[Tips N TECHNIQUES

APPLESOFT
PROGRAM MOVER

s your long Applesoft program moving
in on HiRes territory? Jog your
Apple’s memory with Applesoft Pro-

gram Mover (APM), which moves a running

Applesoft BASIC program up or down to

available location in main RAM and leaves

it running with its variables intact. Use it as

a fast relocating loader, and almost halve

loading time. Or use it as a dynamic reloca-

tor while programs are running to take ad-
vantage of unused memory.

Applesoft programs longer than 6K which
use the mixed text and graphics available on
Res page 1 often begin with a line simi-
lar to

IF PEEK(184) < > 64 THEN POKE
L 1:POKE 104,64 - POKE
1o364. 2.: PRINT CHRS(4) "RUN
PROGRA}

With APM ‘you can replace the above line
with
POKE 6,64 : PRINT CHRS (4)"BRUN

APM_0BJ "

Using the old method, the program PEEKs
the page number held by the start of program
pointer (location 104) to see whether the pro-
gram starts above the Hi-Res screen buffer
on page 64. If not, it sets the pointer to 64
witha POKE (telling BASIC and DOS where
the program starts) and then RUNS itself from
disk 2 second time.

With APM as a relocating loader, the
BASIC program LOADS just once before
you can start using it. The time difference
s substantial; a 45-sector file can be up and
running in 13 seconds with APM, compared
10 24 seconds without it.

Some programs, instead of reloading, use

Move your
Applesoft
programs on the
fly to safe locations
without time-

consuming
reloading

separate reloader programs to set the pointcrs
and load them; however, these are usually
written to load only a specific program. APM
has the advantage of being generic. Only one
copy of APM is necded on a disk containing
several long BASIC programs.

APM is a short, relocatable machine lan-
‘guage program you can BRUN directly from
disk or CALL from BASIC. It will run on
any Apple II with Applesoft BASIC, DOS
3.3 or ProDOS. and one disk drive.

USING THE PROGRAM

To use APM, simply POKE into location
6 the page number where you want your
BASIC program moved, then CALL or
BRUN APM.OBJ

For example, suppose your long program
makes only occasional use of Hi-Res
graphics. You can use APM to it full capac-
ity as a dynamic relocator to reclaim up to
14K of additional memory while the BASIC
program uses the text display. First load
APM to a safe location where it can be
CALLed whenever you want it. Since page
3 and the area just below HIMEM: are often
used to hold shape tables and the like, the
safest location for APM is tucked neatly be-
tween the BASIC program and its variables
(Please see the demo program in Listing 3
for program line references.)

Set LOMEM: exactly 314 bytes above the
end of the BASIC program (line 80). Then

BLOAD APM.OBJ into that safe area (line
110); note the use of a function variable to
represent the load address of APM.OBJ.
When you want to use Hi-Res page 1, issue
a POKE 6,64 (or POKE 6,96 to use Hi-Res
page 2) and CALL to where APM has been
loaded (line 130); when you don’t need to
protect the Hi-Res buffer anymore (when in
text mode, for cxample) issue a POKE 6,8
and CALL (line 170). Page 8 is the normal
starting location for Applesoft programs. A
program starting on page 64 doesn't use the
14K available between page § and page 64.
“This technique can also provide a clean exit
rom a relocated Applesoft program: Issuing
 POKE 6,8 followed by a CALL or BRUN
will neatly restore the start-of-program point-
ers 0 normal for the next program

Error Trapping

APM will not let you move your code be
low page 8. It also prevents your program
and variables from overlapping string storage
in upper memory (see lines 31-41 of List-
ing
Additional Applications

Applesoft Program Mover has great pos-
sibilities. You might team it with AUX:
MOVE in 128K lle’s and IIc’s o move
binary files as well as BASIC files o aux-
iliary memory. Or perhaps you'll move a
program out of the way while a machine lan-
guage program at S800 does its work — then
back when the machine language program is
finished

ENTERING THE PROGRAM
If you have an assembler, type in the
source code from Listing 1 and save the ob-
ject code as APM.OBJ. 1f you do not have
an assembler, key in the hex code from List-
ing 2. Save it (o disk with the command

TABLE 1: Zero Page Locations

Name Address Function

dec. hex.
TXTTAB 103-104 56768
VARTAB 105-106 $69-6A hold the location
ARYTAB 107-108 S6B-6C i
STREND 109- hold the location
PGREND 175-176 SAF-BO
TXTPTR 184-185 SBS-BY

hold the location of the start of the program.

the text pointer—the program location currenty being inerpreted.

BSAVE APM.OBJ,ASS8E00,LS13A

Finally, key in the demo program shown
in Listing 3 and save it on disk wi

SAVE APM.DEMO

For help with entering Nibble program list
ings, sec the Typing Tips section.

HOW THE PROGRAM WORKS
1 wondered whether you could move an
Applesoft program around without harming
it. In disovering that you can, I had to ad-
dress four areas: program pointers, variables,
string arrays, and link field addresses.
Applesoft Program Mover follows three
steps to move a program. First, it adjusts
Applesoft program and variable pointers,
then it adjusts link field addresses that point
10 program lines, and finally it moves the pro-
gram byte by byte to its new location,

TABLE 2: Variable Names and Types

ASCI type
A Real pos-pas 65
A% Integer neg-neg 193
AS String posneg 65
FN A Function neg-pos 193

ber previously POKEd into PAGE from
BASIC.

2.The difference is saved in TEMP. Since
APM must use these pointers in its other
routines, this difference is added to the
value held in the high-order byte in other
pointer locations used by APM.

‘The zero page location (Table 1) shows the
pointers to the locations where an Applesoft
program and its variables and strings reside
in memory.

Variables

Function variables (defined with DEF FN)
and string constants use pointers that hold ad-
dresses within the program text/variable
space (these must be adjusted appropriately)

APM first examines simple variables (be-
tween VARTAB and ARYTAB) for string
literals and functions, then checks arrays (be-
tween ARYTAB and
STREND) for string
literals.

APM examines cach
variable name to iden-
tify variable type.
Applesoft uses two-
byte varizble names

Program Pointers

Applesoft uses several pair of zero page
locations as pointers, including thos
in Table 1. Addresses are always given low-
order byte first with the page number held
in the high-order byte. VARTAB+1 ($6A)
holds the page number on which variables
begin: VARTAB ($69) holds the location on
that page where the variables begin. For sim-
plicity. APM ignores the low-order byte
whenever possible.

‘The values held in these locations must be
changed as follows whenever a program is
moved.

1. The page number held in VARTAB+1 is
subtracted from the destination page num-

00 SIS0 | ik positive (0-127)
v g or negative (128-255)
%0 SCi Sop | ASCI numbers to dif-
ferentiate type, and
considers all varia-

bles to have two-byle
names, regardless of their length in the pro-
‘gram text. See Table 2 for a listing of varia-
ble types and storage characteristics. Simple
variables are each allotted seven-byte areas

“The first function pointers hold the address
of the function formula following the equals
sign (=) in the DEF FN statement in the pro-
‘gram text; the sccond points 10 the argument
data within the variable space.

APM resets bytes 4 and 6 in function vari-
ables and compares byte 5 with FRETOP+ |
before attempting 10 reset 4 string pointer.
If the contemt of byte 5 is less than
FRFT()Po 1, the string is a literal and must

¢ reset.

Thu program steps through the variable
space seven bytes at a time and checks

whether ARYTAB has been reached

String Arrays

Strings in arrays sometimes point to text
in the program. Here, for example, strings
point 1o DATA statements within the pro-
gram text
220 DIM Z$(73) FOR X = 1 TO 73

Z$(X) NEXT X

lnn»mm.m about strings in arrays consists
of an array header, followed by three-byte
pointers that hold the length and address of
each string.

An array header for a string variable con-
tains the variable name in bytes 1-2, the off-
set to the next array in bytes 34, the number
of indices in byte 5, and the number of ele-
ments in cach pair of byies following.

APM adds the offsets in bytes 3 and 4 to
the present location and saves the sum. Then
it examines the variable name. If it's a string,
APM locates the zeroth clement by adding
10 VARPNT twice the number of indices plus
the five overhead bytes in the array header
Then it examines each clement, adding the
contents of TEMP to all pointers which cor
tain less than FRETOP+1. This alters the
pointers of null elements but—no harm, no
foul.

One element sits atop the last. After ex-
amining cach one, APM checks o sce
whether the next array has been reached. If
it has, the program checks the next header;
if not, it checks the next clement

Link Field Addresses
Each Applesoft program line contains the
absolute address of the next line (the link field
address). The line
10 HGR : REM
is tokenized as follows: 09, 08, 0A, 00, 91,
3A, B2, 00. The first two bytes, 09 and 08,
are the link field address. The next two bytes
are the line number. The next three bytes are
the tokens for HGR, :, and REM. The zero
byte marks the end of the line
APM adjusts the page number held in the
high-order byle using the addresses held in

Finally, the progmm and its variables are
moved to its new location, using these zero-
page locations:

$3C-$3D Point to the start of the source

$42-$43 Point to the destination address
of the move

The memory location preceding an
Applesoft program mst contain a zero
(hence the POKE 16384.0 in the loader). so

sets the move parameters to point 1o
the address immediately preceding the pro-
gram. APM then moves the BASIC program
byte by byte to its new location

LISTING 1: APM Source Code

ey
THITAB
Alol
Likot
STREW.
i a2
STREON
201
A VARTAB
TR
VARTABS
v

o4 7
ARvTABL

w
2

i v
I

1 v
i

I anc

I STA VARAT

B Bec Uit

B I VARPNTL1
I cw pT

h LDa VAPTo1
3 sac PTRiL

R BeC Ly

I BCS Ls
iz xoes
703 oex

B ot Txrran x
3 A0C VoW

h STA TXTTa8X
152 oex

18 o L1

185 1Dk poresos
136 soc Tl

187 STA PGAENDL1
1% o8 TXTPTHL
138 cw w2

160 BEQ Li4

161 cuc

162 Aoc Tour

e} STA TXTPIRI
164 s LoV a

168 oA €LY
186 A

167 it

it LA cLine) Y
169 Beg (15,

170 s

121 e

2 o< vewr

173 STA cLinG) .Y
174 ST Lo

175 P

176 STA LiNked
177 ety
veus oev

sot tink theta ptrs

icopy STREND for WOVE

copy VARTAD

no ot simp

Sdjust PN argument ote

ot PN tormuls/etring p
I3 e stelng Titerstor e

t pte o next var

isimole vars atored in 7 brtes

of areays bean rescnea

06 save bt to next

roten 1

oyte in var name
ot . branch

t s strine. branch
rraye oniy)

¢ pocation to
HR R b

Blue 8 bytes over
Rave Tn VARPNT

foten next elemnt

3 brtes sach

reset BASIC point,
TXITAB. VARTAD. AR
STREND

sajunt ot peinter
But caty |1 program is ruaning

ceset 1ink field addresses
Taten & Save ptr to next adar

v

eise une ..,.m. ove & exit
et dent o

oo
it carey oy

LISTING 2: APM.OBJ

Start: 8E00

A9 |BEQO:AS 06 85
5 68 85
99 01
4 42 C8
85 09
E 85 3F
84 CF
6C BO 36

c8 81

45 sv0. 1
7F |8E78:6E
31|8E80:85

€5 3C
5A|8F38:E5 60
TOTAL: 8C8C

END OF LISTING 2

LISTING 3: APM.DEMO

37
co 20 REM + APM.DEMO .
89 30 REM - BY MIKE MIYAKE
AE 40 RE * COPYRIGHT(C) 1988 «
c8 50 REM « MICROSPARC, INC. «
24 | 60 REM - CONCORD. WA 01742 -
45 .
AB 80 LOMEM. PEEK (175) + 256 « PEEK (176) + 31
4
83 90 TEXT : HOME : PRINT “PROGRAM MOVER DEMO"
VTAB
E3 100 DS = CHRS (4): DEF FN X(X) = PEEK (X) +
256 - PEEK (. 1
EF 110 PRINT DS BLOAD APU OIJ A FN X(175)
& | 120 PRINT - “poKe ND A CALL OR BRUN WI
INT HGVE A LONG BASIC TO PA
E 64:°: LIST 130: PRINT ..S0 IT CAN USE
Nl RES GRAPHICS™: PRINT : PRINT : PRINT *
ESS <RETURN> TO DO IT ":: GET ANS: PRINT
46 130 POKE 6.64: CALL FN X(175): REM MOVE TO PG
64
AD 40 HGR = 3 PLOT @ =19 TO
279 TEP Z‘ NPLVT TO 1. lNT (nm) -
140) < 10
OF 150 VTAB 21: PNIN'T "APM MOVED THE DEMO TO PAGE
* PEEK (104) ", JUST": PRINT "BEFORE HI-| RES
GkAPNICS WERE INVOKED": P
<RETURN> TO CONTINUE
29 | 160 TEXT :
FO 170 m: 6 l CALI. FN X(175): REM BACK TO NO
0 | 180 "PRINT “AND APM USED THE SAME TECHNIQUE TO”
PRINT HESTOHE TNE DEW TO NORMAL -
PEEK (104): LIS’ 'RINT “THIS PROGI
14K WORE WEMORY. | PRINT SAVATLABLE
IN TEXT nooz THAN IT HAD": PRINT “JUST A MO
2 | 190 ; PRINT g PRINT : PRINT “PRESS <RETURN: TO
CONTINUE “:: GET ANS: PR
B4 200 HOME Pl"ﬂ' 'VAIIA!L!S AND FUNCTIONS DEFI
NED BEFORE™: PRINT "THE MOVES. SUCH AS DS A
ND X:": LIST 108: PRINT B REMA
IN INTACT : LIST 210
F2 210 PRINT - PRINT “"ASC (D}) = " ASC (D$): PRINT
CFN X(103) = ° FN X(1€3)
TOTAL: 6627

END OF LISTING 3

