Hi-Res Cursor Mover

by Doug Denby
137 Main St.
Unieuville, Ontario
Canada, L3R 2G6

When dealing with the high resolution
screen, it is often necessary to move a point
or cursor about the screen to identify aloca-
tion or to place an object. When there are
paddles attached via the game paddle input
socket, then reading the paddle locations via
PDL(0) and PDL(1) and translating the resul-
tant numbers into screen coordinates works
very well

Mathematically, this i1s fairly easily done.
The maximum value returned by a PDL(n)
function is 255. The vertical dimension of the
HGR screen is 160 units while the HGR2
screen is 192: both are much less than the
potential value from the paddles. Thus a very
simple function suchasY =PDL(1) *191/255
for the full screen or Y = PDL(1) * 160 / 255
for HGR screen will generate a suitable Y
coordinate.

The horizontal coordinate is somewhat
more difficult. Both the HGR and HGR2
screens are 280 pixels wide, while the maxi-
mum reading from a paddle function is only
255. Thus to get an X coordinate, a formula
suchas X = PDL(0) " 280/ 255 1s needed. It s
quite obvious that this means that a number
of pixels cannot be reached using the paddles
to input the coordinates.

Ihere are ways around this, of course. You
could always build your screen design such
that it was only 255 pixels wide. Then XPDL(0)
would give you the harizontal coordinate.

There are two reasons why | would not
wish to do this. First | hate limiting the
APPLE's capabilities. | bought it because of
its capabilities.

Secondly, the paddles are not the most reli-
able of inputdevices, ILis often difficultto get
consecutive numerical readings from them,
especially after many hours of use.

The new APPLE computers are being sold
without the paddles., This is being done to
reduce the amount of RF interference pro-
cuced by the machines. This means that
many owners of APPLEs, now and moresoin
the future, may not have paddles from which
to input. This is another good reason to
design programs with a betier or alternate
method of controlling cursor movements on
the high resolution screen

USING THE KEYBOARD

A way to reach all pixels is to use the key-
board forinput. The familiar‘l',*J’, ‘K’, and ‘M’
keys could easily be used to move the cursor
about the high resolution screen as well as
the text screen. These could be easily aug-
mented by the use of the ‘U, ‘0", ‘N’ and ',’
keys to pick up diagonal movements

InBASIC aloop to read the keyboard could
be created. and every time one of those keys
was struck the cursor could be moved in the
appropriate direction

For example:

100 IF PEEK(-16384) < 127 THEN 100:
REM see if a key Has been hit, if not
then look again until one is struck

105 K$ - CHR$(PEEK(-16384) - 128): REM
capture the key hit

110 POKE -16368,0: REM clear the key-
board strobe

120 X = X + (K$ = "K") + (K$ = “0") +
(KS - ") - (K$ = “J") - (KS - “U") -
(KS = “N")

130 Y=Y+ (K$="M")+ (KS="N") +
(KS - ") - (K$ - “I") - (KS - “U") -
(KS - "0")

140 REM note the use of the BOOLEAN
functions to increment and decrement
the values of X and Y. The logic used
by the APPLE computer states that if
an equality is examined and found to
be true then it is equal to 1, but if not
true then it is equal to 0.

150 IF X< 0THENX 0

152 IF X - 279 THEN X = 279

154 IFY <<O0THENY =0

156 IFY > 159 THEN Y = 159

158 REM this keeps the cursor on the HGR
screen

160 HPLOT X,Y: REM put the cursor on the
screen

To do this properly. the former cursor
would have to be erased each time the new
cursor is HPLOTed. This requires that the
program be aware of the COLOR of the back-
ground on which the cursor has been placed.
There is no way thatthis can be done easily in
BASIC. However, when using shapes in the
high resolution mode there I1s a function
(XDRAW N AT X,Y) that places the shape
(number ‘N’) at a location on the high resolu-
tion screen using coordinates X.Y. This func-
tionis used frequently to move shapes around
the high resolution screen.

THE SHAPE CURSOR
A shape is stored in a shape table. Many
shapes can be stored in one table. Reading
the APPLESOFT MANUAL pages 92 to 97 will
explain how to create a shape table. Hereis a
sample table that draws simple crosshairs:

01 — only one shape in this table

00 — don't use this byte

04 — low byte of shape location: the first
and only shape starts four bytes from
the beginning of the shape table

00 — high byte of shape location

24 — move up and plot twice

D6 — plot, move down and left

6F — plot, move left, plot move right twice
29 — move right, plot and move right

9F — plot, move left twice and then down
36 — plot, move down, plot, move down
00 — end of shape

Now to place this in memory. Pick a fairly
safe place that won't be overwritten by the
operating system of the computer as it runs
your BASIC program. Hexadecimal 300 is
usually a safe location. From BASIC type
CALL -151. The prompt should now be an
assembly language. Type 300:01 00 04 00 24
D6 6F 29 9F 36 00 and the RETURN key. Be
sure to put the spaces in!

Be sure to put the spaces in!

Now type CTRL-C and RETURN. This

should put you back into BASIC. Clear the

screen with HOME. Type FOR I=768TO 778:
? PEEK()",":: NEXT | followed with a RE-
TURN. The computer will print out the above
shape table. The display is, however, Nnow in
decimal rather than hexadecimal. Using these
values we can store the shape table values in
a DATA statement at the end of our program
and use asimple loop to HEAD the values and
POKEthem into place each time the program
runs

900 FOR |-768TO 778: READ J: POKE
1,J: NEXT I: REM this puts the shape
table into memory

POKE 232,0: POKE 233,3: REM this
tells BASIC where to find the shape
table

RETURN : REM this will now be a
subroutine

DATA 1,0, 4, 0, 36, 214, 111, 41, 159,
54, 0: REM this is the shape table in
decimal values

910

920

1000

To use this new information will require
keeping track of two sets of coordinates. Let's
madify the program by typing inthe following
lines:

10 GOSUB 900: REM build the shape table
and tell the computer where it is
20 ROT - 0: SCALE - 1: COLOR = 3: REM
set initial values
30 X1 -100: Y1 - 100: X - X1:Y - Y1
XDRAW 1 AT X1, Y1: REM put the
cursor on the screen
XDRAW 1 AT X1,Y1: REM wipe out the
old cursor
XDRAW 1 AT X,Y: REM draw the new
cursor
180 X1 X:Y1 Y: REM transfer the new
cursor coordinates
190 GOTO 100: REM let's move the cursor
again

160

170

ADDING ZOOM

This will work very nicely. However, it
moves the cursor one pixel at atime and this
1S very slow on the high resolution screen
It takes 280 key strikes to move the cursor
from one side to another. Suppose we incor-
porate a scale or zoom factor. This can be
done such that hitting a particular key, such
as the SPACE BAR, will increase the amount
of movement generated by the cursor key
strikes.

25 Z - 1: GOSUB 800: REM set the zoom
115 IFK$ =" "THENZ = Z+ 1: GOSUB
800: REM if the space bar is hit, change
the zoom factor
145 X=X-(X1-X)*ZZ:Y=Y-(Y1-Y)
2

This incorporates the zoom factor into
the new coordinate values. Subtracting the
new BOOLEAN enhanced coordinate values
from the old coordinates yields valuesof -1,0
or 1 depending on whether the old value is
less than, equal to or greater than the new
value. (This is true because lines 130 and 140
only allow a change of 1 or 0, due to the

BOOLEAN functions used.) Multiplying this
by the zoom factor puts the change (if any)
equal tothe zoom factor, and subtracting the
result from the BOOLEAN enhanced coordi-
nate produces the new coordinate.

800 IFZ -7 THEN Z - 1: REM use a wrap-
around for the zoom value, never allow-
ing it to exceed 6

ZZ - 2 /" Z: REM using exponential
values allows faster zoom shifting than
mere addition. N.B.2 A 6 - 32

820 RETURN: REM end the subroutine
Below is a final version of the program up-
dated to include all the modifications that
have been made as the program was devel-
oped. ALL of the REM statements have been
removed at this stage.

810

10 GOSUB 900
20 ROT - 0: SCALE - 1: COLOR -3
25 Z- 1. GOSUB 800

30 X1 -100: Y1 100: X - X1:Y - Y1
XDRAW 1 AT X1, Y1

IF PEEK(-16384) ~ 127 THEN 100
KS - CHRS$(PEEK(-16384) - 128)
POKE -16368,0

IFK$-* "THENZ - Z+1: GOSUB
800: GOTO 100

X=X+ (KS$="L")+ (KS$="0")+
(K$ =",") - (K$ = "J") - (K$ = "U") -

100
105
110
115

120

(K$ “N")

130 Y - Y+ (KS$ = “M") + (KS = "N") +
(KS - *.") - (KS = “I") - (K$ - "U") -
(KS ="0")

185 X - X- (X1-X)*2Z:Y - Y- (Y1-Y)
-zz

150 IFX--O0OTHENX - 0

152 IEX - 279 THEN X - 279

154 IFY - O0OTHENY O

156 IFY -~ 159 THEN Y - 159

160 XDRAW 1 AT X1,Y1

170 XDRAW 1 AT XY

180 X1-=X:Y1=Y

190 GOTO 100

800 IFZ-7THENZ -1

810 ZZ=2 A Z

820
900

RETURN

FOR | - 768 TO 778: READ J: POKE
1,J: NEXT |

POKE 232,0: POKE 233,3

RETURN

DATA 1,0, 4,0, 36, 214, 111, 41, 159,
54,0

STEERING THE CURSOR

The above program assumes that move-
ment of the cursor will only occur upon strik-
ing of a key. In some applications the pro-
grammer may wish to have the cursor orother
shape move around the screen onitsown and
only be guided by the cursor keys. This could
be usedto steerashapearound atrack drawn
on the screen

To accomplish this only a few lines of our
program needto be changed. Instead of wait-
ing for a key to be struck before moving the
shape, the shape will have to be moved con-
tinually in the direction last indicated by the
striking of a key.

Delete lines 105, 110 and 115, revise line
100 and add subroutine 700 as follows:

100 IF PEEK(-16384) - 127 THEN GOSUB
700: REM if a key is struck then take
action; otherwise continue to move the
shape in the previous direction
IF CHRS(PEEK(-16384) - 128) - * "
THEN 800: REM if the zoom key is hit,
change the zoom only
710 K$ = CHRS$(PEEK(-16384) - 128):
POKE -16368, 0: RETURN

This changes the value after a cursorkey is
struck but does not cause a waiting for the
key.K$ retains its valueforthe calculations to
be doneinlines 120 and 130. Note that hitting
any key besides the zoom or cursor keys
causes the shape to halt where it is

Implementation of these lines will place the
cursor on the screen, and when a cursor key
15 struck the cursor will begin to move in that
direction at a rate determined by the zoom
factor. It might be advisable to use the zoom
as an addition factor rather than an exponen-
tial factor. This is done by changing the sub-
routine at 800:

910
920
1000

700

800 ZZ - ZZ + 1: REM increase the zoom
factor by adding one

810 IFZZ - 7 THEN ZZ - 1: REM if the
zoom is above 6 then loop it back to 1

Below is a final version of the routine as
It appears after altering it to a self moving
cursor, having its direction and rate of move-
ment altered at the keyboard. | hope that you
find these ideas helpful in your future pro-
gramming

10 GOSUB 900

20 ROT =0: SCALE-1: COLOR =3

25 Z -1:GOSUB 800

30 X1-=100:Y1-100:X - X1: Y= Y1:
XDRAW 1 AT X1, Y1

IF PEEK(-16384)
GOSuUB 700

X = X+ (KS ="L") + (K$ - “O") +

(KS =) - (KS = "J") - (KS =“U") -
(KS - "N")

Y - Y+ (KS - “M") + (KS = "N") +
(KS$ = *,") - (KS = "1") - (KS = "U") -
(K$ - “O")

X=X-(X1-X)*2ZZ: ¥ =Y - (Y1-Y)
Z2

IFX<0THENX -0

IF X 279 THEN X - 279
IFY<OTHENY-0

IFY 159 THEN Y - 159

XDRAW 1 AT X1,Y1

XDRAW 1AT XY

X1=X:Y1-=Y

GOTO 100

IF CHR$(PEEK(-16384) - 128) - "
THEN Z - Z + 1: GOTO 800

100 127 THEN

120

130

145

150
152
154
156
160
170
180
190
700

710 KS - CHRS(PEEK(-16384) - 128):
POKE -16368, 0: RETURN

800 2Z - ZZ +1

810 IFZZ-7THENZZ =1

820 RETURN

900 FOR | - 768 TO 778: READ J: POKE
1,J: NEXT |

910 POKE 232,0: POKE 233,3

920 RETURN

1000 DATA 1,0, 4.0, 36, 214, 111, 41, 159,

54,0

