASH(4) > = 279 THEN END 182 POKE 231,SHAPE: POKE 207, INCR: REM SET SHAPE#® AN
20 HCOLOR- @: GOSUB 18@1: GOSUR 1218: HCOLOR= 3: GOSUB D INCREMENT
1601: 6OTO 15 116 CALL 38095: REM ERASE
10068 REM %33 DRAW $38 126 1IF PEEK (37636) + PEEK (37637) % 256 > = (279 -
1981 BASL = @: REM SET PDINTER TO START OF T INCR) THEN 18@: REM TEST RIGHT EDGE OF SCREEN
ABLE 13¢ CALL 38167: REM MOVE RIGHT 1 INCREMENT
1618 CTR = BASH(BASL): REM ..GET # OF POINTS 146 CALL 38182: REM DRAW
1815 BASL = BASL + 1: REM ..POINT TO X COORDINATE 15¢ GOTO 118: REM KEEP MOVING RIGHT
1920 X = BASH(BASL): REMGET X COORDINATE 166 CALL 38895: REM ERASE
184S BASL = BASL + 2: REM POINT TO Y COORDINATE 176 IF PEEK (37633) + PEEK (374634) & 256 < = (8 +
1056 Y = BASH(BASL): REMGET Y COORDINATE INCR) THEN 138: RCHM TEST LEFT EDBE OF SCRFFN
1860 HPLOT X,V: REM HPLOT STARTING POINT 180 CALL 38196: REM MOVE LEFT 1 INCREMENT
1965 CTR = CTR - 1: REM NOTE THAT A POINT WAS 199 CALL 38162: REM DRAW
USED 266 GOTO 16@G: REM KEEP MOVING LEFT
1975 BASL = BASL + 1: REM POINT TO NEXT X COORDIN
ATE
1080 X - BASH(BASL): REMGET X COORDINATE
1105 BASL = BASL + 2: REM POINT TO Y COORDINATE
1116 Y = BASH(BASL): REMGET Y COORDINATE LISTING 3
1136 HPLOT TO X,Y: REM DRAW A LINE
1135 CTR = CTR - 1: REM ANOTHER POINT USED
1148 IF CTR ¢ > @ THEN 1815 9@ SHAPE = 147: INCR = 4
i,“g RETURN 168 HGR : HPLOT 58,50 TO 5@,48: HGRZ : POKE 251, SHAPE
210 Y = @: REM SET POINTER 70 START : POME 207,INCR: REM CLEAR BOTH PAGES-SET UP SHA
1228 CTR = BASH(Y): REM GET # OF POINTS PE® AND INCREMENT
1225 Y = ¥ « 1: REM POINT TO X COORDINATE 118 IF PEEF (37636) + PEEK (37637) & 256 > = (279 -
1246 BASH(Y) = BASH(Y) + INCR: REM ADD INCREMENT INCR) THEN 15&: REM TEST FOR RIGHT EDGE OF SCR
1270 Y = Y + 23 REM cicevenican POINT TO Y COORDINATE EEN
1;;3 CIRE STH = Dot cme a5 AFOINTS BEEN USED 126 CALL 58312: REM CALL FLIPR1 ROUTINE
i:'as ;ETE';: < > @ THEN 1225 136 GOTO 110: REM KEEP MOVING RIGHT
1988 DIM BASH(96): FOR X = @ T0O 94: READ BASH(X): NEXT 148 IF PEEM (37633) « PEEK (37634) 3 256 < = (8 +
s ‘RETURSE * % INCR) THEN 12@: REM TEST FOR LEFT EDGE OF SCRE
2000 DATA 32,19,0,14,29,0,14,16,0,11,23,0,11,14,0,1 190 E:LL 38356: REM CALL FLIPL1
2.75.8.12,12,€,13,27,8,13,16,8,18,21,4,18,18,8,15 s . .
20 1815 0,18, 16 6,15 » 40y 18,0, 1686 GOTO 14@: REM REEP MOVING LEFT
2016 DATA 19,0,15,208,0,15,23,3,15,24,8,15,27.8, 15,29
,8,15,11,0,16,28,0,16,12,0,17,27,6,17,13,0, 18, 26,
0,18,14,0,19,25,0,19,16,9, 2¢,23,9,20,19,0,21,20,0
.21

POKE 381165 to specify shape type, and then
CALLing a FLIP routine. When we get to the
endofaloop we need to take a few extra steps
to ERASE ourarrow on BOTH pages, without
doing a FLIP before we REVERSE it (in readi-
ness for the return trip).

If you stop the program, you'll need to
reload shape #147 before restarting it so that
everything works properly.

At this point you should know about all
there is to know about HPLOT shapes, and
have a flexible tool to use in manipulating
these shapes. That certainly doesn't mean to
say that you couldn’t add your own enhance-
ments (some FLIP routines for diagonal move-
mentmight be handy), or thatthings couldn’t
be done differently. But you should have a
solid grasp on how to create and animate
shapes

WHAT HAPPENS WHEN ITDOESN'T WORK?
There are several ways that can do you in
when working with the driver, many of which |
found out about first hand.
First: The easiest mistake to make is trying
to use CHR$(4) to load shape tables, the
driver itself, or whatever, without first setting

HIMEM. If you don't set HIMEM below your
lowest shape you'll damage the driver, start-
ing with the FLIPL2 routine. If you make this
error. and try to use FLIPL2, you'll drop
through into DOS, possibly making it impos-
sible lo recover your program.

The next thing that can cause lots of head-
aches is forgetting what mode you presently
have the driverin. As you've found out. there
are several POKEs that will modily its func-
tion. For instance, If you try to go back and
rerun some of our tests using shape #147,
after having run our final test using 3 shapes,
there's good chance (2 to 1) that your shape
will be distorted. When we ran our first tests. |
knew thatthe driver was set for SOLID shapes
(which shape #147 needs), but in our final test
(with 2 of the 3 shapes) we set the driver for
OPEN shapes. So if you don't reset POKE
38165,204 before rerunning earlier
tests, things may not work right.

Another possible pitfall arises with the FLIP
and FLP routines. If for instance you went
back and tried to rerun our one-shape page-
flip test after having run the multiple shape
tests, youwouldn'tsee very much happeninyg
When we did the one-shape test | knew the
NOPs were in place in the flip routines, but
when we went to multipleshapes we replaced
the NOPs with RTSs. Going back to the 1

page test, withoutreplacing the NOPs would
do ALL the drawing on the hidden screen,
(page 2) and we'd never see anything. The
point is simply this, if something doesn't
work, check the status of the driver to see if
it's in the proper mode.

Probably the best way to do thisis to PEEK
the locations that we normally POKE to find
how they're set

Finally, if you're keeping your shapes on
the screen with FOR..NEXT loops, rather
than actually testing for the edges of the
screen, be sure that your shapes are in the
proper starting position when youstartapro-
gram. You can often get away with letting
your shape go a few points off the right edge
of the screen (coordinates greater than 279),
however any attemptto go past the left edge
(coordinates less than 0) will spell instant
disaster, destroying your shape, and requir-
ing a RESET to recover.

By the way, if anyone out there in civiliza-
tion comes up with any other useful improve-
ments to the driver, I'd appreciate hearing
from you. In our next discussion we'll start to
look at BLOCK shapes, a method of shape
creation that is most often used in those high
speed animation games that we're all so fond
of. See you then!!

120 FOR X = 37120 TO 37135: READ A: POKE X,A: NEXT 3 REM
POKE SHAPE #145 IN MEMORY
139 DATA S,133,0,5,147,0,5,147,0,20,133,08,20,133,0,5
LISTING 4 , »9,5, »5, +9,20, ’
199 REM MODIFY FLIP ROUTINES FOR MULTIPLE SHAPES/SET
INCREMENT
7 Nerement | U7 ROUTINES FOR mULTIRLE SHape/seT 202 POKE 37906,96: POKE 3799496 POKE 295.3
,96: < 56,963 i
200 POKE 38333,94: POKE 38377,94: POKE 207,4 285 HGR : HGR2 : REM CLFAR THE HI-RES SCREENS
205 HGR : HGR2 : REM CLEAR THE HI-RES SCREENS :}g ;g: XDTSF{LIS gzm i<Drn FABE 3
218 FOR X = 1 TO 30 “
215 REM DISPLAY PAGE 1-DRAW PAGE 2 228 POKE 251,147: POKE 38145,204: CALL 38312: REM MO
220 PUKE 251,147: CALL 38312: REM MOVE SHAPE #147 —-> VE SHAPE #147 ——>
240 POKE 251,146: POKE 3IB1465,226: CALL 38345: REM MO
24@¢ POKE 251,146: CALL 38356: REM MOVE SHAPE #1446 <—— oas XSKEH‘\P?EI:I "':;6 C;;L S7e%1s ReRl HOVE SHARe W14S B8
. 251, : : 5
255 REM DISPLAY PAGE 2-DRAW PAGE 1 255 xn DISPLAY PAGE 2 Wt BAGE 1
2690 POKE 251,147: C H 7 — < 2-DRA
£ ALE. JESA: IRER HOVE SHAPE WL ’ 260 POKE 251,147: POKE 381465,2@4: CALL 383X4: REM MO
280 POKE 251,146: CALL 383781 REM MOVE SHAPE #1446 (—— Vg EHAPE "1;7 r_‘_:c 15,2 CALL S7oiss RER HG
270 POk 251.145; oK 3 D, 2262 z
306 NEXT VE SHAPE #145 DOWN
31¢ REM GO BACK ITHE OTHER DIRECTION 280 POKE 251,146: CALL 38387: REM MOVE SHAPE #1446 <-
3286 FOR X = 1 70O 3@ -
325 REM DISPLAY PAGE 1-DRAW PAGE 2 285 NEXT
I3@ POKE 251,147: CALL 38356: REM HOVE SHAPE #147 < 299 POKE 230.6;:GECALL 38167: CALL 38895: REM ERASE
ARROW ON Py 2
359 FPOKE 251,146: CALL 38312: REM MOVE SHAPE #1446 —-> 295 POKE 23@,32: CALL IB8196: CALL 38095: REM ERASE
ARROW ON PAGE |
368 REM DISPLAY PAGE 2-DRAW PAGE | 390 CALL 37982: CALL 38192: REM REVERSE AND REDRAW A
7@ POME 2S51,147: CALL 30378: REM MOVE SHAFE w147 < RROW OTHER - .
319 REM GO BACK THE OTHER DIRECTION
399 POKE 251, 146: CALL 38334: REM MOVE SHAPE W146 ——> 320 FOR X =1 10 38 e
I25 RFM DISPLAY PAGE 1-DISPLAY PAGE 2
408 NEXT : GOTD 218 38 POKE 251,147: POKE 38165,284: CALL 38356: REM MO
VL SHAFE #147 - —-
ISA POKE 251,146: POKE 38165,226: CALL 38321: REM MO
VE SHAPE #1446 ——>
355 POKE 251.145: CALL 3I7941: RFM MOVE SHAPE #145 (P
I6€@ REM DISPLAY PAGE Z-DRAW PAGE 1
379 POKE 251,147: POKE 38165,204: CALL 38378: REM MO
LISTING § VE SHAPE %137
38 POKE 251.145: POKF 38165.22&6: CALL 37944: REM MO
VE SHAPE #145 UP *
T90 0K 251,146: CALL 383435: REM MOVE SHAFPE #1846 —
50 REM REQUIRES: M/L DRIVER AND SHAPES #1446 AND 147 TOKE =R1.140 i
TO BE BLOADED INTO MEMORY TO RUN. 400 NEXT
99 REM POKE SHAPE #146 INTO HEMORY 410 POKE 23@.64: CALI 38196: CALL 3B@95: REM ERASE
188 FOR X = 37374 TO 37391: READ A: POKE X,A: NEXT : POKE ARROW ON PAGE 2
207,20: POKE 251,146: CALL 38167: REM POKE SHAPE 415 POKE 239,32: CALL 38167: CALL 3899531 REM ERASE
#1446 IN MEMORY/MOVE IT RIGHT ARROW ON. PAGE. 1
195 Dl:;A 5.252.0,50, 233, 3,50, 240, 6,55, 233, 3, 506, 240,08 428 CALL 3/982: CALL 38102: REM REVERSE AND REDRAW A
’
116 POKE 252,0: REM TELL REVDIR WE USED RULE #5-0PTI > RROW -
ON A 43@ GOTO 1@

SHAPE #146 SHAPE #147
200 20 FD 8¢ 22 18 &1 22 93 309- 20 OA 99 OE 1D 90 SE 10
9208~ 91 1IF 8A &1 1IF 81 81 20 9398~ 66 OB 17 38 @B GE @9 OC
216- 6C 91 20 FF 06 21 &€ @1 9316~ 19 68 OC @6C ¢9 6D 1B 98
?218- 21 @S @1 1E 68 81 1E FD 9318- ¢D 12 @8 OA 1S 66 BA VA
9220~ 90 23 FF 08 23 02 91 23 320 99 SF OC 88 OF OF B9 OF
9228- 63 81 23 86 81 23 7 31 328~ 10 99 OF 13 00 OF 14 @9
9233~ 23 BA 81 23 8B @1 23 6E 9330~ OF 17 09 18 @@ OF 1B
9238- 61 23 16 61 23 FE 06 24 9338~ ¥9 OF 1D 90 OF OB 09 19
92490~ OF V1 24 FF 99 25 OE o1 9349- IC 02 10 OC 66 11 1B @8
9248- 25 66 81 26 6D 81 26 91 9348- 11 @D ©9 12 |A 60 12 6t
9250- 81 27 8C @1 27 83 61 28 9350 @96 13 19 @@ 13 10 99 14
9258- 6A @1 28 86 91 29 @87 01 9358~ 17 90 14 13 09 15 14 09
268~ 29 PI6B- 1S
: ASM
o091 %
9002 * HWPLOT DRIVER
#2063 3 BY ROBERT DEVINE
2994 %
#AGS ¥ COPYRIGHT 1983 BY MICROSPARC, INC.
93086 %
9007 3 SC ASSEMBLER
0008 3
#9909 .OR $93FA
0910 .TA 3809 $% FOR ASSEMBLY ONLY
Fas7- 6215 HPLOT .EQ $F457
FS3A- 0026 HLIN .EQ $FS3A
BBOF— 9925 TEMPA .EQ 39 23 DECIMNAL 9
P308— #9383 TEMPX .EQ $8 %% DECIMAL B
BOFA— 8035 BASL .EQ $FA $% DECIMAL 250
POFB- 9949 BASH .EQ $FB #3 DECIMAL 251 - SHAPE PAGE #
BAREL—~ 9845 CTR .EQ %6 ¥t DECIMAL &6
P0CF - 2058 INCR .EQ $CF %% DECIMAL 207
POFC— 0060 TEST .EQ $FC ¥% DECIMAL 252
BAFD- #9078 YINCR .EQ S$FD % DECIMAL 253
93FA—- A9 @9 28302 FLPDN! LDA %9 %3 CALL 37882 TO ENTER
9IFC— BD 54 CP 9395 STA CO54 5% DISPLAY PAGE 1
93IFF- A9 49 8316 LDA #%$49 *$ MOVE SHAPE DOWN
9491~ 85 Eb& #315 STA $E6 3 DRAW PAGE 2
9493~ 290 BS 94 9320 JSR GOUP %3 GO BACK | STEP
94046~ 20 CF 94 8325 JSR ERASE 18 ERASE SHAPE
94909—- 20 A1 94 A33@ JSR GODOWN %% GO BACK TO START
F40C— 20 Al 94 B335 JSR GODOWN #3 GO AHEAD 1 STEP
P46F—- 20 D& 94 8343 JSR DRAW §8 DRAW SHAPE
?412- EA 9345 NOP #% RTS OR NOP HERE
413~ A 20 9350 FLPDNZ LDA #8 83 CALL 37987 TO ENTER
9415- 8D 55 CO 6355 STA $COSS x2 DISPLAY PAGE 2
9418- A9 28 9360 LDA #$20 5z
F41A- 85 Eb6 B365 STA $E6 £% DRAW PAGE 1
941C- 26 B8 94 637@ JSR GOUP %% B0 BACK 1 STEP
941F- 26 CF 94 8375 JSR ERASE t8 ERASE SHAPE
9422- 20 Al 94 B389 JSR GODOWN %% B0 BACK TO START
9425- 26 A1 94 @385 JSR GODOWN ¥¥ GO AHEAD | STEP
9428- 20 D& 94 8390 JSR DRAW £% DRAW SHAPE
942B- 60 8395 RTS
Q42C- A9 @@ @403 F1 PUP1 LDA #0 &% CALL 37932 TO ENTER
F42E- 8D S4 CP 8445 STA $CE54 $% DISPLAY PAGE 1
F431- A9 49 94190 LDA #W$49 $%8 MOVE SHAPE UP ~
9433- B85 E& B41S5 STA $E& *3 DRAW PAGE 2
F435- 20 A1 94 @420 JSR GODOWN % GO BACK 1 STEP
F438- 20 CF 94 425 JSK ERASE *% ERASE SHAPE
943R- 20 BA 94 8430 JSR GOUP $8 GO BACK TO START
F43E- 28 B8 94 @435 JSR GOUP &3 GO AHEAD 1 STEP
9441- 20 D6 94 9449 JISR DRAW 3 DRAW SHAPE
9444- EA @445 NOP ¥3 RTS OR NOP HERE
9445~ A9 00 @450 FLPUPZ2 LDA #8 %% CALL 37957 TO ENTER
9447- 8D 55 CP 9455 STA $CHSS x3 DISPLAY PAGE 2
984A- A9 20 BGALA |LDA #$20 13
944C- 85 Eb6 @455 STA $E6 ¥1 DRAW PAGE 1
Q44E- 20 Al 94 9479 JSR GODOWN x% GO0 BACK 1 STEP
94S51- 20 CF 94 8475 JSR ERASE 1% ERASE SHAPE
9454- 20 B8 94 9486 JSR GOUP &1 GO BACK TO START
Q457- 20 BB 94 9485 JSR GOUP #% GO AHEAD 1 STEP
94SA- 20 D& 94 G498 ISR DRAW 1 DRAW SHAPE
45D- 6@ 2495 RTS
Q45E- AB 99 9599 REVDIR LDY #9 %% CALL 37982 TO ENTER
94468~ B84 FA @58S STY BASL 83 POINT TO START OF MEMORY PABE
462~ €8 @516 INY %3 POINT TO X HI BYTE
9463~ Bl FA 9515 LDA (BASL),Y 2 GET X HI BYTE
9465- BS 89 @528 STA TEMPA 3 STORE HI BYTE
9467- C8 @525 INY T3 POINT TO X LO BYTE

9448—
9460~
946C—
44D~
F44E~
9470~
9471~
9473~
9474
475~
9476~
9477
9479~
9478~
947D~
P47E—~
9480
9482—
9484
9486
7488
?48A—
948C—
948D~
f48E -
9490
9492~
9494
9495~
9497
?499—
949B—
949C—
949
94A8-
94A1-
94A3-
94A5—
94A7—
24A9-
94AA—
94AB-
94AC

94AD-
94AF—
94B1 -
94B3—
94B5—
24B7 -
94B8-
94BA~
94BC—
94BE-
94CB-
94C1 -
9402~
94C3-
94C4 -
94C6—
94C8-
?4CA-
94cC-
94CE-
F4CF—
94D1-
94D3—
F94D6—
94D8-
94DA-
94DC—
94DE-
94EB—
F4E2-
94E4-
94EL-
F4E8—
94EA-
94EC-
F4ED-
94EF -
94F1-
F4F3—
94F6—
94F8-
P4FA-
94FC—
94FE-
580
9582~
9584

9508

B1
85
ce
c8
As
cAa
D@
ce
cs
c8
18
B1
&5
85
cs
B1
65
85
AG
84
Bl
85
cs
38
AS
F1
71
ce
AS
F1
91
ce
cé
D2
650
AG
84
B1
B85
cse
cs
ce
18
B1
&5
7?1
Cé
D@
&8
AG
84
B1
85
cs
ce
ce
38
B1
ES
91
Cé

&0
A7
85
4C
A?
B85S
A2
86
Al

85
E6
Al

85
E6
Al

A8
Eé6
Al

A&
20
cé
A2
ES6
Al

85
E6
Al
85
E6
Al

Fa
o8

FC

a3

FA
a9
@9

FA
@8
28

FA
FA
@&

29
FA
FA

FA
FA

26
EC

FA
FA
26

FA
FD
FA
86
F2

FA
FA
26

FA
FD
FA
26
F2

57
86

FA
FA
29
FA
FA
28
FA
FA

94

Fa4

2538
@535
0540
8545
9550
8555
25606
0565
2570
0575
0586
2585
8598
2595
0606
B&PS
0618
2615
86206
0625
0630
B&35
0640
9645
2650
9655
0669
3665
0670
0675
a680
0685
2699
24695
2696
@799
2795
0719
8715
2729
9725
0730
@735
6740
08745
o759
9755
0760
8765
2869
9805
9819
2815
2829
2625
9839
@835
2848
@845
0850
2855
28469
2865
o770
3975
#9689
Y85
2990
1600
1001
1805
1610
1015
10206
1625
1903¢
1635
1040
1943
1050
1055
1069
1665
1670
1975
1080
1085
19099
1095
1190
1195
1110

LDA
STA
INY
INY
LDX
DEX
BNE

(BASL), Y
TEMPX

TEST

T1

INY °

INY
INY

T1 CLC

LDA
ADC
STA
INY
LDA
ADC
STA
LDY
STy
LDA
8STA

(BASL), Y
TEMPA
TEMPA

(BASL), VY
TEMPX
TEMPX

"o

BASL
(BASL), Y
CTR

ST7 INY

SEC
LDA
SBC
STA
INY
LDA
SBC
5TA
INY
DEC
BNE
RTS

TEMPA
(BASL), Y
(BASL),Y

TEMPX
(BASL), Y
(BASL),Y

CTR
ST7

GODOWN LDY#2

STY
LDA
STA

BASL
(BASL) ,Y
CTR

ST&6 INY

INY
INY
cLc
LDA
ADC
STA
DEC
BNE
RTS
GOurP
STY
LDA
STA

(BASL),Y
YINCR
(BASL),Y
CTR
ST6

LDY #@
BASL
(BASL) ,Y
CTR

STS INY

INY
INY
SEC
LDA
SBC
STA
DEC
BNE
RTS

(BASL) , Y
Y INCR
(BASL) , Y
CTR

sTS

ERASE LDA #¢

sSTA
JMP
DRAW
STA

SE4
START
LDA %$7F
SE4

START LDX #¢

STX
LDA
STA

BASL
(BASL, X)
CTR

ST INC BASL

LDA
STA
INC
LDA
TAY
INC
LDA
LDX
JSR
DEC
LDX
INC
LDA
STA
INC
LDA
STA
INC
LDA

(BASL , X)
TEMPX
BASL
(BASL , X)

BASL
(BASL , X)
TEMPX
HPLOT
CTR

#9

BASL
(BASL, X)
TEMPA
BASL
(BASL , X)
TEMPX
BASL
(BASL, X)

b
%

"
%

GET X LO BYTE

STORE LO BYTE

POINT TO Y BYTE

NEXT X HI BYTE

GET RULE #5 FLAG
CONDITION ZERO FLAG

IF BOTH IN FIRST LINE -JUMP
MOVE TO FIRST

X COORDINATE OF

THE NEXT LINE

GET X HI BYTE

ADD TO FIRST X HI BYTE
STORE RESULT

POINT TO X LO BYTE
GET X LO BYTE

ADD TO FIRST X LO BYTE
STORE RESULT

RESET POINTER

RESET TO START OF MEMORY PAGE
GET # OF POINTS

PUT IN COUNTER

POINT TO X HI BYTE

GET HI VALUE

SUBTRACT PRESENT HI BYTE
PUT NEW HI BYTE IN TABLE
POINT TO X LO BYTE

BGET LO VALUE

SUBTRACT PRESENT LO BYTE
PUT NCW LO BYTE IN TABLE
POINT TO0 Y BYTE

A POINTS BEEN CHANGED

IF MORE-CONT INUE
DONE-EXIT ROUTINE

CALL 38049 TO ENTER
POINT TO START OF MEMORY PAGE
GET # OF POINTS

PUT IN COUNTER

POINT TO X HI-BYTE
POINT TO X LO-BYTE
POINT TO Y-COORDINATE

GET Y-COORDINATE

ADD INCREMENT

PUT IN TABLE
DECREMENT COUNTER

IF MORE-CONT INUE
DONE-EXIT ROUTINE
CALL 38672 TO ENTER
POINT TO START OF MEMORY PAGE
GET # OF POINTS

PUT IN COUNTER

POINT TO X HI-BYTE
POINT TO X LO-BYTE
POINT TO Y-COORDINATE

6ET Y-COORDINATE
SUBTRACT INCREMENT
PUT IN TABLE
DECREMENT COUNTER
IF MORE-CONT INUE
DONE-EXIT ROUTINE
CALL 38095 TO ENTER
SET COLOR=BLACK

CALL 38182 TO ENTER
SET COLOR=WHITE
SET POINTER=@

SET BASL=9

BET # OF POINTS
PUT IN COUNTER

BET X LO BYTE
STORE IN HOLDER

BET X HI BYTE
STORE IN Y-REGISTER

PUT Y CODRD IN ACCUM

PUT LO BYTE IN X-REGISTER
HPLOT THE POINT

A POINTS BEEN USED

RESET POINTER

BET X LO BYTE
STORE IN HOLDER

BET X HI BYTE
STORE IN HOLDER

GET Y COORD

959A- AB 111S TAY ¥3 PUT IN Y-REGISTER

95@0B- AL 86 1120 LDX TEMPX &2 MOVE HI BYTE TO X—-REGISTER
950D- AS ¢9 1125 LDA TEMPA ¥ MOVE LO BYTE TO ACCUM
950F- 20 3A FS 1136 JSR HLIN %31 DRAW A LINE

9512- C& 86 1135 DEC CTR %t A POINTS BEEN USED
9514- D@ CC 1148 BNE ST X3 POKE 38145, 204=S0L ID/2246=0PEN
516- 68 1145 RTS ¥31 DONE-——EXIT ROUTINE
9517 AG 80 11446 MOVER1 LDY #8 %X CALL 38167 TO ENTER
9519- 84 FA 1218 STY BASL %t SET BASL=0

951B- Bl FA 1215 LDA (BASL),Y %% GET # OF POINTS
951D~ B8S 84 1228 STA CTR ¥t PUT IN COUNTER
9S51F- C8 1225 ST1 INY %% INCREMENT POINTER
952¢- 18 1239 cCLC

9521~ B1 FA 1235 LDA (BASL),Y %% GET X HI BYTE
9523~'65 CF 1240 ADC INCR 2% ADD INCREMENT
952591 FA 1245 STA (BASL),Y 2% PUT IN TABLE

9527~ €8 1253 INY 2% INCREMENT POINTER
9528- B1 FA 1255 LDA (BASL),Y %% GET X LO BYTE
520~ &9 9O 1260 ADC #¢ ¥8 ADD THE CARRY FLAG
952C- 91 FA 1265 STA (BASL),Y 8% PUT IN TABLE

9526~ C8 1270 INY %% POINT TO Y COORD
9S2F—- Cb 86 1275 DEC CIR %% A POINTS BEEN USED
9531— DB EC 1284 BNE ST1 %% IF MORE—CONTINUE
9533~ 6@ 1285 RTS %% DONE-EXIT ROUTINE
9534~ AG 00 1369 MOVELL LDY #9 ¥% CALL 38197 TO ENTER
9536— B4 FA 1316 STY BASL %% SET BASL=@

9538—- Bl FA 1315 LDA (BASL),Y X% GET # OF POINTS
953A—- 8BS 86 i328 STA CIR $% PUT IN COUNTCR
953Cc- Cc8 1325 ST2 INY #% INCREMENT POINTER
953D—- 38 133¢ SEC

953E—- B1 FA 1335 LDA (BASL),Y 3% BET X HI BYTE

9546 ES CF 1348 SBC INCR 2% SUBTRACT INCREMENT
9542- 91 FA 1345 STA (BASL),Y 88 STORE IN TABLE
9544- C8 1356 INY $3 INCREMENT POINTER
9545~ B1 FA 1355 LDA (BASL),Y 1% GET X LO BYTE
9547- E9 99 1360 SBC #0 % SUBTRACT ANY BORROW
9549~ 91 FA 1365 STA (BASL),Y 13 STORE IN TABLE
954B- C8 1376 INY 2% INCREMENT POINTER
954C—- C& 96 1375 DEC CTR 2 A POINTS BEEN USED
954E—- D@ EC 138¢ BNE ST2 % IF MORE-CONTINUE
9558— &0 1385 RTS £% DONE-EXIT ROUTINE
9551—- AG 09 1406 MOVELZ2 LDY #@ %3 CALL 38225 TO ENTER
9553—- B4 FA 1416 STY BASL % SET BASL=-9

9555~ B1 FA 1415 LDA (BASL),Y 1% GET # OF POINTS
9557—- 85 86 1428 STA CTR £% PUT IN COUNTER
9559- C8 1425 ST3 INY &% INCREMENT POINTER
955A— 38 1438 SEC

9558- B1 FA 1432 LDA (BASL),Y 83 GET X HI BYTE
95SD—- ES CF 1434 SBC INCR $3 SUBTRACT INCREMENT
955F - 91 FA 14346 STA (BASL),Y £% PUT IN TABLE

9561—- C8 1438 INY %3 INCREMENT POINTER
9562- Bt FA 1448 LDA (BASL),Y %% GET X LO BYTE
564~ E9 890 1442 SBC #0 : $% SUBTRACT ANY BORROW
9566—- 91 FA 1444 STA (BASL),Y $£% PUT IN TABLE

9568~ B8 14446 DEY % BACK TO HI BYTE
95469 B1 FA 1448 LDA (BASL),Y %8 BGET X HI BYTE
956B— ES CF 1458 SBC INCR ¥8 SUBTRACT INCREMENT
954D— 91 FA 1452 STA (BASL),Y %% PUT IN TABLE

?S&F— C8 1454 INY 82 BACK TO LO BYTE
9576~ B1 FA 1456 LDA (BASL),Y %% GET X LO BYTE
9572- E9 &9 1458 SBC #9 XX SUBTRACT ANY BORROW
9574— 91 FA 1468 STA (BASL),Y £x PUT IN TABLE

9576- C8 1478 INY *¥3% POINT TO Y COORD
9577—- Cé& 86 1475 DEC CTR %% A POINTS BEEN USED
9579~ D@ DE 1486 BNE ST3 %2 IF MORE CONTINUE
957B— 68 1485 RTS $% DONE-EXIT ROUTINE
9S7C—- A 20 156@ MOVER2 LDY #9 ¥% CALL 38268 TO ENTER
957E- B4 FA 1516 STY BASL 23 SET BASL=9

9586- B1 FA 1515 LDA (BASL),Y &% GET # OF POINTS
9582- B85 06 152¢ STA CTR %% PUT IN COUNTER
9584- C8 1525 ST4 INY %% INCREMENT POINTER
9585~ 18 1538 CLC

9586—- Bl FA 1532 LDA (BASL),Y %% BGET X HI BYTE
9588 &5 CF 1534 ADC INCR %% ADD INCREMENT
958A- 91 FA 1536 STA (BASL),Y %% PUT IN TABLE

958C- C8 1538 INY 83 INCREMENT POINTER
958D- Bl FA 1540 LDA (BASL),Y 88 GET X LO BYTE
9S8F - 69 99 1542 ADC #8 8% ADD THE CARRY FLAG
9591- 91 FA 1544 STA (BASL),Y %3 PUT IN TABLE

9593~ 88 15446 DEY x8 BACK TO HI BYTE
9594~ 18 1548 CLC

9595~ Bl FA 1558 LDA (BASL),Y %3 GET X HI BYTE
9597~ &5 CF 1552 ADC INCR %3 ADD INCREMENT
9599~ 91 FA 1554 STA (BASL),Y %% PUT IN TABLE

9598~ C8 1556 INY ¥t BACK TO LO BYTE
959C- B1 FA 1558 LDA (BASL),Y £t GET X LO BYTE
PSFE- &9 08 1568 ADC #0 %t ADD THE CARRY FLAG
95A8- 91 FA 1562 STA (BASL),Y ¥% PUT IN TABLE

F5A2- CB 1578 INY &3 POINT TO Y COORD

P5AT-
95A5-
95A7-
95AB-
95AA-
9SAD-
PSAF -
95B1-
95B4-
9SB7 -
95BA-
95BD-
9SBE-
95Ce-
95C3-
95CS-
95C7-
95CA-
9SCD-
95D~
9SD3-
9SDA-
95D6-
95D9-
95DB-
9SDD-
9SED-
PSE3

9SE6-
SEF-
9SEA-
9SEC-
9SEF -
9SF1-
95F3-
9ISF6-
95F9-
9SFC-
GSFF -

cé

20
20
&0

DD

54
49
E&
34
CF
7c
D&

@2
55
20
E&
34
CF
7Cc
D6

40
E&
17

S1

S5

E&
17

S1

ce

95
94
95
94

co

95
94
95
94

co

95

94

94

ce

94
95
94

1575
1589
1585
1690
1605
1619
1615
1620
1635
1640
1655
1656
1660
1665
1678
1675
1686
1695
1700
1715
1720
1800
1865
1810
1815
1820
1825
1840
1855
1856
18460
1865
18706
1875
1889
1895
1960
1915
1920

DEC
BNE
RTS

CTR
ST4

FLIPR1 LDA #9

STA
LDA
STA
JSR
JSR
JSR
JSR
NOP

$Co54
LAt
SE6
MOVEL 1
ERASE
MOVER?2
DRAW

FLIPR2 LDA #¢9

STA
LDA
STA
JSR
JSR
JSR
JSR
RTS

$CO55
#$20
$ES
MOVEL L
ERASE
MOVER2
DRAW

FLIPL1 LDA #9

sTA
LDA
STA
JSR
JSR
JSR
JSR
NOP

$Ce54
#5490
$E6
MOVER!
ERASE
MOVEL2
DRAW

FLIPL2 LDA %2

STA
LDA
sTA
JSR
JSR
JSR
JSR
RTS

$CO55
#$20
SESL
MOVER1
ERASE
MOVEL2
DRAW

3
L2
3
L1
(21
s
L1
s
L2
L]
s
L1
3
L2
1
3
i
L2
s
ks

s
L 24
£33
3
L 3]
13
3
L2
"
%3
33
13
*3
s
L 2
s
i

A PUINTS BEEN USED

IF MORE—-CONTINUE
DONE-EXIT ROUTINE
CALL 38312 TO ENTER
DISPLAY PAGE 1

MOVE SHAPE RIBHT —->
DRAW PAGE 2

GO BACK 1 STEP

ERASE SHAPE

GO0 FORWARD 2 STEFPS
DRAW SHAPE

RTS OR NOP HERE-POKE 38333,96 OR 234
CALL 38334 TO ENTER
DISPLAY PAGE 2

MOVE SHAPE RIGHT ——->
DRAW PAGE 1

GO BACK 1 STEP

ERASE SHAPE

GO FORWARD 2 STEPS
DRAW SHAPE

CALL 38336 TO ENTER
DISPLAY PAGE 1

MOVE SHAPE LEFT <{—-
DRAW PAGE 2

GO BACK 1 STEP

ERASE SHAPE

GO FORWARD 2 STEPS
DRAW SHAPE

RTS OR NOP HERE-POKE 38377,96 OR 234
CALL 38378 TO ENTER
DISPLAY PAGE 2

MOVE SHAPE LEFT <-—-
DRAW PAGE 1

GO BACK 1 STEP
ERASE SHAPE

GO FORWARD 2 STEPS
DRAW SHAPE

