GRAPHICS WORKSHOP

Graphics Workshop
Block Shape Animation - Il

by Robert R. Devine
P.0. Box 10
Adona, Arkansas 72001

elcome back!" | hope that since ou
W!ast discussion you've spent sonm

time working with the SCAN an«
DRAW routines that we looked at in Part 1
This time we'll starttolook at ways to animat
your Block Shapes. Before we get to work
let’s take care of one minor piece of house
keeping:

Almost all of the routines in our BLOCI
SHAPE DRIVER will depend on other rou
tines to complete their work.

For instance to use SCAN or DRAW, w
needed to have YTABLE in memory, with it
pointars set, and the next routine that we'
look at will depend not anly an YTABLE. bu
SCAN as well. The point is simply this: as w
examine and test our new routines, always b
sure that you've added any previously pre
sented routines to your driver, and used the
YTABLE setup, before trying out the new
routines.

THE REVDIR ROUTINE

Those of you who read the HPLOT article
(NIBBLE VOL. 4 No. 2) will rememberthat we
created a REVDIR routine which physically
reversed the endpoints, and therefore the
appearance of our shape. We'll alsc use a
REVDIR routine in our BLOCK shape driver,
but we'll not only use it with non-symmetrical
shapes, but also with symmetrical shapes
that change direction using SHIFT anima-
tion, which we'll get into later.

As with our other routines, we’ll need to
provide REVDIR with VT, VB, HR, HL, and
SHAPE#, which will be POKEd into locations
252, 253, 254, 255, and 251 respectively.

HOW REVDIR WORKS

To reverse a shape, we need to reverse not
only the position of the shape bytes within the
table, but also the position of the bits within
each byte. We also need to be sure that we're
only reversing bits 0-6, and that we reset bit
#7, the color bit, to its previous status.

Since the creation, or modification of a
BLOCK shape takes place on the Hi-Res
screen, rather than within the tablz, we’ll
actually modify the Hi-Res screen bytes, and
whenwe're finished SCAN the modified shape
into our table.

Here's how we do it. First we start out by
accessing the screen bytes backwards. In
other words, instead of starting at VB/HR
(normal for ALL other routines), we begin at
VB/HL, so that we put the shape bytes on the
screen in reverse order.

Each time we get a shape byte from our
table, we'll check to see if it needs to be re-
versed. A byte where bits 0-6 are all C's or all
1'sdcesn’t need reversing so we can skip over
it. If you take a look at our sample shape,
(SPACESHIP from NIBBLE Vol. 4. No. 3),
you'll note that 16 of the 36 bytes fit one of
these two categories and don’t need -evers-
ing, so we can save some time with these

Then we’'ll loop through lines 1250 thru
1290 seven times (in LISTING 1). Each time,
we push a bit off our shape byte, (out of bit 0)
into the carry flag, and immediately pick it up
and push it into our temporary NUBYTE $F9
(into bit 0).

Finally we push outthe color bit, and check
to see if it was set. If it wasn't, we're finished,
and if it was, we reset it in line 1306.

The modified byte 15 then displayed on the
screen, and we move on to the next byte.
When we've finally taken care of byte VT/HR,
we're finished, at which time we SCAN the
reversed shape into our table. The-e's no
need to erase or reDRAW the shape because
REVDIR has taken care of that for us. (If
you're using page flip animation you'l prob-
ably be best advised to ERASE the pre-
reversed shape on one page and reverse iton
the other)

The routine is really pretty neat, especially
sincethere’s no ERASE involved. One second
the shape faces one way, and withouat your
really noticing the change, the shape now
faces the other way,

To use REVDIR simply POKE VT, VB, HR,
HL, and SHAPE#, and then CALL 37606.
Sirce our sample shape is symmetrical, it
isn't very good for testing REVDIR

THE TRUCK DEMO

I've provided the following shape that
might be handy for a demo. The shape is 80
byles long (15 bytes high X 6 bytes wide) and
should show how quickly you can reverse
even a larger shape.

The easy way to get the shape into memory
is t0 enter the monitor, then enter the Hex
bytes listed (LISTING 2), the same way
you've been entering the driver. The shape is
a genuine Arkansas Good-Ole-Boy pickup
truck, complete with 4-wheel drive C.B., and
a shotgun mounted in the rear window.
Would | put you on??

LET'S TEST REVDIR
Now that you've loaded REVDIR (LISTING
1) and our new sample TRUCK shape, LIST-
ING 2) enter these Applesoft lines . . .

100 HGR:VT=130:VB=144:HR-25:HL=20:
SHAPE=146

110 POKE 252, VT:POKE 253,VB:POKE
254,HR:POKE 255,HL:POKE 251, SHAPE

120 CALL 37679

tests.

*9200.9259

9200- 00 78 00 00 1E 00 01 7C
9208- 00 00 3IF 00 01 7C 00 00
9210- 3F 00 OD 7D 7F 7F 3F 3E
9218- 1E 79 7F 7F 1E 3E 1E 03
9220- 7F 7F 40 7E 1F 7F 7F 7F
9228- 7F 7E W 7F 7F 7F 7F 7E
9230- 1F 7F 7F 7F 7F 7E OF 7F
9238- 7F 7F 7F 7E 00 00 60 18
9240- 00 00 00 00 70 18 00 OO
9248- 00 00 30 18 00 00 00 00
9250- 38 18 00 00 00 00 1F 78
9258- 00 00

LISTING 2

SAMPLE SHAPE (TRUCK)
SHAPE #146

Your shape should now be on the screen.
Now CALL 37606 and watch the shape
reverse.

To see just how fast it works, add this line:

130 CALL 37606:GOTO 130

About all you'll see is a blur, as the shape
keeps reversing back and forth.

Animation of BLOCK shapes is very similar
to those that we discussed when we looked at
HPLOT shapes. There are however two very
important differences that we should take a
moment lo look at.

WHERE IS OUR SHAPE?

When we looked at HPLOT shapes we
‘ound that our shape table not only described
~hat our shape looked like (in terms of end-
Joints), but we also found that our table
lescribed WHERE our shape was. To moveiit,
~e needed to manipulate the data within our
:able.

With BLOCK shapes (as with VECTOR
shapes) our table only describes what our
shape looks like, but includes no Information
18 to where 1t IS. To move our BLOCK shape
1p and down we will change the values of VT
ind VB. To move right and left we willchange
‘he values of HR and HL. It is imperative that
‘he relationship of VT to VB, and HR to HL
ilways be the same. In other words, when you
shange VT you must change VB by the same
ralue. If you allow the dimension of your
slock shape to change, you will distort the
shape.

ERASE=DRAW-=-ERASE-DRAW

The second (and often the most trouble-
some) difference with BLOCK shapes is that
here is no true ERASE or DRAW routine. In
act, our ERASE and DRAW routines are the
lame routine, exactly!

If you'll recall our discussion of the DRAW/
ZRASE routine you'll also remember what
yappens when we EOR our shape byte with
he background that we want to DRAW/
ZRASE on.

If the background is empty we automati-
;ally DRAW our shape, and if our shape is
ilready there, we automatically ERASE the
shape.

When we developed our HPLOT FLIP rou-
ines, we used the format Back 1-ERASE,
“orward 2-DRAW, without any real care as to
vhether we really had anything to ERASE.
Ne'll use that same format with our BLOCK
shape driver. However we'll need to take care
hat when we go to ERASE or DRAW, we don't
vind up doing just the opposite of what we
3xpect.

VERTICAL ANIMATION

There will be quite a bit of difference
yetween our routines for vertical and horizon-
al movement. Since our vertical routines will
ye the simplest, we'll begin with them.

The following listing describes our vertical
novement routines (LISTING 3) which start
it $925E and fit directly under the REVDIR
‘'outine. The routines are broken into 6 parts.

The first two routines are called GOUP and
30DOWN. They simply add or subtraci our
YINCR (which is POKEd into location 227
'$E3)) from both VT and VB. To go up we
subtract YINCR, and to go down we add
fINCR.

The last 4 routines handle our page tlip-
Jing, either up or down, and all work basically
lhe same. As with our HPLOT flip routines,
‘hey firstset the page to display, and the page
lo DRAW on, then they go back 1 ERASE,
then FORWARD 2 DRAW. The only addition
lo any of these routines is in FLPUP1, where
we check to make sure that VT doesn’t go off
the screen, (which would result in a negative
value for VT, and cause your Apple to hang).

The routines are heavily REMed, so there
shouldn’t be any real need for us to go into

detail explaining them. It is these routines
that we will use for all our vertical movement.
If you're CALLing these routines from an
Applesoft program, use the CALL entry
points listed in LISTING 3. If you're using
the routines from other assembly programs,
simply JSR to the appropriate hex entry
point.

Each of the FLP routines has several possi-
ble entry points. The first entry point (lines
1380, 1510, 2380, 2510) sets the display page,
draws the page, moves back 1, erases, moves
torward 2, Draws, and ends.

The second entry point (lines 1400, 1530,
2400, 2530) eliminates the setting of which
page to display. (We'll use some of these
points to keep our DRAW/ERASE routines
working properly.)

The third entry point (lines 1450, 1550,
2450, 255U) could be used with multiple
shape animation if you're going 0 do more
work on the same page setup.

Another possible entry point (lines 1480,
1580, 2480, 2580) would cause you to simply
move and DRAW/ERASE (whatever's appro-
priate). We'll also use some of these points to
keep our NRAW/ERASE routines working
properly.

There are many ways that you can enter
and exit these routines to make them perform
different functions.

In BLOCK SHAPES part 1, we experi-
mented with some one page animatign. |If
you're going to go through the effort of
learning how to work with BLOCK shapes,
you're probably pretty serious about graphic
animation, and will mostly work with page-
flipping, so that's where we'll put most of
our emphasis.

TWO PAGE FLIP ANIMATION

To use flip animation we'll need to learn
about several soft switches, located in your
Apple that determine which graphics page we
will DISPLAY and which page we will DRAW
on. Itis not necessary to have a graphics page
displayed on the screen to draw on it. In fact,
you can change the graphics on a Hi-Res
screen while in TEXT mode.

PAGE DRAWING

The first switch that we’ll need to look at is
located at $E6 (230 decimal). Thisswitch tells
your Apple which page to DRAW on. If the
value $20 (32 decimal) is stored there, your
Apple will draw on page 1 HGR. If the value
$40 (64 decimal) is stored there, your Apple
wllldraw on page 2 HGR2. You can use POKE
230,32 for page 1 and POKE 230,64 for page
2,

PAGE DISPLAY
The next switches that we need 1o look at
are located at $C054 (decimal 49236), and
$C055 (decimal 49237). These switches tell

LISTING 1

*»x DECIMAL
*» DECIMAL
% DECIMAL 254

*»x DECIMAL 255

#% DECIMAL 38 (SCREEN BASE

** DECIMAL 39 ADDRESS)

*x DECIMAL &

»% DECIMAL 249

** DECIMAL 258 (TABLE BASE

DECIMAL 25t ADDRESS)

#% DECIMAL 37777 (READ YTABLE)
*x DECIMAL 37729

*% CALL 374086 TO ENTER

#% POINT TO START OF TABLE

*% GET BOTTOM Y-COODRDINATE

*% STORE IN $6 FOR USE BY YADDR
%% RETURNS-LO=HBASL/H]=HBASH
#» SET Y-REG TO LEFTMOST BYTE
*¥%x SET TABLE OFFSET=8

*» GET SHAPE BYTE FROM TABLE

= IS BYTE 01111111 ? ($7F)

*% YES-NO NEED TO REVERSE

#» 1S BYTE 08060000 ? (%00)

252
253

% YES-NO NEED TO REVERSE

#% SET ALL BITS TO ZERO

®% PUSH BIT OFF SHAPE BYTE --)
*% PUT BIT IN REVERSED BYTE <--
*#% BUMP BIT COUNTER

*% HAVE WE DONE BITS 8-6 7

%% NO-GOTO NEXT BIT

#% PUSH HI BIT INTO THE CARRY
#» GET THE REVERSED BYTE

*%]F HI BIT WAS 8-JUMP

*» SET THE HI BIT

*% LOAD REVERSED BYTE ON SCREEN
#% POINT TO NEXT BYTE -->

#% POINT TO NEXT TABLE ELEMENT
*#% 1F <258 BYTES JUMP

PAGE OVERFLOW-GOTO NEXT PAGE
#*#% HAVE WE PASSED HR YET ?

#% NO-GET THE NE:7 BYTE

NO-BUT THIS IS LAST BYTE

#% MOVE UP TO NEXT LINE

BET NEW Y-COORDINATE

HAS Y-COORDINATE REACHED @ ?
#% YES-WE'RE FINISHED

%% HAVE WE PASSED VT ?

NO-START THE NEXT LINE

*¥% DONE-REVISE BLOCK TABLE

#x EXIT ROUTINE

1OSM REVDIR ROUTINE SOURCE-CODE
1888 .OR $92E6
1818 .TA $808
88FC— 1038 VT .EQ $FC
60FD- 1848 VB .EQ $FD
88FE- 1858 KR ,EQ SFE
BBFF— 1848 HL .EQ $FF
80024- 1878 HBASL .EQ %24
ee27- 1880 HBASH .EQ 27
888&- 1898 YO .EQ $&
09FP— 1108 NUBYTE .EQ $F9
0BFA- 1118 BASL .EQ $FA
80FB- 11280 BASH .EQ $FB
391~ 1138 YADDR .EQ $9391
9361 1148 SCAN .EQ $9361
P2E6- A9 88 1158 REVDIR LDA #8
92EB- 85 FA 1168 STA BASL
P2EA- AS FD 1178 LDA VB
92EC- B8S 86 1188 STA YO
$2EE- 20 9?1 93 1198 LtA JSR YADDR
P2F1- A4 FF 1208 LDY HL
92F3- A2 88 1218 L2A LDX #@
P2F5- Al FA 1228 LDA (BASL,X)
92F7- C9 7F 1221 CMP W127
92F9- F@ 15 1222 BEQ JI
P2FB- C9 @1 12249 CMP M1
92FD- 98 11t 1226 BCC J1
P2FF- 86 F9 1248 STX NUBYTE
9301~ 4A 1238 NXTBIT LSR
9302~ 26 F9 1268 ROL NUBYTE
9304~ ES 1278 INX
9385- E@ @7 1280 CPX #7
9307- 98 F8 1298 BCC NXTBIT
?389- 4A 1295 LSR
?38A~ AS F9 1388 LDA NUEBYTE
?36C- 98 82 1383 BCC J1
?38E- 89 88 1386 ORA MsEQ
7310~ ?1 26 1318 J1 STA (HBASL),Y
?312- C8 1328 INY
9313~ E& FA 1348 INC BASL
?315- D8 B2 1358 BNE NC2Z
9317~ Eé FB 1368 INC BASH
9319~ C4 FE 1378 NCZ CPY HR
931B- 98 Dé 1388 BCC L2A
?310- F@ D4 1398 BEQG L2A
?31F- €6 86 1418 DEC YO
7321~ AS 84 1420 LDA YO
9323~ C9 FF 1430 CMP #SFF
9325- F@ 084 1448 BEQ RTN2
9327- CS FC 1456 CMP UT
P329- 88 C3 1448 BCS L1A
$32B- 28 41 93 1478 RTN2 JSR SCAN
P32E- 48 1488 RTS

To change the page that is displayed you
POKE a 0 into one of these switches, and the
switch most recently POKEd will determine
which page is displayed.

POKE 49236,0 displays page 1
POKE 49237,0 displays page 2

In page flip animation we first display page
1, and draw on page 2. When we enter a flip
routine, the values of VT, VB, HR, and HL are
always those of the page which is being
displayed.

We first move back (on the hidden page)
one YINCRement and ERASE our shape,
then move forward 2 YINCRements and
DRAW the shape, at which time we exchange
pages and repeat the process.

SAMPLE PAGE FLIP ANIMATION
Let's start out with an example of page-flip
which moves our shape up and down on the
screen. To run this test you’ll need the SPACE
SHIP shape in LISTING 4 (which we created
in Part 1), and our driver in memory.

your Apple which page itis lo q_lsp!ay. _

LISTING 4
BLOCK SPACE SHIP
9000- 00 0C 00 00 7F 40 03 7F
9008- 70 07 7F 78 OF 7F 7C 1F
9010- 7F 7E 39 4C 67 3F 7F 7F
9018- OF 7F 7C 03 7F 70 00 7F
9020- 40 00 1E 00 02 01

10
20

30

35
36
37

45
50

60
65

70
80

90
100

110

LISTING 5
PAGE FLIP TEST

HGR : HGR2 : CALL 37799

POKE 251,144:YINCR = 2: POKE 2
27,YINCR

HR = 2:HL = 0: POKE 254,HR: POKE
255,HL: REM START SHAPE ON LEFT
SIDE OF SCREEN

POKE 252,2: POKE 253,13: REM SET
INITIAL VALUES FOR VT/VB

POKE 230,64: CALL 37524: REM
DRAW AT VT-YINCR/PAGE 2

POKE 230,32: CALL 37574: REM
DRAW AT VT/PAGE 1

FORX-1TO 40

CALL 37556: CALL 37581: REM USE
FLPDN ROUTINES

NEXT

CALL 37556: CALL 37470: REM DRAW
AT VT-YINCR AND VT+YINCR/PAGE
2-RETURN TO VT

FORX-1TO40

CALL 37500: CALL 37531: REM USE
FLPUP ROUTINES

NEXT

CALL 37561: CALL 37470: REM DRAW
AT VT-YINCR AND VT+YINC

R/PAGE 2-RETURN TO VT

GOTO 45

Uses

1) Block Shape #144
2) Block Routines

3) Listing 1

Once this program is in memory simply
RUN it, and you'll see your shape move
quickly and smoothly up and down on the
screen.

To see just how it works, we'll refer 1o list-
ing 5 as well as figures 1 and 2 which pictor-
ially represent what happens. Note: While
figures 1 and 2 only show 5 loops, our pro-
gram actually makes 40 loops.

Before we can execute any vertical move
routine with the driver, we must tell the
driver ust how many dots we want to move
each time. This is done by POKEing our
YINCRement into location $E3 (decimal 227)

POKE 227,YINCR

In listing 5 we will start our shape at Y-
coordinate 2, and move our shape 2 dots per
move. When we say that we're starting at Y-
coordinate 2, we're really referring to the
value of VT. VB will always be changing, right
along with VT, and in this case will always
equal VT+11.

Line 10 clears the Hi-Res screens, and exe-
cutes the YTABLE setup.

Line20 sets our shape#, and tells the driver
that we want YINCR=2.

Line 30 establishes the locations of HR and
HL on the left edge of the screen.

Line 35 sets up the starting location of our
shape at VT=2, vB=13.

At this point we come upon our firs: prob-
lem namely making sure that our very first
loop works properly. Looking at figure 1,
you'll note that the first trip through our flip
routines will ERASE at 0 and DRAW at 4 on
page 2, then ERASE at 2 and DRAW at 6 on
page 1.

The only problem with this is thal since
there really wasn’t anything to ERASE at 0
page 2, or 2 page 1, what has happened is that
we've DRAWNR our shape 4 times — twice on
each page. Loop 2 will properly ERASE the
shapes at 4 and 6. However, the shapes at 0
and 2 will remain, flashing on and off as we
exchange pages. To correct this problem
we'll first need to DRAW at 0 page 2, and 2
page 1, so that our very first loop has some-
thing to ERASE.

Line 36 sets up to DRAW page 2, then
CALLSs the driver to GOUP and DRAW.

Line 37 sets up to DRAW page 1, then
CALLs the driver to GODOWN and DRAW.

Now the first loop will work properly, as will
the rest of our loops until we're ready to stop
and turn around.

FLIP DOWN TO UP

The next problem that we need to deal
with is changing from the FLPDOWN to the
FLPUP routines. You'll see from figure 1 that
we ended ourlastloop with the shape DRAWRN
at 20 page 2, and 22 page 1. Now looking at
figure2 you'll see that the very first loopgoing
up ERASEs at 24 and DRAWSs at 20 page 2,
however since there is no shape at 24 the
ERASE is really a DRAW, and since there is a
shape at 20 our DRAW is really an ERASE.

88FC-
88FD-
98FE-
88FF-
0026~
0027-
2886~
80F9-
88FA-
0eFB-
9391
9381 -
932F-
932F-
89E3-
925E-
P25F -
9261-
9263~
9265-
9266~
9268-
926a-
926C~
926D~
926E-
9270~
9272~
9274~
9275-
9277~
9279~
927B-
927C-
927E-
9281~
9283-
$283-
9287-
9289~
926B-
PZBE-
9291~
9294-
9297~
9z9A~
9298~
9Z9D~
92A8-
92a2-
92A4-
92A7-
9264
9ZAD-
92B0-
9ZB3-
9284~
9264~
9289~
92BB-
92BD-
92C8-
9zC3-
92C4~
92C9-
92cC-
f2C0-
92CF-
9202~
9204~
9206~
9209~
92DC-
920F -
92E2-
92ES-

ce

ce

92
93
92
92
?3

ce

92

92
92
93

92
93

92
93

LISTING 3

VERTICAL MOVEMENT ROUTINES

1888
ie1e
1838
1848
1850
1848
1870
1888
1890
1180
1110
1120
1130
1149
1150
1140
1178
1200
1218
1228
1238
1248
1258
1240
1278
12808
1290
1388
1318
1320
13308
1348
1358
1368
1370
1388
1398
1488
1410
1428
1438
1449
1450
1940
1478
1480
1498
1508
1518
1520
1538
154e
1558
1560
157@
1580
1598
1608
2388
2390
24080
2418
2450
2448
2470
2488
2499
2300
23310
2520
2536
2548
2558
2549
2578
2580
259@
24880

.OR
-TA
vT
VB .E

$925E
+8060

-EQ $FC

Q $FD

HR .EQ $FE
HL .EQ $FF
HBASL .EQ %26

HBASH

-EQ 827

YO .EQ $6
NUBYTE .ER $F9

BASL
BASH
YADDR
SCAN
DRAW
ERASE
YINCR
GOuUP
LDA
SBC
STA
SEC
LDA
SBC
STA
RTS

.EQ $FA

-EQ $FB
.EQ $9391

.EQ #9361
EQ $932F
.EQ $932F
.EQ $E3

SEC

vT

YINCR

uT

UB
YINCR
VB

GODOWN CLC
LbA VT

ADC
STA
CLC
LDA
ADC
sSTA
RTS

FLPUP1 LDA

JSR
JSR
EXIT

YINCR
VT

VB
YINCR
vB

L1
+CB54
#$48
$Eé

uT
YINCR
EXIT
GODOWN
ERASE
GOuP
GouP
DRAW
RTS

FLPUPZ LDA W@

STA
LDA
sTA
JSR
JSR
JSR
JSR
JSR
RTS

$C855
#s20
$ES
GODOWN
ERASE
GOUP
GOuUP
DRAW

FLPON1 LDA M@

STA
LDA
STA
JSR
JSR
JSR
JSR
JSR
RTS

$Ce54q
He4e
SE&
GOouP
ERASE
GODOWN
GODOWN
DRAW

FLPDNZ LDA #©

STA
LDA
STA
JSR
JSR
JSR
JSR
JSR
RTS

$C855
#%290
$ES
GOUP
ERASE
GODOWN
GODOWN
DRAW

DECIMAL
DECIMAL
DECIMAL
DECIMAL
DECIMAL 38 (SCREEN BASE
DECIMAL 39 ADDRESS)
DECIMAL &

DECIMAL 249

DECIMAL 258 (TAELE BASE
DECIMAL 251 ADDRESS)
DECIMAL 37777 (READ YTABLE)
DECIMAL 37729

DECIMAL 37479

DECIMAL 37479

DECIMAL 227

CALL 37470 TO ENTER

GET VT

UT=VUT-Y INCR

RESET VT

252
253
234
255

GET vB

UB=UB-Y INCR

RESET VB

DONE

CALL 37485 TO ENTER
GET VT

UT=UT+YINCR

RESET VT

GET VB

VB=VB+YINCR

RESET VB

DONE

CALL 37588 TO ENTER
DISPLAY PAGE 1

CALL 37585 TO ENTER
DRAW PAGE 2

GET VT

WILL WE GO OFF SCREEN?
YES-CANCEL ROUTINE
MOVE BACK

ERASE SHAFPE

RETURN TO START
MOVE AHEAD 1 YINCR
DRAW SHAPE
DONE-EXIT ROUTINE
CALL 37331 TO ENTER
DISPLAY PAGE 2
CALL 373536 TO ENTER
DRAW PAGE 1

MOVE BACK

ERASE SHAPE

RETURN TO START
MOVE AHEAD 1 YINCR
DRAW SHAPE
DONE-EXIT ROUTINE
CALL 37356 TO ENTER
DISPLAY PAGE 1

CALL 37561 TO ENTER
DRAW PAGE 2

MOVE BACK

ERASE SHAPE

RETURN TO START
MOVE AHEAD 1 YINCR
DRAW SHAPE
OONE-EXIT ROUTINE
CALL 37581 TO ENTER
DISPLAY PAGE 2
CALL 37584 TO ENTER
ORAW PAGE 1

MOVE BACK

ERASE SHAPE

RETURN TO START
MOVE AHEAD 1 YINCR
DRAW SHAPE
DONE-EXIT ROUTINE

Obviously we need to make a patch here as
well.

Line 65 doesn't need to set the draw page,
since we're still on page 2, so we simply
CALL the driver to GOUP and EFRASE, then
GODOWN 2 and DRAW, after which we CALL
the driverto GOUP (move only) and return to
the starting place Now the first loop up will
work properly, as well as the other loops, until
we need to turn around again.

TURNING AT THE TOP

This time when we're at the top. our prob-
lem is a little different than it was when we
started the loop. Again we have the same
turn-around problem that we had at the lower
part of the loop, i.¢. that page 2’s first ERASE
and DRAW won't work correctly in the first
loop. So again we need to setup forthe return
trip.

Line 100 again doesn't need to set the draw
page, so we simply CALL the driver to GOUP
and DRAW, then GODOWN 2 and ERASE,
after which we again GOUP (move only)
which returns us to the starting place.

SAMPLE PAGE FLIP ANIMATION
Now let's try thesame program, except that
when we return 1o the top of our loop we'll
move our shape 1 byte to the right (7 dots)
before starting the next trip down

LISTING 6

10 HGR: HGR2: CALL 37799
20 POKE 251,144:YINCR = 2: POKE
227,YINCR: REM SET SHAPE#/YINCR
30 HR = 2:HL = 0: POKE 254,HR: POKE
255,HL: REM START SHAPE ON LEFT
SIDE OF SCREEN
35 POKE 252,2: POKE 253,13: REM SET
INITIAL VALUES FOR VT/VB
36 POKE 230,64: CALL 37524: REM
DRAW AT VT-YINCR/PAGE 2
37 POKE 230,32: CALL 37574: REM
DRAW AT VT/PAGE 1
45 FORX=1TO 40
50 CALL 37556: CALL 37581: REM USE
FLPDN ROUTINES
60 NEXT
65 CALL 37556: CALL 37470: REM DRAW
AT VT-YINCR AND VT+YINC R/PAGE
2-RETURN TO VT
70 FORX=1TO 40
80 CALL 37500: CALL 37531: REM USE
FLPUP ROUTINES
90 NEXT
100 POKE 230,64: CALL 37574: POKE
230,32: CALL 37524: REM ERASE VT-
YINCR/PAGE 2-VT/PAGE 1
105 HR = HR + 1:HL = HL + 1: POKE
254, HR: POKE 255,HL: REM MOVE
RIGHT
110 IF HR <Z 40 THEN 36: REM IF WE'RE
NOT OFF SCREEN CONTINUE RIGHT
120 GOTO 30: REM START OVER

Listing 6 is really exactly the same as listing
5. except that when we return to the top of the
screen we have to be careful not to leave any
untidy mess behind us before moving our
shape rightto its new starting pos tion. When
completing loop 5, on the way up we haveto
ERASE the shapes that we leftat4 page 2, and
2 page 1.

Line 100 CALLs the driver to GODOWN
and ERASE, then set up to draw page 1, and
finally CALLs the driver to GOUP and ERASE
page 1.

Line 105 then moves the shape right 1 byte.

Line 110 checks {o see if we're still on the
screen, or if it's time to return to the left side
and start all over.

A BEFORE STARTING. DRAW
SHAPE IN THESE PLACES

FIGURE 1 FIGURE 2
FLroNt | FLPDN2 FLPUP1 | FLPUP2
PAGE 2 | PAGE 1 PAGE 2 | PAGE 1
A MOVE ONLY
“\ A __ START oSS
MOVING S MOVING
ooy up LooP
USING —1 END USING
FLPDN €l LOOP FLPUP
ROUT'NES (5} 1 ROUTlNES
8 — END
L LOOP A
10’ 2
LOOP
b END
LOOP
~14 3
e rad LoOP
‘15 — END F e
LOOP ’
= 4 1 END
LOOP
07 %4 1
v e LOOP
/ P22
Ze—MOVE ONLY TO ¥, START
START UP POSITION BGgK

EXTRA STEPS TO PREPARE
FOR RETURN TRIP UP

FOR RETURN TRIP DOWN

RETURNING TO START SO THAT
LOOP 1 WILL PROPERLY ERASE

THE NUMBERS SHOWN ON EACH PAGE REPRESENT THE PRESENT
VALUE OF VT. VB WILL ALSO CHANGE IN RELATION TO VT.

C TO ELIMINATE SHAPE AT THIS HL/HR, ERASE AT THESE 2 LOCATIONS,

D OR IN THE CASE OF A DOWN MOVING SHAPE YOU COULD ALSO RUN YOUR

SHAPE OFF THE BOTTOM OF THE SCREEN.

‘Routine -

_CALL:

“TABLE1

SUMMARY OF NEW DRIVER ENTRY POINTS

F-Hex o
Address

 ‘Name Address
REVDIR : 37606 . . $92E6
Goupr ‘37470 $925E
“GODOWN. 37485 = $926D
FLPUP1 * 37500 $927C .
37505 $9281
- ¢ 371515 - - $928B
: 37524 $9294
FLPUP2 - ~ 37531 $9298B
. 37536 $92A0
- +37540 © . $92A4
. 37549 - * $92AD
FLPDN1 37556 $92B4
37561 - '$92B9 .
37565 $92BD
! 37574 - $92C6.
FLPDN2 - 37581 $92CD_
. 37586 © $92D2
37590 . . $92D6
37599 SSZDF :

Routine Function

Reverse physical appearance of shape left-right.
Subtract YINCR from VT and VB.

Add YINCR to VT and VB.

Display 1-Draw 2, move down ERASE, up DRAW.
Same as above without setting display page.
Same as above without setling DRAW page.
Move up and DRAW only.

Display 2-Draw 1, move down ERASE, up DRAW.
Same as above without setting display page.

_Same as above without setting DRAW page.
+ Move up and DRAW only.
" Display t-Draw 2, move up ERASE, down DRAW.

Samie as above without setting display page.
Same as above without setting DRAW page.
Move down and DRAW only,

Display 2-Draw 1, move up ERASE, down DRAW.

- Same as above without setting display page.
- . Same as above without setting DRAW page.
‘Move down and DRAW only.

POKE 227 YINCRomenMella the drlver how many vertical dots to move each time.

B EXTRA STEPS TO PREPARE

SPEED COMPARISONS

One of the main reasons that BLOCK
SHAPES are so popular in Hi-Res graphics is
because of their superior speed. However, no
graphics routines can run any faster than the
main program allows them to. To see just how
much our Applesoft test was slowing us
down, | conducted the following test:

First I ran, and timed how long it took list-
ing 6 to move completely across the screen.
This test took approximately 70 seconds.

Then | exactly duplicated listing 6, only this
time wrote it in machine language. The first
run was actually so fast that if you sat in the
normal place in front of the screen, you got
the impression that you were seeing the
shape In several positions at the same time.

Standing back about 10 feet from the
screen was better, but obviously something
was needed o slow things down.

The next test that | ran was to change
YINCR from 2 to 1, and lengthened the loops
from 40 to 80, which meant that our test would
need to do twice the work to go the same
distance. When | ran this test it took 53
seconds to complete the trek across the
screen.

In the end this showed that the machine
language CALLing program ran 24% faster,
even though it needed to do twice the work!

Obviously any speed deficiencies in our
tests will not be the fault of the driver. Apple-
soft CALLing programs will work fine for
many uses, and when we're all done, we'll
also explore how to use the Ampersand vec-
tor to replace CALL statements (which will
resultina 15%-20% speed improvement). But
for the ultimate in speed you should use the
driver with a machine language CALLing
program.

Just in case you'd like to try out the speed
differences yourself, the following is a hex
dump (listing 7) machine language version of
listing 6. To try it out yourself, simply enter it
into memory through the monitor, load the
driver and your shape, then enter HGR:HGR2
and finally CALL 2048.

To change it ta YINCR=1 and loops=80,
enter POKE 2056,1:POKE 2090,80:and POKE
2110,80 before you CALL 2048.

STORING YOUR SHAPES
IN MEMORY
There won't be enough space in this issue
to get into horizontal movement, so let's take
a few seconds to look at how to be more
efficient in storing your shapes in memory.

Earlier we said that you must always start
your shape at the very first byte of the
selected memory page, and that we'll always
number our shape with the decimal number
of that page. Therefore our sample shape
spaceship, although it is only 36 bytes long,
took up an entire 256 byte page of memory. If
you only have a few shapes, and can spare the
wasted memory, that will still be the easiest
method.

However, if memory starts running short,
you may want to try packing more than one
shape on a page. That's what we'll look at
here.

if you'll go back to Part 1 (NIBBLE Vol. 4
No. 3), and look at the top part of the SCAN
routine source-code, you'll see that the shape
table Base Address is stored in memory loca-
tions 250 and 251 (SFA and $FB). BASH-
BASe address Hi-byte, and BASL=BASe ad-
dress Lo-byte.

What you're doing with your POKE 251,
SHAPE# is putting the Hi-byte portion of the
start address in the BASH pointer. If the
shape started at $9300, you'd POKE 251,147
because 147 decimal is the same as $93.

Now if you look at the first two instructions
in SCAN, DRAW, and REVDIR youll see that
the very first thing any of these routines do is
putaOin BASL, atwhich time BASH=$93 and
BASL=00 . . . the start of your table!!

The problem here is that if you wanted to
begin your table at some byte other than the
first byte of a page, BASL would bedestroyed
the first time through one of these routines as
we INCrement BASL to point to sach table
element. To fix this, we'll need to store the
starting value of BASL somewhere else so
that we can reset it to the start of the table
each time we enter a routine.

Let's find a place to put BASL. At this point
it might be a good idea to turn to page 74 of
the new Apple Il Reference manua which
shows the available Zero page addresses. So
far, ol the available addresses, we've used 30,
31, 206, 207, 6, 252, 253, 254, 255, 250, 251,
249, end 227. Now we'll add 239 ($EF) to the
list, and we'll use it to store the initial value
of BASL.

The first thing you'll need to do is change
the very firstinstruction in SCAN, DRAW, and
REVDIR from LDA #0 to LDA $EF, which will
change the hex bytes from AS 00 to A5 EF.
Now the driver routines will be able to handle
shapes that start on any byte within the
memory page.

CHANGES WITHIN YOUR PROGRAM

Let's assume that the shape you want to
work with now starts at $93AS5.

You would still need to POKE 251,147
because your shape's Hi-Byte is still $93.
However you'll also need to POKE 239, 165
because the decimal equivalent of the low
byte $A5 is 165. Using this format you'll
always need to enter BOTH POKESs, even if
you start a shape at the first byte of a memory
page.

POKE 251,SHAPE# (Hi-Byte)
POKE 239,Lo-Byte

Forthe balance of our discussion we’ll stick
with our start-of-page, POKE 251 SHAPE#
method, and let you make these changes if
you want to.

There are a few things that you'll need to
watch out for If you use this multiple shape
per page method. Earlier we said that it was
okayfor yourshape to overflow onto the next
memory page, meaning that your shape was
longer than 256 bytes. It's still okay to let
that happen. However, YOUR SHAPE MUST
NEVER OVERFLOW ONTO THE NEXT MEM-
ORY PAGE, UNLESS IT STARTED AT THE
FIRST BYTE OF A PREVIOUS PAGE. Never
let any shape that didn't start on the first byte
of a page overflow onto the next pags.

That about wraps it up for this part of our
discussion. Next time around we'll get into
horizontal movementusing SHIFT animation

See you then!!

HEX DUMP LISTING 2
MACHINE LANGUAGE VERSION

*800.865

0800- 20 A7 93 A9 90 85 FB A9
0808- 02 85 E3 A9 02 85 FE A9
0810- 00 85 FF A9 02 85 FC A9
0818- OD 85 FD A9 40 85 E6 20
0820- 94 92 A9 20 85 E6 20 C6
0828- 92 A9 28 85 F9 20 B4 92
0830- 20 CD 92 C6 F9 DO F6 20
0838- B4 92 20 SE 92 A9 28 85
0840- F9 20 7C 92 20 9B 92 C6
0848- F9 DO F6 A9 40 85 E6 20
0850- C6 92 A9 20 85 E6 20 94
0858- 92 E6 FE E6 FF A5 FE C9
0860- 28 90 B8 4C 0B 08

